WorldWideScience

Sample records for supercomputer network final

  1. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  2. Lectures in Supercomputational Neurosciences Dynamics in Complex Brain Networks

    CERN Document Server

    Graben, Peter beim; Thiel, Marco; Kurths, Jürgen

    2008-01-01

    Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical co...

  3. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  4. Automatic discovery of the communication network topology for building a supercomputer model

    Science.gov (United States)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  5. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  6. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia

    2003-01-01

    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  7. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  8. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  9. Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    Science.gov (United States)

    1986-01-01

    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.

  10. The ASCI Network for SC '99: A Step on the Path to a 100 Gigabit Per Second Supercomputing Network

    Energy Technology Data Exchange (ETDEWEB)

    PRATT,THOMAS J.; TARMAN,THOMAS D.; MARTINEZ,LUIS M.; MILLER,MARC M.; ADAMS,ROGER L.; CHEN,HELEN Y.; BRANDT,JAMES M.; WYCKOFF,PETER S.

    2000-07-24

    This document highlights the Discom{sup 2}'s Distance computing and communication team activities at the 1999 Supercomputing conference in Portland, Oregon. This conference is sponsored by the IEEE and ACM. Sandia, Lawrence Livermore and Los Alamos National laboratories have participated in this conference for eleven years. For the last four years the three laboratories have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives rubric. Communication support for the ASCI exhibit is provided by the ASCI DISCOM{sup 2} project. The DISCOM{sup 2} communication team uses this forum to demonstrate and focus communication and networking developments within the community. At SC 99, DISCOM built a prototype of the next generation ASCI network demonstrated remote clustering techniques, demonstrated the capabilities of the emerging Terabit Routers products, demonstrated the latest technologies for delivering visualization data to the scientific users, and demonstrated the latest in encryption methods including IP VPN technologies and ATM encryption research. The authors also coordinated the other production networking activities within the booth and between their demonstration partners on the exhibit floor. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia's overall strategies in ASCI networking.

  11. Supercomputational science

    CERN Document Server

    Wilson, S

    1990-01-01

    In contemporary research, the supercomputer now ranks, along with radio telescopes, particle accelerators and the other apparatus of "big science", as an expensive resource, which is nevertheless essential for state of the art research. Supercomputers are usually provided as shar.ed central facilities. However, unlike, telescopes and accelerators, they are find a wide range of applications which extends across a broad spectrum of research activity. The difference in performance between a "good" and a "bad" computer program on a traditional serial computer may be a factor of two or three, but on a contemporary supercomputer it can easily be a factor of one hundred or even more! Furthermore, this factor is likely to increase with future generations of machines. In keeping with the large capital and recurrent costs of these machines, it is appropriate to devote effort to training and familiarization so that supercomputers are employed to best effect. This volume records the lectures delivered at a Summer School ...

  12. Evaluating the networking characteristics of the Cray XC-40 Intel Knights Landing-based Cori supercomputer at NERSC

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Douglas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Austin, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, Brandon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kandalla, Krishna [Cray Inc, Bloomington, MN (United States); Mendygral, Peter [Cray Inc, Bloomington, MN (United States)

    2017-09-12

    There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL, such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.

  13. Ultrascalable petaflop parallel supercomputer

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  14. Virtualized Network Control. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States)

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  15. The ETA10 supercomputer system

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, Inc. ETA 10 is a next-generation supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamics MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed. (orig.)

  16. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  17. What is supercomputing ?

    International Nuclear Information System (INIS)

    Asai, Kiyoshi

    1992-01-01

    Supercomputing means the high speed computation using a supercomputer. Supercomputers and the technical term ''supercomputing'' have spread since ten years ago. The performances of the main computers installed so far in Japan Atomic Energy Research Institute are compared. There are two methods to increase computing speed by using existing circuit elements, parallel processor system and vector processor system. CRAY-1 is the first successful vector computer. Supercomputing technology was first applied to meteorological organizations in foreign countries, and to aviation and atomic energy research institutes in Japan. The supercomputing for atomic energy depends on the trend of technical development in atomic energy, and the contents are divided into the increase of computing speed in existing simulation calculation and the acceleration of the new technical development of atomic energy. The examples of supercomputing in Japan Atomic Energy Research Institute are reported. (K.I.)

  18. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee; Kaushik, Dinesh; Winfer, Andrew

    2011-01-01

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  19. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee

    2011-11-15

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  20. Car2x with software defined networks, network functions virtualization and supercomputers technical and scientific preparations for the Amsterdam Arena telecoms fieldlab

    NARCIS (Netherlands)

    Meijer R.J.; Cushing R.; De Laat C.; Jackson P.; Klous S.; Koning R.; Makkes M.X.; Meerwijk A.

    2015-01-01

    In the invited talk 'Car2x with SDN, NFV and supercomputers' we report about how our past work with SDN [1, 2] allows the design of a smart mobility fieldlab in the huge parking lot the Amsterdam Arena. We explain how we can engineer and test software that handle the complex conditions of the Car2X

  1. Japanese supercomputer technology

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Ewald, R.H.; Worlton, W.J.

    1982-01-01

    In February 1982, computer scientists from the Los Alamos National Laboratory and Lawrence Livermore National Laboratory visited several Japanese computer manufacturers. The purpose of these visits was to assess the state of the art of Japanese supercomputer technology and to advise Japanese computer vendors of the needs of the US Department of Energy (DOE) for more powerful supercomputers. The Japanese foresee a domestic need for large-scale computing capabilities for nuclear fusion, image analysis for the Earth Resources Satellite, meteorological forecast, electrical power system analysis (power flow, stability, optimization), structural and thermal analysis of satellites, and very large scale integrated circuit design and simulation. To meet this need, Japan has launched an ambitious program to advance supercomputer technology. This program is described

  2. A training program for scientific supercomputing users

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  3. The ETA systems plans for supercomputers

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, is a class VII supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamic MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed

  4. Supercomputers to transform Science

    CERN Multimedia

    2006-01-01

    "New insights into the structure of space and time, climate modeling, and the design of novel drugs, are but a few of the many research areas that will be transforned by the installation of three supercomputers at the Unversity of Bristol." (1/2 page)

  5. Supercomputers Of The Future

    Science.gov (United States)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1992-01-01

    Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.

  6. Introduction to Reconfigurable Supercomputing

    CERN Document Server

    Lanzagorta, Marco; Rosenberg, Robert

    2010-01-01

    This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPe who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigur

  7. Enabling department-scale supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, D.S.; Hart, W.E.; Phillips, C.A.

    1997-11-01

    The Department of Energy (DOE) national laboratories have one of the longest and most consistent histories of supercomputer use. The authors summarize the architecture of DOE`s new supercomputers that are being built for the Accelerated Strategic Computing Initiative (ASCI). The authors then argue that in the near future scaled-down versions of these supercomputers with petaflop-per-weekend capabilities could become widely available to hundreds of research and engineering departments. The availability of such computational resources will allow simulation of physical phenomena to become a full-fledged third branch of scientific exploration, along with theory and experimentation. They describe the ASCI and other supercomputer applications at Sandia National Laboratories, and discuss which lessons learned from Sandia`s long history of supercomputing can be applied in this new setting.

  8. Towards future electricity networks - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Papaemmanouil, A.

    2008-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28{sup th} USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  9. Towards future electricity networks - Final report

    International Nuclear Information System (INIS)

    Papaemmanouil, A.

    2008-01-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28 th USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  10. Direct exploitation of a top 500 Supercomputer for Analysis of CMS Data

    International Nuclear Information System (INIS)

    Cabrillo, I; Cabellos, L; Marco, J; Fernandez, J; Gonzalez, I

    2014-01-01

    The Altamira Supercomputer hosted at the Instituto de Fisica de Cantatbria (IFCA) entered in operation in summer 2012. Its last generation FDR Infiniband network used (for message passing) in parallel jobs, supports the connection to General Parallel File System (GPFS) servers, enabling an efficient simultaneous processing of multiple data demanding jobs. Sharing a common GPFS system and a single LDAP-based identification with the existing Grid clusters at IFCA allows CMS researchers to exploit the large instantaneous capacity of this supercomputer to execute analysis jobs. The detailed experience describing this opportunistic use for skimming and final analysis of CMS 2012 data for a specific physics channel, resulting in an order of magnitude reduction of the waiting time, is presented.

  11. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-01-01

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  12. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-12-31

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  13. Applications of supercomputing and the utility industry: Calculation of power transfer capabilities

    International Nuclear Information System (INIS)

    Jensen, D.D.; Behling, S.R.; Betancourt, R.

    1990-01-01

    Numerical models and iterative simulation using supercomputers can furnish cost-effective answers to utility industry problems that are all but intractable using conventional computing equipment. An example of the use of supercomputers by the utility industry is the determination of power transfer capability limits for power transmission systems. This work has the goal of markedly reducing the run time of transient stability codes used to determine power distributions following major system disturbances. To date, run times of several hours on a conventional computer have been reduced to several minutes on state-of-the-art supercomputers, with further improvements anticipated to reduce run times to less than a minute. In spite of the potential advantages of supercomputers, few utilities have sufficient need for a dedicated in-house supercomputing capability. This problem is resolved using a supercomputer center serving a geographically distributed user base coupled via high speed communication networks

  14. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  15. Computational Dimensionalities of Global Supercomputing

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2013-12-01

    Full Text Available This Invited Paper pertains to subject of my Plenary Keynote Speech at the 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2013 held in Orlando, Florida on July 9-12, 2013. The title of my Plenary Keynote Speech was: "Dimensionalities of Computation: from Global Supercomputing to Data, Text and Web Mining" but this Invited Paper will focus only on the "Computational Dimensionalities of Global Supercomputing" and is based upon a summary of the contents of several individual articles that have been previously written with myself as lead author and published in [75], [76], [77], [78], [79], [80] and [11]. The topics of these of the Plenary Speech included Overview of Current Research in Global Supercomputing [75], Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing [76], Data Mining Supercomputing with SAS™ JMP® Genomics ([77], [79], [80], and Visualization by Supercomputing Data Mining [81]. ______________________ [11.] Committee on the Future of Supercomputing, National Research Council (2003, The Future of Supercomputing: An Interim Report, ISBN-13: 978-0-309-09016- 2, http://www.nap.edu/catalog/10784.html [75.] Segall, Richard S.; Zhang, Qingyu and Cook, Jeffrey S.(2013, "Overview of Current Research in Global Supercomputing", Proceedings of Forty- Fourth Meeting of Southwest Decision Sciences Institute (SWDSI, Albuquerque, NM, March 12-16, 2013. [76.] Segall, Richard S. and Zhang, Qingyu (2010, "Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing", Proceedings of 5th INFORMS Workshop on Data Mining and Health Informatics, Austin, TX, November 6, 2010. [77.] Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010, "Data Mining Supercomputing with SAS™ JMP®; Genomics: Research-in-Progress, Proceedings of 2010 Conference on Applied Research in Information Technology, sponsored by

  16. Gigabit network technology. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C.M.C. [ed.

    1996-10-01

    Current digital networks are evolving toward distributed multimedia with a wide variety of applications with individual data rates ranging from kb/sec to tens and hundreds of Mb/sec. Link speed requirements are pushing into the Gb/sec range and beyond the envelop of electronic networking capabilities. There is a vast amount of untapped bandwidth available in the low-attenuation communication bands of an optical fiber. The capacity in one fiber thread is enough to carry more than two thousand times as much information as all the current radio and microwave frequencies. And while fiber optics has replaced copper wire as the transmission medium of choice, the communication capacity of conventional fiber optic networks is ultimately limited by electronic processing speeds.

  17. A workbench for tera-flop supercomputing

    International Nuclear Information System (INIS)

    Resch, M.M.; Kuester, U.; Mueller, M.S.; Lang, U.

    2003-01-01

    Supercomputers currently reach a peak performance in the range of TFlop/s. With but one exception - the Japanese Earth Simulator - none of these systems has so far been able to also show a level of sustained performance for a variety of applications that comes close to the peak performance. Sustained TFlop/s are therefore rarely seen. The reasons are manifold and are well known: Bandwidth and latency both for main memory and for the internal network are the key internal technical problems. Cache hierarchies with large caches can bring relief but are no remedy to the problem. However, there are not only technical problems that inhibit the full exploitation by scientists of the potential of modern supercomputers. More and more organizational issues come to the forefront. This paper shows the approach of the High Performance Computing Center Stuttgart (HLRS) to deliver a sustained performance of TFlop/s for a wide range of applications from a large group of users spread over Germany. The core of the concept is the role of the data. Around this we design a simulation workbench that hides the complexity of interacting computers, networks and file systems from the user. (authors)

  18. World's fastest supercomputer opens up to users

    Science.gov (United States)

    Xin, Ling

    2016-08-01

    China's latest supercomputer - Sunway TaihuLight - has claimed the crown as the world's fastest computer according to the latest TOP500 list, released at the International Supercomputer Conference in Frankfurt in late June.

  19. HEP Science Network Requirements--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans

  20. HEP Science Network Requirements. Final Report

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian

    2010-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity

  1. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  2. Supercomputing and related national projects in Japan

    International Nuclear Information System (INIS)

    Miura, Kenichi

    1985-01-01

    Japanese supercomputer development activities in the industry and research projects are outlined. Architecture, technology, software, and applications of Fujitsu's Vector Processor Systems are described as an example of Japanese supercomputers. Applications of supercomputers to high energy physics are also discussed. (orig.)

  3. Mistral Supercomputer Job History Analysis

    OpenAIRE

    Zasadziński, Michał; Muntés-Mulero, Victor; Solé, Marc; Ludwig, Thomas

    2018-01-01

    In this technical report, we show insights and results of operational data analysis from petascale supercomputer Mistral, which is ranked as 42nd most powerful in the world as of January 2018. Data sources include hardware monitoring data, job scheduler history, topology, and hardware information. We explore job state sequences, spatial distribution, and electric power patterns.

  4. Supercomputers and quantum field theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1985-01-01

    A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs

  5. Computational plasma physics and supercomputers

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1984-09-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular codes, but parallel processing poses new coding difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematics

  6. An assessment of worldwide supercomputer usage

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  7. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  8. Wisconsin Inventors` Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor`s Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor`s information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  9. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Weingarten, D.

    1986-01-01

    GF11 is a parallel computer currently under construction at the IBM Yorktown Research Center. The machine incorporates 576 floating-point processors arrangedin a modified SIMD architecture. Each has space for 2 Mbytes of memory and is capable of 20 Mflops, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 Gflops. The floating-point processors are interconnected by a dynamically reconfigurable non-blocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics

  10. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Denneau, M.; Weingarten, D.

    1985-01-01

    GF11 is a parallel computer currently under construction at the IBM Yorktown Research Center. The machine incorporates 576 floating- point processors arranged in a modified SIMD architecture. Each has space for 2 Mbytes of memory and is capable of 20 Mflops, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 Gflops. The floating-point processors are interconnected by a dynamically reconfigurable nonblocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics

  11. Super-computer architecture

    CERN Document Server

    Hockney, R W

    1977-01-01

    This paper examines the design of the top-of-the-range, scientific, number-crunching computers. The market for such computers is not as large as that for smaller machines, but on the other hand it is by no means negligible. The present work-horse machines in this category are the CDC 7600 and IBM 360/195, and over fifty of the former machines have been sold. The types of installation that form the market for such machines are not only the major scientific research laboratories in the major countries-such as Los Alamos, CERN, Rutherford laboratory-but also major universities or university networks. It is also true that, as with sports cars, innovations made to satisfy the top of the market today often become the standard for the medium-scale computer of tomorrow. Hence there is considerable interest in examining present developments in this area. (0 refs).

  12. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Denneau, M.; Weingarten, D.

    1985-01-01

    GF11 is a parallel computer currently under construction at the Yorktown Research Center. The machine incorporates 576 floating-point processors arranged in a modified SIMD architecture. Each processor has space for 2 Mbytes of memory and is capable of 20 MFLOPS, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 GFLOPS. The floating-point processors are interconnected by a dynamically reconfigurable non-blocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics, a proposed theory of the elementary particles which participate in nuclear interactions

  13. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  14. ATLAS Software Installation on Supercomputers

    CERN Document Server

    Undrus, Alexander; The ATLAS collaboration

    2018-01-01

    PowerPC and high performance computers (HPC) are important resources for computing in the ATLAS experiment. The future LHC data processing will require more resources than Grid computing, currently using approximately 100,000 cores at well over 100 sites, can provide. Supercomputers are extremely powerful as they use resources of hundreds of thousands CPUs joined together. However their architectures have different instruction sets. ATLAS binary software distributions for x86 chipsets do not fit these architectures, as emulation of these chipsets results in huge performance loss. This presentation describes the methodology of ATLAS software installation from source code on supercomputers. The installation procedure includes downloading the ATLAS code base as well as the source of about 50 external packages, such as ROOT and Geant4, followed by compilation, and rigorous unit and integration testing. The presentation reports the application of this procedure at Titan HPC and Summit PowerPC at Oak Ridge Computin...

  15. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  16. Status of supercomputers in the US

    International Nuclear Information System (INIS)

    Fernbach, S.

    1985-01-01

    Current Supercomputers; that is, the Class VI machines which first became available in 1976 are being delivered in greater quantity than ever before. In addition, manufacturers are busily working on Class VII machines to be ready for delivery in CY 1987. Mainframes are being modified or designed to take on some features of the supercomputers and new companies with the intent of either competing directly in the supercomputer arena or in providing entry-level systems from which to graduate to supercomputers are springing up everywhere. Even well founded organizations like IBM and CDC are adding machines with vector instructions in their repertoires. Japanese - manufactured supercomputers are also being introduced into the U.S. Will these begin to compete with those of U.S. manufacture. Are they truly competitive. It turns out that both from the hardware and software points of view they may be superior. We may be facing the same problems in supercomputers that we faced in videosystems

  17. TOP500 Supercomputers for June 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-06-23

    23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.

  18. Tryton Supercomputer Capabilities for Analysis of Massive Data Streams

    Directory of Open Access Journals (Sweden)

    Krawczyk Henryk

    2015-09-01

    Full Text Available The recently deployed supercomputer Tryton, located in the Academic Computer Center of Gdansk University of Technology, provides great means for massive parallel processing. Moreover, the status of the Center as one of the main network nodes in the PIONIER network enables the fast and reliable transfer of data produced by miscellaneous devices scattered in the area of the whole country. The typical examples of such data are streams containing radio-telescope and satellite observations. Their analysis, especially with real-time constraints, can be challenging and requires the usage of dedicated software components. We propose a solution for such parallel analysis using the supercomputer, supervised by the KASKADA platform, which with the conjunction with immerse 3D visualization techniques can be used to solve problems such as pulsar detection and chronometric or oil-spill simulation on the sea surface.

  19. Proceedings of the first energy research power supercomputer users symposium

    International Nuclear Information System (INIS)

    1991-01-01

    The Energy Research Power Supercomputer Users Symposium was arranged to showcase the richness of science that has been pursued and accomplished in this program through the use of supercomputers and now high performance parallel computers over the last year: this report is the collection of the presentations given at the Symposium. ''Power users'' were invited by the ER Supercomputer Access Committee to show that the use of these computational tools and the associated data communications network, ESNet, go beyond merely speeding up computations. Today the work often directly contributes to the advancement of the conceptual developments in their fields and the computational and network resources form the very infrastructure of today's science. The Symposium also provided an opportunity, which is rare in this day of network access to computing resources, for the invited users to compare and discuss their techniques and approaches with those used in other ER disciplines. The significance of new parallel architectures was highlighted by the interesting evening talk given by Dr. Stephen Orszag of Princeton University

  20. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  1. INTEL: Intel based systems move up in supercomputing ranks

    CERN Multimedia

    2002-01-01

    "The TOP500 supercomputer rankings released today at the Supercomputing 2002 conference show a dramatic increase in the number of Intel-based systems being deployed in high-performance computing (HPC) or supercomputing areas" (1/2 page).

  2. Application and Network-Cognizant Proxies - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Antonio Ortega; Daniel C. Lee

    2003-03-24

    OAK B264 Application and Network-Cognizant Proxies - Final Report. Current networks show increasing heterogeneity both in terms of their bandwidths/delays and the applications they are required to support. This is a trend that is likely to intensify in the future, as real-time services, such as video, become more widely available and networking access over wireless links becomes more widespread. For this reason they propose that application-specific proxies, intermediate network nodes that broker the interactions between server and client, will become an increasingly important network element. These proxies will allow adaptation to changes in network characteristics without requiring a direct intervention of either server or client. Moreover, it will be possible to locate these proxies strategically at those points where a mismatch occurs between subdomains (for example, a proxy could be placed so as to act as a bridge between a reliable network domain and an unreliable one). This design philosophy favors scalability in the sense that the basic network infrastructure can remain unchanged while new functionality can be added to proxies, as required by the applications. While proxies can perform numerous generic functions, such as caching or security, they concentrate here on media-specific, and in particular video-specific, tasks. The goal of this project was to demonstrate that application- and network-specific knowledge at a proxy can improve overall performance especially under changing network conditions. They summarize below the work performed to address these issues. Particular effort was spent in studying caching techniques and on video classification to enable DiffServ delivery. other work included analysis of traffic characteristics, optimized media scheduling, coding techniques based on multiple description coding, and use of proxies to reduce computation costs. This work covered much of what was originally proposed but with a necessarily reduced scope.

  3. Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

    Science.gov (United States)

    Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias; hide

    2006-01-01

    The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.

  4. TOP500 Supercomputers for June 2005

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2005-06-22

    25th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/L LNL BlueGene/L and IBM gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 25th edition of the TOP500 list of the world's fastest supercomputers was released today (June 22, 2005) at the 20th International Supercomputing Conference (ISC2005) in Heidelberg Germany.

  5. TOP500 Supercomputers for November 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-11-16

    22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.

  6. TOP500 Supercomputers for November 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-11-08

    24th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/IBM BlueGene/L and NASA/SGI's Columbia gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 24th edition of the TOP500 list of the worlds fastest supercomputers was released today (November 8, 2004) at the SC2004 Conference in Pittsburgh, Pa.

  7. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

  8. Quantum Hamiltonian Physics with Supercomputers

    International Nuclear Information System (INIS)

    Vary, James P.

    2014-01-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed

  9. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  10. Quantum Hamiltonian Physics with Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P.

    2014-06-15

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  11. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  12. TOP500 Supercomputers for June 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-06-23

    21st Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 21st edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2003). The Earth Simulator supercomputer built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan, with its Linpack benchmark performance of 35.86 Tflop/s (teraflops or trillions of calculations per second), retains the number one position. The number 2 position is held by the re-measured ASCI Q system at Los Alamos National Laboratory. With 13.88 Tflop/s, it is the second system ever to exceed the 10 Tflop/smark. ASCIQ was built by Hewlett-Packard and is based on the AlphaServerSC computer system.

  13. Desktop supercomputer: what can it do?

    Science.gov (United States)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  14. Desktop supercomputer: what can it do?

    International Nuclear Information System (INIS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-01-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  15. TOP500 Supercomputers for June 2002

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2002-06-20

    19th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 19th edition of the TOP500 list of the worlds fastest supercomputers was released today (June 20, 2002). The recently installed Earth Simulator supercomputer at the Earth Simulator Center in Yokohama, Japan, is as expected the clear new number 1. Its performance of 35.86 Tflop/s (trillions of calculations per second) running the Linpack benchmark is almost five times higher than the performance of the now No.2 IBM ASCI White system at Lawrence Livermore National Laboratory (7.2 Tflop/s). This powerful leap frogging to the top by a system so much faster than the previous top system is unparalleled in the history of the TOP500.

  16. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nagasawa, Mikio

    1990-01-01

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  17. Advanced parallel processing with supercomputer architectures

    International Nuclear Information System (INIS)

    Hwang, K.

    1987-01-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers

  18. Networking and Information Technology Workforce Study: Final Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This report presents the results of a study of the global Networking and Information Technology NIT workforce undertaken for the Networking and Information...

  19. An efficient implementation of a backpropagation learning algorithm on quadrics parallel supercomputer

    International Nuclear Information System (INIS)

    Taraglio, S.; Massaioli, F.

    1995-08-01

    A parallel implementation of a library to build and train Multi Layer Perceptrons via the Back Propagation algorithm is presented. The target machine is the SIMD massively parallel supercomputer Quadrics. Performance measures are provided on three different machines with different number of processors, for two network examples. A sample source code is given

  20. Storage-Intensive Supercomputing Benchmark Study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J; Dossa, D; Gokhale, M; Hysom, D; May, J; Pearce, R; Yoo, A

    2007-10-30

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe: (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows

  1. Adaptability of supercomputers to nuclear computations

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Ishiguro, Misako; Matsuura, Toshihiko.

    1983-01-01

    Recently in the field of scientific and technical calculation, the usefulness of supercomputers represented by CRAY-1 has been recognized, and they are utilized in various countries. The rapid computation of supercomputers is based on the function of vector computation. The authors investigated the adaptability to vector computation of about 40 typical atomic energy codes for the past six years. Based on the results of investigation, the adaptability of the function of vector computation that supercomputers have to atomic energy codes, the problem regarding the utilization and the future prospect are explained. The adaptability of individual calculation codes to vector computation is largely dependent on the algorithm and program structure used for the codes. The change to high speed by pipeline vector system, the investigation in the Japan Atomic Energy Research Institute and the results, and the examples of expressing the codes for atomic energy, environmental safety and nuclear fusion by vector are reported. The magnification of speed up for 40 examples was from 1.5 to 9.0. It can be said that the adaptability of supercomputers to atomic energy codes is fairly good. (Kako, I.)

  2. Computational plasma physics and supercomputers. Revision 1

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1985-01-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular models, but parallel processing poses new programming difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematical models

  3. An evaluation of current high-performance networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Cote, Yannick; Duell, Jason; Hargrove, Paul; Husbands, Parry; Iancu, Costin; Welcome, Michael; Yelick, Katherine

    2003-01-25

    High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.

  4. Visualization environment of the large-scale data of JAEA's supercomputer system

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kensaku [Japan Atomic Energy Agency, Center for Computational Science and e-Systems, Tokai, Ibaraki (Japan); Hoshi, Yoshiyuki [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2013-11-15

    On research and development of various fields of nuclear energy, visualization of calculated data is especially useful to understand the result of simulation in an intuitive way. Many researchers who run simulations on the supercomputer in Japan Atomic Energy Agency (JAEA) are used to transfer calculated data files from the supercomputer to their local PCs for visualization. In recent years, as the size of calculated data has gotten larger with improvement of supercomputer performance, reduction of visualization processing time as well as efficient use of JAEA network is being required. As a solution, we introduced a remote visualization system which has abilities to utilize parallel processors on the supercomputer and to reduce the usage of network resources by transferring data of intermediate visualization process. This paper reports a study on the performance of image processing with the remote visualization system. The visualization processing time is measured and the influence of network speed is evaluated by varying the drawing mode, the size of visualization data and the number of processors. Based on this study, a guideline for using the remote visualization system is provided to show how the system can be used effectively. An upgrade policy of the next system is also shown. (author)

  5. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  6. The TeraGyroid Experiment – Supercomputing 2003

    Directory of Open Access Journals (Sweden)

    R.J. Blake

    2005-01-01

    Full Text Available Amphiphiles are molecules with hydrophobic tails and hydrophilic heads. When dispersed in solvents, they self assemble into complex mesophases including the beautiful cubic gyroid phase. The goal of the TeraGyroid experiment was to study defect pathways and dynamics in these gyroids. The UK's supercomputing and USA's TeraGrid facilities were coupled together, through a dedicated high-speed network, into a single computational Grid for research work that peaked around the Supercomputing 2003 conference. The gyroids were modeled using lattice Boltzmann methods with parameter spaces explored using many 1283 and 3grid point simulations, this data being used to inform the world's largest three-dimensional time dependent simulation with 10243-grid points. The experiment generated some 2 TBytes of useful data. In terms of Grid technology the project demonstrated the migration of simulations (using Globus middleware to and fro across the Atlantic exploiting the availability of resources. Integration of the systems accelerated the time to insight. Distributed visualisation of the output datasets enabled the parameter space of the interactions within the complex fluid to be explored from a number of sites, informed by discourse over the Access Grid. The project was sponsored by EPSRC (UK and NSF (USA with trans-Atlantic optical bandwidth provided by British Telecommunications.

  7. [Teacher enhancement at Supercomputing `96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-13

    The SC`96 Education Program provided a three-day professional development experience for middle and high school science, mathematics, and computer technology teachers. The program theme was Computers at Work in the Classroom, and a majority of the sessions were presented by classroom teachers who have had several years experience in using these technologies with their students. The teachers who attended the program were introduced to classroom applications of computing and networking technologies and were provided to the greatest extent possible with lesson plans, sample problems, and other resources that could immediately be used in their own classrooms. The attached At a Glance Schedule and Session Abstracts describes in detail the three-day SC`96 Education Program. Also included is the SC`96 Education Program evaluation report and the financial report.

  8. Final report for the network authentication investigation and pilot.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Dautenhahn, Nathan; Miller, Marc M.; Wiener, Dallas J; Witzke, Edward L.

    2006-11-01

    New network based authentication mechanisms are beginning to be implemented in industry. This project investigated different authentication technologies to see if and how Sandia might benefit from them. It also investigated how these mechanisms can integrate with the Sandia Two-Factor Authentication Project. The results of these investigations and a network authentication path forward strategy are documented in this report.

  9. Graphics supercomputer for computational fluid dynamics research

    Science.gov (United States)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  10. Final Report - Cloud-Based Management Platform for Distributed, Multi-Domain Networks

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Pulak [Ennetix Inc.; Mukherjee, Biswanath [Ennetix Inc.

    2017-11-03

    In this Department of Energy (DOE) Small Business Innovation Research (SBIR) Phase II project final report, Ennetix presents the development of a solution for end-to-end monitoring, analysis, and visualization of network performance for distributed networks. This solution benefits enterprises of all sizes, operators of distributed and federated networks, and service providers.

  11. FPS scientific and supercomputers computers in chemistry

    International Nuclear Information System (INIS)

    Curington, I.J.

    1987-01-01

    FPS Array Processors, scientific computers, and highly parallel supercomputers are used in nearly all aspects of compute-intensive computational chemistry. A survey is made of work utilizing this equipment, both published and current research. The relationship of the computer architecture to computational chemistry is discussed, with specific reference to Molecular Dynamics, Quantum Monte Carlo simulations, and Molecular Graphics applications. Recent installations of the FPS T-Series are highlighted, and examples of Molecular Graphics programs running on the FPS-5000 are shown

  12. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.

    1987-01-01

    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  13. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  14. Using crowdsourcing to prioritize bicycle network improvements : final report.

    Science.gov (United States)

    2016-04-01

    Effort to improve the bicycle route network using crowdsourced data is a powerful means : of incorporating citizens in infrastructure improvement decisions, which will improve : livability by maximizing the benefit of the bicycle infrastructure fundi...

  15. Cooperative visualization and simulation in a supercomputer environment

    International Nuclear Information System (INIS)

    Ruehle, R.; Lang, U.; Wierse, A.

    1993-01-01

    The article takes a closer look on the requirements being imposed by the idea to integrate all the components into a homogeneous software environment. To this end several methods for the distribtuion of applications in dependence of certain problem types are discussed. The currently available methods at the University of Stuttgart Computer Center for the distribution of applications are further explained. Finally the aims and characteristics of a European sponsored project, called PAGEIN, are explained, which fits perfectly into the line of developments at RUS. The aim of the project is to experiment with future cooperative working modes of aerospace scientists in a high speed distributed supercomputing environment. Project results will have an impact on the development of real future scientific application environments. (orig./DG)

  16. Final Technical Report for Terabit-scale hybrid networking project.

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Malathi [Univ. of Virginia, Charlottesville, VA (United States)

    2015-12-12

    This report describes our accomplishments and activities for the project titled Terabit-Scale Hybrid Networking. The key accomplishment is that we developed, tested and deployed an Alpha Flow Characterization System (AFCS) in ESnet. It is being run in production mode since Sept. 2015. Also, a new QoS class was added to ESnet5 to support alpha flows.

  17. Kaliningrad regional district heating network 2004-2006. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This report concerns: Kaliningrad Regional District Heating Network project which was implemented from 2004 to 2006. The task of the project was to establish and operate an association for district heating companies in the region in order to transfer and distribute district heating know-how to the sector and through activities strengthen the sector. The long term aim was to contribute to establishment of an association to continue as a real association for the heat supply companies in the region. (au)

  18. Resource Aware Intelligent Network Services (RAINS) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom; Yang, Xi

    2018-01-16

    The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyberinfrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum of compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyberinfrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate

  19. Firewall Architectures for High-Speed Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  20. Drive reinforcement neural networks for reactor control. Final report

    International Nuclear Information System (INIS)

    Williams, J.G.; Jouse, W.C.

    1995-01-01

    In view of the loss of the third year funding, the scope of the project goals has been revised. The revision in project scope no longer allows for the detailed modeling of the EBR-11 start-up task that was originally envisaged. The authors are continuing, however, to model the control of the rapid power ascent of the University of Arizona TRIGA reactor using a model-based controller and using a drive reinforcement neural network. These will be combined during the concluding period of the project into a hierarchical control architecture. In addition, the modeling of a PWR feedwater heater has continued, and an autonomous fault-tolerant software architecture for its control has been proposed

  1. PNNL supercomputer to become largest computing resource on the Grid

    CERN Multimedia

    2002-01-01

    Hewlett Packard announced that the US DOE Pacific Northwest National Laboratory will connect a 9.3-teraflop HP supercomputer to the DOE Science Grid. This will be the largest supercomputer attached to a computer grid anywhere in the world (1 page).

  2. Supercomputing - Use Cases, Advances, The Future (2/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the second day, we will focus on software and software paradigms driving supercomputers, workloads that need supercomputing treatment, advances in technology and possible future developments. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and i...

  3. Wisconsin Inventors' Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor's Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor's information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  4. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-01-01

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  5. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-03-13

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  6. Supercomputing Centers and Electricity Service Providers

    DEFF Research Database (Denmark)

    Patki, Tapasya; Bates, Natalie; Ghatikar, Girish

    2016-01-01

    from a detailed, quantitative survey-based analysis and compare the perspectives of the European grid and SCs to the ones of the United States (US). We then show that contrary to the expectation, SCs in the US are more open toward cooperating and developing demand-management strategies with their ESPs......Supercomputing Centers (SCs) have high and variable power demands, which increase the challenges of the Electricity Service Providers (ESPs) with regards to efficient electricity distribution and reliable grid operation. High penetration of renewable energy generation further exacerbates...... this problem. In order to develop a symbiotic relationship between the SCs and their ESPs and to support effective power management at all levels, it is critical to understand and analyze how the existing relationships were formed and how these are expected to evolve. In this paper, we first present results...

  7. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  8. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    Energy Technology Data Exchange (ETDEWEB)

    Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brightwell, Ron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.

  9. Explaining the gap between theoretical peak performance and real performance for supercomputer architectures

    International Nuclear Information System (INIS)

    Schoenauer, W.; Haefner, H.

    1993-01-01

    The basic architectures of vector and parallel computers with their properties are presented. Then the memory size and the arithmetic operations in the context of memory bandwidth are discussed. For the exemplary discussion of a single operation micro-measurements of the vector triad for the IBM 3090 VF and the CRAY Y-MP/8 are presented. They reveal the details of the losses for a single operation. Then we analyze the global performance of a whole supercomputer by identifying reduction factors that bring down the theoretical peak performance to the poor real performance. The responsibilities of the manufacturer and of the user for these losses are dicussed. Then the price-performance ratio for different architectures in a snapshot of January 1991 is briefly mentioned. Finally some remarks to a user-friendly architecture for a supercomputer will be made. (orig.)

  10. OpenMP Performance on the Columbia Supercomputer

    Science.gov (United States)

    Haoqiang, Jin; Hood, Robert

    2005-01-01

    This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.

  11. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  12. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  13. The effect of increasing levels of embedded generation on the distribution network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Earp, G K; Howson, D; Owen, R D; Wright, A J

    1999-10-01

    This report was commissioned as part of the EA Technology Strategic Technology Programme under guidance of the Module 5 (Embedded Generation) Steering Group. This report aims to provide information related to the distribution and supply of electricity in the context of increasing levels of embedded generation. There is a brief description of the operating environment within which electricity companies in the UK must operate. Technical issues related to the connection of generation to the existing distribution infrastructure are highlighted and the design philosophy adopted by network designers in accommodating applications for the connection of embedded generation to the network is discussed. The effects embedded generation has on the network and the issues raised are presented as many of them present barriers to the connection of embedded generators. The final chapters cover the forecast of required connection to 2010 and solutions to restrictions preventing the connection of more embedded generation to the network. (author)

  14. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone; Manzano Franco, Joseph B.

    2012-12-31

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, we introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.

  15. End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jesse [Acadia Optronics LLC, Rockville, MD (United States)

    2013-08-30

    In recent years, network bandwidth requirements have scaled multiple folds, pushing the need for the development of data exchange mechanisms at 100 Gb/s and beyond. High performance computing, climate modeling, large-scale storage, and collaborative scientific research are examples of applications that can greatly benefit by leveraging high bandwidth capabilities of the order of 100 Gb/s. Such requirements and advances in IEEE Ethernet standards, Optical Transport Unit4 (OTU4), and host-system interconnects demand a network infrastructure supporting throughput rates of the order of 100 Gb/s with a single wavelength. To address such a demand Acadia Optronics in collaboration with the University of New Mexico, proposed and developed a end-system Network Interface Controller (NIC) for the 100Gbps WANs. Acadia’s 100G NIC employs an FPGA based system with a high-performance processor interconnect (PCIe 3.0) and a high capacity optical transmission link (CXP) to provide data transmission at the rate of 100 Gbps.

  16. Supercomputing - Use Cases, Advances, The Future (1/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the first day, we will focus on the history and theory of supercomputing, the top500 list and the hardware that makes supercomputers tick. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and initiated projects with the private sector (e.g. HP an...

  17. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  18. JINR supercomputer of the module type for event parallel analysis

    International Nuclear Information System (INIS)

    Kolpakov, I.F.; Senner, A.E.; Smirnov, V.A.

    1987-01-01

    A model of a supercomputer with 50 million of operations per second is suggested. Its realization allows one to solve JINR data analysis problems for large spectrometers (in particular DELPHY collaboration). The suggested module supercomputer is based on 32-bit commercial available microprocessor with a processing rate of about 1 MFLOPS. The processors are combined by means of VME standard busbars. MicroVAX-11 is a host computer organizing the operation of the system. Data input and output is realized via microVAX-11 computer periphery. Users' software is based on the FORTRAN-77. The supercomputer is connected with a JINR net port and all JINR users get an access to the suggested system

  19. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jacobsen, Douglas W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  20. Comments on the parallelization efficiency of the Sunway TaihuLight supercomputer

    OpenAIRE

    Végh, János

    2016-01-01

    In the world of supercomputers, the large number of processors requires to minimize the inefficiencies of parallelization, which appear as a sequential part of the program from the point of view of Amdahl's law. The recently suggested new figure of merit is applied to the recently presented supercomputer, and the timeline of "Top 500" supercomputers is scrutinized using the metric. It is demonstrated, that in addition to the computing performance and power consumption, the new supercomputer i...

  1. Convex unwraps its first grown-up supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, T.

    1988-03-03

    Convex Computer Corp.'s new supercomputer family is even more of an industry blockbuster than its first system. At a tenfold jump in performance, it's far from just an incremental upgrade over its first minisupercomputer, the C-1. The heart of the new family, the new C-2 processor, churning at 50 million floating-point operations/s, spawns a group of systems whose performance could pass for some fancy supercomputers-namely those of the Cray Research Inc. family. When added to the C-1, Convex's five new supercomputers create the C series, a six-member product group offering a performance range from 20 to 200 Mflops. They mark an important transition for Convex from a one-product high-tech startup to a multinational company with a wide-ranging product line. It's a tough transition but the Richardson, Texas, company seems to be doing it. The extended product line propels Convex into the upper end of the minisupercomputer class and nudges it into the low end of the big supercomputers. It positions Convex in an uncrowded segment of the market in the $500,000 to $1 million range offering 50 to 200 Mflops of performance. The company is making this move because the minisuper area, which it pioneered, quickly became crowded with new vendors, causing prices and gross margins to drop drastically.

  2. QCD on the BlueGene/L Supercomputer

    International Nuclear Information System (INIS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-01-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented

  3. QCD on the BlueGene/L Supercomputer

    Science.gov (United States)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  4. Supercomputers and the future of computational atomic scattering physics

    International Nuclear Information System (INIS)

    Younger, S.M.

    1989-01-01

    The advent of the supercomputer has opened new vistas for the computational atomic physicist. Problems of hitherto unparalleled complexity are now being examined using these new machines, and important connections with other fields of physics are being established. This talk briefly reviews some of the most important trends in computational scattering physics and suggests some exciting possibilities for the future. 7 refs., 2 figs

  5. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  6. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  7. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  8. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer

    Science.gov (United States)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  9. Integration of Panda Workload Management System with supercomputers

    Science.gov (United States)

    De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.

    2016-09-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads

  10. Nuclear Physics Science Network Requirements Workshop, May 6 and 7, 2008. Final Report

    International Nuclear Information System (INIS)

    Tierney, Ed. Brian L; Dart, Ed. Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-01-01

    to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations

  11. Frequently updated noise threat maps created with use of supercomputing grid

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2014-09-01

    Full Text Available An innovative supercomputing grid services devoted to noise threat evaluation were presented. The services described in this paper concern two issues, first is related to the noise mapping, while the second one focuses on assessment of the noise dose and its influence on the human hearing system. The discussed serviceswere developed within the PL-Grid Plus Infrastructure which accumulates Polish academic supercomputer centers. Selected experimental results achieved by the usage of the services proposed were presented. The assessment of the environmental noise threats includes creation of the noise maps using either ofline or online data, acquired through a grid of the monitoring stations. A concept of estimation of the source model parameters based on the measured sound level for the purpose of creating frequently updated noise maps was presented. Connecting the noise mapping grid service with a distributed sensor network enables to automatically update noise maps for a specified time period. Moreover, a unique attribute of the developed software is the estimation of the auditory effects evoked by the exposure to noise. The estimation method uses a modified psychoacoustic model of hearing and is based on the calculated noise level values and on the given exposure period. Potential use scenarios of the grid services for research or educational purpose were introduced. Presentation of the results of predicted hearing threshold shift caused by exposure to excessive noise can raise the public awareness of the noise threats.

  12. Feynman diagrams sampling for quantum field theories on the QPACE 2 supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Rappl, Florian

    2016-08-01

    This work discusses the application of Feynman diagram sampling in quantum field theories. The method uses a computer simulation to sample the diagrammatic space obtained in a series expansion. For running large physical simulations powerful computers are obligatory, effectively splitting the thesis in two parts. The first part deals with the method of Feynman diagram sampling. Here the theoretical background of the method itself is discussed. Additionally, important statistical concepts and the theory of the strong force, quantum chromodynamics, are introduced. This sets the context of the simulations. We create and evaluate a variety of models to estimate the applicability of diagrammatic methods. The method is then applied to sample the perturbative expansion of the vertex correction. In the end we obtain the value for the anomalous magnetic moment of the electron. The second part looks at the QPACE 2 supercomputer. This includes a short introduction to supercomputers in general, as well as a closer look at the architecture and the cooling system of QPACE 2. Guiding benchmarks of the InfiniBand network are presented. At the core of this part, a collection of best practices and useful programming concepts are outlined, which enables the development of efficient, yet easily portable, applications for the QPACE 2 system.

  13. Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; D' Azevedo, Eduardo [ORNL; Philip, Bobby [ORNL; Worley, Patrick H [ORNL

    2016-01-01

    On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phase of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.

  14. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; Kumar, Jitendra [ORNL; Mills, Richard T. [Argonne National Laboratory; Hoffman, Forrest M. [ORNL; Sripathi, Vamsi [Intel Corporation; Hargrove, William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS)

    2017-09-01

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like the Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.

  15. Integration of Titan supercomputer at OLCF with ATLAS production system

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration

    2016-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this talk we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job...

  16. Integration of Titan supercomputer at OLCF with ATLAS Production System

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for jo...

  17. Extending ATLAS Computing to Commercial Clouds and Supercomputers

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Filipcic, A; Klimentov, A; Maeno, T; Oleynik, D; Panitkin, S; Wenaus, T; Wu, W

    2014-01-01

    The Large Hadron Collider will resume data collection in 2015 with substantially increased computing requirements relative to its first 2009-2013 run. A near doubling of the energy and the data rate, high level of event pile-up, and detector upgrades will mean the number and complexity of events to be analyzed will increase dramatically. A naive extrapolation of the Run 1 experience would suggest that a 5-6 fold increase in computing resources are needed - impossible within the anticipated flat computing budgets in the near future. Consequently ATLAS is engaged in an ambitious program to expand its computing to all available resources, notably including opportunistic use of commercial clouds and supercomputers. Such resources present new challenges in managing heterogeneity, supporting data flows, parallelizing workflows, provisioning software, and other aspects of distributed computing, all while minimizing operational load. We will present the ATLAS experience to date with clouds and supercomputers, and des...

  18. Visualizing quantum scattering on the CM-2 supercomputer

    International Nuclear Information System (INIS)

    Richardson, J.L.

    1991-01-01

    We implement parallel algorithms for solving the time-dependent Schroedinger equation on the CM-2 supercomputer. These methods are unconditionally stable as well as unitary at each time step and have the advantage of being spatially local and explicit. We show how to visualize the dynamics of quantum scattering using techniques for visualizing complex wave functions. Several scattering problems are solved to demonstrate the use of these methods. (orig.)

  19. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  20. Intelligent Personal Supercomputer for Solving Scientific and Technical Problems

    Directory of Open Access Journals (Sweden)

    Khimich, O.M.

    2016-09-01

    Full Text Available New domestic intellіgent personal supercomputer of hybrid architecture Inparkom_pg for the mathematical modeling of processes in the defense industry, engineering, construction, etc. was developed. Intelligent software for the automatic research and tasks of computational mathematics with approximate data of different structures was designed. Applied software to provide mathematical modeling problems in construction, welding and filtration processes was implemented.

  1. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  2. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  3. Porting Ordinary Applications to Blue Gene/Q Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, Ketan C.; Wozniak, Justin M.; Armstrong, Timothy; Katz, Daniel S.; Binkowski, T. Andrew; Zhong, Xiaoliang; Heinonen, Olle; Karpeyev, Dmitry; Wilde, Michael

    2015-08-31

    Efficiently porting ordinary applications to Blue Gene/Q supercomputers is a significant challenge. Codes are often originally developed without considering advanced architectures and related tool chains. Science needs frequently lead users to want to run large numbers of relatively small jobs (often called many-task computing, an ensemble, or a workflow), which can conflict with supercomputer configurations. In this paper, we discuss techniques developed to execute ordinary applications over leadership class supercomputers. We use the high-performance Swift parallel scripting framework and build two workflow execution techniques-sub-jobs and main-wrap. The sub-jobs technique, built on top of the IBM Blue Gene/Q resource manager Cobalt's sub-block jobs, lets users submit multiple, independent, repeated smaller jobs within a single larger resource block. The main-wrap technique is a scheme that enables C/C++ programs to be defined as functions that are wrapped by a high-performance Swift wrapper and that are invoked as a Swift script. We discuss the needs, benefits, technicalities, and current limitations of these techniques. We further discuss the real-world science enabled by these techniques and the results obtained.

  4. Extracting the Textual and Temporal Structure of Supercomputing Logs

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S; Singh, I; Chandra, A; Zhang, Z; Bronevetsky, G

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an online clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.

  5. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  6. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  7. Supercomputers and the mathematical modeling of high complexity problems

    International Nuclear Information System (INIS)

    Belotserkovskii, Oleg M

    2010-01-01

    This paper is a review of many works carried out by members of our scientific school in past years. The general principles of constructing numerical algorithms for high-performance computers are described. Several techniques are highlighted and these are based on the method of splitting with respect to physical processes and are widely used in computing nonlinear multidimensional processes in fluid dynamics, in studies of turbulence and hydrodynamic instabilities and in medicine and other natural sciences. The advances and developments related to the new generation of high-performance supercomputing in Russia are presented.

  8. A fast random number generator for the Intel Paragon supercomputer

    Science.gov (United States)

    Gutbrod, F.

    1995-06-01

    A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.

  9. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  10. Efficient development of memory bounded geo-applications to scale on modern supercomputers

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Licul, Aleksandar; Podladchikov, Yuri; Herman, Frédéric

    2016-04-01

    Numerical modeling is an actual key tool in the area of geosciences. The current challenge is to solve problems that are multi-physics and for which the length scale and the place of occurrence might not be known in advance. Also, the spatial extend of the investigated domain might strongly vary in size, ranging from millimeters for reactive transport to kilometers for glacier erosion dynamics. An efficient way to proceed is to develop simple but robust algorithms that perform well and scale on modern supercomputers and permit therefore very high-resolution simulations. We propose an efficient approach to solve memory bounded real-world applications on modern supercomputers architectures. We optimize the software to run on our newly acquired state-of-the-art GPU cluster "octopus". Our approach shows promising preliminary results on important geodynamical and geomechanical problematics: we have developed a Stokes solver for glacier flow and a poromechanical solver including complex rheologies for nonlinear waves in stressed rocks porous rocks. We solve the system of partial differential equations on a regular Cartesian grid and use an iterative finite difference scheme with preconditioning of the residuals. The MPI communication happens only locally (point-to-point); this method is known to scale linearly by construction. The "octopus" GPU cluster, which we use for the computations, has been designed to achieve maximal data transfer throughput at minimal hardware cost. It is composed of twenty compute nodes, each hosting four Nvidia Titan X GPU accelerators. These high-density nodes are interconnected with a parallel (dual-rail) FDR InfiniBand network. Our efforts show promising preliminary results for the different physics investigated. The glacier flow solver achieves good accuracy in the relevant benchmarks and the coupled poromechanical solver permits to explain previously unresolvable focused fluid flow as a natural outcome of the porosity setup. In both cases

  11. Measurement of traffic network vulnerability for Mississippi coastal region : final research report.

    Science.gov (United States)

    2017-08-15

    Natural disasters such as a hurricane can cause great damages to the transportation networks and significantly affect the evacuation trip operations. An accurate understanding and measurement of the network vulnerability can enhance the evacuees p...

  12. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation.

  13. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation

  14. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  15. Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules

    International Nuclear Information System (INIS)

    Lagana, A.

    1989-01-01

    Even for small systems, the accurate characterization of reactive processes is so demanding of computer resources as to suggest the use of supercomputers having vector and parallel facilities. The full advantages of vector and parallel architectures can sometimes be obtained by simply modifying existing programs, vectorizing the manipulation of vectors and matrices, and requiring the parallel execution of independent tasks. More often, however, a significant time saving can be obtained only when the computer code undergoes a deeper restructuring, requiring a change in the computational strategy or, more radically, the adoption of a different theoretical treatment. This book discusses supercomputer strategies based upon act and approximate methods aimed at calculating the electronic structure and the reactive properties of small systems. The book shows how, in recent years, intense design activity has led to the ability to calculate accurate electronic structures for reactive systems, exact and high-level approximations to three-dimensional reactive dynamics, and to efficient directive and declaratory software for the modelling of complex systems

  16. KfK-seminar series on supercomputing und visualization from May till September 1992

    International Nuclear Information System (INIS)

    Hohenhinnebusch, W.

    1993-05-01

    During the period of may 1992 to september 1992 a series of seminars was held at KfK on several topics of supercomputing in different fields of application. The aim was to demonstrate the importance of supercomputing and visualization in numerical simulations of complex physical and technical phenomena. This report contains the collection of all submitted seminar papers. (orig./HP) [de

  17. Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data

    Science.gov (United States)

    Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.

    2018-03-01

    One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.

  18. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  19. Development of a Cloud Resolving Model for Heterogeneous Supercomputers

    Science.gov (United States)

    Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.

    2017-12-01

    A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.

  20. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  1. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  2. Social networking and the Olympic Movement: social media analysis, opportunities and trends : final report

    OpenAIRE

    Fernández Peña, Emilio

    2011-01-01

    Table of contents : 1: Introduction. - 2 : Sociodemographic data of social networking sites. - 3 : The Vancouver 2010 Olympic Winter Games on Facebook, Twitter and Orkut. - 4 : Singapore 2010 Youth Olympic Games communication strategies on Facebook and Twitter. - 5 : Sport organizations social networking strategies : case study analysis. - 6 : Olympic athletes and social media use during a non olympic-period. - 7. The Olympic Games, NBA and FC Barcelona on Facebook : content and fan participa...

  3. Investigation of tt in the full hadronic final state at CDF with a neural network approach

    CERN Document Server

    Sidoti, A; Busetto, G; Castro, A; Dusini, S; Lazzizzera, I; Wyss, J

    2001-01-01

    In this work we present the results of a neural network (NN) approach to the measurement of the tt production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feedforward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare)-IRST (Istituto per la Ricerca Scientifica e Tecnologica)-University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at CDF by conventional data selection techniques. (38 refs).

  4. Integration of Titan supercomputer at OLCF with ATLAS Production System

    Science.gov (United States)

    Barreiro Megino, F.; De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wells, J.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job submission to Titan’s batch queues and local data management, with lightweight MPI wrappers to run single node workloads in parallel on Titan’s multi-core worker nodes. It provides for running of standard ATLAS production jobs on unused resources (backfill) on Titan. The system already allowed ATLAS to collect on Titan millions of core-hours per month, execute hundreds of thousands jobs, while simultaneously improving Titans utilization efficiency. We will discuss the details of the implementation, current experience with running the system, as well as future plans aimed at improvements in scalability and efficiency. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to

  5. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  6. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    Science.gov (United States)

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  7. U29: commercial vehicle secure network for safety and mobility applications final report.

    Science.gov (United States)

    2011-09-01

    The main objective of this project is to develop a secure, reliable, high throughput and integrated wireless network for Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I) and intra-vehicle communications. Novel techniques and communication pr...

  8. The BlueGene/L Supercomputer and Quantum ChromoDynamics

    International Nuclear Information System (INIS)

    Vranas, P; Soltz, R

    2006-01-01

    In summary our update contains: (1) Perfect speedup sustaining 19.3% of peak for the Wilson D D-slash Dirac operator. (2) Measurements of the full Conjugate Gradient (CG) inverter that inverts the Dirac operator. The CG inverter contains two global sums over the entire machine. Nevertheless, our measurements retain perfect speedup scaling demonstrating the robustness of our methods. (3) We ran on the largest BG/L system, the LLNL 64 rack BG/L supercomputer, and obtained a sustained speed of 59.1 TFlops. Furthermore, the speedup scaling of the Dirac operator and of the CG inverter are perfect all the way up to the full size of the machine, 131,072 cores (please see Figure II). The local lattice is rather small (4 x 4 x 4 x 16) while the total lattice has been a lattice QCD vision for thermodynamic studies (a total of 128 x 128 x 256 x 32 lattice sites). This speed is about five times larger compared to the speed we quoted in our submission. As we have pointed out in our paper QCD is notoriously sensitive to network and memory latencies, has a relatively high communication to computation ratio which can not be overlapped in BGL in virtual node mode, and as an application is in a class of its own. The above results are thrilling to us and a 30 year long dream for lattice QCD

  9. Physicists set new record for network data transfer

    CERN Multimedia

    2007-01-01

    "An international team of physicists, computer scientists, and network engineers joined forces to set new records for sustained data transfer between storage systems durint the SuperComputing 2006 (SC06) Bandwidth Challenge (BWC). (3 pages)

  10. Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Supercomputing plays a major role in many areas of science and engineering, and it has had tremendous impact for decades in areas such as aerospace, defense, energy,...

  11. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  12. SUPERCOMPUTERS FOR AIDING ECONOMIC PROCESSES WITH REFERENCE TO THE FINANCIAL SECTOR

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2014-12-01

    Full Text Available The article discusses the use of supercomputers to support business processes with particular emphasis on the financial sector. A reference was made to the selected projects that support economic development. In particular, we propose the use of supercomputers to perform artificial intel-ligence methods in banking. The proposed methods combined with modern technology enables a significant increase in the competitiveness of enterprises and banks by adding new functionality.

  13. LiHe{sup +} IN THE EARLY UNIVERSE: A FULL ASSESSMENT OF ITS REACTION NETWORK AND FINAL ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Francesco A. [Department of Chemistry, Universita degli Studi di Roma ' La Sapienza' , Piazzale A. Moro 5, 00185 Roma (Italy); Curik, Roman [J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, Prague (Czech Republic); Galli, Daniele, E-mail: fa.gianturco@caspur.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)

    2012-06-10

    We present the results of quantum calculations based on entirely ab initio methods for a variety of molecular processes and chemical reactions involving the LiHe{sup +} ionic polar molecule. With the aid of these calculations, we derive accurate reaction rates and fitting expressions valid over a range of gas temperatures representative of the typical conditions of the pregalactic gas. With the help of a full chemical network, we then compute the evolution of the abundance of LiHe{sup +} as function of redshift in the early universe. Finally, we compare the relative abundance of LiHe{sup +} with that of other polar cations formed in the same redshift interval.

  14. Adventures in supercomputing: An innovative program for high school teachers

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C.E.; Hicks, H.R.; Summers, B.G. [Oak Ridge National Lab., TN (United States); Staten, D.G. [Wartburg Central High School, TN (United States)

    1994-12-31

    Within the realm of education, seldom does an innovative program become available with the potential to change an educator`s teaching methodology. Adventures in Supercomputing (AiS), sponsored by the U.S. Department of Energy (DOE), is such a program. It is a program for high school teachers that changes the teacher paradigm from a teacher-directed approach of teaching to a student-centered approach. {open_quotes}A student-centered classroom offers better opportunities for development of internal motivation, planning skills, goal setting and perseverance than does the traditional teacher-directed mode{close_quotes}. Not only is the process of teaching changed, but the cross-curricula integration within the AiS materials is remarkable. Written from a teacher`s perspective, this paper will describe the AiS program and its effects on teachers and students, primarily at Wartburg Central High School, in Wartburg, Tennessee. The AiS program in Tennessee is sponsored by Oak Ridge National Laboratory (ORNL).

  15. Accelerating Science Impact through Big Data Workflow Management and Supercomputing

    Directory of Open Access Journals (Sweden)

    De K.

    2016-01-01

    Full Text Available The Large Hadron Collider (LHC, operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed AnalysisWorkload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF, is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF’s Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing.

  16. Symbolic simulation of engineering systems on a supercomputer

    International Nuclear Information System (INIS)

    Ragheb, M.; Gvillo, D.; Makowitz, H.

    1986-01-01

    Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed

  17. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington

    2004-06-01

    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  18. Cost effectiveness of DH-network construction. Final report; Kaukolaempoeverkon rakentamisen kehittaeminen; Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Kivistoe, V.M. [Ekono Energy Ltd, Espoo (Finland)

    1993-12-31

    Construction cost of DH networks were analyzed in the study. Basing on the analysis, those areas of construction activities were selected, where cost effectiveness could be improved. According to the study, the civil works` cost form about half of the total construction cost on small diameter networks and 30..40 % of the cost of larger sizes. The impact of the design on the construction cost should be emphasized. According to the study it is possible to find significant reduction in the construction cost by increased use of twin pipe where the both carrier pipes are included in the same insulation casing. In small network sizes the reduction of cost achievable by the above is about 30..35 % and in larger sizes about 10 % (DN 125..DN 200) when comparing with a design by individual pipes. The use of twin pipe also causes savings in thermal loss. In sizes DN 65 and up, the saving in heat loss is about 90..95 FIM/m which represents about half of the total savings when compared with design by individual pipes. The possibility of prestressing the twin pipe element at factory in order to shorten the installation time at site was also studied and test pipes was also done. By factory prestressing it would be possible to avoid preheating of pipes at construction site. The trench could be backfilled immediately after pipe laying, welding and inspections. Theoretically and based on test pipes done the prestressing of twin pipe element looks very promising. When factory prestressing would be used, the open time of the trench is reduced significantly and for instance the disturbance to traffic is smaller. As well the use of labour and machinery at site could be more effective

  19. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  20. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  1. Neural network recognition of nuclear power plant transients. Final report, April 15, 1992--April 15, 1995

    International Nuclear Information System (INIS)

    Bartlett, E.B.

    1995-01-01

    The objective of this report is to describe results obtained during the second year of funding that will lead to the development of an artificial neural network (A.N.N) fault diagnostic system for the real-time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety-parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the second of three scheduled years for the project. Included herein is a summary of the second year's results as well as descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period

  2. Neural network recognition of nuclear power plant transients. Final report, April 15, 1992--April 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, E.B.

    1995-05-15

    The objective of this report is to describe results obtained during the second year of funding that will lead to the development of an artificial neural network (A.N.N) fault diagnostic system for the real-time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety-parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the second of three scheduled years for the project. Included herein is a summary of the second year`s results as well as descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  3. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Peter J. [Scientific Solutions, Inc, Nashua, NH (United States); Edson, Patrick L. [Scientific Solutions, Inc, Nashua, NH (United States)

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  4. Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report

    International Nuclear Information System (INIS)

    Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K.

    2013-10-01

    The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)

  5. Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)

    2013-10-15

    The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)

  6. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  7. ASCR Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  8. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    De, K [University of Texas at Arlington; Jha, S [Rutgers University; Klimentov, A [Brookhaven National Laboratory (BNL); Maeno, T [Brookhaven National Laboratory (BNL); Nilsson, P [Brookhaven National Laboratory (BNL); Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Wells, Jack C [ORNL; Wenaus, T [Brookhaven National Laboratory (BNL)

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation

  9. Guide to dataflow supercomputing basic concepts, case studies, and a detailed example

    CERN Document Server

    Milutinovic, Veljko; Trifunovic, Nemanja; Giorgi, Roberto

    2015-01-01

    This unique text/reference describes an exciting and novel approach to supercomputing in the DataFlow paradigm. The major advantages and applications of this approach are clearly described, and a detailed explanation of the programming model is provided using simple yet effective examples. The work is developed from a series of lecture courses taught by the authors in more than 40 universities across more than 20 countries, and from research carried out by Maxeler Technologies, Inc. Topics and features: presents a thorough introduction to DataFlow supercomputing for big data problems; revie

  10. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development

    Science.gov (United States)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.

    2009-12-01

    NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are

  11. Parallel simulation of tsunami inundation on a large-scale supercomputer

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the

  12. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report

    International Nuclear Information System (INIS)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon; Hilpert, Johannes; Sailer, Frank

    2016-01-01

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  13. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  14. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    International Nuclear Information System (INIS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-01-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers. (paper)

  15. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel's MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  16. Design and performance characterization of electronic structure calculations on massively parallel supercomputers

    DEFF Research Database (Denmark)

    Romero, N. A.; Glinsvad, Christian; Larsen, Ask Hjorth

    2013-01-01

    Density function theory (DFT) is the most widely employed electronic structure method because of its favorable scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The advent of massively parallel supercomputers has enhanced the scientific community...

  17. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  18. Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke.

    Directory of Open Access Journals (Sweden)

    Hassan Bagher-Ebadian

    Full Text Available In hemispheric ischemic stroke, the final size of the ischemic lesion is the most important correlate of clinical functional outcome. Using a set of acute-phase MR images (Diffusion-weighted--DWI, T(1-weighted--T1WI, T(2-weighted--T2WI, and proton density weighted--PDWI for inputs, and the chronic T2WI at 3 months as an outcome measure, an Artificial Neural Network (ANN was trained to predict the 3-month outcome in the form of a voxel-by-voxel forecast of the chronic T2WI. The ANN was trained and tested using 12 subjects (with 83 slices and 140218 voxels using a leave-one-out cross-validation method with calculation of the Area Under the Receiver Operator Characteristic Curve (AUROC for training, testing and optimization of the ANN. After training and optimization, the ANN produced maps of predicted outcome that were well correlated (r = 0.80, p<0.0001 with the T2WI at 3 months for all 12 patients. This result implies that the trained ANN can provide an estimate of 3-month ischemic lesion on T2WI in a stable and accurate manner (AUROC = 0.89.

  19. IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD) Annex IV: - Transmission Systems Final report

    Energy Technology Data Exchange (ETDEWEB)

    Uhlen, Kjetil; Cirio, Diego

    2012-11-01

    This is the final report from Annex IV under the IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD). The Annex has worked out a long-term perspective in the evolution of transmission system planning and operation. This is motivated by the established targets for energy system developments, which in turn are affected by economic paradigms, environmental concerns, and security of supply requirements for the well-being of citizens. The Annex work concludes that urgent action is needed to make the power system able to accommodate in a safe and economic way the dramatic changes it is required to undergo. A main message is that the 'right' investment in transmission capacity, which must be stimulated, may be regarded as 'overinvestment'. Transmission lines may be 'necessary' even though there is a chance that they may be underutilised in parts of their lifetime. In reality, underinvestment could be more costly than overinvestment (contradictory to the motivation for deregulation; to improve efficiency and avoid overinvestment). This is necessary, taking into account the very long planning and consenting processes and accounting for the technical aspects in the regulatory and market framework.(auth)

  20. A systems approach to risk reduction of transportation infrastructure networks subject to multiple hazards : final report, December 31, 2008.

    Science.gov (United States)

    2008-12-31

    Integrity, robustness, reliability, and resiliency of infrastructure networks are vital to the economy, : security and well-being of any country. Faced with threats caused by natural and man-made hazards, : transportation infrastructure network manag...

  1. DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, and instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.

  2. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Science.gov (United States)

    Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.

    2016-10-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  3. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    International Nuclear Information System (INIS)

    Klimentov, A; Maeno, T; Nilsson, P; Panitkin, S; Wenaus, T; De, K; Oleynik, D; Jha, S; Wells, J

    2016-01-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  4. Identification of promising Twin Hub networks : Report of Work Package 1 of the Intermodal rail freight Twin hub Network Northwest Europe - project (final report)

    NARCIS (Netherlands)

    Kreutzberger, E.D.; Konings, J.W.; Meijer, S.; Witteveen, C.; Meijers, B.M.; Pekin, E.; Macharis, C.; Kiel, J.; Kawabata, Y.; Vos, W.

    2014-01-01

    This report is the first deliverable of the project Intermodal Rail Freight Twin Hub Network Northwest Europe. We call its subject Twin hub network and the organisational entity to carry out the actions the Twin hub project. The project is funded by INTERREG NWE (programme IVb). Its work started in

  5. Class network routing

    Science.gov (United States)

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  6. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  7. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    CERN Document Server

    Bennett, Ed; Del Debbio, Luigi; Jordan, Kirk; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2016-01-01

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  8. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    Science.gov (United States)

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  9. Application of Supercomputer Technologies for Simulation Of Socio-Economic Systems

    Directory of Open Access Journals (Sweden)

    Vladimir Valentinovich Okrepilov

    2015-06-01

    Full Text Available To date, an extensive experience has been accumulated in investigation of problems related to quality, assessment of management systems, modeling of economic system sustainability. The performed studies have created a basis for development of a new research area — Economics of Quality. Its tools allow to use opportunities of model simulation for construction of the mathematical models adequately reflecting the role of quality in natural, technical, social regularities of functioning of the complex socio-economic systems. Extensive application and development of models, and also system modeling with use of supercomputer technologies, on our deep belief, will bring the conducted research of socio-economic systems to essentially new level. Moreover, the current scientific research makes a significant contribution to model simulation of multi-agent social systems and that is not less important, it belongs to the priority areas in development of science and technology in our country. This article is devoted to the questions of supercomputer technologies application in public sciences, first of all, — regarding technical realization of the large-scale agent-focused models (AFM. The essence of this tool is that owing to the power computer increase it has become possible to describe the behavior of many separate fragments of a difficult system, as socio-economic systems are. The article also deals with the experience of foreign scientists and practicians in launching the AFM on supercomputers, and also the example of AFM developed in CEMI RAS, stages and methods of effective calculating kernel display of multi-agent system on architecture of a modern supercomputer will be analyzed. The experiments on the basis of model simulation on forecasting the population of St. Petersburg according to three scenarios as one of the major factors influencing the development of socio-economic system and quality of life of the population are presented in the

  10. Heat dissipation computations of a HVDC ground electrode using a supercomputer

    International Nuclear Information System (INIS)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1990-01-01

    This paper reports on the temperature, of soil surrounding a High Voltage Direct Current (HVDC) toroidal ground electrode of practical dimensions, in both homogeneous and non-homogeneous soils that was computed at incremental points in time using finite difference methods on a supercomputer. Curves of the response were computed and plotted at several locations within the soil in the vicinity of the ground electrode for various values of the soil parameters

  11. Analyzing the Interplay of Failures and Workload on a Leadership-Class Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Esteban [University of Pittsburgh; Ni, Xiang [University of Illinois at Urbana-Champaign; Jones, Terry R [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of fault tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.

  12. Multiscale Hy3S: Hybrid stochastic simulation for supercomputers

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2006-02-01

    create biological systems and analyze data. We demonstrate the accuracy and efficiency of Hy3S with examples, including a large-scale system benchmark and a complex bistable biochemical network with positive feedback. The software itself is open-sourced under the GPL license and is modular, allowing users to modify it for their own purposes. Conclusion Hy3S is a powerful suite of simulation programs for simulating the stochastic dynamics of networks of biochemical reactions. Its first public version enables computational biologists to more efficiently investigate the dynamics of realistic biological systems.

  13. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  14. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  15. Dynamic photonic lightpaths in the StarPlane network

    NARCIS (Netherlands)

    Grosso, P.; Marchal, D.; Maassen, J.; Bernier, E.; Xu, L.; de Laat, C.

    2009-01-01

    The StarPlane project enables users to dynamically control network photonic paths. Applications running on the Distributed ASCI Supercomputer (DAS-3) can manipulate wavelengths in the Dutch research and education network SURFnet6. The goal is to achieve fast switching times so that when the

  16. Visualization on supercomputing platform level II ASC milestone (3537-1B) results from Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk (Kitware, Inc., Clifton Park, NY); Fabian, Nathan; Marion, Patrick (Kitware, Inc., Clifton Park, NY); Moreland, Kenneth D.

    2010-09-01

    This report provides documentation for the completion of the Sandia portion of the ASC Level II Visualization on the platform milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratories and Los Alamos National Laboratories. This milestone contains functionality required for performing visualization directly on a supercomputing platform, which is necessary for peta-scale visualization. Sandia's contribution concerns in-situ visualization, running a visualization in tandem with a solver. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is most computationally intensive portion of the visualization process. For terascale platforms, commodity clusters with graphics processors(GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the performance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. Scientific simulation on parallel supercomputers is traditionally performed in four

  17. Visual Communications for Heterogeneous Networks/Visually Optimized Scalable Image Compression. Final Report for September 1, 1995 - February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hemami, S. S.

    2003-06-03

    The authors developed image and video compression algorithms that provide scalability, reconstructibility, and network adaptivity, and developed compression and quantization strategies that are visually optimal at all bit rates. The goal of this research is to enable reliable ''universal access'' to visual communications over the National Information Infrastructure (NII). All users, regardless of their individual network connection bandwidths, qualities-of-service, or terminal capabilities, should have the ability to access still images, video clips, and multimedia information services, and to use interactive visual communications services. To do so requires special capabilities for image and video compression algorithms: scalability, reconstructibility, and network adaptivity. Scalability allows an information service to provide visual information at many rates, without requiring additional compression or storage after the stream has been compressed the first time. Reconstructibility allows reliable visual communications over an imperfect network. Network adaptivity permits real-time modification of compression parameters to adjust to changing network conditions. Furthermore, to optimize the efficiency of the compression algorithms, they should be visually optimal, where each bit expended reduces the visual distortion. Visual optimality is achieved through first extensive experimentation to quantify human sensitivity to supra-threshold compression artifacts and then incorporation of these experimental results into quantization strategies and compression algorithms.

  18. Investigation of tt-bar in the full hadronic final state at CDF with a neural network approach

    International Nuclear Information System (INIS)

    Sidoti, A.; Azzi, P.; Busetto, G.; Castro, A.; Dusini, S.; Lazzizzera, I.; Wyss, J.L.

    2001-01-01

    In this work we present the results of a neural network (NN) approach to the measurement of the tt-bar production cross-section and top mass in the all-hadronic channel, analyzing data collected at the Collider Detector at Fermilab (CDF) experiment. We have used a hardware implementation of a feed forward neural network, TOTEM, the product of a collaboration of INFN (Istituto Nazionale Fisica Nucleare) - IRST (Istituto per la Ricerca Scientifica e Tecnologica) - University of Trento, Italy. Particular attention has been paid to the evaluation of the systematics specifically related to the NN approach. The results are consistent with those obtained at CDF by conventional data selection techniques

  19. 76 FR 45689 - Financial Crimes Enforcement Network; Repeal of the Final Rule and Withdrawal of the Finding of...

    Science.gov (United States)

    2011-08-01

    ... Money Laundering Concern Against VEF Banka AGENCY: Financial Crimes Enforcement Network (``FinCEN... Institution of Primary Money Laundering Concern of April 26, 2005, issued pursuant to 31 U.S.C. 5318A of the... PATRIOT Act amends the anti-money laundering provisions of the BSA, codified at 12 U.S.C. 1829b, 12 U.S.C...

  20. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    Science.gov (United States)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and

  1. Integration of PanDA workload management system with Titan supercomputer at OLCF

    Science.gov (United States)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Jon B

    2006-04-30

    computational resources in order to use the service, and the user need not be concerned with performance tuning. This can all be done by the service provider. We believe that the next dominant paradigm for high performance computing will be based on high-end network services. Putting high performance applications on-line will create a new generation of community services. Community services have several features which make their deployment challenging: (i) they must provide high performance, (ii) they are resource intensive, and (iii) they may be built upon a large existing code base. Many groups have built significant infrastructure for providing domain-specific high-end services [6][8][12][14][22][24][27][31][32]. However, this process is labor-intensive and time-consuming as evidenced by the development time required to build many of these systems. The reason is that these systems are all built from the ground-up with little existing infrastructure to utilize. Providing efficient, reliable, secure, and scalable services requires significant run-time infrastructure and middleware (Figure 1). The goal of this project is to develop general-purpose middleware to support the rapid deployment of high-end community services. In this proposal, we will focus on scalable middleware in support of resource management and reliability. We also propose a system architecture that integrates the middleware components. Our middleware and system architecture will be designed to accommodate and integrate middleware solutions for security and user interface1 developed by other groups. We will produce middleware that can be leveraged by community services running in clusters, supercomputers, and in Grids. One of the novel aspects of our approach is that the tension between resource sharing for the 'common good' and resource monopolization for the 'individual good' is significantly reduced. To increase the impact of this project, the middleware will be integrated into a widely

  3. Re-inventing electromagnetics - Supercomputing solution of Maxwell's equations via direct time integration on space grids

    International Nuclear Information System (INIS)

    Taflove, A.

    1992-01-01

    This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs

  4. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions.

    Science.gov (United States)

    Doyle-Lindrud, Susan

    2015-02-01

    IBM has collaborated with several cancer care providers to develop and train the IBM supercomputer Watson to help clinicians make informed treatment decisions. When a patient is seen in clinic, the oncologist can input all of the clinical information into the computer system. Watson will then review all of the data and recommend treatment options based on the latest evidence and guidelines. Once the oncologist makes the treatment decision, this information can be sent directly to the insurance company for approval. Watson has the ability to standardize care and accelerate the approval process, a benefit to the healthcare provider and the patient.

  5. A water-quality monitoring network for Vallecitos Valley, Alameda County, California. Water-resources investigations (final)

    International Nuclear Information System (INIS)

    Farrar, C.D.

    1980-10-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring

  6. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  7. Grassroots Supercomputing

    CERN Multimedia

    Buchanan, Mark

    2005-01-01

    What started out as a way for SETI to plow through its piles or radio-signal data from deep space has turned into a powerful research tool as computer users acrosse the globe donate their screen-saver time to projects as diverse as climate-change prediction, gravitational-wave searches, and protein folding (4 pages)

  8. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  9. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  10. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00300320; Klimentov, Alexei; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Vaniachine, Alexandre; Wenaus, Torre; Schovancova, Jaroslava

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modi ed PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real time, information about unused...

  11. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration; Klimentov, Alexei; Oleynik, Danila; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently uses more than 100,000 cores at well over 100 Grid sites with a peak performance of 0.3 petaFLOPS, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real tim...

  12. Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes; Leinweber, David; Ruebel, Oliver; Wu, Kesheng

    2011-09-16

    This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports to slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.

  13. Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop Supercomputer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Clyde [Northern Illinois Univ., DeKalb, IL (United States); Karonis, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Lurio, Laurence [Northern Illinois Univ., DeKalb, IL (United States); Piot, Philippe [Northern Illinois Univ., DeKalb, IL (United States); Xiao, Zhili [Northern Illinois Univ., DeKalb, IL (United States); Glatz, Andreas [Northern Illinois Univ., DeKalb, IL (United States); Pohlman, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Hou, Minmei [Northern Illinois Univ., DeKalb, IL (United States); Demir, Veysel [Northern Illinois Univ., DeKalb, IL (United States); Song, Jie [Northern Illinois Univ., DeKalb, IL (United States); Duffin, Kirk [Northern Illinois Univ., DeKalb, IL (United States); Johns, Mitrick [Northern Illinois Univ., DeKalb, IL (United States); Sims, Thomas [Northern Illinois Univ., DeKalb, IL (United States); Yin, Yanbin [Northern Illinois Univ., DeKalb, IL (United States)

    2012-11-21

    This project establishes an initiative in high speed (Teraflop)/large-memory desktop supercomputing for modeling and simulation of dynamic processes important for energy and industrial applications. It provides a training ground for employment of current students in an emerging field with skills necessary to access the large supercomputing systems now present at DOE laboratories. It also provides a foundation for NIU faculty to quantum leap beyond their current small cluster facilities. The funding extends faculty and student capability to a new level of analytic skills with concomitant publication avenues. The components of the Hewlett Packard computer obtained by the DOE funds create a hybrid combination of a Graphics Processing System (12 GPU/Teraflops) and a Beowulf CPU system (144 CPU), the first expandable via the NIU GAEA system to ~60 Teraflops integrated with a 720 CPU Beowulf system. The software is based on access to the NVIDIA/CUDA library and the ability through MATLAB multiple licenses to create additional local programs. A number of existing programs are being transferred to the CPU Beowulf Cluster. Since the expertise necessary to create the parallel processing applications has recently been obtained at NIU, this effort for software development is in an early stage. The educational program has been initiated via formal tutorials and classroom curricula designed for the coming year. Specifically, the cost focus was on hardware acquisitions and appointment of graduate students for a wide range of applications in engineering, physics and computer science.

  14. Computational Science with the Titan Supercomputer: Early Outcomes and Lessons Learned

    Science.gov (United States)

    Wells, Jack

    2014-03-01

    Modeling and simulation with petascale computing has supercharged the process of innovation and understanding, dramatically accelerating time-to-insight and time-to-discovery. This presentation will focus on early outcomes from the Titan supercomputer at the Oak Ridge National Laboratory. Titan has over 18,000 hybrid compute nodes consisting of both CPUs and GPUs. In this presentation, I will discuss the lessons we have learned in deploying Titan and preparing applications to move from conventional CPU architectures to a hybrid machine. I will present early results of materials applications running on Titan and the implications for the research community as we prepare for exascale supercomputer in the next decade. Lastly, I will provide an overview of user programs at the Oak Ridge Leadership Computing Facility with specific information how researchers may apply for allocations of computing resources. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  15. An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.

    Science.gov (United States)

    Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei

    2017-12-01

    Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.

  16. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  17. Organ Procurement and Transplantation Network; final rule revision of comment period and effective dates--HRSA. Extension of comment period and delay of effective date for the Organ Procurement and Transplantation Network.

    Science.gov (United States)

    1998-07-01

    This document sets forth the revisions required by the Fiscal Year 1998 Supplemental Appropriations Act, Public Law 105-174, signed into law by the President on May 1, 1998. Section 4002 of that Act states that public comments on the Organ Procurement and Transplantation Network (OPTN) Final Rule are permitted until August 31, 1998, and that the OPTN rule will not become effective before October 1, 1998. This document is provided to notify the public about these provisions and to make corresponding changes to the regulation.

  18. Final report on the proficiency test of the Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Radecki, Z.; Trinkl, A.; Sansone, U.; Benesch, T.

    2005-08-01

    This report presents the statistical evaluation of results from the analysis of 12 radionuclides in 8 samples within the frame of the First Proficiency Test of Analytical Laboratories for the Measurement Environmental RAdioactivity (ALMERA) organized in 2001-2002 by the Chemistry Unit, Agency's Laboratory in Seibersdorf. The results were evaluated by using appropriate statistical means to assess laboratory analytical performance and to estimate the overall performance for the determination of each radionuclide. Evaluation of the analytical data for gamma emitting radionuclides showed that 68% of data obtained a 'Passed' final score for both the trueness and precision criteria applied to this exercise. However, transuranic radionuclides obtained only 58% for the same criteria. (author)

  19. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M.

    1997-01-26

    A high-frequency, high-resolution electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) The authors tested the system over targets buried in soil. (3) The authors conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) The authors ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit.

  20. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report

    International Nuclear Information System (INIS)

    Sternberg, B.K.; Poulton, M.M.

    1997-01-01

    A high-frequency, high-resolution electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) The authors tested the system over targets buried in soil. (3) The authors conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) The authors ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit

  1. High-resolution subsurface imaging and neural network recognition: Non-intrusive buried substance location. Final report, January 26, 1997

    International Nuclear Information System (INIS)

    Sternberg, B.K.; Poulton, M.M.

    1998-01-01

    A high-frequency, high-resolution electromagnetic (EIVI) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHZ), (4) elimination of electric-field interference at high frequencies, (5) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (6) rapid neural network interpretation at the field site, and (7) visualization of complex structures during the survey. Four major experiments were conducted with the system: (1) Data were collected for several targets in our physical modeling facility. (2) We tested the system over targets buried in soil. (3) We conducted an extensive survey at the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The location of the buried waste, category of waste, and thickness of the clay cap were successfully mapped. (4) We ran surveys over the acid pit at INEL. This was an operational survey over a hot site. The interpreted low-resistivity region correlated closely with the known extent of the acid pit

  2. Wavelet transform-vector quantization compression of supercomputer ocean model simulation output

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J N; Brislawn, C M

    1992-11-12

    We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.

  3. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  4. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  5. Use of QUADRICS supercomputer as embedded simulator in emergency management systems

    International Nuclear Information System (INIS)

    Bove, R.; Di Costanzo, G.; Ziparo, A.

    1996-07-01

    The experience related to the implementation of a MRBT, atmospheric spreading model with a short duration releasing, are reported. This model was implemented on a QUADRICS-Q1 supercomputer. First is reported a description of the MRBT model. It is an analytical model to study the speadings of light gases realised in the atmosphere cause incidental releasing. The solution of diffusion equation is Gaussian like. It yield the concentration of pollutant substance released. The concentration is function of space and time. Thus the QUADRICS architecture is introduced. And the implementation of the model is described. At the end it will be consider the integration of the QUADRICS-based model as simulator in a emergency management system

  6. Reactive flow simulations in complex geometries with high-performance supercomputing

    International Nuclear Information System (INIS)

    Rehm, W.; Gerndt, M.; Jahn, W.; Vogelsang, R.; Binninger, B.; Herrmann, M.; Olivier, H.; Weber, M.

    2000-01-01

    In this paper, we report on a modern field code cluster consisting of state-of-the-art reactive Navier-Stokes- and reactive Euler solvers that has been developed on vector- and parallel supercomputers at the research center Juelich. This field code cluster is used for hydrogen safety analyses of technical systems, for example, in the field of nuclear reactor safety and conventional hydrogen demonstration plants with fuel cells. Emphasis is put on the assessment of combustion loads, which could result from slow, fast or rapid flames, including transition from deflagration to detonation. As a sample of proof tests, the special tools have been tested for specific tasks, based on the comparison of experimental and numerical results, which are in reasonable agreement. (author)

  7. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    Science.gov (United States)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  8. Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations

    International Nuclear Information System (INIS)

    Shankar, V.

    1991-01-01

    The progression of supercomputing is reviewed from the point of view of computational fluid dynamics (CFD), and multidisciplinary problems impacting the design of advanced aerospace configurations are addressed. The application of full potential and Euler equations to transonic and supersonic problems in the 70s and early 80s is outlined, along with Navier-Stokes computations widespread during the late 80s and early 90s. Multidisciplinary computations currently in progress are discussed, including CFD and aeroelastic coupling for both static and dynamic flexible computations, CFD, aeroelastic, and controls coupling for flutter suppression and active control, and the development of a computational electromagnetics technology based on CFD methods. Attention is given to computational challenges standing in a way of the concept of establishing a computational environment including many technologies. 40 refs

  9. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Science.gov (United States)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  10. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Directory of Open Access Journals (Sweden)

    DeTar Carleton

    2018-01-01

    Full Text Available With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  11. Solving sparse linear least squares problems on some supercomputers by using large dense blocks

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Ostromsky, T; Sameh, A

    1997-01-01

    technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...

  12. An Optimized Parallel FDTD Topology for Challenging Electromagnetic Simulations on Supercomputers

    Directory of Open Access Journals (Sweden)

    Shugang Jiang

    2015-01-01

    Full Text Available It may not be a challenge to run a Finite-Difference Time-Domain (FDTD code for electromagnetic simulations on a supercomputer with more than 10 thousands of CPU cores; however, to make FDTD code work with the highest efficiency is a challenge. In this paper, the performance of parallel FDTD is optimized through MPI (message passing interface virtual topology, based on which a communication model is established. The general rules of optimal topology are presented according to the model. The performance of the method is tested and analyzed on three high performance computing platforms with different architectures in China. Simulations including an airplane with a 700-wavelength wingspan, and a complex microstrip antenna array with nearly 2000 elements are performed very efficiently using a maximum of 10240 CPU cores.

  13. Reliability Lessons Learned From GPU Experience With The Titan Supercomputer at Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallarno, George [Christian Brothers University; Rogers, James H [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learned in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.

  14. EDF's experience with supercomputing and challenges ahead - towards multi-physics and multi-scale approaches

    International Nuclear Information System (INIS)

    Delbecq, J.M.; Banner, D.

    2003-01-01

    Nuclear power plants are a major asset of the EDF company. To remain so, in particular in a context of deregulation, competitiveness, safety and public acceptance are three conditions. These stakes apply both to existing plants and to future reactors. The purpose of the presentation is to explain how supercomputing can help EDF to satisfy these requirements. Three examples are described in detail: ensuring optimal use of nuclear fuel under wholly safe conditions, understanding and simulating the material deterioration mechanisms and moving forward with numerical simulation for the performance of EDF's activities. In conclusion, a broader vision of EDF long term R and D in the field of numerical simulation is given and especially of five challenges taken up by EDF together with its industrial and scientific partners. (author)

  15. District heating and cooling systems for communities through power plant retrofit distribution network. Final report, September 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    This Final Report (Volume 2) of Phase 1 of District Heating for Communities Through Power Plant Retrofit Distribution Network contains 3 tasks: (1) Demonstration Team; (2) Identify Thermal Energy Sources and Potential Service Areas; and (3) Energy Market Analysis. Task 2 consists of estimating the thermal load within 5 and 10 miles of Public Service Electric and Gas Company steam power plants, Newark, New Jersey; estimating the costs of supplying thermal services to thermal loads of varying densities; a best case economic analysis of district heating for single-family homes; and some general comments on district-heating system design and development. Task 3 established the potential market for district heating that exists within a 5-mile radius of the selected generating stations; a sample of the questionnaire sent to the customers are shown. (MCW)

  16. Development of a high performance eigensolver on the peta-scale next generation supercomputer system

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Yamada, Susumu; Machida, Masahiko

    2010-01-01

    For the present supercomputer systems, a multicore and multisocket processors are necessary to build a system, and choice of interconnection is essential. In addition, for effective development of a new code, high performance, scalable, and reliable numerical software is one of the key items. ScaLAPACK and PETSc are well-known software on distributed memory parallel computer systems. It is needless to say that highly tuned software towards new architecture like many-core processors must be chosen for real computation. In this study, we present a high-performance and high-scalable eigenvalue solver towards the next-generation supercomputer system, so called 'K-computer' system. We have developed two versions, the standard version (eigen s) and enhanced performance version (eigen sx), which are developed on the T2K cluster system housed at University of Tokyo. Eigen s employs the conventional algorithms; Householder tridiagonalization, divide and conquer (DC) algorithm, and Householder back-transformation. They are carefully implemented with blocking technique and flexible two-dimensional data-distribution to reduce the overhead of memory traffic and data transfer, respectively. Eigen s performs excellently on the T2K system with 4096 cores (theoretical peak is 37.6 TFLOPS), and it shows fine performance 3.0 TFLOPS with a two hundred thousand dimensional matrix. The enhanced version, eigen sx, uses more advanced algorithms; the narrow-band reduction algorithm, DC for band matrices, and the block Householder back-transformation with WY-representation. Even though this version is still on a test stage, it shows 4.7 TFLOPS with the same dimensional matrix on eigen s. (author)

  17. Harnessing Petaflop-Scale Multi-Core Supercomputing for Problems in Space Science

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Daughton, W.; Bergen, B.; Kwan, T. J.

    2008-12-01

    The particle-in-cell kinetic plasma code VPIC has been migrated successfully to the world's fastest supercomputer, Roadrunner, a hybrid multi-core platform built by IBM for the Los Alamos National Laboratory. How this was achieved will be described and examples of state-of-the-art calculations in space science, in particular, the study of magnetic reconnection, will be presented. With VPIC on Roadrunner, we have performed, for the first time, plasma PIC calculations with over one trillion particles, >100× larger than calculations considered "heroic" by community standards. This allows examination of physics at unprecedented scale and fidelity. Roadrunner is an example of an emerging paradigm in supercomputing: the trend toward multi-core systems with deep hierarchies and where memory bandwidth optimization is vital to achieving high performance. Getting VPIC to perform well on such systems is a formidable challenge: the core algorithm is memory bandwidth limited with low compute-to-data ratio and requires random access to memory in its inner loop. That we were able to get VPIC to perform and scale well, achieving >0.374 Pflop/s and linear weak scaling on real physics problems on up to the full 12240-core Roadrunner machine, bodes well for harnessing these machines for our community's needs in the future. Many of the design considerations encountered commute to other multi-core and accelerated (e.g., via GPU) platforms and we modified VPIC with flexibility in mind. These will be summarized and strategies for how one might adapt a code for such platforms will be shared. Work performed under the auspices of the U.S. DOE by the LANS LLC Los Alamos National Laboratory. Dr. Bowers is a LANL Guest Scientist; he is presently at D. E. Shaw Research LLC, 120 W 45th Street, 39th Floor, New York, NY 10036.

  18. State-of-the-art of applications of neural networks in the nuclear industry

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Masson, M.H.

    1990-01-01

    Artificial neural net models have been extensively studied for many years in various laboratories to try to simulate with computer programs the human brain performances. The first applications were developed in the fields of speech and image recognition. The aims of these studies were mainly to classify rapidly patterns corrupted by noises or partly missing. Neural networks with the development of new net topologies and algorithms and parallel computing hardwares and softwares are to-day very promising for applications in many industries. In the introduction, this paper presents the anticipated benefits of the uses of neural networks for industrial applications. Then a brief overview of the main neural networks is provided. Finally a short review of neural networks applications in the nuclear industry is given. It covers domains such as: predictive maintenance for vibratory surveillance of rotating machinery, signal processing, operator guidance and eddy current inspection. In conclusion recommendations are made to use with efficiency neural networks for practical applications. In particular the need for supercomputing will be pinpointed. (author)

  19. Hourly Comparison of GPM-IMERG-Final-Run and IMERG-Real-Time (V-03) over a Dense Surface Network in Northeastern Austria

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2017-04-01

    Accurate quantitative daily precipitation estimation is key to meteorological and hydrological applications in hazards forecast and management. In-situ observations over mountainous areas are mostly limited, however, currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. Over the years, blended methods that use multi-satellites and multi-sensors have been developed for estimating of global precipitation. One of the latest satellite precipitation products is GPM-IMERG (Global Precipitation Measurement with 30-minute temporal and 0.1-degree spatial resolutions) which consists of three products: Final-Run (aimed for research), Real-Time early run, and Real-Time late run. The Integrated Multisatellite Retrievals for GPM (IMERG) products built upon the success of TRMM's Multisatellite Precipitation Analysis (TMPA) products continue to make improvements in spatial and temporal resolutions and snowfall estimates. Recently, researchers who evaluated IMERG-Final-Run V-03 and other precipitation products indicated better performance for IMERG-Final-Run against other similar products. In this study two GPM-IMERG products, namely final run and real time-late run, were evaluated against a dense synoptic stations network (62 stations) over Northeastern Austria for mid-March 2015 to end of January 2016 period at hourly time-scale. Both products were examined against the reference data (stations) in capturing the occurrence of precipitation and statistical characteristics of precipitation intensity. Both satellite precipitation products underestimated precipitation events of 0.1 mm/hr to 0.4 mm/hr in intensity. For precipitations 0.4 mm/hr and greater, the trend was reversed and both satellite products overestimated than station recorded data. IMERG-RT outperformed IMERG-FR for precipitation intensity in the range of 0.1 mm/hr to 0.4 mm/hr while in the range of 1.1 to 1.8 mm

  20. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, A; Kalia, R K; Nomura, K; Sharma, A; Vashishta, P; Shimojo, F; van Duin, A; Goddard, III, W A; Biswas, R; Srivastava, D; Yang, L H

    2006-09-04

    We present a de novo hierarchical simulation framework for first-principles based predictive simulations of materials and their validation on high-end parallel supercomputers and geographically distributed clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote procedure call + message passing + threads programming. High-end computing platforms such as IBM BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well validated, chemically reactive atomistic simulations--1.06 billion-atom fast reactive force-field MD and 11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density functional theory on adaptive multigrids--in addition to 134 billion-atom non-reactive space-time multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L nodes. We have also achieved an automated execution of hierarchical QM

  1. Research center Juelich to install Germany's most powerful supercomputer new IBM System for science and research will achieve 5.8 trillion computations per second

    CERN Multimedia

    2002-01-01

    "The Research Center Juelich, Germany, and IBM today announced that they have signed a contract for the delivery and installation of a new IBM supercomputer at the Central Institute for Applied Mathematics" (1/2 page).

  2. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  3. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Swaminarayan, Sriram [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Kadau, Kai [Los Alamos National Laboratory; Fossum, Gordon C [IBM CORPORATION

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementation of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.

  4. A user-friendly web portal for T-Coffee on supercomputers

    Directory of Open Access Journals (Sweden)

    Koetsier Jos

    2011-05-01

    Full Text Available Abstract Background Parallel T-Coffee (PTC was the first parallel implementation of the T-Coffee multiple sequence alignment tool. It is based on MPI and RMA mechanisms. Its purpose is to reduce the execution time of the large-scale sequence alignments. It can be run on distributed memory clusters allowing users to align data sets consisting of hundreds of proteins within a reasonable time. However, most of the potential users of this tool are not familiar with the use of grids or supercomputers. Results In this paper we show how PTC can be easily deployed and controlled on a super computer architecture using a web portal developed using Rapid. Rapid is a tool for efficiently generating standardized portlets for a wide range of applications and the approach described here is generic enough to be applied to other applications, or to deploy PTC on different HPC environments. Conclusions The PTC portal allows users to upload a large number of sequences to be aligned by the parallel version of TC that cannot be aligned by a single machine due to memory and execution time constraints. The web portal provides a user-friendly solution.

  5. Modeling radiative transport in ICF plasmas on an IBM SP2 supercomputer

    International Nuclear Information System (INIS)

    Johansen, J.A.; MacFarlane, J.J.; Moses, G.A.

    1995-01-01

    At the University of Wisconsin-Madison the authors have integrated a collisional-radiative-equilibrium model into their CONRAD radiation-hydrodynamics code. This integrated package allows them to accurately simulate the transport processes involved in ICF plasmas; including the important effects of self-absorption of line-radiation. However, as they increase the amount of atomic structure utilized in their transport models, the computational demands increase nonlinearly. In an attempt to meet this increased computational demand, they have recently embarked on a mission to parallelize the CONRAD program. The parallel CONRAD development is being performed on an IBM SP2 supercomputer. The parallelism is based on a message passing paradigm, and is being implemented using PVM. At the present time they have determined that approximately 70% of the sequential program can be executed in parallel. Accordingly, they expect that the parallel version will yield a speedup on the order of three times that of the sequential version. This translates into only 10 hours of execution time for the parallel version, whereas the sequential version required 30 hours

  6. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers

    Science.gov (United States)

    Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi

    2017-10-01

    Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.

  7. Assessment techniques for a learning-centered curriculum: evaluation design for adventures in supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Helland, B. [Ames Lab., IA (United States); Summers, B.G. [Oak Ridge National Lab., TN (United States)

    1996-09-01

    As the classroom paradigm shifts from being teacher-centered to being learner-centered, student assessments are evolving from typical paper and pencil testing to other methods of evaluation. Students should be probed for understanding, reasoning, and critical thinking abilities rather than their ability to return memorized facts. The assessment of the Department of Energy`s pilot program, Adventures in Supercomputing (AiS), offers one example of assessment techniques developed for learner-centered curricula. This assessment has employed a variety of methods to collect student data. Methods of assessment used were traditional testing, performance testing, interviews, short questionnaires via email, and student presentations of projects. The data obtained from these sources have been analyzed by a professional assessment team at the Center for Children and Technology. The results have been used to improve the AiS curriculum and establish the quality of the overall AiS program. This paper will discuss the various methods of assessment used and the results.

  8. Visualization at supercomputing centers: the tale of little big iron and the three skinny guys.

    Science.gov (United States)

    Bethel, E W; van Rosendale, J; Southard, D; Gaither, K; Childs, H; Brugger, E; Ahern, S

    2011-01-01

    Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources-the "Big Iron." Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be-that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?

  9. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.

    2012-04-18

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.

  10. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  11. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  12. National Computational Infrastructure for Lattice Gauge Theory: Final Report

    International Nuclear Information System (INIS)

    Richard Brower; Norman Christ; Michael Creutz; Paul Mackenzie; John Negele; Claudio Rebbi; David Richards; Stephen Sharpe; Robert Sugar

    2006-01-01

    This is the final report of Department of Energy SciDAC Grant ''National Computational Infrastructure for Lattice Gauge Theory''. It describes the software developed under this grant, which enables the effective use of a wide variety of supercomputers for the study of lattice quantum chromodynamics (lattice QCD). It also describes the research on and development of commodity clusters optimized for the study of QCD. Finally, it provides some high lights of research enabled by the infrastructure created under this grant, as well as a full list of the papers resulting from research that made use of this infrastructure

  13. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report; Anforderungen der Integration der erneuerbaren Energien an die Netzentgeltregulierung. Vorschlaege zur Weiterentwicklung des Netzentgeltsystems. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Hilpert, Johannes; Sailer, Frank [Stiftung Umweltenergierecht, Wuerzburg (Germany)

    2016-11-15

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  14. Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks

    NARCIS (Netherlands)

    L.P. Slazynski (Leszek); S.M. Bohte (Sander)

    2012-01-01

    htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

  15. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 2. Requirements Compilation and Analysis. Part 3. Characteristics Summaries and Network Analysis

    Science.gov (United States)

    1976-03-01

    DB DC DCT DDB DET DF DFS DML DMS DMSP DOD DS DSARC DT EDB EDS EG ESSA ETAC EWO Control and Reporting Post Cathode Ray Tube...National and Aviation Meteorological Facsimile Network NC - Network Control NCA - National Command Authority NCAR - National Center for Atmospheric

  16. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    Science.gov (United States)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using

  17. Nonlinear Circuits and Neural Networks: Chip Implementation and Applications of the TeraOPS CNN Dynamic Array Supercomputer

    National Research Council Canada - National Science Library

    Chua, L

    1998-01-01

    .... Advances in research have been made in the following areas: (1) The design and implementation of the first-ever ARAM in the CNN Chip Set Architecture was successfully competed, and the samples were successfully tested; (2...

  18. Simulation of x-rays in refractive structure by the Monte Carlo method using the supercomputer SKIF

    International Nuclear Information System (INIS)

    Yaskevich, Yu.R.; Kravchenko, O.I.; Soroka, I.I.; Chembrovskij, A.G.; Kolesnik, A.S.; Serikova, N.V.; Petrov, P.V.; Kol'chevskij, N.N.

    2013-01-01

    Software 'Xray-SKIF' for the simulation of the X-rays in refractive structures by the Monte-Carlo method using the supercomputer SKIF BSU are developed. The program generates a large number of rays propagated from a source to the refractive structure. The ray trajectory under assumption of geometrical optics is calculated. Absorption is calculated for each ray inside of refractive structure. Dynamic arrays are used for results of calculation rays parameters, its restore the X-ray field distributions very fast at different position of detector. It was found that increasing the number of processors leads to proportional decreasing of calculation time: simulation of 10 8 X-rays using supercomputer with the number of processors from 1 to 30 run-times equal 3 hours and 6 minutes, respectively. 10 9 X-rays are calculated by software 'Xray-SKIF' which allows to reconstruct the X-ray field after refractive structure with a special resolution of 1 micron. (authors)

  19. Coherent 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an Optimal Supercomputer Optical Switch Fabric

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates.......We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates....

  20. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    Science.gov (United States)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific

  1. TELEVISION AND THE CONTINUING EDUCATION OF TEACHERS, A FEASIBILITY STUDY OF THE POTENTIAL OF NETWORK TELEVISION FOR DISSEMINATION OF EDUCATIONAL RESEARCH INFORMATION. FINAL REPORT.

    Science.gov (United States)

    CRESHKOFF, LAWRENCE

    THIS 3-PHASE STUDY SOUGHT TO BRIDGE THE GAP BETWEEN THE PRODUCER OF NEW EDUCATIONAL IDEAS AND THE PRACTITIONER, OR TEACHER, BY EFFECTIVE USE OF NETWORK TELEVISION. PHASE I, DATA GATHERING, INCLUDED REVIEW OF THE LITERATURE, AND IDENTIFICATION OF INNOVATIONAL PROJECTS BY CONSULTATION, FIELD VISITS, AND A QUESTIONNAIRE SENT TO MEMBERS OF 2 NATIONAL…

  2. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    Science.gov (United States)

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  3. A criticality safety analysis code using a vectorized Monte Carlo method on the HITAC S-810 supercomputer

    International Nuclear Information System (INIS)

    Morimoto, Y.; Maruyama, H.

    1987-01-01

    A vectorized Monte Carlo criticality safety analysis code has been developed on the vector supercomputer HITAC S-810. In this code, a multi-particle tracking algorithm was adopted for effective utilization of the vector processor. A flight analysis with pseudo-scattering was developed to reduce the computational time needed for flight analysis, which represents the bulk of computational time. This new algorithm realized a speed-up of factor 1.5 over the conventional flight analysis. The code also adopted the multigroup cross section constants library of the Bodarenko type with 190 groups, with 132 groups being for fast and epithermal regions and 58 groups being for the thermal region. Evaluation work showed that this code reproduce the experimental results to an accuracy of about 1 % for the effective neutron multiplication factor. (author)

  4. EDF's experience with supercomputing and challenges ahead - towards multi-physics and multi-scale approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M.; Banner, D. [Electricite de France (EDF)- R and D Division, 92 - Clamart (France)

    2003-07-01

    Nuclear power plants are a major asset of the EDF company. To remain so, in particular in a context of deregulation, competitiveness, safety and public acceptance are three conditions. These stakes apply both to existing plants and to future reactors. The purpose of the presentation is to explain how supercomputing can help EDF to satisfy these requirements. Three examples are described in detail: ensuring optimal use of nuclear fuel under wholly safe conditions, understanding and simulating the material deterioration mechanisms and moving forward with numerical simulation for the performance of EDF's activities. In conclusion, a broader vision of EDF long term R and D in the field of numerical simulation is given and especially of five challenges taken up by EDF together with its industrial and scientific partners. (author)

  5. Using the LANSCE irradiation facility to predict the number of fatal soft errors in one of the world's fastest supercomputers

    International Nuclear Information System (INIS)

    Michalak, S.E.; Harris, K.W.; Hengartner, N.W.; Takala, B.E.; Wender, S.A.

    2005-01-01

    Los Alamos National Laboratory (LANL) is home to the Los Alamos Neutron Science Center (LANSCE). LANSCE is a unique facility because its neutron spectrum closely mimics the neutron spectrum at terrestrial and aircraft altitudes, but is many times more intense. Thus, LANSCE provides an ideal setting for accelerated testing of semiconductor and other devices that are susceptible to cosmic ray induced neutrons. Many industrial companies use LANSCE to estimate device susceptibility to cosmic ray induced neutrons, and it has also been used to test parts from one of LANL's supercomputers, the ASC (Advanced Simulation and Computing Program) Q. This paper discusses our use of the LANSCE facility to study components in Q including a comparison with failure data from Q

  6. Performance Evaluation of an Intel Haswell- and Ivy Bridge-Based Supercomputer Using Scientific and Engineering Applications

    Science.gov (United States)

    Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John

    2016-01-01

    We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.

  7. Final Project Report: DOE Award FG02-04ER25606 Overlay Transit Networking for Scalable, High Performance Data Communication across Heterogeneous Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Micah; Moore, Terry

    2007-08-31

    As the flood of data associated with leading edge computational science continues to escalate, the challenge of supporting the distributed collaborations that are now characteristic of it becomes increasingly daunting. The chief obstacles to progress on this front lie less in the synchronous elements of collaboration, which have been reasonably well addressed by new global high performance networks, than in the asynchronous elements, where appropriate shared storage infrastructure seems to be lacking. The recent report from the Department of Energy on the emerging 'data management challenge' captures the multidimensional nature of this problem succinctly: Data inevitably needs to be buffered, for periods ranging from seconds to weeks, in order to be controlled as it moves through the distributed and collaborative research process. To meet the diverse and changing set of application needs that different research communities have, large amounts of non-archival storage are required for transitory buffering, and it needs to be widely dispersed, easily available, and configured to maximize flexibility of use. In today's grid fabric, however, massive storage is mostly concentrated in data centers, available only to those with user accounts and membership in the appropriate virtual organizations, allocated as if its usage were non-transitory, and encapsulated behind legacy interfaces that inhibit the flexibility of use and scheduling. This situation severely restricts the ability of application communities to access and schedule usable storage where and when they need to in order to make their workflow more productive. (p.69f) One possible strategy to deal with this problem lies in creating a storage infrastructure that can be universally shared because it provides only the most generic of asynchronous services. Different user communities then define higher level services as necessary to meet their needs. One model of such a service is a Storage Network

  8. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago V. V.; Giannitsarou, Chryssi; Johnson, Charles R.

    2016-01-01

    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00199-016-0992-1 We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and d...

  9. Policy and Regulatory Roadmaps for the Integration of Distributed Generation and the Development of Sustainable Electricity Networks. Final Report of the SUSTELNET project

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    2004-08-01

    The SUSTELNET project has been created to identify criteria for a regulatory framework for future electricity markets and network structures that create a level playing field between centralised and decentralised generation and facilitate the integration of renewable energy sources (RES). Furthermore, the objective of the project was to develop regulatory roadmaps for the transition to a sustainable electricity market and network structure. This report summarizes the results of the project. These results consist of: criteria, guidelines and rationales for a future electricity policy and regulatory framework, an outline for the development of regulatory roadmaps and nine national regulatory roadmaps (for Denmark, Germany, Italy, the Netherlands, United Kingdom, Czech Republic, Poland, Hungary and Slovakia), recommendations for a European regulatory policy on distributed generation and a benchmark study of current Member States policies towards distributed generation

  10. International network non-energy use and CO2 emissions (NEU-CO2). An activity within the European Commission's ENRICH programme, DG RTD, 'Environment and Climate'. Final report of the first phase of the network (January 1999 - June 2000)

    International Nuclear Information System (INIS)

    Patel, M.; Gielen, D.; Kilde, N.; Simmons, T.

    2000-07-01

    This report concludes the first phase of the NEU-CO 2 network, covering the period from January 1999 to June 2000. Within this period, two workshops were held, one in Paris in September 1999 and the other in Brussels in April 2000. The results of these workshops represent the basis of this report. The workshop papers have also been compiled in workshop proceedings which are publicly available. Due to the success of the NEU-CO 2 network, the partners decided to apply for the continuation of this activity which was recently accepted by the European Commission. The second phase of the of the NEU-CO 2 network will start in Fall 2000 and will continue for 18 months. This will allow the NEU-CO 2 network to improve the methods applied, to close data gaps, to check the preliminary conclusions given in this report and to provide consolidated results and recommendations by mid 2002. The ultimate goal of the NEU-CO 2 network is to contribute to an improvement of the IPCC guidelines in the area of non-energy use and to provide inventorists with tools and methods to estimate more accurately non-energy CO 2 emissions. (orig.)

  11. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    International Nuclear Information System (INIS)

    Ammendola, R; Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2012-01-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  12. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN Tor Vergata (Italy); Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P [INFN Roma (Italy)

    2012-12-13

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative - the QUonG project - whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k Euro-Sign /T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  13. Impact of the codec and various QoS methods on the final quality of the transferred voice in an IP network

    International Nuclear Information System (INIS)

    Slavata, Oldřich; Holub, Jan

    2015-01-01

    This paper deals with an analysis of the relation between the codec that is used, the QoS method, and the final voice transmission quality. The Cisco 2811 router is used for adjusting QoS. VoIP client Linphone is used for adjusting the codec. The criterion for transmission quality is the MOS parameter investigated with the ITU-T P.862 PESQ and P.863 POLQA algorithms

  14. UbiWorld: An environment integrating virtual reality, supercomputing, and design

    Energy Technology Data Exchange (ETDEWEB)

    Disz, T.; Papka, M.E.; Stevens, R. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    UbiWorld is a concept being developed by the Futures Laboratory group at Argonne National Laboratory that ties together the notion of ubiquitous computing (Ubicomp) with that of using virtual reality for rapid prototyping. The goal is to develop an environment where one can explore Ubicomp-type concepts without having to build real Ubicomp hardware. The basic notion is to extend object models in a virtual world by using distributed wide area heterogeneous computing technology to provide complex networking and processing capabilities to virtual reality objects.

  15. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R. [Arizona Univ., Mesa, AZ (United States)

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  16. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  17. Health risks associated with biogas. Assessment of health risks related to the injection of biogas into the natural gas network. Affset opinion. Collective expertise report. Final version

    International Nuclear Information System (INIS)

    JAEG, Jean-Philippe; Bajeat, Philippe; Wenisch, Sandrine; Bellenfant, Gael; Godon, Jean-Jacques; Keck, Gerard; Lattes, Armand; Moletta-Denat, Marina; Naja, Ghinwa; Ramalho, Olivier; Zdanevitch, Isabelle; ALARY, Rene; RAMEL, Martine

    2008-10-01

    This publication reports a study which aimed at acquiring and analysing available bibliographical data regarding risks associated with the exposure to toxic compounds in relationship with the injection of biogas into the natural gas network, at characterising biogas composition and notably their content in potentially toxic compounds with respect to the currently distributed natural gas, at assessing health risks related to the exposure to toxic agents before and after combustion, also with respect to the currently distributed natural gas, and, based on this risk assessment, at determining biogas composition characteristics. Thus, after a presentation of the context, scope and modalities of this study, the report proposes an overview of various contextual aspects related to biogas (interest, production means, purification processes, valorisation, injection processes), the report discusses chemical risks related to biogas: bibliographical study, biogas chemical composition, chemical composition of biogas combustion residues. It also discusses microbiological risks. Several appendices are provided

  18. EUBIONET II. Efficient trading of biomass fuels and analysis of fuel supply chains and business models for market actors by networking. Final result-oriented report

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E.; Wiik, C.; Vesterinen, P. (and others)

    2008-02-15

    The project aimed to increase deployment of biomass fuels into European market and match technology uptake by means of market and policy analysis and other well-defined tasks to meet European policy targets in renewable energy sector. The project is to result as increased use of biomass fuels and market uptake of innovative bioenergy technologies. The objectives of the project were the following: 1) To give a clear outlook on current and future biomass fuel market trends. 2) To give feedback on the suitability of CEN 335 biofuel standard for trading of solid biofuels. 3) To provide well-analysed estimation on techno-economic potential of the biomass fuel volumes until 2010 based on the existing studies and experts opinions. Regarding the forest biomass sector, co-operation will be done with forest industry stakeholders to find proper balance between forest industry raw material and bioenergy usage. 4) To enhance biomass fuel trade and technology transfer by networking among different actors. 5) To analyse, select and describe the most suitable trading and business models for small- and largescale biofuel supply chains for heat and power production by taking into account the environmental aspects and sustainability. 6) To enhance biomass usage by the means of co-operation and information dissemination among different market actors in the fuel-utilisation chain. Target groups were biomass fuel traders and users, fuel producers and suppliers of different scales, policy makers in both current and new member states. Key associations, i.e. AEBIOM and CEPI, were participating in the project and disseminating information to various groups. The project has been structured in 5 workpackages. Project was carried out by 16 partners, which are the key national bioenergy organisations in the European countries and have a long co-operation relationship in previous bioenergy networks. The project has published summary reports and national report of each WP and this report is

  19. Dynamic Sensor Networks

    National Research Council Canada - National Science Library

    Schott, Brian

    2004-01-01

    ...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...

  20. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry; Etienne, Vincent; Gashawbeza, Ewenet; Curiel, Emesto Sandoval; Khan, Azizur; Feki, Saber; Kortas, Samuel

    2017-01-01

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey's acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less than

  1. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry

    2017-02-27

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey\\'s acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less

  2. Narrative Finality

    Directory of Open Access Journals (Sweden)

    Armine Kotin Mortimer

    1981-01-01

    Full Text Available The cloturai device of narration as salvation represents the lack of finality in three novels. In De Beauvoir's Tous les hommes sont mortels an immortal character turns his story to account, but the novel makes a mockery of the historical sense by which men define themselves. In the closing pages of Butor's La Modification , the hero plans to write a book to save himself. Through the thrice-considered portrayal of the Paris-Rome relationship, the ending shows the reader how to bring about closure, but this collective critique written by readers will always be a future book. Simon's La Bataille de Pharsale , the most radical attempt to destroy finality, is an infinite text. No new text can be written. This extreme of perversion guarantees bliss (jouissance . If the ending of De Beauvoir's novel transfers the burden of non-final world onto a new victim, Butor's non-finality lies in the deferral to a future writing, while Simon's writer is stuck in a writing loop, in which writing has become its own end and hence can have no end. The deconstructive and tragic form of contemporary novels proclaims the loss of belief in a finality inherent in the written text, to the profit of writing itself.

  3. Critical analysis of mechanisms of incentive regulation operators of electricity and natural gas networks and infrastructures. Final report. Public version, 23 November 2015

    International Nuclear Information System (INIS)

    2015-01-01

    As the first mechanisms of incentive regulation of electricity and gas network operators have been introduced by the French Commission for Energy Regulation (CRE) since 2008 (the report recalls the main objectives of these mechanisms and their consequences), this report proposes a critical analysis of such mechanisms related to investments and to exploitation expenses of operators and which have been implemented in Germany, Spain, Ireland and in the United Kingdom. For each country, the report proposes a detailed description of these mechanisms for the electric power sector and the gas sector (general overview of the regulation framework, objectives, determination of the authorised income, shift processing, specific incentive mechanisms, modalities of management by the regulator), and a feedback of the different concerned actors (operators and regulators). The last part proposes a description of the status of the French regulation, and an analysis of transposition of the four foreign regulations, and states some propositions for evolutions (objectives, overview of recommended evolutions, focus on three types of regulation evolution: processing of arbitral charges, processing of other incited capital charges, processing of arbitral charges)

  4. Development of a network-based information infrastructure for fisheries and hydropower information in the Columbia River Basin : Final project report; TOPICAL

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-01-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program

  5. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  6. Car2x with software defined networks, network functions virtualization and supercomputers : technical and scientific preparations for the Amsterdam Arena telecoms fieldlab

    NARCIS (Netherlands)

    Meijer, R.; Cushing, R.; de Laat, C.; Jackson, P.; Klous, S.; Koning, R.; Makkes, M.; Meerwijk, A.; Smari, W.W.

    2015-01-01

    In the invited talk “Car2x with SDN, NFV and supercomputers” we report about how our past work with SDN [1, 2] allows the design of a smart mobility fieldlab in the huge parking lot the Amsterdam Arena. We explain how we can engineer and test software that handle the complex conditions of the Car2X

  7. SOFTWARE FOR SUPERCOMPUTER SKIF “ProLit-lC” and “ProNRS-lC” FOR FOUNDRY AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2008-01-01

    Full Text Available The data of modeling on supercomputer system SKIF of technological process of  molds filling by means of computer system 'ProLIT-lc', and also data of modeling of the steel pouring process by means ofTroNRS-lc'are presented. The influence of number of  processors of  multinuclear computer system SKIF on acceleration and time of  modeling of technological processes, connected with production of castings and slugs, is shown.

  8. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2011-01-01

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  9. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  10. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-03-29

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  11. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (Conference Presentation)

    Science.gov (United States)

    Jain, Anubhav

    2017-04-01

    Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.

  12. Getting To Exascale: Applying Novel Parallel Programming Models To Lab Applications For The Next Generation Of Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Evi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shereda, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nau, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, Lance [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-27

    As supercomputing moves toward exascale, node architectures will change significantly. CPU core counts on nodes will increase by an order of magnitude or more. Heterogeneous architectures will become more commonplace, with GPUs or FPGAs providing additional computational power. Novel programming models may make better use of on-node parallelism in these new architectures than do current models. In this paper we examine several of these novel models – UPC, CUDA, and OpenCL –to determine their suitability to LLNL scientific application codes. Our study consisted of several phases: We conducted interviews with code teams and selected two codes to port; We learned how to program in the new models and ported the codes; We debugged and tuned the ported applications; We measured results, and documented our findings. We conclude that UPC is a challenge for porting code, Berkeley UPC is not very robust, and UPC is not suitable as a general alternative to OpenMP for a number of reasons. CUDA is well supported and robust but is a proprietary NVIDIA standard, while OpenCL is an open standard. Both are well suited to a specific set of application problems that can be run on GPUs, but some problems are not suited to GPUs. Further study of the landscape of novel models is recommended.

  13. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  14. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase I. Identification and assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The study assesses the preliminary technical, economic, and institutional feasibility of district heating systems achieved by retrofitting existing utility power plants in three Wisconsin cities: Green Bay, Janesville/Beloit, and Madison. The overall approach consists of surveying the State of Wisconsin to identify all existing intermediate and base-loaded electric-generating facilities. Once identified, screening criteria are developed to narrow the list to the three most promising sites. For each of the three sites, an extensive market analysis is performed to identify and characterize thermal loads and survey potential users on their views and concerns regarding the concept. Parallel to this effort, each of the three sites is evaluated on its technical and institutional merits. The technical evaluation centers on identifying and evaluating utility plant retrofit schemes and distribution system alternatives to service the identified thermal market. The institutional analysis evaluates potential barriers such as environmental, distribution system right-of-way, and legal issues within the infrastructure of the state, city, and community. Finally, all previous aspects of the analysis are combined to determine the economic viability of each site. It is concluded that Green Bay is the most promising site.

  15. Development of a safety case for the use of current limiting devices to manage short circuit currents on electrical distribution networks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The original objective of this study was to review the safety issues associated with the use of current limiting devices and to write a risk assessment in accordance with good practice. But, when legislative procedures became apparent, the scope was changed to include involvement with the HSE, the DTI and Ofgem. It turned out that it would have been very difficult to write a safety case that would satisfy all of the agencies, or a risk assessment that would cover all applications. The scope of the study was therefore changed to focus on how the existing barriers should be tackled and the implications of the existing legislation. The approach to the study is described; it included reviews of background information and literature, questionnaires to manufacturers, a review of the reliability and hazards of the devices, and a review of UK safety legislation. The Final Report describes all this and includes discussion on the consequences of failure of fault current limiting devices, control measures which could be used to minimise risk, and recommendations for a way forward.

  16. Support of theoretical high energy physics research at the Supercomputer Computations Research Institute. Final report, September 30, 1992 - July 31, 1997

    International Nuclear Information System (INIS)

    Bitar, K.M.; Edwards, R.G.; Heller, U.M.; Kennedy, A.D.

    1998-01-01

    The research primarily involved lattice field theory simulations such as Quantum Chromodynamics (QCD) and the Standard Model of electroweak interactions. Among the works completed by the members of the lattice group and their outside collaborators in QCD simulations are extensive hadronic spectrum computations with both Wilson and staggered fermions, and calculations of hadronic matrix elements and wavefunctions. Studies of the QCD β function with two flavors of Wilson fermions, and the study of a possible flavor-parity breaking phase in QCD with two flavors of Wilson fermions have been completed. Studies of the finite temperature behavior of QCD have also been a major activity within the group. Studies of non-relativistic QCD, both for heavy-heavy mesons and for the heavy quark in heavy-light mesons have been done. Combining large N analytic computations within the Higgs sector of the standard model and numerical simulations at N = 4 have yielded a computation of the upper bound of the mass of the Higgs particle, as well as the energy scale above which deviations from the Standard Model may be expected. A major research topic during the second half of the grant period was the study of improved lattice actions, designed to diminish finite lattice spacing effects and thus accelerate the approach to the continuum limit. A new exact Local Hybrid Monte Carlo (overrelaxation) algorithm with a tunable overrelaxation parameter has been developed for pure gauge theories. The characteristics of this algorithm have been investigated. A study of possible instabilities in the global HMC algorithm has been completed

  17. LDRD final report : massive multithreading applied to national infrastructure and informatics.

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bruce A.; Murphy, Richard C.; Wheeler, Kyle; Mackey, Gregory; Berry, Jonathan W.; LaViolette, Randall A.; Mancke, Brad; Barrett, Brian W.; Phillips, Cynthia Ann; Pinar, Ali; Leung, Vitus Joseph

    2009-09-01

    Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun

  18. Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer

    Directory of Open Access Journals (Sweden)

    Michael eHines

    2011-11-01

    Full Text Available The performance of several spike exchange methods using a Blue Gene/P supercomputerhas been tested with 8K to 128K cores using randomly connected networks of up to 32M cells with 1k connections per cell and 4M cells with 10k connections per cell. The spike exchange methods used are the standard Message Passing Interface collective, MPI_Allgather, and several variants of the non-blocking multisend method either implemented via non-blocking MPI_Isend, or exploiting the possibility of very low overhead direct memory access communication available on the Blue Gene/P. In all cases the worst performing method was that using MPI_Isend due to the high overhead of initiating a spike communication. The two best performing methods --- the persistent multisend method using the Record-Replay feature of the Deep Computing Messaging Framework DCMF_Multicast;and a two phase multisend in which a DCMF_Multicast is used to first send to a subset of phase 1 destination cores which then pass it on to their subset of phase 2 destination cores --- had similar performance with very low overhead for the initiation of spike communication. Departure from ideal scaling for the multisend methods is almost completely due to load imbalance caused by the largevariation in number of cells that fire on each processor in the interval between synchronization. Spike exchange time itself is negligible since transmission overlaps with computation and is handled by a direct memory access controller. We conclude that ideal performance scaling will be ultimately limited by imbalance between incoming processor spikes between synchronization intervals. Thus, counterintuitively, maximization of load balance requires that the distribution of cells on processors should not reflect neural net architecture but be randomly distributed so that sets of cells which are burst firing together should be on different processors with their targets on as large a set of processors as possible.

  19. Petascale supercomputing to accelerate the design of high-temperature alloys

    Science.gov (United States)

    Shin, Dongwon; Lee, Sangkeun; Shyam, Amit; Haynes, J. Allen

    2017-12-01

    Recent progress in high-performance computing and data informatics has opened up numerous opportunities to aid the design of advanced materials. Herein, we demonstrate a computational workflow that includes rapid population of high-fidelity materials datasets via petascale computing and subsequent analyses with modern data science techniques. We use a first-principles approach based on density functional theory to derive the segregation energies of 34 microalloying elements at the coherent and semi-coherent interfaces between the aluminium matrix and the θ‧-Al2Cu precipitate, which requires several hundred supercell calculations. We also perform extensive correlation analyses to identify materials descriptors that affect the segregation behaviour of solutes at the interfaces. Finally, we show an example of leveraging machine learning techniques to predict segregation energies without performing computationally expensive physics-based simulations. The approach demonstrated in the present work can be applied to any high-temperature alloy system for which key materials data can be obtained using high-performance computing.

  20. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  1. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  2. Programmable lithography engine (ProLE) grid-type supercomputer and its applications

    Science.gov (United States)

    Petersen, John S.; Maslow, Mark J.; Gerold, David J.; Greenway, Robert T.

    2003-06-01

    . Topics covered describe why ProLE solutions are needed from an economic and technical aspect, a high level discussion of how the distributive system works, speed benchmarking, and finally, a brief survey of applications including advanced aberrations for lens sensitivity and flare studies, optical-proximity-correction for a bitcell and an application that will allow evaluation of the potential of a design to have systematic failures during fabrication.

  3. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  4. On-demand Overlay Networks for Large Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guok, Chin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kissel, Ezra [Univ. of Delaware, Newark, DE (United States); Swany, D. Martin [Univ. of Delaware, Newark, DE (United States); Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-12

    Large scale scientific data transfers are central to scientific processes. Data from large experimental facilities have to be moved to local institutions for analysis or often data needs to be moved between local clusters and large supercomputing centers. In this paper, we propose and evaluate a network overlay architecture to enable highthroughput, on-demand, coordinated data transfers over wide-area networks. Our work leverages Phoebus and On-demand Secure Circuits and AdvanceReservation System (OSCARS) to provide high performance wide-area network connections. OSCARS enables dynamic provisioning of network paths with guaranteed bandwidth and Phoebus enables the coordination and effective utilization of the OSCARS network paths. Our evaluation shows that this approach leads to improved end-to-end data transfer throughput with minimal overheads. The achievedthroughput using our overlay was limited only by the ability of the end hosts to sink the data.

  5. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  7. The Earthscope USArray Array Network Facility (ANF): Evolution of Data Acquisition, Processing, and Storage Systems

    Science.gov (United States)

    Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.

    2009-12-01

    Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem

  8. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  9. The ASCI Network for SC 2000: Gigabyte Per Second Networking; TOPICAL

    International Nuclear Information System (INIS)

    PRATT, THOMAS J.; NAEGLE, JOHN H.; MARTINEZ JR., LUIS G.; HU, TAN CHANG; MILLER, MARC M.; BARNABY, MARTY L.; ADAMS, ROGER L.; KLAUS, EDWARD J.

    2001-01-01

    This document highlights the Discom's Distance computing and communication team activities at the 2000 Supercomputing conference in Dallas Texas. This conference is sponsored by the IEEE and ACM. Sandia's participation in the conference has now spanned a decade, for the last five years Sandia National Laboratories, Los Alamos National Lab and Lawrence Livermore National Lab have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives, Program rubric to demonstrate ASCI's emerging capabilities in computational science and our combined expertise in high performance computer science and communication networking developments within the program. At SC 2000, DISCOM demonstrated an infrastructure. DISCOM2 uses this forum to demonstrate and focus communication and pre-standard implementation of 10 Gigabit Ethernet, the first gigabyte per second data IP network transfer application, and VPN technology that enabled a remote Distributed Resource Management tools demonstration. Additionally a national OC48 POS network was constructed to support applications running between the show floor and home facilities. This network created the opportunity to test PSE's Parallel File Transfer Protocol (PFTP) across a network that had similar speed and distances as the then proposed DISCOM WAN. The SCINET SC2000 showcased wireless networking and the networking team had the opportunity to explore this emerging technology while on the booth. This paper documents those accomplishments, discusses the details of their convention exhibit floor. We also supported the production networking needs of the implementation, and describes how these demonstrations supports DISCOM overall strategies in high performance computing networking

  10. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  11. New Mexico High School Supercomputing Challenge, 1990--1995: Five years of making a difference to students, teachers, schools, and communities. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Foster, M.; Kratzer, D.

    1996-02-01

    The New Mexico High School Supercomputing Challenge is an academic program dedicated to increasing interest in science and math among high school students by introducing them to high performance computing. This report provides a summary and evaluation of the first five years of the program, describes the program and shows the impact that it has had on high school students, their teachers, and their communities. Goals and objectives are reviewed and evaluated, growth and development of the program are analyzed, and future directions are discussed.

  12. Medicare Program; Revisions to Payment Policies Under the Physician Fee Schedule and Other Revisions to Part B for CY 2017; Medicare Advantage Bid Pricing Data Release; Medicare Advantage and Part D Medical Loss Ratio Data Release; Medicare Advantage Provider Network Requirements; Expansion of Medicare Diabetes Prevention Program Model; Medicare Shared Savings Program Requirements. Final rule.

    Science.gov (United States)

    2016-11-15

    This major final rule addresses changes to the physician fee schedule and other Medicare Part B payment policies, such as changes to the Value Modifier, to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services, as well as changes in the statute. This final rule also includes changes related to the Medicare Shared Savings Program, requirements for Medicare Advantage Provider Networks, and provides for the release of certain pricing data from Medicare Advantage bids and of data from medical loss ratio reports submitted by Medicare health and drug plans. In addition, this final rule expands the Medicare Diabetes Prevention Program model.

  13. Supercomputer debugging workshop `92

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.S.

    1993-02-01

    This report contains papers or viewgraphs on the following topics: The ABCs of Debugging in the 1990s; Cray Computer Corporation; Thinking Machines Corporation; Cray Research, Incorporated; Sun Microsystems, Inc; Kendall Square Research; The Effects of Register Allocation and Instruction Scheduling on Symbolic Debugging; Debugging Optimized Code: Currency Determination with Data Flow; A Debugging Tool for Parallel and Distributed Programs; Analyzing Traces of Parallel Programs Containing Semaphore Synchronization; Compile-time Support for Efficient Data Race Detection in Shared-Memory Parallel Programs; Direct Manipulation Techniques for Parallel Debuggers; Transparent Observation of XENOOPS Objects; A Parallel Software Monitor for Debugging and Performance Tools on Distributed Memory Multicomputers; Profiling Performance of Inter-Processor Communications in an iWarp Torus; The Application of Code Instrumentation Technology in the Los Alamos Debugger; and CXdb: The Road to Remote Debugging.

  14. Algorithms for supercomputers

    International Nuclear Information System (INIS)

    Alder, B.J.

    1986-01-01

    Better numerical procedures, improved computational power and additional physical insights have contributed significantly to progress in dealing with classical and quantum statistical mechanics problems. Past developments are discussed and future possibilities outlined

  15. Algorithms for supercomputers

    International Nuclear Information System (INIS)

    Alder, B.J.

    1985-12-01

    Better numerical procedures, improved computational power and additional physical insights have contributed significantly to progress in dealing with classical and quantum statistical mechanics problems. Past developments are discussed and future possibilities outlined

  16. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    Science.gov (United States)

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  17. Physicists set new record for network data transfer

    CERN Multimedia

    2006-01-01

    "An internatinal team of physicists, computer scientists, and network engineers led by the California Institute of Technology, CERN and the University of Michigan and partners at the University of Florida and Vanderbilt, as well as participants from Brazil (Rio de Janeiro State University, UERJ, and the State Universities of Sao Paulo, USP and UNESP) and Korea (Kyungpook National University, KISTI) joined forces to set new records for sustained data transfer between storage systems during the SuperComputing 2006 (SC06) Bandwidth Challenge (BWC)." (2 pages)

  18. Telecommunication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Balachandran, Kartheepan; Hald, Sara Ligaard

    2014-01-01

    In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control......, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look...... threats to the critical infrastructure. Finally, before our conclusions and outlook, we give a brief overview of some key activities in the field and what research directions are currently investigated....

  19. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  20. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu

    2013-07-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  1. Recent advances on failure and recovery in networks of networks

    International Nuclear Information System (INIS)

    Shekhtman, Louis M.; Danziger, Michael M.; Havlin, Shlomo

    2016-01-01

    Until recently, network science has focused on the properties of single isolated networks that do not interact or depend on other networks. However it has now been recognized that many real-networks, such as power grids, transportation systems, and communication infrastructures interact and depend on other networks. Here, we will present a review of the framework developed in recent years for studying the vulnerability and recovery of networks composed of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes, like for example certain people, play a role in two networks, i.e. in a multiplex. Dependency relations may act recursively and can lead to cascades of failures concluding in sudden fragmentation of the system. We review the analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. The general theory and behavior of interdependent networks has many novel features that are not present in classical network theory. Interdependent networks embedded in space are significantly more vulnerable compared to non-embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences. Finally, when recovery of components is possible, global spontaneous recovery of the networks and hysteresis phenomena occur. The theory developed for this process points to an optimal repairing strategy for a network of networks. Understanding realistic effects present in networks of networks is required in order to move towards determining system vulnerability.

  2. Computational fluid dynamics: complex flows requiring supercomputers. January 1975-July 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-July 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets, and missiles, and automobiles; heat-transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid-generation techniques required to apply CFD numerical solutions. Numerical methods for fluid dynamics, not requiring supercomputers, are found in a separate published search. (Contains 83 citations fully indexed and including a title list.)

  3. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  4. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah; Ross, Robert; Carns, Philip

    2016-05-15

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the model size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.

  5. Stardust Final Conference

    CERN Document Server

    Minisci, Edmondo; Summerer, Leopold; McGinty, Peter

    2018-01-01

    Space debris and asteroid impacts pose a very real, very near-term threat to Earth. In order to help study and mitigate these risks, the Stardust program was formed in 2013. This training and research network was devoted to developing and mastering techniques such as removal, deflection, exploitation, and tracking. This book is a collection of many of the topics addressed at the Final Stardust Conference, describing the latest in asteroid monitoring and how engineering efforts can help us reduce space debris. It is a selection of studies bringing together specialists from universities, research institutions, and industry, tasked with the mission of pushing the boundaries of space research with innovative ideas and visionary concepts. Topics covered by the Symposium: Orbital and Attitude Dynamics Modeling Long Term Orbit and Attitude Evolution Particle Cloud Modeling and Simulation Collision and Impact Modelling and Simulation, Re-entry Modeling and Simulation Asteroid Origins and Characterization Orbit and A...

  6. Learning conditional Gaussian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  7. The application of neural network techniques to magnetic and optical inverse problems

    International Nuclear Information System (INIS)

    Jones, H.V.

    2000-12-01

    The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and

  8. Chronopolis Digital Preservation Network

    Directory of Open Access Journals (Sweden)

    David Minor

    2010-07-01

    Full Text Available The Chronopolis Digital Preservation Initiative, one of the Library of Congress’ latest efforts to collect and preserve at-risk digital information, has completed its first year of service as a multi-member partnership to meet the archival needs of a wide range of domains.Chronopolis is a digital preservation data grid framework developed by the San Diego Supercomputer Center (SDSC at UC San Diego, the UC San Diego Libraries (UCSDL, and their partners at the National Center for Atmospheric Research (NCAR in Colorado and the University of Maryland's Institute for Advanced Computer Studies (UMIACS.Chronopolis addresses a critical problem by providing a comprehensive model for the cyberinfrastructure of collection management, in which preserved intellectual capital is easily accessible, and research results, education material, and new knowledge can be incorporated smoothly over the long term. Integrating digital library, data grid, and persistent archive technologies, Chronopolis has created trusted environments that span academic institutions and research projects, with the goal of long-term digital preservation.A key goal of the Chronopolis project is to provide cross-domain collection sharing for long-term preservation. Using existing high-speed educational and research networks and mass-scale storage infrastructure investments, the partnership is leveraging the data storage capabilities at SDSC, NCAR, and UMIACS to provide a preservation data grid that emphasizes heterogeneous and highly redundant data storage systems.In this paper we will explore the major themes within Chronopolis, including:a The philosophy and theory behind a nationally federated data grid for preservation. b The core tools and technologies used in Chronopolis. c The metadata schema that is being developed within Chronopolis for all of the data elements. d Lessons learned from the first year of the project.e Next steps in digital preservation using Chronopolis: how we

  9. Social Networks and the Environment

    OpenAIRE

    Julio Videras

    2013-01-01

    This review discusses empirical research on social networks and the environment; it summarizes findings from representative studies and the conceptual frameworks social scientists use to examine the role of social networks. The article presents basic concepts in social network analysis, summarizes common challenges of empirical research on social networks, and outlines areas for future research. Finally, the article discusses the normative and positive meanings of social networks.

  10. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    Science.gov (United States)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed

  11. FTS2000 network architecture

    Science.gov (United States)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  12. vhv supply networks, problems of network structure

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, J

    1966-04-01

    The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.

  13. Summaries of research and development activities by using supercomputer system of JAEA in FY2015. April 1, 2015 - March 31, 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on. (author)

  14. Summaries of research and development activities by using supercomputer system of JAEA in FY2014. April 1, 2014 - March 31, 2015

    International Nuclear Information System (INIS)

    2016-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2014, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2014, as well as user support, operational records and overviews of the system, and so on. (author)

  15. Summaries of research and development activities by using supercomputer system of JAEA in FY2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    2015-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. About 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2013, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue. This report presents a great amount of R and D results accomplished by using the system in FY2013, as well as user support, operational records and overviews of the system, and so on. (author)

  16. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    Science.gov (United States)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  17. Summaries of research and development activities by using supercomputer system of JAEA in FY2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2012, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as apriority issue. This report presents a great amount of R and D results accomplished by using the system in FY2012, as well as user support, operational records and overviews of the system, and so on. (author)

  18. Summaries of research and development activities by using supercomputer system of JAEA in FY2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2011, the system was used for analyses of the accident at the Fukushima Daiichi Nuclear Power Station and establishment of radioactive decontamination plan, as well as the JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great amount of R and D results accomplished by using the system in FY2011, as well as user support structure, operational records and overviews of the system, and so on. (author)

  19. Use of QUADRICS supercomputer as embedded simulator in emergency management systems; Utilizzo del calcolatore QUADRICS come simulatore in linea in un sistema di gestione delle emergenze

    Energy Technology Data Exchange (ETDEWEB)

    Bove, R.; Di Costanzo, G.; Ziparo, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1996-07-01

    The experience related to the implementation of a MRBT, atmospheric spreading model with a short duration releasing, are reported. This model was implemented on a QUADRICS-Q1 supercomputer. First is reported a description of the MRBT model. It is an analytical model to study the speadings of light gases realised in the atmosphere cause incidental releasing. The solution of diffusion equation is Gaussian like. It yield the concentration of pollutant substance released. The concentration is function of space and time. Thus the QUADRICS architecture is introduced. And the implementation of the model is described. At the end it will be consider the integration of the QUADRICS-based model as simulator in a emergency management system.

  20. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  1. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  4. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Directory of Open Access Journals (Sweden)

    Eli Dart

    2014-01-01

    Full Text Available The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  5. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  6. The Evolution of Research and Education Networks and their Essential Role in Modern Science

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, W.; Chaniotakis, E.; Dart, E.; Guok, C.; Metzger, J.; Tierney, B.

    2009-06-15

    ESnet - the Energy Sciences Network - has the mission of enabling the aspects of the US Department of Energy's Office of Science programs and facilities that depend on large collaborations and large-scale data sharing to accomplish their science. The Office of Science supports a large fraction of all U.S. physical science research and operates many large science instruments and supercomputers that are used by both DOE and University researchers. The network requirements of this community have been explored in some detail by ESnet and a long-term plan has been developed in order to ensure adequate networking to support the science. In this paper we describe the planning process (which has been in place for several years and was the basis of a new network that is just now being completed and a new set of network services) and examine the effectiveness and adequacy of the planning process in the light of evolving science requirements.

  7. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  8. Information theoretic description of networks

    Science.gov (United States)

    Wilhelm, Thomas; Hollunder, Jens

    2007-11-01

    We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter-receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks. The complexity classification is based on the information theoretic network complexity measure medium articulation (MA). It is proven that special networks with a medium number of links ( L∼n1.5) show the theoretical maximum complexity MA=(log n)2/2. A network is complex if its MA is larger than the average MA of appropriately randomized networks: MA>MAr. A network is of the democracy type if its redundancy Rdictatorship network. In democracy networks all nodes are, on average, of similar importance, whereas in dictatorship networks some nodes play distinguished roles in network functioning. In other words, democracy networks are characterized by cycling of information (or mass, or energy), while in dictatorship networks there is a straight through-flow from sources to sinks. The classification of directed networks into information spreading and information collecting networks is based on the conditional entropies of the considered networks ( H(A/B)=uncertainty of sender node if receiver node is known, H(B/A)=uncertainty of receiver node if sender node is known): if H(A/B)>H(B/A), it is an information collecting network, otherwise an information spreading network. Finally, different real networks (directed and undirected, weighted and unweighted) are classified according to our general scheme.

  9. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  10. Innovation and network collaboration

    DEFF Research Database (Denmark)

    Kesting, Peter; Müller, Sabine; Jørgensen, Frances

    2011-01-01

    Research suggests that small and medium-sized enterprises (SMEs) can benefit from network collaboration by enhancing opportunities for innovation. Managing the necessary collaboration to benefit from network participation may however be particularly challenging for SMEs due to their size...... and their inherent shortage of resources. In this paper, we propose that human resource management (HRM) practices may provide a means by which SMEs can increase their innovation capacity through network collaboration. Following a brief presentation of the relevant literature on networks, and innovation in networks...... in particular, and HRM, we analyse and evaluate the potential applicability of existing models for supporting innovation in SMEs participating in networks. Finally, we propose several lines of inquiry arising from our analysis that provide directions for future research....

  11. The Fermilab Advanced Computer Program multi-array processor system (ACPMAPS): A site oriented supercomputer for theoretical physics

    International Nuclear Information System (INIS)

    Nash, T.; Areti, H.; Atac, R.

    1988-08-01

    The ACP Multi-Array Processor System (ACPMAPS) is a highly cost effective, local memory parallel computer designed for floating point intensive grid based problems. The processing nodes of the system are single board array processors based on the FORTRAN and C programmable Weitek XL chip set. The nodes are connected by a network of very high bandwidth 16 port crossbar switches. The architecture is designed to achieve the highest possible cost effectiveness while maintaining a high level of programmability. The primary application of the machine at Fermilab will be lattice gauge theory. The hardware is supported by a transparent site oriented software system called CANOPY which shields theorist users from the underlying node structure. 4 refs., 2 figs

  12. Final Report for File System Support for Burst Buffers on HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-27

    Distributed burst buffers are a promising storage architecture for handling I/O workloads for exascale computing. As they are being deployed on more supercomputers, a file system that efficiently manages these burst buffers for fast I/O operations carries great consequence. Over the past year, FSU team has undertaken several efforts to design, prototype and evaluate distributed file systems for burst buffers on HPC systems. These include MetaKV: a Key-Value Store for Metadata Management of Distributed Burst Buffers, a user-level file system with multiple backends, and a specialized file system for large datasets of deep neural networks. Our progress for these respective efforts are elaborated further in this report.

  13. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  14. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  15. Inferring general relations between network characteristics from specific network ensembles.

    Science.gov (United States)

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  16. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2017-06-01

    Full Text Available NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  17. Ethical aspects of final disposal. Final report

    International Nuclear Information System (INIS)

    Baltes, B.; Leder, W.; Achenbach, G.B.; Spaemann, R.; Gerhardt, V.

    2003-01-01

    In fulfilment of this task the Federal Environmental Ministry has commissioned GRS to summarise the current national and international status of ethical aspects of the final disposal of radioactive wastes as part of the project titled ''Final disposal of radioactive wastes as seen from the viewpoint of ethical objectives''. The questions arising from the opinions, positions and publications presented in the report by GRS were to serve as a basis for an expert discussion or an interdisciplinary discussion forum for all concerned with the ethical aspects of an answerable approach to the final disposal of radioactive wastes. In April 2001 GRS held a one-day seminar at which leading ethicists and philosophers offered statements on the questions referred to above and joined in a discussion with experts on issues of final disposal. This report documents the questions that arose ahead of the workshop, the specialist lectures held there and a summary of the discussion results [de

  18. 32 X 2.5 Gb/s Optical Code Division Multiplexing (O-CDM) For Agile Optical Networking (Phase II) Final Report CRADA No. TC02051.0

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mendez, A. J. [Mendez R & D Associates, El Segundo, CA (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.

  19. Some computational challenges of developing efficient parallel algorithms for data-dependent computations in thermal-hydraulics supercomputer applications

    International Nuclear Information System (INIS)

    Woodruff, S.B.

    1994-01-01

    The Transient Reactor Analysis Code (TRAC), which features a two-fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local, the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, a fixed, uniform assignment of nodes to prallel processors will result in degraded computational efficiency due to the poor load balancing. A standard method for treating data-dependent models on vector architectures has been to use gather operations (or indirect adressing) to sort the nodes into subsets that (temporarily) share a common computational model. However, this method is not effective on distributed memory data parallel architectures, where indirect adressing involves expensive communication overhead. Another serious problem with this method involves software engineering challenges in the areas of maintainability and extensibility. For example, an implementation that was hand-tuned to achieve good computational efficiency would have to be rewritten whenever the decision tree governing the sorting was modified. Using an example based on the calculation of the wall-to-liquid and wall-to-vapor heat-transfer coefficients for three nonboiling flow regimes, we describe how the use of the Fortran 90 WHERE construct and automatic inlining of functions can be used to ameliorate this problem while improving both efficiency and software engineering. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. We discuss why developers should either wait for such solutions or consider alternative numerical algorithms, such as a neural network

  20. Declarative Networking

    CERN Document Server

    Loo, Boon Thau

    2012-01-01

    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  1. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  2. The stabilisation of final focus system

    Indian Academy of Sciences (India)

    The StaFF (stabilisation of final focus) system will use interferometers to monitor the relative ... quadrupole magnets will be the most demanding application, where mutual and beam- ... interferometers to measure lines of a geodetic network to record relative motion between two beam ... coupled interferometer design.

  3. Data Exchange Network

    DEFF Research Database (Denmark)

    Grau Larsen, Anton; Ellersgaard, Christoph

    2015-01-01

    This article presents the extensive Danish elite network. Collected during 2012 and 2013, the data comprises 56,536 positions within 5,079 affiliations, and connects 37,750 individuals. The network consists of the largest Danish corporations, state institutions, NGO’s, and other integrative...... networks such as social clubs or royal events. Data were gathered through an inclusion principle, adding all potentially interesting affiliations. Procedures of name-matching and quality control are presented. Finally, the data are introduced: made available through a package for R, which enables...

  4. Network function virtualization concepts and applicability in 5G networks

    CERN Document Server

    Zhang, Ying

    2018-01-01

    A horizontal view of newly emerged technologies in the field of network function virtualization (NFV), introducing the open source implementation efforts that bring NFV from design to reality This book explores the newly emerged technique of network function virtualization (NFV) through use cases, architecture, and challenges, as well as standardization and open source implementations. It is the first systematic source of information about cloud technologies' usage in the cellular network, covering the interplay of different technologies, the discussion of different design choices, and its impact on our future cellular network. Network Function Virtualization: Concepts and Applicability in 5G Networks reviews new technologies that enable NFV, such as Software Defined Networks (SDN), network virtualization, and cloud computing. It also provides an in-depth investigation of the most advanced open source initiatives in this area, including OPNFV, Openstack, and Opendaylight. Finally, this book goes beyond li...

  5. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  6. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  7. A brief review of advances in complex networks of nuclear science and technology field

    International Nuclear Information System (INIS)

    Fang Jinqing

    2010-01-01

    A brief review of advances in complex networks of nuclear science and technology field at home and is given and summarized. These complex networks include: nuclear energy weapon network, network centric warfare, beam transport networks, continuum percolation evolving network associated with nuclear reactions, global nuclear power station network, (nuclear) chemistry reaction networks, radiological monitoring and anti-nuclear terror networks, and so on. Some challenge issues and development prospects of network science are pointed out finally. (authors)

  8. Active Versus Passive Academic Networking

    DEFF Research Database (Denmark)

    Goel, Rajeev K.; Grimpe, Christoph

    2013-01-01

    This paper examines determinants of networking by academics. Using information from a unique large survey of German researchers, the key contribution focuses on the active versus passive networking distinction. Is active networking by researchers a substitute or a complement to passive networking......? Other contributions include examining the role of geographic factors in networking and whether research bottlenecks affect a researcher's propensity to network. Are the determinants of European conference participation by German researchers different from conferences in rest of the world? Results show...... that some types of passive academic networking are complementary to active networking, while others are substitute. Further, we find differences in factors promoting participation in European conferences versus conferences in rest of the world. Finally, publishing bottlenecks as a group generally do...

  9. Bell Inequalities for Complex Networks

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0355 YIP Bell Inequalities for Complex Networks Greg Ver Steeg UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES Final Report 10/26...performance report PI: Greg Ver Steeg Young Investigator Award Grant Title: Bell Inequalities for Complex Networks Grant #: FA9550-12-1-0417 Reporting...October 20, 2015 Final Report for “Bell Inequalities for Complex Networks” Greg Ver Steeg Abstract This effort studied new methods to understand the effect

  10. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    International Nuclear Information System (INIS)

    Wu Jianjun; Gao Ziyou; Sun Huijun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.

  11. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago Vanderlei; Giannitsarou, Chrysi; Johnson, CR

    2017-01-01

    We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and define a network aggregator that preserves network cohesion.

  12. The network researchers' network

    DEFF Research Database (Denmark)

    Henneberg, Stephan C.; Jiang, Zhizhong; Naudé, Peter

    2009-01-01

    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987). In thi......The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  13. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  14. Adverse Outcome Pathway Networks II: Network Analytics.

    Science.gov (United States)

    Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries

    2018-02-28

    Toxicological responses to stressors are more complex than the simple one biological perturbation to one adverse outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present paper introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using two example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses, or previously undefined emergent patterns of response, are introduced. Along with a companion article (Knapen et al. part I), these concepts set the stage for development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. Collectively, this work addresses one of the major themes identified through a SETAC Horizon Scanning effort focused on advancing the AOP framework. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Online Social Network Interactions:

    Directory of Open Access Journals (Sweden)

    Hui-Jung Chang

    2018-01-01

    Full Text Available A cross-cultural comparison of social networking structure on McDonald’s Facebook fan sites between Taiwan and the USA was conducted utilizing the individualism/collectivism dimension proposed by Hofstede. Four network indicators are used to describe the network structure of McDonald’s Facebook fan sites: size, density, clique and centralization. Individuals who post on both Facebook sites for the year of 2012 were considered as network participants for the purpose of the study. Due to the huge amount of data, only one thread of postings was sampled from each month of the year of 2012. The final data consists of 1002 postings written by 896 individuals and 5962 postings written by 5532 individuals from Taiwan and the USA respectively. The results indicated that the USA McDonald’s Facebook fan network has more fans, while Taiwan’s McDonald’s Facebook fan network is more densely connected. Cliques did form among the overall multiplex and within the individual uniplex networks in two countries, yet no significant differences were found between them. All the fan networks in both countries are relatively centralized, mostly on the site operators.

  16. Network cosmology.

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  17. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  18. Final report of the study on heat networks in Ile-de-France, contributing to the elaboration of the climate-air-energy regional scheme + Judicial aspect + Economic aspect + Assessment of development potential of urban heating in Ile-de-France - Analysis document based on the study on heat networks contributing to the elaboration of the climate-air-energy regional plan

    International Nuclear Information System (INIS)

    2012-10-01

    A first report is a contribution to the elaboration of a plan aiming at the substitution of fossil energies, at the development of heat deliveries, while maintaining network economic profitability. Such a plan is based on the connection of buildings, the renovation, extension and interconnection of existing networks, and the creation of new heat networks. The study addressed technical, urban, financial, judicial and cartographic aspects. Public statistical data have been used and interviews of actors (network funders, representatives of delegating authorities, social landlords, administrations, and technical professions) have been performed. A guide of good practices is proposed regarding contract reviewing conditions, possibilities of revision of subscribed power. Prospective issues are discussed: strategic stakes and deposits, actions paths and tools, strategy and action plan. Appendices address methodologies, organisation of the geographical information system, judicial aspect with the circular of 1982, financial data and aspects. Then, a set of reports more precisely presents various aspects addressed as a contribution for the study of heat networks in Ile-de-France: the judicial aspect (present status, guide of good judicial practices), the economic aspect (present status of sale prices and costs, analysis of financing, of revision formula), and an assessment of urban heating development (context, technical aspect, analysis of the geographical information system)

  19. Deterministic bound for avionics switched networks according to networking features using network calculus

    Directory of Open Access Journals (Sweden)

    Feng HE

    2017-12-01

    Full Text Available The state of the art avionics system adopts switched networks for airborne communications. A major concern in the design of the networks is the end-to-end guarantee ability. Analytic methods have been developed to compute the worst-case delays according to the detailed configurations of flows and networks within avionics context, such as network calculus and trajectory approach. It still lacks a relevant method to make a rapid performance estimation according to some typically switched networking features, such as networking scale, bandwidth utilization and average flow rate. The goal of this paper is to establish a deterministic upper bound analysis method by using these networking features instead of the complete network configurations. Two deterministic upper bounds are proposed from network calculus perspective: one is for a basic estimation, and another just shows the benefits from grouping strategy. Besides, a mathematic expression for grouping ability is established based on the concept of network connecting degree, which illustrates the possibly minimal grouping benefit. For a fully connected network with 4 switches and 12 end systems, the grouping ability coming from grouping strategy is 15–20%, which just coincides with the statistical data (18–22% from the actual grouping advantage. Compared with the complete network calculus analysis method for individual flows, the effectiveness of the two deterministic upper bounds is no less than 38% even with remarkably varied packet lengths. Finally, the paper illustrates the design process for an industrial Avionics Full DupleX switched Ethernet (AFDX networking case according to the two deterministic upper bounds and shows that a better control for network connecting, when designing a switched network, can improve the worst-case delays dramatically. Keywords: Deterministic bound, Grouping ability, Network calculus, Networking features, Switched networks

  20. DIMEC - Final Report

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF.......Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF....

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  2. Network versus Economic Incentives

    DEFF Research Database (Denmark)

    Larsen, Christian Albrekt

    The article supplements the traditional economic line of reasoning with an economic sociological account of the transition from unemployment to employment. The lack of full information is recognised by economic theory while the focus on network within the tradition of economic sociology has...... not been adopted. The article argues that the importance of network actually might be very well understood within recent economic theories that emphasise the lack of full information. The empirical evidence for the importance of network both for employed and unemployed is provided by analysing a best case...... might be an important part of the vicious circles of unemployment. Finally, the article analyse the importance of network versus the importance of economic incentives. The result supports the thesis that economic sociology provides a better account of the transition from unemployment to employment than...

  3. Telecommunication networks

    CERN Document Server

    Iannone, Eugenio

    2011-01-01

    Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction co

  4. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chuanfu, E-mail: xuchuanfu@nudt.edu.cn [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Deng, Xiaogang; Zhang, Lilun [College of Computer Science, National University of Defense Technology, Changsha 410073 (China); Fang, Jianbin [Parallel and Distributed Systems Group, Delft University of Technology, Delft 2628CD (Netherlands); Wang, Guangxue; Jiang, Yi [State Key Laboratory of Aerodynamics, P.O. Box 211, Mianyang 621000 (China); Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua [College of Computer Science, National University of Defense Technology, Changsha 410073 (China)

    2014-12-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  5. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer

    International Nuclear Information System (INIS)

    Xu, Chuanfu; Deng, Xiaogang; Zhang, Lilun; Fang, Jianbin; Wang, Guangxue; Jiang, Yi; Cao, Wei; Che, Yonggang; Wang, Yongxian; Wang, Zhenghua; Liu, Wei; Cheng, Xinghua

    2014-01-01

    Programming and optimizing complex, real-world CFD codes on current many-core accelerated HPC systems is very challenging, especially when collaborating CPUs and accelerators to fully tap the potential of heterogeneous systems. In this paper, with a tri-level hybrid and heterogeneous programming model using MPI + OpenMP + CUDA, we port and optimize our high-order multi-block structured CFD software HOSTA on the GPU-accelerated TianHe-1A supercomputer. HOSTA adopts two self-developed high-order compact definite difference schemes WCNS and HDCS that can simulate flows with complex geometries. We present a dual-level parallelization scheme for efficient multi-block computation on GPUs and perform particular kernel optimizations for high-order CFD schemes. The GPU-only approach achieves a speedup of about 1.3 when comparing one Tesla M2050 GPU with two Xeon X5670 CPUs. To achieve a greater speedup, we collaborate CPU and GPU for HOSTA instead of using a naive GPU-only approach. We present a novel scheme to balance the loads between the store-poor GPU and the store-rich CPU. Taking CPU and GPU load balance into account, we improve the maximum simulation problem size per TianHe-1A node for HOSTA by 2.3×, meanwhile the collaborative approach can improve the performance by around 45% compared to the GPU-only approach. Further, to scale HOSTA on TianHe-1A, we propose a gather/scatter optimization to minimize PCI-e data transfer times for ghost and singularity data of 3D grid blocks, and overlap the collaborative computation and communication as far as possible using some advanced CUDA and MPI features. Scalability tests show that HOSTA can achieve a parallel efficiency of above 60% on 1024 TianHe-1A nodes. With our method, we have successfully simulated an EET high-lift airfoil configuration containing 800M cells and China's large civil airplane configuration containing 150M cells. To our best knowledge, those are the largest-scale CPU–GPU collaborative simulations

  6. Environmentally-safe process control and state diagnostic in chemical plants by neuronal network. Subproject 2. Final report; Umweltgerechte Prozessfuehrung und Zustandserkennung in Chemieanlagen mit neuronalen Netzen. Teilvorhaben 2: Konzipierung und Erprobung des Zustandserkennungsverfahrens. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hessel, G.; Heidrich, J.; Hilpert, R.; Roth, M. [Degussa AG (Germany); Kryk, H.; Schmitt, W.; Seiler, T.; Weiss, F.P.

    2002-12-01

    In the frame of the sub-project, an on-line monitoring system for strongly exothermic reactions was developed to support the operational personnel in the optimal and environmentally compatible process control of complex or safety-difficult reactions in semibatch-mode in stirred tank reactors (batch reactor). The Monitoring System (MoSys) based on dimensionless mass and heat balances with adaptive functions has first to be trained using process data from normal and undesired courses of batches carried out in a miniplant under conditions of the industrial process. The adaptation of balance models to the target plant is done by two-layer perceptron networks. To ensure a complete scale-up, MoSys should be adapted and validated using process data of at least one normal batch course in the chemical plant. MoSys was designed for both a homogeneous exothermic esterification reaction and a heterogeneous exothermic hydrogenation process. Experimental tests were carried out in a pilot plant (esterification) and in an industrial plant (hydrogenation). For industrial testing, MoSys was integrated into a Batch-Information-Management System (BIMS) which was also developed and implemented in the Process Control System (PCS) of a multi-purpose reactor installation in the fine chemical factory at Radebeul (Degussa Inc.). As a result, the MoSys outputs can simultaneously be visualised with important process signals on the terminals of PCS. For example, the progress of hydrogenation, the predictive end of reaction and the concentration profiles of the educt, intermediate and product are displayed on the terminals of operator stations. Furthermore, when undesired operating states occur, the operational personnel is early alarmed and recommendation are given for countermeasures that are allowed to be only done by the operator. The efficiency of BIMS/MoSys could be proven during two industrial hydrogenation campaigns. (orig.)

  7. Mobility Network and Safety

    Directory of Open Access Journals (Sweden)

    Adriana Galderisi

    2010-04-01

    Full Text Available Mobility network is crucial for ensuring territorial safety with respect to natural and technological hazards. They represent a basic support to community’s everyday life although being exposed elements often characterized by high vulnerability to different hazards and, in the meanwhile, strategic equipments for emergency management. Physical damages or the lack in functioning of those networks may greatly increase the loss of human lives caused by hazardous events as well as produce relevant economic damages at medium and long term. Although the relevance of the mobility networks in assuring territorial safety is at present largely recognized, risk analyses have been long focused on buildings’ vulnerability or, even where they have paid attention to mobility network, they have been mainly focused on the physical damages that a given hazard could may induce on individual elements of such network. It is recent the awareness that mobility network represents a system, characterized by relevant interdependences both among its elements and among network infrastructures and urban systems. Based on these assumptions, this paper points out the heterogeneous aspects of the mobility network vulnerability and their relevance in increasing the overall territorial or urban vulnerability to hazardous events. Therefore, an in-depth investigation of the concept of mobility network vulnerability is provided, in order to highlight the aspects mostly investigated and more recent research perspectives. Finally, a case study in the Campania Region is presented in order to point out how traditional risk analyses, generally referred to individual hazards, can sometimes led to invest in the mobility network improvement or development which, targeted to increase the security of a territory result, on the opposite, in an increase of the territorial vulnerability.

  8. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    Science.gov (United States)

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  9. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  10. Advanced Architectures for Astrophysical Supercomputing

    Science.gov (United States)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  11. Supercomputer requirements for theoretical chemistry

    International Nuclear Information System (INIS)

    Walker, R.B.; Hay, P.J.; Galbraith, H.W.

    1980-01-01

    Many problems important to the theoretical chemist would, if implemented in their full complexity, strain the capabilities of today's most powerful computers. Several such problems are now being implemented on the CRAY-1 computer at Los Alamos. Examples of these problems are taken from the fields of molecular electronic structure calculations, quantum reactive scattering calculations, and quantum optics. 12 figures

  12. Supercomputer debugging workshop '92

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.S.

    1993-01-01

    This report contains papers or viewgraphs on the following topics: The ABCs of Debugging in the 1990s; Cray Computer Corporation; Thinking Machines Corporation; Cray Research, Incorporated; Sun Microsystems, Inc; Kendall Square Research; The Effects of Register Allocation and Instruction Scheduling on Symbolic Debugging; Debugging Optimized Code: Currency Determination with Data Flow; A Debugging Tool for Parallel and Distributed Programs; Analyzing Traces of Parallel Programs Containing Semaphore Synchronization; Compile-time Support for Efficient Data Race Detection in Shared-Memory Parallel Programs; Direct Manipulation Techniques for Parallel Debuggers; Transparent Observation of XENOOPS Objects; A Parallel Software Monitor for Debugging and Performance Tools on Distributed Memory Multicomputers; Profiling Performance of Inter-Processor Communications in an iWarp Torus; The Application of Code Instrumentation Technology in the Los Alamos Debugger; and CXdb: The Road to Remote Debugging.

  13. ASCI's Vision for supercomputing future

    International Nuclear Information System (INIS)

    Nowak, N.D.

    2003-01-01

    The full text of publication follows. Advanced Simulation and Computing (ASC, formerly Accelerated Strategic Computing Initiative [ASCI]) was established in 1995 to help Defense Programs shift from test-based confidence to simulation-based confidence. Specifically, ASC is a focused and balanced program that is accelerating the development of simulation capabilities needed to analyze and predict the performance, safety, and reliability of nuclear weapons and certify their functionality - far exceeding what might have been achieved in the absence of a focused initiative. To realize its vision, ASC is creating simulation and proto-typing capabilities, based on advanced weapon codes and high-performance computing

  14. Gross anatomy of network security

    Science.gov (United States)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  15. Temporal networks

    CERN Document Server

    Saramäki, Jari

    2013-01-01

    The concept of temporal networks is an extension of complex networks as a modeling framework to include information on when interactions between nodes happen. Many studies of the last decade examine how the static network structure affect dynamic systems on the network. In this traditional approach  the temporal aspects are pre-encoded in the dynamic system model. Temporal-network methods, on the other hand, lift the temporal information from the level of system dynamics to the mathematical representation of the contact network itself. This framework becomes particularly useful for cases where there is a lot of structure and heterogeneity both in the timings of interaction events and the network topology. The advantage compared to common static network approaches is the ability to design more accurate models in order to explain and predict large-scale dynamic phenomena (such as, e.g., epidemic outbreaks and other spreading phenomena). On the other hand, temporal network methods are mathematically and concept...

  16. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  17. Distributed Finite Element Analysis Using a Transputer Network

    Science.gov (United States)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  18. Meeting the memory challenges of brain-scale network simulation

    Directory of Open Access Journals (Sweden)

    Susanne eKunkel

    2012-01-01

    Full Text Available The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10^5 neurons with up to 10^9 synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are one or two orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been studied in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Bluegene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of a neuronal simulator as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place.

  19. Network maintenance

    CERN Multimedia

    GS Department

    2009-01-01

    A site-wide network maintenance operation has been scheduled for Saturday 28 February. Most of the network devices of the general purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites throughout the day. This upgrade will not affect the Computer Centre itself, Building 613, the Technical Network and the LHC experiments, dedicated networks at the pits. For further details of this intervention, please contact Netops by phone 74927 or e-mail mailto:Netops@cern.ch. IT/CS Group

  20. Network maintenance

    CERN Multimedia

    IT Department

    2009-01-01

    A site wide network maintenance has been scheduled for Saturday 28 February. Most of the network devices of the General Purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites along this day. This upgrade will not affect: the Computer centre itself, building 613, the Technical Network and the LHC experiments dedicated networks at the pits. Should you need more details on this intervention, please contact Netops by phone 74927 or email mailto:Netops@cern.ch. IT/CS Group

  1. Final focus nomenclature

    International Nuclear Information System (INIS)

    Erickson, R.

    1986-01-01

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number

  2. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  3. WMO Marine Final Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Final reports of the World Meteorological Organization (WMO) Commission for Marine Meteorology, Commission for Synoptic Meteorology, and Commission for Basic...

  4. Transacsys PLC - Final Results

    CERN Multimedia

    2002-01-01

    Final results from Transacsys PLC. A subsidary of this company was set up to develop the CERN EDH system into a commercial product but incurred too much financial loss so the project was cancelled (1/2 page).

  5. Final focus nomenclature

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  6. Trends of ozone and O{sub x} in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Prevot, A. [Paul Scherrer Institut (PSI), Laboratory of Atmospheric Chemistry (LAC), Villigen (Switzerland); Beguin, A.F. [Swiss Federal Institute of Technology, Institute for Atmospheric and Climate Science (IAC), Zuerich (Switzerland); Jutzi, V. [Vincent Jutzi, Lausanne (Switzerland); Ordonez, C. [Met Office, Exeter EX1 3PB (United Kingdom)

    2008-11-15

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O{sub x} = O{sub 3} + NO{sub 2} for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O{sub 3} and O{sub x} are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are

  7. Trends of ozone and Ox in Switzerland from 1992 to 2007: observations at selected stations of the NABEL, OASI (Ticino) and ANU (Graubuenden) networks corrected for meteorological variability. Final Report

    International Nuclear Information System (INIS)

    Keller, J.; Prevot, A.; Beguin, A.F.; Jutzi, V.; Ordonez, C.

    2008-11-01

    Long-term changes of ozone concentrations are influenced by a variety of quantities, in particular meteorological variables and emissions. In order to evaluate the contributions of regional emissions and of the background concentration to changes in observed ozone levels, the variability due to meteorology has to be removed. Ordonez et al. (2005) investigated the temporal evolution of tropospheric ozone over the Swiss Plateau using meteorological and air quality measurements taken at stations of the Swiss air quality networks NABEL and OSTLUFT. Time period was 1992 to 2002 including a discussion of the heat wave in summer 2003. The air quality measurements were corrected for meteorological influences on the basis of a multi-linear model approach. Despite the emission abatement measures of the last decades no significant decrease in ozone levels was observed. Air quality stations south of the Alps, which often act as a barrier for air mass exchange between south and north, were not included in the investigation. This study (a) includes all NABEL stations, (b) considers also southern air quality stations of the cantons Ticino (OASI) and Graubuenden (ANU), and (c) extends the time frame until 2007. The methodology of correcting ozone and O x = O 3 + NO 2 for meteorological variability is based on the ANalysis of COVAriance (ANCOVA). This approach assumes that the mixing ratios of O 3 and O x are multi-linear functions of selected meteorological quantities. The analysis is performed using the statistics package R, which supports the dependence on continuous variables (e.g. air temperature) as well as on discrete quantities (e.g. wind direction expressed in terms of discrete wind direction sectors). The following daily values of each station are considered in the analysis (examples): (i) Meteorological variables (averages): afternoon temperature, morning global irradiance, afternoon wind speed, etc. If no co-located meteorological data are available, data of the closest

  8. Data breaches. Final rule.

    Science.gov (United States)

    2008-04-11

    This document adopts, without change, the interim final rule that was published in the Federal Register on June 22, 2007, addressing data breaches of sensitive personal information that is processed or maintained by the Department of Veterans Affairs (VA). This final rule implements certain provisions of the Veterans Benefits, Health Care, and Information Technology Act of 2006. The regulations prescribe the mechanisms for taking action in response to a data breach of sensitive personal information.

  9. Contagion on complex networks with persuasion

    Science.gov (United States)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  10. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  11. Network Ambivalence

    Directory of Open Access Journals (Sweden)

    Patrick Jagoda

    2015-08-01

    Full Text Available The language of networks now describes everything from the Internet to the economy to terrorist organizations. In distinction to a common view of networks as a universal, originary, or necessary form that promises to explain everything from neural structures to online traffic, this essay emphasizes the contingency of the network imaginary. Network form, in its role as our current cultural dominant, makes scarcely imaginable the possibility of an alternative or an outside uninflected by networks. If so many things and relationships are figured as networks, however, then what is not a network? If a network points towards particular logics and qualities of relation in our historical present, what others might we envision in the future? In  many ways, these questions are unanswerable from within the contemporary moment. Instead of seeking an avant-garde approach (to move beyond networks or opting out of networks (in some cases, to recover elements of pre-networked existence, this essay proposes a third orientation: one of ambivalence that operates as a mode of extreme presence. I propose the concept of "network aesthetics," which can be tracked across artistic media and cultural forms, as a model, style, and pedagogy for approaching interconnection in the twenty-first century. The following essay is excerpted from Network Ambivalence (Forthcoming from University of Chicago Press. 

  12. Traffic Dynamics on Complex Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.

  13. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  14. Network workshop

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry

    2014-01-01

    This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data....... These include student relations and interactions and epistemic and linguistic networks of words, concepts and actions. Network methodology has already found use in science education research. However, while networks hold the potential for new insights, they have not yet found wide use in the science education...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...

  15. Network Convergence

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Network Convergence. User is interested in application and content - not technical means of distribution. Boundaries between distribution channels fade out. Network convergence leads to seamless application and content solutions.

  16. Industrial Networks

    DEFF Research Database (Denmark)

    Karlsson, Christer

    2015-01-01

    Companies organize in a way that involves many activities that are external to the traditional organizational boundaries. This presents challenges to operations management and managing operations involves many issues and actions dealing with external networks. Taking a network perspective changes...

  17. Network Science

    National Research Council Canada - National Science Library

    Leland, Will

    2006-01-01

    OVERVIEW: (1) A committee of technical experts, military officers and R&D managers was assembled by the National Research Council to reach consensus on the nature of networks and network research. (2...

  18. Njv Magazine 3 final

    African Journals Online (AJOL)

    En-Joy

    protected by the calvaria. The calvarium is an important bony apparatus as it encase and protects the delicate brain tissues lying within it. The calvaria comprised the frontal, parietal, occipital, temporal and interparietal bones (Evans, 1993; Smuts and Bezuidenhout, 1987). Each bone shows a central trabecular network that.

  19. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Roetter, Daniel Enrique Lucani

    2015-01-01

    Software Defined Networking (SDN) and Network Coding (NC) are two key concepts in networking that have garnered a large attention in recent years. On the one hand, SDN's potential to virtualize services in the Internet allows a large flexibility not only for routing data, but also to manage....... This paper advocates for the use of SDN to bring about future Internet and 5G network services by incorporating network coding (NC) functionalities. The inherent flexibility of both SDN and NC provides a fertile ground to envision more efficient, robust, and secure networking designs, that may also...

  20. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  1. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  2. Network Simulation

    CERN Document Server

    Fujimoto, Richard

    2006-01-01

    "Network Simulation" presents a detailed introduction to the design, implementation, and use of network simulation tools. Discussion topics include the requirements and issues faced for simulator design and use in wired networks, wireless networks, distributed simulation environments, and fluid model abstractions. Several existing simulations are given as examples, with details regarding design decisions and why those decisions were made. Issues regarding performance and scalability are discussed in detail, describing how one can utilize distributed simulation methods to increase the

  3. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    Science.gov (United States)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  4. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimise the management of the Technical Network (TN), to facilitate understanding of the purpose of devices connected to the TN and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive e-mails from IT/CS asking them to add the corresponding information in the network database at "network-cern-ch". Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  5. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  6. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  7. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  8. Vulnerability of network of networks

    Science.gov (United States)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  9. CRISP. Final Summary Report

    International Nuclear Information System (INIS)

    Akkermans, H.; Schaeffer, G.J.

    2006-07-01

    How will Information and Communication Technologies, or ICT for short, help realize the smart power networks of the future? This report answers this question, by presenting the key findings of the European project CRISP. It outlines the role of Internet- and Web-based architectures and standards, and explains the practical potential of advanced technologies such as intelligent agents and electronic markets. It discusses the results of studies on decentralized control, grid operations, and service applications in power networks that will have a high degree of distributed and sustainable energy resources. It summarizes field experiments carried out on fault diagnosis, intelligent load shedding, dependability and security, and automatic supply-demand response. Thus, the report gives a clear picture of how the grid will evolve as a critical infrastructure in the digital age, and it clarifies the many benefits that ICT has for energy and power

  10. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rasure, John, et. al.

    2008-03-07

    Through past DOE funding, the MIND Research network has funded a national consortium effort that used multi-modal neuroimaging, genetics, and clinical assessment of subjects to study schizophrenia in both first episode and persistently ill patients. Although active recruitment of research participants is complete, this consortium remains active and productive in terms of analysis of this unique multi-modal data collected on over 320 subjects.

  11. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  12. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Nitin S. Baliga and Leroy Hood

    2008-11-12

    The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  14. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  15. Deep inelastic final states

    International Nuclear Information System (INIS)

    Girardi, G.

    1980-11-01

    In these lectures we attempt to describe the final states of deep inelastic scattering as given by QCD. In the first section we shall briefly comment on the parton model and give the main properties of decay functions which are of interest for the study of semi-inclusive leptoproduction. The second section is devoted to the QCD approach to single hadron leptoproduction. First we recall basic facts on QCD log's and derive after that the evolution equations for the fragmentation functions. For this purpose we make a short detour in e + e - annihilation. The rest of the section is a study of the factorization of long distance effects associated with the initial and final states. We then show how when one includes next to leading QCD corrections one induces factorization breaking and describe the double moments useful for testing such effects. The next section contains a review on the QCD jets in the hadronic final state. We begin by introducing the notion of infrared safe variable and defining a few useful examples. Distributions in these variables are studied to first order in QCD, with some comments on the resummation of logs encountered in higher orders. Finally the last section is a 'gaullimaufry' of jet studies

  16. The 'final order' problem

    NARCIS (Netherlands)

    Teunter, RH; Haneveld, WKK

    1998-01-01

    When the service department of a company selling machines stops producing and supplying spare parts for certain machines, customers are offered an opportunity to place a so-called final order for these spare parts. We focus on one customer with one machine. The customer plans to use this machine up

  17. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Hansen, Jonas; Roetter, Daniel Enrique Lucani; Krigslund, Jeppe

    2015-01-01

    Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm...

  18. Cassini's Grand Finale Overview

    Science.gov (United States)

    Spilker, L. J.

    2017-12-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand

  19. Statistical Mechanics of Temporal and Interacting Networks

    Science.gov (United States)

    Zhao, Kun

    a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.

  20. Networked Identities

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Larsen, Malene Charlotte

    2008-01-01

    of CoPs we shall argue that the metaphor or theory of networked learning is itself confronted with some central tensions and challenges that need to be addressed. We then explore these theoretical and analytic challenges to the network metaphor, through an analysis of a Danish social networking site. We......In this article we take up a critique of the concept of Communities of Practice (CoP) voiced by several authors, who suggest that networks may provide a better metaphor to understand social forms of organisation and learning. Through a discussion of the notion of networked learning and the critique...... argue that understanding meaning-making and ‘networked identities’ may be relevant analytic entry points in navigating the challenges....

  1. CMS Is Finally Completed

    CERN Multimedia

    2008-01-01

    Yet another step in the completion of the Large Hadron Collider was taken yesterday morning, as the final element of the Compact Muon Solenoid was lowered nearly 100 meters bellow ground. After more than eight years of work at the world's most powerful particle accelerator, scientists hope that they will be able to start initial experiments with the LHC until the end of this year.

  2. Catarse e Final Feliz

    Directory of Open Access Journals (Sweden)

    Myriam Ávila

    2001-12-01

    Full Text Available Resumo: É a certeza de que nada mais – ou nada importante – pode acontecer após o final de um conto que permite o acontecimento da catarse. Se na maioria das narrativas existe algum tipo de dénouement, em algumas delas isso acontece de maneira especialmente satisfatória e afirmativa. O conto de fadas é uma dessas formas narrativas onde o efeito catártico é extremo e preenche objetivos específicos, de acordo com Bruno Bettelheim. Hollywood mimetizou essa forma como estratégia de sedução, iniciando a tradição do final feliz no cinema. A partir do conto de fadas Cinderela, em diferentes versões, juntamente com a animação homônima da Disney e ainda duas versões do filme Sabrina, será traçada aqui uma relação entre a catarse e o final feliz nos contos de fada, bem como seu uso pela indústria cultural. Palavras-chave: catarse, contos de fada, Hollywood

  3. Analyzing the reliability of shuffle-exchange networks using reliability block diagrams

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2014-01-01

    Supercomputers and multi-processor systems are comprised of thousands of processors that need to communicate in an efficient way. One reasonable solution would be the utilization of multistage interconnection networks (MINs), where the challenge is to analyze the reliability of such networks. One of the methods to increase the reliability and fault-tolerance of the MINs is use of various switching stages. Therefore, recently, the reliability of one of the most common MINs namely shuffle-exchange network (SEN) has been evaluated through the investigation on the impact of increasing the number of switching stage. Also, it is concluded that the reliability of SEN with one additional stage (SEN+) is better than SEN or SEN with two additional stages (SEN+2), even so, the reliability of SEN is better compared to SEN with two additional stages (SEN+2). Here we re-evaluate the reliability of these networks where the results of the terminal, broadcast, and network reliability analysis demonstrate that SEN+ and SEN+2 continuously outperform SEN and are very alike in terms of reliability. - Highlights: • The impact of increasing the number of stages on reliability of MINs is investigated. • The RBD method as an accurate method is used for the reliability analysis of MINs. • Complex series–parallel RBDs are used to determine the reliability of the MINs. • All measures of the reliability (i.e. terminal, broadcast, and network reliability) are analyzed. • All reliability equations will be calculated for different size N×N

  4. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  5. Visualizing Network Traffic to Understand the Performance of Massively Parallel Simulations

    KAUST Repository

    Landge, A. G.

    2012-12-01

    The performance of massively parallel applications is often heavily impacted by the cost of communication among compute nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D-s performance on an IBM Blue Gene/P system. © 1995-2012 IEEE.

  6. Network security

    CERN Document Server

    Perez, André

    2014-01-01

    This book introduces the security mechanisms deployed in Ethernet, Wireless-Fidelity (Wi-Fi), Internet Protocol (IP) and MultiProtocol Label Switching (MPLS) networks. These mechanisms are grouped throughout the book according to the following four functions: data protection, access control, network isolation, and data monitoring. Data protection is supplied by data confidentiality and integrity control services. Access control is provided by a third-party authentication service. Network isolation is supplied by the Virtual Private Network (VPN) service. Data monitoring consists of applying

  7. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimize the management of the Technical Network (TN), to ease the understanding and purpose of devices connected to the TN, and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive email notifications from IT/CS asking them to add the corresponding information in the network database. Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  8. Final report for Palestine knowledge-sharing network enhancing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Naser Qadous

    2013-08-27

    Aug 27, 2013 ... needs a Chief Knowledge Officer, a position designed for someone who can connect the loose ends between ... included, "the role of technology in knowledge sharing/management," "the resources of tacit ... Financial Report:.

  9. Distributed Energy Neural Network Integration System: Year One Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Regan, T.; Sinnock, H.; Davis, A.

    2003-06-01

    This report describes the work of Orion Engineering Corp. to develop a DER household controller module and demonstrate the ability of a group of these controllers to operate through an intelligent, neighborhood controller. The controllers will provide a smart, technologically advanced, simple, efficient, and economic solution for aggregating a community of small distributed generators into a larger single, virtual generator capable of selling power or other services to a utility, independent system operator (ISO), or other entity in a coordinated manner.

  10. Network-based collaborative research environment LDRD final report

    Energy Technology Data Exchange (ETDEWEB)

    Davies, B.R.; McDonald, M.J.

    1997-09-01

    The Virtual Collaborative Environment (VCE) and Distributed Collaborative Workbench (DCW) are new technologies that make it possible for diverse users to synthesize and share mechatronic, sensor, and information resources. Using these technologies, university researchers, manufacturers, design firms, and others can directly access and reconfigure systems located throughout the world. The architecture for implementing VCE and DCW has been developed based on the proposed National Information Infrastructure or Information Highway and a tool kit of Sandia-developed software. Further enhancements to the VCE and DCW technologies will facilitate access to other mechatronic resources. This report describes characteristics of VCE and DCW and also includes background information about the evolution of these technologies.

  11. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  12. United States National Seismographic Network

    International Nuclear Information System (INIS)

    Buland, R.

    1993-09-01

    The concept of a United States National Seismograph Network (USNSN) dates back nearly 30 years. The idea was revived several times over the decades. but never funded. For, example, a national network was proposed and discussed at great length in the so called Bolt Report (U. S. Earthquake Observatories: Recommendations for a New National Network, National Academy Press, Washington, D.C., 1980, 122 pp). From the beginning, a national network was viewed as augmenting and complementing the relatively dense, predominantly short-period vertical coverage of selected areas provided by the Regional Seismograph Networks (RSN's) with a sparse, well-distributed network of three-component, observatory quality, permanent stations. The opportunity finally to begin developing a national network arose in 1986 with discussions between the US Geological Survey (USGS) and the Nuclear Regulatory Commission (NRC). Under the agreement signed in 1987, the NRC has provided $5 M in new funding for capital equipment (over the period 1987-1992) and the USGS has provided personnel and facilities to develop. deploy, and operate the network. Because the NRC funding was earmarked for the eastern United States, new USNSN station deployments are mostly east of 105 degree W longitude while the network in the western United States is mostly made up of cooperating stations (stations meeting USNSN design goals, but deployed and operated by other institutions which provide a logical extension to the USNSN)

  13. Value network dynamics and industry evolution

    NARCIS (Netherlands)

    Vermeulen, B.

    2012-01-01

    Machines, appliances, and consumption goods are developed and produced in value networks populated by firms ranging from final assemblers, component suppliers, complement providers, the suppliers’ suppliers, all the way upstream to firms that extrude raw material. Evolutionary models of industry

  14. Sunrise deploys mobile network for CERN

    CERN Multimedia

    2004-01-01

    Sunrise, the alternative telecoms provider in Switzerland, is finalizing the installation of a mobile network comprising about forty sites located around the new particle accelerator at CERN (1 paragraph)

  15. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  16. Multistability in bidirectional associative memory neural networks

    International Nuclear Information System (INIS)

    Huang Gan; Cao Jinde

    2008-01-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results

  17. Multistability in bidirectional associative memory neural networks

    Science.gov (United States)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  18. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  19. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  20. Probabilistic Networks

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Lauritzen, Steffen Lilholt

    2001-01-01

    This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs.......This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs....

  1. Bipartite Networks

    NARCIS (Netherlands)

    Agneessens, F.; Moser, C.; Barnett, G.A.

    2011-01-01

    Bipartite networks refer to a specific kind of network in which the nodes (or actors) can be partitioned into two subsets based on the fact that no links exist between actors within each subset, but only between the two subsets. Due to the partition of actors in two sets and the absence of relations

  2. AstroNet-II International Final Conference

    CERN Document Server

    Masdemont, Josep

    2016-01-01

    These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

  3. DANAERO MW: Final Report

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Aagaard Madsen, Helge

    This report describes the results of the EUDP funded DANAERO MW II project carried out by DTU Wind Energy (formerly Risø DTU) and the industrial partners, LM Wind Power, Vestas Wind Systems A/S and Siemens Wind Power. An overview of the data available from the project as well as the results from...... analysis of the data is given with the main objective to explore in detail the influence of atmospheric and wake turbulence on MW turbine performance, loading and stability. Finally, validation and demonstration of simulation codes are carried out....

  4. Temporal networks

    Science.gov (United States)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  5. Jamming in complex networks with degree correlation

    International Nuclear Information System (INIS)

    Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.

    2010-01-01

    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.

  6. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  7. Network Affordances

    DEFF Research Database (Denmark)

    Samson, Audrey; Soon, Winnie

    2015-01-01

    This paper examines the notion of network affordance within the context of network art. Building on Gibson's theory (Gibson, 1979) we understand affordance as the perceived and actual parameters of a thing. We expand on Gaver's affordance of predictability (Gaver, 1996) to include ecological...... and computational parameters of unpredictability. We illustrate the notion of unpredictability by considering four specific works that were included in a network art exhibiton, SPEED SHOW [2.0] Hong Kong. The paper discusses how the artworks are contingent upon the parameteric relations (Parisi, 2013......), of the network. We introduce network affordance as a dynamic framework that could articulate the experienced tension arising from the (visible) symbolic representation of computational processes and its hidden occurrences. We base our proposal on the experience of both organising the SPEED SHOW and participating...

  8. Network chemistry, network toxicology, network informatics, and network behavioristics: A scientific outline

    OpenAIRE

    WenJun Zhang

    2016-01-01

    In present study, I proposed some new sciences: network chemistry, network toxicology, network informatics, and network behavioristics. The aims, scope and scientific foundation of these sciences are outlined.

  9. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  10. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  11. NGDS Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, Harold; Moore, Joseph

    2014-06-30

    The ultimate goal of the National Geothermal Data System (NGDS) is to support the discovery and generation of geothermal sources of energy. The NGDS was designed and has been implemented to provide online access to important geothermal-related data from a network of data providers in order to: • Increase the efficiency of exploration, development and usage of geothermal energy by providing a basis for financial risk analysis of potential sites • Assist state and federal agencies in making land and resource management assessments • Foster the discovery of new geothermal resources by supporting ongoing and future geothermal-related research • Increase public awareness of geothermal energy It is through the implementation of this distributed data system and its subsequent use that substantial increases to the general access and understanding of geothermal related data will result. NGDS provides a mechanism for the sharing of data thereby fostering the discovery of new resources and supporting ongoing geothermal research.

  12. Nested Narratives Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Andrew T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pattengale, Nicholas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Forsythe, James C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carvey, Bradley John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    In cybersecurity forensics and incident response, the story of what has happened is the most important artifact yet the one least supported by tools and techniques. Existing tools focus on gathering and manipulating low-level data to allow an analyst to investigate exactly what happened on a host system or a network. Higher-level analysis is usually left to whatever ad hoc tools and techniques an individual may have developed. We discuss visual representations of narrative in the context of cybersecurity incidents with an eye toward multi-scale illustration of actions and actors. We envision that this representation could smoothly encompass individual packets on a wire at the lowest level and nation-state-level actors at the highest. We present progress to date, discuss the impact of technical risk on this project and highlight opportunities for future work.

  13. Secure ICCP Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Mark J.; Bonebrake, Christopher A.; Dayley, Greg K.; Becker, Larry J.

    2017-06-30

    Inter-Control Center Communications Protocol (ICCP), defined by the IEC 60870-6 TASE.2 standard, was developed to enable data exchange over wide area networks between electric system entities, including utility control centers, Independent System Operators (ISOs), Regional Transmission Operators (RTOs) and Independent Power Producers (IPP) also known as Non-Utility Generators (NUG). ICCP is an unprotected protocol, and as a result is vulnerable to such actions as integrity violation, interception or alteration, spoofing, and eavesdropping. Because of these vulnerabilities with unprotected ICCP communication, security enhancements, referred to as Secure ICCP, have been added and are included in the ICCP products that utilities have received since 2003 when the standard was defined. This has resulted in an ICCP product whose communication can be encrypted and authenticated to address these vulnerabilities.

  14. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  15. Cosmology Without Finality

    Science.gov (United States)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  16. ATAC Process Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston; Sarah Freeman

    2014-03-01

    Researchers at INL with funding from the Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materials for use by industry.

  17. Neural Network to Solve Concave Games

    OpenAIRE

    Liu, Zixin; Wang, Nengfa

    2014-01-01

    The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.

  18. Wireless communications networks for the smart grid

    CERN Document Server

    Ho, Quang-Dung; Rajalingham, Gowdemy; Le-Ngoc, Tho

    2014-01-01

    This brief presents a comprehensive review of the network architecture and communication technologies of the smart grid communication network (SGCN). It then studies the strengths, weaknesses and applications of two promising wireless mesh routing protocols that could be used to implement the SGCN. Packet transmission reliability, latency and robustness of these two protocols are evaluated and compared by simulations in various practical SGCN scenarios. Finally, technical challenges and open research opportunities of the SGCN are addressed. Wireless Communications Networks for Smart Grid provi

  19. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  20. Functional and nonfunctional testing of ATM networks

    Science.gov (United States)

    Ricardo, Manuel; Ferreira, M. E. P.; Guimaraes, Francisco E.; Mamede, J.; Henriques, M.; da Silva, Jorge A.; Carrapatoso, E.

    1995-02-01

    ATM network will support new multimedia services that will require new protocols, those services and protocols will need different test strategies and tools. In this paper, the concepts of functional and non-functional testers of ATM networks are discussed, a multimedia service and its requirements are presented and finally, a summary description of an ATM network and of the test tool that will be used to validate it are presented.