WorldWideScience

Sample records for supercomputer network final

  1. Automatic discovery of the communication network topology for building a supercomputer model

    Science.gov (United States)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  2. A visual analytics system for optimizing the performance of large-scale networks in supercomputing systems

    Directory of Open Access Journals (Sweden)

    Takanori Fujiwara

    2018-03-01

    Full Text Available The overall efficiency of an extreme-scale supercomputer largely relies on the performance of its network interconnects. Several of the state of the art supercomputers use networks based on the increasingly popular Dragonfly topology. It is crucial to study the behavior and performance of different parallel applications running on Dragonfly networks in order to make optimal system configurations and design choices, such as job scheduling and routing strategies. However, in order to study these temporal network behavior, we would need a tool to analyze and correlate numerous sets of multivariate time-series data collected from the Dragonfly’s multi-level hierarchies. This paper presents such a tool–a visual analytics system–that uses the Dragonfly network to investigate the temporal behavior and optimize the communication performance of a supercomputer. We coupled interactive visualization with time-series analysis methods to help reveal hidden patterns in the network behavior with respect to different parallel applications and system configurations. Our system also provides multiple coordinated views for connecting behaviors observed at different levels of the network hierarchies, which effectively helps visual analysis tasks. We demonstrate the effectiveness of the system with a set of case studies. Our system and findings can not only help improve the communication performance of supercomputing applications, but also the network performance of next-generation supercomputers. Keywords: Supercomputing, Parallel communication network, Dragonfly networks, Time-series data, Performance analysis, Visual analytics

  3. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  4. Lectures in Supercomputational Neurosciences Dynamics in Complex Brain Networks

    CERN Document Server

    Graben, Peter beim; Thiel, Marco; Kurths, Jürgen

    2008-01-01

    Computational Neuroscience is a burgeoning field of research where only the combined effort of neuroscientists, biologists, psychologists, physicists, mathematicians, computer scientists, engineers and other specialists, e.g. from linguistics and medicine, seem to be able to expand the limits of our knowledge. The present volume is an introduction, largely from the physicists' perspective, to the subject matter with in-depth contributions by system neuroscientists. A conceptual model for complex networks of neurons is introduced that incorporates many important features of the real brain, such as various types of neurons, various brain areas, inhibitory and excitatory coupling and the plasticity of the network. The computational implementation on supercomputers, which is introduced and discussed in detail in this book, will enable the readers to modify and adapt the algortihm for their own research. Worked-out examples of applications are presented for networks of Morris-Lecar neurons to model the cortical co...

  5. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia

    2003-01-01

    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  6. Direct exploitation of a top 500 Supercomputer for Analysis of CMS Data

    International Nuclear Information System (INIS)

    Cabrillo, I; Cabellos, L; Marco, J; Fernandez, J; Gonzalez, I

    2014-01-01

    The Altamira Supercomputer hosted at the Instituto de Fisica de Cantatbria (IFCA) entered in operation in summer 2012. Its last generation FDR Infiniband network used (for message passing) in parallel jobs, supports the connection to General Parallel File System (GPFS) servers, enabling an efficient simultaneous processing of multiple data demanding jobs. Sharing a common GPFS system and a single LDAP-based identification with the existing Grid clusters at IFCA allows CMS researchers to exploit the large instantaneous capacity of this supercomputer to execute analysis jobs. The detailed experience describing this opportunistic use for skimming and final analysis of CMS 2012 data for a specific physics channel, resulting in an order of magnitude reduction of the waiting time, is presented.

  7. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  8. The ETA10 supercomputer system

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, Inc. ETA 10 is a next-generation supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamics MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed. (orig.)

  9. What is supercomputing ?

    International Nuclear Information System (INIS)

    Asai, Kiyoshi

    1992-01-01

    Supercomputing means the high speed computation using a supercomputer. Supercomputers and the technical term ''supercomputing'' have spread since ten years ago. The performances of the main computers installed so far in Japan Atomic Energy Research Institute are compared. There are two methods to increase computing speed by using existing circuit elements, parallel processor system and vector processor system. CRAY-1 is the first successful vector computer. Supercomputing technology was first applied to meteorological organizations in foreign countries, and to aviation and atomic energy research institutes in Japan. The supercomputing for atomic energy depends on the trend of technical development in atomic energy, and the contents are divided into the increase of computing speed in existing simulation calculation and the acceleration of the new technical development of atomic energy. The examples of supercomputing in Japan Atomic Energy Research Institute are reported. (K.I.)

  10. A training program for scientific supercomputing users

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  11. The ETA systems plans for supercomputers

    International Nuclear Information System (INIS)

    Swanson, C.D.

    1987-01-01

    The ETA Systems, is a class VII supercomputer featuring multiprocessing, a large hierarchical memory system, high performance input/output, and network support for both batch and interactive processing. Advanced technology used in the ETA 10 includes liquid nitrogen cooled CMOS logic with 20,000 gates per chip, a single printed circuit board for each CPU, and high density static and dynamic MOS memory chips. Software for the ETA 10 includes an underlying kernel that supports multiple user environments, a new ETA FORTRAN compiler with an advanced automatic vectorizer, a multitasking library and debugging tools. Possible developments for future supercomputers from ETA Systems are discussed

  12. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  13. Proceedings of the first energy research power supercomputer users symposium

    International Nuclear Information System (INIS)

    1991-01-01

    The Energy Research Power Supercomputer Users Symposium was arranged to showcase the richness of science that has been pursued and accomplished in this program through the use of supercomputers and now high performance parallel computers over the last year: this report is the collection of the presentations given at the Symposium. ''Power users'' were invited by the ER Supercomputer Access Committee to show that the use of these computational tools and the associated data communications network, ESNet, go beyond merely speeding up computations. Today the work often directly contributes to the advancement of the conceptual developments in their fields and the computational and network resources form the very infrastructure of today's science. The Symposium also provided an opportunity, which is rare in this day of network access to computing resources, for the invited users to compare and discuss their techniques and approaches with those used in other ER disciplines. The significance of new parallel architectures was highlighted by the interesting evening talk given by Dr. Stephen Orszag of Princeton University

  14. Visualization environment of the large-scale data of JAEA's supercomputer system

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kensaku [Japan Atomic Energy Agency, Center for Computational Science and e-Systems, Tokai, Ibaraki (Japan); Hoshi, Yoshiyuki [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2013-11-15

    On research and development of various fields of nuclear energy, visualization of calculated data is especially useful to understand the result of simulation in an intuitive way. Many researchers who run simulations on the supercomputer in Japan Atomic Energy Agency (JAEA) are used to transfer calculated data files from the supercomputer to their local PCs for visualization. In recent years, as the size of calculated data has gotten larger with improvement of supercomputer performance, reduction of visualization processing time as well as efficient use of JAEA network is being required. As a solution, we introduced a remote visualization system which has abilities to utilize parallel processors on the supercomputer and to reduce the usage of network resources by transferring data of intermediate visualization process. This paper reports a study on the performance of image processing with the remote visualization system. The visualization processing time is measured and the influence of network speed is evaluated by varying the drawing mode, the size of visualization data and the number of processors. Based on this study, a guideline for using the remote visualization system is provided to show how the system can be used effectively. An upgrade policy of the next system is also shown. (author)

  15. Ultrascalable petaflop parallel supercomputer

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  16. Applications of supercomputing and the utility industry: Calculation of power transfer capabilities

    International Nuclear Information System (INIS)

    Jensen, D.D.; Behling, S.R.; Betancourt, R.

    1990-01-01

    Numerical models and iterative simulation using supercomputers can furnish cost-effective answers to utility industry problems that are all but intractable using conventional computing equipment. An example of the use of supercomputers by the utility industry is the determination of power transfer capability limits for power transmission systems. This work has the goal of markedly reducing the run time of transient stability codes used to determine power distributions following major system disturbances. To date, run times of several hours on a conventional computer have been reduced to several minutes on state-of-the-art supercomputers, with further improvements anticipated to reduce run times to less than a minute. In spite of the potential advantages of supercomputers, few utilities have sufficient need for a dedicated in-house supercomputing capability. This problem is resolved using a supercomputer center serving a geographically distributed user base coupled via high speed communication networks

  17. Supercomputational science

    CERN Document Server

    Wilson, S

    1990-01-01

    In contemporary research, the supercomputer now ranks, along with radio telescopes, particle accelerators and the other apparatus of "big science", as an expensive resource, which is nevertheless essential for state of the art research. Supercomputers are usually provided as shar.ed central facilities. However, unlike, telescopes and accelerators, they are find a wide range of applications which extends across a broad spectrum of research activity. The difference in performance between a "good" and a "bad" computer program on a traditional serial computer may be a factor of two or three, but on a contemporary supercomputer it can easily be a factor of one hundred or even more! Furthermore, this factor is likely to increase with future generations of machines. In keeping with the large capital and recurrent costs of these machines, it is appropriate to devote effort to training and familiarization so that supercomputers are employed to best effect. This volume records the lectures delivered at a Summer School ...

  18. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee

    2011-11-15

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  19. KAUST Supercomputing Laboratory

    KAUST Repository

    Bailey, April Renee; Kaushik, Dinesh; Winfer, Andrew

    2011-01-01

    KAUST has partnered with IBM to establish a Supercomputing Research Center. KAUST is hosting the Shaheen supercomputer, named after the Arabian falcon famed for its swiftness of flight. This 16-rack IBM Blue Gene/P system is equipped with 4 gigabyte memory per node and capable of 222 teraflops, making KAUST campus the site of one of the world’s fastest supercomputers in an academic environment. KAUST is targeting petaflop capability within 3 years.

  20. Earth and environmental science in the 1980's: Part 1: Environmental data systems, supercomputer facilities and networks

    Science.gov (United States)

    1986-01-01

    Overview descriptions of on-line environmental data systems, supercomputer facilities, and networks are presented. Each description addresses the concepts of content, capability, and user access relevant to the point of view of potential utilization by the Earth and environmental science community. The information on similar systems or facilities is presented in parallel fashion to encourage and facilitate intercomparison. In addition, summary sheets are given for each description, and a summary table precedes each section.

  1. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen-Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2018-05-15

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.

  2. Enabling department-scale supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, D.S.; Hart, W.E.; Phillips, C.A.

    1997-11-01

    The Department of Energy (DOE) national laboratories have one of the longest and most consistent histories of supercomputer use. The authors summarize the architecture of DOE`s new supercomputers that are being built for the Accelerated Strategic Computing Initiative (ASCI). The authors then argue that in the near future scaled-down versions of these supercomputers with petaflop-per-weekend capabilities could become widely available to hundreds of research and engineering departments. The availability of such computational resources will allow simulation of physical phenomena to become a full-fledged third branch of scientific exploration, along with theory and experimentation. They describe the ASCI and other supercomputer applications at Sandia National Laboratories, and discuss which lessons learned from Sandia`s long history of supercomputing can be applied in this new setting.

  3. A workbench for tera-flop supercomputing

    International Nuclear Information System (INIS)

    Resch, M.M.; Kuester, U.; Mueller, M.S.; Lang, U.

    2003-01-01

    Supercomputers currently reach a peak performance in the range of TFlop/s. With but one exception - the Japanese Earth Simulator - none of these systems has so far been able to also show a level of sustained performance for a variety of applications that comes close to the peak performance. Sustained TFlop/s are therefore rarely seen. The reasons are manifold and are well known: Bandwidth and latency both for main memory and for the internal network are the key internal technical problems. Cache hierarchies with large caches can bring relief but are no remedy to the problem. However, there are not only technical problems that inhibit the full exploitation by scientists of the potential of modern supercomputers. More and more organizational issues come to the forefront. This paper shows the approach of the High Performance Computing Center Stuttgart (HLRS) to deliver a sustained performance of TFlop/s for a wide range of applications from a large group of users spread over Germany. The core of the concept is the role of the data. Around this we design a simulation workbench that hides the complexity of interacting computers, networks and file systems from the user. (authors)

  4. Tryton Supercomputer Capabilities for Analysis of Massive Data Streams

    Directory of Open Access Journals (Sweden)

    Krawczyk Henryk

    2015-09-01

    Full Text Available The recently deployed supercomputer Tryton, located in the Academic Computer Center of Gdansk University of Technology, provides great means for massive parallel processing. Moreover, the status of the Center as one of the main network nodes in the PIONIER network enables the fast and reliable transfer of data produced by miscellaneous devices scattered in the area of the whole country. The typical examples of such data are streams containing radio-telescope and satellite observations. Their analysis, especially with real-time constraints, can be challenging and requires the usage of dedicated software components. We propose a solution for such parallel analysis using the supercomputer, supervised by the KASKADA platform, which with the conjunction with immerse 3D visualization techniques can be used to solve problems such as pulsar detection and chronometric or oil-spill simulation on the sea surface.

  5. A Parallel Supercomputer Implementation of a Biological Inspired Neural Network and its use for Pattern Recognition

    International Nuclear Information System (INIS)

    De Ladurantaye, Vincent; Lavoie, Jean; Bergeron, Jocelyn; Parenteau, Maxime; Lu Huizhong; Pichevar, Ramin; Rouat, Jean

    2012-01-01

    A parallel implementation of a large spiking neural network is proposed and evaluated. The neural network implements the binding by synchrony process using the Oscillatory Dynamic Link Matcher (ODLM). Scalability, speed and performance are compared for 2 implementations: Message Passing Interface (MPI) and Compute Unified Device Architecture (CUDA) running on clusters of multicore supercomputers and NVIDIA graphical processing units respectively. A global spiking list that represents at each instant the state of the neural network is described. This list indexes each neuron that fires during the current simulation time so that the influence of their spikes are simultaneously processed on all computing units. Our implementation shows a good scalability for very large networks. A complex and large spiking neural network has been implemented in parallel with success, thus paving the road towards real-life applications based on networks of spiking neurons. MPI offers a better scalability than CUDA, while the CUDA implementation on a GeForce GTX 285 gives the best cost to performance ratio. When running the neural network on the GTX 285, the processing speed is comparable to the MPI implementation on RQCHP's Mammouth parallel with 64 notes (128 cores).

  6. Computational Dimensionalities of Global Supercomputing

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2013-12-01

    Full Text Available This Invited Paper pertains to subject of my Plenary Keynote Speech at the 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2013 held in Orlando, Florida on July 9-12, 2013. The title of my Plenary Keynote Speech was: "Dimensionalities of Computation: from Global Supercomputing to Data, Text and Web Mining" but this Invited Paper will focus only on the "Computational Dimensionalities of Global Supercomputing" and is based upon a summary of the contents of several individual articles that have been previously written with myself as lead author and published in [75], [76], [77], [78], [79], [80] and [11]. The topics of these of the Plenary Speech included Overview of Current Research in Global Supercomputing [75], Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing [76], Data Mining Supercomputing with SAS™ JMP® Genomics ([77], [79], [80], and Visualization by Supercomputing Data Mining [81]. ______________________ [11.] Committee on the Future of Supercomputing, National Research Council (2003, The Future of Supercomputing: An Interim Report, ISBN-13: 978-0-309-09016- 2, http://www.nap.edu/catalog/10784.html [75.] Segall, Richard S.; Zhang, Qingyu and Cook, Jeffrey S.(2013, "Overview of Current Research in Global Supercomputing", Proceedings of Forty- Fourth Meeting of Southwest Decision Sciences Institute (SWDSI, Albuquerque, NM, March 12-16, 2013. [76.] Segall, Richard S. and Zhang, Qingyu (2010, "Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing", Proceedings of 5th INFORMS Workshop on Data Mining and Health Informatics, Austin, TX, November 6, 2010. [77.] Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010, "Data Mining Supercomputing with SAS™ JMP®; Genomics: Research-in-Progress, Proceedings of 2010 Conference on Applied Research in Information Technology, sponsored by

  7. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  8. Japanese supercomputer technology

    International Nuclear Information System (INIS)

    Buzbee, B.L.; Ewald, R.H.; Worlton, W.J.

    1982-01-01

    In February 1982, computer scientists from the Los Alamos National Laboratory and Lawrence Livermore National Laboratory visited several Japanese computer manufacturers. The purpose of these visits was to assess the state of the art of Japanese supercomputer technology and to advise Japanese computer vendors of the needs of the US Department of Energy (DOE) for more powerful supercomputers. The Japanese foresee a domestic need for large-scale computing capabilities for nuclear fusion, image analysis for the Earth Resources Satellite, meteorological forecast, electrical power system analysis (power flow, stability, optimization), structural and thermal analysis of satellites, and very large scale integrated circuit design and simulation. To meet this need, Japan has launched an ambitious program to advance supercomputer technology. This program is described

  9. An assessment of worldwide supercomputer usage

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

    1995-01-01

    This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

  10. Status of supercomputers in the US

    International Nuclear Information System (INIS)

    Fernbach, S.

    1985-01-01

    Current Supercomputers; that is, the Class VI machines which first became available in 1976 are being delivered in greater quantity than ever before. In addition, manufacturers are busily working on Class VII machines to be ready for delivery in CY 1987. Mainframes are being modified or designed to take on some features of the supercomputers and new companies with the intent of either competing directly in the supercomputer arena or in providing entry-level systems from which to graduate to supercomputers are springing up everywhere. Even well founded organizations like IBM and CDC are adding machines with vector instructions in their repertoires. Japanese - manufactured supercomputers are also being introduced into the U.S. Will these begin to compete with those of U.S. manufacture. Are they truly competitive. It turns out that both from the hardware and software points of view they may be superior. We may be facing the same problems in supercomputers that we faced in videosystems

  11. The ASCI Network for SC '99: A Step on the Path to a 100 Gigabit Per Second Supercomputing Network

    Energy Technology Data Exchange (ETDEWEB)

    PRATT,THOMAS J.; TARMAN,THOMAS D.; MARTINEZ,LUIS M.; MILLER,MARC M.; ADAMS,ROGER L.; CHEN,HELEN Y.; BRANDT,JAMES M.; WYCKOFF,PETER S.

    2000-07-24

    This document highlights the Discom{sup 2}'s Distance computing and communication team activities at the 1999 Supercomputing conference in Portland, Oregon. This conference is sponsored by the IEEE and ACM. Sandia, Lawrence Livermore and Los Alamos National laboratories have participated in this conference for eleven years. For the last four years the three laboratories have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives rubric. Communication support for the ASCI exhibit is provided by the ASCI DISCOM{sup 2} project. The DISCOM{sup 2} communication team uses this forum to demonstrate and focus communication and networking developments within the community. At SC 99, DISCOM built a prototype of the next generation ASCI network demonstrated remote clustering techniques, demonstrated the capabilities of the emerging Terabit Routers products, demonstrated the latest technologies for delivering visualization data to the scientific users, and demonstrated the latest in encryption methods including IP VPN technologies and ATM encryption research. The authors also coordinated the other production networking activities within the booth and between their demonstration partners on the exhibit floor. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia's overall strategies in ASCI networking.

  12. Multi-petascale highly efficient parallel supercomputer

    Science.gov (United States)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O'Brien, John K.; O'Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  13. Supercomputing and related national projects in Japan

    International Nuclear Information System (INIS)

    Miura, Kenichi

    1985-01-01

    Japanese supercomputer development activities in the industry and research projects are outlined. Architecture, technology, software, and applications of Fujitsu's Vector Processor Systems are described as an example of Japanese supercomputers. Applications of supercomputers to high energy physics are also discussed. (orig.)

  14. An evaluation of current high-performance networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Cote, Yannick; Duell, Jason; Hargrove, Paul; Husbands, Parry; Iancu, Costin; Welcome, Michael; Yelick, Katherine

    2003-01-25

    High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.

  15. Evaluating the networking characteristics of the Cray XC-40 Intel Knights Landing-based Cori supercomputer at NERSC

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Douglas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Austin, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cook, Brandon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kandalla, Krishna [Cray Inc, Bloomington, MN (United States); Mendygral, Peter [Cray Inc, Bloomington, MN (United States)

    2017-09-12

    There are many potential issues associated with deploying the Intel Xeon Phi™ (code named Knights Landing [KNL]) manycore processor in a large-scale supercomputer. One in particular is the ability to fully utilize the high-speed communications network, given that the serial performance of a Xeon Phi TM core is a fraction of a Xeon®core. In this paper, we take a look at the trade-offs associated with allocating enough cores to fully utilize the Aries high-speed network versus cores dedicated to computation, e.g., the trade-off between MPI and OpenMP. In addition, we evaluate new features of Cray MPI in support of KNL, such as internode optimizations. We also evaluate one-sided programming models such as Unified Parallel C. We quantify the impact of the above trade-offs and features using a suite of National Energy Research Scientific Computing Center applications.

  16. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    Energy Technology Data Exchange (ETDEWEB)

    Younge, Andrew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pedretti, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brightwell, Ron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.

  17. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  18. A supercomputing application for reactors core design and optimization

    International Nuclear Information System (INIS)

    Hourcade, Edouard; Gaudier, Fabrice; Arnaud, Gilles; Funtowiez, David; Ammar, Karim

    2010-01-01

    Advanced nuclear reactor designs are often intuition-driven processes where designers first develop or use simplified simulation tools for each physical phenomenon involved. Through the project development, complexity in each discipline increases and implementation of chaining/coupling capabilities adapted to supercomputing optimization process are often postponed to a further step so that task gets increasingly challenging. In the context of renewal in reactor designs, project of first realization are often run in parallel with advanced design although very dependant on final options. As a consequence, the development of tools to globally assess/optimize reactor core features, with the on-going design methods accuracy, is needed. This should be possible within reasonable simulation time and without advanced computer skills needed at project management scale. Also, these tools should be ready to easily cope with modeling progresses in each discipline through project life-time. An early stage development of multi-physics package adapted to supercomputing is presented. The URANIE platform, developed at CEA and based on the Data Analysis Framework ROOT, is very well adapted to this approach. It allows diversified sampling techniques (SRS, LHS, qMC), fitting tools (neuronal networks...) and optimization techniques (genetic algorithm). Also data-base management and visualization are made very easy. In this paper, we'll present the various implementing steps of this core physics tool where neutronics, thermo-hydraulics, and fuel mechanics codes are run simultaneously. A relevant example of optimization of nuclear reactor safety characteristics will be presented. Also, flexibility of URANIE tool will be illustrated with the presentation of several approaches to improve Pareto front quality. (author)

  19. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  20. TOP500 Supercomputers for June 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-06-23

    23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.

  1. TOP500 Supercomputers for June 2005

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2005-06-22

    25th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/L LNL BlueGene/L and IBM gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 25th edition of the TOP500 list of the world's fastest supercomputers was released today (June 22, 2005) at the 20th International Supercomputing Conference (ISC2005) in Heidelberg Germany.

  2. Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

    Science.gov (United States)

    Saini, Subhash; Ciotti, Robert; Gunney, Brian T. N.; Spelce, Thomas E.; Koniges, Alice; Dossa, Don; Adamidis, Panagiotis; Rabenseifner, Rolf; Tiyyagura, Sunil R.; Mueller, Matthias; hide

    2006-01-01

    The HPC Challenge (HPCC) benchmark suite and the Intel MPI Benchmark (IMB) are used to compare and evaluate the combined performance of processor, memory subsystem and interconnect fabric of five leading supercomputers - SGI Altix BX2, Cray XI, Cray Opteron Cluster, Dell Xeon cluster, and NEC SX-8. These five systems use five different networks (SGI NUMALINK4, Cray network, Myrinet, InfiniBand, and NEC IXS). The complete set of HPCC benchmarks are run on each of these systems. Additionally, we present Intel MPI Benchmarks (IMB) results to study the performance of 11 MPI communication functions on these systems.

  3. TOP500 Supercomputers for November 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-11-16

    22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.

  4. An efficient implementation of a backpropagation learning algorithm on quadrics parallel supercomputer

    International Nuclear Information System (INIS)

    Taraglio, S.; Massaioli, F.

    1995-08-01

    A parallel implementation of a library to build and train Multi Layer Perceptrons via the Back Propagation algorithm is presented. The target machine is the SIMD massively parallel supercomputer Quadrics. Performance measures are provided on three different machines with different number of processors, for two network examples. A sample source code is given

  5. INTEL: Intel based systems move up in supercomputing ranks

    CERN Multimedia

    2002-01-01

    "The TOP500 supercomputer rankings released today at the Supercomputing 2002 conference show a dramatic increase in the number of Intel-based systems being deployed in high-performance computing (HPC) or supercomputing areas" (1/2 page).

  6. World's fastest supercomputer opens up to users

    Science.gov (United States)

    Xin, Ling

    2016-08-01

    China's latest supercomputer - Sunway TaihuLight - has claimed the crown as the world's fastest computer according to the latest TOP500 list, released at the International Supercomputer Conference in Frankfurt in late June.

  7. OpenMP Performance on the Columbia Supercomputer

    Science.gov (United States)

    Haoqiang, Jin; Hood, Robert

    2005-01-01

    This presentation discusses Columbia World Class Supercomputer which is one of the world's fastest supercomputers providing 61 TFLOPs (10/20/04). Conceived, designed, built, and deployed in just 120 days. A 20-node supercomputer built on proven 512-processor nodes. The largest SGI system in the world with over 10,000 Intel Itanium 2 processors and provides the largest node size incorporating commodity parts (512) and the largest shared-memory environment (2048) with 88% efficiency tops the scalar systems on the Top500 list.

  8. Supercomputing - Use Cases, Advances, The Future (1/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the first day, we will focus on the history and theory of supercomputing, the top500 list and the hardware that makes supercomputers tick. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and initiated projects with the private sector (e.g. HP an...

  9. Supercomputing - Use Cases, Advances, The Future (2/2)

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Supercomputing has become a staple of science and the poster child for aggressive developments in silicon technology, energy efficiency and programming. In this series we examine the key components of supercomputing setups and the various advances – recent and past – that made headlines and delivered bigger and bigger machines. We also take a closer look at the future prospects of supercomputing, and the extent of its overlap with high throughput computing, in the context of main use cases ranging from oil exploration to market simulation. On the second day, we will focus on software and software paradigms driving supercomputers, workloads that need supercomputing treatment, advances in technology and possible future developments. Lecturer's short bio: Andrzej Nowak has 10 years of experience in computing technologies, primarily from CERN openlab and Intel. At CERN, he managed a research lab collaborating with Intel and was part of the openlab Chief Technology Office. Andrzej also worked closely and i...

  10. The TeraGyroid Experiment – Supercomputing 2003

    Directory of Open Access Journals (Sweden)

    R.J. Blake

    2005-01-01

    Full Text Available Amphiphiles are molecules with hydrophobic tails and hydrophilic heads. When dispersed in solvents, they self assemble into complex mesophases including the beautiful cubic gyroid phase. The goal of the TeraGyroid experiment was to study defect pathways and dynamics in these gyroids. The UK's supercomputing and USA's TeraGrid facilities were coupled together, through a dedicated high-speed network, into a single computational Grid for research work that peaked around the Supercomputing 2003 conference. The gyroids were modeled using lattice Boltzmann methods with parameter spaces explored using many 1283 and 3grid point simulations, this data being used to inform the world's largest three-dimensional time dependent simulation with 10243-grid points. The experiment generated some 2 TBytes of useful data. In terms of Grid technology the project demonstrated the migration of simulations (using Globus middleware to and fro across the Atlantic exploiting the availability of resources. Integration of the systems accelerated the time to insight. Distributed visualisation of the output datasets enabled the parameter space of the interactions within the complex fluid to be explored from a number of sites, informed by discourse over the Access Grid. The project was sponsored by EPSRC (UK and NSF (USA with trans-Atlantic optical bandwidth provided by British Telecommunications.

  11. Advanced parallel processing with supercomputer architectures

    International Nuclear Information System (INIS)

    Hwang, K.

    1987-01-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers

  12. Desktop supercomputer: what can it do?

    Science.gov (United States)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  13. Adaptability of supercomputers to nuclear computations

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Ishiguro, Misako; Matsuura, Toshihiko.

    1983-01-01

    Recently in the field of scientific and technical calculation, the usefulness of supercomputers represented by CRAY-1 has been recognized, and they are utilized in various countries. The rapid computation of supercomputers is based on the function of vector computation. The authors investigated the adaptability to vector computation of about 40 typical atomic energy codes for the past six years. Based on the results of investigation, the adaptability of the function of vector computation that supercomputers have to atomic energy codes, the problem regarding the utilization and the future prospect are explained. The adaptability of individual calculation codes to vector computation is largely dependent on the algorithm and program structure used for the codes. The change to high speed by pipeline vector system, the investigation in the Japan Atomic Energy Research Institute and the results, and the examples of expressing the codes for atomic energy, environmental safety and nuclear fusion by vector are reported. The magnification of speed up for 40 examples was from 1.5 to 9.0. It can be said that the adaptability of supercomputers to atomic energy codes is fairly good. (Kako, I.)

  14. Desktop supercomputer: what can it do?

    International Nuclear Information System (INIS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-01-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  15. TOP500 Supercomputers for November 2004

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2004-11-08

    24th Edition of TOP500 List of World's Fastest Supercomputers Released: DOE/IBM BlueGene/L and NASA/SGI's Columbia gain Top Positions MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 24th edition of the TOP500 list of the worlds fastest supercomputers was released today (November 8, 2004) at the SC2004 Conference in Pittsburgh, Pa.

  16. TOP500 Supercomputers for June 2003

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2003-06-23

    21st Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 21st edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2003). The Earth Simulator supercomputer built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan, with its Linpack benchmark performance of 35.86 Tflop/s (teraflops or trillions of calculations per second), retains the number one position. The number 2 position is held by the re-measured ASCI Q system at Los Alamos National Laboratory. With 13.88 Tflop/s, it is the second system ever to exceed the 10 Tflop/smark. ASCIQ was built by Hewlett-Packard and is based on the AlphaServerSC computer system.

  17. TOP500 Supercomputers for June 2002

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

    2002-06-20

    19th Edition of TOP500 List of World's Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 19th edition of the TOP500 list of the worlds fastest supercomputers was released today (June 20, 2002). The recently installed Earth Simulator supercomputer at the Earth Simulator Center in Yokohama, Japan, is as expected the clear new number 1. Its performance of 35.86 Tflop/s (trillions of calculations per second) running the Linpack benchmark is almost five times higher than the performance of the now No.2 IBM ASCI White system at Lawrence Livermore National Laboratory (7.2 Tflop/s). This powerful leap frogging to the top by a system so much faster than the previous top system is unparalleled in the history of the TOP500.

  18. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Nagasawa, Mikio

    1990-01-01

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  19. Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data

    Science.gov (United States)

    Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.

    2018-03-01

    One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.

  20. Comments on the parallelization efficiency of the Sunway TaihuLight supercomputer

    OpenAIRE

    Végh, János

    2016-01-01

    In the world of supercomputers, the large number of processors requires to minimize the inefficiencies of parallelization, which appear as a sequential part of the program from the point of view of Amdahl's law. The recently suggested new figure of merit is applied to the recently presented supercomputer, and the timeline of "Top 500" supercomputers is scrutinized using the metric. It is demonstrated, that in addition to the computing performance and power consumption, the new supercomputer i...

  1. Integration of Panda Workload Management System with supercomputers

    Science.gov (United States)

    De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.

    2016-09-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads

  2. Explaining the gap between theoretical peak performance and real performance for supercomputer architectures

    International Nuclear Information System (INIS)

    Schoenauer, W.; Haefner, H.

    1993-01-01

    The basic architectures of vector and parallel computers with their properties are presented. Then the memory size and the arithmetic operations in the context of memory bandwidth are discussed. For the exemplary discussion of a single operation micro-measurements of the vector triad for the IBM 3090 VF and the CRAY Y-MP/8 are presented. They reveal the details of the losses for a single operation. Then we analyze the global performance of a whole supercomputer by identifying reduction factors that bring down the theoretical peak performance to the poor real performance. The responsibilities of the manufacturer and of the user for these losses are dicussed. Then the price-performance ratio for different architectures in a snapshot of January 1991 is briefly mentioned. Finally some remarks to a user-friendly architecture for a supercomputer will be made. (orig.)

  3. Supercomputers to transform Science

    CERN Multimedia

    2006-01-01

    "New insights into the structure of space and time, climate modeling, and the design of novel drugs, are but a few of the many research areas that will be transforned by the installation of three supercomputers at the Unversity of Bristol." (1/2 page)

  4. Convex unwraps its first grown-up supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, T.

    1988-03-03

    Convex Computer Corp.'s new supercomputer family is even more of an industry blockbuster than its first system. At a tenfold jump in performance, it's far from just an incremental upgrade over its first minisupercomputer, the C-1. The heart of the new family, the new C-2 processor, churning at 50 million floating-point operations/s, spawns a group of systems whose performance could pass for some fancy supercomputers-namely those of the Cray Research Inc. family. When added to the C-1, Convex's five new supercomputers create the C series, a six-member product group offering a performance range from 20 to 200 Mflops. They mark an important transition for Convex from a one-product high-tech startup to a multinational company with a wide-ranging product line. It's a tough transition but the Richardson, Texas, company seems to be doing it. The extended product line propels Convex into the upper end of the minisupercomputer class and nudges it into the low end of the big supercomputers. It positions Convex in an uncrowded segment of the market in the $500,000 to $1 million range offering 50 to 200 Mflops of performance. The company is making this move because the minisuper area, which it pioneered, quickly became crowded with new vendors, causing prices and gross margins to drop drastically.

  5. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-01-01

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  6. Supercomputer debugging workshop 1991 proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.

    1991-12-31

    This report discusses the following topics on supercomputer debugging: Distributed debugging; use interface to debugging tools and standards; debugging optimized codes; debugging parallel codes; and debugger performance and interface as analysis tools. (LSP)

  7. PNNL supercomputer to become largest computing resource on the Grid

    CERN Multimedia

    2002-01-01

    Hewlett Packard announced that the US DOE Pacific Northwest National Laboratory will connect a 9.3-teraflop HP supercomputer to the DOE Science Grid. This will be the largest supercomputer attached to a computer grid anywhere in the world (1 page).

  8. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  9. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  10. Cooperative visualization and simulation in a supercomputer environment

    International Nuclear Information System (INIS)

    Ruehle, R.; Lang, U.; Wierse, A.

    1993-01-01

    The article takes a closer look on the requirements being imposed by the idea to integrate all the components into a homogeneous software environment. To this end several methods for the distribtuion of applications in dependence of certain problem types are discussed. The currently available methods at the University of Stuttgart Computer Center for the distribution of applications are further explained. Finally the aims and characteristics of a European sponsored project, called PAGEIN, are explained, which fits perfectly into the line of developments at RUS. The aim of the project is to experiment with future cooperative working modes of aerospace scientists in a high speed distributed supercomputing environment. Project results will have an impact on the development of real future scientific application environments. (orig./DG)

  11. Supercomputers Of The Future

    Science.gov (United States)

    Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron

    1992-01-01

    Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.

  12. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  13. ATLAS Software Installation on Supercomputers

    CERN Document Server

    Undrus, Alexander; The ATLAS collaboration

    2018-01-01

    PowerPC and high performance computers (HPC) are important resources for computing in the ATLAS experiment. The future LHC data processing will require more resources than Grid computing, currently using approximately 100,000 cores at well over 100 sites, can provide. Supercomputers are extremely powerful as they use resources of hundreds of thousands CPUs joined together. However their architectures have different instruction sets. ATLAS binary software distributions for x86 chipsets do not fit these architectures, as emulation of these chipsets results in huge performance loss. This presentation describes the methodology of ATLAS software installation from source code on supercomputers. The installation procedure includes downloading the ATLAS code base as well as the source of about 50 external packages, such as ROOT and Geant4, followed by compilation, and rigorous unit and integration testing. The presentation reports the application of this procedure at Titan HPC and Summit PowerPC at Oak Ridge Computin...

  14. JINR supercomputer of the module type for event parallel analysis

    International Nuclear Information System (INIS)

    Kolpakov, I.F.; Senner, A.E.; Smirnov, V.A.

    1987-01-01

    A model of a supercomputer with 50 million of operations per second is suggested. Its realization allows one to solve JINR data analysis problems for large spectrometers (in particular DELPHY collaboration). The suggested module supercomputer is based on 32-bit commercial available microprocessor with a processing rate of about 1 MFLOPS. The processors are combined by means of VME standard busbars. MicroVAX-11 is a host computer organizing the operation of the system. Data input and output is realized via microVAX-11 computer periphery. Users' software is based on the FORTRAN-77. The supercomputer is connected with a JINR net port and all JINR users get an access to the suggested system

  15. Car2x with software defined networks, network functions virtualization and supercomputers technical and scientific preparations for the Amsterdam Arena telecoms fieldlab

    NARCIS (Netherlands)

    Meijer R.J.; Cushing R.; De Laat C.; Jackson P.; Klous S.; Koning R.; Makkes M.X.; Meerwijk A.

    2015-01-01

    In the invited talk 'Car2x with SDN, NFV and supercomputers' we report about how our past work with SDN [1, 2] allows the design of a smart mobility fieldlab in the huge parking lot the Amsterdam Arena. We explain how we can engineer and test software that handle the complex conditions of the Car2X

  16. Supercomputers and quantum field theory

    International Nuclear Information System (INIS)

    Creutz, M.

    1985-01-01

    A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs

  17. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  18. Computational plasma physics and supercomputers

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1984-09-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular codes, but parallel processing poses new coding difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematics

  19. Mistral Supercomputer Job History Analysis

    OpenAIRE

    Zasadziński, Michał; Muntés-Mulero, Victor; Solé, Marc; Ludwig, Thomas

    2018-01-01

    In this technical report, we show insights and results of operational data analysis from petascale supercomputer Mistral, which is ranked as 42nd most powerful in the world as of January 2018. Data sources include hardware monitoring data, job scheduler history, topology, and hardware information. We explore job state sequences, spatial distribution, and electric power patterns.

  20. Feynman diagrams sampling for quantum field theories on the QPACE 2 supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Rappl, Florian

    2016-08-01

    This work discusses the application of Feynman diagram sampling in quantum field theories. The method uses a computer simulation to sample the diagrammatic space obtained in a series expansion. For running large physical simulations powerful computers are obligatory, effectively splitting the thesis in two parts. The first part deals with the method of Feynman diagram sampling. Here the theoretical background of the method itself is discussed. Additionally, important statistical concepts and the theory of the strong force, quantum chromodynamics, are introduced. This sets the context of the simulations. We create and evaluate a variety of models to estimate the applicability of diagrammatic methods. The method is then applied to sample the perturbative expansion of the vertex correction. In the end we obtain the value for the anomalous magnetic moment of the electron. The second part looks at the QPACE 2 supercomputer. This includes a short introduction to supercomputers in general, as well as a closer look at the architecture and the cooling system of QPACE 2. Guiding benchmarks of the InfiniBand network are presented. At the core of this part, a collection of best practices and useful programming concepts are outlined, which enables the development of efficient, yet easily portable, applications for the QPACE 2 system.

  1. Interactive real-time nuclear plant simulations on a UNIX based supercomputer

    International Nuclear Information System (INIS)

    Behling, S.R.

    1990-01-01

    Interactive real-time nuclear plant simulations are critically important to train nuclear power plant engineers and operators. In addition, real-time simulations can be used to test the validity and timing of plant technical specifications and operational procedures. To accurately and confidently simulate a nuclear power plant transient in real-time, sufficient computer resources must be available. Since some important transients cannot be simulated using preprogrammed responses or non-physical models, commonly used simulation techniques may not be adequate. However, the power of a supercomputer allows one to accurately calculate the behavior of nuclear power plants even during very complex transients. Many of these transients can be calculated in real-time or quicker on the fastest supercomputers. The concept of running interactive real-time nuclear power plant transients on a supercomputer has been tested. This paper describes the architecture of the simulation program, the techniques used to establish real-time synchronization, and other issues related to the use of supercomputers in a new and potentially very important area. (author)

  2. Porting Ordinary Applications to Blue Gene/Q Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, Ketan C.; Wozniak, Justin M.; Armstrong, Timothy; Katz, Daniel S.; Binkowski, T. Andrew; Zhong, Xiaoliang; Heinonen, Olle; Karpeyev, Dmitry; Wilde, Michael

    2015-08-31

    Efficiently porting ordinary applications to Blue Gene/Q supercomputers is a significant challenge. Codes are often originally developed without considering advanced architectures and related tool chains. Science needs frequently lead users to want to run large numbers of relatively small jobs (often called many-task computing, an ensemble, or a workflow), which can conflict with supercomputer configurations. In this paper, we discuss techniques developed to execute ordinary applications over leadership class supercomputers. We use the high-performance Swift parallel scripting framework and build two workflow execution techniques-sub-jobs and main-wrap. The sub-jobs technique, built on top of the IBM Blue Gene/Q resource manager Cobalt's sub-block jobs, lets users submit multiple, independent, repeated smaller jobs within a single larger resource block. The main-wrap technique is a scheme that enables C/C++ programs to be defined as functions that are wrapped by a high-performance Swift wrapper and that are invoked as a Swift script. We discuss the needs, benefits, technicalities, and current limitations of these techniques. We further discuss the real-world science enabled by these techniques and the results obtained.

  3. Flux-Level Transit Injection Experiments with NASA Pleiades Supercomputer

    Science.gov (United States)

    Li, Jie; Burke, Christopher J.; Catanzarite, Joseph; Seader, Shawn; Haas, Michael R.; Batalha, Natalie; Henze, Christopher; Christiansen, Jessie; Kepler Project, NASA Advanced Supercomputing Division

    2016-06-01

    Flux-Level Transit Injection (FLTI) experiments are executed with NASA's Pleiades supercomputer for the Kepler Mission. The latest release (9.3, January 2016) of the Kepler Science Operations Center Pipeline is used in the FLTI experiments. Their purpose is to validate the Analytic Completeness Model (ACM), which can be computed for all Kepler target stars, thereby enabling exoplanet occurrence rate studies. Pleiades, a facility of NASA's Advanced Supercomputing Division, is one of the world's most powerful supercomputers and represents NASA's state-of-the-art technology. We discuss the details of implementing the FLTI experiments on the Pleiades supercomputer. For example, taking into account that ~16 injections are generated by one core of the Pleiades processors in an hour, the “shallow” FLTI experiment, in which ~2000 injections are required per target star, can be done for 16% of all Kepler target stars in about 200 hours. Stripping down the transit search to bare bones, i.e. only searching adjacent high/low periods at high/low pulse durations, makes the computationally intensive FLTI experiments affordable. The design of the FLTI experiments and the analysis of the resulting data are presented in “Validating an Analytic Completeness Model for Kepler Target Stars Based on Flux-level Transit Injection Experiments” by Catanzarite et al. (#2494058).Kepler was selected as the 10th mission of the Discovery Program. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  4. Extracting the Textual and Temporal Structure of Supercomputing Logs

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S; Singh, I; Chandra, A; Zhang, Z; Bronevetsky, G

    2009-05-26

    Supercomputers are prone to frequent faults that adversely affect their performance, reliability and functionality. System logs collected on these systems are a valuable resource of information about their operational status and health. However, their massive size, complexity, and lack of standard format makes it difficult to automatically extract information that can be used to improve system management. In this work we propose a novel method to succinctly represent the contents of supercomputing logs, by using textual clustering to automatically find the syntactic structures of log messages. This information is used to automatically classify messages into semantic groups via an online clustering algorithm. Further, we describe a methodology for using the temporal proximity between groups of log messages to identify correlated events in the system. We apply our proposed methods to two large, publicly available supercomputing logs and show that our technique features nearly perfect accuracy for online log-classification and extracts meaningful structural and temporal message patterns that can be used to improve the accuracy of other log analysis techniques.

  5. Introduction to Reconfigurable Supercomputing

    CERN Document Server

    Lanzagorta, Marco; Rosenberg, Robert

    2010-01-01

    This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPe who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigur

  6. SUPERCOMPUTERS FOR AIDING ECONOMIC PROCESSES WITH REFERENCE TO THE FINANCIAL SECTOR

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2014-12-01

    Full Text Available The article discusses the use of supercomputers to support business processes with particular emphasis on the financial sector. A reference was made to the selected projects that support economic development. In particular, we propose the use of supercomputers to perform artificial intel-ligence methods in banking. The proposed methods combined with modern technology enables a significant increase in the competitiveness of enterprises and banks by adding new functionality.

  7. Frequently updated noise threat maps created with use of supercomputing grid

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2014-09-01

    Full Text Available An innovative supercomputing grid services devoted to noise threat evaluation were presented. The services described in this paper concern two issues, first is related to the noise mapping, while the second one focuses on assessment of the noise dose and its influence on the human hearing system. The discussed serviceswere developed within the PL-Grid Plus Infrastructure which accumulates Polish academic supercomputer centers. Selected experimental results achieved by the usage of the services proposed were presented. The assessment of the environmental noise threats includes creation of the noise maps using either ofline or online data, acquired through a grid of the monitoring stations. A concept of estimation of the source model parameters based on the measured sound level for the purpose of creating frequently updated noise maps was presented. Connecting the noise mapping grid service with a distributed sensor network enables to automatically update noise maps for a specified time period. Moreover, a unique attribute of the developed software is the estimation of the auditory effects evoked by the exposure to noise. The estimation method uses a modified psychoacoustic model of hearing and is based on the calculated noise level values and on the given exposure period. Potential use scenarios of the grid services for research or educational purpose were introduced. Presentation of the results of predicted hearing threshold shift caused by exposure to excessive noise can raise the public awareness of the noise threats.

  8. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jacobsen, Douglas W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  9. QCD on the BlueGene/L Supercomputer

    International Nuclear Information System (INIS)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-01-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented

  10. QCD on the BlueGene/L Supercomputer

    Science.gov (United States)

    Bhanot, G.; Chen, D.; Gara, A.; Sexton, J.; Vranas, P.

    2005-03-01

    In June 2004 QCD was simulated for the first time at sustained speed exceeding 1 TeraFlops in the BlueGene/L supercomputer at the IBM T.J. Watson Research Lab. The implementation and performance of QCD in the BlueGene/L is presented.

  11. Development of seismic tomography software for hybrid supercomputers

    Science.gov (United States)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on

  12. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  13. Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; D' Azevedo, Eduardo [ORNL; Philip, Bobby [ORNL; Worley, Patrick H [ORNL

    2016-01-01

    On large supercomputers, the job scheduling systems may assign a non-contiguous node allocation for user applications depending on available resources. With parallel applications using MPI (Message Passing Interface), the default process ordering does not take into account the actual physical node layout available to the application. This contributes to non-locality in terms of physical network topology and impacts communication performance of the application. In order to mitigate such performance penalties, this work describes techniques to identify suitable task mapping that takes the layout of the allocated nodes as well as the application's communication behavior into account. During the first phase of this research, we instrumented and collected performance data to characterize communication behavior of critical US DOE (United States - Department of Energy) applications using an augmented version of the mpiP tool. Subsequently, we developed several reordering methods (spectral bisection, neighbor join tree etc.) to combine node layout and application communication data for optimized task placement. We developed a tool called mpiAproxy to facilitate detailed evaluation of the various reordering algorithms without requiring full application executions. This work presents a comprehensive performance evaluation (14,000 experiments) of the various task mapping techniques in lowering communication costs on Titan, the leadership class supercomputer at Oak Ridge National Laboratory.

  14. Graphics supercomputer for computational fluid dynamics research

    Science.gov (United States)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  15. Virtualized Network Control. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Nasir [Univ. of New Mexico, Albuquerque, NM (United States)

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  16. KfK-seminar series on supercomputing und visualization from May till September 1992

    International Nuclear Information System (INIS)

    Hohenhinnebusch, W.

    1993-05-01

    During the period of may 1992 to september 1992 a series of seminars was held at KfK on several topics of supercomputing in different fields of application. The aim was to demonstrate the importance of supercomputing and visualization in numerical simulations of complex physical and technical phenomena. This report contains the collection of all submitted seminar papers. (orig./HP) [de

  17. Computational plasma physics and supercomputers. Revision 1

    International Nuclear Information System (INIS)

    Killeen, J.; McNamara, B.

    1985-01-01

    The Supercomputers of the 80's are introduced. They are 10 to 100 times more powerful than today's machines. The range of physics modeling in the fusion program is outlined. New machine architecture will influence particular models, but parallel processing poses new programming difficulties. Increasing realism in simulations will require better numerics and more elaborate mathematical models

  18. Dynamic photonic lightpaths in the StarPlane network

    NARCIS (Netherlands)

    Grosso, P.; Marchal, D.; Maassen, J.; Bernier, E.; Xu, L.; de Laat, C.

    2009-01-01

    The StarPlane project enables users to dynamically control network photonic paths. Applications running on the Distributed ASCI Supercomputer (DAS-3) can manipulate wavelengths in the Dutch research and education network SURFnet6. The goal is to achieve fast switching times so that when the

  19. Application of Supercomputer Technologies for Simulation Of Socio-Economic Systems

    Directory of Open Access Journals (Sweden)

    Vladimir Valentinovich Okrepilov

    2015-06-01

    Full Text Available To date, an extensive experience has been accumulated in investigation of problems related to quality, assessment of management systems, modeling of economic system sustainability. The performed studies have created a basis for development of a new research area — Economics of Quality. Its tools allow to use opportunities of model simulation for construction of the mathematical models adequately reflecting the role of quality in natural, technical, social regularities of functioning of the complex socio-economic systems. Extensive application and development of models, and also system modeling with use of supercomputer technologies, on our deep belief, will bring the conducted research of socio-economic systems to essentially new level. Moreover, the current scientific research makes a significant contribution to model simulation of multi-agent social systems and that is not less important, it belongs to the priority areas in development of science and technology in our country. This article is devoted to the questions of supercomputer technologies application in public sciences, first of all, — regarding technical realization of the large-scale agent-focused models (AFM. The essence of this tool is that owing to the power computer increase it has become possible to describe the behavior of many separate fragments of a difficult system, as socio-economic systems are. The article also deals with the experience of foreign scientists and practicians in launching the AFM on supercomputers, and also the example of AFM developed in CEMI RAS, stages and methods of effective calculating kernel display of multi-agent system on architecture of a modern supercomputer will be analyzed. The experiments on the basis of model simulation on forecasting the population of St. Petersburg according to three scenarios as one of the major factors influencing the development of socio-economic system and quality of life of the population are presented in the

  20. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Sreepathi, Sarat [ORNL; Kumar, Jitendra [ORNL; Mills, Richard T. [Argonne National Laboratory; Hoffman, Forrest M. [ORNL; Sripathi, Vamsi [Intel Corporation; Hargrove, William Walter [United States Department of Agriculture (USDA), United States Forest Service (USFS)

    2017-09-01

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like the Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.

  1. Extending ATLAS Computing to Commercial Clouds and Supercomputers

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Filipcic, A; Klimentov, A; Maeno, T; Oleynik, D; Panitkin, S; Wenaus, T; Wu, W

    2014-01-01

    The Large Hadron Collider will resume data collection in 2015 with substantially increased computing requirements relative to its first 2009-2013 run. A near doubling of the energy and the data rate, high level of event pile-up, and detector upgrades will mean the number and complexity of events to be analyzed will increase dramatically. A naive extrapolation of the Run 1 experience would suggest that a 5-6 fold increase in computing resources are needed - impossible within the anticipated flat computing budgets in the near future. Consequently ATLAS is engaged in an ambitious program to expand its computing to all available resources, notably including opportunistic use of commercial clouds and supercomputers. Such resources present new challenges in managing heterogeneity, supporting data flows, parallelizing workflows, provisioning software, and other aspects of distributed computing, all while minimizing operational load. We will present the ATLAS experience to date with clouds and supercomputers, and des...

  2. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    De, K [University of Texas at Arlington; Jha, S [Rutgers University; Klimentov, A [Brookhaven National Laboratory (BNL); Maeno, T [Brookhaven National Laboratory (BNL); Nilsson, P [Brookhaven National Laboratory (BNL); Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Wells, Jack C [ORNL; Wenaus, T [Brookhaven National Laboratory (BNL)

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation

  3. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel's MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  4. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  5. Guide to dataflow supercomputing basic concepts, case studies, and a detailed example

    CERN Document Server

    Milutinovic, Veljko; Trifunovic, Nemanja; Giorgi, Roberto

    2015-01-01

    This unique text/reference describes an exciting and novel approach to supercomputing in the DataFlow paradigm. The major advantages and applications of this approach are clearly described, and a detailed explanation of the programming model is provided using simple yet effective examples. The work is developed from a series of lecture courses taught by the authors in more than 40 universities across more than 20 countries, and from research carried out by Maxeler Technologies, Inc. Topics and features: presents a thorough introduction to DataFlow supercomputing for big data problems; revie

  6. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  7. DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, and instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.

  8. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Science.gov (United States)

    Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.

    2016-10-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  9. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    International Nuclear Information System (INIS)

    Klimentov, A; Maeno, T; Nilsson, P; Panitkin, S; Wenaus, T; De, K; Oleynik, D; Jha, S; Wells, J

    2016-01-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the

  10. Analyzing the Interplay of Failures and Workload on a Leadership-Class Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Esteban [University of Pittsburgh; Ni, Xiang [University of Illinois at Urbana-Champaign; Jones, Terry R [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The unprecedented computational power of cur- rent supercomputers now makes possible the exploration of complex problems in many scientific fields, from genomic analysis to computational fluid dynamics. Modern machines are powerful because they are massive: they assemble millions of cores and a huge quantity of disks, cards, routers, and other components. But it is precisely the size of these machines that glooms the future of supercomputing. A system that comprises many components has a high chance to fail, and fail often. In order to make the next generation of supercomputers usable, it is imperative to use some type of fault tolerance platform to run applications on large machines. Most fault tolerance strategies can be optimized for the peculiarities of each system and boost efficacy by keeping the system productive. In this paper, we aim to understand how failure characterization can improve resilience in several layers of the software stack: applications, runtime systems, and job schedulers. We examine the Titan supercomputer, one of the fastest systems in the world. We analyze a full year of Titan in production and distill the failure patterns of the machine. By looking into Titan s log files and using the criteria of experts, we provide a detailed description of the types of failures. In addition, we inspect the job submission files and describe how the system is used. Using those two sources, we cross correlate failures in the machine to executing jobs and provide a picture of how failures affect the user experience. We believe such characterization is fundamental in developing appropriate fault tolerance solutions for Cray systems similar to Titan.

  11. Physicists set new record for network data transfer

    CERN Multimedia

    2007-01-01

    "An international team of physicists, computer scientists, and network engineers joined forces to set new records for sustained data transfer between storage systems durint the SuperComputing 2006 (SC06) Bandwidth Challenge (BWC). (3 pages)

  12. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  13. Supercomputer and cluster performance modeling and analysis efforts:2004-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Ganti, Anand; Meyer, Harold (Hal) Edward; Stevenson, Joel O.; Benner, Robert E., Jr. (.,; .); Goudy, Susan Phelps; Doerfler, Douglas W.; Domino, Stefan Paul; Taylor, Mark A.; Malins, Robert Joseph; Scott, Ryan T.; Barnette, Daniel Wayne; Rajan, Mahesh; Ang, James Alfred; Black, Amalia Rebecca; Laub, Thomas William; Vaughan, Courtenay Thomas; Franke, Brian Claude

    2007-02-01

    This report describes efforts by the Performance Modeling and Analysis Team to investigate performance characteristics of Sandia's engineering and scientific applications on the ASC capability and advanced architecture supercomputers, and Sandia's capacity Linux clusters. Efforts to model various aspects of these computers are also discussed. The goals of these efforts are to quantify and compare Sandia's supercomputer and cluster performance characteristics; to reveal strengths and weaknesses in such systems; and to predict performance characteristics of, and provide guidelines for, future acquisitions and follow-on systems. Described herein are the results obtained from running benchmarks and applications to extract performance characteristics and comparisons, as well as modeling efforts, obtained during the time period 2004-2006. The format of the report, with hypertext links to numerous additional documents, purposefully minimizes the document size needed to disseminate the extensive results from our research.

  14. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  15. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    International Nuclear Information System (INIS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-01-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers. (paper)

  16. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  17. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.

    1987-01-01

    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  18. FPS scientific and supercomputers computers in chemistry

    International Nuclear Information System (INIS)

    Curington, I.J.

    1987-01-01

    FPS Array Processors, scientific computers, and highly parallel supercomputers are used in nearly all aspects of compute-intensive computational chemistry. A survey is made of work utilizing this equipment, both published and current research. The relationship of the computer architecture to computational chemistry is discussed, with specific reference to Molecular Dynamics, Quantum Monte Carlo simulations, and Molecular Graphics applications. Recent installations of the FPS T-Series are highlighted, and examples of Molecular Graphics programs running on the FPS-5000 are shown

  19. State-of-the-art of applications of neural networks in the nuclear industry

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Masson, M.H.

    1990-01-01

    Artificial neural net models have been extensively studied for many years in various laboratories to try to simulate with computer programs the human brain performances. The first applications were developed in the fields of speech and image recognition. The aims of these studies were mainly to classify rapidly patterns corrupted by noises or partly missing. Neural networks with the development of new net topologies and algorithms and parallel computing hardwares and softwares are to-day very promising for applications in many industries. In the introduction, this paper presents the anticipated benefits of the uses of neural networks for industrial applications. Then a brief overview of the main neural networks is provided. Finally a short review of neural networks applications in the nuclear industry is given. It covers domains such as: predictive maintenance for vibratory surveillance of rotating machinery, signal processing, operator guidance and eddy current inspection. In conclusion recommendations are made to use with efficiency neural networks for practical applications. In particular the need for supercomputing will be pinpointed. (author)

  20. Final Report - Cloud-Based Management Platform for Distributed, Multi-Domain Networks

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Pulak [Ennetix Inc.; Mukherjee, Biswanath [Ennetix Inc.

    2017-11-03

    In this Department of Energy (DOE) Small Business Innovation Research (SBIR) Phase II project final report, Ennetix presents the development of a solution for end-to-end monitoring, analysis, and visualization of network performance for distributed networks. This solution benefits enterprises of all sizes, operators of distributed and federated networks, and service providers.

  1. Visualizing quantum scattering on the CM-2 supercomputer

    International Nuclear Information System (INIS)

    Richardson, J.L.

    1991-01-01

    We implement parallel algorithms for solving the time-dependent Schroedinger equation on the CM-2 supercomputer. These methods are unconditionally stable as well as unitary at each time step and have the advantage of being spatially local and explicit. We show how to visualize the dynamics of quantum scattering using techniques for visualizing complex wave functions. Several scattering problems are solved to demonstrate the use of these methods. (orig.)

  2. Integration of Titan supercomputer at OLCF with ATLAS Production System

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for jo...

  3. Integration of Titan supercomputer at OLCF with ATLAS production system

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration

    2016-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this talk we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job...

  4. Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules

    International Nuclear Information System (INIS)

    Lagana, A.

    1989-01-01

    Even for small systems, the accurate characterization of reactive processes is so demanding of computer resources as to suggest the use of supercomputers having vector and parallel facilities. The full advantages of vector and parallel architectures can sometimes be obtained by simply modifying existing programs, vectorizing the manipulation of vectors and matrices, and requiring the parallel execution of independent tasks. More often, however, a significant time saving can be obtained only when the computer code undergoes a deeper restructuring, requiring a change in the computational strategy or, more radically, the adoption of a different theoretical treatment. This book discusses supercomputer strategies based upon act and approximate methods aimed at calculating the electronic structure and the reactive properties of small systems. The book shows how, in recent years, intense design activity has led to the ability to calculate accurate electronic structures for reactive systems, exact and high-level approximations to three-dimensional reactive dynamics, and to efficient directive and declaratory software for the modelling of complex systems

  5. Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.

    Science.gov (United States)

    Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias

    2011-01-01

    The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.

  6. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  7. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  8. Application and Network-Cognizant Proxies - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Antonio Ortega; Daniel C. Lee

    2003-03-24

    OAK B264 Application and Network-Cognizant Proxies - Final Report. Current networks show increasing heterogeneity both in terms of their bandwidths/delays and the applications they are required to support. This is a trend that is likely to intensify in the future, as real-time services, such as video, become more widely available and networking access over wireless links becomes more widespread. For this reason they propose that application-specific proxies, intermediate network nodes that broker the interactions between server and client, will become an increasingly important network element. These proxies will allow adaptation to changes in network characteristics without requiring a direct intervention of either server or client. Moreover, it will be possible to locate these proxies strategically at those points where a mismatch occurs between subdomains (for example, a proxy could be placed so as to act as a bridge between a reliable network domain and an unreliable one). This design philosophy favors scalability in the sense that the basic network infrastructure can remain unchanged while new functionality can be added to proxies, as required by the applications. While proxies can perform numerous generic functions, such as caching or security, they concentrate here on media-specific, and in particular video-specific, tasks. The goal of this project was to demonstrate that application- and network-specific knowledge at a proxy can improve overall performance especially under changing network conditions. They summarize below the work performed to address these issues. Particular effort was spent in studying caching techniques and on video classification to enable DiffServ delivery. other work included analysis of traffic characteristics, optimized media scheduling, coding techniques based on multiple description coding, and use of proxies to reduce computation costs. This work covered much of what was originally proposed but with a necessarily reduced scope.

  9. Novel Supercomputing Approaches for High Performance Linear Algebra Using FPGAs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Supercomputing plays a major role in many areas of science and engineering, and it has had tremendous impact for decades in areas such as aerospace, defense, energy,...

  10. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone; Manzano Franco, Joseph B.

    2012-12-31

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, we introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.

  11. BSMBench: a flexible and scalable supercomputer benchmark from computational particle physics

    CERN Document Server

    Bennett, Ed; Del Debbio, Luigi; Jordan, Kirk; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2016-01-01

    Benchmarking plays a central role in the evaluation of High Performance Computing architectures. Several benchmarks have been designed that allow users to stress various components of supercomputers. In order for the figures they provide to be useful, benchmarks need to be representative of the most common real-world scenarios. In this work, we introduce BSMBench, a benchmarking suite derived from Monte Carlo code used in computational particle physics. The advantage of this suite (which can be freely downloaded from http://www.bsmbench.org/) over others is the capacity to vary the relative importance of computation and communication. This enables the tests to simulate various practical situations. To showcase BSMBench, we perform a wide range of tests on various architectures, from desktop computers to state-of-the-art supercomputers, and discuss the corresponding results. Possible future directions of development of the benchmark are also outlined.

  12. Intelligent Personal Supercomputer for Solving Scientific and Technical Problems

    Directory of Open Access Journals (Sweden)

    Khimich, O.M.

    2016-09-01

    Full Text Available New domestic intellіgent personal supercomputer of hybrid architecture Inparkom_pg for the mathematical modeling of processes in the defense industry, engineering, construction, etc. was developed. Intelligent software for the automatic research and tasks of computational mathematics with approximate data of different structures was designed. Applied software to provide mathematical modeling problems in construction, welding and filtration processes was implemented.

  13. Supercomputers and the future of computational atomic scattering physics

    International Nuclear Information System (INIS)

    Younger, S.M.

    1989-01-01

    The advent of the supercomputer has opened new vistas for the computational atomic physicist. Problems of hitherto unparalleled complexity are now being examined using these new machines, and important connections with other fields of physics are being established. This talk briefly reviews some of the most important trends in computational scattering physics and suggests some exciting possibilities for the future. 7 refs., 2 figs

  14. Class network routing

    Science.gov (United States)

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  15. Visualization on supercomputing platform level II ASC milestone (3537-1B) results from Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Geveci, Berk (Kitware, Inc., Clifton Park, NY); Fabian, Nathan; Marion, Patrick (Kitware, Inc., Clifton Park, NY); Moreland, Kenneth D.

    2010-09-01

    This report provides documentation for the completion of the Sandia portion of the ASC Level II Visualization on the platform milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratories and Los Alamos National Laboratories. This milestone contains functionality required for performing visualization directly on a supercomputing platform, which is necessary for peta-scale visualization. Sandia's contribution concerns in-situ visualization, running a visualization in tandem with a solver. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is most computationally intensive portion of the visualization process. For terascale platforms, commodity clusters with graphics processors(GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the performance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. Scientific simulation on parallel supercomputers is traditionally performed in four

  16. Storage-Intensive Supercomputing Benchmark Study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J; Dossa, D; Gokhale, M; Hysom, D; May, J; Pearce, R; Yoo, A

    2007-10-30

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe: (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows

  17. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  18. Mathematical methods and supercomputing in nuclear applications. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Kuesters, H.; Stein, E.; Werner, W.

    1993-04-01

    All papers of the two volumes are separately indexed in the data base. Main topics are: Progress in advanced numerical techniques, fluid mechanics, on-line systems, artificial intelligence applications, nodal methods reactor kinetics, reactor design, supercomputer architecture, probabilistic estimation of risk assessment, methods in transport theory, advances in Monte Carlo techniques, and man-machine interface. (orig.)

  19. Efficient development of memory bounded geo-applications to scale on modern supercomputers

    Science.gov (United States)

    Räss, Ludovic; Omlin, Samuel; Licul, Aleksandar; Podladchikov, Yuri; Herman, Frédéric

    2016-04-01

    Numerical modeling is an actual key tool in the area of geosciences. The current challenge is to solve problems that are multi-physics and for which the length scale and the place of occurrence might not be known in advance. Also, the spatial extend of the investigated domain might strongly vary in size, ranging from millimeters for reactive transport to kilometers for glacier erosion dynamics. An efficient way to proceed is to develop simple but robust algorithms that perform well and scale on modern supercomputers and permit therefore very high-resolution simulations. We propose an efficient approach to solve memory bounded real-world applications on modern supercomputers architectures. We optimize the software to run on our newly acquired state-of-the-art GPU cluster "octopus". Our approach shows promising preliminary results on important geodynamical and geomechanical problematics: we have developed a Stokes solver for glacier flow and a poromechanical solver including complex rheologies for nonlinear waves in stressed rocks porous rocks. We solve the system of partial differential equations on a regular Cartesian grid and use an iterative finite difference scheme with preconditioning of the residuals. The MPI communication happens only locally (point-to-point); this method is known to scale linearly by construction. The "octopus" GPU cluster, which we use for the computations, has been designed to achieve maximal data transfer throughput at minimal hardware cost. It is composed of twenty compute nodes, each hosting four Nvidia Titan X GPU accelerators. These high-density nodes are interconnected with a parallel (dual-rail) FDR InfiniBand network. Our efforts show promising preliminary results for the different physics investigated. The glacier flow solver achieves good accuracy in the relevant benchmarks and the coupled poromechanical solver permits to explain previously unresolvable focused fluid flow as a natural outcome of the porosity setup. In both cases

  20. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  1. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation.

  2. Personal Supercomputing for Monte Carlo Simulation Using a GPU

    International Nuclear Information System (INIS)

    Oh, Jae-Yong; Koo, Yang-Hyun; Lee, Byung-Ho

    2008-01-01

    Since the usability, accessibility, and maintenance of a personal computer (PC) are very good, a PC is a useful computer simulation tool for researchers. It has enough calculation power to simulate a small scale system with the improved performance of a PC's CPU. However, if a system is large or long time scale, we need a cluster computer or supercomputer. Recently great changes have occurred in the PC calculation environment. A graphic process unit (GPU) on a graphic card, only used to calculate display data, has a superior calculation capability to a PC's CPU. This GPU calculation performance is a match for the supercomputer in 2000. Although it has such a great calculation potential, it is not easy to program a simulation code for GPU due to difficult programming techniques for converting a calculation matrix to a 3D rendering image using graphic APIs. In 2006, NVIDIA provided the Software Development Kit (SDK) for the programming environment for NVIDIA's graphic cards, which is called the Compute Unified Device Architecture (CUDA). It makes the programming on the GPU easy without knowledge of the graphic APIs. This paper describes the basic architectures of NVIDIA's GPU and CUDA, and carries out a performance benchmark for the Monte Carlo simulation

  3. Design and performance characterization of electronic structure calculations on massively parallel supercomputers

    DEFF Research Database (Denmark)

    Romero, N. A.; Glinsvad, Christian; Larsen, Ask Hjorth

    2013-01-01

    Density function theory (DFT) is the most widely employed electronic structure method because of its favorable scaling with system size and accuracy for a broad range of molecular and condensed-phase systems. The advent of massively parallel supercomputers has enhanced the scientific community...

  4. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah; Ross, Robert; Carns, Philip

    2016-05-15

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the model size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.

  5. ASCR Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  6. Computational Science with the Titan Supercomputer: Early Outcomes and Lessons Learned

    Science.gov (United States)

    Wells, Jack

    2014-03-01

    Modeling and simulation with petascale computing has supercharged the process of innovation and understanding, dramatically accelerating time-to-insight and time-to-discovery. This presentation will focus on early outcomes from the Titan supercomputer at the Oak Ridge National Laboratory. Titan has over 18,000 hybrid compute nodes consisting of both CPUs and GPUs. In this presentation, I will discuss the lessons we have learned in deploying Titan and preparing applications to move from conventional CPU architectures to a hybrid machine. I will present early results of materials applications running on Titan and the implications for the research community as we prepare for exascale supercomputer in the next decade. Lastly, I will provide an overview of user programs at the Oak Ridge Leadership Computing Facility with specific information how researchers may apply for allocations of computing resources. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  7. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00300320; Klimentov, Alexei; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Vaniachine, Alexandre; Wenaus, Torre; Schovancova, Jaroslava

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modi ed PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real time, information about unused...

  8. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration; Klimentov, Alexei; Oleynik, Danila; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently uses more than 100,000 cores at well over 100 Grid sites with a peak performance of 0.3 petaFLOPS, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real tim...

  9. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  10. ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.

    Science.gov (United States)

    Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping

    2018-04-27

    A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.

  11. SiGN-SSM: open source parallel software for estimating gene networks with state space models.

    Science.gov (United States)

    Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru

    2011-04-15

    SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.

  12. LDRD final report : massive multithreading applied to national infrastructure and informatics.

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bruce A.; Murphy, Richard C.; Wheeler, Kyle; Mackey, Gregory; Berry, Jonathan W.; LaViolette, Randall A.; Mancke, Brad; Barrett, Brian W.; Phillips, Cynthia Ann; Pinar, Ali; Leung, Vitus Joseph

    2009-09-01

    Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun

  13. The BlueGene/L Supercomputer and Quantum ChromoDynamics

    International Nuclear Information System (INIS)

    Vranas, P; Soltz, R

    2006-01-01

    In summary our update contains: (1) Perfect speedup sustaining 19.3% of peak for the Wilson D D-slash Dirac operator. (2) Measurements of the full Conjugate Gradient (CG) inverter that inverts the Dirac operator. The CG inverter contains two global sums over the entire machine. Nevertheless, our measurements retain perfect speedup scaling demonstrating the robustness of our methods. (3) We ran on the largest BG/L system, the LLNL 64 rack BG/L supercomputer, and obtained a sustained speed of 59.1 TFlops. Furthermore, the speedup scaling of the Dirac operator and of the CG inverter are perfect all the way up to the full size of the machine, 131,072 cores (please see Figure II). The local lattice is rather small (4 x 4 x 4 x 16) while the total lattice has been a lattice QCD vision for thermodynamic studies (a total of 128 x 128 x 256 x 32 lattice sites). This speed is about five times larger compared to the speed we quoted in our submission. As we have pointed out in our paper QCD is notoriously sensitive to network and memory latencies, has a relatively high communication to computation ratio which can not be overlapped in BGL in virtual node mode, and as an application is in a class of its own. The above results are thrilling to us and a 30 year long dream for lattice QCD

  14. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-01-01

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  15. HPL and STREAM Benchmarks on SANAM Supercomputer

    KAUST Repository

    Bin Sulaiman, Riman A.

    2017-03-13

    SANAM supercomputer was jointly built by KACST and FIAS in 2012 ranking second that year in the Green500 list with a power efficiency of 2.3 GFLOPS/W (Rohr et al., 2014). It is a heterogeneous accelerator-based HPC system that has 300 compute nodes. Each node includes two Intel Xeon E5?2650 CPUs, two AMD FirePro S10000 dual GPUs and 128 GiB of main memory. In this work, the seven benchmarks of HPCC were installed and configured to reassess the performance of SANAM, as part of an unpublished master thesis, after it was reassembled in the Kingdom of Saudi Arabia. We present here detailed results of HPL and STREAM benchmarks.

  16. Supercomputing Centers and Electricity Service Providers

    DEFF Research Database (Denmark)

    Patki, Tapasya; Bates, Natalie; Ghatikar, Girish

    2016-01-01

    from a detailed, quantitative survey-based analysis and compare the perspectives of the European grid and SCs to the ones of the United States (US). We then show that contrary to the expectation, SCs in the US are more open toward cooperating and developing demand-management strategies with their ESPs......Supercomputing Centers (SCs) have high and variable power demands, which increase the challenges of the Electricity Service Providers (ESPs) with regards to efficient electricity distribution and reliable grid operation. High penetration of renewable energy generation further exacerbates...... this problem. In order to develop a symbiotic relationship between the SCs and their ESPs and to support effective power management at all levels, it is critical to understand and analyze how the existing relationships were formed and how these are expected to evolve. In this paper, we first present results...

  17. Streaming Parallel GPU Acceleration of Large-Scale filter-based Spiking Neural Networks

    NARCIS (Netherlands)

    L.P. Slazynski (Leszek); S.M. Bohte (Sander)

    2012-01-01

    htmlabstractThe arrival of graphics processing (GPU) cards suitable for massively parallel computing promises a↵ordable large-scale neural network simulation previously only available at supercomputing facil- ities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of

  18. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2017-06-01

    Full Text Available NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  19. Integration of PanDA workload management system with Titan supercomputer at OLCF

    Science.gov (United States)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  20. National Computational Infrastructure for Lattice Gauge Theory: Final Report

    International Nuclear Information System (INIS)

    Richard Brower; Norman Christ; Michael Creutz; Paul Mackenzie; John Negele; Claudio Rebbi; David Richards; Stephen Sharpe; Robert Sugar

    2006-01-01

    This is the final report of Department of Energy SciDAC Grant ''National Computational Infrastructure for Lattice Gauge Theory''. It describes the software developed under this grant, which enables the effective use of a wide variety of supercomputers for the study of lattice quantum chromodynamics (lattice QCD). It also describes the research on and development of commodity clusters optimized for the study of QCD. Finally, it provides some high lights of research enabled by the infrastructure created under this grant, as well as a full list of the papers resulting from research that made use of this infrastructure

  1. Supercomputers and the mathematical modeling of high complexity problems

    International Nuclear Information System (INIS)

    Belotserkovskii, Oleg M

    2010-01-01

    This paper is a review of many works carried out by members of our scientific school in past years. The general principles of constructing numerical algorithms for high-performance computers are described. Several techniques are highlighted and these are based on the method of splitting with respect to physical processes and are widely used in computing nonlinear multidimensional processes in fluid dynamics, in studies of turbulence and hydrodynamic instabilities and in medicine and other natural sciences. The advances and developments related to the new generation of high-performance supercomputing in Russia are presented.

  2. Towards future electricity networks - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Papaemmanouil, A.

    2008-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28{sup th} USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  3. Towards future electricity networks - Final report

    International Nuclear Information System (INIS)

    Papaemmanouil, A.

    2008-01-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) reviews work done on the development of new power transmission planning tools for restructured power networks. These are needed in order to face the challenges that arise due to economic, environmental and social issues. The integration of transmission, generation and energy policy planning in order to support a common strategy with respect to sustainable electricity networks is discussed. In the first phase of the project the main focus was placed on the definition of criteria and inputs that are most likely to affect sustainable transmission expansion plans. Models, concepts, and methods developed in order to study the impact of the internalisation of external costs in power production are examined. To consider external costs in the planning process, a concurrent software tool has been implemented that is capable of studying possible development scenarios. The report examines a concept that has been developed to identify congested transmission lines or corridors and evaluates the dependencies between the various market participants. The paper includes a set of three appendices that include a paper on the 28 th USAEE North American conference, an abstract from Powertech 2009 and an SFOE report from July 2008.

  4. Heat dissipation computations of a HVDC ground electrode using a supercomputer

    International Nuclear Information System (INIS)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1990-01-01

    This paper reports on the temperature, of soil surrounding a High Voltage Direct Current (HVDC) toroidal ground electrode of practical dimensions, in both homogeneous and non-homogeneous soils that was computed at incremental points in time using finite difference methods on a supercomputer. Curves of the response were computed and plotted at several locations within the soil in the vicinity of the ground electrode for various values of the soil parameters

  5. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  6. An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.

    Science.gov (United States)

    Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei

    2017-12-01

    Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.

  7. Supercomputations and big-data analysis in strong-field ultrafast optical physics: filamentation of high-peak-power ultrashort laser pulses

    Science.gov (United States)

    Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.

    2016-06-01

    High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3  +  1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.

  8. Quantum Hamiltonian Physics with Supercomputers

    International Nuclear Information System (INIS)

    Vary, James P.

    2014-01-01

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed

  9. Quantum Hamiltonian Physics with Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P.

    2014-06-15

    The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.

  10. Coherent 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an Optimal Supercomputer Optical Switch Fabric

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates.......We demonstrate, for the first time, the feasibility of using 40 Gb/s SP-16QAM and 80 Gb/s PDM-16QAM in an optimized cell switching supercomputer optical interconnect architecture based on semiconductor optical amplifiers as ON/OFF gates....

  11. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  12. Federal Market Information Technology in the Post Flash Crash Era: Roles for Supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes; Leinweber, David; Ruebel, Oliver; Wu, Kesheng

    2011-09-16

    This paper describes collaborative work between active traders, regulators, economists, and supercomputing researchers to replicate and extend investigations of the Flash Crash and other market anomalies in a National Laboratory HPC environment. Our work suggests that supercomputing tools and methods will be valuable to market regulators in achieving the goal of market safety, stability, and security. Research results using high frequency data and analytics are described, and directions for future development are discussed. Currently the key mechanism for preventing catastrophic market action are “circuit breakers.” We believe a more graduated approach, similar to the “yellow light” approach in motorsports to slow down traffic, might be a better way to achieve the same goal. To enable this objective, we study a number of indicators that could foresee hazards in market conditions and explore options to confirm such predictions. Our tests confirm that Volume Synchronized Probability of Informed Trading (VPIN) and a version of volume Herfindahl-Hirschman Index (HHI) for measuring market fragmentation can indeed give strong signals ahead of the Flash Crash event on May 6 2010. This is a preliminary step toward a full-fledged early-warning system for unusual market conditions.

  13. A fast random number generator for the Intel Paragon supercomputer

    Science.gov (United States)

    Gutbrod, F.

    1995-06-01

    A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.

  14. Development of a Cloud Resolving Model for Heterogeneous Supercomputers

    Science.gov (United States)

    Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.

    2017-12-01

    A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.

  15. On-demand Overlay Networks for Large Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Guok, Chin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jackson, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kissel, Ezra [Univ. of Delaware, Newark, DE (United States); Swany, D. Martin [Univ. of Delaware, Newark, DE (United States); Agarwal, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-10-12

    Large scale scientific data transfers are central to scientific processes. Data from large experimental facilities have to be moved to local institutions for analysis or often data needs to be moved between local clusters and large supercomputing centers. In this paper, we propose and evaluate a network overlay architecture to enable highthroughput, on-demand, coordinated data transfers over wide-area networks. Our work leverages Phoebus and On-demand Secure Circuits and AdvanceReservation System (OSCARS) to provide high performance wide-area network connections. OSCARS enables dynamic provisioning of network paths with guaranteed bandwidth and Phoebus enables the coordination and effective utilization of the OSCARS network paths. Our evaluation shows that this approach leads to improved end-to-end data transfer throughput with minimal overheads. The achievedthroughput using our overlay was limited only by the ability of the end hosts to sink the data.

  16. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  17. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2011-01-01

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  18. Performance characteristics of hybrid MPI/OpenMP implementations of NAS parallel benchmarks SP and BT on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-03-29

    The NAS Parallel Benchmarks (NPB) are well-known applications with the fixed algorithms for evaluating parallel systems and tools. Multicore supercomputers provide a natural programming paradigm for hybrid programs, whereby OpenMP can be used with the data sharing with the multicores that comprise a node and MPI can be used with the communication between nodes. In this paper, we use SP and BT benchmarks of MPI NPB 3.3 as a basis for a comparative approach to implement hybrid MPI/OpenMP versions of SP and BT. In particular, we can compare the performance of the hybrid SP and BT with the MPI counterparts on large-scale multicore supercomputers. Our performance results indicate that the hybrid SP outperforms the MPI SP by up to 20.76%, and the hybrid BT outperforms the MPI BT by up to 8.58% on up to 10,000 cores on BlueGene/P at Argonne National Laboratory and Jaguar (Cray XT4/5) at Oak Ridge National Laboratory. We also use performance tools and MPI trace libraries available on these supercomputers to further investigate the performance characteristics of the hybrid SP and BT.

  19. Simulation of x-rays in refractive structure by the Monte Carlo method using the supercomputer SKIF

    International Nuclear Information System (INIS)

    Yaskevich, Yu.R.; Kravchenko, O.I.; Soroka, I.I.; Chembrovskij, A.G.; Kolesnik, A.S.; Serikova, N.V.; Petrov, P.V.; Kol'chevskij, N.N.

    2013-01-01

    Software 'Xray-SKIF' for the simulation of the X-rays in refractive structures by the Monte-Carlo method using the supercomputer SKIF BSU are developed. The program generates a large number of rays propagated from a source to the refractive structure. The ray trajectory under assumption of geometrical optics is calculated. Absorption is calculated for each ray inside of refractive structure. Dynamic arrays are used for results of calculation rays parameters, its restore the X-ray field distributions very fast at different position of detector. It was found that increasing the number of processors leads to proportional decreasing of calculation time: simulation of 10 8 X-rays using supercomputer with the number of processors from 1 to 30 run-times equal 3 hours and 6 minutes, respectively. 10 9 X-rays are calculated by software 'Xray-SKIF' which allows to reconstruct the X-ray field after refractive structure with a special resolution of 1 micron. (authors)

  20. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    International Nuclear Information System (INIS)

    Ammendola, R; Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2012-01-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  1. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN Tor Vergata (Italy); Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P [INFN Roma (Italy)

    2012-12-13

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative - the QUonG project - whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k Euro-Sign /T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  2. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  3. The ASCI Network for SC 2000: Gigabyte Per Second Networking; TOPICAL

    International Nuclear Information System (INIS)

    PRATT, THOMAS J.; NAEGLE, JOHN H.; MARTINEZ JR., LUIS G.; HU, TAN CHANG; MILLER, MARC M.; BARNABY, MARTY L.; ADAMS, ROGER L.; KLAUS, EDWARD J.

    2001-01-01

    This document highlights the Discom's Distance computing and communication team activities at the 2000 Supercomputing conference in Dallas Texas. This conference is sponsored by the IEEE and ACM. Sandia's participation in the conference has now spanned a decade, for the last five years Sandia National Laboratories, Los Alamos National Lab and Lawrence Livermore National Lab have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives, Program rubric to demonstrate ASCI's emerging capabilities in computational science and our combined expertise in high performance computer science and communication networking developments within the program. At SC 2000, DISCOM demonstrated an infrastructure. DISCOM2 uses this forum to demonstrate and focus communication and pre-standard implementation of 10 Gigabit Ethernet, the first gigabyte per second data IP network transfer application, and VPN technology that enabled a remote Distributed Resource Management tools demonstration. Additionally a national OC48 POS network was constructed to support applications running between the show floor and home facilities. This network created the opportunity to test PSE's Parallel File Transfer Protocol (PFTP) across a network that had similar speed and distances as the then proposed DISCOM WAN. The SCINET SC2000 showcased wireless networking and the networking team had the opportunity to explore this emerging technology while on the booth. This paper documents those accomplishments, discusses the details of their convention exhibit floor. We also supported the production networking needs of the implementation, and describes how these demonstrations supports DISCOM overall strategies in high performance computing networking

  4. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  5. Physicists set new record for network data transfer

    CERN Multimedia

    2006-01-01

    "An internatinal team of physicists, computer scientists, and network engineers led by the California Institute of Technology, CERN and the University of Michigan and partners at the University of Florida and Vanderbilt, as well as participants from Brazil (Rio de Janeiro State University, UERJ, and the State Universities of Sao Paulo, USP and UNESP) and Korea (Kyungpook National University, KISTI) joined forces to set new records for sustained data transfer between storage systems during the SuperComputing 2006 (SC06) Bandwidth Challenge (BWC)." (2 pages)

  6. Reactive flow simulations in complex geometries with high-performance supercomputing

    International Nuclear Information System (INIS)

    Rehm, W.; Gerndt, M.; Jahn, W.; Vogelsang, R.; Binninger, B.; Herrmann, M.; Olivier, H.; Weber, M.

    2000-01-01

    In this paper, we report on a modern field code cluster consisting of state-of-the-art reactive Navier-Stokes- and reactive Euler solvers that has been developed on vector- and parallel supercomputers at the research center Juelich. This field code cluster is used for hydrogen safety analyses of technical systems, for example, in the field of nuclear reactor safety and conventional hydrogen demonstration plants with fuel cells. Emphasis is put on the assessment of combustion loads, which could result from slow, fast or rapid flames, including transition from deflagration to detonation. As a sample of proof tests, the special tools have been tested for specific tasks, based on the comparison of experimental and numerical results, which are in reasonable agreement. (author)

  7. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  8. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  9. Harnessing Petaflop-Scale Multi-Core Supercomputing for Problems in Space Science

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Bowers, K. J.; Daughton, W.; Bergen, B.; Kwan, T. J.

    2008-12-01

    The particle-in-cell kinetic plasma code VPIC has been migrated successfully to the world's fastest supercomputer, Roadrunner, a hybrid multi-core platform built by IBM for the Los Alamos National Laboratory. How this was achieved will be described and examples of state-of-the-art calculations in space science, in particular, the study of magnetic reconnection, will be presented. With VPIC on Roadrunner, we have performed, for the first time, plasma PIC calculations with over one trillion particles, >100× larger than calculations considered "heroic" by community standards. This allows examination of physics at unprecedented scale and fidelity. Roadrunner is an example of an emerging paradigm in supercomputing: the trend toward multi-core systems with deep hierarchies and where memory bandwidth optimization is vital to achieving high performance. Getting VPIC to perform well on such systems is a formidable challenge: the core algorithm is memory bandwidth limited with low compute-to-data ratio and requires random access to memory in its inner loop. That we were able to get VPIC to perform and scale well, achieving >0.374 Pflop/s and linear weak scaling on real physics problems on up to the full 12240-core Roadrunner machine, bodes well for harnessing these machines for our community's needs in the future. Many of the design considerations encountered commute to other multi-core and accelerated (e.g., via GPU) platforms and we modified VPIC with flexibility in mind. These will be summarized and strategies for how one might adapt a code for such platforms will be shared. Work performed under the auspices of the U.S. DOE by the LANS LLC Los Alamos National Laboratory. Dr. Bowers is a LANL Guest Scientist; he is presently at D. E. Shaw Research LLC, 120 W 45th Street, 39th Floor, New York, NY 10036.

  10. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

  11. Integration of Titan supercomputer at OLCF with ATLAS Production System

    Science.gov (United States)

    Barreiro Megino, F.; De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Padolski, S.; Panitkin, S.; Wells, J.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job submission to Titan’s batch queues and local data management, with lightweight MPI wrappers to run single node workloads in parallel on Titan’s multi-core worker nodes. It provides for running of standard ATLAS production jobs on unused resources (backfill) on Titan. The system already allowed ATLAS to collect on Titan millions of core-hours per month, execute hundreds of thousands jobs, while simultaneously improving Titans utilization efficiency. We will discuss the details of the implementation, current experience with running the system, as well as future plans aimed at improvements in scalability and efficiency. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to

  12. Use of QUADRICS supercomputer as embedded simulator in emergency management systems

    International Nuclear Information System (INIS)

    Bove, R.; Di Costanzo, G.; Ziparo, A.

    1996-07-01

    The experience related to the implementation of a MRBT, atmospheric spreading model with a short duration releasing, are reported. This model was implemented on a QUADRICS-Q1 supercomputer. First is reported a description of the MRBT model. It is an analytical model to study the speadings of light gases realised in the atmosphere cause incidental releasing. The solution of diffusion equation is Gaussian like. It yield the concentration of pollutant substance released. The concentration is function of space and time. Thus the QUADRICS architecture is introduced. And the implementation of the model is described. At the end it will be consider the integration of the QUADRICS-based model as simulator in a emergency management system

  13. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Science.gov (United States)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  14. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    Directory of Open Access Journals (Sweden)

    DeTar Carleton

    2018-01-01

    Full Text Available With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  15. Symbolic simulation of engineering systems on a supercomputer

    International Nuclear Information System (INIS)

    Ragheb, M.; Gvillo, D.; Makowitz, H.

    1986-01-01

    Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed

  16. Parallel simulation of tsunami inundation on a large-scale supercomputer

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the

  17. The effect of increasing levels of embedded generation on the distribution network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Earp, G K; Howson, D; Owen, R D; Wright, A J

    1999-10-01

    This report was commissioned as part of the EA Technology Strategic Technology Programme under guidance of the Module 5 (Embedded Generation) Steering Group. This report aims to provide information related to the distribution and supply of electricity in the context of increasing levels of embedded generation. There is a brief description of the operating environment within which electricity companies in the UK must operate. Technical issues related to the connection of generation to the existing distribution infrastructure are highlighted and the design philosophy adopted by network designers in accommodating applications for the connection of embedded generation to the network is discussed. The effects embedded generation has on the network and the issues raised are presented as many of them present barriers to the connection of embedded generators. The final chapters cover the forecast of required connection to 2010 and solutions to restrictions preventing the connection of more embedded generation to the network. (author)

  18. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Directory of Open Access Journals (Sweden)

    Eli Dart

    2014-01-01

    Full Text Available The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  19. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development

    Science.gov (United States)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.

    2009-12-01

    NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are

  20. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  1. Micro-mechanical Simulations of Soils using Massively Parallel Supercomputers

    Directory of Open Access Journals (Sweden)

    David W. Washington

    2004-06-01

    Full Text Available In this research a computer program, Trubal version 1.51, based on the Discrete Element Method was converted to run on a Connection Machine (CM-5,a massively parallel supercomputer with 512 nodes, to expedite the computational times of simulating Geotechnical boundary value problems. The dynamic memory algorithm in Trubal program did not perform efficiently in CM-2 machine with the Single Instruction Multiple Data (SIMD architecture. This was due to the communication overhead involving global array reductions, global array broadcast and random data movement. Therefore, a dynamic memory algorithm in Trubal program was converted to a static memory arrangement and Trubal program was successfully converted to run on CM-5 machines. The converted program was called "TRUBAL for Parallel Machines (TPM." Simulating two physical triaxial experiments and comparing simulation results with Trubal simulations validated the TPM program. With a 512 nodes CM-5 machine TPM produced a nine-fold speedup demonstrating the inherent parallelism within algorithms based on the Discrete Element Method.

  2. Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1989-01-01

    The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)

  3. Unique Methodologies for Nano/Micro Manufacturing Job Training Via Desktop Supercomputer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Clyde [Northern Illinois Univ., DeKalb, IL (United States); Karonis, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Lurio, Laurence [Northern Illinois Univ., DeKalb, IL (United States); Piot, Philippe [Northern Illinois Univ., DeKalb, IL (United States); Xiao, Zhili [Northern Illinois Univ., DeKalb, IL (United States); Glatz, Andreas [Northern Illinois Univ., DeKalb, IL (United States); Pohlman, Nicholas [Northern Illinois Univ., DeKalb, IL (United States); Hou, Minmei [Northern Illinois Univ., DeKalb, IL (United States); Demir, Veysel [Northern Illinois Univ., DeKalb, IL (United States); Song, Jie [Northern Illinois Univ., DeKalb, IL (United States); Duffin, Kirk [Northern Illinois Univ., DeKalb, IL (United States); Johns, Mitrick [Northern Illinois Univ., DeKalb, IL (United States); Sims, Thomas [Northern Illinois Univ., DeKalb, IL (United States); Yin, Yanbin [Northern Illinois Univ., DeKalb, IL (United States)

    2012-11-21

    This project establishes an initiative in high speed (Teraflop)/large-memory desktop supercomputing for modeling and simulation of dynamic processes important for energy and industrial applications. It provides a training ground for employment of current students in an emerging field with skills necessary to access the large supercomputing systems now present at DOE laboratories. It also provides a foundation for NIU faculty to quantum leap beyond their current small cluster facilities. The funding extends faculty and student capability to a new level of analytic skills with concomitant publication avenues. The components of the Hewlett Packard computer obtained by the DOE funds create a hybrid combination of a Graphics Processing System (12 GPU/Teraflops) and a Beowulf CPU system (144 CPU), the first expandable via the NIU GAEA system to ~60 Teraflops integrated with a 720 CPU Beowulf system. The software is based on access to the NVIDIA/CUDA library and the ability through MATLAB multiple licenses to create additional local programs. A number of existing programs are being transferred to the CPU Beowulf Cluster. Since the expertise necessary to create the parallel processing applications has recently been obtained at NIU, this effort for software development is in an early stage. The educational program has been initiated via formal tutorials and classroom curricula designed for the coming year. Specifically, the cost focus was on hardware acquisitions and appointment of graduate students for a wide range of applications in engineering, physics and computer science.

  4. Network discovery, characterization, and prediction : a grand challenge LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, W. Philip, Jr.

    2010-11-01

    This report is the final summation of Sandia's Grand Challenge LDRD project No.119351, 'Network Discovery, Characterization and Prediction' (the 'NGC') which ran from FY08 to FY10. The aim of the NGC, in a nutshell, was to research, develop, and evaluate relevant analysis capabilities that address adversarial networks. Unlike some Grand Challenge efforts, that ambition created cultural subgoals, as well as technical and programmatic ones, as the insistence on 'relevancy' required that the Sandia informatics research communities and the analyst user communities come to appreciate each others needs and capabilities in a very deep and concrete way. The NGC generated a number of technical, programmatic, and cultural advances, detailed in this report. There were new algorithmic insights and research that resulted in fifty-three refereed publications and presentations; this report concludes with an abstract-annotated bibliography pointing to them all. The NGC generated three substantial prototypes that not only achieved their intended goals of testing our algorithmic integration, but which also served as vehicles for customer education and program development. The NGC, as intended, has catalyzed future work in this domain; by the end it had already brought in, in new funding, as much funding as had been invested in it. Finally, the NGC knit together previously disparate research staff and user expertise in a fashion that not only addressed our immediate research goals, but which promises to have created an enduring cultural legacy of mutual understanding, in service of Sandia's national security responsibilities in cybersecurity and counter proliferation.

  5. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, A; Kalia, R K; Nomura, K; Sharma, A; Vashishta, P; Shimojo, F; van Duin, A; Goddard, III, W A; Biswas, R; Srivastava, D; Yang, L H

    2006-09-04

    We present a de novo hierarchical simulation framework for first-principles based predictive simulations of materials and their validation on high-end parallel supercomputers and geographically distributed clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote procedure call + message passing + threads programming. High-end computing platforms such as IBM BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well validated, chemically reactive atomistic simulations--1.06 billion-atom fast reactive force-field MD and 11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density functional theory on adaptive multigrids--in addition to 134 billion-atom non-reactive space-time multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L nodes. We have also achieved an automated execution of hierarchical QM

  6. An Optimized Parallel FDTD Topology for Challenging Electromagnetic Simulations on Supercomputers

    Directory of Open Access Journals (Sweden)

    Shugang Jiang

    2015-01-01

    Full Text Available It may not be a challenge to run a Finite-Difference Time-Domain (FDTD code for electromagnetic simulations on a supercomputer with more than 10 thousands of CPU cores; however, to make FDTD code work with the highest efficiency is a challenge. In this paper, the performance of parallel FDTD is optimized through MPI (message passing interface virtual topology, based on which a communication model is established. The general rules of optimal topology are presented according to the model. The performance of the method is tested and analyzed on three high performance computing platforms with different architectures in China. Simulations including an airplane with a 700-wavelength wingspan, and a complex microstrip antenna array with nearly 2000 elements are performed very efficiently using a maximum of 10240 CPU cores.

  7. Development of a high performance eigensolver on the peta-scale next generation supercomputer system

    International Nuclear Information System (INIS)

    Imamura, Toshiyuki; Yamada, Susumu; Machida, Masahiko

    2010-01-01

    For the present supercomputer systems, a multicore and multisocket processors are necessary to build a system, and choice of interconnection is essential. In addition, for effective development of a new code, high performance, scalable, and reliable numerical software is one of the key items. ScaLAPACK and PETSc are well-known software on distributed memory parallel computer systems. It is needless to say that highly tuned software towards new architecture like many-core processors must be chosen for real computation. In this study, we present a high-performance and high-scalable eigenvalue solver towards the next-generation supercomputer system, so called 'K-computer' system. We have developed two versions, the standard version (eigen s) and enhanced performance version (eigen sx), which are developed on the T2K cluster system housed at University of Tokyo. Eigen s employs the conventional algorithms; Householder tridiagonalization, divide and conquer (DC) algorithm, and Householder back-transformation. They are carefully implemented with blocking technique and flexible two-dimensional data-distribution to reduce the overhead of memory traffic and data transfer, respectively. Eigen s performs excellently on the T2K system with 4096 cores (theoretical peak is 37.6 TFLOPS), and it shows fine performance 3.0 TFLOPS with a two hundred thousand dimensional matrix. The enhanced version, eigen sx, uses more advanced algorithms; the narrow-band reduction algorithm, DC for band matrices, and the block Householder back-transformation with WY-representation. Even though this version is still on a test stage, it shows 4.7 TFLOPS with the same dimensional matrix on eigen s. (author)

  8. Gigabit network technology. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C.M.C. [ed.

    1996-10-01

    Current digital networks are evolving toward distributed multimedia with a wide variety of applications with individual data rates ranging from kb/sec to tens and hundreds of Mb/sec. Link speed requirements are pushing into the Gb/sec range and beyond the envelop of electronic networking capabilities. There is a vast amount of untapped bandwidth available in the low-attenuation communication bands of an optical fiber. The capacity in one fiber thread is enough to carry more than two thousand times as much information as all the current radio and microwave frequencies. And while fiber optics has replaced copper wire as the transmission medium of choice, the communication capacity of conventional fiber optic networks is ultimately limited by electronic processing speeds.

  9. Watson will see you now: a supercomputer to help clinicians make informed treatment decisions.

    Science.gov (United States)

    Doyle-Lindrud, Susan

    2015-02-01

    IBM has collaborated with several cancer care providers to develop and train the IBM supercomputer Watson to help clinicians make informed treatment decisions. When a patient is seen in clinic, the oncologist can input all of the clinical information into the computer system. Watson will then review all of the data and recommend treatment options based on the latest evidence and guidelines. Once the oncologist makes the treatment decision, this information can be sent directly to the insurance company for approval. Watson has the ability to standardize care and accelerate the approval process, a benefit to the healthcare provider and the patient.

  10. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    Science.gov (United States)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  11. Final Report for File System Support for Burst Buffers on HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mohror, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-27

    Distributed burst buffers are a promising storage architecture for handling I/O workloads for exascale computing. As they are being deployed on more supercomputers, a file system that efficiently manages these burst buffers for fast I/O operations carries great consequence. Over the past year, FSU team has undertaken several efforts to design, prototype and evaluate distributed file systems for burst buffers on HPC systems. These include MetaKV: a Key-Value Store for Metadata Management of Distributed Burst Buffers, a user-level file system with multiple backends, and a specialized file system for large datasets of deep neural networks. Our progress for these respective efforts are elaborated further in this report.

  12. Adventures in supercomputing: An innovative program for high school teachers

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C.E.; Hicks, H.R.; Summers, B.G. [Oak Ridge National Lab., TN (United States); Staten, D.G. [Wartburg Central High School, TN (United States)

    1994-12-31

    Within the realm of education, seldom does an innovative program become available with the potential to change an educator`s teaching methodology. Adventures in Supercomputing (AiS), sponsored by the U.S. Department of Energy (DOE), is such a program. It is a program for high school teachers that changes the teacher paradigm from a teacher-directed approach of teaching to a student-centered approach. {open_quotes}A student-centered classroom offers better opportunities for development of internal motivation, planning skills, goal setting and perseverance than does the traditional teacher-directed mode{close_quotes}. Not only is the process of teaching changed, but the cross-curricula integration within the AiS materials is remarkable. Written from a teacher`s perspective, this paper will describe the AiS program and its effects on teachers and students, primarily at Wartburg Central High School, in Wartburg, Tennessee. The AiS program in Tennessee is sponsored by Oak Ridge National Laboratory (ORNL).

  13. The Evolution of Research and Education Networks and their Essential Role in Modern Science

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, W.; Chaniotakis, E.; Dart, E.; Guok, C.; Metzger, J.; Tierney, B.

    2009-06-15

    ESnet - the Energy Sciences Network - has the mission of enabling the aspects of the US Department of Energy's Office of Science programs and facilities that depend on large collaborations and large-scale data sharing to accomplish their science. The Office of Science supports a large fraction of all U.S. physical science research and operates many large science instruments and supercomputers that are used by both DOE and University researchers. The network requirements of this community have been explored in some detail by ESnet and a long-term plan has been developed in order to ensure adequate networking to support the science. In this paper we describe the planning process (which has been in place for several years and was the basis of a new network that is just now being completed and a new set of network services) and examine the effectiveness and adequacy of the planning process in the light of evolving science requirements.

  14. Re-inventing electromagnetics - Supercomputing solution of Maxwell's equations via direct time integration on space grids

    International Nuclear Information System (INIS)

    Taflove, A.

    1992-01-01

    This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs

  15. HEP Science Network Requirements--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Jon; Barczyk, Artur; Blatecky, Alan; Boehnlein, Amber; Carlson, Rich; Chekanov, Sergei; Cotter, Steve; Cottrell, Les; Crawford, Glen; Crawford, Matt; Dart, Eli; Dattoria, Vince; Ernst, Michael; Fisk, Ian; Gardner, Rob; Johnston, Bill; Kent, Steve; Lammel, Stephan; Loken, Stewart; Metzger, Joe; Mount, Richard; Ndousse-Fetter, Thomas; Newman, Harvey; Schopf, Jennifer; Sekine, Yukiko; Stone, Alan; Tierney, Brian; Tull, Craig; Zurawski, Jason

    2010-04-27

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans

  16. HEP Science Network Requirements. Final Report

    International Nuclear Information System (INIS)

    Dart, Eli; Tierney, Brian

    2010-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2009 ESnet and the Office of High Energy Physics (HEP), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by HEP. The International HEP community has been a leader in data intensive science from the beginning. HEP data sets have historically been the largest of all scientific data sets, and the communty of interest the most distributed. The HEP community was also the first to embrace Grid technologies. The requirements identified at the workshop are summarized below, and described in more detail in the case studies and the Findings section: (1) There will be more LHC Tier-3 sites than orginally thought, and likely more Tier-2 to Tier-2 traffic than was envisioned. It it not yet known what the impact of this will be on ESnet, but we will need to keep an eye on this traffic. (2) The LHC Tier-1 sites (BNL and FNAL) predict the need for 40-50 Gbps of data movement capacity in 2-5 years, and 100-200 Gbps in 5-10 years for HEP program related traffic. Other key HEP sites include LHC Tier-2 and Tier-3 sites, many of which are located at universities. To support the LHC, ESnet must continue its collaborations with university and international networks. (3) While in all cases the deployed 'raw' network bandwidth must exceed the user requirements in order to meet the data transfer and reliability requirements, network engineering for trans-Atlantic connectivity

  17. Research center Juelich to install Germany's most powerful supercomputer new IBM System for science and research will achieve 5.8 trillion computations per second

    CERN Multimedia

    2002-01-01

    "The Research Center Juelich, Germany, and IBM today announced that they have signed a contract for the delivery and installation of a new IBM supercomputer at the Central Institute for Applied Mathematics" (1/2 page).

  18. Networking and Information Technology Workforce Study: Final Report

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This report presents the results of a study of the global Networking and Information Technology NIT workforce undertaken for the Networking and Information...

  19. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    Science.gov (United States)

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  20. Wavelet transform-vector quantization compression of supercomputer ocean model simulation output

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J N; Brislawn, C M

    1992-11-12

    We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.

  1. The application of neural network techniques to magnetic and optical inverse problems

    International Nuclear Information System (INIS)

    Jones, H.V.

    2000-12-01

    The processing power of the computer has increased at unimaginable rates over the last few decades. However, even today's fastest computer can take several hours to find solutions to some mathematical problems; and there are instances where a high powered supercomputer may be impractical, with the need for near instant solutions just as important (such as in an on-line testing system). This led us to believe that such complex problems could be solved using a novel approach, whereby the system would have prior knowledge about the expected solutions through a process of learning. One method of approaching this kind of problem is through the use of machine learning. Just as a human can be trained and is able to learn from past experiences, a machine is can do just the same. This is the concept of neural networks. The research which was conducted involves the investigation of various neural network techniques, and their applicability to solve some known complex inverse problems in the field of magnetic and optical recording. In some cases a comparison is also made to more conventional methods of solving the problems, from which it was possible to outline some key advantages of using a neural network approach. We initially investigated the application of neural networks to transverse susceptibility data in order to determine anisotropy distributions. This area of research is proving to be very important, as it gives us information about the switching field distribution, which then determines the minimum transition width achievable in a medium, and affects the overwrite characteristics of the media. Secondly, we investigated a similar situation, but applied to an optical problem. This involved the determination of important compact disc parameters from the diffraction pattern of a laser from a disc. This technique was then intended for use in an on-line testing system. Finally we investigated another area of neural networks with the analysis of magnetisation maps and

  2. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  3. Distributed Finite Element Analysis Using a Transputer Network

    Science.gov (United States)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  4. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  5. Computational fluid dynamics: complex flows requiring supercomputers. January 1975-July 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-July 1988

    International Nuclear Information System (INIS)

    1988-08-01

    This bibliography contains citations concerning computational fluid dynamics (CFD), a new method in computational science to perform complex flow simulations in three dimensions. Applications include aerodynamic design and analysis for aircraft, rockets, and missiles, and automobiles; heat-transfer studies; and combustion processes. Included are references to supercomputers, array processors, and parallel processors where needed for complete, integrated design. Also included are software packages and grid-generation techniques required to apply CFD numerical solutions. Numerical methods for fluid dynamics, not requiring supercomputers, are found in a separate published search. (Contains 83 citations fully indexed and including a title list.)

  6. Visualizing Network Traffic to Understand the Performance of Massively Parallel Simulations

    KAUST Repository

    Landge, A. G.

    2012-12-01

    The performance of massively parallel applications is often heavily impacted by the cost of communication among compute nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D-s performance on an IBM Blue Gene/P system. © 1995-2012 IEEE.

  7. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  8. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu

    2013-07-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  9. Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations

    International Nuclear Information System (INIS)

    Shankar, V.

    1991-01-01

    The progression of supercomputing is reviewed from the point of view of computational fluid dynamics (CFD), and multidisciplinary problems impacting the design of advanced aerospace configurations are addressed. The application of full potential and Euler equations to transonic and supersonic problems in the 70s and early 80s is outlined, along with Navier-Stokes computations widespread during the late 80s and early 90s. Multidisciplinary computations currently in progress are discussed, including CFD and aeroelastic coupling for both static and dynamic flexible computations, CFD, aeroelastic, and controls coupling for flutter suppression and active control, and the development of a computational electromagnetics technology based on CFD methods. Attention is given to computational challenges standing in a way of the concept of establishing a computational environment including many technologies. 40 refs

  10. Nuclear Physics Science Network Requirements Workshop, May 6 and 7, 2008. Final Report

    International Nuclear Information System (INIS)

    Tierney, Ed. Brian L; Dart, Ed. Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-01-01

    to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations

  11. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  12. A user-friendly web portal for T-Coffee on supercomputers

    Directory of Open Access Journals (Sweden)

    Koetsier Jos

    2011-05-01

    Full Text Available Abstract Background Parallel T-Coffee (PTC was the first parallel implementation of the T-Coffee multiple sequence alignment tool. It is based on MPI and RMA mechanisms. Its purpose is to reduce the execution time of the large-scale sequence alignments. It can be run on distributed memory clusters allowing users to align data sets consisting of hundreds of proteins within a reasonable time. However, most of the potential users of this tool are not familiar with the use of grids or supercomputers. Results In this paper we show how PTC can be easily deployed and controlled on a super computer architecture using a web portal developed using Rapid. Rapid is a tool for efficiently generating standardized portlets for a wide range of applications and the approach described here is generic enough to be applied to other applications, or to deploy PTC on different HPC environments. Conclusions The PTC portal allows users to upload a large number of sequences to be aligned by the parallel version of TC that cannot be aligned by a single machine due to memory and execution time constraints. The web portal provides a user-friendly solution.

  13. Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers

    Science.gov (United States)

    Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi

    2017-10-01

    Nowadays, high performance computing (HPC) systems experience a disruptive moment with a variety of novel architectures and frameworks, without any clarity of which one is going to prevail. In this context, the portability of codes across different architectures is of major importance. This paper presents a portable implementation model based on an algebraic operational approach for direct numerical simulation (DNS) and large eddy simulation (LES) of incompressible turbulent flows using unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combination of vectors and dot product. The main idea is based on decomposing the nonlinear operators into a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing CFD codes on new architectures.

  14. EDF's experience with supercomputing and challenges ahead - towards multi-physics and multi-scale approaches

    International Nuclear Information System (INIS)

    Delbecq, J.M.; Banner, D.

    2003-01-01

    Nuclear power plants are a major asset of the EDF company. To remain so, in particular in a context of deregulation, competitiveness, safety and public acceptance are three conditions. These stakes apply both to existing plants and to future reactors. The purpose of the presentation is to explain how supercomputing can help EDF to satisfy these requirements. Three examples are described in detail: ensuring optimal use of nuclear fuel under wholly safe conditions, understanding and simulating the material deterioration mechanisms and moving forward with numerical simulation for the performance of EDF's activities. In conclusion, a broader vision of EDF long term R and D in the field of numerical simulation is given and especially of five challenges taken up by EDF together with its industrial and scientific partners. (author)

  15. The Earthscope USArray Array Network Facility (ANF): Evolution of Data Acquisition, Processing, and Storage Systems

    Science.gov (United States)

    Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.

    2009-12-01

    Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem

  16. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  17. SOFTWARE FOR SUPERCOMPUTER SKIF “ProLit-lC” and “ProNRS-lC” FOR FOUNDRY AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2008-01-01

    Full Text Available The data of modeling on supercomputer system SKIF of technological process of  molds filling by means of computer system 'ProLIT-lc', and also data of modeling of the steel pouring process by means ofTroNRS-lc'are presented. The influence of number of  processors of  multinuclear computer system SKIF on acceleration and time of  modeling of technological processes, connected with production of castings and slugs, is shown.

  18. Palacios and Kitten : high performance operating systems for scalable virtualized and native supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Widener, Patrick (University of New Mexico); Jaconette, Steven (Northwestern University); Bridges, Patrick G. (University of New Mexico); Xia, Lei (Northwestern University); Dinda, Peter (Northwestern University); Cui, Zheng.; Lange, John (Northwestern University); Hudson, Trammell B.; Levenhagen, Michael J.; Pedretti, Kevin Thomas Tauke; Brightwell, Ronald Brian

    2009-09-01

    Palacios and Kitten are new open source tools that enable applications, whether ported or not, to achieve scalable high performance on large machines. They provide a thin layer over the hardware to support both full-featured virtualized environments and native code bases. Kitten is an OS under development at Sandia that implements a lightweight kernel architecture to provide predictable behavior and increased flexibility on large machines, while also providing Linux binary compatibility. Palacios is a VMM that is under development at Northwestern University and the University of New Mexico. Palacios, which can be embedded into Kitten and other OSes, supports existing, unmodified applications and operating systems by using virtualization that leverages hardware technologies. We describe the design and implementation of both Kitten and Palacios. Our benchmarks show that they provide near native, scalable performance. Palacios and Kitten provide an incremental path to using supercomputer resources that is not performance-compromised.

  19. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Directory of Open Access Journals (Sweden)

    Jan eHahne

    2015-09-01

    Full Text Available Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy...

  20. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    Science.gov (United States)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed

  1. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  2. Assessment techniques for a learning-centered curriculum: evaluation design for adventures in supercomputing

    Energy Technology Data Exchange (ETDEWEB)

    Helland, B. [Ames Lab., IA (United States); Summers, B.G. [Oak Ridge National Lab., TN (United States)

    1996-09-01

    As the classroom paradigm shifts from being teacher-centered to being learner-centered, student assessments are evolving from typical paper and pencil testing to other methods of evaluation. Students should be probed for understanding, reasoning, and critical thinking abilities rather than their ability to return memorized facts. The assessment of the Department of Energy`s pilot program, Adventures in Supercomputing (AiS), offers one example of assessment techniques developed for learner-centered curricula. This assessment has employed a variety of methods to collect student data. Methods of assessment used were traditional testing, performance testing, interviews, short questionnaires via email, and student presentations of projects. The data obtained from these sources have been analyzed by a professional assessment team at the Center for Children and Technology. The results have been used to improve the AiS curriculum and establish the quality of the overall AiS program. This paper will discuss the various methods of assessment used and the results.

  3. Modeling radiative transport in ICF plasmas on an IBM SP2 supercomputer

    International Nuclear Information System (INIS)

    Johansen, J.A.; MacFarlane, J.J.; Moses, G.A.

    1995-01-01

    At the University of Wisconsin-Madison the authors have integrated a collisional-radiative-equilibrium model into their CONRAD radiation-hydrodynamics code. This integrated package allows them to accurately simulate the transport processes involved in ICF plasmas; including the important effects of self-absorption of line-radiation. However, as they increase the amount of atomic structure utilized in their transport models, the computational demands increase nonlinearly. In an attempt to meet this increased computational demand, they have recently embarked on a mission to parallelize the CONRAD program. The parallel CONRAD development is being performed on an IBM SP2 supercomputer. The parallelism is based on a message passing paradigm, and is being implemented using PVM. At the present time they have determined that approximately 70% of the sequential program can be executed in parallel. Accordingly, they expect that the parallel version will yield a speedup on the order of three times that of the sequential version. This translates into only 10 hours of execution time for the parallel version, whereas the sequential version required 30 hours

  4. Analyzing the reliability of shuffle-exchange networks using reliability block diagrams

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2014-01-01

    Supercomputers and multi-processor systems are comprised of thousands of processors that need to communicate in an efficient way. One reasonable solution would be the utilization of multistage interconnection networks (MINs), where the challenge is to analyze the reliability of such networks. One of the methods to increase the reliability and fault-tolerance of the MINs is use of various switching stages. Therefore, recently, the reliability of one of the most common MINs namely shuffle-exchange network (SEN) has been evaluated through the investigation on the impact of increasing the number of switching stage. Also, it is concluded that the reliability of SEN with one additional stage (SEN+) is better than SEN or SEN with two additional stages (SEN+2), even so, the reliability of SEN is better compared to SEN with two additional stages (SEN+2). Here we re-evaluate the reliability of these networks where the results of the terminal, broadcast, and network reliability analysis demonstrate that SEN+ and SEN+2 continuously outperform SEN and are very alike in terms of reliability. - Highlights: • The impact of increasing the number of stages on reliability of MINs is investigated. • The RBD method as an accurate method is used for the reliability analysis of MINs. • Complex series–parallel RBDs are used to determine the reliability of the MINs. • All measures of the reliability (i.e. terminal, broadcast, and network reliability) are analyzed. • All reliability equations will be calculated for different size N×N

  5. Solving sparse linear least squares problems on some supercomputers by using large dense blocks

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Ostromsky, T; Sameh, A

    1997-01-01

    technique is preferable to sparse matrix technique when the matrices are not large, because the high computational speed compensates fully the disadvantages of using more arithmetic operations and more storage. For very large matrices the computations must be organized as a sequence of tasks in each......Efficient subroutines for dense matrix computations have recently been developed and are available on many high-speed computers. On some computers the speed of many dense matrix operations is near to the peak-performance. For sparse matrices storage and operations can be saved by operating only...... and storing only nonzero elements. However, the price is a great degradation of the speed of computations on supercomputers (due to the use of indirect addresses, to the need to insert new nonzeros in the sparse storage scheme, to the lack of data locality, etc.). On many high-speed computers a dense matrix...

  6. Accelerating Science Impact through Big Data Workflow Management and Supercomputing

    Directory of Open Access Journals (Sweden)

    De K.

    2016-01-01

    Full Text Available The Large Hadron Collider (LHC, operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed AnalysisWorkload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF, is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF’s Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing.

  7. Meeting the memory challenges of brain-scale network simulation

    Directory of Open Access Journals (Sweden)

    Susanne eKunkel

    2012-01-01

    Full Text Available The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10^5 neurons with up to 10^9 synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are one or two orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been studied in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Bluegene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of a neuronal simulator as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place.

  8. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    Science.gov (United States)

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on

  9. Fluctuations and transport in fusion plasmas. Final report

    International Nuclear Information System (INIS)

    Gould, R.W.; Liewer, P.C.

    1995-01-01

    The energy confinement in tokamaks in thought to be limited by transport caused by plasma turbulence. Three dimensional plasma particle-in-cell (PIC) codes are used to model the turbulent transport in tokamaks to attempt to understand this phenomena so that tokamaks can be made more efficient. Presently, hundreds of hours of Cray time are used to model these experiments and much bigger and longer runs are desired, to model a large tokamak with realistic parameters is beyond the capability of existing sequential supercomputers. Parallel supercomputers might be a cost effect tool for performing such large scale 3D tokamak simulations. The goal of the work was to develop algorithms for performing PIC codes on coarse-grained message passing parallel computers and to evaluate the performance of such parallel computers on PIC codes. This algorithm would be used in a large scale PIC production code such as the UCLA 3D gyrokinetic code

  10. Super-computer architecture

    CERN Document Server

    Hockney, R W

    1977-01-01

    This paper examines the design of the top-of-the-range, scientific, number-crunching computers. The market for such computers is not as large as that for smaller machines, but on the other hand it is by no means negligible. The present work-horse machines in this category are the CDC 7600 and IBM 360/195, and over fifty of the former machines have been sold. The types of installation that form the market for such machines are not only the major scientific research laboratories in the major countries-such as Los Alamos, CERN, Rutherford laboratory-but also major universities or university networks. It is also true that, as with sports cars, innovations made to satisfy the top of the market today often become the standard for the medium-scale computer of tomorrow. Hence there is considerable interest in examining present developments in this area. (0 refs).

  11. EDF's experience with supercomputing and challenges ahead - towards multi-physics and multi-scale approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M.; Banner, D. [Electricite de France (EDF)- R and D Division, 92 - Clamart (France)

    2003-07-01

    Nuclear power plants are a major asset of the EDF company. To remain so, in particular in a context of deregulation, competitiveness, safety and public acceptance are three conditions. These stakes apply both to existing plants and to future reactors. The purpose of the presentation is to explain how supercomputing can help EDF to satisfy these requirements. Three examples are described in detail: ensuring optimal use of nuclear fuel under wholly safe conditions, understanding and simulating the material deterioration mechanisms and moving forward with numerical simulation for the performance of EDF's activities. In conclusion, a broader vision of EDF long term R and D in the field of numerical simulation is given and especially of five challenges taken up by EDF together with its industrial and scientific partners. (author)

  12. Performance Evaluation of an Intel Haswell- and Ivy Bridge-Based Supercomputer Using Scientific and Engineering Applications

    Science.gov (United States)

    Saini, Subhash; Hood, Robert T.; Chang, Johnny; Baron, John

    2016-01-01

    We present a performance evaluation conducted on a production supercomputer of the Intel Xeon Processor E5- 2680v3, a twelve-core implementation of the fourth-generation Haswell architecture, and compare it with Intel Xeon Processor E5-2680v2, an Ivy Bridge implementation of the third-generation Sandy Bridge architecture. Several new architectural features have been incorporated in Haswell including improvements in all levels of the memory hierarchy as well as improvements to vector instructions and power management. We critically evaluate these new features of Haswell and compare with Ivy Bridge using several low-level benchmarks including subset of HPCC, HPCG and four full-scale scientific and engineering applications. We also present a model to predict the performance of HPCG and Cart3D within 5%, and Overflow within 10% accuracy.

  13. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Swaminarayan, Sriram [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Kadau, Kai [Los Alamos National Laboratory; Fossum, Gordon C [IBM CORPORATION

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementation of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.

  14. Final report for the network authentication investigation and pilot.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Dautenhahn, Nathan; Miller, Marc M.; Wiener, Dallas J; Witzke, Edward L.

    2006-11-01

    New network based authentication mechanisms are beginning to be implemented in industry. This project investigated different authentication technologies to see if and how Sandia might benefit from them. It also investigated how these mechanisms can integrate with the Sandia Two-Factor Authentication Project. The results of these investigations and a network authentication path forward strategy are documented in this report.

  15. Aviation Research and the Internet

    Science.gov (United States)

    Scott, Antoinette M.

    1995-01-01

    The Internet is a network of networks. It was originally funded by the Defense Advanced Research Projects Agency or DOD/DARPA and evolved in part from the connection of supercomputer sites across the United States. The National Science Foundation (NSF) made the most of their supercomputers by connecting the sites to each other. This made the supercomputers more efficient and now allows scientists, engineers and researchers to access the supercomputers from their own labs and offices. The high speed networks that connect the NSF supercomputers form the backbone of the Internet. The World Wide Web (WWW) is a menu system. It gathers Internet resources from all over the world into a series of screens that appear on your computer. The WWW is also a distributed. The distributed system stores data information on many computers (servers). These servers can go out and get data when you ask for it. Hypermedia is the base of the WWW. One can 'click' on a section and visit other hypermedia (pages). Our approach to demonstrating the importance of aviation research through the Internet began with learning how to put pages on the Internet (on-line) ourselves. We were assigned two aviation companies; Vision Micro Systems Inc. and Innovative Aerodynamic Technologies (IAT). We developed home pages for these SBIR companies. The equipment used to create the pages were the UNIX and Macintosh machines. HTML Supertext software was used to write the pages and the Sharp JX600S scanner to scan the images. As a result, with the use of the UNIX, Macintosh, Sun, PC, and AXIL machines, we were able to present our home pages to over 800,000 visitors.

  16. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  17. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Weingarten, D.

    1986-01-01

    GF11 is a parallel computer currently under construction at the IBM Yorktown Research Center. The machine incorporates 576 floating-point processors arrangedin a modified SIMD architecture. Each has space for 2 Mbytes of memory and is capable of 20 Mflops, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 Gflops. The floating-point processors are interconnected by a dynamically reconfigurable non-blocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics

  18. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Denneau, M.; Weingarten, D.

    1985-01-01

    GF11 is a parallel computer currently under construction at the IBM Yorktown Research Center. The machine incorporates 576 floating- point processors arranged in a modified SIMD architecture. Each has space for 2 Mbytes of memory and is capable of 20 Mflops, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 Gflops. The floating-point processors are interconnected by a dynamically reconfigurable nonblocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics

  19. New Mexico High School Supercomputing Challenge, 1990--1995: Five years of making a difference to students, teachers, schools, and communities. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Foster, M.; Kratzer, D.

    1996-02-01

    The New Mexico High School Supercomputing Challenge is an academic program dedicated to increasing interest in science and math among high school students by introducing them to high performance computing. This report provides a summary and evaluation of the first five years of the program, describes the program and shows the impact that it has had on high school students, their teachers, and their communities. Goals and objectives are reviewed and evaluated, growth and development of the program are analyzed, and future directions are discussed.

  20. Reliability Lessons Learned From GPU Experience With The Titan Supercomputer at Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gallarno, George [Christian Brothers University; Rogers, James H [ORNL; Maxwell, Don E [ORNL

    2015-01-01

    The high computational capability of graphics processing units (GPUs) is enabling and driving the scientific discovery process at large-scale. The world s second fastest supercomputer for open science, Titan, has more than 18,000 GPUs that computational scientists use to perform scientific simu- lations and data analysis. Understanding of GPU reliability characteristics, however, is still in its nascent stage since GPUs have only recently been deployed at large-scale. This paper presents a detailed study of GPU errors and their impact on system operations and applications, describing experiences with the 18,688 GPUs on the Titan supercom- puter as well as lessons learned in the process of efficient operation of GPUs at scale. These experiences are helpful to HPC sites which already have large-scale GPU clusters or plan to deploy GPUs in the future.

  1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Jon B

    2006-04-30

    computational resources in order to use the service, and the user need not be concerned with performance tuning. This can all be done by the service provider. We believe that the next dominant paradigm for high performance computing will be based on high-end network services. Putting high performance applications on-line will create a new generation of community services. Community services have several features which make their deployment challenging: (i) they must provide high performance, (ii) they are resource intensive, and (iii) they may be built upon a large existing code base. Many groups have built significant infrastructure for providing domain-specific high-end services [6][8][12][14][22][24][27][31][32]. However, this process is labor-intensive and time-consuming as evidenced by the development time required to build many of these systems. The reason is that these systems are all built from the ground-up with little existing infrastructure to utilize. Providing efficient, reliable, secure, and scalable services requires significant run-time infrastructure and middleware (Figure 1). The goal of this project is to develop general-purpose middleware to support the rapid deployment of high-end community services. In this proposal, we will focus on scalable middleware in support of resource management and reliability. We also propose a system architecture that integrates the middleware components. Our middleware and system architecture will be designed to accommodate and integrate middleware solutions for security and user interface1 developed by other groups. We will produce middleware that can be leveraged by community services running in clusters, supercomputers, and in Grids. One of the novel aspects of our approach is that the tension between resource sharing for the 'common good' and resource monopolization for the 'individual good' is significantly reduced. To increase the impact of this project, the middleware will be integrated into a widely

  2. The GF11 supercomputer

    International Nuclear Information System (INIS)

    Beetem, J.; Denneau, M.; Weingarten, D.

    1985-01-01

    GF11 is a parallel computer currently under construction at the Yorktown Research Center. The machine incorporates 576 floating-point processors arranged in a modified SIMD architecture. Each processor has space for 2 Mbytes of memory and is capable of 20 MFLOPS, giving the total machine a peak of 1.125 Gbytes of memory and 11.52 GFLOPS. The floating-point processors are interconnected by a dynamically reconfigurable non-blocking switching network. At each machine cycle any of 1024 pre-selected permutations of data can be realized among the processors. The main intended application of GF11 is a class of calculations arising from quantum chromodynamics, a proposed theory of the elementary particles which participate in nuclear interactions

  3. A criticality safety analysis code using a vectorized Monte Carlo method on the HITAC S-810 supercomputer

    International Nuclear Information System (INIS)

    Morimoto, Y.; Maruyama, H.

    1987-01-01

    A vectorized Monte Carlo criticality safety analysis code has been developed on the vector supercomputer HITAC S-810. In this code, a multi-particle tracking algorithm was adopted for effective utilization of the vector processor. A flight analysis with pseudo-scattering was developed to reduce the computational time needed for flight analysis, which represents the bulk of computational time. This new algorithm realized a speed-up of factor 1.5 over the conventional flight analysis. The code also adopted the multigroup cross section constants library of the Bodarenko type with 190 groups, with 132 groups being for fast and epithermal regions and 58 groups being for the thermal region. Evaluation work showed that this code reproduce the experimental results to an accuracy of about 1 % for the effective neutron multiplication factor. (author)

  4. vhv supply networks, problems of network structure

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, J

    1966-04-01

    The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.

  5. End-System Network Interface Controller for 100 Gb/s Wide Area Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jesse [Acadia Optronics LLC, Rockville, MD (United States)

    2013-08-30

    In recent years, network bandwidth requirements have scaled multiple folds, pushing the need for the development of data exchange mechanisms at 100 Gb/s and beyond. High performance computing, climate modeling, large-scale storage, and collaborative scientific research are examples of applications that can greatly benefit by leveraging high bandwidth capabilities of the order of 100 Gb/s. Such requirements and advances in IEEE Ethernet standards, Optical Transport Unit4 (OTU4), and host-system interconnects demand a network infrastructure supporting throughput rates of the order of 100 Gb/s with a single wavelength. To address such a demand Acadia Optronics in collaboration with the University of New Mexico, proposed and developed a end-system Network Interface Controller (NIC) for the 100Gbps WANs. Acadia’s 100G NIC employs an FPGA based system with a high-performance processor interconnect (PCIe 3.0) and a high capacity optical transmission link (CXP) to provide data transmission at the rate of 100 Gbps.

  6. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  7. Large-scale modeling of epileptic seizures: scaling properties of two parallel neuronal network simulation algorithms.

    Science.gov (United States)

    Pesce, Lorenzo L; Lee, Hyong C; Hereld, Mark; Visser, Sid; Stevens, Rick L; Wildeman, Albert; van Drongelen, Wim

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  8. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    Directory of Open Access Journals (Sweden)

    Lorenzo L. Pesce

    2013-01-01

    Full Text Available Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determined the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons and processor pool sizes (1 to 256 processors. Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.

  9. Firewall Architectures for High-Speed Networks: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  10. A special purpose computer for the calculation of the electric conductivity of a random resistor network

    International Nuclear Information System (INIS)

    Hajjar, Mansour

    1987-01-01

    The special purpose computer PERCOLA is designed for long numerical simulations on a percolation problem in Statistical Mechanics of disordered media. Our aim is to improve the actual values of the critical exponents characterizing the behaviour of random resistance networks at percolation threshold. The architecture of PERCOLA is based on an efficient iterative algorithm used to compute the electric conductivity of such networks. The calculator has the characteristics of a general purpose 64 bits floating point micro-programmable computer that can run programs for various types of problems with a peak performance of 25 Mflops. This high computing speed is a result of the pipeline architecture based on internal parallelism and separately micro-code controlled units such as: data memories, a micro-code memory, ALUs and multipliers (both WEITEK components), various data paths, a sequencer (ANALOG DEVICES component), address generators and a random number generator. Thus, the special purpose computer runs percolation problem program 10 percent faster than the supercomputer CRAY XMP. (author) [fr

  11. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.

    2012-04-18

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.

  12. Network cohesion

    OpenAIRE

    Cavalcanti, Tiago V. V.; Giannitsarou, Chryssi; Johnson, Charles R.

    2016-01-01

    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00199-016-0992-1 We define a measure of network cohesion and show how it arises naturally in a broad class of dynamic models of endogenous perpetual growth with network externalities. Via a standard growth model, we show why network cohesion is crucial for conditional convergence and explain that as cohesion increases, convergence is faster. We prove properties of network cohesion and d...

  13. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    International Nuclear Information System (INIS)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-01-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  14. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    2008-07-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote

  15. So ware-Defined Network Solutions for Science Scenarios: Performance Testing Framework and Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Settlemyer, Bradley [Los Alamos National Laboratory (LANL); Kettimuthu, R. [Argonne National Laboratory (ANL); Boley, Josh [Argonne National Laboratory (ANL); Katramatos, Dimitrios [Brookhaven National Laboratory (BNL); Rao, Nageswara S. [ORNL; Sen, Satyabrata [ORNL; Liu, Qiang [ORNL

    2018-01-01

    High-performance scientific work flows utilize supercomputers, scientific instruments, and large storage systems. Their executions require fast setup of a small number of dedicated network connections across the geographically distributed facility sites. We present Software-Defined Network (SDN) solutions consisting of site daemons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers to set up these connections. The development of these SDN solutions could be quite disruptive to the infrastructure, while requiring a close coordination among multiple sites; in addition, the large number of possible controller and device combinations to investigate could make the infrastructure unavailable to regular users for extended periods of time. In response, we develop a Virtual Science Network Environment (VSNE) using virtual machines, Mininet, and custom scripts that support the development, testing, and evaluation of SDN solutions, without the constraints and expenses of multi-site physical infrastructures; furthermore, the chosen solutions can be directly transferred to production deployments. By complementing VSNE with a physical testbed, we conduct targeted performance tests of various SDN solutions to help choose the best candidates. In addition, we propose a switching response method to assess the setup times and throughput performances of different SDN solutions, and present experimental results that show their advantages and limitations.

  16. Resource Aware Intelligent Network Services (RAINS) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Tom; Yang, Xi

    2018-01-16

    The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyberinfrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum of compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyberinfrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate

  17. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  18. LiHe{sup +} IN THE EARLY UNIVERSE: A FULL ASSESSMENT OF ITS REACTION NETWORK AND FINAL ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Francesco A. [Department of Chemistry, Universita degli Studi di Roma ' La Sapienza' , Piazzale A. Moro 5, 00185 Roma (Italy); Curik, Roman [J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, Prague (Czech Republic); Galli, Daniele, E-mail: fa.gianturco@caspur.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)

    2012-06-10

    We present the results of quantum calculations based on entirely ab initio methods for a variety of molecular processes and chemical reactions involving the LiHe{sup +} ionic polar molecule. With the aid of these calculations, we derive accurate reaction rates and fitting expressions valid over a range of gas temperatures representative of the typical conditions of the pregalactic gas. With the help of a full chemical network, we then compute the evolution of the abundance of LiHe{sup +} as function of redshift in the early universe. Finally, we compare the relative abundance of LiHe{sup +} with that of other polar cations formed in the same redshift interval.

  19. Social Networks and the Environment

    OpenAIRE

    Julio Videras

    2013-01-01

    This review discusses empirical research on social networks and the environment; it summarizes findings from representative studies and the conceptual frameworks social scientists use to examine the role of social networks. The article presents basic concepts in social network analysis, summarizes common challenges of empirical research on social networks, and outlines areas for future research. Finally, the article discusses the normative and positive meanings of social networks.

  20. Distributed Sensor Network for meteorological observations and numerical weather Prediction Calculations

    Directory of Open Access Journals (Sweden)

    Á. Vas

    2013-06-01

    Full Text Available The prediction of weather generally means the solution of differential equations on the base of the measured initial conditions where the data of close and distant neighboring points are used for the calculations. It requires the maintenance of expensive weather stations and supercomputers. However, if weather stations are not only capable of measuring but can also communicate with each other, then these smart sensors can also be applied to run forecasting calculations. This applies the highest possible level of parallelization without the collection of measured data into one place. Furthermore, if more nodes are involved, the result becomes more accurate, but the computing power required from one node does not increase. Our Distributed Sensor Network for meteorological sensing and numerical weather Prediction Calculations (DSN-PC can be applied in several different areas where sensing and numerical calculations, even the solution of differential equations, are needed.

  1. Active vision and image/video understanding with decision structures based on the network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2003-08-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.

  2. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  3. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  4. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  5. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    International Nuclear Information System (INIS)

    Tuunanen, J.; Tuomainen, M.

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  6. Scalability of DL_POLY on High Performance Computing Platform

    Directory of Open Access Journals (Sweden)

    Mabule Samuel Mabakane

    2017-12-01

    Full Text Available This paper presents a case study on the scalability of several versions of the molecular dynamics code (DL_POLY performed on South Africa‘s Centre for High Performance Computing e1350 IBM Linux cluster, Sun system and Lengau supercomputers. Within this study different problem sizes were designed and the same chosen systems were employed in order to test the performance of DL_POLY using weak and strong scalability. It was found that the speed-up results for the small systems were better than large systems on both Ethernet and Infiniband network. However, simulations of large systems in DL_POLY performed well using Infiniband network on Lengau cluster as compared to e1350 and Sun supercomputer.

  7. Using crowdsourcing to prioritize bicycle network improvements : final report.

    Science.gov (United States)

    2016-04-01

    Effort to improve the bicycle route network using crowdsourced data is a powerful means : of incorporating citizens in infrastructure improvement decisions, which will improve : livability by maximizing the benefit of the bicycle infrastructure fundi...

  8. Social contagions on correlated multiplex networks

    Science.gov (United States)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  9. Emotion and Social Network Perceptions: How Does Anger Bias Perceptions of Networks?

    Science.gov (United States)

    2013-03-01

    indicate the extent to which they felt angry because previous research suggests that labeling emotions may reduce their impact (Lerner & Keltner , 2000...AFRL-AFOSR-UK-TR-2013-0009 Emotion and Social Network Perceptions: How Does Anger Bias Perceptions of Networks? Professor...REPORT TYPE Final Report 3. DATES COVERED (From – To) 26 August 2011 – 23 February 2013 4. TITLE AND SUBTITLE Emotion and Social Network

  10. Using the LANSCE irradiation facility to predict the number of fatal soft errors in one of the world's fastest supercomputers

    International Nuclear Information System (INIS)

    Michalak, S.E.; Harris, K.W.; Hengartner, N.W.; Takala, B.E.; Wender, S.A.

    2005-01-01

    Los Alamos National Laboratory (LANL) is home to the Los Alamos Neutron Science Center (LANSCE). LANSCE is a unique facility because its neutron spectrum closely mimics the neutron spectrum at terrestrial and aircraft altitudes, but is many times more intense. Thus, LANSCE provides an ideal setting for accelerated testing of semiconductor and other devices that are susceptible to cosmic ray induced neutrons. Many industrial companies use LANSCE to estimate device susceptibility to cosmic ray induced neutrons, and it has also been used to test parts from one of LANL's supercomputers, the ASC (Advanced Simulation and Computing Program) Q. This paper discusses our use of the LANSCE facility to study components in Q including a comparison with failure data from Q

  11. Bell Inequalities for Complex Networks

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0355 YIP Bell Inequalities for Complex Networks Greg Ver Steeg UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES Final Report 10/26...performance report PI: Greg Ver Steeg Young Investigator Award Grant Title: Bell Inequalities for Complex Networks Grant #: FA9550-12-1-0417 Reporting...October 20, 2015 Final Report for “Bell Inequalities for Complex Networks” Greg Ver Steeg Abstract This effort studied new methods to understand the effect

  12. Building the Teraflops/Petabytes Production Computing Center

    International Nuclear Information System (INIS)

    Kramer, William T.C.; Lucas, Don; Simon, Horst D.

    1999-01-01

    In just one decade, the 1990s, supercomputer centers have undergone two fundamental transitions which require rethinking their operation and their role in high performance computing. The first transition in the early to mid-1990s resulted from a technology change in high performance computing architecture. Highly parallel distributed memory machines built from commodity parts increased the operational complexity of the supercomputer center, and required the introduction of intellectual services as equally important components of the center. The second transition is happening in the late 1990s as centers are introducing loosely coupled clusters of SMPs as their premier high performance computing platforms, while dealing with an ever-increasing volume of data. In addition, increasing network bandwidth enables new modes of use of a supercomputer center, in particular, computational grid applications. In this paper we describe what steps NERSC is taking to address these issues and stay at the leading edge of supercomputing centers.; N

  13. A secure file manager for UNIX

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, R.G.

    1990-12-31

    The development of a secure file management system for a UNIX-based computer facility with supercomputers and workstations is described. Specifically, UNIX in its usual form does not address: (1) Operation which would satisfy rigorous security requirements. (2) Online space management in an environment where total data demands would be many times the actual online capacity. (3) Making the file management system part of a computer network in which users of any computer in the local network could retrieve data generated on any other computer in the network. The characteristics of UNIX can be exploited to develop a portable, secure file manager which would operate on computer systems ranging from workstations to supercomputers. Implementation considerations making unusual use of UNIX features, rather than requiring extensive internal system changes, are described, and implementation using the Cray Research Inc. UNICOS operating system is outlined.

  14. The integration of weighted human gene association networks based on link prediction.

    Science.gov (United States)

    Yang, Jian; Yang, Tinghong; Wu, Duzhi; Lin, Limei; Yang, Fan; Zhao, Jing

    2017-01-31

    Physical and functional interplays between genes or proteins have important biological meaning for cellular functions. Some efforts have been made to construct weighted gene association meta-networks by integrating multiple biological resources, where the weight indicates the confidence of the interaction. However, it is found that these existing human gene association networks share only quite limited overlapped interactions, suggesting their incompleteness and noise. Here we proposed a workflow to construct a weighted human gene association network using information of six existing networks, including two weighted specific PPI networks and four gene association meta-networks. We applied link prediction algorithm to predict possible missing links of the networks, cross-validation approach to refine each network and finally integrated the refined networks to get the final integrated network. The common information among the refined networks increases notably, suggesting their higher reliability. Our final integrated network owns much more links than most of the original networks, meanwhile its links still keep high functional relevance. Being used as background network in a case study of disease gene prediction, the final integrated network presents good performance, implying its reliability and application significance. Our workflow could be insightful for integrating and refining existing gene association data.

  15. Fragility in dynamic networks: application to neural networks in the epileptic cortex.

    Science.gov (United States)

    Sritharan, Duluxan; Sarma, Sridevi V

    2014-10-01

    Epilepsy is a network phenomenon characterized by atypical activity at the neuronal and population levels during seizures, including tonic spiking, increased heterogeneity in spiking rates, and synchronization. The etiology of epilepsy is unclear, but a common theme among proposed mechanisms is that structural connectivity between neurons is altered. It is hypothesized that epilepsy arises not from random changes in connectivity, but from specific structural changes to the most fragile nodes or neurons in the network. In this letter, the minimum energy perturbation on functional connectivity required to destabilize linear networks is derived. Perturbation results are then applied to a probabilistic nonlinear neural network model that operates at a stable fixed point. That is, if a small stimulus is applied to the network, the activation probabilities of each neuron respond transiently but eventually recover to their baseline values. When the perturbed network is destabilized, the activation probabilities shift to larger or smaller values or oscillate when a small stimulus is applied. Finally, the structural modifications to the neural network that achieve the functional perturbation are derived. Simulations of the unperturbed and perturbed networks qualitatively reflect neuronal activity observed in epilepsy patients, suggesting that the changes in network dynamics due to destabilizing perturbations, including the emergence of an unstable manifold or a stable limit cycle, may be indicative of neuronal or population dynamics during seizure. That is, the epileptic cortex is always on the brink of instability and minute changes in the synaptic weights associated with the most fragile node can suddenly destabilize the network to cause seizures. Finally, the theory developed here and its interpretation of epileptic networks enables the design of a straightforward feedback controller that first detects when the network has destabilized and then applies linear state

  16. Network function virtualization concepts and applicability in 5G networks

    CERN Document Server

    Zhang, Ying

    2018-01-01

    A horizontal view of newly emerged technologies in the field of network function virtualization (NFV), introducing the open source implementation efforts that bring NFV from design to reality This book explores the newly emerged technique of network function virtualization (NFV) through use cases, architecture, and challenges, as well as standardization and open source implementations. It is the first systematic source of information about cloud technologies' usage in the cellular network, covering the interplay of different technologies, the discussion of different design choices, and its impact on our future cellular network. Network Function Virtualization: Concepts and Applicability in 5G Networks reviews new technologies that enable NFV, such as Software Defined Networks (SDN), network virtualization, and cloud computing. It also provides an in-depth investigation of the most advanced open source initiatives in this area, including OPNFV, Openstack, and Opendaylight. Finally, this book goes beyond li...

  17. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    Science.gov (United States)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  18. Wisconsin Inventors` Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor`s Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor`s information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  19. Measurement of traffic network vulnerability for Mississippi coastal region : final research report.

    Science.gov (United States)

    2017-08-15

    Natural disasters such as a hurricane can cause great damages to the transportation networks and significantly affect the evacuation trip operations. An accurate understanding and measurement of the network vulnerability can enhance the evacuees p...

  20. VRML and Collaborative Environments: New Tools for Networked Visualization

    Science.gov (United States)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  1. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-12-01

    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  2. Parallel supercomputing: Advanced methods, algorithms, and software for large-scale linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, G.F.; Young, D.M.

    1993-12-31

    The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.

  3. Visualization at supercomputing centers: the tale of little big iron and the three skinny guys.

    Science.gov (United States)

    Bethel, E W; van Rosendale, J; Southard, D; Gaither, K; Childs, H; Brugger, E; Ahern, S

    2011-01-01

    Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources-the "Big Iron." Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be-that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?

  4. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  5. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    Science.gov (United States)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  6. [Teacher enhancement at Supercomputing `96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-13

    The SC`96 Education Program provided a three-day professional development experience for middle and high school science, mathematics, and computer technology teachers. The program theme was Computers at Work in the Classroom, and a majority of the sessions were presented by classroom teachers who have had several years experience in using these technologies with their students. The teachers who attended the program were introduced to classroom applications of computing and networking technologies and were provided to the greatest extent possible with lesson plans, sample problems, and other resources that could immediately be used in their own classrooms. The attached At a Glance Schedule and Session Abstracts describes in detail the three-day SC`96 Education Program. Also included is the SC`96 Education Program evaluation report and the financial report.

  7. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    Science.gov (United States)

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  8. Dynamic Sensor Networks

    National Research Council Canada - National Science Library

    Schott, Brian

    2004-01-01

    ...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...

  9. Organ Procurement and Transplantation Network; final rule revision of comment period and effective dates--HRSA. Extension of comment period and delay of effective date for the Organ Procurement and Transplantation Network.

    Science.gov (United States)

    1998-07-01

    This document sets forth the revisions required by the Fiscal Year 1998 Supplemental Appropriations Act, Public Law 105-174, signed into law by the President on May 1, 1998. Section 4002 of that Act states that public comments on the Organ Procurement and Transplantation Network (OPTN) Final Rule are permitted until August 31, 1998, and that the OPTN rule will not become effective before October 1, 1998. This document is provided to notify the public about these provisions and to make corresponding changes to the regulation.

  10. Data Exchange Network

    DEFF Research Database (Denmark)

    Grau Larsen, Anton; Ellersgaard, Christoph

    2015-01-01

    This article presents the extensive Danish elite network. Collected during 2012 and 2013, the data comprises 56,536 positions within 5,079 affiliations, and connects 37,750 individuals. The network consists of the largest Danish corporations, state institutions, NGO’s, and other integrative...... networks such as social clubs or royal events. Data were gathered through an inclusion principle, adding all potentially interesting affiliations. Procedures of name-matching and quality control are presented. Finally, the data are introduced: made available through a package for R, which enables...

  11. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  12. Chronopolis Digital Preservation Network

    Directory of Open Access Journals (Sweden)

    David Minor

    2010-07-01

    Full Text Available The Chronopolis Digital Preservation Initiative, one of the Library of Congress’ latest efforts to collect and preserve at-risk digital information, has completed its first year of service as a multi-member partnership to meet the archival needs of a wide range of domains.Chronopolis is a digital preservation data grid framework developed by the San Diego Supercomputer Center (SDSC at UC San Diego, the UC San Diego Libraries (UCSDL, and their partners at the National Center for Atmospheric Research (NCAR in Colorado and the University of Maryland's Institute for Advanced Computer Studies (UMIACS.Chronopolis addresses a critical problem by providing a comprehensive model for the cyberinfrastructure of collection management, in which preserved intellectual capital is easily accessible, and research results, education material, and new knowledge can be incorporated smoothly over the long term. Integrating digital library, data grid, and persistent archive technologies, Chronopolis has created trusted environments that span academic institutions and research projects, with the goal of long-term digital preservation.A key goal of the Chronopolis project is to provide cross-domain collection sharing for long-term preservation. Using existing high-speed educational and research networks and mass-scale storage infrastructure investments, the partnership is leveraging the data storage capabilities at SDSC, NCAR, and UMIACS to provide a preservation data grid that emphasizes heterogeneous and highly redundant data storage systems.In this paper we will explore the major themes within Chronopolis, including:a The philosophy and theory behind a nationally federated data grid for preservation. b The core tools and technologies used in Chronopolis. c The metadata schema that is being developed within Chronopolis for all of the data elements. d Lessons learned from the first year of the project.e Next steps in digital preservation using Chronopolis: how we

  13. The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this second paper, requirements for the SARDANA HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SARDANA HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SARDANA and SUCCESS HPON networks based on simulation results is presented.

  14. The Analysis of SUCCESS HPON Networks Using the HPON Network Configurator

    Directory of Open Access Journals (Sweden)

    Rastislav Roka

    2013-01-01

    Full Text Available NG-PON systems present optical access infrastructures to support various applications of the many service providers. In the near future, we can expect NG-PON technologies with different motivations for developing of HPON networks. The HPON is a hybrid passive optical network in a way that utilizes on a physical layer both TDM and WDM multiplexing principles together. The HPON network utilizes similar or soft revised topologies as TDM-PON architectures. In this first paper, design requirements for SUCCESS HPON networks are introduced. A main part of the paper is dedicated to presentation of the HPON network configurator that allows configurating and analyzing the SUCCESS HPON characteristics from a viewpoint of various specific network parameters. Finally, a short introduction to the comparison of the SUCCESS and SARDANA HPON networks based on simulation results is presented.

  15. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report

    International Nuclear Information System (INIS)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon; Hilpert, Johannes; Sailer, Frank

    2016-01-01

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  16. GRID : unlimited computing power on your desktop Conference MT17

    CERN Multimedia

    2001-01-01

    The Computational GRID is an analogy to the electrical power grid for computing resources. It decouples the provision of computing, data, and networking from its use, it allows large-scale pooling and sharing of resources distributed world-wide. Every computer, from a desktop to a mainframe or supercomputer, can provide computing power or data for the GRID. The final objective is to plug your computer into the wall and have direct access to huge computing resources immediately, just like plugging-in a lamp to get instant light. The GRID will facilitate world-wide scientific collaborations on an unprecedented scale. It will provide transparent access to major distributed resources of computer power, data, information, and collaborations.

  17. Deterministic bound for avionics switched networks according to networking features using network calculus

    Directory of Open Access Journals (Sweden)

    Feng HE

    2017-12-01

    Full Text Available The state of the art avionics system adopts switched networks for airborne communications. A major concern in the design of the networks is the end-to-end guarantee ability. Analytic methods have been developed to compute the worst-case delays according to the detailed configurations of flows and networks within avionics context, such as network calculus and trajectory approach. It still lacks a relevant method to make a rapid performance estimation according to some typically switched networking features, such as networking scale, bandwidth utilization and average flow rate. The goal of this paper is to establish a deterministic upper bound analysis method by using these networking features instead of the complete network configurations. Two deterministic upper bounds are proposed from network calculus perspective: one is for a basic estimation, and another just shows the benefits from grouping strategy. Besides, a mathematic expression for grouping ability is established based on the concept of network connecting degree, which illustrates the possibly minimal grouping benefit. For a fully connected network with 4 switches and 12 end systems, the grouping ability coming from grouping strategy is 15–20%, which just coincides with the statistical data (18–22% from the actual grouping advantage. Compared with the complete network calculus analysis method for individual flows, the effectiveness of the two deterministic upper bounds is no less than 38% even with remarkably varied packet lengths. Finally, the paper illustrates the design process for an industrial Avionics Full DupleX switched Ethernet (AFDX networking case according to the two deterministic upper bounds and shows that a better control for network connecting, when designing a switched network, can improve the worst-case delays dramatically. Keywords: Deterministic bound, Grouping ability, Network calculus, Networking features, Switched networks

  18. Accelerating Communication-Intensive Applications via Novel Data Compression Techniques, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Processor speed has traditionally grown at a rate faster than that of communication speed in computer and supercomputer networks, and it is expected that this trend...

  19. Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Directory of Open Access Journals (Sweden)

    Jinde Cao

    2013-01-01

    Full Text Available This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.

  20. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  1. Learning conditional Gaussian networks

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  2. FTS2000 network architecture

    Science.gov (United States)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  3. Final Technical Report for Terabit-scale hybrid networking project.

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Malathi [Univ. of Virginia, Charlottesville, VA (United States)

    2015-12-12

    This report describes our accomplishments and activities for the project titled Terabit-Scale Hybrid Networking. The key accomplishment is that we developed, tested and deployed an Alpha Flow Characterization System (AFCS) in ESnet. It is being run in production mode since Sept. 2015. Also, a new QoS class was added to ESnet5 to support alpha flows.

  4. The stabilisation of final focus system

    Indian Academy of Sciences (India)

    The StaFF (stabilisation of final focus) system will use interferometers to monitor the relative ... quadrupole magnets will be the most demanding application, where mutual and beam- ... interferometers to measure lines of a geodetic network to record relative motion between two beam ... coupled interferometer design.

  5. Federal High End Computing (HEC) Information Portal

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This portal provides information about opportunities to engage in U.S. Federal government high performance computing activities, including supercomputer use,...

  6. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  7. Large scale visualization on the Cray XT3 using ParaView.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, David; Geveci, Berk (Kitware, Inc.); Eschenbert, Kent (Pittsburgh Supercomputing Center); Neundorf, Alexander (Technical University of Kaiserslautern); Marion, Patrick (Kitware, Inc.); Moreland, Kenneth D.; Greenfield, John

    2008-05-01

    Post-processing and visualization are key components to understanding any simulation. Porting ParaView, a scalable visualization tool, to the Cray XT3 allows our analysts to leverage the same supercomputer they use for simulation to perform post-processing. Visualization tools traditionally rely on a variety of rendering, scripting, and networking resources; the challenge of running ParaView on the Lightweight Kernel is to provide and use the visualization and post-processing features in the absence of many OS resources. We have successfully accomplished this at Sandia National Laboratories and the Pittsburgh Supercomputing Center.

  8. Magnetic fusion energy and computers. The role of computing in magnetic fusion energy research and development (second edition)

    International Nuclear Information System (INIS)

    1983-01-01

    This report documents the structure and uses of the MFE Network and presents a compilation of future computing requirements. Its primary emphasis is on the role of supercomputers in fusion research. One of its key findings is that with the introduction of each successive class of supercomputer, qualitatively improved understanding of fusion processes has been gained. At the same time, even the current Class VI machines severely limit the attainable realism of computer models. Many important problems will require the introduction of Class VII or even larger machines before they can be successfully attacked

  9. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (Conference Presentation)

    Science.gov (United States)

    Jain, Anubhav

    2017-04-01

    Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.

  10. Innovation and network collaboration

    DEFF Research Database (Denmark)

    Kesting, Peter; Müller, Sabine; Jørgensen, Frances

    2011-01-01

    Research suggests that small and medium-sized enterprises (SMEs) can benefit from network collaboration by enhancing opportunities for innovation. Managing the necessary collaboration to benefit from network participation may however be particularly challenging for SMEs due to their size...... and their inherent shortage of resources. In this paper, we propose that human resource management (HRM) practices may provide a means by which SMEs can increase their innovation capacity through network collaboration. Following a brief presentation of the relevant literature on networks, and innovation in networks...... in particular, and HRM, we analyse and evaluate the potential applicability of existing models for supporting innovation in SMEs participating in networks. Finally, we propose several lines of inquiry arising from our analysis that provide directions for future research....

  11. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  12. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  13. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  14. Recent advances on failure and recovery in networks of networks

    International Nuclear Information System (INIS)

    Shekhtman, Louis M.; Danziger, Michael M.; Havlin, Shlomo

    2016-01-01

    Until recently, network science has focused on the properties of single isolated networks that do not interact or depend on other networks. However it has now been recognized that many real-networks, such as power grids, transportation systems, and communication infrastructures interact and depend on other networks. Here, we will present a review of the framework developed in recent years for studying the vulnerability and recovery of networks composed of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes, like for example certain people, play a role in two networks, i.e. in a multiplex. Dependency relations may act recursively and can lead to cascades of failures concluding in sudden fragmentation of the system. We review the analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. The general theory and behavior of interdependent networks has many novel features that are not present in classical network theory. Interdependent networks embedded in space are significantly more vulnerable compared to non-embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences. Finally, when recovery of components is possible, global spontaneous recovery of the networks and hysteresis phenomena occur. The theory developed for this process points to an optimal repairing strategy for a network of networks. Understanding realistic effects present in networks of networks is required in order to move towards determining system vulnerability.

  15. Active Versus Passive Academic Networking

    DEFF Research Database (Denmark)

    Goel, Rajeev K.; Grimpe, Christoph

    2013-01-01

    This paper examines determinants of networking by academics. Using information from a unique large survey of German researchers, the key contribution focuses on the active versus passive networking distinction. Is active networking by researchers a substitute or a complement to passive networking......? Other contributions include examining the role of geographic factors in networking and whether research bottlenecks affect a researcher's propensity to network. Are the determinants of European conference participation by German researchers different from conferences in rest of the world? Results show...... that some types of passive academic networking are complementary to active networking, while others are substitute. Further, we find differences in factors promoting participation in European conferences versus conferences in rest of the world. Finally, publishing bottlenecks as a group generally do...

  16. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry

    2017-02-27

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey\\'s acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less

  17. High Performance Simulation of Large-Scale Red Sea Ocean Bottom Seismic Data on the Supercomputer Shaheen II

    KAUST Repository

    Tonellot, Thierry; Etienne, Vincent; Gashawbeza, Ewenet; Curiel, Emesto Sandoval; Khan, Azizur; Feki, Saber; Kortas, Samuel

    2017-01-01

    A combination of both shallow and deepwater, plus islands and coral reefs, are some of the main features contributing to the complexity of subsalt seismic exploration in the Red Sea transition zone. These features often result in degrading effects on seismic images. State-of-the-art ocean bottom acquisition technologies are therefore required to record seismic data with optimal fold and offset, as well as advanced processing and imaging techniques. Numerical simulations of such complex seismic data can help improve acquisition design and also help in customizing, validating and benchmarking the processing and imaging workflows that will be applied on the field data. Subsequently, realistic simulation of wave propagation is a computationally intensive process requiring a realistic model and an efficient 3D wave equation solver. Large-scale computing resources are also required to meet turnaround time compatible with a production time frame. In this work, we present the numerical simulation of an ocean bottom seismic survey to be acquired in the Red Sea transition zone starting in summer 2016. The survey's acquisition geometry comprises nearly 300,000 unique shot locations and 21,000 unique receiver locations, covering about 760 km2. Using well log measurements and legacy 2D seismic lines in this area, a 3D P-wave velocity model was built, with a maximum depth of 7 km. The model was sampled at 10 m in each direction, resulting in more than 5 billion cells. Wave propagation in this model was performed using a 3D finite difference solver in the time domain based on a staggered grid velocity-pressure formulation of acoustodynamics. To ensure that the resulting data could be generated sufficiently fast, the King Abdullah University of Science and Technology (KAUST) supercomputer Shaheen II Cray XC40 was used. A total of 21,000 three-component (pressure and vertical and horizontal velocity) common receiver gathers with a 50 Hz maximum frequency were computed in less than

  18. Software-Defined Networks as a Stage of the Network Technology Evolution

    Directory of Open Access Journals (Sweden)

    A. A. Krasotin

    2013-01-01

    Full Text Available The authors of the article focus on the concept of a software defined network. In the beginning, the brief historical account is given concerning software defined networks as a scientific concept, its formation and technological and scientific meaning. The software defined network concept is treated in the article not as the final state-of-the-art in networking, but rather as a possible step and direction in the development of a networking paradigm. The article touches on pros and cons as well of the software defined networking and gives an account of possible stages of development of this technology in the context of other technologies, considering its hybrid with MPLS, as an example. OpenFlow protocol constitutes the main part of the article. The authors further discuss various kinds of existing libraries realizing programmable management routines for a software defined network using OpenFlow. All of these libraries provide API for building modular applications for software defined network management. Touching on practical side of implementation the results of comparative tests of throughput and latency, achieved with these libraries are shown.

  19. Detecting Distributed Network Traffic Anomaly with Network-Wide Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yang Dan

    2008-12-01

    Full Text Available Distributed network traffic anomaly refers to a traffic abnormal behavior involving many links of a network and caused by the same source (e.g., DDoS attack, worm propagation. The anomaly transiting in a single link might be unnoticeable and hard to detect, while the anomalous aggregation from many links can be prevailing, and does more harm to the networks. Aiming at the similar features of distributed traffic anomaly on many links, this paper proposes a network-wide detection method by performing anomalous correlation analysis of traffic signals' instantaneous parameters. In our method, traffic signals' instantaneous parameters are firstly computed, and their network-wide anomalous space is then extracted via traffic prediction. Finally, an anomaly is detected by a global correlation coefficient of anomalous space. Our evaluation using Abilene traffic traces demonstrates the excellent performance of this approach for distributed traffic anomaly detection.

  20. Inferring general relations between network characteristics from specific network ensembles.

    Science.gov (United States)

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  1. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  2. Analysis and application of intelligence network based on FTTH

    Science.gov (United States)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    With the continued rapid growth of Internet, new network service emerges in endless stream, especially the increase of network game, meeting TV, video on demand, etc. The bandwidth requirement increase continuously. Network technique, optical device technical development is swift and violent. FTTH supports all present and future service with enormous bandwidth, including traditional telecommunication service, traditional data service and traditional TV service, and the future digital TV and VOD. With huge bandwidth of FTTH, it wins the final solution of broadband network, becomes the final goal of development of optical access network. Firstly, it introduces the main service which FTTH supports, main analysis key technology such as FTTH system composition way, topological structure, multiplexing, optical cable and device. It focus two kinds of realization methods - PON, P2P technology. Then it proposed that the solution of FTTH can support comprehensive access (service such as broadband data, voice, video and narrowband private line). Finally, it shows the engineering application for FTTH in the district and building. It brings enormous economic benefits and social benefit.

  3. Epidemics scenarios in the "Romantic network".

    Directory of Open Access Journals (Sweden)

    Alexsandro M Carvalho

    Full Text Available The networks of sexual contacts together with temporal interactions play key roles in the spread of sexually transmitted infections. Unfortunately, data for this kind of network is scarce. One of the few exceptions, the "Romantic network", is a complete structure of a real sexual network in a high school. Based on many network measurements the authors of the work have concluded that it does not correspond to any other model network. Regarding the temporal structure, several studies indicate that relationship timing can have an effect on the diffusion throughout networks, as relationship order determines transmission routes. The aim is to check if the particular structure, static and dynamic, of the Romantic network is determinant for the propagation of an STI. We performed simulations in two scenarios: the static network where all contacts are available and the dynamic case where contacts evolve over time. In the static case, we compared the epidemic results in the Romantic network with some paradigmatic topologies. In the dynamic scenario, we considered the dynamics of formation of pairs in the Romantic network and we studied the propagation of the diseases. Our results suggest that although this real network cannot be labeled as a Watts-Strogatz network, it is, in regard to the propagation of an STI, very similar to a high disorder network. Additionally, we found that: the effect that any individual contacting an externally infected subject is to make the network closer to a fully connected one, the higher the contact degree of patient zero the faster the spread of the outbreaks, and the epidemic impact is proportional to the numbers of contacts per unit time. Finally, our simulations confirm that relationship timing severely reduced the final outbreak size, and also, show a clear correlation between the average degree and the outbreak size over time.

  4. Telecommunication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Balachandran, Kartheepan; Hald, Sara Ligaard

    2014-01-01

    In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control......, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look...... threats to the critical infrastructure. Finally, before our conclusions and outlook, we give a brief overview of some key activities in the field and what research directions are currently investigated....

  5. Wisconsin Inventors' Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor's Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor's information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  6. Researching Design, Experience and Practice of Networked Learning

    DEFF Research Database (Denmark)

    Hodgson, Vivien; de Laat, Maarten; McConnell, David

    2014-01-01

    and final section draws attention to a growing topic of interest within networked learning: that of networked learning in informal practices. In addition, we provide a reflection on the theories, methods and settings featured in the networked learning research of the chapters. We conclude the introduction...

  7. Gone in eight seconds: Canadian data-transfer record points to the future of the Internet

    CERN Multimedia

    Tam, P

    2002-01-01

    "When completed in 2007, a new grid network will harness the processing power of many machines across Canada to create a communal supercomputer. It will be tailor-made for researchers with high-performance computing needs" (1 page).

  8. Reconstruction of the neutron spectrum using an artificial neural network in CPU and GPU

    International Nuclear Information System (INIS)

    Hernandez D, V. M.; Moreno M, A.; Ortiz L, M. A.; Vega C, H. R.; Alonso M, O. E.

    2016-10-01

    The increase in computing power in personal computers has been increasing, computers now have several processors in the CPU and in addition multiple CUDA cores in the graphics processing unit (GPU); both systems can be used individually or combined to perform scientific computation without resorting to processor or supercomputing arrangements. The Bonner sphere spectrometer is the most commonly used multi-element system for neutron detection purposes and its associated spectrum. Each sphere-detector combination gives a particular response that depends on the energy of the neutrons, and the total set of these responses is known like the responses matrix Rφ(E). Thus, the counting rates obtained with each sphere and the neutron spectrum is related to the Fredholm equation in its discrete version. For the reconstruction of the spectrum has a system of poorly conditioned equations with an infinite number of solutions and to find the appropriate solution, it has been proposed the use of artificial intelligence through neural networks with different platforms CPU and GPU. (Author)

  9. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    Science.gov (United States)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-12-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  10. Final report of the 'Nordic thermal-hydraulic and safety network (NOTNET)' - Project

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J.; Tuomainen, M. [VTT Processes (Finland)

    2005-04-01

    A Nordic network for thermal-hydraulics and nuclear safety research was started. The idea of the network is to combine the resources of different research teams in order to carry out more ambitious and extensive research programs than would be possible for the individual teams. From the very beginning, the end users of the research results have been integrated to the network. Aim of the network is to benefit the partners involved in nuclear energy in the Nordic Countries (power companies, reactor vendors, safety regulators, research units). First task within the project was to describe the resources (personnel, know-how, simulation tools, test facilities) of the various teams. Next step was to discuss with the end users about their research needs. Based on these steps, few most important research topics with defined goals were selected, and coarse road maps were prepared for reaching the targets. These road maps will be used as a starting point for planning the actual research projects in the future. The organisation and work plan for the network were established. National coordinators were appointed, as well as contact persons in each participating organisation, whether research unit or end user. This organisation scheme is valid for the short-term operation of NOTNET when only Nordic organisations take part in the work. Later on, it is possible to enlarge the network e.g. within EC framework programme. The network can now start preparing project proposals and searching funding for the first common research projects. (au)

  11. Towards a Scalable and Adaptive Application Support Platform for Large-Scale Distributed E-Sciences in High-Performance Network Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [New Jersey Inst. of Technology, Newark, NJ (United States); Univ. of Memphis, TN (United States); Zhu, Michelle Mengxia [Southern Illinois Univ., Carbondale, IL (United States)

    2016-06-06

    The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models feature diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific

  12. Navier-Stokes computer

    International Nuclear Information System (INIS)

    Hayder, M.E.

    1988-01-01

    A new scientific supercomputer, known as the Navier-Stokes Computer (NSC), has been designed. The NSC is a multi-purpose machine, and for applications in the field of computational fluid dynamics (CFD), this supercomputer is expected to yield a computational speed far exceeding that of the present-day super computers. This computer has a few very powerful processors (known as nodes) connected by an internodal network. There are three versions of the NSC nodes: micro-, mini- and full-node. The micro-node was developed to prove, to demonstrate and to refine the key architectural features of the NSC. Architectures of the two recent versions of the NSC nodes are presented, with the main focus on the full-node. At a clock speed of 20 MHz, the mini- and the full-node have peak computational speeds of 200 and 640 MFLOPS, respectively. The full-node is the final version for the NSC nodes and an NSC is expected to have 128 full-nodes. To test the suitability of different algorithms on the NSC architecture, an NSC simulator was developed. Some of the existing computational fluid dynamics codes were placed on this simulator to determine important and relevant issues relating to the efficient use of the NSC architecture

  13. Deterministic ripple-spreading model for complex networks.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel

    2011-04-01

    This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.

  14. Creating, generating and comparing random network models with NetworkRandomizer.

    Science.gov (United States)

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  15. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  16. Traffic Dynamics on Complex Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.

  17. Kaliningrad regional district heating network 2004-2006. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This report concerns: Kaliningrad Regional District Heating Network project which was implemented from 2004 to 2006. The task of the project was to establish and operate an association for district heating companies in the region in order to transfer and distribute district heating know-how to the sector and through activities strengthen the sector. The long term aim was to contribute to establishment of an association to continue as a real association for the heat supply companies in the region. (au)

  18. CNNcon: improved protein contact maps prediction using cascaded neural networks.

    Directory of Open Access Journals (Sweden)

    Wang Ding

    Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective

  19. Privacy Breach Analysis in Social Networks

    Science.gov (United States)

    Nagle, Frank

    This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.

  20. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  1. Encryption for confidentiality of the network and influence of this to the quality of streaming video through network

    Science.gov (United States)

    Sevcik, L.; Uhrin, D.; Frnda, J.; Voznak, M.; Toral-Cruz, Homer; Mikulec, M.; Jakovlev, Sergej

    2015-05-01

    Nowadays, the interest in real-time services, like audio and video, is growing. These services are mostly transmitted over packet networks, which are based on IP protocol. It leads to analyses of these services and their behavior in such networks which are becoming more frequent. Video has become the significant part of all data traffic sent via IP networks. In general, a video service is one-way service (except e.g. video calls) and network delay is not such an important factor as in a voice service. Dominant network factors that influence the final video quality are especially packet loss, delay variation and the capacity of the transmission links. Analysis of video quality concentrates on the resistance of video codecs to packet loss in the network, which causes artefacts in the video. IPsec provides confidentiality in terms of safety, integrity and non-repudiation (using HMAC-SHA1 and 3DES encryption for confidentiality and AES in CBC mode) with an authentication header and ESP (Encapsulating Security Payload). The paper brings a detailed view of the performance of video streaming over an IP-based network. We compared quality of video with packet loss and encryption as well. The measured results demonstrated the relation between the video codec type and bitrate to the final video quality.

  2. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.

  3. Adverse Outcome Pathway Networks II: Network Analytics.

    Science.gov (United States)

    Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries

    2018-02-28

    Toxicological responses to stressors are more complex than the simple one biological perturbation to one adverse outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present paper introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using two example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses, or previously undefined emergent patterns of response, are introduced. Along with a companion article (Knapen et al. part I), these concepts set the stage for development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. Collectively, this work addresses one of the major themes identified through a SETAC Horizon Scanning effort focused on advancing the AOP framework. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. A platform independent communication library for distributed computing

    NARCIS (Netherlands)

    Groen, D.; Rieder, S.; Grosso, P.; de Laat, C.; Portegies Zwart, S.

    2010-01-01

    We present MPWide, a platform independent communication library for performing message passing between supercomputers. Our library couples several local MPI applications through a long distance network using, for example, optical links. The implementation is deliberately kept light-weight, platform

  5. Next Generation Access Network Deployment in Croatia: Optical Access Networks and Current IoT/5G Status

    Science.gov (United States)

    Breskovic, Damir; Sikirica, Mladen; Begusic, Dinko

    2018-05-01

    This paper gives an overview and background of optical access network deployment in Croatia. Optical access network development in Croatia has been put into a global as well as in the European Union context. All the challenges and the driving factors for optical access networks deployment are considered. Optical access network architectures that have been deployed by most of the investors in Croatian telecommunication market are presented, as well as the architectures that are in early phase of deployment. Finally, an overview on current status of mobile networks of the fifth generation and Internet of Things is given.

  6. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan

    2013-03-01

    The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  7. Can recurrence networks show small-world property?

    International Nuclear Information System (INIS)

    Jacob, Rinku; Harikrishnan, K.P.; Misra, R.; Ambika, G.

    2016-01-01

    Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.

  8. Can recurrence networks show small-world property?

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rinku, E-mail: rinku.jacob.vallanat@gmail.com [Department of Physics, The Cochin College, Cochin, 682002 (India); Harikrishnan, K.P., E-mail: kp_hk2002@yahoo.co.in [Department of Physics, The Cochin College, Cochin, 682002 (India); Misra, R., E-mail: rmisra@iucaa.in [Inter University Centre for Astronomy and Astrophysics, Pune, 411007 (India); Ambika, G., E-mail: g.ambika@iiserpune.ac.in [Indian Institute of Science Education and Research, Pune, 411008 (India)

    2016-08-12

    Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.

  9. Deterministic network interdiction optimization via an evolutionary approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem

  10. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    International Nuclear Information System (INIS)

    Wu Jianjun; Gao Ziyou; Sun Huijun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.

  11. Identifying Jets Using Artifical Neural Networks

    Science.gov (United States)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  12. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Directory of Open Access Journals (Sweden)

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  13. Final report on the Copper Mountain conference on multigrid methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  14. Global motions exhibited by proteins in micro- to milliseconds simulations concur with anisotropic network model predictions

    Science.gov (United States)

    Gur, M.; Zomot, E.; Bahar, I.

    2013-09-01

    The Anton supercomputing technology recently developed for efficient molecular dynamics simulations permits us to examine micro- to milli-second events at full atomic resolution for proteins in explicit water and lipid bilayer. It also permits us to investigate to what extent the collective motions predicted by network models (that have found broad use in molecular biophysics) agree with those exhibited by full-atomic long simulations. The present study focuses on Anton trajectories generated for two systems: the bovine pancreatic trypsin inhibitor, and an archaeal aspartate transporter, GltPh. The former, a thoroughly studied system, helps benchmark the method of comparative analysis, and the latter provides new insights into the mechanism of function of glutamate transporters. The principal modes of motion derived from both simulations closely overlap with those predicted for each system by the anisotropic network model (ANM). Notably, the ANM modes define the collective mechanisms, or the pathways on conformational energy landscape, that underlie the passage between the crystal structure and substates visited in simulations. In particular, the lowest frequency ANM modes facilitate the conversion between the most probable substates, lending support to the view that easy access to functional substates is a robust determinant of evolutionarily selected native contact topology.

  15. Airborne Tactical Data Network Gateways: Evaluating EPLRS' Ability to Integrate With Wireless Meshed Networks

    National Research Council Canada - National Science Library

    Bey, Christopher S

    2005-01-01

    ... and 802.16 standards and prevalent developing meshed network routing protocols. Finally, this thesis evaluates fielded and emergent technologies to see if they are suitable to build and to sustain...

  16. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  17. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  18. Use of QUADRICS supercomputer as embedded simulator in emergency management systems; Utilizzo del calcolatore QUADRICS come simulatore in linea in un sistema di gestione delle emergenze

    Energy Technology Data Exchange (ETDEWEB)

    Bove, R.; Di Costanzo, G.; Ziparo, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1996-07-01

    The experience related to the implementation of a MRBT, atmospheric spreading model with a short duration releasing, are reported. This model was implemented on a QUADRICS-Q1 supercomputer. First is reported a description of the MRBT model. It is an analytical model to study the speadings of light gases realised in the atmosphere cause incidental releasing. The solution of diffusion equation is Gaussian like. It yield the concentration of pollutant substance released. The concentration is function of space and time. Thus the QUADRICS architecture is introduced. And the implementation of the model is described. At the end it will be consider the integration of the QUADRICS-based model as simulator in a emergency management system.

  19. Petascale Computational Systems

    OpenAIRE

    Bell, Gordon; Gray, Jim; Szalay, Alex

    2007-01-01

    Computational science is changing to be data intensive. Super-Computers must be balanced systems; not just CPU farms but also petascale IO and networking arrays. Anyone building CyberInfrastructure should allocate resources to support a balanced Tier-1 through Tier-3 design.

  20. Neural Network to Solve Concave Games

    OpenAIRE

    Liu, Zixin; Wang, Nengfa

    2014-01-01

    The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.

  1. Functional and nonfunctional testing of ATM networks

    Science.gov (United States)

    Ricardo, Manuel; Ferreira, M. E. P.; Guimaraes, Francisco E.; Mamede, J.; Henriques, M.; da Silva, Jorge A.; Carrapatoso, E.

    1995-02-01

    ATM network will support new multimedia services that will require new protocols, those services and protocols will need different test strategies and tools. In this paper, the concepts of functional and non-functional testers of ATM networks are discussed, a multimedia service and its requirements are presented and finally, a summary description of an ATM network and of the test tool that will be used to validate it are presented.

  2. Evaluation of Persian Professional Web Social Networks\\\\\\' Features, to Provide a Suitable Solution for Optimization of These Networks in Iran

    Directory of Open Access Journals (Sweden)

    Nadjla Hariri

    2013-03-01

    Full Text Available This study aimed to determine the status of Persian professional web social networks' features and provide a suitable solution for optimization of these networks in Iran. The research methods were library research and evaluative method, and study population consisted of 10 Persian professional web social networks. In this study, for data collection, a check list of social networks important tools and features was used. According to the results, “Cloob”, “IR Experts” and “Doreh” were the most compatible networks with the criteria of social networks. Finally, some solutions were presented for optimization of capabilities of Persian professional web social networks.

  3. Summaries of research and development activities by using supercomputer system of JAEA in FY2015. April 1, 2015 - March 31, 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2015, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2015, as well as user support, operational records and overviews of the system, and so on. (author)

  4. Summaries of research and development activities by using supercomputer system of JAEA in FY2014. April 1, 2014 - March 31, 2015

    International Nuclear Information System (INIS)

    2016-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2014, the system was used for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue, as well as for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great number of R and D results accomplished by using the system in FY2014, as well as user support, operational records and overviews of the system, and so on. (author)

  5. Summaries of research and development activities by using supercomputer system of JAEA in FY2013. April 1, 2013 - March 31, 2014

    International Nuclear Information System (INIS)

    2015-02-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. About 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2013, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as a priority issue. This report presents a great amount of R and D results accomplished by using the system in FY2013, as well as user support, operational records and overviews of the system, and so on. (author)

  6. Summaries of research and development activities by using supercomputer system of JAEA in FY2012. April 1, 2012 - March 31, 2013

    International Nuclear Information System (INIS)

    2014-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2012, the system was used not only for JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science, but also for R and D aiming to restore Fukushima (nuclear plant decommissioning and environmental restoration) as apriority issue. This report presents a great amount of R and D results accomplished by using the system in FY2012, as well as user support, operational records and overviews of the system, and so on. (author)

  7. Summaries of research and development activities by using supercomputer system of JAEA in FY2011. April 1, 2011 - March 31, 2012

    International Nuclear Information System (INIS)

    2013-01-01

    Japan Atomic Energy Agency (JAEA) conducts research and development (R and D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R and Ds, and utilizes computational science and technology in many activities. As more than 20 percent of papers published by JAEA are concerned with R and D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology utilization. In FY2011, the system was used for analyses of the accident at the Fukushima Daiichi Nuclear Power Station and establishment of radioactive decontamination plan, as well as the JAEA's major projects such as Fast Reactor Cycle System, Fusion R and D and Quantum Beam Science. This report presents a great amount of R and D results accomplished by using the system in FY2011, as well as user support structure, operational records and overviews of the system, and so on. (author)

  8. Statistical physics of interacting neural networks

    Science.gov (United States)

    Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido

    2001-12-01

    Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.

  9. Multistability in bidirectional associative memory neural networks

    International Nuclear Information System (INIS)

    Huang Gan; Cao Jinde

    2008-01-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results

  10. Multistability in bidirectional associative memory neural networks

    Science.gov (United States)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  11. Getting To Exascale: Applying Novel Parallel Programming Models To Lab Applications For The Next Generation Of Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Evi [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shereda, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nau, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, Lance [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-27

    As supercomputing moves toward exascale, node architectures will change significantly. CPU core counts on nodes will increase by an order of magnitude or more. Heterogeneous architectures will become more commonplace, with GPUs or FPGAs providing additional computational power. Novel programming models may make better use of on-node parallelism in these new architectures than do current models. In this paper we examine several of these novel models – UPC, CUDA, and OpenCL –to determine their suitability to LLNL scientific application codes. Our study consisted of several phases: We conducted interviews with code teams and selected two codes to port; We learned how to program in the new models and ported the codes; We debugged and tuned the ported applications; We measured results, and documented our findings. We conclude that UPC is a challenge for porting code, Berkeley UPC is not very robust, and UPC is not suitable as a general alternative to OpenMP for a number of reasons. CUDA is well supported and robust but is a proprietary NVIDIA standard, while OpenCL is an open standard. Both are well suited to a specific set of application problems that can be run on GPUs, but some problems are not suited to GPUs. Further study of the landscape of novel models is recommended.

  12. A network dynamics approach to chemical reaction networks

    Science.gov (United States)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  13. Contagion on complex networks with persuasion

    Science.gov (United States)

    Huang, Wei-Min; Zhang, Li-Jie; Xu, Xin-Jian; Fu, Xinchu

    2016-03-01

    The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.

  14. Review of Rateless-Network-Coding-Based Packet Protection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    A. S. Abdullah

    2015-01-01

    Full Text Available In recent times, there have been many developments in wireless sensor network (WSN technologies using coding theory. Fast and efficient protection schemes for data transfer over the WSN are some of the issues in coding theory. This paper reviews the issues related to the application of the joint rateless-network coding (RNC within the WSN in the context of packet protection. The RNC is a method in which any node in the network is allowed to encode and decode the transmitted data in order to construct a robust network, improve network throughput, and decrease delays. To the best of our knowledge, there has been no comprehensive discussion about RNC. To begin with, this paper briefly describes the concept of packet protection using network coding and rateless codes. We therefore discuss the applications of RNC for improving the capability of packet protection. Several works related to this issue are discussed. Finally, the paper concludes that the RNC-based packet protection scheme is able to improve the packet reception rate and suggests future studies to enhance the capability of RNC protection.

  15. Gross anatomy of network security

    Science.gov (United States)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  16. Online Social Network Interactions:

    Directory of Open Access Journals (Sweden)

    Hui-Jung Chang

    2018-01-01

    Full Text Available A cross-cultural comparison of social networking structure on McDonald’s Facebook fan sites between Taiwan and the USA was conducted utilizing the individualism/collectivism dimension proposed by Hofstede. Four network indicators are used to describe the network structure of McDonald’s Facebook fan sites: size, density, clique and centralization. Individuals who post on both Facebook sites for the year of 2012 were considered as network participants for the purpose of the study. Due to the huge amount of data, only one thread of postings was sampled from each month of the year of 2012. The final data consists of 1002 postings written by 896 individuals and 5962 postings written by 5532 individuals from Taiwan and the USA respectively. The results indicated that the USA McDonald’s Facebook fan network has more fans, while Taiwan’s McDonald’s Facebook fan network is more densely connected. Cliques did form among the overall multiplex and within the individual uniplex networks in two countries, yet no significant differences were found between them. All the fan networks in both countries are relatively centralized, mostly on the site operators.

  17. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  18. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    Science.gov (United States)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and

  19. Robust classification using mixtures of dependency networks

    DEFF Research Database (Denmark)

    Gámez, José A.; Mateo, Juan L.; Nielsen, Thomas Dyhre

    2008-01-01

    Dependency networks have previously been proposed as alternatives to e.g. Bayesian networks by supporting fast algorithms for automatic learning. Recently dependency networks have also been proposed as classification models, but as with e.g. general probabilistic inference, the reported speed......-ups are often obtained at the expense of accuracy. In this paper we try to address this issue through the use of mixtures of dependency networks. To reduce learning time and improve robustness when dealing with data sparse classes, we outline methods for reusing calculations across mixture components. Finally...

  20. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    Science.gov (United States)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  1. AstroNet-II International Final Conference

    CERN Document Server

    Masdemont, Josep

    2016-01-01

    These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

  2. Synchronization between Different Networks with Time-Varying Delay and Its Application in Bilayer Coupled Public Traffic Network

    Directory of Open Access Journals (Sweden)

    Wenju Du

    2016-01-01

    Full Text Available In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic network and the urban rail traffic network based on the space R modeling method. Then regarding these two networks as the subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.

  3. Wintelism and Production Networks in the Electronics Industry

    NARCIS (Netherlands)

    van de Gevel, A.J.W.

    1997-01-01

    This paper deals with two interrelated elements of globalization: Wintelism and cross national production networks which have been underexposed in discussions about globalization.Wintelism refers to the shift in competition away from final assembly and vertical control of markets by final assemblers

  4. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  5. A network security situation prediction model based on wavelet neural network with optimized parameters

    Directory of Open Access Journals (Sweden)

    Haibo Zhang

    2016-08-01

    Full Text Available The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN with optimized parameters by the Improved Niche Genetic Algorithm (INGA. The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN and WNN.

  6. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  7. Network versus Economic Incentives

    DEFF Research Database (Denmark)

    Larsen, Christian Albrekt

    The article supplements the traditional economic line of reasoning with an economic sociological account of the transition from unemployment to employment. The lack of full information is recognised by economic theory while the focus on network within the tradition of economic sociology has...... not been adopted. The article argues that the importance of network actually might be very well understood within recent economic theories that emphasise the lack of full information. The empirical evidence for the importance of network both for employed and unemployed is provided by analysing a best case...... might be an important part of the vicious circles of unemployment. Finally, the article analyse the importance of network versus the importance of economic incentives. The result supports the thesis that economic sociology provides a better account of the transition from unemployment to employment than...

  8. Implementing Journaling in a Linux Shared Disk File System

    Science.gov (United States)

    Preslan, Kenneth W.; Barry, Andrew; Brassow, Jonathan; Cattelan, Russell; Manthei, Adam; Nygaard, Erling; VanOort, Seth; Teigland, David; Tilstra, Mike; O'Keefe, Matthew; hide

    2000-01-01

    In computer systems today, speed and responsiveness is often determined by network and storage subsystem performance. Faster, more scalable networking interfaces like Fibre Channel and Gigabit Ethernet provide the scaffolding from which higher performance computer systems implementations may be constructed, but new thinking is required about how machines interact with network-enabled storage devices. In this paper we describe how we implemented journaling in the Global File System (GFS), a shared-disk, cluster file system for Linux. Our previous three papers on GFS at the Mass Storage Symposium discussed our first three GFS implementations, their performance, and the lessons learned. Our fourth paper describes, appropriately enough, the evolution of GFS version 3 to version 4, which supports journaling and recovery from client failures. In addition, GFS scalability tests extending to 8 machines accessing 8 4-disk enclosures were conducted: these tests showed good scaling. We describe the GFS cluster infrastructure, which is necessary for proper recovery from machine and disk failures in a collection of machines sharing disks using GFS. Finally, we discuss the suitability of Linux for handling the big data requirements of supercomputing centers.

  9. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  10. Drive reinforcement neural networks for reactor control. Final report

    International Nuclear Information System (INIS)

    Williams, J.G.; Jouse, W.C.

    1995-01-01

    In view of the loss of the third year funding, the scope of the project goals has been revised. The revision in project scope no longer allows for the detailed modeling of the EBR-11 start-up task that was originally envisaged. The authors are continuing, however, to model the control of the rapid power ascent of the University of Arizona TRIGA reactor using a model-based controller and using a drive reinforcement neural network. These will be combined during the concluding period of the project into a hierarchical control architecture. In addition, the modeling of a PWR feedwater heater has continued, and an autonomous fault-tolerant software architecture for its control has been proposed

  11. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-01-01

    relaying is employed as an incentive for the primary network. The scheme is shown to outperform a number of reference schemes such as best relay selection. Finally, we consider a network of multiple primary and secondary users. We propose a three

  12. Application of artificial neural network for NHR fault diagnosis

    International Nuclear Information System (INIS)

    Yu Haitao; Zhang Liangju; Xu Xiangdong

    1999-01-01

    The author makes researches on 200 MW nuclear heating reactor (NHR) fault diagnosis system using artificial neural network, and use the tendency value and real value of the data under the accidents to train and test two BP networks respectively. The final diagnostic result is the combination of the results of the two networks. The compound system can enhance the accuracy and adaptability of the diagnosis comparing to the single network system

  13. Modern network science of neurological disorders.

    Science.gov (United States)

    Stam, Cornelis J

    2014-10-01

    Modern network science has revealed fundamental aspects of normal brain-network organization, such as small-world and scale-free patterns, hierarchical modularity, hubs and rich clubs. The next challenge is to use this knowledge to gain a better understanding of brain disease. Recent developments in the application of network science to conditions such as Alzheimer's disease, multiple sclerosis, traumatic brain injury and epilepsy have challenged the classical concept of neurological disorders being either 'local' or 'global', and have pointed to the overload and failure of hubs as a possible final common pathway in neurological disorders.

  14. Application and Implementation of Network Coding for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk

    2012-01-01

    the initial development of systems and protocols and show that the potential is there. However, I also find that network coding needs to be implemented with care and protocols have to be designed with consideration to make use of this novel technique. 2) The final aspect of this PhD investigates different...... ways that cooperative models may be implemented to cover a wide range of applications. This addresses the development of user cooperative protocols and how we in Device To Device (D2D) communication may reward users that contribute more to the network than they gain. In this area I suggest the use...

  15. Propagation phenomena in real world networks

    CERN Document Server

    Fay, Damien; Gabryś, Bogdan

    2015-01-01

    “Propagation, which looks at spreading in complex networks, can be seen from many viewpoints; it is undesirable, or desirable, controllable, the mechanisms generating that propagation can be the topic of interest, but in the end all depends on the setting. This book covers leading research on a wide spectrum of propagation phenomenon and the techniques currently used in its modelling, prediction, analysis and control. Fourteen papers range over topics including epidemic models, models for trust inference, coverage strategies for networks, vehicle flow propagation, bio-inspired routing algorithms, P2P botnet attacks and defences, fault propagation in gene-cellular networks, malware propagation for mobile networks, information propagation in crisis situations, financial contagion in interbank networks, and finally how to maximize the spread of influence in social networks. The compendium will be of interest to researchers, those working in social networking, communications and finance and is aimed at providin...

  16. Amigo - Ambient Intelligence for the networked home environment

    OpenAIRE

    Janse, M.D.

    2008-01-01

    The Amigo project develops open, standardized, interoperable middleware and attractive user services for the networked home environment. Fifteen of Europe's leading companies and research organizations in mobile and home networking, software development, consumer electronics and domestic appliances have joined together in the Amigo project to develop an integrated interoperable home networking framework. Amigo is an IST-funded IP project. This report is the final report providing an overview ...

  17. Sunrise deploys mobile network for CERN

    CERN Multimedia

    2004-01-01

    Sunrise, the alternative telecoms provider in Switzerland, is finalizing the installation of a mobile network comprising about forty sites located around the new particle accelerator at CERN (1 paragraph)

  18. Jamming in complex networks with degree correlation

    International Nuclear Information System (INIS)

    Pastore y Piontti, Ana L.; Braunstein, Lidia A.; Macri, Pablo A.

    2010-01-01

    We study the effects of the degree-degree correlations on the pressure congestion J when we apply a dynamical process on scale free complex networks using the gradient network approach. We find that the pressure congestion for disassortative (assortative) networks is lower (bigger) than the one for uncorrelated networks which allow us to affirm that disassortative networks enhance transport through them. This result agree with the fact that many real world transportation networks naturally evolve to this kind of correlation. We explain our results showing that for the disassortative case the clusters in the gradient network turn out to be as much elongated as possible, reducing the pressure congestion J and observing the opposite behavior for the assortative case. Finally we apply our model to real world networks, and the results agree with our theoretical model.

  19. Cyberinfrastructure for high energy physics in Korea

    International Nuclear Information System (INIS)

    Cho, Kihyeon; Kim, Hyunwoo; Jeung, Minho

    2010-01-01

    We introduce the hierarchy of cyberinfrastructure which consists of infrastructure (supercomputing and networks), Grid, e-Science, community and physics from bottom layer to top layer. KISTI is the national headquarter of supercomputer, network, Grid and e-Science in Korea. Therefore, KISTI is the best place to for high energy physicists to use cyberinfrastructure. We explain this concept on the CDF and the ALICE experiments. In the meantime, the goal of e-Science is to study high energy physics anytime and anywhere even if we are not on-site of accelerator laboratories. The components are data production, data processing and data analysis. The data production is to take both on-line and off-line shifts remotely. The data processing is to run jobs anytime, anywhere using Grid farms. The data analysis is to work together to publish papers using collaborative environment such as EVO (Enabling Virtual Organization) system. We also present the global community activities of FKPPL (France-Korea Particle Physics Laboratory) and physics as top layer.

  20. BER Science Network Requirements Workshop -- July 26-27,2007

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L.; Dart, Eli

    2008-02-01

    characterizing the network requirements of the science endeavors funded by the BER Program Office, the workshop emphasized some additional points. These included the need for a future ESnet presence in the Denver area, a desire for ESnet to continue support of collaboration services, and the need for ESnet to support dedicated bandwidth or 'virtual circuit' services. In addition, it is clear that the BER facilities are going to experience significant growth in data production over the next 5 years. The reasons for this vary (model resolution and supercomputer allocations for climate, detector upgrades for EMSL and ARM, sequencing hardware upgrades for JGI), but all indicators point to significant growth in data volumes over the near to medium term. This growth in data volume, combined with the ever-expanding scope of scientific collaboration, will continue to demand ever-increasing bandwidth, reliability and service richness from the networks that support DOE science.

  1. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  2. Communication Buses and Protocols for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2002-07-01

    Full Text Available This paper overviews existing digital communication buses which are commonly used in sensor networks, discusses sensor network architectures, and introduces a new sensor bus for low power microsystem applications. The new intra-module multi-element microsystem (IM2 bus is nine-line interface with 8b serial data which implements several advanced features such as power management and plug-n-play while maintaining minimum hardware overhead at the sensor node. Finally, some issues in wireless sensor networking are discussed. The coverage of these issues provides a guideline for choosing the appropriate bus for different sensor network applications.

  3. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  4. Social networking and the Olympic Movement: social media analysis, opportunities and trends : final report

    OpenAIRE

    Fernández Peña, Emilio

    2011-01-01

    Table of contents : 1: Introduction. - 2 : Sociodemographic data of social networking sites. - 3 : The Vancouver 2010 Olympic Winter Games on Facebook, Twitter and Orkut. - 4 : Singapore 2010 Youth Olympic Games communication strategies on Facebook and Twitter. - 5 : Sport organizations social networking strategies : case study analysis. - 6 : Olympic athletes and social media use during a non olympic-period. - 7. The Olympic Games, NBA and FC Barcelona on Facebook : content and fan participa...

  5. Wireless communications networks for the smart grid

    CERN Document Server

    Ho, Quang-Dung; Rajalingham, Gowdemy; Le-Ngoc, Tho

    2014-01-01

    This brief presents a comprehensive review of the network architecture and communication technologies of the smart grid communication network (SGCN). It then studies the strengths, weaknesses and applications of two promising wireless mesh routing protocols that could be used to implement the SGCN. Packet transmission reliability, latency and robustness of these two protocols are evaluated and compared by simulations in various practical SGCN scenarios. Finally, technical challenges and open research opportunities of the SGCN are addressed. Wireless Communications Networks for Smart Grid provi

  6. Stochastic network interdiction optimization via capacitated network reliability modeling and probabilistic solution discovery

    International Nuclear Information System (INIS)

    Ramirez-Marquez, Jose Emmanuel; Rocco S, Claudio M.

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve stochastic network interdiction problems (SNIP). The network interdiction problem solved considers the minimization of the cost associated with an interdiction strategy such that the maximum flow that can be transmitted between a source node and a sink node for a fixed network design is greater than or equal to a given reliability requirement. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link and that such interdiction has a probability of being successful. This version of the SNIP is for the first time modeled as a capacitated network reliability problem allowing for the implementation of computation and solution techniques previously unavailable. The solution process is based on an evolutionary algorithm that implements: (1) Monte-Carlo simulation, to generate potential network interdiction strategies, (2) capacitated network reliability techniques to analyze strategies' source-sink flow reliability and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks are used throughout the paper to illustrate the approach

  7. Time concurrency/phase-time synchronization in digital communications networks

    Science.gov (United States)

    Kihara, Masami; Imaoka, Atsushi

    1990-01-01

    Digital communications networks have the intrinsic capability of time synchronization which makes it possible for networks to supply time signals to some applications and services. A practical estimation method for the time concurrency on terrestrial networks is presented. By using this method, time concurrency capability of the Nippon Telegraph and Telephone Corporation (NTT) digital communications network is estimated to be better than 300 ns rms at an advanced level, and 20 ns rms at final level.

  8. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    Science.gov (United States)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  9. Information report on electricity distribution network security and financing

    International Nuclear Information System (INIS)

    2011-01-01

    This report first outlines the degradation of electricity quality, and identifies the lack of investment as the main reason of the network weakness. It notices that the French network is much extended, and that the medium and low voltage networks need to be secured, and outlines that some legal measures have already been implemented to correct these problems. In its second part, the report comments the network manager's point of view, and denies his critics of the conceding authorities. It also discusses the network manager's investments, and finally formulates six propositions for a better future of the distribution network

  10. The LiveWire Project final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.D.; Nelson, T.T. [Enova Technology, San Diego, CA (United States); Kelly, J.C.; Dominguez, H.A. [Paragon Consulting Services, La Verne, CA (United States)

    1997-10-01

    Utilities across the US have begun pilot testing a variety of hardware and software products to develop a two-way communications system between themselves and their customers. Their purpose is to reduce utility operating costs and to provide new and improved services for customers in light of pending changes in the electric industry being brought about by deregulation. A consortium including utilities, national labs, consultants, and contractors, with the support of the Department of Energy (DOE) and the Electric Power Research Institute (EPRI), initiated a project that utilized a hybrid fiber-coax (HFC) wide-area network integrated with a CEBus based local area network within the customers home. The system combined energy consumption data taken within the home, and home automation features to provide a suite of energy management services for residential customers. The information was transferred via the Internet through the HFC network, and presented to the customer on their personal computer. This final project report discusses the design, prototype testing, and system deployment planning of the energy management system.

  11. Performance verification of network function virtualization in software defined optical transport networks

    Science.gov (United States)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  12. Weighted Evolving Networks with Self-organized Communities

    International Nuclear Information System (INIS)

    Xie Zhou; Wang Xiaofan; Li Xiang

    2008-01-01

    In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable exponents of ν ≥ 1, γ > 2, and α > 2, respectively, sharing large clustering coefficients and scaling clustering spectra, and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness

  13. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  14. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  15. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  16. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  17. District heating and cooling systems for communities through power plant retrofit distribution network. Final report, September 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    This Final Report (Volume 2) of Phase 1 of District Heating for Communities Through Power Plant Retrofit Distribution Network contains 3 tasks: (1) Demonstration Team; (2) Identify Thermal Energy Sources and Potential Service Areas; and (3) Energy Market Analysis. Task 2 consists of estimating the thermal load within 5 and 10 miles of Public Service Electric and Gas Company steam power plants, Newark, New Jersey; estimating the costs of supplying thermal services to thermal loads of varying densities; a best case economic analysis of district heating for single-family homes; and some general comments on district-heating system design and development. Task 3 established the potential market for district heating that exists within a 5-mile radius of the selected generating stations; a sample of the questionnaire sent to the customers are shown. (MCW)

  18. Network and Ensemble Enabled Entity Extraction in Informal Text (NEEEEIT) final report

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Philip W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dunlavy, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-09-01

    This SAND report summarizes the activities and outcomes of the Network and Ensemble Enabled Entity Extraction in Information Text (NEEEEIT) LDRD project, which addressed improving the accuracy of conditional random fields for named entity recognition through the use of ensemble methods.

  19. Entropy of dynamical social networks

    Science.gov (United States)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  20. 1984 CERN school of computing

    International Nuclear Information System (INIS)

    1985-01-01

    The eighth CERN School of Computing covered subjects mainly related to computing for elementary-particle physics. These proceedings contain written versions of most of the lectures delivered at the School. Notes on the following topics are included: trigger and data-acquisition plans for the LEP experiments; unfolding methods in high-energy physics experiments; Monte Carlo techniques; relational data bases; data networks and open systems; the Newcastle connection; portable operating systems; expert systems; microprocessors - from basic chips to complete systems; algorithms for parallel computers; trends in supercomputers and computational physics; supercomputing and related national projects in Japan; application of VLSI in high-energy physics, and single-user systems. See hints under the relevant topics. (orig./HSI)

  1. Convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2018-05-01

    In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.

  2. IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD) Annex IV: - Transmission Systems Final report

    Energy Technology Data Exchange (ETDEWEB)

    Uhlen, Kjetil; Cirio, Diego

    2012-11-01

    This is the final report from Annex IV under the IEA Implementing Agreement on Electricity Networks Analysis, Research and Development (ENARD). The Annex has worked out a long-term perspective in the evolution of transmission system planning and operation. This is motivated by the established targets for energy system developments, which in turn are affected by economic paradigms, environmental concerns, and security of supply requirements for the well-being of citizens. The Annex work concludes that urgent action is needed to make the power system able to accommodate in a safe and economic way the dramatic changes it is required to undergo. A main message is that the 'right' investment in transmission capacity, which must be stimulated, may be regarded as 'overinvestment'. Transmission lines may be 'necessary' even though there is a chance that they may be underutilised in parts of their lifetime. In reality, underinvestment could be more costly than overinvestment (contradictory to the motivation for deregulation; to improve efficiency and avoid overinvestment). This is necessary, taking into account the very long planning and consenting processes and accounting for the technical aspects in the regulatory and market framework.(auth)

  3. Information theoretic description of networks

    Science.gov (United States)

    Wilhelm, Thomas; Hollunder, Jens

    2007-11-01

    We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter-receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks. The complexity classification is based on the information theoretic network complexity measure medium articulation (MA). It is proven that special networks with a medium number of links ( L∼n1.5) show the theoretical maximum complexity MA=(log n)2/2. A network is complex if its MA is larger than the average MA of appropriately randomized networks: MA>MAr. A network is of the democracy type if its redundancy Rdictatorship network. In democracy networks all nodes are, on average, of similar importance, whereas in dictatorship networks some nodes play distinguished roles in network functioning. In other words, democracy networks are characterized by cycling of information (or mass, or energy), while in dictatorship networks there is a straight through-flow from sources to sinks. The classification of directed networks into information spreading and information collecting networks is based on the conditional entropies of the considered networks ( H(A/B)=uncertainty of sender node if receiver node is known, H(B/A)=uncertainty of receiver node if sender node is known): if H(A/B)>H(B/A), it is an information collecting network, otherwise an information spreading network. Finally, different real networks (directed and undirected, weighted and unweighted) are classified according to our general scheme.

  4. Mathematical theories of distributed sensor networks

    CERN Document Server

    Iyengar, Sitharama S; Balakrishnan, N

    2014-01-01

    Mathematical Theory of Distributed Sensor Networks demonstrates how mathematical theories can be used to provide distributed sensor modeling and to solve important problems such as coverage hole detection and repair. The book introduces the mathematical and computational structure by discussing what they are, their applications and how they differ from traditional systems. The text also explains how mathematics are utilized to provide efficient techniques implementing effective coverage, deployment, transmission, data processing, signal processing, and data protection within distributed sensor networks. Finally, the authors discuss some important challenges facing mathematics to get more incite to the multidisciplinary area of distributed sensor networks.

  5. Automatic River Network Extraction from LIDAR Data

    Science.gov (United States)

    Maderal, E. N.; Valcarcel, N.; Delgado, J.; Sevilla, C.; Ojeda, J. C.

    2016-06-01

    National Geographic Institute of Spain (IGN-ES) has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI) within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network) and hydrological criteria (flow accumulation river network), and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files), and process; using local virtualization and the Amazon Web Service (AWS), which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri) and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  6. AUTOMATIC RIVER NETWORK EXTRACTION FROM LIDAR DATA

    Directory of Open Access Journals (Sweden)

    E. N. Maderal

    2016-06-01

    Full Text Available National Geographic Institute of Spain (IGN-ES has launched a new production system for automatic river network extraction for the Geospatial Reference Information (GRI within hydrography theme. The goal is to get an accurate and updated river network, automatically extracted as possible. For this, IGN-ES has full LiDAR coverage for the whole Spanish territory with a density of 0.5 points per square meter. To implement this work, it has been validated the technical feasibility, developed a methodology to automate each production phase: hydrological terrain models generation with 2 meter grid size and river network extraction combining hydrographic criteria (topographic network and hydrological criteria (flow accumulation river network, and finally the production was launched. The key points of this work has been managing a big data environment, more than 160,000 Lidar data files, the infrastructure to store (up to 40 Tb between results and intermediate files, and process; using local virtualization and the Amazon Web Service (AWS, which allowed to obtain this automatic production within 6 months, it also has been important the software stability (TerraScan-TerraSolid, GlobalMapper-Blue Marble , FME-Safe, ArcGIS-Esri and finally, the human resources managing. The results of this production has been an accurate automatic river network extraction for the whole country with a significant improvement for the altimetric component of the 3D linear vector. This article presents the technical feasibility, the production methodology, the automatic river network extraction production and its advantages over traditional vector extraction systems.

  7. Discrete opinion dynamics on networks based on social influence

    International Nuclear Information System (INIS)

    Hu Haibo; Wang Xiaofan

    2009-01-01

    A model of opinion dynamics based on social influence on networks was studied. The opinion of each agent can have integer values i = 1, 2, ..., I and opinion exchanges are restricted to connected agents. It was found that for any I ≥ 2 and self-confidence parameter 0 ≤ u i ) of the population that hold a given opinion i is a martingale, and the fraction q i of opinion i will gradually converge to (q i ). The tendency can slow down with the increase of degree assortativity of networks. When u is degree dependent, (q i ) does not possess the martingale property, however q i still converges to it. In both cases for a finite network the states of all agents will finally reach consensus. Further if there exist stubborn persons in the population whose opinions do not change over time, it was found that for degree-independent constant u, both q i and (q i ) will converge to fixed proportions which only depend on the distribution of initial obstinate persons, and naturally the final equilibrium state will be the coexistence of diverse opinions held by the stubborn people. The analytical results were verified by numerical simulations on Barabasi-Albert (BA) networks. The model highlights the influence of high-degree agents on the final consensus or coexistence state and captures some realistic features of the diffusion of opinions in social networks

  8. A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging

    Directory of Open Access Journals (Sweden)

    Dayong Zhang

    2014-01-01

    Full Text Available Online social networks appear to enrich our social life, which raises the question whether they remove cognitive constraints on human communication and improve human social capabilities. In this paper, we analyze the users' following and followed relationships based on the data of Sina Microblogging and reveal several structural properties of Sina Microblogging. Compared with real-life social networks, our results confirm some similar features. However, Sina Microblogging also shows its own specialties, such as hierarchical structure and degree disassortativity, which all mark a deviation from real-life social networks. The low cost of the online network forms a broader perspective, and the one-way link relationships make it easy to spread information, but the online social network does not make too much difference in the creation of strong interpersonal relationships. Finally, we describe the mechanisms for the formation of these characteristics and discuss the implications of these structural properties for the real-life social networks.

  9. Temporal node centrality in complex networks

    Science.gov (United States)

    Kim, Hyoungshick; Anderson, Ross

    2012-02-01

    Many networks are dynamic in that their topology changes rapidly—on the same time scale as the communications of interest between network nodes. Examples are the human contact networks involved in the transmission of disease, ad hoc radio networks between moving vehicles, and the transactions between principals in a market. While we have good models of static networks, so far these have been lacking for the dynamic case. In this paper we present a simple but powerful model, the time-ordered graph, which reduces a dynamic network to a static network with directed flows. This enables us to extend network properties such as vertex degree, closeness, and betweenness centrality metrics in a very natural way to the dynamic case. We then demonstrate how our model applies to a number of interesting edge cases, such as where the network connectivity depends on a small number of highly mobile vertices or edges, and show that our centrality definition allows us to track the evolution of connectivity. Finally we apply our model and techniques to two real-world dynamic graphs of human contact networks and then discuss the implication of temporal centrality metrics in the real world.

  10. Impact of PON deployment on metro networks

    Science.gov (United States)

    Poirrier, Julien; Herviou, Fabrice; Barboule, Hélène; Moignard, Maryse

    2009-01-01

    FTTH or FTTC, depending on countries and areas, will be the key technology for operators to differentiate themselves from competitors and win market share. Such a disruptive evolution of the access network should be supported by a significant re-design of the higher network layers. In the present paper, the required features of these new WDM networks are presented. Capacity and cost are the two obvious drivers. But versatility will be crucial to cope with an uncertain context (tedious prediction of traffic, regulation and services) and with very diverse population densities. Finally we also address how PON could benefit from mature WDM technologies to ease the global network design.

  11. s-core network decomposition: A generalization of k-core analysis to weighted networks

    Science.gov (United States)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  12. Consensus formation on coevolving networks: groups' formation and structure

    International Nuclear Information System (INIS)

    Kozma, Balazs; Barrat, Alain

    2008-01-01

    We study the effect of adaptivity on a social model of opinion dynamics and consensus formation. We analyse how the adaptivity of the network of contacts between agents to the underlying social dynamics affects the size and topological properties of groups and the convergence time to the stable final state. We find that, while on static networks these properties are determined by percolation phenomena, on adaptive networks the rewiring process leads to different behaviors: adaptive rewiring fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. We show how the convergence time is determined by the characteristic time of link rearrangement. We finally investigate how the adaptivity yields nontrivial correlations between the internal topology and the size of the groups of agreeing agents

  13. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

    Directory of Open Access Journals (Sweden)

    Meng Fan-Bo

    2016-01-01

    Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

  14. Language Choice & Global Learning Networks

    Directory of Open Access Journals (Sweden)

    Dennis Sayers

    1995-05-01

    Full Text Available How can other languages be used in conjunction with English to further intercultural and multilingual learning when teachers and students participate in computer-based global learning networks? Two portraits are presented of multilingual activities in the Orillas and I*EARN learning networks, and are discussed as examples of the principal modalities of communication employed in networking projects between distant classes. Next, an important historical precedent --the social controversy which accompanied the introduction of telephone technology at the end of the last century-- is examined in terms of its implications for language choice in contemporary classroom telecomputing projects. Finally, recommendations are offered to guide decision making concerning the role of language choice in promoting collaborative critical inquiry.

  15. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as Perceptron, Back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally, the application of artificial neural network for Chinese Character Recognition is also given. (author)

  16. The principles of artificial neural network information processing

    International Nuclear Information System (INIS)

    Dai, Ru-Wei

    1993-01-01

    In this article, the basic structure of an artificial neuron is first introduced. In addition, principles of artificial neural network as well as several important artificial neural models such as perception, back propagation model, Hopfield net, and ART model are briefly discussed and analyzed. Finally the application of artificial neural network for Chinese character recognition is also given. (author)

  17. A CyberCIEGE Traffic Analysis Extension for Teaching Network Security

    Science.gov (United States)

    2011-12-01

    Information Technology LAN Local Area Network MAADNET Military Academy Attack/Defense Network MAC Media Access Control MMORPG Massively...ready to launch its latest massively multiplayer online role-playing game ( MMORPG ) “SyberSIEGE”! The product is currently in the final stages of

  18. Synchronization in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  19. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  20. Search for minimal paths in modified networks

    International Nuclear Information System (INIS)

    Yeh, W.-C.

    2002-01-01

    The problem of searching for all minimal paths (MPs) in a network obtained by modifying the original network, e.g. for network expansion or reinforcement, is discussed and solved in this study. The existing best-known method to solve this problem was a straightforward approach. It needed extensive comparison and verification, and failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method to search for all MPs without an extensive research procedure is proposed. In this presentation, first we develop an intuitive algorithm based upon the reformation of all MPs in the original network to search for all MPs in a modified network. Next, the computational complexity of the proposed algorithm is analyzed and compared with the existing methods. Finally, examples illustrate how all MPs are generated in a modified network based upon the reformation of all of the MPs in the corresponding original network

  1. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation and Completion of Episodic Information.

    Energy Technology Data Exchange (ETDEWEB)

    Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael; Verzi, Stephen Joseph.

    2014-10-01

    Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach by which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.

  2. A brief review of advances in complex networks of nuclear science and technology field

    International Nuclear Information System (INIS)

    Fang Jinqing

    2010-01-01

    A brief review of advances in complex networks of nuclear science and technology field at home and is given and summarized. These complex networks include: nuclear energy weapon network, network centric warfare, beam transport networks, continuum percolation evolving network associated with nuclear reactions, global nuclear power station network, (nuclear) chemistry reaction networks, radiological monitoring and anti-nuclear terror networks, and so on. Some challenge issues and development prospects of network science are pointed out finally. (authors)

  3. Inversion of a lateral log using neural networks

    International Nuclear Information System (INIS)

    Garcia, G.; Whitman, W.W.

    1992-01-01

    In this paper a technique using neural networks is demonstrated for the inversion of a lateral log. The lateral log is simulated by a finite difference method which in turn is used as an input to a backpropagation neural network. An initial guess earth model is generated from the neural network, which is then input to a Marquardt inversion. The neural network reacts to gross and subtle data features in actual logs and produces a response inferred from the knowledge stored in the network during a training process. The neural network inversion of lateral logs is tested on synthetic and field data. Tests using field data resulted in a final earth model whose simulated lateral is in good agreement with the actual log data

  4. The structural and functional brain networks that support human social networks.

    Science.gov (United States)

    Noonan, M P; Mars, R B; Sallet, J; Dunbar, R I M; Fellows, L K

    2018-02-20

    Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in social networks are related to differences in specific brain structural and functional networks. Here, we tested this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and arcuate fasciculus were associated with an individual's social network size (SNS). A voxel-based morphology analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe regions. These structural changes co-occured with functional network differences. As a function of SNS, dorsomedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive behavior necessary for success in extensive social environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    Science.gov (United States)

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  6. Logistics Mode and Network Planning for Recycle of Crop Straw Resources

    OpenAIRE

    Zhou, Lingyun; Gu, Weidong; Zhang, Qing

    2013-01-01

    To realize the straw biomass industrialized development, it should speed up building crop straw resource recycle logistics network, increasing straw recycle efficiency, and reducing straw utilization cost. On the basis of studying straw recycle process, this paper presents innovative concept and property of straw recycle logistics network, analyses design thinking of straw recycle logistics network, and works out straw recycle logistics mode and network topological structure. Finally, it come...

  7. Final Report for DOE Award ER25756

    Energy Technology Data Exchange (ETDEWEB)

    Kesselman, Carl

    2014-11-17

    The SciDAC-funded Center for Enabling Distributed Petascale Science (CEDPS) was established to address technical challenges that arise due to the frequent geographic distribution of data producers (in particular, supercomputers and scientific instruments) and data consumers (people and computers) within the DOE laboratory system. Its goal is to produce technical innovations that meet DOE end-user needs for (a) rapid and dependable placement of large quantities of data within a distributed high-performance environment, and (b) the convenient construction of scalable science services that provide for the reliable and high-performance processing of computation and data analysis requests from many remote clients. The Center is also addressing (c) the important problem of troubleshooting these and other related ultra-high-performance distributed activities from the perspective of both performance and functionality

  8. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  9. Functional alignment of regulatory networks: a study of temperate phages.

    Directory of Open Access Journals (Sweden)

    Ala Trusina

    2005-12-01

    Full Text Available The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.

  10. How Did the Information Flow in the #AlphaGo Hashtag Network? A Social Network Analysis of the Large-Scale Information Network on Twitter.

    Science.gov (United States)

    Kim, Jinyoung

    2017-12-01

    As it becomes common for Internet users to use hashtags when posting and searching information on social media, it is important to understand who builds a hashtag network and how information is circulated within the network. This article focused on unlocking the potential of the #AlphaGo hashtag network by addressing the following questions. First, the current study examined whether traditional opinion leadership (i.e., the influentials hypothesis) or grassroot participation by the public (i.e., the interpersonal hypothesis) drove dissemination of information in the hashtag network. Second, several unique patterns of information distribution by key users were identified. Finally, the association between attributes of key users who exerted great influence on information distribution (i.e., the number of followers and follows) and their central status in the network was tested. To answer the proffered research questions, a social network analysis was conducted using a large-scale hashtag network data set from Twitter (n = 21,870). The results showed that the leading actors in the network were actively receiving information from their followers rather than serving as intermediaries between the original information sources and the public. Moreover, the leading actors played several roles (i.e., conversation starters, influencers, and active engagers) in the network. Furthermore, the number of their follows and followers were significantly associated with their central status in the hashtag network. Based on the results, the current research explained how the information was exchanged in the hashtag network by proposing the reciprocal model of information flow.

  11. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  12. Simulating large-scale spiking neuronal networks with NEST

    OpenAIRE

    Schücker, Jannis; Eppler, Jochen Martin

    2014-01-01

    The Neural Simulation Tool NEST [1, www.nest-simulator.org] is the simulator for spiking neural networkmodels of the HBP that focuses on the dynamics, size and structure of neural systems rather than on theexact morphology of individual neurons. Its simulation kernel is written in C++ and it runs on computinghardware ranging from simple laptops to clusters and supercomputers with thousands of processor cores.The development of NEST is coordinated by the NEST Initiative [www.nest-initiative.or...

  13. Discrete opinion dynamics on networks based on social influence

    Energy Technology Data Exchange (ETDEWEB)

    Hu Haibo; Wang Xiaofan [Complex Networks and Control Lab, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-06-05

    A model of opinion dynamics based on social influence on networks was studied. The opinion of each agent can have integer values i = 1, 2, ..., I and opinion exchanges are restricted to connected agents. It was found that for any I {>=} 2 and self-confidence parameter 0 {<=} u < 1, when u is a degree-independent constant, the weighted proportion (q{sub i}) of the population that hold a given opinion i is a martingale, and the fraction q{sub i} of opinion i will gradually converge to (q{sub i}). The tendency can slow down with the increase of degree assortativity of networks. When u is degree dependent, (q{sub i}) does not possess the martingale property, however q{sub i} still converges to it. In both cases for a finite network the states of all agents will finally reach consensus. Further if there exist stubborn persons in the population whose opinions do not change over time, it was found that for degree-independent constant u, both q{sub i} and (q{sub i}) will converge to fixed proportions which only depend on the distribution of initial obstinate persons, and naturally the final equilibrium state will be the coexistence of diverse opinions held by the stubborn people. The analytical results were verified by numerical simulations on Barabasi-Albert (BA) networks. The model highlights the influence of high-degree agents on the final consensus or coexistence state and captures some realistic features of the diffusion of opinions in social networks.

  14. Critical behavior and correlations on scale-free small-world networks: Application to network design

    Science.gov (United States)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  15. COMPREHENSIVE SURVEY OF POSSIBLE SECURITY ISSUES ON 4G NETWORKS

    OpenAIRE

    Sumant Ku Mohapatra; Biswa Ranjan Swain; Pravanjan Das

    2015-01-01

    This paper presents a brief study of recent advances in wireless network security issues. The paper makes a number of contributions to the wireless networking field. First, it studies the 4G mail threats and risk and their design decisions. Second, the security of 4G architecture with next generation network security and 8- security dimensions of 4G network. Third, security issues and possible threats on 4G are discussed. Finally, we proposed four layer security model which manage...

  16. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  17. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  18. Surname complex network for Brazil and Portugal

    Science.gov (United States)

    Ferreira, G. D.; Viswanathan, G. M.; da Silva, L. R.; Herrmann, H. J.

    2018-06-01

    We present a study of social networks based on the analysis of Brazilian and Portuguese family names (surnames). We construct networks whose nodes are names of families and whose edges represent parental relations between two families. From these networks we extract the connectivity distribution, clustering coefficient, shortest path and centrality. We find that the connectivity distribution follows an approximate power law. We associate the number of hubs, centrality and entropy to the degree of miscegenation in the societies in both countries. Our results show that Portuguese society has a higher miscegenation degree than Brazilian society. All networks analyzed lead to approximate inverse square power laws in the degree distribution. We conclude that the thermodynamic limit is reached for small networks (3 or 4 thousand nodes). The assortative mixing of all networks is negative, showing that the more connected vertices are connected to vertices with lower connectivity. Finally, the network of surnames presents some small world characteristics.

  19. Cost effectiveness of DH-network construction. Final report; Kaukolaempoeverkon rakentamisen kehittaeminen; Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Kivistoe, V.M. [Ekono Energy Ltd, Espoo (Finland)

    1993-12-31

    Construction cost of DH networks were analyzed in the study. Basing on the analysis, those areas of construction activities were selected, where cost effectiveness could be improved. According to the study, the civil works` cost form about half of the total construction cost on small diameter networks and 30..40 % of the cost of larger sizes. The impact of the design on the construction cost should be emphasized. According to the study it is possible to find significant reduction in the construction cost by increased use of twin pipe where the both carrier pipes are included in the same insulation casing. In small network sizes the reduction of cost achievable by the above is about 30..35 % and in larger sizes about 10 % (DN 125..DN 200) when comparing with a design by individual pipes. The use of twin pipe also causes savings in thermal loss. In sizes DN 65 and up, the saving in heat loss is about 90..95 FIM/m which represents about half of the total savings when compared with design by individual pipes. The possibility of prestressing the twin pipe element at factory in order to shorten the installation time at site was also studied and test pipes was also done. By factory prestressing it would be possible to avoid preheating of pipes at construction site. The trench could be backfilled immediately after pipe laying, welding and inspections. Theoretically and based on test pipes done the prestressing of twin pipe element looks very promising. When factory prestressing would be used, the open time of the trench is reduced significantly and for instance the disturbance to traffic is smaller. As well the use of labour and machinery at site could be more effective

  20. United States National Seismographic Network

    International Nuclear Information System (INIS)

    Buland, R.

    1993-09-01

    The concept of a United States National Seismograph Network (USNSN) dates back nearly 30 years. The idea was revived several times over the decades. but never funded. For, example, a national network was proposed and discussed at great length in the so called Bolt Report (U. S. Earthquake Observatories: Recommendations for a New National Network, National Academy Press, Washington, D.C., 1980, 122 pp). From the beginning, a national network was viewed as augmenting and complementing the relatively dense, predominantly short-period vertical coverage of selected areas provided by the Regional Seismograph Networks (RSN's) with a sparse, well-distributed network of three-component, observatory quality, permanent stations. The opportunity finally to begin developing a national network arose in 1986 with discussions between the US Geological Survey (USGS) and the Nuclear Regulatory Commission (NRC). Under the agreement signed in 1987, the NRC has provided $5 M in new funding for capital equipment (over the period 1987-1992) and the USGS has provided personnel and facilities to develop. deploy, and operate the network. Because the NRC funding was earmarked for the eastern United States, new USNSN station deployments are mostly east of 105 degree W longitude while the network in the western United States is mostly made up of cooperating stations (stations meeting USNSN design goals, but deployed and operated by other institutions which provide a logical extension to the USNSN)

  1. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jian'an; Lu Hongqian

    2009-01-01

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  2. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  3. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  4. LDRD final report : a lightweight operating system for multi-core capability class supercomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

    2010-09-01

    The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

  5. World Input-Output Network.

    Directory of Open Access Journals (Sweden)

    Federica Cerina

    Full Text Available Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD is one of the first efforts to construct the global multi-regional input-output (GMRIO tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  6. Review of Public Safety in Viewpoint of Complex Networks

    International Nuclear Information System (INIS)

    Gai Chengcheng; Weng Wenguo; Yuan Hongyong

    2010-01-01

    In this paper, a brief review of public safety in viewpoint of complex networks is presented. Public safety incidents are divided into four categories: natural disasters, industry accidents, public health and social security, in which the complex network approaches and theories are need. We review how the complex network methods was developed and used in the studies of the three kinds of public safety incidents. The typical public safety incidents studied by the complex network methods in this paper are introduced, including the natural disaster chains, blackouts on electric power grids and epidemic spreading. Finally, we look ahead to the application prospects of the complex network theory on public safety.

  7. Scaling properties in time-varying networks with memory

    Science.gov (United States)

    Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong

    2015-12-01

    The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.

  8. Peeking Network States with Clustered Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh [Texas A & M Univ., Commerce, TX (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learning tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.

  9. Robustness of airline alliance route networks

    Science.gov (United States)

    Lordan, Oriol; Sallan, Jose M.; Simo, Pep; Gonzalez-Prieto, David

    2015-05-01

    The aim of this study is to analyze the robustness of the three major airline alliances' (i.e., Star Alliance, oneworld and SkyTeam) route networks. Firstly, the normalization of a multi-scale measure of vulnerability is proposed in order to perform the analysis in networks with different sizes, i.e., number of nodes. An alternative node selection criterion is also proposed in order to study robustness and vulnerability of such complex networks, based on network efficiency. And lastly, a new procedure - the inverted adaptive strategy - is presented to sort the nodes in order to anticipate network breakdown. Finally, the robustness of the three alliance networks are analyzed with (1) a normalized multi-scale measure of vulnerability, (2) an adaptive strategy based on four different criteria and (3) an inverted adaptive strategy based on the efficiency criterion. The results show that Star Alliance has the most resilient route network, followed by SkyTeam and then oneworld. It was also shown that the inverted adaptive strategy based on the efficiency criterion - inverted efficiency - shows a great success in quickly breaking networks similar to that found with betweenness criterion but with even better results.

  10. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. networked systems for communication and control applications, the bo...

  11. Local Dynamics in Trained Recurrent Neural Networks.

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-23

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  12. Local Dynamics in Trained Recurrent Neural Networks

    Science.gov (United States)

    Rivkind, Alexander; Barak, Omri

    2017-06-01

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  13. Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhengxian Wei

    2017-07-01

    Full Text Available Underwater wireless sensor networks (UWSNs have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.

  14. Social networks of professionals in health care organizations: a review.

    Science.gov (United States)

    Tasselli, Stefano

    2014-12-01

    In this article, we provide an overview of social network research in health care, with a focus on social interactions between professionals in organizations. We begin by introducing key concepts defining the social network approach, including network density, centrality, and brokerage. We then review past and current research on the antecedents of health care professionals' social networks-including demographic attributes, professional groups, and organizational arrangements-and their consequences-including satisfaction at work, leadership, behaviors, knowledge transfer, diffusion of innovation, and performance. Finally, we examine future directions for social network research in health care, focusing on micro-macro linkages and network dynamics. © The Author(s) 2014.

  15. Rumor Spreading Model with Trust Mechanism in Complex Social Networks

    Science.gov (United States)

    Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An

    2013-04-01

    In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.

  16. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  17. Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

    1998-12-01

    This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

  18. Value network dynamics and industry evolution

    NARCIS (Netherlands)

    Vermeulen, B.

    2012-01-01

    Machines, appliances, and consumption goods are developed and produced in value networks populated by firms ranging from final assemblers, component suppliers, complement providers, the suppliers’ suppliers, all the way upstream to firms that extrude raw material. Evolutionary models of industry

  19. Mobility Network and Safety

    Directory of Open Access Journals (Sweden)

    Adriana Galderisi

    2010-04-01

    Full Text Available Mobility network is crucial for ensuring territorial safety with respect to natural and technological hazards. They represent a basic support to community’s everyday life although being exposed elements often characterized by high vulnerability to different hazards and, in the meanwhile, strategic equipments for emergency management. Physical damages or the lack in functioning of those networks may greatly increase the loss of human lives caused by hazardous events as well as produce relevant economic damages at medium and long term. Although the relevance of the mobility networks in assuring territorial safety is at present largely recognized, risk analyses have been long focused on buildings’ vulnerability or, even where they have paid attention to mobility network, they have been mainly focused on the physical damages that a given hazard could may induce on individual elements of such network. It is recent the awareness that mobility network represents a system, characterized by relevant interdependences both among its elements and among network infrastructures and urban systems. Based on these assumptions, this paper points out the heterogeneous aspects of the mobility network vulnerability and their relevance in increasing the overall territorial or urban vulnerability to hazardous events. Therefore, an in-depth investigation of the concept of mobility network vulnerability is provided, in order to highlight the aspects mostly investigated and more recent research perspectives. Finally, a case study in the Campania Region is presented in order to point out how traditional risk analyses, generally referred to individual hazards, can sometimes led to invest in the mobility network improvement or development which, targeted to increase the security of a territory result, on the opposite, in an increase of the territorial vulnerability.

  20. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.