WorldWideScience

Sample records for supercoiled dna revealed

  1. DNA supercoiling during transcription.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D

    2016-11-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  2. DNA supercoiling during transcription

    Science.gov (United States)

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  3. Interplay between DNA supercoiling and transcription elongation.

    Science.gov (United States)

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  4. Supercoiling induces denaturation bubbles in circular DNA.

    Science.gov (United States)

    Jeon, Jae-Hyung; Adamcik, Jozef; Dietler, Giovanni; Metzler, Ralf

    2010-11-12

    We present a theoretical framework for the thermodynamic properties of supercoiling-induced denaturation bubbles in circular double-stranded DNA molecules. We explore how DNA supercoiling, ambient salt concentration, and sequence heterogeneity impact on the bubble occurrence. An analytical derivation of the probability distribution to find multiple bubbles is derived and the relevance for supercoiled DNA discussed. We show that in vivo sustained DNA bubbles are likely to occur due to partial twist release in regions rich in weaker AT base pairs. Single DNA plasmid imaging experiments clearly demonstrate the existence of bubbles in free solution.

  5. Profiling DNA supercoiling domains in vivo

    Directory of Open Access Journals (Sweden)

    Samuel Corless

    2014-12-01

    Full Text Available Transitions in DNA structure have the capacity to regulate genes, but have been poorly characterised in eukaryotes due to a lack of appropriate techniques. One important example is DNA supercoiling, which can directly regulate transcription initiation, elongation and coordinated expression of neighbouring genes. DNA supercoiling is the over- or under-winding of the DNA double helix, which occurs as a consequence of polymerase activity and is modulated by topoisomerase activity [5]. To map the distribution of DNA supercoiling in nuclei, we developed biotinylated 4,5,8-trimethylpsoralen (bTMP pull-down to preferentially enrich for under-wound DNA. Here we describe in detail the experimental design, quality controls and analyses associated with the study by Naughton et al. [13] that characterised for the first time the large-scale distribution of DNA supercoiling in human cells (GEO: GSE43488 and GSE43450.

  6. Supercoiling of the DNA Template during Transcription

    Science.gov (United States)

    Liu, Leroy F.; Wang, James C.

    1987-10-01

    Transcription of a right-handed double-helical DNA requires a relative rotation of the RNA polymerase and its nascent RNA around the DNA. We describe conditions under which the resistance to the rotational motion of the transcription ensemble around the DNA can be large. In such cases, the advancing polymerase generates positive supercoils in the DNA template ahead of it and negative supercoils behind it. Mutual annihilation of the positively and negatively supercoiled regions may be prevented by anchoring points on the DNA to a large structure, or, in the case of an unanchored plasmid, by the presence of two oppositely oriented transcription units. In prokaryotes, DNA topoisomerase I preferentially removes negative supercoils and DNA gyrase (topoisomerase II) removes positive ones. Our model thus provides an explanation for the experimentally observed high degree of negative or positive supercoiling of intracellular pBR322 DNA when DNA topoisomerase I or gyrase is respectively inhibited. We discuss the implications of our model in terms of supercoiling regulation, DNA conformational transitions, and gene regulation in both prokaryotes and eukaryotes.

  7. Polymer induced condensation of dna supercoils

    NARCIS (Netherlands)

    Bessa Ramos Jr., J.E.; Ruggiero Neto, J.; Vries, de R.J.

    2008-01-01

    Macromolecular crowding is thought to be a significant factor driving DNA condensation in prokaryotic cells. Whereas DNA in prokaryotes is supercoiled, studies on crowding-induced DNA condensation have so far focused on linear DNA. Here we compare DNA condensation by poly(ethylene oxide) for superco

  8. Determining DNA supercoiling enthalpy by isothermal titration calorimetry.

    Science.gov (United States)

    Xu, Xiaozhou; Zhi, Xiaoduo; Leng, Fenfei

    2012-12-01

    DNA supercoiling plays a critical role in certain essential DNA transactions, such as DNA replication, recombination, and transcription. For this reason, exploring energetics of DNA supercoiling is fundamentally important for understanding its biological functions. In this paper, using a unique property of DNA intercalators, such as ethidium bromide and daunorubicin, which bind to supercoiled, nicked, and relaxed DNA templates with different DNA-binding enthalpies, we determined DNA supercoiling enthalpy of plasmid pXXZ6, a 4.5 kb plasmid to be about 11.5 kcal/mol per linking number change. This determination allowed us to partition the DNA supercoiling free energy into enthalpic and entropic contributions where the unfavorable DNA supercoiling free energy exclusively originated from the large positive supercoiling enthalpy and was compensated by a large, favorable entropy term (TΔS). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Homologous pairing in stretched supercoiled DNA

    Science.gov (United States)

    Strick, T. R.; Croquette, V.; Bensimon, D.

    1998-01-01

    By using elastic measurements on single DNA molecules, we show that stretching a negatively supercoiled DNA activates homologous pairing in physiological conditions. These experiments indicate that a stretched unwound DNA locally denatures to alleviate the force-driven increase in torsional stress. This is detected by hybridization with 1 kb of homologous single-stranded DNA probes. The stretching force involved (≈2 pN) is small compared with those typically developed by molecular motors, suggesting that this process may be relevant to DNA processing in vivo. We used this technique to monitor the progressive denaturation of DNA as it is unwound and found that distinct, stable denaturation bubbles formed, beginning in A+T-rich regions. PMID:9724746

  10. Effect of DNA binding protein Ssh12 from hyperthermophilic archaeon Sulfolobus shibatae on DNA supercoiling

    Institute of Scientific and Technical Information of China (English)

    楼慧强; 黄力; VietQ.Mai

    1999-01-01

    An 11.5-ku DNA binding protein, designated as Sshl2, was purified from the hyperthermophilic archaeon Sulfolobus shibatae by column chromatography in SP Sepharose, DNA cellulose and phosphocellulose. Sshl2 accounts for about 4 % of the total cellular protein. The protein is capable of binding to both negatively supercoiled and relaxed DNAs. Nick closure analysis revealed that Sshl2 constrains negative supercoils upon binding to DNA. While the ability of the protein to constrain supercoils is weak at 22℃ , it is enhanced substantially at temperatures higher than 37℃ . Both the cellular content and supercoil-constraining ability of Sshl2 suggest that the protein may play an important role in the organization and stabilization of the chromosome of S. shibatae.

  11. Structural Transitions in Supercoiled Stretched DNA

    Science.gov (United States)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role biophysique-ADN>(for more details).

  12. Supercoiled circular DNA of an insect granulosis virus

    Science.gov (United States)

    Tweeten, Kathleen A.; Bulla, Lee A.; Consigli, Richard A.

    1977-01-01

    The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of 3H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 × 106 by sedimentation in neutral sucrose and 78 × 106 by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 × 106. The buoyant density of the granulosis virus DNA was 1.703 g/cm3 and that of its insect host DNA was 1.697 g/cm3. Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively. Images PMID:198791

  13. Studies of DNA supercoiling in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.N.

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = [minus]0.123 to [plus]0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  14. Studies of DNA supercoiling in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Nelson [Univ. of California, Berkeley, CA (United States)

    1990-10-01

    This thesis describes a number of diverse experiments whose common theme is to elaborate some aspect of DNA supercoiling. The torsion elastic constant of DNA is measure as a function of superhelix density using the technique of picosecond Time Resolved Fluorescence Polarization Anisotropy (FPA) of intercalated ethidium bromide. The results agree with theories which predict that the anisotropy decay should vary with the square root of the relative viscosity. This experiment furthermore demonstrates a sensitivity of FPA to a change in torsion elastic constant of less than 10%. A number of covalently closed DNA samples, ranging in superhelix density from = -0.123 to +0.042, are then examined. A novel method for measuring changes in local supercoiling on a large PNA molecule which is sensitive to changes in supercoiling of regions of chromosomal DNA as short as 1 kilobase in length is presented. Study of chromosomal supercoiling regulating anaerobic gene expression in the facultative photosynthetic bacterium, Rhodobacter capsulatus showed that no stable change in chromosomal supercoiling upon a shift from aerobic respiratory growth to anaerobic photosynthetic conditions. Studies to detect transient changes in DNA supercoiling indicate that DNA downstream from heavily transcribed genes for the photosynthetic reaction center are relaxed or perhaps overwound upon the induction of photosynthetic metabolism. These results are interpreted in terms of the twin domain model of transcriptional supercoiling.

  15. Visualization of interaction between ribosome-inactivating proteins and supercoiled DNA with an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    吴晓华; 刘望夷; 欧阳振乾; 李民乾

    1997-01-01

    The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease.

  16. Molecular modeling and energy refinement of supercoiled DNA.

    Science.gov (United States)

    Hao, M H; Olson, W K

    1989-12-01

    A method is presented for constructing the complete atomic structure of supercoiled DNA starting from a linear description of the double helical pathway. The folding pathway is defined by piecewise B-spline curves and the atoms are initially positioned with respect to the local Frenet trihedra determined by the equations of the curves. The resulting chemical structure is corrected and refined with an energy minimization procedure based on standard potential expressions. The refined molecular structure is then used to study the effects of supercoiling on the local secondary structure of DNA. The minimized structure is found to differ from an isotropic elastic rod model of the double helix, with the base pairs bending in an asymmetric fashion along the supercoiled trajectory. The starting trajectory is chosen so that the refined supercoiled structure is either underwound (10.37 base pairs per turn) or overwound (9.65 base pairs per turn) compared to the standard tenfold B-DNA fiber diffraction model. The underwound supercoil is also lower in energy than the overwound duplex. The variation of base pair sequence in poly(dA).poly(dT).poly(dAT).poly(dTA) and poly(dA5T5).poly(dT5A5) is additionally found to influence the secondary structural features along a given supercoiled pathway. Finally, the detailed features of the refined structures are found to be in agreement with known X-ray crystallographic structures of DNA oligomers.

  17. DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus.

    Science.gov (United States)

    Shortt, Claire; Scanlan, Eoin; Hilliard, Amber; Cotroneo, Chiara E; Bourke, Billy; Ó Cróinín, Tadhg

    2016-09-13

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans, but relatively little is known about the global regulation of virulence factors during infection of chickens or humans. This study identified DNA supercoiling as playing a key role in regulating motility and flagellar protein production and found that this supercoiling-controlled regulon is induced by growth in chicken mucus. A direct correlation was observed between motility and resting DNA supercoiling levels in different strains of C. jejuni, and relaxation of DNA supercoiling resulted in decreased motility. Transcriptional analysis and Western immunoblotting revealed that a reduction in motility and DNA supercoiling affected the two-component regulatory system FlgRS and was associated with reduced FlgR expression, increased FlgS expression, and aberrant expression of flagellin subunits. Electron microscopy revealed that the flagellar structure remained intact. Growth in the presence of porcine mucin resulted in increased negative supercoiling, increased motility, increased FlgR expression, and reduced FlgS expression. Finally, this supercoiling-dependent regulon was shown to be induced by growth in chicken mucus, and the level of activation was dependent on the source of the mucus from within the chicken intestinal tract. In conclusion, this study reports for the first time the key role played by DNA supercoiling in regulating motility in C. jejuni and indicates that the induction of this supercoiling-induced regulon in response to mucus from different sources could play a critical role in regulating motility in vivo Although Campylobacter jejuni is the leading cause of bacterial gastroenteritis, very little is understood about how this pathogen controls the expression of genes involved in causing disease. This study for the first time identifies DNA supercoiling as a key regulator of motility in C. jejuni, which is essential for both pathogenesis and colonization. Altering the

  18. The effect of DNA supercoiling on nucleosome structure and stability.

    Science.gov (United States)

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  19. Variety of molecular conformation of plasmid pUC18 DNA and solenoidally supercoiled DNA

    Institute of Scientific and Technical Information of China (English)

    黄熙泰; 王照清; 吴永文; 樊廷玉; 王树荣; 王勖焜

    1996-01-01

    The plasmid pUC18 DNA isolated from Escherichia coli HB101 were analyzed by two-dimensional agarose gel electrophoresis and hybridization. The results show that the DNA sample can be separated into six groups of different structural components. The plectonemically and solenoidally supercoiled pUC18 DNA coexist in it. These two different conformations of supercoiled DNA are interchangeable with the circumstances (ionic strength and type, etc.). The amount of solenoidally supercoiled pUC18 DNA in the samples can be changed by treatment of DNA topoisome rases. Under an electron microscope, the solenoidal supercoiling DNA has a round shape with an average diameter of 45 nm. The facts suggest that solenoidaUy supercoiled DNA be a structural entity independent of histones. The polymorphism of DNA structure may be important to packing of DNA in vivo.

  20. Configurational transitions in Fourier series-represented DNA supercoils.

    Science.gov (United States)

    Liu, G; Schlick, T; Olson, A J; Olson, W K

    1997-10-01

    A new Fourier series representation of supercoiled DNA is employed in Langevin dynamics simulations to study large-scale configurational motions of intermediate-length chains. The polymer is modeled as an ideal elastic rod subject to long-range van der Waals' interactions. The van der Waals' term prevents the self-contact of distant chain segments and also mimics attractive forces thought to stabilize the association of closely spaced charged rods. The finite Fourier series-derived polymer formulation is an alternative to the piecewise B-spline curves used in past work to describe the motion of smoothly deformed supercoiled DNA in terms of a limited number of independent variables. This study focuses on two large-scale configurational events: the interconversion between circular and figure-8 forms at a relatively low level of supercoiling, and the transformation between branched and interwound structures at a higher superhelical density.

  1. DNA supercoiling depends on the phosphorylation potential in Escherichia coli

    DEFF Research Database (Denmark)

    Van Workum, M.; van Dooren, S.J.M; Oldenburg, N

    1996-01-01

    ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ADP ratio was reduced by a shift to anaerobic conditions, by addition of protonophore (dinitrophenol) or by potassium cyanide addition, DNA...

  2. Theoretical study of the conformation and energy of supercoiled DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, N. G. [Lawrence Berkeley Lab., CA (United States). Structural Biology Div.; California Univ., Berkeley, CA (United States). Dept. of Physics

    1992-01-01

    The two sugar-phosphate backbones of the DNA molecule wind about each other in helical paths. For circular DNA molecules, or for linear pieces of DNA with the ends anchored, the two strands have a well-defined linking number, Lk. If Lk differs from the equilibrium linking number Lk{sub 0}, the molecule is supercoiled. The linking difference {Delta}Lk = Lk-Lk{sub 0} is partitioned between torsional deformation of the DNA, or twist ({Delta}Tw), and a winding of the DNA axis about itself known as writhe (Wr). In this dissertation, the conformation and energy of supercoiled DNA are examined by treating DNA as an elastic cylinder. Finite-length and entropic effects are ignored, and all extensive quantities are treated as linear densities. Two classes of conformation are considered: the plectonemic or interwound form, in which the axis of the DNA double helix winds about itself in a double superhelix, and the toroidal shape in which the axis is wrapped around a torus. Minimum energy conformation are found. For biologically relevant values of specific linking differences, the plectonemic DNA, the superhelical pitch angle {alpha} is in the range 45{degree} < {alpha} {le} 90{degree}. For low values of specific linking difference {vert_bar}{sigma}{vert_bar} ({sigma} = {Delta}Lk/Lk{sub 0}), most linking difference is in writhe. As {vert_bar}{sigma}{vert_bar} increases, a greater proportion of linking difference is in twist. Interaction between DNA strands is treated first as a hard-body excluded volume and then as a screened electrostatic repulsion. Ionic strength is found to have a large effect, resulting in significantly greater torsional stress in supercoiled DNA at low ionic strength.

  3. Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence

    Science.gov (United States)

    Vlijm, Rifka; Mashaghi, Alireza; Bernard, Stéphanie; Modesti, Mauro; Dekker, Cees

    2015-02-01

    The most common form of DNA is the well-known B-structure of double-helix DNA. Many processes in the cell, however, exert force and torque, inducing structural changes to the DNA that are vital to biological function. Virtually all DNA in cells is in a state of negative supercoiling, with a DNA structure that is complex. Using magnetic tweezers combined with fluorescence imaging, we here study DNA structure as a function of negative supercoiling at the single-molecule level. We classify DNA phases based on DNA length as a function of supercoiling, down to a very high negative supercoiling density σ of -2.5, and forces up to 4.5 pN. We characterize plectonemes using fluorescence imaging. DNA bubbles are visualized by the binding of fluorescently labelled RPA, a eukaryotic single-strand-binding protein. The presence of Z-DNA, a left-handed form of DNA, is probed by the binding of Zα77, the minimal binding domain of a Z-DNA-binding protein. Without supercoiling, DNA is in the relaxed B-form. Upon going toward negative supercoiling, plectonemic B-DNA is being formed below 0.6 pN. At higher forces and supercoiling densities down to about -1.9, a mixed state occurs with plectonemes, multiple bubbles and left-handed L-DNA. Around σ = -1.9, a buckling transition occurs after which the DNA end-to-end length linearly decreases when applying more negative turns, into a state that we interpret as plectonemic L-DNA. By measuring DNA length, Zα77 binding, plectoneme and ssDNA visualisation, we thus have mapped the co-existence of many DNA structures and experimentally determined the DNA phase diagram at (extreme) negative supercoiling.The most common form of DNA is the well-known B-structure of double-helix DNA. Many processes in the cell, however, exert force and torque, inducing structural changes to the DNA that are vital to biological function. Virtually all DNA in cells is in a state of negative supercoiling, with a DNA structure that is complex. Using magnetic tweezers

  4. Experimental phase diagram of negatively supercoiled DNA measured by magnetic tweezers and fluorescence.

    Science.gov (United States)

    Vlijm, Rifka; Mashaghi, Alireza; Bernard, Stéphanie; Modesti, Mauro; Dekker, Cees

    2015-02-21

    The most common form of DNA is the well-known B-structure of double-helix DNA. Many processes in the cell, however, exert force and torque, inducing structural changes to the DNA that are vital to biological function. Virtually all DNA in cells is in a state of negative supercoiling, with a DNA structure that is complex. Using magnetic tweezers combined with fluorescence imaging, we here study DNA structure as a function of negative supercoiling at the single-molecule level. We classify DNA phases based on DNA length as a function of supercoiling, down to a very high negative supercoiling density σ of -2.5, and forces up to 4.5 pN. We characterize plectonemes using fluorescence imaging. DNA bubbles are visualized by the binding of fluorescently labelled RPA, a eukaryotic single-strand-binding protein. The presence of Z-DNA, a left-handed form of DNA, is probed by the binding of Zα77, the minimal binding domain of a Z-DNA-binding protein. Without supercoiling, DNA is in the relaxed B-form. Upon going toward negative supercoiling, plectonemic B-DNA is being formed below 0.6 pN. At higher forces and supercoiling densities down to about -1.9, a mixed state occurs with plectonemes, multiple bubbles and left-handed L-DNA. Around σ = -1.9, a buckling transition occurs after which the DNA end-to-end length linearly decreases when applying more negative turns, into a state that we interpret as plectonemic L-DNA. By measuring DNA length, Zα77 binding, plectoneme and ssDNA visualisation, we thus have mapped the co-existence of many DNA structures and experimentally determined the DNA phase diagram at (extreme) negative supercoiling.

  5. Linear forms of plasmid DNA are superior to supercoiled structures as active templates for gene expression in plant protoplasts.

    Science.gov (United States)

    Ballas, N; Zakai, N; Friedberg, D; Loyter, A

    1988-07-01

    Introduction of the plasmids pUC8CaMVCAT and pNOSCAT into plant protoplasts is known to result in transient expression of the chloramphenicol acetyl transferase (CAT) gene. Also, transfection with the plasmid pDO432 results in transient appearance of the luciferase enzyme. In the present work we have used these systems to study the effect of DNA topology on the expression of the above recombinant genes. Linear forms of the above plasmids exhibited much higher activity in supporting gene expression than their corresponding super-coiled structures. CAT activity in protoplasts transfected with the linear forms of pUC8CaMVCAT and pNOSCAT was up to ten-fold higher than that observed in protoplasts transfected by the supercoiled template of these plasmids. This effect was observed in protoplasts derived from two different lines of Petunia hybrida and from a Nicotiana tabacum cell line. Transfection with the relaxed form of pUC8CaMVCAT resulted in very low expression of the CAT gene.Northern blot analysis revealed that the amount of poly(A)(+) RNA extracted from protoplasts transformed with the linear forms of the DNA was about 10-fold higher than that found in protoplasts transformed with supercoiled DNA.Southern blot analysis revealed that about the same amounts of supercoiled and linear DNA molecules were present in nuclei of transfected protoplasts. No significant quantitative differences have been observed between the degradation rates of the various DNA templates used.

  6. Analytical description of extension, torque and supercoiling radius of a stretched twisted DNA

    OpenAIRE

    Neukirch, Sébastien; Marko, John F.

    2011-01-01

    We study the mixture of extended and supercoiled DNA that occurs in a twisted DNA molecule under tension. Closed-form asymptotic solutions for the supercoiling radius, extension and torque of the molecule are obtained in the high-force limit where electrostatic and elastic effects dominate. We demonstrate that experimental data obey the extension and torque scaling laws apparent in our formulae, in the regime where thermal fluctuation effects are quenched by applied force.

  7. nifH Promoter Activity Is Regulated by DNA Supercoiling in Sinorhizobium meliloti

    Institute of Scientific and Technical Information of China (English)

    Yan-Jie LIU; Biao HU; Jia-Bi ZHU; Shan-Jiong SHEN; Guan-Qiao YU

    2005-01-01

    In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown cells, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoilingdependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.

  8. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.

    Science.gov (United States)

    Gubaev, Airat; Weidlich, Daniela; Klostermeier, Dagmar

    2016-12-01

    The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A Superhelical Spiral in the Escherichia coli DNA Gyrase A C-terminal Domain Imparts Unidirectional Supercoiling Bias

    Energy Technology Data Exchange (ETDEWEB)

    Ruthenburg,A.; Graybosch, D.; Huetsch, J.; Verdine, G.

    2005-01-01

    DNA gyrase is unique among type II topoisomerases in that its DNA supercoiling activity is unidirectional. The C-terminal domain of the gyrase A subunit (GyrA-CTD) is required for this supercoiling bias. We report here the x-ray structure of the Escherichia coli GyrA-CTD (Protein Data Bank code 1ZI0). The E. coli GyrA-CTD adopts a circular-shaped {beta}-pinwheel fold first seen in the Borrelia burgdorferi GyrA-CTD. However, whereas the B. burgdorferi GyrA-CTD is flat, the E. coli GyrA-CTD is spiral. DNA relaxation assays reveal that the E. coli GyrA-CTD wraps DNA inducing substantial (+) superhelicity, while the B. burgdorferi GyrA-CTD introduces a more modest (+) superhelicity. The observation of a superhelical spiral in the present structure and that of the Bacillus stearothermophilus ParC-CTD structure suggests unexpected similarities in substrate selectivity between gyrase and Topo IV enzymes. We propose a model wherein the right-handed ((+) solenoidal) wrapping of DNA around the E. coli GyrA-CTD enforces unidirectional (-) DNA supercoiling.

  10. Electrostatic-undulatory theory of plectonemically supercoiled DNA.

    Science.gov (United States)

    Ubbink, J; Odijk, T

    1999-05-01

    We present an analytical calculation of the electrostatic interaction in a plectonemic supercoil within the Poisson-Boltzmann approximation. Undulations of the supercoil strands arising from thermal motion couple nonlinearly with the electrostatic interaction, giving rise to a strong enhancement of the bare interaction. In the limit of fairly tight winding, the free energy of a plectonemic supercoil may be split into an elastic contribution containing the bending and torsional energies and an electrostatic-undulatory free energy. The total free energy of the supercoil is minimized according to an iterative scheme, which utilizes the special symmetry inherent in the usual elastic free energy of the plectoneme. The superhelical radius, opening angle, and undulation amplitudes in the radius and pitch are obtained as a function of the specific linking difference and the concentration of monovalent salt. Our results compare favorably with the experimental values for these parameters of Boles et al. (1990. J. Mol. Biol. 213:931-951). In particular, we confirm the experimental observation that the writhe is a virtually constant fraction of the excess linking number over a wide range of superhelical densities. Another important prediction is the ionic strength dependence of the plectonemic parameters, which is in reasonable agreement with the results from computer simulations.

  11. DNA supercoiling and aerobic regulation of transcription from the Klebsiella pneumoniae nifLA promoter.

    Science.gov (United States)

    Dixon, R A; Henderson, N C; Austin, S

    1988-11-11

    Expression from the K. pneumoniae nifLA promoter is oxygen sensitive and is also inhibited by the DNA gyrase inhibitor coumermycin A1 under anaerobic growth conditions. The activity of this promoter was found to be highly sensitive to changes in DNA topology in vitro. Transcription was completely dependent on negative supercoiling at physiological salt concentrations although transcription from linear or fully relaxed closed circular templates was detectable at KCl concentrations lower than 50 mM. These observations suggest that aerobic regulation of nif transcription may be mediated through the level of DNA supercoiling.

  12. Magnesium concentration effects on cruciform extrusion in supercoiled DNA examined by atomic force microscopy

    Science.gov (United States)

    Chasovskikh, S.; Dritschilo, A.

    2002-03-01

    Cruciform structures can form in DNA sequences with inverted repeats or palindromic symmetry under unwinding torsional stress. DNA repeats are widespread in the genomes of eukaryotes and prokaryotes, and their extrusion into cruciform structures may be involved in various genetic processes, including transcription and replication. Intracellular Mg 2+ may change the free energy of supercoiling to provide the driving force for cruciform extrusion. We have used atomic force microscopy (AFM) to image the effects of magnesium concentrations on cruciform extrusions in supercoiled DNA. Mg 2+ concentration dependent cruciform extrusions were observed in the supercoiled topoisomer of the pPR-PARP plasmid (=-0.065). These data show an application of AFM imaging to demonstrate that the presence of Mg 2+ results in increased extrusions and promotes compact cruciform conformation.

  13. Direct single-molecule observations of DNA unwinding by SV40 large tumor antigen under a negative DNA supercoil state.

    Science.gov (United States)

    Takahashi, Shunsuke; Motooka, Shinya; Kawasaki, Shohei; Kurita, Hirofumi; Mizuno, Takeshi; Matsuura, Shun-Ichi; Hanaoka, Fumio; Mizuno, Akira; Oshige, Masahiko; Katsura, Shinji

    2017-01-05

    Superhelices, which are induced by the twisting and coiling of double-helical DNA in chromosomes, are thought to affect transcription, replication, and other DNA metabolic processes. In this study, we report the effects of negative supercoiling on the unwinding activity of simian virus 40 large tumor antigen (SV40 TAg) at a single-molecular level. The supercoiling density of linear DNA templates was controlled using magnetic tweezers and monitored using a fluorescent microscope in a flow cell. SV40 TAg-mediated DNA unwinding under relaxed and negative supercoil states was analyzed by the direct observation of both single- and double-stranded regions of single DNA molecules. Increased negative superhelicity stimulated SV40 TAg-mediated DNA unwinding more strongly than a relaxed state; furthermore, negative superhelicity was associated with an increased probability of SV40 TAg-mediated DNA unwinding. These results suggest that negative superhelicity helps to regulate the initiation of DNA replication.

  14. Extension, Torque and Supercoiling in Single, Stretched and Twisted DNA Molecules

    CERN Document Server

    Lam, Pui-Man

    2016-01-01

    We reinvestigate the model originally studied by Neukirch and Marko that describes the extension, torque and supercoiling in single, stretched and twisted DNA molecules, which consists of a mixture of extended and supercoiled state, using now a more accurate form of the free energy for the untwisted but stretched DNA. The original model uses an approximate form of this free energy and the agreement with experiment is only qualitative. We find that this more accurate free energy significantly improves the results, bring them into quantitative agreement with experiment, throughout the entire force regime. This is rather surprising, considering that the theory is completely parameter-free.

  15. New conjugated polymers for photoinduced unwinding of DNA supercoiling and gene regulation.

    Science.gov (United States)

    Yang, Gaomai; Yuan, Huanxiang; Zhu, Chunlei; Liu, Libing; Yang, Qiong; Lv, Fengting; Wang, Shu

    2012-05-01

    Three cationic polythiophene derivatives (P1, P2, P3) were synthesized and characterized. Under white light irradiation (400-800 nm), they sensitize oxygen molecule in the surrounding to generate reactive oxygen species (ROS) that can efficiently unwind the supercoiled DNA in vitro. Further study shows that this relaxation of the DNA supercoiling results in the decrease of gene (pCX-EGFP plasmid) expression level. The ability of these conjugated polymers for regulating gene expression will add a new dimension to the function of conjugated polymers.

  16. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil

    2014-01-01

    of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti...

  17. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil;

    2014-01-01

    of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti...

  18. How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation.

    Science.gov (United States)

    Rawdon, Eric J; Dorier, Julien; Racko, Dusan; Millett, Kenneth C; Stasiak, Andrzej

    2016-06-02

    Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.

  19. DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase

    DEFF Research Database (Denmark)

    Snoep, J.L.; van der Weijden, C.C.; Andersen, H.W.;

    2002-01-01

    DNA of prokaryotes is in a nonequilibrium. structural state, characterized as 'active' DNA supercoiling. Alterations in this state affect many life processes and a homeostatic control of DNA supercoiling has been suggested [Menzel, R. & Gellert. M. (1983) Cell 34, 105-113]. We here report on a new...

  20. Mathematical relationships among DNA supercoiling, cation concentration, and temperature for prokaryotic transcription.

    Science.gov (United States)

    Wang, J Y

    1998-08-01

    DNA twist has been proposed to affect transcription from some promoters of Escherichia coli, but involvement of twist has been difficult to test because it cannot be measured in transcription reaction mixtures. However, changes in other factors affect both DNA twist and transcription. These parameters are expected to be related when maximum transcription initiation is considered. In the present work, mathematical relationships among supercoiling, cation concentration, and temperature are derived for prokaryotic transcription initiation. The relationships indicate that as DNA becomes more negatively supercoiled, maximal initiation occurs at a higher cation concentration and at a lower temperature. For example, when superhelical density becomes more negative by 0.0025, a 1.6-fold increase in potassium concentration is predicted to be required to maintain transcription initiation at its maximum rate. Experimental verification of the relationships should provide a useful test of the idea that transcription initiation is sensitive to DNA twist.

  1. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni.

    Science.gov (United States)

    Scanlan, Eoin; Ardill, Laura; Whelan, Matthew V X; Shortt, Claire; Nally, Jarlath E; Bourke, Billy; Ó Cróinín, Tadhg

    2017-04-01

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which this could be mediated. A significant correlation between more relaxed DNA supercoiling and an increased ability of C. jejuni strains to penetrate human epithelial cells was demonstrated. Directly inducing relaxation of DNA supercoiling in C. jejuni was shown to significantly increase invasion of epithelial cells. Mutants in the fibronectin binding proteins CadF and FlpA still displayed an increased invasion after treatment with novobiocin suggesting these proteins were not essential for the observed phenotype. However, a large increase in protein secretion from multiple C. jejuni strains upon relaxation of DNA supercoiling was demonstrated. This increase in protein secretion was not mediated by outer membrane vesicles and appeared to be dependent on an intact flagellar structure. This study identifies relaxation of DNA supercoiling as playing a key role in enhancing C. jejuni pathogenesis during infection of the human intestine and identifies proteins present in a specific invasion associated secretome induced by relaxation of DNA supercoiling. © 2016 John Wiley & Sons Ltd.

  2. The importance of being supercoiled: how DNA mechanics regulate dynamic processes.

    Science.gov (United States)

    Baranello, Laura; Levens, David; Gupta, Ashutosh; Kouzine, Fedor

    2012-07-01

    Through dynamic changes in structure resulting from DNA-protein interactions and constraints given by the structural features of the double helix, chromatin accommodates and regulates different DNA-dependent processes. All DNA transactions (such as transcription, DNA replication and chromosomal segregation) are necessarily linked to strong changes in the topological state of the double helix known as torsional stress or supercoiling. As virtually all DNA transactions are in turn affected by the torsional state of DNA, these changes have the potential to serve as regulatory signals detected by protein partners. This two-way relationship indicates that DNA dynamics may contribute to the regulation of many events occurring during cell life. In this review we will focus on the role of DNA supercoiling in the cellular processes, with particular emphasis on transcription. Besides giving an overview on the multiplicity of factors involved in the generation and dissipation of DNA torsional stress, we will discuss recent studies which give new insight into the way cells use DNA dynamics to perform functions otherwise not achievable. This article is part of a Special Issue entitled: Chromatin in time and space. Published by Elsevier B.V.

  3. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Sneppen, Kim

    2013-01-01

    Bacteriophage λ stably maintains its dormant prophage state but efficiently enters lytic development in response to DNA damage. The mediator of these processes is the λ repressor protein, CI, and its interactions with λ operator DNA. This λ switch is a model on the basis of which epigenetic switch...

  4. Optimum range of plasmid supercoiled DNA for preparation of ccompetent Top 10 E. coli

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir Majeed

    2011-05-01

    Full Text Available Objectives: In-house preparation of chemically competent andelectrocompetent Top 10 E. coli is not only economical butmeets the needs for most of the molecular cloning work. Forsuch transformations an optimum range of plasmidsupercoiled DNA is needed. Therefore, the present studydescribes the modification of two protocols for the preparationof such cells, and optimization of the amount of plasmidsupercoiled DNA required for better efficiency.Materials and methods: As most of the available protocols torender bacterial cells competent need special media orchemicals and are time consuming, the methods from HelenDonis-Keller Laboratory Manual of Washington University inSt. Louis and Goldberg Laboratory Standard Protocols of theUnited States Department of Agriculture have been used aftermeticulous selection and with few modifications for preparingchemically competent and electrocompetent Top 10 E. coli,respectively. The transformation was carried out using pUC19supercoiled plasmid DNA.Results: The transformation efficiencies of chemicallycompetent and electrocompetent Top 10 E. coli were found tobe 1.1 x 106 and 7.88 x 107 tranformants/μg of DNA,respectively. Such efficiencies are slightly higher than therequired (105-106 transformants/μg DNA for most of thecloning experimentation.Conclusion: The results of the present study indicatethat for sufficient transformation competence rates theoptimum range of plasmid supercoiled DNA is 10 ng forchemically competent and 0.1 ng for electrocompetentTop 10 E. coli.

  5. Supercoiled DNA folded by nonhistone proteins in cultured mouse carcinoma cells.

    Science.gov (United States)

    Nakane, M; Ide, T; Anzai, K; Ohara, S; Andoh, T

    1978-07-01

    Upon gentle lysis of exponentially growing mouse carcinoma cells FM3A by sodium dodecyl sulfate, DNA was released as a "DNA-protein complex" in a folded conformation. No histones could be detected in the DNA-protein complex. The proteins bound to DNA were found to be composed of several kinds of nonhistone proteins with a molecular weight range of 50,000 to 60,000; they appear to play a key role in stabilizing and maintaining the compact and folded structure of the complex. Removal of the proteins by Pronase or 2-mercaptoethanol produced a more relaxed structure sedimenting about half as fast as the original complex in a neutral sucrose gradient. DNA in the folded complex is supercoiled, as indicated by the characteristic biphasic response of its sedimentation rate to increasing concentration of various intercalating agents, actinomycin D, ethidium bromide and acriflavine, with which the cells were treated before lysis. Pronase- or 2-mercaptoethanol-treated relaxed DNA still possessed the characteristic of closed-circular structure as judged from its response to intercalating agents. Nicking with gamma-ray or 4NQO broke these superhelical turns and relaxed the folded complex to slower sedimenting forms equivalent to the relaxed DNA obtained on treatment with Pronase or 2-mercaptoethanol. Viscometric observations of DNA-protein complex were consistent with the above results. A tentative model for the structure of this DNA-protein complex is proposed in which supercoiled DNA is folded into loops by several kinds of nonhistone proteins. Autoradiographic examination of the complex appeared to support this model.

  6. Screening of L-histidine-based ligands to modify monolithic supports and selectively purify the supercoiled plasmid DNA isoform.

    Science.gov (United States)

    Amorim, Lúcia F A; Sousa, Fani; Queiroz, João A; Cruz, Carla; Sousa, Ângela

    2015-06-01

    The growing demand of pharmaceutical-grade plasmid DNA (pDNA) suitable for biotherapeutic applications fostered the development of new purification strategies. The surface plasmon resonance technique was employed for a fast binding screening of l-histidine and its derivatives, 1-benzyl-L-histidine and 1-methyl-L-histidine, as potential ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70, and 14 kbp). The binding analysis was performed with different isoforms of each plasmid (supercoiled, open circular, and linear) separately. The results revealed that the overall affinity of plasmids to l-histidine and its derivatives was high (KD  > 10(-8)  M), and the highest affinity was found for human papillomavirus 16 E6/E7 (K(D)  = 1.1 × 10(-10)  M and KD  = 3.34 × 10(-10)  M for open circular and linear plasmid isoforms, respectively). L-Histidine and 1-benzyl-L-histidine were immobilized on monolithic matrices. Chromatographic studies of L-histidine and 1-benzyl-L-histidine monoliths were also performed with the aforementioned samples. In general, the supercoiled isoform had strong interactions with both supports. The separation of plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in the eluent, in both supports, but a lower salt concentration was required in the 1-benzyl-L-histidine monolith because of stronger interactions promoted with pDNA. The efficiency of plasmid isoforms separation remained unchanged with flow rate variations. The binding capacity for pDNA achieved with the l-histidine monolith was 29-fold higher than that obtained with conventional L-histidine agarose. Overall, the combination of either L-histidine or its derivatives with monolithic supports can be a promising strategy to purify the supercoiled isoform from different plasmids with suitable purity degree for pharmaceutical applications.

  7. Binding and elution strategy for improved performance of arginine affinity chromatography in supercoiled plasmid DNA purification.

    Science.gov (United States)

    Sousa, F; Prazeres, D M F; Queiroz, J A

    2009-02-01

    New interesting strategies for plasmid DNA (pDNA) purification were designed, exploiting affinity interactions between amino acids and nucleic acids. The potential application of arginine-based chromatography to purify pDNA has been recently described in our work; however, to achieve higher efficiency and selectivity in arginine affinity chromatography, it is essential to characterize the behaviour of binding/elution of supercoiled (sc) isoforms. In this study, two different strategies based on increased sodium chloride (225-250 mm) or arginine (20-70 mm) stepwise gradients are described to purify sc isoforms. Thus, it was proved that well-defined binding/elution conditions are crucial to enhance the purification performance, resulting in an improvement of the final plasmids yields and transfection efficiency, as this could represent a significant impact on therapeutic applications of the purified sc isoform. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. Theory of equilibria of elastic braids with applications to DNA supercoiling

    Science.gov (United States)

    van der Heijden, Gert; Starostin, Eugene

    2014-03-01

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a new theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is solved for. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Both open braid and closed braid solutions (links and knots) are computed and current applications to DNA supercoiling are discussed. Research supported by EPSRC and HFSP.

  9. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes.

    Science.gov (United States)

    Vlijm, R; Kim, S H; De Zwart, P L; Dalal, Y; Dekker, C

    2017-02-02

    Nucleosomes form the unit structure of the genome in eukaryotes, thereby constituting a fundamental tenet of chromatin biology. In canonical nucleosomes, DNA wraps around the histone octamer in a left-handed toroidal ramp. Here, in single-molecule magnetic tweezers studies of chaperone-assisted nucleosome assembly, we show that the handedness of the DNA wrapping around the nucleosome core is intrinsically ambidextrous, and depends on the pre-assembly supercoiling state of the DNA, i.e., it is not uniquely determined by the octameric histone core. Nucleosomes assembled onto negatively supercoiled DNA are found to exhibit a left-handed conformation, whereas assembly onto positively supercoiled DNA results in right-handed nucleosomes. This intrinsic flexibility to adopt both chiralities is observed both for canonical H3 nucleosomes, and for centromere-specific variant CENP-A nucleosomes. These data support recent advances suggesting an intrinsic adaptability of the nucleosome, and provide insights into how nucleosomes might rapidly re-assemble after cellular processes that generate positive supercoiling in vivo.

  10. Surface charges effects on the 2D conformation of supercoiled DNA

    CERN Document Server

    Schmatko, Tatiana; Maaloum, Mounir

    2012-01-01

    We have adsorbed plasmid PuC19 DNA on a supported bilayer. The mobility of the lipids within the bilayer ensured a 2D equilibrium of the DNA molecule. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmids conformations were imaged by Atomic Force Microscopy (AFM).We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Plasmids can be seen as rings, completely opened structures, or tightly supercoiled plectonemes, depending on the experimental conditions. The plectonemic conformation is observed either on charged surfaces (in the absence of salt) or at 30 mM salt concentration on a neutral bilayer. We demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions.

  11. Specific recognition of supercoiled plasmid DNA by affinity chromatography using the intercalator DAPP as ligand.

    Science.gov (United States)

    Caramelo-Nunes, C; Almeida, P; Marcos, J C; Tomaz, C T

    2013-06-01

    Small molecules that bind DNA with high specificity present a promising opportunity for application as chromatographic ligands for plasmid DNA (pDNA) purification. This research used the intercalator 3,8-diamino-6-phenylphenanthridine (DAPP) as an immobilized ligand for the specific separation of supercoiled (sc) pDNA by affinity chromatography. The results showed that the protonated DAPP-Sepharose support has a great affinity for sc pDNA isoform, separating it from the less active open circular and linear isoforms. All pDNA isoforms were retained in the column using 10mM acetate buffer pH 5. Selective elution of oc and linear isoforms was achieved with 0.22M of sodium chloride in the same buffer. Finally, increasing the concentration to 0.55M led to the elution of the sc isoform. The binding of pDNA to DAPP-Sepharose varies in function of pH, and the stability of the protonated DAPP-DNA complex decreases with increasing salt concentration. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Transcription-driven twin supercoiling of a DNA loop: A Brownian dynamics study

    Science.gov (United States)

    Mielke, Steven P.; Fink, William H.; Krishnan, V. V.; Grønbech-Jensen, Niels; Benham, Craig J.

    2004-10-01

    The torque generated by RNA polymerase as it tracks along double-stranded DNA can potentially induce long-range structural deformations integral to mechanisms of biological significance in both prokaryotes and eukaryotes. In this paper, we introduce a dynamic computer model for investigating this phenomenon. Duplex DNA is represented as a chain of hydrodynamic beads interacting through potentials of linearly elastic stretching, bending, and twisting, as well as excluded volume. The chain, linear when relaxed, is looped to form two open but topologically constrained subdomains. This permits the dynamic introduction of torsional stress via a centrally applied torque. We simulate by Brownian dynamics the 100 μs response of a 477-base pair B-DNA template to the localized torque generated by the prokaryotic transcription ensemble. Following a sharp rise at early times, the distributed twist assumes a nearly constant value in both subdomains, and a succession of supercoiling deformations occurs as superhelical stress is increasingly partitioned to writhe. The magnitude of writhe surpasses that of twist before also leveling off when the structure reaches mechanical equilibrium with the torsional load. Superhelicity is simultaneously right handed in one subdomain and left handed in the other, as predicted by the "transcription-induced twin-supercoiled-domain" model [L. F. Liu and J. C. Wang, Proc. Natl. Acad. Sci. U.S.A. 84, 7024 (1987)]. The properties of the chain at the onset of writhing agree well with predictions from theory, and the generated stress is ample for driving secondary structural transitions in physiological DNA.

  13. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    Science.gov (United States)

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  14. Axial distortion as a sensor of supercoil changes: a molecular model for the homeostatic regulation of DNA gyrase

    Indian Academy of Sciences (India)

    Shyam Unniraman; Valakunja Nagaraja

    2001-12-01

    Negative supercoiling stimulates transcription of many genes. In contrast, transcription of the genes coding for DNA gyrase is subject to a novel mechanism of autoregulation, wherein relaxation of the template DNA stimulates their transcription. Since DNA gyrase is the sole supercoiling activity in the eubacterial cell, relaxation-stimulated transcription (RST) could reflect an autoregulatory mechanism to maintain supercoil levels within the cell. Extensive deletion and mutational analyses of Escherichia coli gyrA promoter have shown that the $-10$ region is essential for RST; however, a molecular model has proved to be elusive. We find a strong bend centre immediately downstream of the $-10$ region in the gyrA promoter. On the basis of analysis of various mutants in the $-10$ region, we propose a model where axial distortion acts as a sensor of topological changes in DNA. Our model is consistent with earlier data with E. coli gyrA and gyrB promoters. We also extrapolate the model to explain the phenomenon of RST of gyr promoters in other organisms and contrast it with promoters induced by supercoiling.

  15. DNA reshaping by MukB. Right-handed knotting, left-handed supercoiling.

    Science.gov (United States)

    Petrushenko, Zoya M; Lai, Chien-Hung; Rai, Rachna; Rybenkov, Valentin V

    2006-02-24

    MukB is a bacterial SMC (structural maintenance of chromosome) protein required for faithful chromosome segregation in Escherichia coli. We report here that purified MukB introduces right-handed knots into DNA in the presence of type-2 topoisomerase, indicating that the protein promotes intramolecular DNA condensation. The pattern of generated knots suggests that MukB, similar to eukaryotic condensins, stabilizes large right-handed DNA loops. In contrast to eukaryotic condensins, however, the net supercoiling stabilized by MukB was negative. Furthermore, DNA reshaping by MukB did not require ATP. These data establish that bacterial condensins alter the shape of double-stranded DNA in vitro and lend support to the notions that the right-handed knotting is the most conserved biochemical property of condensins. Finally, we found that MukB can be eluted from a heparin column in two distinct forms, one of which is inert in DNA binding or reshaping. Furthermore, we find that the activity of MukB is reversibly attenuated during chromatographic separation. Thus, MukB has a unique set of topological properties, compared with other SMC proteins, and is likely to exist in two different conformations.

  16. Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit?

    Science.gov (United States)

    Geertz, Marcel; Travers, Andrew; Mehandziska, Sanja; Sobetzko, Patrick; Chandra-Janga, Sarath; Shimamoto, Nobuo; Muskhelishvili, Georgi

    2011-01-01

    In growing bacterial cells, the global reorganization of transcription is associated with alterations of RNA polymerase composition and the superhelical density of the DNA. However, the existence of any regulatory device coordinating these changes remains elusive. Here we show that in an exponentially growing Escherichia coli rpoZ mutant lacking the polymerase ω subunit, the impact of the Eσ(38) holoenzyme on transcription is enhanced in parallel with overall DNA relaxation. Conversely, overproduction of σ(70) in an rpoZ mutant increases both overall DNA supercoiling and the transcription of genes utilizing high negative superhelicity. We further show that transcription driven by the Eσ(38) and Eσ(70) holoenzymes from cognate promoters induces distinct superhelical densities of plasmid DNA in vivo. We thus demonstrate a tight coupling between polymerase holoenzyme composition and the supercoiling regimen of genomic transcription. Accordingly, we identify functional clusters of genes with distinct σ factor and supercoiling preferences arranging alternative transcription programs sustaining bacterial exponential growth. We propose that structural coupling between DNA topology and holoenzyme composition provides a basic regulatory device for coordinating genome-wide transcription during bacterial growth and adaptation. IMPORTANCE Understanding the mechanisms of coordinated gene expression is pivotal for developing knowledge-based approaches to manipulating bacterial physiology, which is a problem of central importance for applications of biotechnology and medicine. This study explores the relationships between variations in the composition of the transcription machinery and chromosomal DNA topology and suggests a tight interdependence of these two variables as the major coordinating principle of gene regulation. The proposed structural coupling between the transcription machinery and DNA topology has evolutionary implications and suggests a new methodology for

  17. Optimization of supercoiled HPV-16 E6/E7 plasmid DNA purification with arginine monolith using design of experiments.

    Science.gov (United States)

    Almeida, A M; Queiroz, J A; Sousa, F; Sousa, A

    2015-01-26

    The progress of DNA vaccines is dependent on the development of suitable chromatographic procedures to successfully purify genetic vectors, such as plasmid DNA. Human Papillomavirus is associated with the development of tumours due to the oncogenic power of E6 and E7 proteins, produced by this virus. The supercoiled HPV-16 E6/E7 plasmid-based vaccine was recently purified with the arginine monolith, with 100% of purity, but only 39% of recovery was achieved. Therefore, the present study describes the application of experimental design tools, a newly explored methodology in preparative chromatography, in order to improve the supercoiled plasmid DNA recovery with the arginine monolith, maintaining the high purity degree. In addition, the importance and influence of pH in the pDNA retention to the arginine ligand was also demonstrated. The Composite Central Face design was validated and the recovery of the target molecule was successfully improved from 39% to 83.5%, with an outstanding increase of more than double, while maintaining 100% of purity.

  18. Hydrolysis of ATP at only one GyrB subunit is sufficient to promote supercoiling by DNA gyrase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    Mutation of Glu42 to Ala in the B subunit of DNA gyrase abolishes ATP hydrolysis but not nucleotide binding. Gyrase complexes that contain one wild-type and one Ala42 mutant B protein were formed, and the ability of such complexes to hydrolyze ATP was investigated. We found that ATP hydrolysis...... was able to proceed independently only in the wild-type subunit, albeit at a lower rate. With only one ATP molecule hydrolyzed at a time, gyrase could still perform supercoiling, but the limit of this reaction was lower than that observed when both subunits can hydrolyze the nucleotide....

  19. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes

    DEFF Research Database (Denmark)

    Geny, Sylvain; Moreno, Pedro M D; Krzywkowski, Tomasz

    2016-01-01

    Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson-Crick binding. To improve the b...

  20. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.

    Directory of Open Access Journals (Sweden)

    Nikolay Rovinskiy

    Full Text Available Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σ(C+σ(D. Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb "supercoil sensor" inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (- supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σ(D at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities

  1. Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis.

    Directory of Open Access Journals (Sweden)

    Jahan-Yar Parsa

    2012-02-01

    Full Text Available Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID. While AID is known to act on single-stranded DNA (ssDNA, the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates-which we found to be unique to actively transcribed genes-as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID.

  2. Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA.

    Science.gov (United States)

    Tullman, Jennifer; Guntas, Gurkan; Dumont, Matthew; Ostermeier, Marc

    2011-11-01

    We demonstrate that S1 nuclease converts supercoiled plasmid DNA to unit-length, linear dsDNA through the creation of a single, double-stranded break in a plasmid molecule. These double-stranded breaks occur not only in the origin of replication near inverted repeats but also at a wide variety of locations throughout the plasmid. S1 nuclease exhibits this activity under conditions typically employed for the nuclease's single-stranded nuclease activity. Thus, S1 nuclease digestion of plasmid DNA, unlike analogous digestion with DNaseI, effectively halts after the first double-stranded break. This property makes easier the construction of large domain insertion libraries in which the goal is to insert linear DNA at a variety of locations throughout a plasmid. We used this property to create a library in which a circularly permuted TEM1 β-lactamase gene was inserted throughout a plasmid containing the gene encoding Escherichia coli ribose binding protein. Gene fusions that encode allosteric switch proteins in which ribose modulates β-lactamase catalytic activity were isolated from this library using a combination of a genetic selection and a screen.

  3. Radiation sensitivities are not related to the sizes of DNA supercoiled domains in L5178Y-R and L5178Y-S cells

    Energy Technology Data Exchange (ETDEWEB)

    Walicka, M.; Godlewska, E. (Institute of Nuclear Chemistry and Technology, Warsaw (Poland). Dept. of Radiobiology and Health Protection)

    1989-06-01

    Survival of murine lymphoblasts L5178Y-R and L5178Y-S irradiated with /sup 60/Co gamma radiation was determined. The parameters of the survival curves were D/sub 0/ = 1.18 Gy, n 1.56 and D/sub 0/ = 0.55 Gy, n = 1.00 for L5178Y-R and L5178Y-S cells respectively. The sizes of DNA supercoiled domains were estimated using sedimentation of nucleoids from cells irradiated with doses from 1 to 7 Gy. These sizes were 2.44 x 10/sup 9/ and 5.13 x 10/sup 8/ Da for L5178Y-R cells and 1.30 x 10/sup 9/ and 4.07 x 10/sup 8/ Da for L5178Y-S cells. Hence, higher radiosensitivity of L5178Y-S cells was not compatible with the larger size of the DNA supercoiled domains, as suggested by Filippovich et al. (1982). The authors did not find any simple relation between sizes of DNA supercoiled domains and the susceptibility of L5178Y sublines to ionizing radiation. (author).

  4. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA.

    Science.gov (United States)

    Gilmour, P S; Beswick, P H; Brown, D M; Donaldson, K

    1995-12-01

    The ability of a number of respirable industrial fibres, amosite and crocidolite asbestos, refractory ceramic fibres (RCFs) and man-made vitreous fibres (MMVFs) to cause free radical injury to plasmid phi X174 RFI DNA was assessed. The oxidative DNA damage was observed as depletion of supercoiled DNA after fibre treatment was quantified by scanning laser densitometry. The mechanism of fibre-mediated damage was determined by the use of the specific hydroxyl radical scavenger mannitol and the iron chelator desferrioxamine-B. The amosite and crocidolite asbestos caused substantial damage to DNA that was dose-related. The free radicals responsible for the asbestos-mediated DNA damage were hydroxyl radicals, as determined by inhibition with mannitol. Asbestos fibre-mediated damage to DNA was completely ameliorated by the chelation of fibre-associated iron with desferrioxamine-B. The amount of Fe(II) and Fe(III) released by equal numbers of the different fibre types at equal fibre number was determined. The fibres released very small amounts of Fe(II) and there were no significant differences between the fibre types. The fibres released substantial amounts of Fe(III); MMVF 21 released significantly more Fe(III) than any of the other fibres and short fibre amosite also released more Fe(III) than three of the MMVFs and two of the RCFs. When ability to release Fe(II) and Fe(III) was compared with ability to cause DNA damage there was not a good correlation, because only the long amosite and crocidolite caused substantial free radical injury to DNA; this contrasts with MMVF 21 and short amosite being the two fibres that released the greatest amounts of iron. The loss of ability to damage DNA in DSF-B-treated asbestos fibres shows that iron at the surface of asbestos fibres definitely has a role in generating hydroxyl radicals. However, it is clear that some fibres, such as short amosite and MMVF 21, release large quantities of iron without causing free radical damage, whilst

  5. Plasmid DNA Supercoiling and Gyrase Activity in Escherichia coli Wild-Type and rpoS Stationary-Phase Cells

    Science.gov (United States)

    Reyes-Domínguez, Yazmid; Contreras-Ferrat, Gabriel; Ramírez-Santos, Jesús; Membrillo-Hernández, Jorge; Gómez-Eichelmann, M. Carmen

    2003-01-01

    Stationary-phase cells displayed a distribution of relaxed plasmids and had the ability to recover plasmid supercoiling as soon as nutrients became available. Preexisting gyrase molecules in these cells were responsible for this recovery. Stationary-phase rpoS cells showed a bimodal distribution of plasmids and failed to supercoil plasmids after the addition of nutrients, suggesting that rpoS plays a role in the regulation of plasmid topology during the stationary phase. PMID:12533486

  6. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    Science.gov (United States)

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  7. DNA Structure and Supercoiling: Ribbons and a Yo-Yo Model

    Science.gov (United States)

    Van Horn, J. David

    2011-01-01

    The double-helical structure of DNA is a pop cultural icon. Images of the DNA molecule appear in newspapers, popular journals, and advertisements. In addition to scientific instrument sales, the aura surrounding the central molecule of life has been used to sell everything from perfume to beverages and is the inspiration of items ranging from…

  8. DNA Structure and Supercoiling: Ribbons and a Yo-Yo Model

    Science.gov (United States)

    Van Horn, J. David

    2011-01-01

    The double-helical structure of DNA is a pop cultural icon. Images of the DNA molecule appear in newspapers, popular journals, and advertisements. In addition to scientific instrument sales, the aura surrounding the central molecule of life has been used to sell everything from perfume to beverages and is the inspiration of items ranging from…

  9. Kinetic flow dichroism study of conformational changes in supercoiled DNA induced by ethidium bromide and noncovalent and covalent binding of benz[a]pyrene diol epoxide.

    Science.gov (United States)

    Yoshida, H; Swenberg, C E; Geacintov, N E

    1987-03-10

    The dynamic conformational changes due to the noncovalent intercalative binding of ethidium bromide and racemic trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and the covalent binding of BPDE to supercoiled phi X174 DNA, have been studied by gel electrophoresis and a novel application of a kinetic flow linear dichroism technique. The magnitude of the linear dichroism (delta A) of the DNA oriented in the flow gradient is sensitive to the hydrodynamic shape of the DNA molecule which is affected by the binding of the drug or the carcinogen BPDE. While the linear dichroism of ethidium bromide supercoiled DNA is time independent, the delta A spectra of BPDE-DNA reaction mixtures vary on time scales of minutes, which correspond to the reaction rate constant of BPDE to form 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene hydrolysis products and covalent DNA adducts. The rapid noncovalent intercalation of BPDE causes an initial large increase in delta A (up to 250%, corresponding to the dichroism observed with relaxed circular DNA), followed by a slower decrease in the linear dichroism signal. This decrease in delta A is attributed to the removal of intercalated diol epoxide molecules and the resulting reversible increase in the number of superhelical turns. The kinetic flow dichroism spectra indicate that the noncovalent BPDE-DNA complexes are intercalative in nature, while the covalent adducts are characterized by a very different conformation in which the long axes of the pyrenyl residues are oriented at a large angle with respect to the average orientation of the planes of the DNA bases.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. 亲和色谱纯化超螺旋质粒DNA的研究进展%RESEARCH PROGRESS OF AFFINITY CHROMATOGRAPHY IN PURIFICATION OF SUPERCOILED PLASMID DNA

    Institute of Scientific and Technical Information of China (English)

    白金山; 白姝

    2013-01-01

    非病毒载体质粒DNA已被广泛应用于基因治疗和DNA疫苗,目前迫切需要开发其大规模制备和分离纯化方法.亲和色谱是一种高分辨率、高选择性的分离技术,在蛋白质、抗体、核酸等生物大分子的分离纯化方面显示了良好的应用前景.本文综述了亲和色谱技术在超螺旋质粒DNA分离纯化中的研究进展,总结了各种亲和色谱方法分离超螺旋质粒DNA的机理和优缺点,并展望了亲和纯化技术在质粒DNA生产和制备中的应用前景.%Non-viral vector,plasmid DNA has been widely used in gene therapy and DNA vaccines.It is imperative to develop large-scale preparation and purification methods of plasmid DNA at present.As a separation technology of high resolution and high selectivity,affinity chromatography shows great application potential in terms of separation and purification of biological macromolecules such as proteins,antibodies,nucleic acids and so on.The domestic and foreign research progress of High Performance Liquid Chromatography (HPLC) technology,used in separation and purification of supercoiled plasmid DNA was reviewed in this paper.The advantages and disadvantages of various affinity chromatographic methods for separating supercoiled plasmid DNA were also summarized.At last,the affinity chromatography technology for preparation and purification of plasmid DNA was prospected.

  11. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles.

    Science.gov (United States)

    Shi, Wei-Xian; Larson, Ronald G

    2005-12-01

    RecA and its complexes with double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) are responsible for homologous recombination and DNA repair. In this study, we have observed, by atomic force microscopy (AFM), two-filament left-handed superhelices of RecA-dsDNA filaments that further interwind into four- or six-filament bundles, in addition to previously reported left-handed bundles of three or six filaments. Also revealed are four-filament bundles formed by further interwinding of two intrafilament superhelices of individual filaments. Pitches of superhelices of RecA-DNA filaments are similar to each other regardless the number of component filaments, and those formed on Phix174 RFII dsDNA and pNEB206A dsDNA are measured as 339.3 +/- 6.2 nm (690 counts of pitch/2) and 321.6 +/- 11.7 nm (101 counts of pitch/2), respectively, consistent with earlier measurements made by electron microscopy with a much smaller sample size. The study of these structures provides insight into the self-interactions of RecA and RecA-like proteins, which are present in all living cells, and into the general phenomenon of bundling, which is relevant to both biological and nonbiological filaments.

  12. The main early and late promoters of Bacillus subtilis phage phi 29 form unstable open complexes with sigma A-RNA polymerase that are stabilized by DNA supercoiling.

    Science.gov (United States)

    Rojo, F; Nuez, B; Mencía, M; Salas, M

    1993-02-25

    Most Escherichia coli promoters studied so far form stable open complexes with sigma 70-RNA polymerase which have relatively long half-lives and, therefore, are resistant to a competitor challenge. A few exceptions are nevertheless known. The analysis of a number of promoters in Bacillus subtilis has suggested that the instability of open complexes formed by the vegetative sigma A-RNA polymerase may be a more general phenomenon than in Escherichia coli. We show that the main early and late promoters from the Bacillus subtilis phage phi 29 form unstable open complexes that are stabilized either by the formation of the first phosphodiester bond between the initiating nucleoside triphosphates or by DNA supercoiling. The functional characteristics of these two strong promoters suggest that they are not optimized for a tight and stable RNA polymerase binding. Their high activity is probably the consequence of the efficiency of further steps leading to the formation of an elongation complex.

  13. A stochastic model of supercoiling-dependent transcription

    CERN Document Server

    Brackley, C A; Bentivogli, A; Corles, S; Gilber, N; Gonnella, G; Marenduzzo, D

    2016-01-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix, and that these enzymes bind more favourably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up-regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down-regulate transcription. This article has been accepted for publication in Physical Review Letters, May 2016.

  14. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.

    Science.gov (United States)

    Liu, Zhirong; Chan, Hue Sun

    2008-04-14

    We develop two classes of Monte Carlo moves for efficient sampling of wormlike DNA chains that can have significant degrees of supercoiling, a conformational feature that is key to many aspects of biological function including replication, transcription, and recombination. One class of moves entails reversing the coordinates of a segment of the chain along one, two, or three axes of an appropriately chosen local frame of reference. These transformations may be viewed as a generalization, to the continuum, of the Madras-Orlitsky-Shepp algorithm for cubic lattices. Another class of moves, termed T+/-2, allows for interconversions between chains with different lengths by adding or subtracting two beads (monomer units) to or from the chain. Length-changing moves are generally useful for conformational sampling with a given site juxtaposition, as has been shown in previous lattice studies. Here, the continuum T+/-2 moves are designed to enhance their acceptance rate in supercoiled conformations. We apply these moves to a wormlike model in which excluded volume is accounted for by a bond-bond repulsion term. The computed autocorrelation functions for the relaxation of bond length, bond angle, writhe, and branch number indicate that the new moves lead to significantly more efficient sampling than conventional bead displacements and crankshaft rotations. A close correspondence is found in the equilibrium ensemble between the map of writhe computed for pair of chain segments and the map of site juxtapositions or self-contacts. To evaluate the more coarse-grained freely jointed chain (random-flight) and cubic lattice models that are commonly used in DNA investigations, twisting (torsional) potentials are introduced into these models. Conformational properties for a given superhelical density sigma may then be sampled by computing the writhe and using White's formula to relate the degree of twisting to writhe and sigma. Extensive comparisons of contact patterns and knot

  15. Effect of supercoiling on the λ switch

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Sneppen, Kim;

    2014-01-01

    The lysogenic state of the λ switch is exceptionally stable, still, it is capable of responding to DNA-damage and rapidly enter the lytic state. We invented an assay where PNA mediated tethering of a plasmid allowed for single molecule investigations of the effect of supercoiling on the efficiency...

  16. Purification of supercoiled plasmid DNA from clarified bacterial lysate by arginine-affinity chromatography: effects of spacer arms and ligand density.

    Science.gov (United States)

    Bai, Jin-Shan; Bai, Shu; Shi, Qing-Hong; Sun, Yan

    2014-06-01

    Efficient loading on a chromatographic column is the dilemma of the process development faced by engineers in plasmid DNA purification. In this research, novel arginine-affinity chromatographic beads were prepared to investigate the effect of spacer arm and ligand density to their chromatographic performance for the purification of plasmid. The result indicated that dynamic binding capacity for plasmid increased with an increasing ligand density and carbon number of spacer arm, and the highest binding capacity for plasmid of 6.32 mg/mL bead was observed in the column of arginine bead with a ligand density of 47 mmol/L and 10-atom carbon spacer. Furthermore, this arginine bead exhibited better selectivity to supercoiled (sc) plasmid. The evidence of a linear gradient elution suggested further that the binding of plasmid on arginine beads was driven by electrostatic interaction and hydrogen bonding. Hence, sc plasmid could successfully be purified from clarified lysate by two-stepwise elution of salt concentration. By the refinement of the elution scheme and loading volume of clarified lysate, the column of arginine bead with a ligand density of 47 mmol/L exhibited the highest recovery yield and a much higher productivity among arginine-affinity columns. Therefore, reshaped arginine beads provided more feasible and practical application in the preparation of sc plasmid from clarified lysate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Supercoiled plasmid DNA as a model target for assessing the generation of free radicals at the surface of fibres.

    Science.gov (United States)

    Donaldson, K; Gilmour, P S; Beswick, P H

    1995-09-01

    The ability of respirable amosite and crocidolite asbestos, refractory ceramic fibres (RCFs) and man made vitreous fibres (MMVFs) to cause free radical injury to plasmid, phiX174 RFI DNA was assessed. The amosite and crocidolite asbestos caused substantial damage to the DNA and, in the main, the free radicals responsible for the asbestos-mediated DNA damage were hydroxyl radicals as determined by inhibition with mannitol. Asbestos fibre-mediated damage to the DNA was completely ameliorated by the chelation of fibre-associated iron by pre-treatment of fibres with desferrioxamine-B, confirming the importance of iron in the production of free radicals. MMVFs and RCFs produced modest free radical damage to the DNA, which was prevented by mannitol but not by iron chelation.

  18. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA

    DEFF Research Database (Denmark)

    Moreno, Pedro M D; Geny, Sylvain; Pabon, Y Vladimir;

    2013-01-01

    In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasi...

  19. A mutational mimic analysis of histone H3 post-translational modifications: specific sites influence the conformational state of H3/H4, causing either positive or negative supercoiling of DNA.

    Science.gov (United States)

    White, Rachel H; Keberlein, Melissa; Jackson, Vaughn

    2012-10-16

    Histone H3 has specific sites of post-translational modifications that serve as epigenetic signals to cellular machinery to direct various processes. Mutational mimics of these modifications (glutamine for acetylation, methionine and leucine for methylation, and glutamic acid for phosphorylation) were constructed at the relevant sites of the major histone variant, H3.2, and their effects on the conformational equilibrium of the H3/H4 tetramer at physiological ionic strength were determined when bound to or free of DNA. The deposition vehicle used for this analysis was NAP1, nucleosome assembly protein 1. Acetylation mimics in the N-terminus preferentially stabilized the left-handed conformer (DNA negatively supercoiled), and mutations within the globular region preferred the right-handed conformer (DNA positively supercoiled). The methylation mimics in the N-terminus tended to maintain characteristics similar to those of wild-type H3/H4; i.e., the conformational equilibrium maintains similar levels of both left- and right-handed conformers. Phosphorylation mimics facilitated a mixed effect, i.e., when at serines, the left-handed conformer, and at threonines, a mixture of both conformers. When double mutations were present, the conformational equilibrium was shifted dramatically, either leftward or rightward depending on the specific sites. In contrast, these mutations tended not to affect the direction and extent of supercoiling for variants H3.1 and H3.3. Variant H3.3 promoted only the left-handed conformer, and H3.1 tended to maintain both conformers. Additional experiments indicate the importance of a propagation mechanism for ensuring the formation of a particular superhelical state over an extended region of the DNA. The potential relevance of these results to the maintenance of epigenetic information on a gene is discussed.

  20. Model of DNA topology simplification has come full (supercoiled) circle after two decades of research. Comment on "Disentangling DNA molecules" by Alexander Vologodskii

    Science.gov (United States)

    Stasiak, Andrzej

    2016-09-01

    Being a geek of DNA topology, I remember very well the stir caused by 1997 Science paper showing that DNA topoisomerases have the ability to simplify DNA topology below the topological equilibrium values [1]. In their seminal experiments Rybenkov et al. [1] started with linear double-stranded DNA molecules with cohesive ends. The mutual cohesiveness of DNA ends was due to mutual complementarity of single-stranded extensions at both ends of linear double-stranded DNA molecules. When such DNA molecules were heated up and then slowly cooled down the single-stranded ends eventually annealed with each other causing DNA circularization. This experimental protocol permitted the authors to establish topological/thermodynamic equilibrium within samples of circularized DNA molecules. Among simple unknotted circles one also observed knotted and catenated DNA molecules. The fraction of knotted molecules in DNA samples at topological equilibrium was increasing with the length of DNA molecules undergoing slow circularization. The fraction of catenated molecules was increasing with the length and the concentration of the molecules undergoing slow circularization. Rybenkov et al. incubated then such equilibrated DNA samples with type II DNA topoisomerases, which pass DNA duplex regions through each other, and observed that as the result of it the fraction of knotted and catenated DNA molecules was dramatically decreased (up to 80-fold). This elegant experiment indicated for the first time that type II DNA topoisomerases acting on knotted or catenated DNA molecules have the ability to select among many potential sites of DNA-DNA passages these that result in DNA unknotting or decatenation. Without such a selection topoisomerases could only maintain the original topological equilibrium obtained during the slow cyclization. The big question was how DNA topoisomerases can be directed to do DNA-DNA passages that preferentially result in DNA unknotting and decatenation.

  1. Parallel Genetic and Phenotypic Evolution of DNA Superhelicity in Experimental Populations of Escherichia coli

    DEFF Research Database (Denmark)

    Crozat, Estelle; Winkworth, Cynthia; Gaffé, Joël

    2010-01-01

    DNA supercoiling is the master function that interconnects chromosome structure and global gene transcription. This function has recently been shown to be under strong selection in Escherichia coli. During the evolution of 12 initially identical populations propagated in a defined environment...... for 20,000 generations, parallel increases in DNA supercoiling were observed in ten populations. The genetic changes associated with the increased supercoiling were examined in one population, and beneficial mutations in the genes topA (encoding topoisomerase I) and fis (encoding a histone-like protein......) were identified. To elucidate the molecular basis and impact of these changes, we quantified the level of genetic, phenotypic, and molecular parallelism linked to DNA supercoiling in all 12 evolving populations. First, sequence determination of DNA topology-related loci revealed strong genetic...

  2. The supercoiling of Bacillus subtilis

    Science.gov (United States)

    Mendelson, Neil H.

    2003-03-01

    Cylindrical shaped cells of Bacillus subtilis (0.7 X 4 mm) grow with twist and when prevented from separating at cell division form long filaments that writhe and supercoil to produce plectonemic fibers. By repetition macrofibers arise consisting of structures mm in length with loops at both ends of a twisted shaft. The entire structure is topologically a single filament. All the cells in a macrofiber also grow with twist consequently as a fiber elongates its loop ends rotate about the axis of the fiber shaft in opposite directions relative to one another. This holds for both right and left-handed structures, with any degree of twist. Although the individual cells grow with constant twist, the rate of loop rotation increases as a function of fiber length. Theory suggests that there is a gradient of rotation rates along the length of a fiber ranging from maxima at the loop ends to zero at the center of its length. In fibers prevented from rotating at one end the rotation rate gradient ranges from zero at the blocked end to maximum at the free end as shown here. When loop rotation at both ends is blocked fibers supercoil and their loop ends move toward one another. Newly designed force gauges were used to measure the tension engendered by supercoiling of such fibers. The findings illustrate a micromachine -like behavior of macrofibers, powered by cell growth, twisting and supercoiling. Biological functions of the micromachine such as self-assembly, translational motions over solid surfaces, and the dragging objects over surfaces appear to utilize only a small fraction of the total power available from the macrofiber micromachine. Collaborators: J.J. Thwaites, P. Shipman, D. Roy, and L. Cheng.

  3. Transcription dependent dynamic supercoiling is a short-range genomic force

    Science.gov (United States)

    Kouzine, Fedor; Gupta, Ashutosh; Baranello, Laura; Wojtowicz, Damian; Benaissa, Khadija; Liu, Juhong; Przytycka, Teresa M.; Levens, David

    2013-01-01

    Transcription has the capacity to modify mechanically DNA topology, DNA structure, and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn, may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitt lymphoma cells using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kb upstream of the start sites of active genes. Low and high output promoters handle this torsional stress differently as shown using inhibitors of transcription and topoisomerases, and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation. PMID:23416947

  4. 基于色谱法的超螺旋质粒DNA纯化与分析进展%Advances on Purification Process and Analysis of Supercoiled Plasmid DNA Based on Chromatography

    Institute of Scientific and Technical Information of China (English)

    李亮; 柳方方; 宛煜嵩; 金芜军

    2014-01-01

    质粒DNA含有独立复制的遗传结构,是基因工程的常用工具,广泛应用于分子生物学基础研究、农业转基因检测、医疗诊断与基因治疗等领域。质粒DNA的构型一般分为超螺旋、开口环状及线性3种。初步纯化的质粒DNA溶液中常混有3种构型,并且掺杂一定量的蛋白质、RNA、内毒素以及宿主基因组DNA,这些杂质会影响后续的应用,因此质粒DNA需要进一步精细纯化。该文对质粒DNA的新应用领域、基于色谱的精细纯化技术及产物质量分析体系进行了综述,并展望了高纯度质粒DNA精细纯化及产物分析的发展方向。%Plasmid DNA,a common tool of genetic engineering containing the independent genetic structure of the replication,is widely used in basic research of molecular biology,genetically modi-fied detection,medical diagnosis and gene therapy. Plasmid DNA conformations are generally divided into three types:supercoiled,open circle and linear. Crude plasmid DNA often mixes with three configurations,and the amount of protein,RNA,endotoxin with the host genome DNA. These im-purities need to be further refined as they affect subsequent applications. The new applications of plasmid DNA,refined technologies and products based on chromatography system,and quality anal-ysis of purified plasmid DNA is reviewed in this paper. Finally,the trends of technology of high pu-rity plasmid DNA and analysis of refined product are presented.

  5. Unexpected twist: harnessing the energy in positive supercoils to control telomere resolution.

    Science.gov (United States)

    Bankhead, Troy; Kobryn, Kerri; Chaconas, George

    2006-11-01

    Negative DNA supercoiling is an important conformational property of bacterial DNA that plays a significant role in a wide variety of DNA transactions. In contrast, positive DNA supercoiling is a by-product of cellular processes that involve helical unwinding or movement of DNA by a fixed translocase, and has generally been considered a necessary evil requiring removal. We now report the first evidence suggesting a physiological role for positive supercoiling; this occurs in telomere resolution in the related Lyme disease and relapsing fever Borrelia spirochetes. Telomere resolution is the process whereby covalently closed hairpin telomeres are generated from replicative intermediates by the telomere resolvase, ResT. We observe a 20-fold and greater stimulation of the reaction by positive supercoiling, which facilitates formation of a previously unobserved reaction intermediate. Our data suggest the possibility that the free energy of positive supercoiling, a resource with no previously described cellular function, may be harnessed and utilized as a regulator of post-replication events.

  6. Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation.

    Science.gov (United States)

    Sutthibutpong, Thana; Matek, Christian; Benham, Craig; Slade, Gabriel G; Noy, Agnes; Laughton, Charles; K Doye, Jonathan P; Louis, Ard A; Harris, Sarah A

    2016-11-02

    It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Helical chirality: a link between local interactions and global topology in DNA.

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    Full Text Available DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg(2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early

  8. Preparation of DNA films for studies under vacuum conditions

    DEFF Research Database (Denmark)

    Smialek, M. A.; Balog, Richard; Jones, N. C.;

    2010-01-01

    Experiments were carried out to determine the optimum conditions required for the preparation of uniform films of supercoiled plasmid DNA to be used in irradiation experiments under high vacuum conditions. Investigations reveal that significant damage to the DNA molecules occurs due to the evacua...

  9. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy

    Science.gov (United States)

    Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven

    2014-04-01

    LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of

  10. Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome.

    Science.gov (United States)

    Blot, Nicolas; Mavathur, Ramesh; Geertz, Marcel; Travers, Andrew; Muskhelishvili, Georgi

    2006-07-01

    Regulation of cellular growth implies spatiotemporally coordinated programmes of gene transcription. A central question, therefore, is how global transcription is coordinated in the genome. The growth of the unicellular organism Escherichia coli is associated with changes in both the global superhelicity modulated by cellular topoisomerase activity and the relative proportions of the abundant DNA-architectural chromatin proteins. Using a DNA-microarray-based approach that combines mutations in the genes of two important chromatin proteins with induced changes of DNA superhelicity, we demonstrate that genomic transcription is tightly associated with the spatial distribution of supercoiling sensitivity, which in turn depends on chromatin proteins. We further demonstrate that essential metabolic pathways involved in the maintenance of growth respond distinctly to changes of superhelicity. We infer that a homeostatic mechanism organizing the supercoiling sensitivity is coordinating the growth-phase-dependent transcription of the genome.

  11. Conversion of DNA gyrase into a conventional type II topoisomerase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1996-01-01

    DNA gyrase is unique among topoisomerases in its ability to introduce negative supercoils into closed-circular DNA. We have demonstrated that deletion of the C-terminal DNA-binding domain of the A subunit of gyrase gives rise to an enzyme that cannot supercoil DNA but relaxes DNA in an ATP-depend...

  12. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.

    Science.gov (United States)

    Benedetti, Fabrizio; Dorier, Julien; Burnier, Yannis; Stasiak, Andrzej

    2014-03-01

    Understanding the structure of interphase chromosomes is essential to elucidate regulatory mechanisms of gene expression. During recent years, high-throughput DNA sequencing expanded the power of chromosome conformation capture (3C) methods that provide information about reciprocal spatial proximity of chromosomal loci. Since 2012, it is known that entire chromatin in interphase chromosomes is organized into regions with strongly increased frequency of internal contacts. These regions, with the average size of ∼1 Mb, were named topological domains. More recent studies demonstrated presence of unconstrained supercoiling in interphase chromosomes. Using Brownian dynamics simulations, we show here that by including supercoiling into models of topological domains one can reproduce and thus provide possible explanations of several experimentally observed characteristics of interphase chromosomes, such as their complex contact maps.

  13. Serious overestimation in quantitative PCR by circular (supercoiled plasmid standard: microalgal pcna as the model gene.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available Quantitative real-time PCR (qPCR has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form and linear DNA standards (linearized plasmid DNA or PCR amplicons, using proliferating cell nuclear gene (pcna, the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.

  14. Mechanism of replication machinery assembly as revealed by the DNA ligase-PCNA-DNA complex architecture.

    Science.gov (United States)

    Mayanagi, Kouta; Kiyonari, Shinichi; Saito, Mihoko; Shirai, Tsuyoshi; Ishino, Yoshizumi; Morikawa, Kosuke

    2009-03-24

    The 3D structure of the ternary complex, consisting of DNA ligase, the proliferating cell nuclear antigen (PCNA) clamp, and DNA, was investigated by single-particle analysis. This report presents the structural view, where the crescent-shaped DNA ligase with 3 distinct domains surrounds the central DNA duplex, encircled by the closed PCNA ring, thus forming a double-layer structure with dual contacts between the 2 proteins. The relative orientations of the DNA ligase domains, which remarkably differ from those of the known crystal structures, suggest that a large domain rearrangement occurs upon ternary complex formation. A second contact was found between the PCNA ring and the middle adenylation domain of the DNA ligase. Notably, the map revealed a substantial DNA tilt from the PCNA ring axis. This structure allows us to propose a switching mechanism for the replication factors operating on the PCNA ring.

  15. Ancient DNA sequence revealed by error-correcting codes.

    Science.gov (United States)

    Brandão, Marcelo M; Spoladore, Larissa; Faria, Luzinete C B; Rocha, Andréa S L; Silva-Filho, Marcio C; Palazzo, Reginaldo

    2015-07-10

    A previously described DNA sequence generator algorithm (DNA-SGA) using error-correcting codes has been employed as a computational tool to address the evolutionary pathway of the genetic code. The code-generated sequence alignment demonstrated that a residue mutation revealed by the code can be found in the same position in sequences of distantly related taxa. Furthermore, the code-generated sequences do not promote amino acid changes in the deviant genomes through codon reassignment. A Bayesian evolutionary analysis of both code-generated and homologous sequences of the Arabidopsis thaliana malate dehydrogenase gene indicates an approximately 1 MYA divergence time from the MDH code-generated sequence node to its paralogous sequences. The DNA-SGA helps to determine the plesiomorphic state of DNA sequences because a single nucleotide alteration often occurs in distantly related taxa and can be found in the alternative codon patterns of noncanonical genetic codes. As a consequence, the algorithm may reveal an earlier stage of the evolution of the standard code.

  16. Chemoaffinity material for plasmid DNA analysis by high-performance liquid chromatography with condition-dependent switching between isoform and topoisomer selectivity.

    Science.gov (United States)

    Mahut, Marek; Gargano, Andrea; Schuchnigg, Hermann; Lindner, Wolfgang; Lämmerhofer, Michael

    2013-03-05

    Plasmid DNA may exist in three isoforms, the linear, open-circular (oc, "nicked"), and covalently closed circular (ccc, "supercoiled") form. We have recently reported on the chromatographic separation of supercoiled plasmid topoisomers on cinchona-alkaloid modified silica-based stationary phases. Herein, we present a selectivity switching mechanism to achieve separation of isoforms and/or supercoiled topoisomers using the very same chromatographic column and system. While salt gradient elution facilitates topoisomer separation, the supercoiled species are eluting as a single peak upon elution by a mixed pH and organic modifier gradient, still well separated from the other isoforms. We have found that a mobile phase pH value near the pI of the zwitterionic adsorbent surface leads to full recovery of all plasmid DNA isoforms, which is a major issue when using anion exchange-based resins. Furthermore, the observed elution pattern, oc < linear < ccc, is constant upon changes of mobile phase composition, gradient slope, and plasmid size. The remarkable isoform selectivity found on quinine-based selectors is explained by van't Hoff plots, revealing a different binding mechanism between the supercoiled plasmid on one hand and the oc and linear isoforms on the other hand.

  17. DNA interaction and cytotoxic activities of square planar platinum(II) complexes with N, S-donor ligands

    Science.gov (United States)

    Patel, Mohan N.; Patel, Chintan R.; Joshi, Hardik N.; Thakor, Khyati P.

    2014-06-01

    The platinum(II) complexes with N, S-donor ligands have been synthesized and characterized by physicochemical methods viz. elemental, electronic, FT-IR, 1H NMR and LC-MS spectra. The binding mode and potency of the complexes with HS DNA (Herring Sperm) have been examined by absorption titration and viscosity measurement studies. The results revealed that complexes bind to HS DNA via covalent mode with the intrinsic binding constant (Kb) in the range 1.37-7.76 × 105 M-1. Decrease in the relative viscosity of HS DNA also supports the covalent mode of binding. The DNA cleavage activity of synthesized complexes has been carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA; showing the unwinding of the negatively charged supercoiled DNA. Brine shrimp (Artemia Cysts) lethality bioassay technique has been applied for the determination of toxic property of synthesized complexes in terms of μM.

  18. Structural Dynamics and Mechanochemical Coupling in DNA Gyrase.

    Science.gov (United States)

    Basu, Aakash; Parente, Angelica C; Bryant, Zev

    2016-05-08

    Gyrase is a molecular motor that harnesses the free energy of ATP hydrolysis to perform mechanical work on DNA. The enzyme specifically introduces negative supercoiling in a process that must coordinate fuel consumption with DNA cleavage and religation and with numerous conformational changes in both the protein and DNA components of a large nucleoprotein complex. Here we present a current understanding of mechanochemical coupling in this essential molecular machine, with a focus on recent diverse biophysical approaches that have revealed details of molecular architectures, new conformational intermediates, structural transitions modulated by ATP binding, and the influence of mechanics on motor function. Recent single-molecule assays have also illuminated the reciprocal relationships between supercoiling and transcription, an illustration of mechanical interactions between gyrase and other molecular machines at the heart of chromosomal biology.

  19. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic

    Science.gov (United States)

    Perry, Kay; Hwang, Young; Bushman, Frederic D.; Van Duyne, Gregory D.

    2010-01-01

    Summary Poxviruses encode their own type IB topoisomerases (TopIBs) which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves a novel Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small vs. large enzyme subfamilies. PMID:20152159

  20. Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement

    DEFF Research Database (Denmark)

    Hong, Sun-Hae; Toro, Esteban; Mortensen, Kim;

    2013-01-01

    is the contour length, and cell-to-cell distribution of the interloci distance r is a universal function of r/n0.22 with broad cell-to-cell variability. For DNA segments greater than about 300 kb, the mean interloci distances scale as n, in agreement with previous observations. The 0.22 value of the scaling......We measured the distance between fluorescent-labeled DNA loci of various interloci contour lengths in Caulobacter crescentus swarmer cells to determine the in vivo configuration of the chromosome. For DNA segments less than about 300 kb, the mean interloci distances, 〈r〉, scale as n0.22, where n...... exponent for short DNA segments is consistent with theoretical predictions for a branched DNA polymer structure. Predictions from Brownian dynamics simulations of the packing of supercoiled DNA polymers in an elongated cell-like confinement are also consistent with a branched DNA structure, and simulated...

  1. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  2. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways.

    Science.gov (United States)

    Suksombat, Sukrit; Khafizov, Rustem; Kozlov, Alexander G; Lohman, Timothy M; Chemla, Yann R

    2015-08-25

    Escherichia coli single-stranded (ss)DNA binding (SSB) protein mediates genome maintenance processes by regulating access to ssDNA. This homotetrameric protein wraps ssDNA in multiple distinct binding modes that may be used selectively in different DNA processes, and whose detailed wrapping topologies remain speculative. Here, we used single-molecule force and fluorescence spectroscopy to investigate E. coli SSB binding to ssDNA. Stretching a single ssDNA-SSB complex reveals discrete states that correlate with known binding modes, the likely ssDNA conformations and diffusion dynamics in each, and the kinetic pathways by which the protein wraps ssDNA and is dissociated. The data allow us to construct an energy landscape for the ssDNA-SSB complex, revealing that unwrapping energy costs increase the more ssDNA is unraveled. Our findings provide insights into the mechanism by which proteins gain access to ssDNA bound by SSB, as demonstrated by experiments in which SSB is displaced by the E. coli recombinase RecA.

  3. Mechanical properties of Tetra-PEG gels with supercoiled networks

    Science.gov (United States)

    Katashima, Takuya; Urayama, Kenji; Chung, Ung-Il; Sakai, Takamasa

    2014-03-01

    We investigated the effects of swelling and deswelling on the mechanical properties of polymer gels with variable polymer volume fractions of interest (φm) . We employed the Tetra-PEG gel as a model system. Tetra-PEG gels were prepared by the AB type crosslink-coupling between the two symmetrical tetra-arm prepolymers with precisely tuning the network strand length (Nc) and polymer fractions at preparation (φ0) . The drastic increase in the elastic modulus was observed in the high φm region due to the unusually contracted conformation of the network strands, called supercoiling. The Obukhov model can describe the φm-dependence of the elastic modulus in all φm regions. We analyzed the stress-elongation relationships for the swollen and deswollen networks. We estimated the fractal dimensions based on the Pincus blob concept, and for the first time observed the φm-, Nc-, φ0-dependence of the fractal dimension. We found that the gyration radius exhibits the affine deformation in the supercoiling region. These findings will help to understand the structure and formation mechanism of supercoiling.

  4. New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases.

    Science.gov (United States)

    Zhang, Likui

    2017-09-15

    The bacteriophage T4 DNA polymerase (pol) and the closely related RB69 DNA pol have been developed into model enzymes to study family B DNA pols. While all family B DNA pols have similar structures and share conserved protein motifs, the molecular mechanism underlying natural drug resistance of nonherpes family B DNA pols and drug sensitivity of herpes DNA pols remains unknown. In the present study, we constructed T4 phages containing G466S, Y460F, G466S/Y460F, P469S, and V475W mutations in DNA pol. These amino acid substitutions replace the residues in drug-resistant T4 DNA pol with residues found in drug-sensitive herpes family DNA pols. We investigated whether the T4 phages expressing the engineered mutant DNA pols were sensitive to the antiviral drug phosphonoacetic acid (PAA) and characterized the in vivo replication fidelity of the phage DNA pols. We found that G466S substitution marginally increased PAA sensitivity, whereas Y460F substitution conferred resistance. The phage expressing a double mutant G466S/Y460F DNA pol was more PAA-sensitive. V475W T4 DNA pol was highly sensitive to PAA, as was the case with V478W RB69 DNA pol. However, DNA replication was severely compromised, which resulted in the selection of phages expressing more robust DNA pols that have strong ability to replicate DNA and contain additional amino acid substitutions that suppress PAA sensitivity. Reduced replication fidelity was observed in all mutant phages expressing PAA-sensitive DNA pols. These observations indicate that PAA sensitivity and fidelity are balanced in DNA pols that can replicate DNA in different environments.

  5. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    Science.gov (United States)

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  6. Genetic variation of the East Balkan Swine (Sus scrofa) in Bulgaria, revealed by mitochondrial DNA and Y chromosomal DNA.

    Science.gov (United States)

    Hirata, D; Doichev, V D; Raichev, E G; Palova, N A; Nakev, J L; Yordanov, Y M; Kaneko, Y; Masuda, R

    2015-04-01

    East Balkan Swine (EBS) Sus scrofa is the only aboriginal domesticated pig breed in Bulgaria and is distributed on the western coast of the Black Sea in Bulgaria. To reveal the breed's genetic characteristics, we analysed mitochondrial DNA (mtDNA) and Y chromosomal DNA sequences of EBS in Bulgaria. Nucleotide diversity (πn ) of the mtDNA control region, including two newly found haplotypes, in 54 EBS was higher (0.014 ± 0.007) compared with that of European (0.005 ± 0.003) and Asian (0.006 ± 0.003) domestic pigs and wild boar. The median-joining network based on the mtDNA control region showed that the EBS and wild boar in Bulgaria comprised mainly two major mtDNA clades, European clade E1 (61.3%) and Asian clade A (38.7%). The coexistence of two mtDNA clades in EBS in Bulgaria may be the relict of historical pig translocation. Among the Bulgarian EBS colonies, the geographical differences in distribution of two mtDNA clades (E1 and A) could be attributed to the source pig populations and/or historical crossbreeding with imported pigs. In addition, analysis of the Y chromosomal DNA sequences for the EBS revealed that all of the EBS had haplotype HY1, which is dominant in European domestic pigs.

  7. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie;

    2014-01-01

    sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5'-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections...

  8. DNA capture reveals transoceanic gene flow in endangered river sharks

    OpenAIRE

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T.; Naylor, Gavin J. P.

    2015-01-01

    The river sharks of the genus Glyphis, widely feared as man-eaters throughout India, remain very poorly known to science. The group constitutes five described species, all of which are considered highly endangered and restricted to freshwater systems in Australasia and Southeast Asia. DNA sequence data derived from 19th-century dried museum material augmented with contemporary samples indicates that only three of the five currently described species are valid; that there is a genetically dist...

  9. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route.

    Science.gov (United States)

    Lacan, Marie; Keyser, Christine; Ricaut, François-Xavier; Brucato, Nicolas; Duranthon, Francis; Guilaine, Jean; Crubézy, Eric; Ludes, Bertrand

    2011-06-14

    The Neolithic is a key period in the history of the European settlement. Although archaeological and present-day genetic data suggest several hypotheses regarding the human migration patterns at this period, validation of these hypotheses with the use of ancient genetic data has been limited. In this context, we studied DNA extracted from 53 individuals buried in a necropolis used by a French local community 5,000 y ago. The relatively good DNA preservation of the samples allowed us to obtain autosomal, Y-chromosomal, and/or mtDNA data for 29 of the 53 samples studied. From these datasets, we established close parental relationships within the necropolis and determined maternal and paternal lineages as well as the absence of an allele associated with lactase persistence, probably carried by Neolithic cultures of central Europe. Our study provides an integrative view of the genetic past in southern France at the end of the Neolithic period. Furthermore, the Y-haplotype lineages characterized and the study of their current repartition in European populations confirm a greater influence of the Mediterranean than the Central European route in the peopling of southern Europe during the Neolithic transition.

  10. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    Science.gov (United States)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  11. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  12. Mitochondrial DNA data reveal cryptic species within Taenia krabbei.

    Science.gov (United States)

    Lavikainen, Antti; Haukisalmi, Voitto; Lehtinen, Markus J; Laaksonen, Sauli; Holmström, Sauli; Isomursu, Marja; Oksanen, Antti; Meri, Seppo

    2010-06-01

    Cysticerci of Taenia sp. from two elks (Alces alces) in Finland were characterized using morphological criteria and sequences of two mitochondrial DNA regions. The host species, size, structure and location of the cysticerci indicated that they might belong to Taenia krabbei, a circumpolar species occurring in a sylvatic life cycle in wild canids and cervids. Based on the number, length and shape of the rostellar hooks, the specimens could not be unambiguously defined as belonging to T. krabbei, T. cervi, T. ovis or T. solium. In the phylogenetic analysis, based on mitochondrial nucleotide sequence data, Taenia sp. was placed as a sister species of T. solium, distant from T. krabbei isolates previously characterized from Svalbard. This indicates that the Finnish and the Svalbard isolates, resembling T. krabbei, cannot represent a single species. The results suggest that careful morphological and genetic analyses of further isolates from intermediate and definitive hosts are required to define the taxonomic status of these two cryptic species.

  13. Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks.

    Science.gov (United States)

    Gyoneva, Lazarina; Segal, Yoav; Dorfman, Kevin D; Barocas, Victor H

    2015-07-01

    Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.

  14. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    The electronic structure of DNA is determined by its nucleotide sequence, which is for instance exploited in molecular electronics. Here we demonstrate that also the DNA strand breakage induced by low-energy electrons (18 eV) depends on the nucleotide sequence. To determine the absolute cross...

  15. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    Science.gov (United States)

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji

    2016-07-13

    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding.

  16. Double-stranded DNA homology produces a physical signature

    Science.gov (United States)

    Wang, Xing; Zhang, Xiaoping; Mao, Chengde; Seeman, Nadrian C.

    2010-01-01

    DNA is found in the cell largely as a negatively supercoiled molecule. This high-energy form of the genetic material can engender sequence-dependent structures, such as cruciforms, Z-DNA, or H-DNA, even though they are not favored by conventional conditions in relaxed DNA. A key feature of DNA in living systems is the presence of homology. We have sought homology-dependent structural phenomena based on topological relaxation. Using two-dimensional electrophoresis, we demonstrate a structural transition in supercoiled plasmid molecules containing homologous segments. Atomic force microscopy (AFM) reveals a dumbbell structure in molecules whose linking difference is beyond the transition point. The position of the dumbbell shaft is a function of the site of homology, and its extent is proportional to the linking difference. Second-site-reversion electrophoresis data support the notion that the shaft contains PX-DNA. Predicted cross-linking patterns generated in vivo suggest that homology-dependent structures can occur within the cell. PMID:20616051

  17. DNA capture reveals transoceanic gene flow in endangered river sharks.

    Science.gov (United States)

    Li, Chenhong; Corrigan, Shannon; Yang, Lei; Straube, Nicolas; Harris, Mark; Hofreiter, Michael; White, William T; Naylor, Gavin J P

    2015-10-27

    For over a hundred years, the "river sharks" of the genus Glyphis were only known from the type specimens of species that had been collected in the 19th century. They were widely considered extinct until populations of Glyphis-like sharks were rediscovered in remote regions of Borneo and Northern Australia at the end of the 20th century. However, the genetic affinities between the newly discovered Glyphis-like populations and the poorly preserved, original museum-type specimens have never been established. Here, we present the first (to our knowledge) fully resolved, complete phylogeny of Glyphis that includes both archival-type specimens and modern material. We used a sensitive DNA hybridization capture method to obtain complete mitochondrial genomes from all of our samples and show that three of the five described river shark species are probably conspecific and widely distributed in Southeast Asia. Furthermore we show that there has been recent gene flow between locations that are separated by large oceanic expanses. Our data strongly suggest marine dispersal in these species, overturning the widely held notion that river sharks are restricted to freshwater. It seems that species in the genus Glyphis are euryhaline with an ecology similar to the bull shark, in which adult individuals live in the ocean while the young grow up in river habitats with reduced predation pressure. Finally, we discovered a previously unidentified species within the genus Glyphis that is deeply divergent from all other lineages, underscoring the current lack of knowledge about the biodiversity and ecology of these mysterious sharks.

  18. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  19. Thermodynamics of long supercoiled molecules: insights from highly efficient Monte Carlo simulations.

    Science.gov (United States)

    Lepage, Thibaut; Képès, François; Junier, Ivan

    2015-07-01

    Supercoiled DNA polymer models for which the torsional energy depends on the total twist of molecules (Tw) are a priori well suited for thermodynamic analysis of long molecules. So far, nevertheless, the exact determination of Tw in these models has been based on a computation of the writhe of the molecules (Wr) by exploiting the conservation of the linking number, Lk=Tw+Wr, which reflects topological constraints coming from the helical nature of DNA. Because Wr is equal to the number of times the main axis of a DNA molecule winds around itself, current Monte Carlo algorithms have a quadratic time complexity, O(L(2)), with respect to the contour length (L) of the molecules. Here, we present an efficient method to compute Tw exactly, leading in principle to algorithms with a linear complexity, which in practice is O(L(1.2)). Specifically, we use a discrete wormlike chain that includes the explicit double-helix structure of DNA and where the linking number is conserved by continuously preventing the generation of twist between any two consecutive cylinders of the discretized chain. As an application, we show that long (up to 21 kbp) linear molecules stretched by mechanical forces akin to magnetic tweezers contain, in the buckling regime, multiple and branched plectonemes that often coexist with curls and helices, and whose length and number are in good agreement with experiments. By attaching the ends of the molecules to a reservoir of twists with which these can exchange helix turns, we also show how to compute the torques in these models. As an example, we report values that are in good agreement with experiments and that concern the longest molecules that have been studied so far (16 kbp).

  20. Flexible DNA bending in HU-DNA cocrystal structures.

    Science.gov (United States)

    Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A

    2003-07-15

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.

  1. Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism.

    Science.gov (United States)

    Oram, Mark; Travers, Andrew A; Howells, Alison J; Maxwell, Anthony; Pato, Martin L

    2006-01-01

    The bacteriophage Mu strong gyrase site (SGS), required for efficient phage DNA replication, differs from other gyrase sites in the efficiency of gyrase binding coupled with a highly processive supercoiling activity. Genetic studies have implicated the right arm of the SGS as a key structural feature for promoting rapid Mu replication. Here, we show that deletion of the distal portion of the right arm abolishes efficient binding, cleavage, and supercoiling by DNA gyrase in vitro. DNase I footprinting analysis of the intact SGS revealed an adenylyl imidodiphosphate-dependent change in protection in the right arm, indicating that this arm likely forms the T segment that is passed through the cleaved G segment during the supercoiling reaction. Furthermore, in an SGS derivative with an altered right-arm sequence, the left arm showed these changes, suggesting that the selection of a T segment by gyrase is determined primarily by the sequences of the arms. Analysis of the sequences of the SGS and other gyrase sites suggests that the choice of T segment correlates with which arm possesses the more extensive set of phased anisotropic bending signals, with the Mu right arm possessing an unusually extended set of such signals. The implications of these observations for the structure of the gyrase-DNA complex and for the biological function of the Mu SGS are discussed.

  2. Significance of satellite DNA revealed by conservation of a widespread repeat DNA sequence among angiosperms.

    Science.gov (United States)

    Mehrotra, Shweta; Goel, Shailendra; Raina, Soom Nath; Rajpal, Vijay Rani

    2014-08-01

    The analysis of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of plant nuclear DNA. In the present study, we analyzed the nature of pCtKpnI-I and pCtKpnI-II tandem repeated sequences, reported earlier in Carthamus tinctorius. Interestingly, homolog of pCtKpnI-I repeat sequence was also found to be present in widely divergent families of angiosperms. pCtKpnI-I showed high sequence similarity but low copy number among various taxa of different families of angiosperms analyzed. In comparison, pCtKpnI-II was specific to the genus Carthamus and was not present in any other taxa analyzed. The molecular structure of pCtKpnI-I was analyzed in various unrelated taxa of angiosperms to decipher the evolutionary conserved nature of the sequence and its possible functional role.

  3. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    Directory of Open Access Journals (Sweden)

    Luke Czapla

    Full Text Available The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  4. Comparative DNA Methylation Profiling Reveals an Immunoepigenetic Signature of HIV-related Cognitive Impairment.

    Science.gov (United States)

    Corley, Michael J; Dye, Christian; D'Antoni, Michelle L; Byron, Mary Margaret; Yo, Kaahukane Leite-Ah; Lum-Jones, Annette; Nakamoto, Beau; Valcour, Victor; SahBandar, Ivo; Shikuma, Cecilia M; Ndhlovu, Lishomwa C; Maunakea, Alika K

    2016-09-15

    Monocytes/macrophages contribute to the neuropathogenesis of HIV-related cognitive impairment (CI); however, considerable gaps in our understanding of the precise mechanisms driving this relationship remain. Furthermore, whether a distinct biological profile associated with HIV-related CI resides in immune cell populations remains unknown. Here, we profiled DNA methylomes and transcriptomes of monocytes derived from HIV-infected individuals with and without CI using genome-wide DNA methylation and gene expression profiling. We identified 1,032 CI-associated differentially methylated loci in monocytes. These loci related to gene networks linked to the central nervous system (CNS) and interactions with HIV. Most (70.6%) of these loci exhibited higher DNA methylation states in the CI group and were preferentially distributed over gene bodies and intergenic regions of the genome. CI-associated DNA methylation states at 12 CpG sites associated with neuropsychological testing performance scores. CI-associated DNA methylation also associated with gene expression differences including CNS genes CSRNP1 (P = 0.017), DISC1 (P = 0.012), and NR4A2 (P = 0.005); and a gene known to relate to HIV viremia, THBS1 (P = 0.003). This discovery cohort data unveils cell type-specific DNA methylation patterns related to HIV-associated CI and provide an immunoepigenetic DNA methylation "signature" potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against CI.

  5. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  6. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    1995-01-01

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  7. Underwound DNA under tension: L-DNA vs. plectoneme

    Science.gov (United States)

    Son, Anmin; Kwon, Ah-Young; Johner, Albert; Hong, Seok-Cheol; Lee, Nam-Kyung

    2014-02-01

    In many biological processes DNA experiences force in the pN range and torque that underwinds it. Magnetic tweezers experiments show that the superhelicity(\\sigma) -extension curve, the so-called bell curve, is asymmetric with respect to the inversion of σ. We study the case of underwound DNA which was not addressed theoretically before. While the case of overwound DNA is fully explained by the formation of supercoil, the extension of underwound DNA reveals non-trivial tension dependence. We show that plectonemic coils form at moderate tension, whereas left-handed DNA, so-called “L-DNA”, prevails at high tension (above \\approx 0.5\\ \\text{pN} ). In a narrow but physiologically relevant crossover range of tension, that is between 0.4 pN and 0.7 pN, extra unwinding turns are statistically distributed to either plectoneme or L-DNA. In this regime the states of a torsionally stressed DNA should be most sensitive to external mechanical stimuli.

  8. Modes of Escherichia coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Vladislav V Melekhov

    Full Text Available Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.

  9. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes

    Science.gov (United States)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil

    2013-03-01

    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  10. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas

    DEFF Research Database (Denmark)

    Beltrami, Caroline Moraes; Dos Reis, Mariana Bisarro; Barros-Filho, Mateus Camargo

    2017-01-01

    BACKGROUND: Papillary thyroid carcinoma (PTC) is a common endocrine neoplasm with a recent increase in incidence in many countries. Although PTC has been explored by gene expression and DNA methylation studies, the regulatory mechanisms of the methylation on the gene expression was poorly clarified......-validated by the The Cancer Genome Atlas data. The majority of these probes was found in non-promoters regions, distant from CGI and enriched by enhancers. The integrative analysis between gene expression and DNA methylation revealed 185 and 38 genes (mainly in the promoter and body regions, respectively) with negative...

  11. Distinct levels in the nanoscale organization of DNA-histone complex revealed by its mechanical unfolding

    Science.gov (United States)

    Soni, G. V.; Brar, Loveleen; Hameed, Feroz M.; Raychaudhuri, A. K.; Shivashankar, G. V.

    2007-04-01

    Mechanical unfolding of nanoscale DNA-histone complex, using an atomic force microscope, shows a stepwise disassembly of histones from the nucleosome. A quantitative analysis of the rupture jump statistics and the length released per jump reveals insights into the possible histone contacts within the octamer complex. The measured ruptures correlate with the breakage of multiple contacts that stabilize the histone octamer. These results provide a mechanistic basis by which stepwise disassembly of histone proteins may result from an external force exerted by the adenosinetriphosphate (ATP) dependent chromatin remodeling machines to access regulatory sites on DNA.

  12. The dynamic behavior of bacterial macrofibers growing with one end prevented from rotating: variation in shaft rotation along the fiber's length, and supercoil movement on a solid surface toward the constrained end

    Directory of Open Access Journals (Sweden)

    Chen Liling

    2003-08-01

    locations along fibers in structures prevented from rotating at one end reveal that the rate varied linearly from zero at the blocked end to maximum at the distal end. The increasing number of twisting cells in growing fibers caused the distal end to continuously rotate faster. When the free end was intermittently prevented from rotating a torque developed which was relieved by supercoiling. On a solid surface the supercoils moved toward the end permanently blocked from rotating as a result of supercoil rolling over the surface and the formation of new supercoils that reduced fiber length between the initial supercoil and the wire tether. All of the motions are ramifications of cell growth with twist and the highly ordered multicellular state of macrofibers.

  13. Histone-DNA contacts in structure/function relationships of nucleosomes as revealed by crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Usachenko, S.I. [Univ. of California, Davis, CA (United States); Bradbury, E.M. [Los Alamos National Lab., NM (United States). Life Science Div.]|[Univ. of California, Davis, CA (United States)

    1998-12-31

    The magnitude of the problem of understanding the structure/function relationships of eukaryotic chromosomes can be appreciated from the fact that the human diploid genome contains more than 2 meters of DNA packaged into 46 chromosomes, each at metaphase being several microns in length. Each chromatid of a chromosome contains a single DNA molecule several centimeters in length. In addition to the DNA, chromosomes contain an equal weight of histones and an equal weight of non-histone chromosomal proteins. These histones are the major chromosomal structural proteins. The non-histone chromosomal proteins are involved in the DNA processes of transcription and replication, in chromosome organization and in nuclear architecture. Polytene chromosomes with their bands and interbands and puffs of active genetic loci provide visual evidence for long range order as do the bands and interbands of mammalian metaphase chromosomes. The gentle removal of histones and all but the most tightly bound 2--3% of non-histone proteins from metaphase chromosomes revealed by electron microscopy a residual protein scaffold constraining a halo of DNA loops extending out from the scaffold.

  14. Comprehensive DNA Adduct Analysis Reveals Pulmonary Inflammatory Response Contributes to Genotoxic Action of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kousuke Ishino

    2015-02-01

    Full Text Available Nanosized-magnetite (MGT is widely utilized in medicinal and industrial fields; however, its toxicological properties are not well documented. In our previous report, MGT showed genotoxicity in both in vitro and in vivo assay systems, and it was suggested that inflammatory responses exist behind the genotoxicity. To further clarify mechanisms underlying the genotoxicity, a comprehensive DNA adduct (DNA adductome analysis was conducted using DNA samples derived from the lungs of mice exposed to MGT. In total, 30 and 42 types of DNA adducts were detected in the vehicle control and MGT-treated groups, respectively. Principal component analysis (PCA against a subset of DNA adducts was applied and several adducts, which are deduced to be formed by inflammation or oxidative stress, as the case of etheno-deoxycytidine (εdC, revealed higher contributions to MGT exposure. By quantitative-LC-MS/MS analysis, εdC levels were significantly higher in MGT-treated mice than those of the vehicle control. Taken together with our previous data, it is suggested that inflammatory responses might be involved in the genotoxicity induced by MGT in the lungs of mice.

  15. DNA replication catalyzed by herpes simplex virus type 1 proteins reveals trombone loops at the fork.

    Science.gov (United States)

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D

    2015-01-30

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.

  16. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

    Science.gov (United States)

    Baubec, Tuncay; Colombo, Daniele F; Wirbelauer, Christiane; Schmidt, Juliane; Burger, Lukas; Krebs, Arnaud R; Akalin, Altuna; Schübeler, Dirk

    2015-04-09

    DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.

  17. Liquid-Crystalline Mesophases of Plasmid DNA in Bacteria

    Science.gov (United States)

    Reich, Ziv; Wachtel, Ellen J.; Minsky, Abraham

    1994-06-01

    Bacterial plasmids may often reach a copy number larger than 1000 per cell, corresponding to a total amount of DNA that may exceed the amount of DNA within the bacterial chromosome. This observation highlights the problem of cellular accommodation of large amounts of closed-circular nucleic acids, whose interwound conformation offers negligible DNA compaction. As determined by x-ray scattering experiments conducted on intact bacteria, supercoiled plasmids segregate within the cells into dense clusters characterized by a long-range order. In vitro studies performed at physiological DNA concentrations indicated that interwound DNA spontaneously forms liquid crystalline phases whose macroscopic structural properties are determined by the features of the molecular supercoiling. Because these features respond to cellular factors, DNA supercoiling may provide a sensitive regulatory link between cellular parameters and the packaging modes of interwound DNA in vivo.

  18. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    Science.gov (United States)

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  19. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search.

    Science.gov (United States)

    Forget, Anthony L; Kowalczykowski, Stephen C

    2012-02-08

    DNA breaks can be repaired with high fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament have important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining the available three-dimensional (3D) conformations of the molecule, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed 'intersegmental contact sampling', in which the intrinsic multivalent nature of the RecA nucleoprotein filament is used to search DNA sequence space within 3D domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3D conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a

  20. Structural Analysis of Rtt106p Reveals a DNA Binding Role Required for Heterochromatin Silencing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Huang, H; Zhou, B; Wang, S; Hu, Y; Li, X; Liu, J; Niu, L; Wu, J; et. al.

    2010-01-01

    Rtt106p is a Saccharomyces cerevisiae histone chaperone with roles in heterochromatin silencing and nucleosome assembly. The molecular mechanism by which Rtt106p engages in chromatin dynamics remains unclear. Here, we report the 2.5 {angstrom} crystal structure of the core domain of Rtt106p, which adopts an unusual 'double pleckstrin homology' domain architecture that represents a novel structural mode for histone chaperones. A histone H3-H4-binding region and a novel double-stranded DNA-binding region have been identified. Mutagenesis studies reveal that the histone and DNA binding activities of Rtt106p are involved in Sir protein-mediated heterochromatin formation. Our results uncover the structural basis of the diverse functions of Rtt106p and provide new insights into its cellular roles.

  1. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  2. The chromosomal constitution of fish hybrid lineage revealed by 5S rDNA FISH.

    Science.gov (United States)

    Zhang, Chun; Ye, Lihai; Chen, Yiyi; Xiao, Jun; Wu, Yanhong; Tao, Min; Xiao, Yamei; Liu, Shaojun

    2015-12-03

    The establishment of the bisexual fertile fish hybrid lineage including the allodiploid and allotetraploid hybrids, from interspecific hybridization of red crucian carp (Carassius auratus red var. 2n = 100, 2n = AA) (♀) × common carp (Cyprinus carpio L. 2n = 100, 2n = BB) (♂), provided a good platform to investigate genetic relationship between the parents and their hybrid progenies. The chromosomal inheritance of diploid and allotetraploid hybrid progenies in successive generations, was studied by applying 5S rDNA fluorescence in situ hybridization. Signals of 5S rDNA distinguished the chromosomal constitution of common carp (B-genome) from red crucian carp (A-genome), in which two strong signals were observed on the first submetacentric chromosome, while no major signal was found in common carp. After fish hybridization, one strong signal of 5S rDNA was detected in the same locus on the chromosome of diploid hybrids. As expected, two strong signals were observed in 4nF3 tetraploid hybrids offspring and it is worth mentioning that two strong signals were detected in a separating bivalent of a primary spermatocyte in 4nF3. Furthermore, the mitosis of heterozygous chromosomes was shown normal and stable with blastular tissue histological studies. We revealed that 5S rDNA signal can be applied to discern A-genome from B-genome, and that 5S rDNA bearing chromosomes can be stably passed down in successive generations. Our work provided a significant method in fish breeding and this is important for studies in fish evolutionary biology.

  3. DNA nuclease activity of Rev-coupled transition metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  4. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae.

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    Full Text Available Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida. Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements

  5. Seventeen New Complete mtDNA Sequences Reveal Extensive Mitochondrial Genome Evolution within the Demospongiae

    Science.gov (United States)

    Wang, Xiujuan; Lavrov, Dennis V.

    2008-01-01

    Two major transitions in animal evolution–the origins of multicellularity and bilaterality–correlate with major changes in mitochondrial DNA (mtDNA) organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13–15 protein genes, 2 rRNA genes, and 2–27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida). Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida) including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements, occurred in

  6. Unmasking risk loci: DNA methylation illuminates the biology of cancer predisposition: analyzing DNA methylation of transcriptional enhancers reveals missed regulatory links between cancer risk loci and genes.

    Science.gov (United States)

    Aran, Dvir; Hellman, Asaf

    2014-02-01

    Paradoxically, DNA sequence polymorphisms in cancer risk loci rarely correlate with the expression of cancer genes. Therefore, the molecular mechanism underlying an individual's susceptibility to cancer has remained largely unknown. However, recent evaluations of the correlations between DNA methylation and gene expression levels across healthy and cancerous genomes have revealed enrichment of disease-related DNA methylation variations within disease-associated risk loci. Moreover, it appears that transcriptional enhancers embedded in cancer risk loci often contain DNA methylation sites that closely define the expression of prominent cancer genes, despite the lack of significant correlations between gene expression levels and the surrounding disease-associated polymorphic sequences. We suggest that DNA methylation variations may obscure the effect of co-residing risk sequence alleles. Analysis of enhancer methylation data may help to reveal the regulatory circuits underlying predisposition to cancers and other common diseases.

  7. A stochastic reaction-diffusion model for protein aggregation on DNA

    Science.gov (United States)

    Voulgarakis, Nikolaos K.

    Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.

  8. Single molecule study of the DNA denaturation phase transition in the force-torsion space

    CERN Document Server

    Salerno, D; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F

    2012-01-01

    We use the "magnetic tweezers" technique to reveal the structural transitions that DNA undergoes in the force-torsion space. In particular, we focus on regions corresponding to negative supercoiling. These regions are characterized by the formation of so-called denaturation bubbles, which have an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes are competing. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  9. Mutations altering the interplay between GkDnaC helicase and DNA reveal an insight into helicase unwinding.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Lo

    Full Text Available Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA. Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC in complex with single-stranded DNA (ssDNA suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.

  10. Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world.

    Science.gov (United States)

    Waters, Jonathan M; Grosser, Stefanie

    2016-11-01

    The spread of exotic species represents a major driver of biological change across the planet. While dispersal and colonization are natural biological processes, we suggest that the failure to recognize increasing rates of human-facilitated self-introductions may represent a threat to native lineages. Notably, recent biogeographic analyses have revealed numerous cases of biological range shifts in response to anthropogenic impacts and climate change. In particular, ancient DNA analyses have revealed several cases in which lineages traditionally thought to be long-established "natives" are in fact recent colonizers. Such range expansion events have apparently occurred in response to human-mediated native biodiversity declines and ecosystem change, particularly in recently colonized, isolated ecosystems such as New Zealand. While such events can potentially boost local biodiversity, the spread of exotic lineages may also hasten the decline of indigenous species, so it is essential that conservation managers recognize these rapid biotic shifts.​. © 2016 WILEY Periodicals, Inc.

  11. Mitochondrial DNA analysis of Tunisians reveals a mosaic genetic structure with recent population expansion.

    Science.gov (United States)

    Frigi, S; Mota-Vieira, L; Cherni, L; van Oven, M; Pires, R; Boussetta, S; El-Gaaied, A Ben Ammar

    2017-05-19

    Tunisia is a country of great interest for human population genetics due to its strategic geographic position and rich human settlement history. These factors significantly contributed to the genetic makeup of present-day Tunisians harbouring components of diverse geographic origins. Here, we investigated the genetic structure of Tunisians by performing a mitochondrial DNA (mtDNA) comparison of 15 Tunisian population groups, in order to explore their complex genetic landscape. All Tunisian data were also analysed against 40 worldwide populations. Statistical results (Tajima's D and Fu's FS tests) suggested recent population expansion for the majority of studied populations, as well as showed (AMOVA test) that all populations were significantly different from each other, which is evidence of population structure even if it is not guided by geographic and ethnic effects. Gene flow analysis revealed the assignment of Tunisians to multiple ancestries, which agrees with their genetic heterogeneity. The resulting picture for the mtDNA pool confirms the evidence of a recent expansion of the Tunisian population and is in accordance with a mosaic structure, composed by North African, Middle Easterner, European and Sub-Saharan lineages, resulting from a complex settlement history. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Proteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase η in the Alternative Lengthening of Telomeres

    Directory of Open Access Journals (Sweden)

    Laura Garcia-Exposito

    2016-11-01

    Full Text Available Cancer cells rely on the activation of telomerase or the alternative lengthening of telomeres (ALT pathways for telomere maintenance and survival. ALT involves homologous recombination (HR-dependent exchange and/or HR-associated synthesis of telomeric DNA. Utilizing proximity-dependent biotinylation (BioID, we sought to determine the proteome of telomeres in cancer cells that employ these distinct telomere elongation mechanisms. Our analysis reveals that multiple DNA repair networks converge at ALT telomeres. These include the specialized translesion DNA synthesis (TLS proteins FANCJ-RAD18-PCNA and, most notably, DNA polymerase eta (Polη. We observe that the depletion of Polη leads to increased ALT activity and late DNA polymerase δ (Polδ-dependent synthesis of telomeric DNA in mitosis. We propose that Polη fulfills an important role in managing replicative stress at ALT telomeres, maintaining telomere recombination at tolerable levels and stimulating DNA synthesis by Polδ.

  13. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    Science.gov (United States)

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  14. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    Science.gov (United States)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  15. Interspecific introgression in cetaceans: DNA markers reveal post-F1 status of a pilot whale.

    Directory of Open Access Journals (Sweden)

    Laura Miralles

    Full Text Available Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region and eight nuclear loci (microsatellites as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain, one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals.

  16. Hormonal induction of transfected genes depends on DNA topology.

    Science.gov (United States)

    Piña, B; Haché, R J; Arnemann, J; Chalepakis, G; Slater, E P; Beato, M

    1990-02-01

    Plasmids containing the hormone regulatory element of mouse mammary tumor virus linked to the thymidine kinase promoter of herpes simplex virus and the reporter gene chloramphenicol acetyltransferase of Escherichia coli respond to glucocorticoids and progestins when transfected into appropriate cells. In the human mammary tumor cell line T47D, the response to progestins, but not to glucocorticoids, is highly dependent on the topology of the transfected DNA. Although negatively supercoiled plasmids respond optimally to the synthetic progestin R5020, their linearized counterparts exhibit markedly reduced progestin inducibility. This is not due to changes in the efficiency of DNA transfection, since the amount of DNA incorporated into the cell nucleus is not significantly dependent on the initial topology of the plasmids. In contrast, cotransfection experiments with glucocorticoid receptor cDNA in the same cell line show no significant influence of DNA topology on induction by dexamethasone. A similar result was obtained with fibroblasts that contain endogenous glucocorticoid receptors. When the distance between receptor-binding sites or between the binding sites and the promoter was increased, the dependence of progestin induction on DNA topology was more pronounced. In contrast to the original plasmid, these constructs also revealed a similar topological dependence for induction by glucocorticoids. The differential influence of DNA topology is not due to differences in the affinity of the two hormone receptors for DNA of various topologies, but probably reflects an influence of DNA topology on the interaction between different DNA-bound receptor molecules and between receptors and other transcription factors.

  17. DNA-PKcs-OBA/Ku associate in the absence of DNA, as revealed by two-dimensional capillary gel electromobility shift assay.

    Science.gov (United States)

    Ruiz, Marcia T; Nichols, Amanda; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-08-01

    Ors-binding activity (OBA) has been previously purified by its ability to specifically interact with A3/4, a 36-bp mammalian origin consensus sequence [1]. Peptide sequence analyses identified OBA as Ku86, the largest subunit of Ku antigen, a heterodimeric protein (Ku70/Ku86) involved in several autoimmune disorders [2-5]. The affinity-purified fraction containing OBA/Ku is also enriched for DNA-dependent protein kinase DNA-PKcs, the catalytic subunit of the DNA-PK holoenzyme, of which Ku antigen is the DNA-binding subunit [6-8]. Glycerol-gradient sedimentation analyses have demonstrated the presence of OBA/Ku in a high-molecular-weight complex. In order to investigate whether OBA/Ku and DNA-PKcs are associated in this fraction, we have used a modification of the two-dimensional gel electrophoresis technique originally described [9]. Electromobility shift assays were developed in native capillary gels, which were subsequently used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension. The gels were then processed for Western blotting using the Ku70, Ku86 and DNA-PKcs antibodies. This approach has revealed the association of OBA/Ku and DNA-PKcs to give rise to the DNA-PK holoenzyme irrespective of the presence, or the absence of DNA. Altogether, we have proven the utility of this technique for the study of protein-protein and protein-DNA interactions.

  18. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity

    Science.gov (United States)

    Bista, Iliana; Carvalho, Gary R.; Walsh, Kerry; Seymour, Mathew; Hajibabaei, Mehrdad; Lallias, Delphine; Christmas, Martin; Creer, Simon

    2017-01-01

    The use of environmental DNA (eDNA) in biodiversity assessments offers a step-change in sensitivity, throughput and simultaneous measures of ecosystem diversity and function. There remains, however, a need to examine eDNA persistence in the wild through simultaneous temporal measures of eDNA and biota. Here, we use metabarcoding of two markers of different lengths, derived from an annual time series of aqueous lake eDNA to examine temporal shifts in ecosystem biodiversity and in an ecologically important group of macroinvertebrates (Diptera: Chironomidae). The analyses allow different levels of detection and validation of taxon richness and community composition (β-diversity) through time, with shorter eDNA fragments dominating the eDNA community. Comparisons between eDNA, community DNA, taxonomy and UK species abundance data further show significant relationships between diversity estimates derived across the disparate methodologies. Our results reveal the temporal dynamics of eDNA and validate the utility of eDNA metabarcoding for tracking seasonal diversity at the ecosystem scale.

  19. DNA Barcoding Reveals Cryptic Diversity within Commercially Exploited Indo-Malay Carangidae (Teleosteii: Perciformes)

    Science.gov (United States)

    Mat Jaafar, Tun Nurul Aimi; Taylor, Martin I.; Mohd Nor, Siti Azizah; de Bruyn, Mark; Carvalho, Gary R.

    2012-01-01

    Background DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library. Methodology/Principal Findings Here, a 652 bp region of COI was sequenced for 723 individuals from 36 putative species of Family Carangidae distributed within IMA waters. Within the newly-generated dataset, three described species exhibited conspecific divergences up to ten times greater (4.32–4.82%) than mean estimates (0.24–0.39%), indicating a discrepancy with assigned morphological taxonomic identification, and the existence of cryptic species. Variability of the mitochondrial DNA COI region was compared within and among species to evaluate the COI region's suitability for species identification. The trend in range of mean K2P distances observed was generally in accordance with expectations based on taxonomic hierarchy: 0% to 4.82% between individuals within species, 0% to 16.4% between species within genera, and 8.64% to 25.39% between genera within families. The average Kimura 2-parameter (K2P) distance between individuals, between species within genera, and between genera within family were 0.37%, 10.53% and 16.56%, respectively. All described species formed monophyletic clusters in the Neighbour-joining phylogenetic tree, although three species representing complexes of six potential cryptic species were detected in Indo-Malay Carangidae; Atule mate, Selar crumenophthalmus and Seriolina nigrofasciata. Conclusion/Significance This study confirms

  20. Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate

    Science.gov (United States)

    Serwer, Philip; Wright, Elena T.

    2012-01-01

    We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979

  1. Insight into F plasmid DNA segregation revealed by structures of SopB and SopB–DNA complexes

    OpenAIRE

    2010-01-01

    Accurate DNA segregation is essential for genome transmission. Segregation of the prototypical F plasmid requires the centromere-binding protein SopB, the NTPase SopA and the sopC centromere. SopB displays an intriguing range of DNA-binding properties essential for partition; it binds sopC to form a partition complex, which recruits SopA, and it also coats DNA to prevent non-specific SopA–DNA interactions, which inhibits SopA polymerization. To understand the myriad functions of SopB, we dete...

  2. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.

    2011-01-01

    In this article, we discuss the structure and composition of mixed DNA-cationic surfactant adsorption layers on both hydrophobic and hydrophilic solid surfaces. We have focused on the effects of the bulk concentrations, the surfactant chain length, and the type solid surface on the interfacial...... layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...... with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...

  3. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer

    Science.gov (United States)

    Hollstein, M; Alexandrov, L B; Wild, C P; Ardin, M; Zavadil, J

    2017-01-01

    Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures can be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. Innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges. PMID:27270430

  4. A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing.

    Directory of Open Access Journals (Sweden)

    Alexander Wait Zaranek

    2010-05-01

    Full Text Available While it is widely held that an organism's genomic information should remain constant, several protein families are known to modify it. Members of the AID/APOBEC protein family can deaminate DNA. Similarly, members of the ADAR family can deaminate RNA. Characterizing the scope of these events is challenging. Here we use large genomic data sets, such as the two billion sequences in the NCBI Trace Archive, to look for clusters of mismatches of the same type, which are a hallmark of editing events caused by APOBEC3 and ADAR. We align 603,249,815 traces from the NCBI trace archive to their reference genomes. In clusters of mismatches of increasing size, at least one systematic sequencing error dominates the results (G-to-A. It is still present in mismatches with 99% accuracy and only vanishes in mismatches at 99.99% accuracy or higher. The error appears to have entered into about 1% of the HapMap, possibly affecting other users that rely on this resource. Further investigation, using stringent quality thresholds, uncovers thousands of mismatch clusters with no apparent defects in their chromatograms. These traces provide the first reported candidates of endogenous DNA editing in human, further elucidating RNA editing in human and mouse and also revealing, for the first time, extensive RNA editing in Xenopus tropicalis. We show that the NCBI Trace Archive provides a valuable resource for the investigation of the phenomena of DNA and RNA editing, as well as setting the stage for a comprehensive mapping of editing events in large-scale genomic datasets.

  5. Stretched and overwound DNA forms a Pauling-like structure with exposed bases.

    Science.gov (United States)

    Allemand, J F; Bensimon, D; Lavery, R; Croquette, V

    1998-11-24

    We investigate structural transitions within a single stretched and supercoiled DNA molecule. With negative supercoiling, for a stretching force >0.3 pN, we observe the coexistence of B-DNA and denatured DNA from sigma approximately -0.015 down to sigma = -1. Surprisingly, for positively supercoiled DNA (sigma > +0.037) stretched by 3 pN, we observe a similar coexistence of B-DNA and a new, highly twisted structure. Experimental data and molecular modeling suggest that this structure has approximately 2.62 bases per turn and an extension 75% larger than B-DNA. This structure has tightly interwound phosphate backbones and exposed bases in common with Pauling's early DNA structure [Pauling, L. & Corey, R. B. (1953), Proc. Natl. Acad. Sci. USA 39, 84-97] and an unusual structure proposed for the Pf1 bacteriophage [Liu, D. J. & Day, L. A. (1994) Science 265, 671-674].

  6. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH.

    Science.gov (United States)

    Ksiazczyk, T; Taciak, M; Zwierzykowski, Z

    2010-01-01

    This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.

  7. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    accumulation and tolerance between the two contrasting barley genotypes: W6nk2 (a low-grain-Cd-accumulating and Cd-sensitive genotype) and Zhenong8 (a high-grain-Cd-accumulating and tolerant genotype). A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd......Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...

  8. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting.

    Science.gov (United States)

    Pérez-Brito, Daisy; Magaña-Alvarez, Anuar; Lappe-Oliveras, Patricia; Cortes-Velazquez, Alberto; Torres-Calzada, Claudia; Herrera-Suarez, Teófilo; Larqué-Saavedra, Alfonso; Tapia-Tussell, Raul

    2015-01-01

    This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.

  9. Gin-mediated DNA inversion: product structure and the mechanism of strand exchange.

    Science.gov (United States)

    Kanaar, R; van de Putte, P; Cozzarelli, N R

    1988-02-01

    Inversion of the G loop of bacteriophage Mu requires the phage-encoded Gin protein and a host factor. The topological changes in a supercoiled DNA substrate generated by the two purified proteins were analyzed. More than 99% of the inversion products were unknotted rings. This result excludes synapsis by way of a random collision of recombination sites, because the resulting entrapped supercoils would be converted into knots by recombination. Instead, the recombination sites must come together in the synaptic complex in an ordered fashion with a fixed number of supercoils between the sites. The linking number of the substrate DNA increases by four during recombination. Thus, in three successive rounds of inversion, the change in linking number was +4, +8, and +12, respectively. These results lead to a quantitative model for the mechanism of Gin recombination that includes the distribution of supercoils in the synaptic complex, their alteration by strand exchange, and specific roles for the two proteins needed for recombination.

  10. A model for the mechanism of strand passage by DNA gyrase

    DEFF Research Database (Denmark)

    Kampranis, S C; Bates, A D; Maxwell, A

    1999-01-01

    The mechanism of type II DNA topoisomerases involves the formation of an enzyme-operated gate in one double-stranded DNA segment and the passage of another segment through this gate. DNA gyrase is the only type II topoisomerase able to introduce negative supercoils into DNA, a feature that requir...

  11. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion

    NARCIS (Netherlands)

    Komazin-Meredith, Gloria; Mirchev, Rossen; Golan, David E.; Oijen, Antoine M. van; Coen, Donald M.; Richardson, Charles C.

    2008-01-01

    Many DNA-interacting proteins diffuse on DNA to perform their biochemical functions. Processivity factors diffuse on DNA to permit unimpeded elongation by their associated DNA polymerases, but little is known regarding their rates and mechanisms of diffusion. The processivity factor of herpes simple

  12. Global force-torque phase diagram for the DNA double helix: Structural transitions, triple points, and collapsed plectonemes

    Science.gov (United States)

    Marko, John F.; Neukirch, Sébastien

    2013-12-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ =-5 to +3.

  13. Global force-torque phase diagram for the DNA double helix: structural transitions, triple points, and collapsed plectonemes.

    Science.gov (United States)

    Marko, John F; Neukirch, Sébastien

    2013-12-01

    We present a free energy model for structural transitions of the DNA double helix driven by tensile and torsional stress. Our model is coarse grained and is based on semiflexible polymer descriptions of B-DNA, underwound L-DNA, and highly overwound P-DNA. The statistical-mechanical model of plectonemic supercoiling previously developed for B-DNA is applied to semiflexible polymer models of P- and L-DNA to obtain a model of DNA structural transitions in quantitative accord with experiment. We identify two distinct plectonemic states, one "inflated" by electrostatic repulsion and thermal fluctuations and the other "collapsed," with the two double helices inside the supercoils driven to close contact. We find that supercoiled B and L are stable only in the inflated form, while supercoiled P is always collapsed. We also predict the behavior and experimental signatures of highly underwound "Q"-DNA, the left-handed analog of P-DNA; as for P, supercoiled Q is always collapsed. Overstretched "S"-DNA and strand-separated "stress-melted" DNA are also included in our model, allowing prediction of a global phase diagram for forces up to 1000 pN and torques between ±60 pN nm, or, in terms of linking number density, from σ=-5 to +3.

  14. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...... cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair....

  15. Rapid purification of circular DNA by triplex-mediated affinity capture

    Science.gov (United States)

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  16. Familial longevity study reveals a significant association of mitochondrial DNA copy number between centenarians and their offspring.

    Science.gov (United States)

    He, Yong-Han; Chen, Xiao-Qiong; Yan, Dong-Jing; Xiao, Fu-Hui; Lin, Rong; Liao, Xiao-Ping; Liu, Yao-Wen; Pu, Shao-Yan; Yu, Qin; Sun, Hong-Peng; Jiang, Jian-Jun; Cai, Wang-Wei; Kong, Qing-Peng

    2016-11-01

    Reduced mitochondrial function is an important cause of aging and age-related diseases. We previously revealed a relatively higher level of mitochondrial DNA (mtDNA) content in centenarians. However, it is still unknown whether such an mtDNA content pattern of centenarians could be passed on to their offspring and how it was regulated. To address these issues, we recruited 60 longevity families consisting of 206 family members (cohort 1) and explored their mtDNA copy number. The results showed that the first generation of the offspring (F1 offspring) had a higher level of mtDNA copy number than their spouses (p copy number in centenarians with that in F1 offspring (r = 0.54, p = 0.0008) but not with that in F1 spouses. These results were replicated in another independent cohort consisting of 153 subjects (cohort 2). RNA sequencing analysis suggests that the single-stranded DNA-binding protein 4 was significantly associated with mtDNA copy number and was highly expressed in centenarians as well as F1 offspring versus the F1 spouses, thus likely regulates the mtDNA copy number in the long-lived family members. In conclusion, our results suggest that the pattern of high mtDNA copy number is likely inheritable, which may act as a favorable factor to familial longevity through assuring adequate energy supply. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies.

    Science.gov (United States)

    Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-11-01

    Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.

  18. Rutin-Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities.

    Science.gov (United States)

    Raza, Aun; Bano, Shumaila; Xu, Xiuquan; Zhang, Rong Xian; Khalid, Haider; Iqbal, Furqan Muhammad; Xia, Changkun; Tang, Jian; Ouyang, Zhen

    2016-12-17

    The rutin-nickel (II) complex (RN) was synthesized and characterized by elemental analysis, UV-visible spectroscopy, IR, mass spectrometry, (1)H NMR, TG-DSC, SEM, and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal/ligand) of the complex. An antioxidant study of rutin and its metal complex against DPPH radical showed that the complex has more radical scavenging activity than free rutin. The interaction of complex RN with DNA was determined using fluorescence spectra and agarose gel electrophoresis. The results showed that RN can intercalate moderately with DNA, quench a strong intercalator ethidium bromide (EB), and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form (SC) to nicked circular form (NC), and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was a hydrolytic cleavage pathway. These results revealed the potential nuclease activity of the complex to cleave DNA.

  19. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    Science.gov (United States)

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia.

  20. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging.

    Directory of Open Access Journals (Sweden)

    Rachid Rezgui

    Full Text Available As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.

  1. A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes.

    Directory of Open Access Journals (Sweden)

    Christina M Carr

    Full Text Available BACKGROUND: Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested. METHODOLOGY/PRINCIPAL FINDINGS: Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%. Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas. CONCLUSIONS/SIGNIFICANCE: Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia

  2. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages

    Science.gov (United States)

    Domaizon, I.; Savichtcheva, O.; Debroas, D.; Arnaud, F.; Villar, C.; Pignol, C.; Alric, B.; Perga, M. E.

    2013-06-01

    While picocyanobacteria (PC) are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes). In particular, we investigated the long-term (100 yr) diversity and dynamics of Synechococcus,, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided the ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR; quantitative Polymerase Chain Reaction) results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus, (fraction of Synechococcus, in total cyanobacteria). The diversity of Synechococcus, in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and the following internally transcribed spacer (ITS). Up to 23 different OTUs (based on 16S rRNA), which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, the study of ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (in temperature and phosphorus concentration) affected Synechococcus, community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus, clusters. Providing such novel insights into the

  3. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Perga

    2013-02-01

    Full Text Available While picocyanobacteria (PC are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes. We particularly investigated the long-term (100 yr diversity and dynamics of Synechococcus, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus (fraction of Synechococcus in total cyanobacteria. The diversity of Synechococcus in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and internal transcribed spacer (ITS. Up to 23 different OTUs (based on 16S rRNA, which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, study of the ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (here, in temperature and phosphorus concentration affected Synechococcus community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus clusters. Providing such novel insights into the long-term history of an important group of

  4. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    STELLY; David

    2008-01-01

    Gossypium mustelinum [(AD)4] is one of five tetraploid species in Gossypium.Three pairs of nucleolar organizer regions(NOR) in(AD)4 were detected by FISH with 45S rDNA as a probe,they also were observed with genomic DNA(gDNA) from Gossypium D genome species as probes.Of the

  5. Mechanical properties of tetra-PEG gels with supercoiled network structure.

    Science.gov (United States)

    Katashima, Takuya; Asai, Makoto; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa

    2014-02-21

    We investigate the effects of swelling and deswelling on the mechanical properties of tetra-polyethylene glycol gels with the precisely tuned polymerization degree of network strand (Nc) and polymer volume fraction at preparation (ϕ0) by varying the fraction of interest (ϕm). The ϕm-dependence of the elastic modulus exhibits a crossover at ϕc due to large contraction of the network strands (supercoiling) accompanying deswelling. The Obukhov model successfully describes the ϕm-dependence of the elastic modulus. We estimate the fractal dimension of network strands (Df) by analyzing the stress-elongation relationships at high stretching using Pincus blob concept. In the supercoiling region, Df increases with an increase in ϕm, which suggests that the gyration radius of network strands decreases with deswelling in affine manner. The extensibility increases with an increase in ϕm because the deswelling reduces the distance between the neighboring junctions. These findings will help to understand the structure and formation mechanism of supercoiling.

  6. Evaluation of sperm head shape at high magnification revealed correlation of sperm DNA fragmentation with aberrant head ellipticity and angularity.

    Science.gov (United States)

    Utsuno, Hiroki; Oka, Kenji; Yamamoto, Ayako; Shiozawa, Tanri

    2013-05-01

    To test for an association between DNA fragmentation and head shape at high magnification in fresh motile spermatozoa. Observational study. Academic tertiary care center. A total of 60 men in our assisted reproductive program. Quantifying sperm head shape using elliptic Fourier analysis, and detecting DNA fragmentation by use of a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Correlation between percentage of spermatozoa with abnormal head shape and percentage of DNA fragmentation. Elliptic Fourier analysis decomposed sperm head shapes into four quantitative parameters: ellipticity, anteroposterior (AP) symmetry, lateral symmetry, and angularity. The DNA fragmentation was statistically significantly correlated with abnormal angularity, and moderately with abnormal ellipticity but not with abnormal AP symmetry or lateral symmetry. Forward stepwise multiple logistic regression analysis revealed a statistically significantly higher percentage of DNA fragmentation in spermatozoa with abnormal ellipticity and abnormal angularity than in spermatozoa with normal-shaped head (6.1% and 5.4% vs. 2.8%). Spermatozoa with large nuclear vacuoles also correlated with sperm DNA fragmentation, and had a statistically significantly higher percentage of DNA fragmentation (4.7%). Among the morphologic features of the sperm head, abnormal ellipticity, angularity, and large nuclear vacuoles are associated with DNA fragmentation. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment.

    Science.gov (United States)

    Santos, Henrique F; Cury, Juliano C; Carmo, Flavia L; Rosado, Alexandre S; Peixoto, Raquel S

    2010-08-26

    Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. We believe that the microeukaryotic targets indicated by our work will be of great

  8. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment.

    Directory of Open Access Journals (Sweden)

    Henrique F Santos

    Full Text Available BACKGROUND: Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. CONCLUSIONS

  9. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae revealed by COI and 16S DNA sequences.

    Directory of Open Access Journals (Sweden)

    Phaik-Eem Lim

    Full Text Available The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%. Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  10. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    Science.gov (United States)

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  11. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  12. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange.

    Science.gov (United States)

    Wotzka, Sandra Y; Nguyen, Bidong D; Hardt, Wolf-Dietrich

    2017-04-12

    Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mitochondrial DNA Reveals Genetic Structuring of Pinna nobilis across the Mediterranean Sea

    Science.gov (United States)

    Sanna, Daria; Cossu, Piero; Dedola, Gian Luca; Scarpa, Fabio; Maltagliati, Ferruccio; Castelli, Alberto; Franzoi, Piero; Lai, Tiziana; Cristo, Benedetto; Curini-Galletti, Marco; Francalacci, Paolo; Casu, Marco

    2013-01-01

    Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units. PMID:23840684

  15. DNA Barcoding Reveals High Cryptic Diversity of the Freshwater Halfbeak Genus Hemirhamphodon from Sundaland

    Science.gov (United States)

    Zainal Abidin, Muchlisin; Pulungan, Chaidir Parlindungan

    2016-01-01

    DNA barcoding of the cytochrome oxidase subunit I (COI) gene was utilized to assess the species diversity of the freshwater halfbeak genus Hemirhamphodon. A total of 201 individuals from 46 locations in Peninsular Malaysia, north Borneo (Sarawak) and Sumatra were successfully amplified for 616 base pairs of the COI gene revealing 231 variable and 213 parsimony informative sites. COI gene trees showed that most recognized species form monophyletic clades with high bootstrap support. Pairwise within species comparisons exhibited a wide range of intraspecific diversity from 0.0% to 14.8%, suggesting presence of cryptic diversity. This finding was further supported by barcode gap analysis, ABGD and the constructed COI gene trees. In particular, H. pogonognathus from Kelantan (northeast Peninsular Malaysia) diverged from the other H. pogonognathus groups with distances ranging from 7.8 to 11.8%, exceeding the nearest neighbor taxon. High intraspecific diversity was also observed in H. byssus and H. kuekanthali, but of a lower magnitude. This study also provides insights into endemism and phylogeographic structuring, and limited support for the Paleo-drainage divergence hypothesis as a driver of speciation in the genus Hemirhamphodon. PMID:27657915

  16. History of Lipizzan horse maternal lines as revealed by mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Dovč Peter

    2002-09-01

    Full Text Available Abstract Sequencing of the mtDNA control region (385 or 695 bp of 212 Lipizzans from eight studs revealed 37 haplotypes. Distribution of haplotypes among studs was biased, including many private haplotypes but only one haplotype was present in all the studs. According to historical data, numerous Lipizzan maternal lines originating from founder mares of different breeds have been established during the breed's history, so the broad genetic base of the Lipizzan maternal lines was expected. A comparison of Lipizzan sequences with 136 sequences of domestic- and wild-horses from GenBank showed a clustering of Lipizzan haplotypes in the majority of haplotype subgroups present in other domestic horses. We assume that haplotypes identical to haplotypes of early domesticated horses can be found in several Lipizzan maternal lines as well as in other breeds. Therefore, domestic horses could arise either from a single large population or from several populations provided there were strong migrations during the early phase after domestication. A comparison of Lipizzan haplotypes with 56 maternal lines (according to the pedigrees showed a disagreement of biological parentage with pedigree data for at least 11% of the Lipizzans. A distribution of haplotype-frequencies was unequal (0.2%–26%, mainly due to pedigree errors and haplotype sharing among founder mares.

  17. Structure of the hDmc1-ssDNA filament reveals the principles of its architecture.

    Directory of Open Access Journals (Sweden)

    Andrei L Okorokov

    Full Text Available In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1, a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active and compressed (inactive. However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds DNA nucleoprotein filaments, the extended (active state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers

  18. Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions.

    Science.gov (United States)

    Liang, Hongjun; Harries, Daniel; Wong, Gerard C L

    2005-08-09

    Self-assembled DNA delivery systems based on anionic lipids (ALs) complexed with DNA mediated by divalent cations have been recently introduced as an alternative to cationic lipid-DNA complexes because of their low cytotoxicity. We investigate AL-DNA complexes induced by different cations by using synchrotron small angle x-ray scattering and confocal microscopy to show how different ion-mediated interactions are expressed in the self-assembled structures and phase behavior of AL-DNA complexes. The governing interactions in AL-DNA systems are complex: divalent ions can mediate strong attractions between different combinations of the components (such as DNA-DNA and membrane-membrane). Moreover, divalent cations can coordinate non-electrostatically with lipids and modify the resultant membrane structure. We find that at low membrane charge densities AL-DNA complexes organize into a lamellar structure of alternating DNA and membrane layers crosslinked by ions. At high membrane charge densities, a new phase with no analog in cationic lipid-DNA systems is observed: DNA is expelled from the complex, and a lamellar stack of membranes and intercalated ions is formed. For a subset of the ionic species, high ion concentrations generate an inverted hexagonal phase comprised of DNA strands wrapped by ion-coated lipid tubes. A simple theoretical model that takes into account the electrostatic and membrane elastic contributions to the free energy shows that this transition is consistent with an ion-induced change in the membrane spontaneous curvature, c0. Moreover, the crossover between the lamellar and inverted hexagonal phases occurs at a critical c0 that agrees well with experimental values.

  19. Use DNA to learn from the past: how modern and ancient DNA studies may help reveal the past and predict the future distribution of species

    Science.gov (United States)

    Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.

    2015-12-01

    Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.

  20. Ancient DNA from European early neolithic farmers reveals their near eastern affinities.

    Directory of Open Access Journals (Sweden)

    Wolfgang Haak

    Full Text Available In Europe, the Neolithic transition (8,000-4,000 B.C. from hunting and gathering to agricultural communities was one of the most important demographic events since the initial peopling of Europe by anatomically modern humans in the Upper Paleolithic (40,000 B.C.. However, the nature and speed of this transition is a matter of continuing scientific debate in archaeology, anthropology, and human population genetics. To date, inferences about the genetic make up of past populations have mostly been drawn from studies of modern-day Eurasian populations, but increasingly ancient DNA studies offer a direct view of the genetic past. We genetically characterized a population of the earliest farming culture in Central Europe, the Linear Pottery Culture (LBK; 5,500-4,900 calibrated B.C. and used comprehensive phylogeographic and population genetic analyses to locate its origins within the broader Eurasian region, and to trace potential dispersal routes into Europe. We cloned and sequenced the mitochondrial hypervariable segment I and designed two powerful SNP multiplex PCR systems to generate new mitochondrial and Y-chromosomal data from 21 individuals from a complete LBK graveyard at Derenburg Meerenstieg II in Germany. These results considerably extend the available genetic dataset for the LBK (n = 42 and permit the first detailed genetic analysis of the earliest Neolithic culture in Central Europe (5,500-4,900 calibrated B.C.. We characterized the Neolithic mitochondrial DNA sequence diversity and geographical affinities of the early farmers using a large database of extant Western Eurasian populations (n = 23,394 and a wide range of population genetic analyses including shared haplotype analyses, principal component analyses, multidimensional scaling, geographic mapping of genetic distances, and Bayesian Serial Simcoal analyses. The results reveal that the LBK population shared an affinity with the modern-day Near East and Anatolia, supporting

  1. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages

    Directory of Open Access Journals (Sweden)

    I. Domaizon

    2013-06-01

    Full Text Available While picocyanobacteria (PC are important actors in carbon and nutrient cycles in aquatic systems, factors controlling their interannual dynamics and diversity are poorly known due to the general lack of long-term monitoring surveys. This study intended to fill this gap by applying a DNA-based paleolimnological approach to sediment records from a deep subalpine lake that has experienced dramatic changes in environmental conditions during the last century (eutrophication, re-oligotrophication and large-scale climate changes. In particular, we investigated the long-term (100 yr diversity and dynamics of Synechococcus,, PC that have presumably been affected by both the lake trophic status changes and global warming. The lake's morphological and environmental conditions provided the ideal conditions for DNA preservation in the sediment archives. Generalised additive models applied to quantitative PCR (qPCR; quantitative Polymerase Chain Reaction results highlighted that an increase in summer temperature could have a significant positive impact on the relative abundance of Synechococcus, (fraction of Synechococcus, in total cyanobacteria. The diversity of Synechococcus, in Lake Bourget was studied by phylogenetic analyses of the 16S rRNA gene and the following internally transcribed spacer (ITS. Up to 23 different OTUs (based on 16S rRNA, which fell into various cosmopolitan or endemic clusters, were identified in samples from the past 100 yr. Moreover, the study of ITS revealed a higher diversity within the major 16S rRNA-defined OTUs. Changes in PC diversity were related to the lake's trophic status. Overall, qPCR and sequencing results showed that environmental changes (in temperature and phosphorus concentration affected Synechococcus, community dynamics and structure, translating into changes in genotype composition. These results also helped to re-evaluate the geographical distribution of some Synechococcus, clusters. Providing such novel

  2. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  3. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    WU Qiong; STELLY David; SONG Guo-li; WANG Kun-bo; WANG Chun-ying; LIU Fang; LI Shao-hui; ZHANG Xiang-di; WANG Yu-hong; LIU San-hong

    2008-01-01

    @@ Gossypium mustelinum [-(AD)4"] is one of five tetraploid species in Gossypium.Three pairs of nucleolar organizer regions (NOR) in (AD)4 were detected by FISH with 45S rDNA as a probe,they also were observed with genomic DNA (gDNA) from Gossypium D genome species as probes.Of the three NORs or GISH-NORs,one was super-major and other two were minor,which was distinctly different from other tetraploid cottons.

  4. Bending the Rules of Transcriptional Repression: Tightly Looped DNA Directly Represses T7 RNA Polymerase

    OpenAIRE

    Lionberger, Troy A.; Meyhöfer, Edgar

    2010-01-01

    From supercoiled DNA to the tight loops of DNA formed by some gene repressors, DNA in cells is often highly bent. Despite evidence that transcription by RNA polymerase (RNAP) is affected in systems where DNA is deformed significantly, the mechanistic details underlying the relationship between polymerase function and mechanically stressed DNA remain unclear. Seeking to gain additional insight into the regulatory consequences of highly bent DNA, we hypothesize that tightly looping DNA is alone...

  5. Synthesis, DNA binding and cleavage studies of Ni(II) complexes with fused aromatic N-containing ligands

    Science.gov (United States)

    Sudhamani, C. N.; Naik, H. S. Bhojya; Naik, T. R. Ravikumar; Prabhakara, M. C.

    2009-04-01

    The three Ni(II) complexes of fused aromatic N-containing ligands such as [Ni(bnp) 3](PF 6) 2 ( 1), [Ni(phen) 2(bnp)](PF 6) 2 ( 2) and [Ni(bpy) 2(bnp)](PF 6) 2 ( 3) (where bnp = dibenzo(b)1,8-naphthpyridine, phen = 1,10-phenanthroline and bpy = bipyridine) were synthesized and structurally characterized. Elemental analysis, magnetic and spectroscopic data suggested octahedral geometry for all the complexes. Binding of these complexes with (ds)DNA were analyzed by absorption spectra, viscosity and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The oxidative cleavage activities of the complexes were studied with supercoiled (SC)pUC19 DNA by using gel electrophoresis, and the results show that complexes have potent nuclease activity.

  6. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Cyril Buhler

    2007-12-01

    Full Text Available DNA double-strand breaks (DSBs, which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Delta mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (> or = 50 kb "DSB-hot" regions that are separated by "DSB-cold" domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Delta mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA-associated DSBs that accumulate in processing-capable, repair-defective dmc1Delta and dmc1Delta rad51Delta mutants. DSBs were observed at known hot spots, but also in most previously identified "DSB-cold" regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Delta shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Delta, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.

  7. Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA

    Science.gov (United States)

    Ma, Jian-Zhang

    2017-01-01

    Extant Feliformia species are one of the most diverse radiations of Carnivora (~123 species). Despite substantial recent interest in their conservation, diversification, and systematic study, no previous phylogeny contains a comprehensive species set, and no biogeography of this group is available. Here, we present a phylogenetic estimate for Feliformia with a comprehensive species set and establish a historical biogeography based on mitochondrial DNA. Both the Bayesian and maximum likelihood phylogeny for Feliformia are elucidated in our analyses and are strongly consistent with many groups recognized in previous studies. The mitochondrial phylogenetic relationships of Felidae were for the first time successfully reconstructed in our analyses with strong supported. When divergence times and dispersal/vicariance histories were compared with historical sea level changes, four dispersal and six vicariance events were identified. These vicariance events were closely related with global sea level changes. The transgression of sea into the lowland plains between Eurasia and Africa may have caused the vicariance in these regions. A fall in the sea level during late Miocene to Pliocene produced the Bering strait land bridge, which assisted the migration of American Feliformia ancestors from Asia to North America. In contrast with the ‘sweepstakes hypothesis’, our results suggest that the climate cooling during 30–27 Ma assisted Feliformia migration from the African mainland to Madagascar by creating a short-lived ice bridge across the Mozambique Channel. Lineages-through-time plots revealed a large increase in lineages since the Mid-Miocene. During the Mid-Miocene Climatic Optimum, the ecosystems and population of Feliformia rapidly expanded. Subsequent climate cooling catalyzed immigration, speciation, and the extinction of Feliformia. PMID:28358848

  8. Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida.

    Science.gov (United States)

    Williams, Dean A; Overholt, William A; Cuda, James P; Hughes, Colin R

    2005-10-01

    Brazilian peppertree (Schinus terebinthifolius) is a woody perennial that has invaded much of Florida. This native of northeastern Argentina, Paraguay, and Brazil was brought as an ornamental to both the west and east coasts of Florida at the end of the 19th century. It was recorded as an invader of natural areas in the 1950s, and has since extended its range to cover over 280 000 ha. Our goals were to understand the history of this invasion, as one step toward understanding why this exotic was so successful, and ultimately to improve development of biological control agents. We sampled plants from the native and exotic ranges, particularly Florida, and genotyped these individuals at nuclear and chloroplast loci. Nuclear microsatellite and cpDNA loci reveal strong genetic population structure consistent with limited dispersal in the introduced and native ranges. Bayesian clustering of microsatellite data separates the east and west coast plants in Florida into distinct populations. The two chloroplast haplotypes found in Florida are also concordant with this separation: one predominates on the east coast, the other on the west coast. Analysis of samples collected in South America shows that haplotypes as distinct as the two in Florida are unlikely to have come from a single source population. We conclude that the genetic evidence supports two introductions of Brazilian peppertree into Florida and extensive hybridization between them. The west coast genotype likely came from coastal Brazil at about 27 degrees south, whereas the east coast genotype probably originated from another, as yet unidentified site. As a result of hybridization, the Florida population does not exhibit low genetic variation compared to populations in the native range, possibly increasing its ability to adapt to novel environments. Hybridization also has important consequences for the selection of biocontrol agents since it will not be possible to identify closely co-adapted natural enemies in

  9. DNA Sequence Analyses Reveal Abundant Diversity, Endemism and Evidence for Asian Origin of the Porcini Mushrooms

    Science.gov (United States)

    Feng, Bang; Xu, Jianping; Wu, Gang; Zeng, Nian-Kai; Li, Yan-Chun; Tolgor, Bau; Kost, Gerhard W.; Yang, Zhu L.

    2012-01-01

    The wild gourmet mushroom Boletus edulis and its close allies are of significant ecological and economic importance. They are found throughout the Northern Hemisphere, but despite their ubiquity there are still many unresolved issues with regard to the taxonomy, systematics and biogeography of this group of mushrooms. Most phylogenetic studies of Boletus so far have characterized samples from North America and Europe and little information is available on samples from other areas, including the ecologically and geographically diverse regions of China. Here we analyzed DNA sequence variation in three gene markers from samples of these mushrooms from across China and compared our findings with those from other representative regions. Our results revealed fifteen novel phylogenetic species (about one-third of the known species) and a newly identified lineage represented by Boletus sp. HKAS71346 from tropical Asia. The phylogenetic analyses support eastern Asia as the center of diversity for the porcini sensu stricto clade. Within this clade, B. edulis is the only known holarctic species. The majority of the other phylogenetic species are geographically restricted in their distributions. Furthermore, molecular dating and geological evidence suggest that this group of mushrooms originated during the Eocene in eastern Asia, followed by dispersal to and subsequent speciation in other parts of Asia, Europe, and the Americas from the middle Miocene through the early Pliocene. In contrast to the ancient dispersal of porcini in the strict sense in the Northern Hemisphere, the occurrence of B. reticulatus and B. edulis sensu lato in the Southern Hemisphere was probably due to recent human-mediated introductions. PMID:22629418

  10. Changes in DNA topology during spermatogenesis.

    Science.gov (United States)

    Risley, M S; Einheber, S; Bumcrot, D A

    1986-01-01

    DNA topology in histone- and protamine-depleted nuclei (nucleoids) from somatic cells, sperm, and spermatogenic cells was studied to determine if the superhelical configuration of DNA looped domains is altered during spermatogenesis. The expansion and contraction of nucleoid DNA was measured with a fluorescence microscope following exposure of nucleoids to different concentrations of ethidium bromide (EB). Nucleoids from Xenopus laevis erythrocytes, primary spermatocytes, and round spermatids, and from Rana catesbeiana sperm all exhibited a biphasic change (condensed-relaxed-condensed) in size as a function of exposure to increasing concentrations (0.5-100 micrograms/ml) of EB, indicating that they contain negatively supercoiled DNA. In contrast, DNA in sperm nucleoids from Xenopus laevis and Bufo fowleri was relaxed and expanded at low (0.5-6 micrograms/ml) EB concentrations, but became gradually condensed as the EB concentration was increased (6-100 micrograms/ml). Nucleoids prepared from all cell types retained the general shape of the nucleus regardless of the superhelical configuration of the nucleoid DNA. Sperm nucleoid DNA condensed by 100 micrograms/ml EB was relaxed by exposure to UV light, DNase I, proteinase K, or 4 M urea, but not by RNase A or 10 mM dithiothreitol. These results demonstrate that the DNA in sperm nucleoids is constrained in domains of supercoiling by nonbasic nuclear proteins. Negatively supercoiled DNA is present in nucleoids from cells with a full complement of histones, including Rana sperm, but not in nucleoids from Xenopus and Bufo sperm in which histones are replaced by "intermediate-type" protamines. Histone replacement in these species, therefore, is accompanied by unfolding of nucleosomal DNA and active removal of the negative supercoils. Results presented also suggest an important role for the nonbasic nuclear proteins of sperm in the morphogenesis of the nucleus and the arrangement of DNA.

  11. Patchiness of ion-exchanged mica revealed by DNA binding dynamics at short length scales

    Science.gov (United States)

    Billingsley, D. J.; Lee, A. J.; Johansson, N. A. B.; Walton, A.; Stanger, L.; Crampton, N.; Bonass, W. A.; Thomson, N. H.

    2014-01-01

    The binding of double-stranded (ds) DNA to mica can be controlled through ion-exchanging the mica with divalent cations. Measurements of the end-to-end distance of linear DNA molecules discriminate whether the binding mechanism occurs through 2D surface equilibration or kinetic trapping. A range of linear dsDNA fragments have been used to investigate length dependences of binding. Mica, ion-exchanged with Ni(II) usually gives rise to kinetically trapped DNA molecules, however, short linear fragments (ion-exchanged mica is heterogeneous, and contains patches or domains, separating different ionic species. These results correlate with imaging of dsDNA under aqueous buffer on Ni(II)-mica and indicate that binding domains are of the order of 100 nm in diameter. Shorter DNA fragments behave intermediate to the two extreme cases of 2D equilibration and kinetic trapping. Increasing the incubation time of Ni(II) on mica, from minutes to hours, brings the conformations of the shorter DNA fragments closer to the theoretical value for kinetic trapping, indicating that long timescale kinetics play a role in ion-exchange. X-ray photoelectron spectroscopy (XPS) was used to confirm that the relative abundance of Ni(II) ions on the mica surface increases with time. These findings can be used to enhance spatial control of binding of DNA to inorganic surfaces with a view to patterning high densities arrays.

  12. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to

  13. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links

    DEFF Research Database (Denmark)

    Räschle, Markus; Smeenk, Godelieve; Hansen, Rebecca K

    2015-01-01

    a technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we...

  14. DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks.

    Science.gov (United States)

    van Overbeek, Megan; Capurso, Daniel; Carter, Matthew M; Thompson, Matthew S; Frias, Elizabeth; Russ, Carsten; Reece-Hoyes, John S; Nye, Christopher; Gradia, Scott; Vidal, Bastien; Zheng, Jiashun; Hoffman, Gregory R; Fuller, Christopher K; May, Andrew P

    2016-08-18

    The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.

  15. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    Science.gov (United States)

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  16. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to synthesiz

  17. Conformational dynamics of abasic DNA upon interactions with AP endonuclease 1 revealed by stopped-flow fluorescence analysis.

    Science.gov (United States)

    Kanazhevskaya, Lyubov Yu; Koval, Vladimir V; Vorobjev, Yury N; Fedorova, Olga S

    2012-02-14

    Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.

  18. DNA heats up : Energetics of genome ejection from phage revealed by isothermal titration calorimetry

    CERN Document Server

    Jeembaeva, Meerim; Castelnovo, Martin; Evilevitch, Alex

    2010-01-01

    Most bacteriophages are known to inject their double-stranded DNA into bacteria upon receptor binding in an essentially spontaneous way. This downhill thermodynamic process from the intact virion toward the empty viral capsid plus released DNA is made possible by the energy stored during active packaging of the genome into the capsid. Only indirect measurements of this energy have been available until now using either single-molecule or osmotic suppression techniques. In this paper, we describe for the first time the use of isothermal titration calorimetry to directly measure the heat released (or equivalently the enthalpy) during DNA ejection from phage lambda, triggered in solution by a solubilized receptor. Quantitative analyses of the results lead to the identification of thermodynamic determinants associated with DNA ejection. The values obtained were found to be consistent with those previously predicted by analytical models and numerical simulations. Moreover, the results confirm the role of DNA hydrat...

  19. In vivo mutagenesis reveals that OriL is essential for mitochondrial DNA replication

    Science.gov (United States)

    Wanrooij, Sjoerd; Miralles Fusté, Javier; Stewart, James B; Wanrooij, Paulina H; Samuelsson, Tore; Larsson, Nils-Göran; Gustafsson, Claes M; Falkenberg, Maria

    2012-01-01

    The mechanisms of mitochondrial DNA replication have been hotly debated for a decade. The strand-displacement model states that lagging-strand DNA synthesis is initiated from the origin of light-strand DNA replication (OriL), whereas the strand-coupled model implies that OriL is dispensable. Mammalian mitochondria cannot be transfected and the requirements of OriL in vivo have therefore not been addressed. We here use in vivo saturation mutagenesis to demonstrate that OriL is essential for mtDNA maintenance in the mouse. Biochemical and bioinformatic analyses show that OriL is functionally conserved in vertebrates. Our findings strongly support the strand-displacement model for mtDNA replication. PMID:23090476

  20. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Casaregola, S.; Ussery, David;

    2003-01-01

    mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S. servazzii contain, in total, five + 1 frameshifts. mtDNAs of S. castellii, S. servazzii and S. cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order......The complete sequences of mitochondrial DNA ( mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among...... Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S. cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S. cerevisiae...

  1. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy.

    Directory of Open Access Journals (Sweden)

    Jean-Bernard Fiche

    Full Text Available ATP-fuelled molecular motors are responsible for rapid and specific transfer of double-stranded DNA during several fundamental processes, such as cell division, sporulation, bacterial conjugation, and viral DNA transport. A dramatic example of intercompartmental DNA transfer occurs during sporulation in Bacillus subtilis, in which two-thirds of a chromosome is transported across a division septum by the SpoIIIE ATPase. Here, we use photo-activated localization microscopy, structured illumination microscopy, and fluorescence fluctuation microscopy to investigate the mechanism of recruitment and assembly of the SpoIIIE pump and the molecular architecture of the DNA translocation complex. We find that SpoIIIE assembles into ∼45 nm complexes that are recruited to nascent sites of septation, and are subsequently escorted by the constriction machinery to the center of sporulation and division septa. SpoIIIE complexes contain 47±20 SpoIIIE molecules, a majority of which are assembled into hexamers. Finally, we show that directional DNA translocation leads to the establishment of a compartment-specific, asymmetric complex that exports DNA. Our data are inconsistent with the notion that SpoIIIE forms paired DNA conducting channels across fused membranes. Rather, our results support a model in which DNA translocation occurs through an aqueous DNA-conducting pore that could be structurally maintained by the divisional machinery, with SpoIIIE acting as a checkpoint preventing membrane fusion until completion of chromosome segregation. Our findings and proposed mechanism, and our unique combination of innovating methodologies, are relevant to the understanding of bacterial cell division, and may illuminate the mechanisms of other complex machineries involved in DNA conjugation and protein transport across membranes.

  2. Recruitment, assembly, and molecular architecture of the SpoIIIE DNA pump revealed by superresolution microscopy.

    Science.gov (United States)

    Fiche, Jean-Bernard; Cattoni, Diego I; Diekmann, Nele; Langerak, Julio Mateos; Clerte, Caroline; Royer, Catherine A; Margeat, Emmanuel; Doan, Thierry; Nöllmann, Marcelo

    2013-01-01

    ATP-fuelled molecular motors are responsible for rapid and specific transfer of double-stranded DNA during several fundamental processes, such as cell division, sporulation, bacterial conjugation, and viral DNA transport. A dramatic example of intercompartmental DNA transfer occurs during sporulation in Bacillus subtilis, in which two-thirds of a chromosome is transported across a division septum by the SpoIIIE ATPase. Here, we use photo-activated localization microscopy, structured illumination microscopy, and fluorescence fluctuation microscopy to investigate the mechanism of recruitment and assembly of the SpoIIIE pump and the molecular architecture of the DNA translocation complex. We find that SpoIIIE assembles into ∼45 nm complexes that are recruited to nascent sites of septation, and are subsequently escorted by the constriction machinery to the center of sporulation and division septa. SpoIIIE complexes contain 47±20 SpoIIIE molecules, a majority of which are assembled into hexamers. Finally, we show that directional DNA translocation leads to the establishment of a compartment-specific, asymmetric complex that exports DNA. Our data are inconsistent with the notion that SpoIIIE forms paired DNA conducting channels across fused membranes. Rather, our results support a model in which DNA translocation occurs through an aqueous DNA-conducting pore that could be structurally maintained by the divisional machinery, with SpoIIIE acting as a checkpoint preventing membrane fusion until completion of chromosome segregation. Our findings and proposed mechanism, and our unique combination of innovating methodologies, are relevant to the understanding of bacterial cell division, and may illuminate the mechanisms of other complex machineries involved in DNA conjugation and protein transport across membranes.

  3. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains.

    Directory of Open Access Journals (Sweden)

    Sylvain V Costes

    2007-08-01

    Full Text Available Several proteins involved in the response to DNA double strand breaks (DSB form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by "relative DNA image measurements." This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage-induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair.

  4. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

    Science.gov (United States)

    Skowronski, Karolina; Skowronki, Karolina; Andrews, Joseph; Rodenhiser, David I; Coomber, Brenda L

    2014-01-01

    DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.

  5. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake

    Science.gov (United States)

    Coolen, Marco J. L.; Muyzer, Gerard; Rijpstra, W. Irene C.; Schouten, Stefan; Volkman, John K.; Sinninghe Damsté, Jaap S.

    2004-06-01

    Preserved ribosomal DNA of planktonic phototrophic algae was recovered from Holocene anoxic sediments of Ace Lake (Antarctica), and the ancient community members were identified based on comparative sequence analysis. The similar concentration profiles of DNA of haptophytes and their traditional lipid biomarkers (alkenones and alkenoates) revealed that fossil rDNA also served as quantitative biomarkers in this environment. The DNA data clearly revealed the presence of six novel phylotypes related to known alkenone and alkenoate-biosynthesizing haptophytes with Isochrysis galbana UIO 102 as their closest relative. The relative abundance of these phylotypes changed as the lake chemistry, particularly salinity, evolved over time. Changes in the alkenone distributions reflect these population changes rather than a physiological response to salinity by a single haptophyte. Using this novel paleo-ecological approach of combining data from lipid biomarkers and preserved DNA, we showed that the post-glacial development of Ace Lake from freshwater basin to marine inlet and the present-day lacustrine saline system caused major qualitative and quantitative changes in the biodiversity of the planktonic populations over time.

  6. Population structure of North American beluga whales (Delphinapterus leucas) based on nuclear DNA microsatellite variation and contrasted with the population structure revealed by mitochondrial DNA variation

    Science.gov (United States)

    Gladden; Ferguson; Friesen; Clayton

    1999-03-01

    Beluga whales (Delphinapterus leucas) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples (n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.

  7. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism.

    Science.gov (United States)

    Umezu, K; Sugawara, N; Chen, C; Haber, J E; Kolodner, R D

    1998-03-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 10(4) to 10(5) times increased sensitivity to these agents. Some of the UV- and MMS-sensitive mutants were killed by an HO-induced double-strand break at MAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages.

  8. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome.

    Science.gov (United States)

    Wallen, Jamie R; Zhang, Hao; Weis, Caroline; Cui, Weidong; Foster, Brittni M; Ho, Chris M W; Hammel, Michal; Tainer, John A; Gross, Michael L; Ellenberger, Tom

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  10. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers

    Science.gov (United States)

    Kosaka, Priscila M.; González, Sheila; Domínguez, Carmen M.; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-07-01

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.

  11. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    Energy Technology Data Exchange (ETDEWEB)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.; Barcellos-Hoff, Mary Helen

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulations topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.

  12. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage.

    Science.gov (United States)

    Comeaux, Evan Q; Cuya, Selma M; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C; Mobley, James A; Bjornsti, Mary-Ann; van Waardenburg, Robert C A M

    2015-03-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.

  13. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  14. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  15. Relationship of histone acetylation to DNA topology and transcription.

    Science.gov (United States)

    Krajewski, W A; Luchnik, A N

    1991-12-01

    An autonomously replicating plasmid constructed from bovine papiloma virus (BPV) and pBR322 was stably maintained as a nuclear episome in a mouse cell culture. Addition to a cell culture of sodium butyrate (5 mM) induced an increase in plasmid DNA supercoiling of 3-5 turns, an increase in acetylation of cellular histones, and a decrease in plasmid transcription by 2- to 4-fold. After withdrawal of butyrate, DNA supercoiling began to fluctuate in a wave-like manner with an amplitude of up to 3 turns and a period of 3-4 h. These waves gradually faded by 24 h. The transcription of the plasmid and acetylation of cellular histones also oscillated with the same period. The wave-like alterations were not correlated with the cell cycle, for there was no resumption of DNA replication after butyrate withdrawal for at least 24 h. In vitro chemical acetylation of histones with acetyl adenylate also led to an increase in the superhelical density of plasmid DNA. The parallel changes in transcription, histone acetylation, and DNA supercoiling in vivo may indicate a functional innerconnection. Also, the observed in vivo variation in the level of DNA supercoiling directly indicates the possibility of its natural regulation in eukaryotic cells.

  16. Direct measurements reveal non-Markovian fluctuations of DNA threading through a solid-state nanopore

    CERN Document Server

    Bell, Nicholas A W

    2016-01-01

    The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate measurement of the velocity variation during translocation, have remained elusive. In this work we analysed the translocation through conical quartz nanopores of a 7 kbp DNA double-strand labelled with six markers equally spaced along its contour. These markers, constructed from DNA hairpins, give direct experimental access to the translocation dynamics. On average we measure a 5% reduction in velocity during the translocation. We also find a striking correlation in velocity fluctuations with a decay constant of 100s of {\\mu}s. These results shed light on hitherto unresolved problems in the dynamics of DNA translocation and provide guidance for experiments seeking to determine positional information along a DNA strand.

  17. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection

    Science.gov (United States)

    Harada, Kazuo; Orgel, Leslie E.

    1993-01-01

    We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.

  18. Uniqueness of the Gossypium mustelinum Genome Revealed by GISH and 45S rDNA FISH

    Institute of Scientific and Technical Information of China (English)

    Qiong Wu; Fang Liu; Shaohui Li; Guoli Song; Chunying Wang; Xiangdi Zhang; Yuhong Wang

    2013-01-01

    Gossypium mustelinum ((AD)4) is one of five disomic species in Gossypium.Three 45S ribosomal DNA (rDNA) loci were detected in (AD)4 with 45S rDNA as probe,and three pairs of brighter signals were detected with genomic DNA (gDNA) of Gossypium D genome species as probes.The size and the location of these brighter signals were the same as those detected with 45S rDNA as probe,and were named GISH-NOR.One of them was super-major,which accounted for the fact that about one-half of its chromosome at metaphase was located at chromosome 3,and other two were minor and located at chromosomes 5 and 9,respectively.All GISH-NORs were located in A sub-genome chromosomes,separate from the other four allopolypioid cotton species.GISH-NOR were detected with D genome species as probe,but not A.The greatly abnormal sizes and sites of (AD)4 NORs or GISH-NORs indicate a possible mechanism for 45S rDNA diversification following (AD)4 speciation.Comparisons of GISH intensities and GISH-NOR production with gDNA probes between A and D genomes show that the better relationship of (AD)4 is with A genome.The shortest two chromosomes of A sub-genome of G.mustelinum were shorter than the longest chromosome of D sub-genome chromosomes.Therefore,the longest 13 chromosomes of tetraploid cotton being classified as A sub-genome,while the shorter 13 chromosomes being classified as D sub-genome in traditional cytogenetic and karyotype analyses may not be entirely correct.

  19. DNA exit ramps are revealed in the binding landscapes obtained from simulations in helical coordinates.

    Directory of Open Access Journals (Sweden)

    Ignacia Echeverria

    2015-02-01

    Full Text Available DNA molecules are highly charged semi-flexible polymers that are involved in a wide variety of dynamical processes such as transcription and replication. Characterizing the binding landscapes around DNA molecules is essential to understanding the energetics and kinetics of various biological processes. We present a curvilinear coordinate system that fully takes into account the helical symmetry of a DNA segment. The latter naturally allows to characterize the spatial organization and motions of ligands tracking the minor or major grooves, in a motion reminiscent of sliding. Using this approach, we performed umbrella sampling (US molecular dynamics (MD simulations to calculate the three-dimensional potentials of mean force (3D-PMFs for a Na+ cation and for methyl guanidinium, an arginine analog. The computed PMFs show that, even for small ligands, the free energy landscapes are complex. In general, energy barriers of up to ~5 kcal/mol were measured for removing the ligands from the minor groove, and of ~1.5 kcal/mol for sliding along the minor groove. We shed light on the way the minor groove geometry, defined mainly by the DNA sequence, shapes the binding landscape around DNA, providing heterogeneous environments for recognition by various ligands. For example, we identified the presence of dissociation points or "exit ramps" that naturally would terminate sliding. We discuss how our findings have important implications for understanding how proteins and ligands associate and slide along DNA.

  20. DNA exit ramps are revealed in the binding landscapes obtained from simulations in helical coordinates.

    Science.gov (United States)

    Echeverria, Ignacia; Papoian, Garegin A

    2015-02-01

    DNA molecules are highly charged semi-flexible polymers that are involved in a wide variety of dynamical processes such as transcription and replication. Characterizing the binding landscapes around DNA molecules is essential to understanding the energetics and kinetics of various biological processes. We present a curvilinear coordinate system that fully takes into account the helical symmetry of a DNA segment. The latter naturally allows to characterize the spatial organization and motions of ligands tracking the minor or major grooves, in a motion reminiscent of sliding. Using this approach, we performed umbrella sampling (US) molecular dynamics (MD) simulations to calculate the three-dimensional potentials of mean force (3D-PMFs) for a Na+ cation and for methyl guanidinium, an arginine analog. The computed PMFs show that, even for small ligands, the free energy landscapes are complex. In general, energy barriers of up to ~5 kcal/mol were measured for removing the ligands from the minor groove, and of ~1.5 kcal/mol for sliding along the minor groove. We shed light on the way the minor groove geometry, defined mainly by the DNA sequence, shapes the binding landscape around DNA, providing heterogeneous environments for recognition by various ligands. For example, we identified the presence of dissociation points or "exit ramps" that naturally would terminate sliding. We discuss how our findings have important implications for understanding how proteins and ligands associate and slide along DNA.

  1. Structures of minimal catalytic fragments of topoisomerase V reveals conformational changes relevant for DNA binding.

    Science.gov (United States)

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    2010-07-14

    Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix-hairpin-helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and show how topoisomerase V may interact with DNA.

  2. Structure-function studies of DNA binding domain of response regulator KdpE reveals equal affinity interactions at DNA half-sites.

    Directory of Open Access Journals (Sweden)

    Anoop Narayanan

    Full Text Available Expression of KdpFABC, a K(+ pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS via the winged helix-turn-helix type DNA binding domain (KdpE(DBD. Exploration of E. coli KdpE(DBD and kdpFABC(BS interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.

  3. The role of the Zn(II binding domain in the mechanism of E. coli DNA topoisomerase I

    Directory of Open Access Journals (Sweden)

    Tse-Dinh Yuk-Ching

    2002-05-01

    Full Text Available Abstract Background Escherichia coli DNA topoisomerase I binds three Zn(II with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain. The 67 kDa N-terminal domain (Top67 has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. Results Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. Conclusions We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.

  4. High-Resolution Profiling of Drosophila Replication Start Sites Reveals a DNA Shape and Chromatin Signature of Metazoan Origins

    Directory of Open Access Journals (Sweden)

    Federico Comoglio

    2015-05-01

    Full Text Available At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  5. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.

    Science.gov (United States)

    Comoglio, Federico; Schlumpf, Tommy; Schmid, Virginia; Rohs, Remo; Beisel, Christian; Paro, Renato

    2015-05-05

    At every cell cycle, faithful inheritance of metazoan genomes requires the concerted activation of thousands of DNA replication origins. However, the genetic and chromatin features defining metazoan replication start sites remain largely unknown. Here, we delineate the origin repertoire of the Drosophila genome at high resolution. We address the role of origin-proximal G-quadruplexes and suggest that they transiently stall replication forks in vivo. We dissect the chromatin configuration of replication origins and identify a rich spatial organization of chromatin features at initiation sites. DNA shape and chromatin configurations, not strict sequence motifs, mark and predict origins in higher eukaryotes. We further examine the link between transcription and origin firing and reveal that modulation of origin activity across cell types is intimately linked to cell-type-specific transcriptional programs. Our study unravels conserved origin features and provides unique insights into the relationship among DNA topology, chromatin, transcription, and replication initiation across metazoa.

  6. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations

    Science.gov (United States)

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the “closure” of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and—more importantly—call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications. PMID:27800559

  7. DNA sequence and structure properties analysis reveals similarities and differences to promoters of stress responsive genes in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Pan; Zhou, Yanhong; Zhang, Libin; Ma, Chuang

    2015-01-01

    Understanding regulatory mechanisms of stress response in plants has important biological and agricultural significances. In this study, we firstly compiled a set of genes responsive to different stresses in Arabidopsis thaliana and then comparatively analysed their promoters at both the DNA sequence and three-dimensional structure levels. Amazingly, the comparison revealed that the profiles of several sequence and structure properties vary distinctly in different regions of promoters. Moreover, the content of nucleotide T and the profile of B-DNA twist are distinct in promoters from different stress groups, suggesting Arabidopsis genes might exploit different regulatory mechanisms in response to various stresses. Finally, we evaluated the performance of two representative promoter predictors including EP3 and PromPred. The evaluation results revealed their strengths and weakness for identifying stress-related promoters, providing valuable guidelines to accelerate the discovery of novel stress-related promoters and genes in plants.

  8. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe.

    Science.gov (United States)

    Dinca, Vlad; Zakharov, Evgeny V; Hebert, Paul D N; Vila, Roger

    2011-02-07

    DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development.

  9. The origin of Chinese domestic horses revealed with novel mtDNA variants.

    Science.gov (United States)

    Yang, Yunzhou; Zhu, Qiyun; Liu, Shuqin; Zhao, Chunjiang; Wu, Changxin

    2017-01-01

    The origin of domestic horses in China was a controversial issue and several hypotheses including autochthonous domestication, introduction from other areas, and multiple-origins from both introduction and local wild horse introgression have been proposed, but none of them have been fully supported by DNA data. In the present study, mitochondrial DNA (mtDNA) sequences of 714 Chinese indigenous horses were analyzed. The results showed that Chinese domestic horses harbor some novel mtDNA haplogroups and suggested that local domestication events may have occurred, but they are not the dominant haplogroups and the geographical distributions of the novel mtDNA haplogroups were rather restricted. Conclusively, our results support the hypothesis that the domestic horses in China originated from both the introduced horses from outside of China and the local wild horses' introgression into the domestic populations. Results of genetic diversity analysis suggested a possibility that the introduced horses entered China through northern regions from the Eurasian steppe. © 2016 Japanese Society of Animal Science.

  10. Kinetic Modeling Reveals the Roles of Reactive Oxygen Species Scavenging and DNA Repair Processes in Shaping the Dose-Response Curve of KBrO₃-Induced DNA Damage.

    Science.gov (United States)

    Spassova, Maria A; Miller, David J; Nikolov, Alexander S

    2015-01-01

    We have developed a kinetic model to investigate how DNA repair processes and scavengers of reactive oxygen species (ROS) can affect the dose-response shape of prooxidant induced DNA damage. We used as an example chemical KBrO3 which is activated by glutathione and forms reactive intermediates that directly interact with DNA to form 8-hydroxy-2-deoxyguanosine DNA adducts (8-OH-dG). The single strand breaks (SSB) that can result from failed base excision repair of these adducts were considered as an effect downstream from 8-OH-dG. We previously demonstrated that, in the presence of effective base excision repair, 8-OH-dG can exhibit threshold-like dose-response dependence, while the downstream SSB can still exhibit a linear dose-response. Here we demonstrate that this result holds for a variety of conditions, including low levels of GSH, the presence of additional SSB repair mechanisms, or a scavenger. It has been shown that melatonin, a terminal scavenger, inhibits KBrO3-caused oxidative damage. Our modeling revealed that sustained exposure to KBrO3 can lead to fast scavenger exhaustion, in which case the dose-response shapes for both endpoints are not substantially affected. The results are important to consider when forming conclusions on a chemical's toxicity dose dependence based on the dose-response of early genotoxic events.

  11. Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance.

    Science.gov (United States)

    Sathitruangsak, Chirawadee; Righolt, Christiaan H; Klewes, Ludger; Tammur, Pille; Ilus, Tiiu; Tamm, Anu; Punab, Mari; Olujohungbe, Adebayo; Mai, Sabine

    2015-05-01

    The mammalian nucleus has a distinct substructure that cannot be visualized directly by conventional microscopy. In this study, the organization of the DNA within the nucleus of multiple myeloma (MM) cells, their precursor cells (monoclonal gammopathy of undetermined significance; MGUS) and control lymphocytes of the representative patients is visualized and quantified by superresolution microscopy. Three-dimensional structured illumination microscopy (3D-SIM) increases the spatial resolution beyond the limits of conventional widefield fluorescence microscopy. 3D-SIM reveals new insights into the nuclear architecture of cancer as we show for the first time that it resolves organizational differences in intranuclear DNA organization of myeloma cells in MGUS and in MM patients. In addition, we report a significant increase in nuclear submicron DNA structure and structure of the DNA-free space in myeloma nuclei compared to normal lymphocyte nuclei. Our study provides previously unknown details of the nanoscopic DNA architecture of interphase nuclei of the normal lymphocytes, MGUS and MM cells. This study opens new avenues to understanding the disease progression from MGUS to MM. © 2014 Wiley Periodicals, Inc.

  12. Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize.

    Science.gov (United States)

    Vera, Daniel L; Madzima, Thelma F; Labonne, Jonathan D; Alam, Mohammad P; Hoffman, Gregg G; Girimurugan, S B; Zhang, Jinfeng; McGinnis, Karen M; Dennis, Jonathan H; Bass, Hank W

    2014-10-01

    The eukaryotic genome is organized into nucleosomes, the fundamental units of chromatin. The positions of nucleosomes on DNA regulate protein-DNA interactions and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in gene expression relate to changes in nucleosome position is poorly understood. We show that in nucleosome occupancy mapping experiments in maize (Zea mays), particular genomic regions are highly susceptible to variation introduced by differences in the extent to which chromatin is digested with micrococcal nuclease (MNase). We exploited this digestion-linked variation to identify protein footprints that are hypersensitive to MNase digestion, an approach we term differential nuclease sensitivity profiling (DNS-chip). Hypersensitive footprints were enriched at the 5' and 3' ends of genes, associated with gene expression levels, and significantly overlapped with conserved noncoding sequences and the binding sites of the transcription factor KNOTTED1. We also found that the tissue-specific regulation of gene expression was linked to tissue-specific hypersensitive footprints. These results reveal biochemical features of nucleosome organization that correlate with gene expression levels and colocalize with functional DNA elements. This approach to chromatin profiling should be broadly applicable to other species and should shed light on the relationships among chromatin organization, protein-DNA interactions, and genome regulation.

  13. Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding

    Directory of Open Access Journals (Sweden)

    Brewster Aaron S

    2010-08-01

    Full Text Available Abstract Background The mini-chromosome maintenance protein (MCM complex is an essential replicative helicase for DNA replication in Archaea and Eukaryotes. While the eukaryotic complex consists of six homologous proteins (MCM2-7, the archaeon Sulfolobus solfataricus has only one MCM protein (ssoMCM, six subunits of which form a homohexamer. We have recently reported a 4.35Å crystal structure of the near full-length ssoMCM. The structure reveals a total of four β-hairpins per subunit, three of which are located within the main channel or side channels of the ssoMCM hexamer model generated based on the symmetry of the N-terminal Methanothermobacter thermautotrophicus (mtMCM structure. The fourth β-hairpin, however, is located on the exterior of the hexamer, near the exit of the putative side channels and next to the ATP binding pocket. Results In order to better understand this hairpin's role in DNA binding and helicase activity, we performed a detailed mutational and biochemical analysis of nine residues on this exterior β-hairpin (EXT-hp. We examined the activities of the mutants related to their helicase function, including hexamerization, ATPase, DNA binding and helicase activities. The assays showed that some of the residues on this EXT-hp play a role for DNA binding as well as for helicase activity. Conclusions These results implicate several current theories regarding helicase activity by this critical hexameric enzyme. As the data suggest that EXT-hp is involved in DNA binding, the results reported here imply that the EXT-hp located near the exterior exit of the side channels may play a role in contacting DNA substrate in a manner that affects DNA unwinding.

  14. Ancient DNA Analyses Reveal Contrasting Phylogeographic Patterns amongst Kiwi (Apteryx spp.) and a Recently Extinct Lineage of Spotted Kiwi

    OpenAIRE

    Shepherd, Lara D; Worthy, Trevor H.; Tennyson, Alan J. D.; R Paul Scofield; Ramstad, Kristina M.; Lambert, David M.

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of littl...

  15. Physics Based Investigations of DNA Supercoiling and of Plasmonic Nanoparticles for Photothermal Cancer Therapy

    DEFF Research Database (Denmark)

    Nørregaard, Kamilla

    Hyperthermia has great potential as a cancer therapy as it weakens or causes irreversible damage to cancer cells. However, available heat sources are poor in discriminating between healthy and cancerous tissue. In this thesis work, the application of plasmonic nanoparticles as photo-induced stron...... an ecient and robust process. This part of the thesis project is described in three published papers that are included in this dissertation.......Hyperthermia has great potential as a cancer therapy as it weakens or causes irreversible damage to cancer cells. However, available heat sources are poor in discriminating between healthy and cancerous tissue. In this thesis work, the application of plasmonic nanoparticles as photo-induced strong...... remains an open question. Using positron emission tomography/computed tomography (PET/CT) imaging as a treatment evaluation tool it was found that NIR irradiated resonant silica-gold nanoshells had a higher therapeutic ecacy than non-resonant colloidal gold nanoparticles, when delivered directly...

  16. Physics Based Investigations of DNA Supercoiling and of Plasmonic Nanoparticles for Photothermal Cancer Therapy

    DEFF Research Database (Denmark)

    Nørregaard, Kamilla

    Hyperthermia has great potential as a cancer therapy as it weakens or causes irreversible damage to cancer cells. However, available heat sources are poor in discriminating between healthy and cancerous tissue. In this thesis work, the application of plasmonic nanoparticles as photo-induced strong......, localized thermal transducers was investigated for cancer therapy. Gold nanoparticles exhibit surface plasmon resonance that greatly enhances their photoabsorption properties. When irradiated with resonant light, they eciently absorb the light and convert it into extremely local and well-controlled heating...... with temperature increases that easily exceed 100. Due to these unique optical properties and their biocompatibility, gold nanoparticles are promising candidates for selective photothermal cancer therapy. Light with wavelengths in the near-infrared (NIR) region has low absorption and high penetration through...

  17. Timing of human protein evolution as revealed by massively parallel capture of Neandertal nuclear DNA sequences

    Science.gov (United States)

    Burbano, Hernán A.; Hodges, Emily; Green, Richard E.; Briggs, Adrian W.; Krause, Johannes; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Johnson, Philipp L.F.; Xuan, Zhenyu; Rooks, Michelle; Bhattacharjee, Arindam; Brizuela, Leonardo; Albert, Frank W.; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Lachmann, Michael; Hannon, Gregory J.; Pääbo, Svante

    2010-01-01

    Whole genome shotgun sequencing is now possible for extinct organisms, as well as the targeted capture of specific regions. However, targeted resequencing of megabase sized parts of nuclear genomes has yet to be demonstrated for ancient DNA. Here we show that hybridization capture on microarrays can be used to generate large scale targeted data from Neandertal DNA even in the presence of ~99.8% microbial DNA. It is thus now possible to generate high quality data from large regions of the nuclear genome from Neandertals and other extinct organisms. Using this approach we have sequenced ~14,000 protein coding positions that have been inferred to have changed on the human lineage since the last common ancestor shared with chimpanzees. We identify 88 amino acid substitutions that have become fixed in all humans since the divergence from the Neandertals. PMID:20448179

  18. Archaeology. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago.

    Science.gov (United States)

    Smith, Oliver; Momber, Garry; Bates, Richard; Garwood, Paul; Fitch, Simon; Pallen, Mark; Gaffney, Vincent; Allaby, Robin G

    2015-02-27

    The Mesolithic-to-Neolithic transition marked the time when a hunter-gatherer economy gave way to agriculture, coinciding with rising sea levels. Bouldnor Cliff, is a submarine archaeological site off the Isle of Wight in the United Kingdom that has a well-preserved Mesolithic paleosol dated to 8000 years before the present. We analyzed a core obtained from sealed sediments, combining evidence from microgeomorphology and microfossils with sedimentary ancient DNA (sedaDNA) analyses to reconstruct floral and faunal changes during the occupation of this site, before it was submerged. In agreement with palynological analyses, the sedaDNA sequences suggest a mixed habitat of oak forest and herbaceous plants. However, they also provide evidence of wheat 2000 years earlier than mainland Britain and 400 years earlier than proximate European sites. These results suggest that sophisticated social networks linked the Neolithic front in southern Europe to the Mesolithic peoples of northern Europe.

  19. Synthesis, DNA-binding and photocleavage studies of ruthenium(Ⅱ) complexes [Ru(btz)3]2+ and [Ru(btz)(dppz)2]2+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new ruthenium(Ⅱ) complexes, [Ru(btz)3](ClO4)2 (1) and [Ru(btz)(dppz)2](ClO4)2 (2) (btz = 4,4′-bithi-azole, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), have been synthesized and characterized by elemental analysis, 1H NMR, ES-MS and X-ray crystallography. The DNA binding behaviors of two complexes have been studied by spectroscopic and viscosity measurements. The results suggest that complex 1 binds to CT-DNA via an electrostatic mode, while complex 2 via an intercalative mode. Under irradiation at 365 nm, both complexes were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form Ⅰ to nicked form Ⅱ. The mechanism studies reveal that singlet oxygen 1O2 and hydroxyl radical (OH-) play a significant role in the photocleavage process.

  20. Force measurements reveal how small binders perturb the dissociation mechanisms of DNA duplex sequences

    Science.gov (United States)

    Burmistrova, Anastasia; Fresch, Barbara; Sluysmans, Damien; de Pauw, Edwin; Remacle, Françoise; Duwez, Anne-Sophie

    2016-06-01

    The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect on the rupture forces. Around the critical threshold, we observe a drop of the most probable rupture forces for ligand-stabilized duplexes. Our results offer a deep understanding of how a stable DNA-ligand complex behaves under force-driven strand separation.The force-driven separation of double-stranded DNA is crucial to the accomplishment of cellular processes like genome transactions. Ligands binding to short DNA sequences can have a local stabilizing or destabilizing effect and thus severely affect these processes. Although the design of ligands that bind to specific sequences is a field of intense research with promising biomedical applications, so far, their effect on the force-induced strand separation has remained elusive. Here, by means of AFM-based single molecule force spectroscopy, we show the co-existence of two different mechanisms for the separation of a short DNA duplex and demonstrate how they are perturbed by small binders. With the support of Molecular Dynamics simulations, we evidence that above a critical pulling rate one of the dissociation pathways becomes dominant, with a dramatic effect

  1. Meta-Analysis of mitochondrial DNA reveals several population bottlenecks during worldwide migrations of cattle

    NARCIS (Netherlands)

    Lenstra, Johannes A.; Ajmone-Marsan, Paolo; Beja-Pereira, Albano; Bollongino, Ruth; Bradley, Daniel G.; Colli, Licia; De Gaetano, Anna; Edwards, Ceiridwen J.; Felius, Marleen; Ferretti, Luca; Ginja, Catarina; Hristov, Peter; Kantanen, Juha; Lirón, Juan Pedro; Magee, David A.; Negrini, Riccardo; Radoslavov, Georgi A.

    2014-01-01

    Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle ha

  2. Genomic and polyploid evolution in genus Avena as revealed by RFLPs of repeated DNA sequences.

    Science.gov (United States)

    Morikawa, Toshinobu; Nishihara, Miho

    2009-06-01

    Phylogenetic relationships and genome affinities were investigated by utilizing all the biological Avena species consisting of 11 diploid species (15 accessions), 8 tetraploid species (9 accessions) and 4 hexaploid species (5 accessions). Genomic DNA regions of As120a, avenin, and globulin were amplified by PCR. A total of 130 polymorphic fragments were detected out of 156 fragments generated by digesting the PCR-amplified fragments with 11 restriction enzymes. The number of fragments generated by PCR-amplification followed by digestion with restriction enzymes was almost the same as those among the three repeated DNA sequences. A high level of genetic distance was detected between A. damascena (Ad) and A. canariensis (Ac) genomes, which reflected their different morphology and reproductive isolation. The A. longiglumis (Al) and A. prostrata (Ap) genomes were closely related to the As genome group. The AB genome species formed a cluster with the AsAs genome artificial autotetraploid and the As genome diploids indicating near-autotetraploid origin. The A. macrostachya is an outbreeding autotetraploid closely related with the C genome diploid and the AC genome tetraploid species. The differences of genetic distances estimated from the repeated DNA sequence divergence among the Avena species were consistent with genome divergences and it was possible to compare the genetic intra- and inter-ploidy relationships produced by RFLPs. These results suggested that the PCR-mediated analysis of repeated DNA polymorphism can be used as a tool to examine genomic relationships of polyploidy species.

  3. Ancient DNA from coral-hosted Symbiodinium reveal a static mutualism over the last 172 years.

    Directory of Open Access Journals (Sweden)

    David M Baker

    Full Text Available Ancient DNA (aDNA provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general.

  4. Circomics of Cuban geminiviruses reveals the first alpha-satellite DNA in the Caribbean.

    Science.gov (United States)

    Jeske, Holger; Kober, Sigrid; Schäfer, Benjamin; Strohmeier, Stephan

    2014-10-01

    Circomics (circular DNA genomics), the combination of rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analysis and pyro-sequencing, has been used recently to identify geminiviruses with high efficiency and low costs. Circular DNAs associated with Cuban geminiviruses were characterised by RCA/RFLP analysis and 454 sequencing of two batches of DNA amplified from selected plant samples as well as individual cloning and Sanger sequencing of DNA components and compared to other geminiviral DNAs by phylogenetic analysis. Cuban geminiviruses that were closely related to each other challenged the circomics approach. Ten geminiviral components and one alpha-satellite DNA were determined and compared to three geminiviral components obtained by conventional cloning. New strains of Sida yellow mottle virus (SiYMoV), tomato yellow distortion leaf virus (ToYDLV), Sida golden mosaic Florida virus (SiGMFV) and Sida golden mosaic Liguanea virus (SiGMLV) are described with host plant species being classified by molecular PCR-based bar coding. A new virus species is named Peristrophe mosaic virus. The first alpha-satellite found in Middle America establishes the New World branch of these elements which are related to nanoviruses and were previously thought to be restricted to the Old World. In conclusion, circomics is efficient for complex infections and closely related viruses to detected unexpected viral DNAs, but may need some scrutinisation by direct sequencing and cloning of individual components for certain cases.

  5. Updating rDNA restriction enzyme maps of Tetrahymena reveals four new intron-containing species

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Simon, E M; Engberg, J

    1985-01-01

    The extrachromosomal rDNA molecules from a number of Tetrahymena strains were characterized by restriction enzyme mapping using three different restriction enzymes combined with gel blotting and hybridization analysis. Strains from four out of six recently described species were found to contain...

  6. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    Directory of Open Access Journals (Sweden)

    Chang Su

    2014-12-01

    Full Text Available DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees.

  7. Phosphoproteomics Reveals Distinct Modes of Mec1/ATR Signaling During DNA Replication

    Science.gov (United States)

    de Oliveira, Francisco Meirelles Bastos; Kim, Dongsung; Cussiol, Jose Renato; Das, Jishnu; Jeong, Min Cheol; Doerfler, Lillian; Schmidt, Kristina Hildegard; Yu, Haiyuan; Smolka, Marcus Bustamante

    2015-01-01

    SUMMARY The Mec1/Tel1 kinases (human ATR/ATM) play numerous roles in the DNA replication stress response. Despite the multi-functionality of these kinases, studies of their in vivo action have mostly relied on a few well-established substrates. Here we employed a combined genetic-phosphoproteomic approach to monitor Mec1/Tel1 signaling in a systematic, unbiased and quantitative manner. Unexpectedly, we find that Mec1 is highly active during normal DNA replication, at levels comparable or higher than Mec1’s activation state induced by replication stress. This “replication-correlated” mode of Mec1 action requires the 9-1-1 clamp and the Dna2 lagging-strand factor, and is distinguishable from Mec1’s action in activating the downstream kinase Rad53. We propose that Mec1/ATR performs key functions during ongoing DNA synthesis that are distinct from their canonical checkpoint role during replication stress. PMID:25752575

  8. Reduced representation bisulphite sequencing of the cattle genome reveals DNA methylation patterns

    Science.gov (United States)

    Using reduced representation bisulphite sequencing (RRBS), we obtained the first single-base-resolution maps of bovine DNA methylation in ten somatic tissues. In total, we observed 1,868,049 cytosines in the CG-enriched regions. Similar to the methylation patterns in other species, the CG context wa...

  9. Reduced representation bisulphite sequencing of the ten bovine somatic tissues reveals DNA methylation patterns

    Science.gov (United States)

    As a major component epigenetics, DNA methylation has been proved that widely functions in individual development and various diseases. It has been well studied in model organisms and human but includes limited data for the economic animals. Using reduced representation bisulphite sequencing (RRBS),...

  10. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure

    Science.gov (United States)

    Wachter, Elisabeth; Quante, Timo; Merusi, Cara; Arczewska, Aleksandra; Stewart, Francis; Webb, Shaun; Bird, Adrian

    2014-01-01

    The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from the bulk genome by being rich in G + C and the dinucleotide CpG. CGIs often include transcription initiation sites and display ‘active’ histone marks, notably histone H3 lysine 4 methylation. In embryonic stem cells (ESCs) some CGIs adopt a ‘bivalent’ chromatin state bearing simultaneous ‘active’ and ‘inactive’ chromatin marks. To determine whether CGI chromatin is developmentally programmed at specific genes or is imposed by shared features of CGI DNA, we integrated artificial CGI-like DNA sequences into the ESC genome. We found that bivalency is the default chromatin structure for CpG-rich, G + C-rich DNA. A high CpG density alone is not sufficient for this effect, as A + T-rich sequence settings invariably provoke de novo DNA methylation leading to loss of CGI signature chromatin. We conclude that both CpG-richness and G + C-richness are required for induction of signature chromatin structures at CGIs. DOI: http://dx.doi.org/10.7554/eLife.03397.001 PMID:25259796

  11. Do uncertainty analyses reveal uncertainties? Using the introduction of DNA vaccines to aquaculture as a case.

    Science.gov (United States)

    Gillund, Frøydis; Kjølberg, Kamilla A; von Krauss, Martin Krayer; Myhr, Anne I

    2008-12-15

    The Walker and Harremoës (W&H) uncertainty framework is a tool to systematically identify scientific uncertainty. We applied the W&H uncertainty framework to elicit scientists' judgements of potential sources of uncertainty associated with the use of DNA vaccination in aquaculture. DNA vaccination is considered a promising solution to combat pathological fish diseases. There is, however, lack of knowledge regarding its ecological and social implications. Our findings indicate that scientists are open and aware of a number of uncertainties associated with DNA vaccination e.g. with regard to immune response, degradation and distribution of the DNA plasmid after injection and environmental release, and consider most of these uncertainties to be adequately reduced through more research. We proceed to discuss our experience of using the W&H uncertainty framework. Some challenges related to the application of the framework were recognised. This was especially related to the respondents' unfamiliarity with the concepts used and their lack of experience in discussing qualitative aspects of uncertainties. As we see it, the W&H framework should be considered as a useful tool to stimulate reflection on uncertainty and an important first step in a more extensive process of including and properly dealing with uncertainties in science and policymaking.

  12. DNA methylation profiling reveals the presence of population-specific signatures correlating with phenotypic characteristics.

    Science.gov (United States)

    Giri, Anil K; Bharadwaj, Soham; Banerjee, Priyanka; Chakraborty, Shraddha; Parekatt, Vaisak; Rajashekar, Donaka; Tomar, Abhishek; Ravindran, Aarthi; Basu, Analabha; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2017-06-01

    Phenotypic characteristics are known to vary substantially among different ethnicities around the globe. These variations are mediated by number of stochastic events and cannot be attributed to genetic architecture alone. DNA methylation is a well-established mechanism that sculpts our epigenome influencing phenotypic variation including disease manifestation. Since DNA methylation is an important determinant for health issues of a population, it demands a thorough investigation of the natural differences in genome wide DNA methylation patterns across different ethnic groups. This study is based on comparative analyses of methylome from five different ethnicities with major focus on Indian subjects. The current study uses hierarchical clustering approaches, principal component analysis and locus specific differential methylation analysis on Illumina 450K methylation data to compare methylome of different ethnic subjects. Our data indicates that the variations in DNA methylation patterns of Indians are less among themselves compared to other global population. It empirically correlated with dietary, cultural and demographical divergences across different ethnic groups. Our work further suggests that Indians included in this study, despite their genetic similarity with the Caucasian population, are in close proximity with Japanese in terms of their methylation signatures.

  13. Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation.

    Directory of Open Access Journals (Sweden)

    Karolina Skowronski

    Full Text Available DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia, two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116 was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.

  14. DNA damage focus analysis in blood samples of minipigs reveals acute partial body irradiation.

    Directory of Open Access Journals (Sweden)

    Andreas Lamkowski

    Full Text Available Radiation accidents frequently involve acute high dose partial body irradiation leading to victims with radiation sickness and cutaneous radiation syndrome that implements radiation-induced cell death. Cells that are not lethally hit seek to repair ionizing radiation (IR induced damage, albeit at the expense of an increased risk of mutation and tumor formation due to misrepair of IR-induced DNA double strand breaks (DSBs. The response to DNA damage includes phosphorylation of histone H2AX in the vicinity of DSBs, creating foci in the nucleus whose enumeration can serve as a radiation biodosimeter. Here, we investigated γH2AX and DNA repair foci in peripheral blood lymphocytes of Göttingen minipigs that experienced acute partial body irradiation (PBI with 49 Gy (± 6% Co-60 γ-rays of the upper lumbar region. Blood samples taken 4, 24 and 168 hours post PBI were subjected to γ-H2AX, 53BP1 and MRE11 focus enumeration. Peripheral blood lymphocytes (PBL of 49 Gy partial body irradiated minipigs were found to display 1-8 DNA damage foci/cell. These PBL values significantly deceed the high foci numbers observed in keratinocyte nuclei of the directly γ-irradiated minipig skin regions, indicating a limited resident time of PBL in the exposed tissue volume. Nonetheless, PBL samples obtained 4 h post IR in average contained 2.2% of cells displaying a pan-γH2AX signal, suggesting that these received a higher IR dose. Moreover, dispersion analysis indicated partial body irradiation for all 13 minipigs at 4 h post IR. While dose reconstruction using γH2AX DNA repair foci in lymphocytes after in vivo PBI represents a challenge, the DNA damage focus assay may serve as a rapid, first line indicator of radiation exposure. The occurrence of PBLs with pan-γH2AX staining and of cells with relatively high foci numbers that skew a Poisson distribution may be taken as indicator of acute high dose partial body irradiation, particularly when samples are available

  15. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Aijaz A Wani

    Full Text Available BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA or nuclear genes encoding oxidative phosphorylation (OXPHOS. We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T. CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role

  16. Epigenomic analysis of lung adenocarcinoma reveals novel DNA methylation patterns associated with smoking

    Directory of Open Access Journals (Sweden)

    Tan Q

    2013-10-01

    Full Text Available Qiang Tan,1,* Guan Wang,1,* Jia Huang,1 Zhengping Ding,1 Qingquan Luo,1 Tony Mok,2 Qian Tao,2 Shun Lu1 1Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 2Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong *These authors contributed equally to this paper Abstract: The importance of epigenetic regulation has been increasingly recognized in the development of cancer. In this study, we investigated the impact of smoking, a major risk factor of lung cancer, on DNA methylation by comparing the genome-wide DNA methylation patterns between lung adenocarcinoma samples from six smokers and six nonsmokers. We identified that smoking-induced DNA methylations were enriched in the calcium signaling and neuroactive ligand receptor signaling pathways, which are closely related to smoking-induced lung cancers. Interestingly, we discovered that two genes in the mitogen-activated protein kinase signaling pathway (RPS6KA3 and ARAF were hypomethylated in smokers but not in nonsmokers. In addition, we found that the smoking-induced lung cancer-specific DNA methylations were mostly enriched in nuclear activities, including regulation of gene expression and chromatin remodeling. Moreover, the smoking-induced hypermethylation could only be seen in lung adenocarcinoma tissue but not in adjacent normal lung tissue. We also used differentially methylated DNA loci to construct a diagnostic model to distinguish smoking-associated lung cancer from nonsmoking lung cancer with a sensitivity of 88.9% and specificity of 83.2%. Our results provided novel evidence to support that smoking can cause dramatic changes in the DNA methylation landscape of lung cancer, suggesting that epigenetic

  17. Tug of War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold

    Science.gov (United States)

    Derr, N. D.; Goodman, B. S.; Jungmann, R.; Leschziner, A. E.; Shih, W. M.; Reck-Peterson, S. L.

    2013-01-01

    Cytoplasmic dynein and kinesin-1 are opposite-polarity, microtubule-based motors that transport a wide variety of cargo in eukaryotic cells. Many cellular cargos demonstrate bi-directional movement due to the presence of ensembles of dynein and kinesin, but are ultimately sorted with spatial and temporal precision. To investigate the mechanisms that coordinate motor ensemble behavior, we built a programmable synthetic cargo using three-dimensional DNA origami to which varying numbers of DNA oligonucleotide-linked motors could be attached, allowing control of motor type, number, spacing, and orientation in vitro. In ensembles of 1–7 identical-polarity motors, motor number had minimal affect on directional velocity, while ensembles of opposite-polarity motors engaged in a tug of war resolvable by disengaging one motor species. PMID:23065903

  18. A highly polymorphic locus in human DNA revealed by cosmid-derived probes.

    OpenAIRE

    Litt, M.; White, R. L.

    1985-01-01

    Human gene mapping would be greatly facilitated if marker loci with sufficient heterozygosity were generally available. As a source of such markers, we have used cosmids from a human genomic library. We have developed a rapid method for screening random cosmids to identify those that are homologous to genomic regions especially rich in restriction fragment length polymorphisms. This method allows whole cosmids to be used as probes against Southern transfers of genomic DNA; regions of cosmid p...

  19. Nuclear and mitochondrial DNA reveals isolation of imperilled grey nurse shark populations (Carcharias taurus).

    Science.gov (United States)

    Ahonen, H; Harcourt, R G; Stow, A J

    2009-11-01

    Loss of sharks and other upper-trophic marine predators has sparked worldwide concern for the stability of ocean ecosystems. The grey nurse (ragged-tooth or sand tiger) shark (Carcharias taurus) is Vulnerable on a global scale, Critically Endangered in Australia and presumed extinct in parts of its historical range. We used 193 muscle and fin samples collected from six extant populations to assess global mtDNA and microsatellite diversity and the degree of global population genetic structure. Control region mtDNA diversity was low in every population, and two populations (eastern Australia and Japan) contained only a single mtDNA haplotype. Genetic signatures of recent losses of genetic variation were not yet apparent at microsatellite loci, indicating that this low mtDNA variation is not a result of anthropogenic population declines. Population differentiation was substantial between each population pair except Brazil and South Africa, F(ST) values ranged from 0.050 to 0.699 and 0.100 to 1.00 for microsatellite and mitochondrial data respectively. Bayesian analysis clearly partitioned individuals into five of the populations from which they were sampled. Our data imply a low frequency of immigrant exchange among each of these regions and we suggest that each be recognized as a distinct evolutionary significant unit. In contrast to pelagic species such as whale shark and white shark that may cross ocean basins and where cooperative international efforts are necessary for conservation, grey nurse shark, like many coastal species, need to be managed regionally.

  20. Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species.

    Science.gov (United States)

    Mendoza, Ángela María; Torres, María Fernanda; Paz, Andrea; Trujillo-Arias, Natalia; López-Alvarez, Diana; Sierra, Socorro; Forero, Fernando; Gonzalez, Mailyn A

    2016-07-01

    Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86-92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research. © 2016 John Wiley & Sons Ltd.

  1. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.

    Science.gov (United States)

    Artemov, Artem V; Mugue, Nikolai S; Rastorguev, Sergey M; Zhenilo, Svetlana; Mazur, Alexander M; Tsygankova, Svetlana V; Boulygina, Eugenia S; Kaplun, Daria; Nedoluzhko, Artem V; Medvedeva, Yulia A; Prokhortchouk, Egor B

    2017-09-01

    The three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution-adaptation to a freshwater environment. Although genetic adaptations to freshwater environments are well-studied, epigenetic adaptations have attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of the marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into a freshwater environment and freshwater sticklebacks placed into seawater. We showed that the DNA methylation profile after placing a marine stickleback into fresh water partially converged to that of a freshwater stickleback. For six genes including ATP4A ion pump and NELL1, believed to be involved in skeletal ossification, we demonstrated similar changes in DNA methylation in both evolutionary and short-term adaptation. This suggested that an immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. For the first time, we demonstrated that genes encoding ion channels KCND3, CACNA1FB, and ATP4A were differentially methylated between the marine and the freshwater populations. Other genes encoding ion channels were previously reported to be under selection in freshwater populations. Nevertheless, the genes that harbor genetic and epigenetic changes were not the same, suggesting that epigenetic adaptation is a complementary mechanism to selection of genetic variants favorable for freshwater environment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mitochondrial DNA assessment of Phytophthora infestans isolates from potato and tomato in Ethiopia reveals unexpected diversity.

    Science.gov (United States)

    Shimelash, Daniel; Hussien, Temam; Fininsa, Chemeda; Forbes, Greg; Yuen, Jonathan

    2016-08-01

    Mitochondrial DNA (mtDNA) haplotypes were determined using restriction fragment length polymorphism (RFLP) for P. infestans sampled from 513 foliar lesions of late blight found on potato and tomato in different regions of Ethiopia. Among the four reported mitochondrial haplotypes of Phytophthora infestans, Ia, Ib and IIb were detected in 93 % of the samples analyzed but the vast majority of these were Ia. The remaining 7 % represented a previously unreported haplotype. DNA sequencing of this new haplotype also confirmed a single base nucleotide substitution that resulted in loss of EcoRI restriction site and gain of two additional MspI sites in cox1 and atp1 genes, respectively. There were 28 polymorphic sites among all nucleotide sequences including five reference isolates. Sites with alignment gaps were observed in P4 with one nucleotide deletion in 11 Ethiopian isolates. None of the reference sequence produced frame-shifts, with the exception of the 3-nucleotide deletion in the P4 region by Phytophthora andina, a feature that can be used to distinguish the new Ethiopian isolates from P. andina. While a distinguishing molecular data presented here clearly separated them from P. infestans, 7 % of the isolates that share this feature formed an important component of the late blight pathogen causing disease on Solanum tuberosum in Ethiopia. Thus, these Ethiopian isolates could represent a novel Phytophthora species reported for the first time here.

  3. Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Shikha; Gellert, Martin; Yang, Wei (NIH)

    2012-04-17

    DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.

  4. Nanoscale histone localization in live cells reveals reduced chromatin mobility in response to DNA damage.

    Science.gov (United States)

    Liu, Jing; Vidi, Pierre-Alexandre; Lelièvre, Sophie A; Irudayaraj, Joseph M K

    2015-02-01

    Nuclear functions including gene expression, DNA replication and genome maintenance intimately rely on dynamic changes in chromatin organization. The movements of chromatin fibers might play important roles in the regulation of these fundamental processes, yet the mechanisms controlling chromatin mobility are poorly understood owing to methodological limitations for the assessment of chromatin movements. Here, we present a facile and quantitative technique that relies on photoactivation of GFP-tagged histones and paired-particle tracking to measure chromatin mobility in live cells. We validate the method by comparing live cells to ATP-depleted cells and show that chromatin movements in mammalian cells are predominantly energy dependent. We also find that chromatin diffusion decreases in response to DNA breaks induced by a genotoxic drug or by the ISceI meganuclease. Timecourse analysis after cell exposure to ionizing radiation indicates that the decrease in chromatin mobility is transient and precedes subsequent increased mobility. Future applications of the method in the DNA repair field and beyond are discussed.

  5. Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots

    Science.gov (United States)

    Potekhina, Inna; Rohland, Nadin; Mallick, Swapan; Reich, David; Lillie, Malcolm

    2017-01-01

    The agricultural revolution in Eastern Europe began in the Eneolithic with the Cucuteni-Trypillia culture complex. In Ukraine, the Trypillian culture (TC) existed for over two millennia (ca. 5,400–2,700 BCE) and left a wealth of artifacts. Yet, their burial rituals remain a mystery and to date almost nothing is known about the genetic composition of the TC population. One of the very few TC sites where human remains can be found is a cave called Verteba in western Ukraine. This report presents four partial and four complete mitochondrial genomes from nine TC individuals uncovered in the cave. The results of this analysis, combined with the data from previous reports, indicate that the Trypillian population at Verteba carried, for the most part, a typical Neolithic farmer package of mitochondrial DNA (mtDNA) lineages traced to Anatolian farmers and Neolithic farming groups of central Europe. At the same time, the find of two specimens belonging to haplogroup U8b1 at Verteba can be viewed as a connection of TC with the Upper Paleolithic European populations. At the level of mtDNA haplogroup frequencies, the TC population from Verteba demonstrates a close genetic relationship with population groups of the Funnel Beaker/ Trichterbecker cultural complex from central and northern Europe (ca. 3,950–2,500 BCE). PMID:28235025

  6. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA.

    Science.gov (United States)

    Gongora, Jaime; Rawlence, Nicolas J; Mobegi, Victor A; Jianlin, Han; Alcalde, Jose A; Matus, Jose T; Hanotte, Olivier; Moran, Chris; Austin, Jeremy J; Ulm, Sean; Anderson, Atholl J; Larson, Greger; Cooper, Alan

    2008-07-29

    European chickens were introduced into the American continents by the Spanish after their arrival in the 15th century. However, there is ongoing debate as to the presence of pre-Columbian chickens among Amerindians in South America, particularly in relation to Chilean breeds such as the Araucana and Passion Fowl. To understand the origin of these populations, we have generated partial mitochondrial DNA control region sequences from 41 native Chilean specimens and compared them with a previously generated database of approximately 1,000 domestic chicken sequences from across the world as well as published Chilean and Polynesian ancient DNA sequences. The modern Chilean sequences cluster closely with haplotypes predominantly distributed among European, Indian subcontinental, and Southeast Asian chickens, consistent with a European genetic origin. A published, apparently pre-Columbian, Chilean specimen and six pre-European Polynesian specimens also cluster with the same European/Indian subcontinental/Southeast Asian sequences, providing no support for a Polynesian introduction of chickens to South America. In contrast, sequences from two archaeological sites on Easter Island group with an uncommon haplogroup from Indonesia, Japan, and the Philippines [corrected] and may represent a genetic signature of an early Polynesian dispersal. Modeling of the potential marine carbon contribution to the Chilean archaeological specimen casts further doubt on claims for pre-Columbian chickens, and definitive proof will require further analyses of ancient DNA sequences and radiocarbon and stable isotope data from archaeological excavations within both Chile and Polynesia.

  7. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    Science.gov (United States)

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  8. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-01-01

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928

  9. Minicircle DNA purification using a CIM® DEAE-1 monolithic support.

    Science.gov (United States)

    Diamantino, Tatiana; Pereira, Patrícia; Queiroz, João A; Sousa, Ângela; Sousa, Fani

    2016-09-01

    Minicircle DNA is a new biotechnological product with beneficial therapeutic perspectives for gene therapy because it is constituted only by the eukaryotic transcription unit. These features improve minicircle DNA safety and increase its therapeutic effect. However, being a recently developed product, there is a need to establish efficient purification methodologies, enabling the recovery of the supercoiled minicircle DNA isoform. Thus, this work describes the minicircle DNA purification using an anion exchange monolithic support. The results show that with this column it is possible to achieve a good selectivity, which allows the isolation of the supercoiled minicircle DNA isoform from impurities. Overall, this study shows a promising approach to obtain the minicircle DNA sample with adequate quality for future therapeutic applications.

  10. Interplay between the bacterial nucleoid protein H-NS and macromolecular crowding in compacting DNA

    NARCIS (Netherlands)

    Wintraecken, C.H.J.M.

    2012-01-01

      In this dissertation we discuss H-NS and its connection to nucleoid compaction and organization. Nucleoid formation involves a dramatic reduction in coil volume of the genomic DNA. Four factors are thought to influence coil volume: supercoiling, DNA charge neutralization, macromolecular crow

  11. [DNA metabolism in lymphocytes of experimental subjects during thermotherapy (sauna, Turkish bath)].

    Science.gov (United States)

    Günther, R; Egg, D; Klein, D; Kocsis, F; Altmann, H

    1983-01-01

    The unprogrammed DNA synthesis (UDS) in the lymphocytes of the peripheral blood was significantly higher in regular sauna-users than in those who had not had a sauna for some time. Sedimentation velocity of the supercoiled DNA in the lymphocytes was decreased 1 h and 24 h after Turkish bath, but the difference from values before the bath was not statistically significant.

  12. Separation of topological forms of plasmid DNA by anion-exchange HPLC: shifts in elution order of linear DNA.

    Science.gov (United States)

    Smith, Clara R; DePrince, Randolph B; Dackor, Jennifer; Weigl, Debra; Griffith, Jack; Persmark, Magnus

    2007-07-01

    We sought to establish a single anion-exchange HPLC method for the separation of linear, open circular and supercoiled plasmid topoisomers using purified topoisomeric forms of three plasmids (3.0, 5.5 and 7.6 kb). However, finding one condition proved elusive as the topoisomer elution order was determined to depend on salt gradient slope. The observed change in selectivity increased with plasmid size and was most pronounced for the linear form. Indeed, the elution order of the linear 7.6 kb plasmid was reversed relative to the supercoiled form. This observation may have implications for methods used in quality control of plasmid DNA.

  13. Multiplectoneme phase of double-stranded DNA under torsion

    NARCIS (Netherlands)

    Emanuel, M.; Lanzani, G.; Schiessel, H.

    2013-01-01

    We use the wormlike chain model to study supercoiling of DNA under tension and torque. The model reproduces experimental data for a broad range of forces, salt concentrations, and contour lengths. We find a plane of first-order phase transitions ending in a smeared-out line of critical points, the m

  14. Microsatellite DNA reveals population genetic differentiation among sprat (Sprattus sprattus) sampled throughout the Northeast Atlantic, including Norwegian fjords

    DEFF Research Database (Denmark)

    Glover, Kevin A.; Skaala, Øystein; Limborg, Morten;

    2011-01-01

    Glover, K. A., Skaala, Ø., Limborg, M., Kvamme, C., and Torstensen, E. Microsatellite DNA reveals population genetic differentiation among sprat (Sprattus sprattus) sampled throughout the Northeast Atlantic, including Norwegian fjords. – ICES Journal of Marine Science, 68: 2145–2151. Sprat...... (Sprattus sprattus), small pelagic shoaling fish, were sampled from the Celtic, North, and Baltic seas, and 10 Norwegian fjords. Significant overall genetic differentiation was observed among samples when analysed with eight microsatellite DNA loci (Global FST = 0.0065, p ... differences were observed between the Baltic and all other samples (largest pairwise FST = 0.043, p sample from the Celtic Sea (CEL) and the North Sea (NSEA; FST = 0.001, p = 0.16), but variable levels of genetic differentiation were...

  15. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH)

    Institute of Scientific and Technical Information of China (English)

    Ke BI; James P.BOGART; Jinzhong FU

    2009-01-01

    The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA). Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution [Current Zoology 55(2):145-149,2009].

  16. A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH

    Directory of Open Access Journals (Sweden)

    Jinzhong FU

    2009-04-01

    Full Text Available The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA. Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number, location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation, low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.

  17. A tobacco cDNA reveals two different transcription patterns in vegetative and reproductive organs

    Directory of Open Access Journals (Sweden)

    I. da Silva

    2002-08-01

    Full Text Available In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8 showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries. Plants submitted to stress (wounding, virus infection and ethylene treatment presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.

  18. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost.

    Science.gov (United States)

    Bellemain, Eva; Davey, Marie L; Kauserud, Håvard; Epp, Laura S; Boessenkool, Sanne; Coissac, Eric; Geml, Jozsef; Edwards, Mary; Willerslev, Eske; Gussarova, Galina; Taberlet, Pierre; Haile, James; Brochmann, Christian

    2013-04-01

    The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty-six sediment samples dated 16 000-32 000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS. We detected 75 fungal OTUs from 21 orders representing three phyla, although rarefaction analyses suggested that the full diversity was not recovered despite generating an average of 6677 ± 3811 (mean ± SD) sequences per sample and that preservation bias likely has considerable effect on the recovered DNA. Most OTUs (75.4%) represented ascomycetes. Due to insufficient sequencing depth, DNA degradation and putative preservation biases in our samples, the recovered taxa probably do not represent the complete historic fungal community, and it is difficult to determine whether the fungal communities varied geographically or experienced a composition shift within the period of 16 000-32 000 bp. However, annotation of OTUs to functional ecological groups provided a wealth of information on the historic communities. About one-third of the OTUs are presumed plant-associates (pathogens, saprotrophs and endophytes) typical of graminoid- and forb-rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community.

  19. Analysis of the DNA methylome and transcriptome in granulopoiesis reveal timed changes and dynamic enhancer methylation

    DEFF Research Database (Denmark)

    Rönnerblad, Michelle; Andersson, Robin; Olofsson, Tor

    2014-01-01

    at specific differentiation stages and overlap with changes in transcription and activity of key hematopoietic transcription factors. DMSs were preferentially located in areas distal to CpG islands and shores. Also, DMSs were overrepresented in enhancer elements and enriched in enhancers that become active...... during granulopoiesis using 4 distinct cell populations ranging from the oligopotent common myeloid progenitor stage to terminally differentiated neutrophils. We observed that differentially methylated sites (DMSs) generally show decreased methylation during granulopoiesis. Methylation appears to change...... during differentiation. Overall, this study depicts in detail the epigenetic and transcriptional changes that occur during granulopoiesis and supports the role of DNA methylation as a regulatory mechanism in blood cell differentiation....

  20. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    Science.gov (United States)

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  1. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    Science.gov (United States)

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  2. Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Kunal, S.P.; GirishKumar; Menezes, M.R.; Meena, R.M.

    stream_size 37943 stream_content_type text/plain stream_name Conservat_Genet_14_205a.pdf.txt stream_source_info Conservat_Genet_14_205a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 1Mitochondrial... 6 and 8 region) and nuclear DNA (microsatellites) markers suggested presence of more than one stock of YFT in Indian Ocean (Dammannagoda et al. 2008). Results of present study further strengthen the presence of more than one stock of YFT in Indian...

  3. Intraspecific genetic variability in a population of Moroccan Leishmania infantum revealed by PCR-RFLP of kDNA minicircles.

    Science.gov (United States)

    El Hamouchi, Adil; Ejghal, Rajaa; Hida, Moustapha; Lemrani, Meryem

    2017-05-01

    In Morocco, Leishmania infantum is the main etiologic agent of human and canine visceral leishmaniasis (VL). This species has been proven to be an opportunistic agent in HIV+ patients and is also responsible of sporadic cutaneous leishmaniasis (CL).This work aims to evaluate the genetic variability of Moroccan L. infantum strains based on PCR-RFLP analysis of the kinetoplastid DNA (kDNA) minicircles. A total of 75 DNA samples extracted from positive Giemsa-stained smears (n=32) and from L. infantum cultures (n=43) was studied. The samples have been taken from VL patients infected (n=7) or not (n=56) by HIV, patients with CL (n=2) and finally from infected dogs (n=10). An hypervariable region of kDNA was amplified using the primers MC1 and MC2; the PCR products were digested separately by a panel of nine restriction enzymes. The presence or absence of restriction fragments was scored in a binary matrix and the SplitsTree4 software was used for the construction of a Neighbor-Net network. Moroccan L. infantum population showed an important level of variability with the identification of 6 genotypes. For each genotype a PCR product was sequenced, confirming the presence of all the expected restriction sites. The predominant profile was the genotype B. A new genotype, named Q was detected for the first time, whereas the four other genotypes (G, K, N and O) were reported sporadically in the Mediterranean basin. The Neighbor-Net network segregates our L. infantum population into 3 clusters: Cluster I includes genotype B, cluster II grouping the genotypes O, Q and G and finally the cluster III contains the genotype N. The kDNA-PCR-RFLP assay is suitable for use directly on biological samples; it reveals an important degree of genetic variability among L. infantum strains even those belonging to the same zymodeme what is of great epidemiological interest.

  4. Mixed infection of Sida jamaicensis in Jamaica reveals the presence of three recombinant begomovirus DNA A components.

    Science.gov (United States)

    Stewart, Cheryl; Kon, Tatsuya; Rojas, Maria; Graham, André; Martin, Darren; Gilbertson, Robert; Roye, Marcia

    2014-09-01

    Begomoviruses impose serious constraints on agriculture throughout the temperate, tropical and subtropical regions. Previously, we characterised a sida golden yellow vein virus isolate, SiGYVV-[JM:Lig2:08] (HQ009519-20) from a symptomatic Sida jamaicensis plant. With the aim of establishing whether it was hosting a mixed infection that could facilitate recombination, PCR-RFLP was done on DNA extracted from this plant, and the results suggested the presence of two additional genetically distinct DNA-A molecules. Sequence analysis of these two DNA-A molecules (relying on BLAST searches and the CLUSTAL V algorithm within the DNASTAR MegAlign module) revealed that they belonged to novel species, and we have tentatively named these viruses sida golden mosaic Braco virus-[Jamaica:Liguanea:2008] and sida golden mosaic Liguanea virus-[Jamaica:1:2008]. Using RDP4 (recombination detection program), we determined that all three viruses were recombinant, with bases ~10 to ~440 of both SiGMLigV-[JM:Lig:08] and SiGYVV-[JM:Lig2:08] having been derived from a relative of SiGMBV-[JM:Lig:08] (Precombination detection methods). SiGMBV-[JM:Lig:08] was itself a product of recombination, deriving bases ~490-1195 from a virus that was ~92% similar to malvastrum yellow mosaic Helshire virus. Phylogenetically, these DNA-A components are most closely related to those of malvaceous weed-infecting begomoviruses from Jamaica, Cuba, Florida and Mexico. The SiGMBV DNA-A was able to elicit symptomatic infection in N. benthamiana.

  5. Determining the topology of stable protein-DNA complexes.

    Science.gov (United States)

    Darcy, Isabel K; Vazquez, Mariel

    2013-04-01

    Difference topology is an experimental technique that can be used to unveil the topological structure adopted by two or more DNA segments in a stable protein-DNA complex. Difference topology has also been used to detect intermediates in a reaction pathway and to investigate the role of DNA supercoiling. In the present article, we review difference topology as applied to the Mu transpososome. The tools discussed can be applied to any stable nucleoprotein complex.

  6. DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade.

    Science.gov (United States)

    de Boer, Hugo J; Ghorbani, Abdolbaset; Manzanilla, Vincent; Raclariu, Ancuta-Cristina; Kreziou, Anna; Ounjai, Sarawut; Osathanunkul, Maslin; Gravendeel, Barbara

    2017-09-27

    In eastern Mediterranean countries orchids continue to be collected from the wild for the production of salep, a beverage made of dried orchid tubers. In this study we used nrITS1 and nrITS2 DNA metabarcoding to identify orchid and other plant species present in 55 commercial salep products purchased in Iran, Turkey, Greece and Germany. Thirty samples yielded a total of 161 plant taxa, and 13 products (43%) contained orchid species and these belonged to 10 terrestrial species with tuberous roots. Another 70% contained the substitute ingredient Cyamopsis tetraganoloba (Guar). DNA metabarcoding using the barcoding markers nrITS1 and nrITS2 shows the potential of these markers and approach for identification of species used in salep products. The analysis of interspecific genetic distances between sequences of these markers for the most common salep orchid genera shows that species level identifications can be made with a high level of confidence. Understanding the species diversity and provenance of salep orchid tubers will enable the chain of commercialization of endangered species to be traced back to the harvesters and their natural habitats, and thus allow for targeted efforts to protect or sustainably use wild populations of these orchids. © 2017 The Author(s).

  7. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary.

    Science.gov (United States)

    Almathen, Faisal; Charruau, Pauline; Mohandesan, Elmira; Mwacharo, Joram M; Orozco-terWengel, Pablo; Pitt, Daniel; Abdussamad, Abdussamad M; Uerpmann, Margarethe; Uerpmann, Hans-Peter; De Cupere, Bea; Magee, Peter; Alnaqeeb, Majed A; Salim, Bashir; Raziq, Abdul; Dessie, Tadelle; Abdelhadi, Omer M; Banabazi, Mohammad H; Al-Eknah, Marzook; Walzer, Chris; Faye, Bernard; Hofreiter, Michael; Peters, Joris; Hanotte, Olivier; Burger, Pamela A

    2016-06-14

    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.

  8. Evidence of ancient DNA reveals the first European lineage in Iron Age Central China.

    Science.gov (United States)

    Xie, C Z; Li, C X; Cui, Y Q; Zhang, Q C; Fu, Y Q; Zhu, H; Zhou, H

    2007-07-01

    Various studies on ancient DNA have attempted to reconstruct population movement in Asia, with much interest focused on determining the arrival of European lineages in ancient East Asia. Here, we discuss our analysis of the mitochondrial DNA of human remains excavated from the Yu Hong tomb in Taiyuan, China, dated 1400 years ago. The burial style of this tomb is characteristic of Central Asia at that time. Our analysis shows that Yu Hong belonged to the haplogroup U5, one of the oldest western Eurasian-specific haplogroups, while his wife can be classified as haplogroup G, the type prevalent in East Asia. Our findings show that this man with European lineage arrived in Taiyuan approximately 1400 years ago, and most probably married a local woman. Haplogroup U5 was the first west Eurasian-specific lineage to be found in the central part of ancient China, and Taiyuan may be the easternmost location of the discovered remains of European lineage in ancient China.

  9. DNA elements reducing transcriptional gene silencing revealed by a novel screening strategy.

    Directory of Open Access Journals (Sweden)

    Naoki Kishimoto

    Full Text Available Transcriptional gene silencing (TGS--a phenomenon observed in endogenous genes/transgenes in eukaryotes--is a huge hindrance to transgenic technology and occurs mainly when the genes involved share sequence homology in their promoter regions. TGS depends on chromosomal position, suggesting the existence of genomic elements that suppress TGS. However, no systematic approach to identify such DNA elements has yet been reported. Here, we developed a successful novel screening strategy to identify such elements (anti-silencing regions-ASRs, based on their ability to protect a flanked transgene from TGS. A silenced transgenic tobacco plant in which a subsequently introduced transgene undergoes obligatory promoter-homology dependent TGS in trans allowed the ability of DNA elements to prevent TGS to be used as the screening criterion. We also identified ASRs in a genomic library from a different plant species (Lotus japonicus: a perennial legume; the ASRs include portions of Ty1/copia retrotransposon-like and pararetrovirus-like sequences; the retrotransposon-like sequences also showed interspecies anti-TGS activity in a TGS-induction system in Arabidopsis. Anti-TGS elements could provide effective tools to reduce TGS and ensure proper regulation of transgene expression. Furthermore, the screening strategy described here will also facilitate the efficient identification of new classes of anti-TGS elements.

  10. DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage

    Directory of Open Access Journals (Sweden)

    Messer Philipp W

    2007-10-01

    Full Text Available Abstract Background Insertions and deletions of DNA segments (indels are together with substitutions the major mutational processes that generate genetic variation. Here we focus on recent DNA insertions and deletions in protein coding regions of the human genome to investigate selective constraints on indels in protein evolution. Results Frequencies of inserted and deleted amino acids differ from background amino acid frequencies in the human proteome. Small amino acids are overrepresented, while hydrophobic, aliphatic and aromatic amino acids are strongly suppressed. Indels are found to be preferentially located in protein regions that do not form important structural domains. Amino acid insertion and deletion rates in genes associated with elementary biochemical reactions (e. g. catalytic activity, ligase activity, electron transport, or catabolic process are lower compared to those in other genes and are therefore subject to stronger purifying selection. Conclusion Our analysis indicates that indels in human protein coding regions are subject to distinct levels of selective pressure with regard to their structural impact on the amino acid sequence, as well as to general properties of the genes they are located in. These findings confirm that many commonly accepted characteristics of selective constraints for substitutions are also valid for amino acid insertions and deletions.

  11. DNA Stratigraphy reveals Holocene Haptophyte Population Dynamics and Sources of Alkenones at the Species Level

    Science.gov (United States)

    Coolen, M. J. L.

    2003-04-01

    Lipid biomarkers provide information on the ancient microbiota of aquatic systems and, hence, can be used to reconstruct the palaeoenvironment. However, these biomarkers are often not very specific. The ultimate biomarkers would be ribosomal RNA (rRNA) genes, which are widely applied in phylogenetic studies. However, it was generally thought that DNA is rapidly degraded soon after burial within sediments. Using advanced molecular biological techniques we showed that DNA of planktonic photosynthetic bacteria and algae as well as zooplankton survived degradation in Holocene anoxic, sulfidic sediments of the permanently stratified, saline Ace Lake (Vestfold Hills, Antarctica). Alkenones were predominant biomarkers in the sediment layers and their source organisms (haptophytes) were identified based on the analysis of fossil 18S rRNA genes. The quantitative comparison of the individual 18S rRNA genes and the various alkenones allowed for the first time the identification of fossil organisms and their biomarkers at the species level. It was shown that all six identified haptophyte phylotypes are closer related to the alkenone-producing haptophyte genus Isochrysis than to the genera Emiliania and Gephyrocapsa. Subtle changes in the alkenone and alkenoate composition correlated with changes in the quantitative phylotype composition of haptophytes. Implications for alkenone stratigraphy will be discussed.

  12. Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data

    Directory of Open Access Journals (Sweden)

    Biecek Przemysław

    2011-06-01

    Full Text Available Abstract Background Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context. Results We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'. Conclusions Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations.

  13. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure.

    Science.gov (United States)

    Tabashnik, Bruce E; Fabrick, Jeffrey A; Henderson, Scottie; Biggs, Robert W; Yafuso, Christine M; Nyboer, Megan E; Manhardt, Nancy M; Coughlin, Laura A; Sollome, James; Carrière, Yves; Dennehy, Timothy J; Morin, Shai

    2006-10-01

    Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.

  14. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants.

    Directory of Open Access Journals (Sweden)

    Nadin Rohland

    Full Text Available To elucidate the history of living and extinct elephantids, we generated 39,763 bp of aligned nuclear DNA sequence across 375 loci for African savanna elephant, African forest elephant, Asian elephant, the extinct American mastodon, and the woolly mammoth. Our data establish that the Asian elephant is the closest living relative of the extinct mammoth in the nuclear genome, extending previous findings from mitochondrial DNA analyses. We also find that savanna and forest elephants, which some have argued are the same species, are as or more divergent in the nuclear genome as mammoths and Asian elephants, which are considered to be distinct genera, thus resolving a long-standing debate about the appropriate taxonomic classification of the African elephants. Finally, we document a much larger effective population size in forest elephants compared with the other elephantid taxa, likely reflecting species differences in ancient geographic structure and range and differences in life history traits such as variance in male reproductive success.

  15. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA.

    Science.gov (United States)

    Gutiérrez-López, Nidia; Ovando-Medina, Isidro; Salvador-Figueroa, Miguel; Molina-Freaner, Francisco; Avendaño-Arrazate, Carlos H; Vázquez-Ovando, Alfredo

    2016-01-01

    Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations) and genetic origin (based on a previous study). We identified six polymorphic sites, including five insertion/deletion (indels) types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038). Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80) with 10 and 12 haplotypes, respectively. The common haplotype (H1) for both networks included cacao trees from all geographic locations (geographic approach) and four genetic groups (genetic approach). This common haplotype (ancient) derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (F ST = 0) and SAMOVA (F ST = 0.04393) results. One population (Mazatán) showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding.

  16. Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica.

    Science.gov (United States)

    Cavers, S; Navarro, C; Lowe, A J

    2003-06-01

    Spanish Cedar (Cedrela odorata L.) is a globally important timber species which has been severely exploited in Mesoamerica for over 200 years. Using polymerase chain reaction-restriction fragment length polymorphisms, its chloroplast (cp) DNA phylogeography was studied in Mesoamerica with samples from 29 populations in six countries. Five haplotypes were characterized, phylogenetically grouped into three lineages (Northern, Central and Southern). Spatial analysis of ordered genetic distance confirmed deviation from a pattern of isolation by distance. The geographically proximate Northern and Central cpDNA lineages were genetically the most differentiated, with the Southern lineage appearing between them on a minimum spanning tree. However, populations possessing Southern lineage haplotypes occupy distinct moist habitats, in contrast to populations possessing Northern and Central lineage haplotypes which occupy drier and more seasonal habitats. Given the known colonization of the proto-Mesoamerican peninsula by South American flora and fauna prior to the formation of the Isthmus of Panama, it seems most likely that the observed population structure in C. odorata results from repeated colonization of Mesoamerica from South American source populations. Such a model would imply an ancient, pre-Isthmian colonization of a dry-adapted type (possessing the Northern lineage or a prototype thereof), with a secondary colonization via the land bridge. Following this, a more recent (possibly post-Pleistocene) expansion of moist-adapted types possessing the Southern lineage from the south fits the known vegetation history of the region.

  17. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA

    Directory of Open Access Journals (Sweden)

    Nidia Gutiérrez-López

    2016-04-01

    Full Text Available Cacao trees have been cultivated in Mesoamerica for at least 4,000 years. In this study, we analyzed sequence variation in the chloroplast DNA trnH-psbA intergenic spacer from 28 cacao trees from different farms in the Soconusco region in southern Mexico. Genetic relationships were established by two analysis approaches based on geographic origin (five populations and genetic origin (based on a previous study. We identified six polymorphic sites, including five insertion/deletion (indels types and one transversion. The overall nucleotide diversity was low for both approaches (geographic = 0.0032 and genetic = 0.0038. Conversely, we obtained moderate to high haplotype diversity (0.66 and 0.80 with 10 and 12 haplotypes, respectively. The common haplotype (H1 for both networks included cacao trees from all geographic locations (geographic approach and four genetic groups (genetic approach. This common haplotype (ancient derived a set of intermediate haplotypes and singletons interconnected by one or two mutational steps, which suggested directional selection and event purification from the expansion of narrow populations. Cacao trees from Soconusco region were grouped into one cluster without any evidence of subclustering based on AMOVA (FST = 0 and SAMOVA (FST = 0.04393 results. One population (Mazatán showed a high haplotype frequency; thus, this population could be considered an important reservoir of genetic material. The indels located in the trnH-psbA intergenic spacer of cacao trees could be useful as markers for the development of DNA barcoding.

  18. The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea.

    Directory of Open Access Journals (Sweden)

    Francesca Leasi

    Full Text Available Meiofauna represent one of the most abundant and diverse communities in marine benthic ecosystems. However, an accurate assessment of diversity at the level of species has been and remains challenging for these microscopic organisms. Therefore, for many taxa, especially the soft body forms such as nemerteans, which often lack clear diagnostic morphological traits, DNA taxonomy is an effective means to assess species diversity. Morphological taxonomy of Nemertea is well documented as complicated by scarcity of unambiguous character states and compromised by diagnoses of a majority of species (and higher clades being inadequate or based on ambiguous characters and character states. Therefore, recent studies have advocated for the primacy of molecular tools to solve the taxonomy of this group. DNA taxonomy uncovers possible hidden cryptic species, provides a coherent means to systematize taxa in definite clades, and also reveals possible biogeographic patterns. Here, we analyze diversity of nemertean species by considering the barcode region of the mitochondrial gene Cytochrome Oxidase subunit I (COI and different species delineation approaches in order to infer evolutionarily significant units. In the aim to uncover actual diversity of meiofaunal nemerteans across different sites in Central America, COI sequences were obtained for specimens assigned here to the genera Cephalothrix, Ototyphlonemertes, and Tetrastemma-like worms, each commonly encountered in our sampling. Additional genetic, taxonomic, and geographic data of other specimens belonging to these genera were added from GenBank. Results are consistent across different DNA taxonomy approaches, and revealed (i the presence of several hidden cryptic species and (ii numerous potential misidentifications due to traditional taxonomy. (iii We additionally test a possible biogeographic pattern of taxonomic units revealed by this study, and, except for a few cases, the putative species seem not

  19. The necessity of DNA taxonomy to reveal cryptic diversity and spatial distribution of meiofauna, with a focus on Nemertea.

    Science.gov (United States)

    Leasi, Francesca; Norenburg, Jon L

    2014-01-01

    Meiofauna represent one of the most abundant and diverse communities in marine benthic ecosystems. However, an accurate assessment of diversity at the level of species has been and remains challenging for these microscopic organisms. Therefore, for many taxa, especially the soft body forms such as nemerteans, which often lack clear diagnostic morphological traits, DNA taxonomy is an effective means to assess species diversity. Morphological taxonomy of Nemertea is well documented as complicated by scarcity of unambiguous character states and compromised by diagnoses of a majority of species (and higher clades) being inadequate or based on ambiguous characters and character states. Therefore, recent studies have advocated for the primacy of molecular tools to solve the taxonomy of this group. DNA taxonomy uncovers possible hidden cryptic species, provides a coherent means to systematize taxa in definite clades, and also reveals possible biogeographic patterns. Here, we analyze diversity of nemertean species by considering the barcode region of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and different species delineation approaches in order to infer evolutionarily significant units. In the aim to uncover actual diversity of meiofaunal nemerteans across different sites in Central America, COI sequences were obtained for specimens assigned here to the genera Cephalothrix, Ototyphlonemertes, and Tetrastemma-like worms, each commonly encountered in our sampling. Additional genetic, taxonomic, and geographic data of other specimens belonging to these genera were added from GenBank. Results are consistent across different DNA taxonomy approaches, and revealed (i) the presence of several hidden cryptic species and (ii) numerous potential misidentifications due to traditional taxonomy. (iii) We additionally test a possible biogeographic pattern of taxonomic units revealed by this study, and, except for a few cases, the putative species seem not to be widely

  20. Pattern analysis approach reveals restriction enzyme cutting abnormalities and other cDNA library construction artifacts using raw EST data

    Directory of Open Access Journals (Sweden)

    Zhou Sun

    2012-05-01

    or filtered by AFST. Conclusions cDNA terminal pattern analysis, as implemented in the AFST software tool, can be utilized to reveal wet-lab errors such as restriction enzyme cutting abnormities and chimeric EST sequences, detect various data abnormalities embedded in existing Sanger EST datasets, improve the accuracy of identifying and extracting bona fide cDNA inserts from raw ESTs, and therefore greatly benefit downstream EST-based applications.

  1. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).

    Science.gov (United States)

    He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei

    2015-04-18

    Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions

  2. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia.

    Science.gov (United States)

    Low, V L; Lim, P E; Chen, C D; Lim, Y A L; Tan, T K; Norma-Rashid, Y; Lee, H L; Sofian-Azirun, M

    2014-06-01

    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus.

  3. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads

    Science.gov (United States)

    Iwaki, M.; Wickham, S. F.; Ikezaki, K.; Yanagida, T.; Shih, W. M.

    2016-01-01

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes. PMID:27941751

  4. Archived DNA reveals fisheries and climate induced collapse of a major fishery.

    Science.gov (United States)

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-22

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  5. The origin of Mosuo people as revealed by mtDNA and Y chromosome variation

    Institute of Scientific and Technical Information of China (English)

    WEN; Bo; SHI; Hong; REN; Ling; XI; Huifeng; LI; Kaiyuan; ZHA

    2004-01-01

    The Mosuo, living in the Lugu Lake area in northwest Yunnan Province, China, is the only matriarchal population in China. The Mosuo was officially identified as Naxi nationality although its relationship with Naxi remains controversial. We studied the genetic relationship between the Mosuo and five other ethnic groups currently residing in northwest Yunnan, i.e. Naxi, Tibetan, Bai, Yi and Pumi, by typing the genetic variations in mtDNA HVS1 and 21 Y chromosome markers (13 SNPs & 8 STR markers). We showed that the maternal lineages of the Mosuo bear the strongest resemblance with those found in Naxi while its paternal lineages are more similar to those that are prevalent in Yunnan Tibetan. The marked difference between paternal and maternal lineages may be attributable to the genetic history, matriarchal structure, and visiting marriage.

  6. Radiocarbon-dating and ancient DNA reveal rapid replacement of extinct prehistoric penguins

    Science.gov (United States)

    Rawlence, Nicolas J.; Perry, George L. W.; Smith, Ian W. G.; Scofield, R. Paul; Tennyson, Alan J. D.; Matisoo-Smith, Elizabeth A.; Boessenkool, Sanne; Austin, Jeremy J.; Waters, Jonathan M.

    2015-03-01

    Prehistoric faunal extinctions dramatically reshaped biological assemblages around the world. However, the timing of such biotic shifts is often obscured by the fragmentary nature and limited temporal resolution of fossil records. We use radiocarbon-dating and ancient-DNA analysis of prehistoric (ca A.D. 1450-1834) Megadyptes penguin specimens to assess the time-frame of biological turnover in coastal New Zealand following human settlement. These data suggest that the final extirpation of the endemic Megadyptes waitaha, and subsequent replacement by the previously sub-Antarctic-limited Megadyptes antipodes, likely occurred within a narrow temporal window (e.g. a century or less). This transition represents one of the most rapid prehistoric faunal turnover events documented, and is likely linked to human demographic and cultural transitions during the 15th Century. Our results suggest that anthropogenic forces can trigger rapid biogeographic shifts.

  7. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant

    Science.gov (United States)

    Kazama, Makoto; Ogiwara, Sanae; Makiuchi, Takashi; Yoshida, Kazuhiro; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; Tachibana, Hiroshi

    2017-01-01

    The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells. PMID:28287148

  8. Genetic diversity of Colombian sylvatic Trypanosoma cruzi isolates revealed by the ribosomal DNA

    Directory of Open Access Journals (Sweden)

    Cuervo Patricia

    2002-01-01

    Full Text Available American trypanosomiasis is a common zoonosis in Colombia and Trypanosoma cruzi presents a wide distribution throughout the country. Although some studies based on enzyme electrophoresis profiles have described the population structure of the parasite, very few molecular analyses of genotipic markers have been conducted using Colombian strains. In this study, we amplified the non-transcribed spacer of the mini-gene by PCR, typing the isolates as T. cruzi I, T. cruzi zymodeme 3 or T. rangeli. In addition, the internal transcribed spacers of the ribosomal gene concomitant with the 5.8S rDNA were amplified and submitted to restriction fragment polymorphism analysis. The profiles were analyzed by a numerical methodology generating a phenetic dendrogram that shows heterogeneity among the T. cruzi isolates. This finding suggests a relationship between the complexity of the sylvatic transmission cycle in Colombia and the diversity of the sylvan parasites.

  9. Meta-Analysis of Mitochondrial DNA Reveals Several Population Bottlenecks during Worldwide Migrations of Cattle

    Directory of Open Access Journals (Sweden)

    Johannes A. Lenstra

    2014-03-01

    Full Text Available Several studies have investigated the differentiation of mitochondrial DNA in Eurasian, African and American cattle as well as archaeological bovine material. A global survey of these studies shows that haplogroup distributions are more stable in time than in space. All major migrations of cattle have shifted the haplogroup distributions considerably with a reduction of the number of haplogroups and/or an expansion of haplotypes that are rare or absent in the ancestral populations. The most extreme case is the almost exclusive colonization of Africa by the T1 haplogroup, which is rare in Southwest Asian cattle. In contrast, ancient samples invariably show continuity with present-day cattle from the same location. These findings indicate strong maternal founder effects followed by limited maternal gene flow when new territories are colonized. However, effects of adaptation to new environments may also play a role.

  10. Archived DNA reveals fisheries and climate induced collapse of a major fishery

    Science.gov (United States)

    Bonanomi, Sara; Pellissier, Loïc; Therkildsen, Nina Overgaard; Hedeholm, Rasmus Berg; Retzel, Anja; Meldrup, Dorte; Olsen, Steffen Malskær; Nielsen, Anders; Pampoulie, Christophe; Hemmer-Hansen, Jakob; Wisz, Mary Susanne; Grønkjær, Peter; Nielsen, Einar Eg

    2015-10-01

    Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s. Our results highlight the relevance of fisheries management at the level of genetic populations under future scenarios of climate change.

  11. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    Science.gov (United States)

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  12. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses

    DEFF Research Database (Denmark)

    Lira, Jaime; Linderholm, Anna; Olaria, Carmen

    2010-01-01

    Multiple geographical regions have been proposed for the domestication of Equus caballus. It has been suggested, based on zooarchaeological and genetic analyses that wild horses from the Iberian Peninsula were involved in the process, and the overrepresentation of mitochondrial D1 cluster in modern...... Iberian horses supports this suggestion. To test this hypothesis, we analysed mitochondrial DNA from 22 ancient Iberian horse remains belonging to the Neolithic, the Bronze Age and the Middle Ages, against previously published sequences. Only the medieval Iberian sequence appeared in the D1 group....... Neolithic and Bronze Age sequences grouped in other clusters, one of which (Lusitano group C) is exclusively represented by modern horses of Iberian origin. Moreover, Bronze Age Iberian sequences displayed the lowest nucleotide diversity values when compared with modern horses, ancient wild horses and other...

  13. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes.

    Directory of Open Access Journals (Sweden)

    Yupu Diao

    Full Text Available Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs. For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145-200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of

  14. cDNA microarray reveals signaling pathways involved in hormones expression of human pituitary.

    Science.gov (United States)

    Ma, Yue-Yun; Qi, Xiao-Fei; Song, Shao-Jun; Zhao, Zhan-Yong; Zhu, Zhi-Dong; Qi, Jia; Zhang, Xin; Xiao, Hua-Sheng; Teng, Yun; Han, Ze-Guang

    2005-09-01

    Pituitary, a master gland of neuroendocrine system, secretes hormones that orchestrate many physiological processes, under the regulation of multiple signaling pathways. To investigate the genes involved in hormones expression of human pituitary, homemade cDNA microarray containing 14,800 human genes/ESTs were used to profile the gene expression in both fetal and adult pituitaries. Seven hundred and twelve known genes changed over 2-fold between the both tissues. Of which, 23 genes were changed with hormones expression in aging were confirmed by RT-PCR, not only the known regulators such as Pit1, GATA4, ESRRA, GABA-A, and EMK, but also LOC55884, DUSP3, PNN, and RCL, which had not been reported to be involved in the hormones expression. Correspondingly, the mRNAs of GH, PRL, POMC, TSH-beta, FSH-beta, and LH-beta, was increased as much as 6- to 20-fold in adult pituitary than those in fetal pituitary, by real-time quantitative RT-PCR assay. In addition, the mRNAs of signaling pathways, such as cAMP-PKA-CREB, PI3K-Akt, and PKA-ERK were further investigated. Of them, it was only cAMP-PKA-CREB pathway, but not PI3K-Akt and PKA-ERK have the same expressing pattern as hormones. It suggested that cDNA microarray is highly advantages to profile the differential expressed genes that were involved in hormones expression of human pituitary, but it might ignore some responding proteins regulated posttranscriptionally.

  15. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Michelle Moore

    Full Text Available BACKGROUND: Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated. METHODS AND FINDINGS: ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades. CONCLUSIONS: Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa.

  16. Dual African Origins of Global Aedes aegypti s.l. Populations Revealed by Mitochondrial DNA

    Science.gov (United States)

    Moore, Michelle; Sylla, Massamba; Goss, Laura; Burugu, Marion Warigia; Sang, Rosemary; Kamau, Luna W.; Kenya, Eucharia Unoma; Bosio, Chris; Munoz, Maria de Lourdes; Sharakova, Maria; Black, William Cormack

    2013-01-01

    Background Aedes aegypti is the primary global vector to humans of yellow fever and dengue flaviviruses. Over the past 50 years, many population genetic studies have documented large genetic differences among global populations of this species. These studies initially used morphological polymorphisms, followed later by allozymes, and most recently various molecular genetic markers including microsatellites and mitochondrial markers. In particular, since 2000, fourteen publications and four unpublished datasets have used sequence data from the NADH dehydrogenase subunit 4 mitochondrial gene to compare Ae. aegypti collections and collectively 95 unique mtDNA haplotypes have been found. Phylogenetic analyses in these many studies consistently resolved two clades but no comprehensive study of mtDNA haplotypes have been made in Africa, the continent in which the species originated. Methods and Findings ND4 haplotypes were sequenced in 426 Ae. aegypti s.l. from Senegal, West Africa and Kenya, East Africa. In Senegal 15 and in Kenya 7 new haplotypes were discovered. When added to the 95 published haplotypes and including 6 African Aedes species as outgroups, phylogenetic analyses showed that all but one Senegal haplotype occurred in a basal clade while most East African haplotypes occurred in a second clade arising from the basal clade. Globally distributed haplotypes occurred in both clades demonstrating that populations outside Africa consist of mixtures of mosquitoes from both clades. Conclusions Populations of Ae. aegypti outside Africa consist of mosquitoes arising from one of two ancestral clades. One clade is basal and primarily associated with West Africa while the second arises from the first and contains primarily mosquitoes from East Africa PMID:23638196

  17. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity.

    Directory of Open Access Journals (Sweden)

    Saeid Naderi

    Full Text Available BACKGROUND: From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. METHODOLOGY/PRINCIPAL FINDINGS: The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent. These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals. The large-scale distribution of other haplogroups (except one, may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. CONCLUSIONS/SIGNIFICANCE: We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of

  18. Interspecies comparative genome hybridization and interspecies representational difference analysis reveal gross DNA differences between humans and great apes.

    Science.gov (United States)

    Toder, R; Xia, Y; Bausch, E

    1998-09-01

    Comparative chromosome G-/R-banding, comparative gene mapping and chromosome painting techniques have demonstrated that only few chromosomal rearrangements occurred during great ape and human evolution. Interspecies comparative genome hybridization (CGH), used here in this study, between human, gorilla and pygmy chimpanzee revealed species-specific regions in all three species. In contrast to the human, a far more complex distribution of species-specific blocks was detected with CGH in gorilla and pygmy chimpanzee. Most of these blocks coincide with already described heterochromatic regions on gorilla and chimpanzee chromosomes. Representational difference analysis (RDA) was used to subtract the complex genome of gorilla against human in order to enrich gorilla-specific DNA sequences. Gorilla-specific clones isolated with this technique revealed a 32-bp repeat unit. These clones were mapped by fluorescence in situ hybridization (FISH) to the telomeric regions of gorilla chromosomes that had been shown by interspecies CGH to contain species-specific sequences.

  19. Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics.

    Science.gov (United States)

    Ottoni, Claudio; Flink, Linus Girdland; Evin, Allowen; Geörg, Christina; De Cupere, Bea; Van Neer, Wim; Bartosiewicz, László; Linderholm, Anna; Barnett, Ross; Peters, Joris; Decorte, Ronny; Waelkens, Marc; Vanderheyden, Nancy; Ricaut, François-Xavier; Cakirlar, Canan; Cevik, Ozlem; Hoelzel, A Rus; Mashkour, Marjan; Karimlu, Azadeh Fatemeh Mohaseb; Seno, Shiva Sheikhi; Daujat, Julie; Brock, Fiona; Pinhasi, Ron; Hongo, Hitomi; Perez-Enciso, Miguel; Rasmussen, Morten; Frantz, Laurent; Megens, Hendrik-Jan; Crooijmans, Richard; Groenen, Martien; Arbuckle, Benjamin; Benecke, Nobert; Vidarsdottir, Una Strand; Burger, Joachim; Cucchi, Thomas; Dobney, Keith; Larson, Greger

    2013-04-01

    Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ~8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.

  20. Gene admixture in ethnic populations in upper part of Silk Road revealed by mtDNA polymorphism

    Institute of Scientific and Technical Information of China (English)

    YANG LiuQi; TAN SiJie; YU HaiJing; ZHENG BingRong; QIAO EnFa; DONG YongLi; ZAN RuiGuang; XIAO ChunJie

    2008-01-01

    To evaluate the gene admixture on the current genetic landscape in Gansu Corridor (GC) in China, the upper part of the ancient Silk Road which connects the Eastern and Central Asia, we examined mitochondrial DNA (mtDNA) polymorphisms of five ethnic populations in this study. Using PCR-RFLP and sequencing, we analyzed mtDNA haplotypes in 242 unrelated samples in three ethnic populations from the GC region and two ethnic populations from the adjacent Xinjiang Uygur Autonomous Region of China. We analyzed the data in comparison with the previously reported data from Eastern, Central and Western Asia and Europe. We found that both European-specific haplogroups and Eastern Asian-specific haplogroups exist in the Gansu Corridor populations, while a modest matrilineal gene flow from Europeans to this region was revealed. The Gansu Corridor populations are genetically located between Eastern Asians and Central Asians, both of who contributed significantly to the maternal lineages of the GC populations. This study made the landscape of the gene flow and admixture along the Silk Road from Europe, through Central Asia, to the upper part of the Silk Road more complete.

  1. Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics

    Science.gov (United States)

    Ottoni, Claudio; Girdland Flink, Linus; Evin, Allowen; Geörg, Christina; De Cupere, Bea; Van Neer, Wim; Bartosiewicz, László; Linderholm, Anna; Barnett, Ross; Peters, Joris; Decorte, Ronny; Waelkens, Marc; Vanderheyden, Nancy; Ricaut, François-Xavier; Çakırlar, Canan; Çevik, Özlem; Hoelzel, A. Rus; Mashkour, Marjan; Mohaseb Karimlu, Azadeh Fatemeh; Sheikhi Seno, Shiva; Daujat, Julie; Brock, Fiona; Pinhasi, Ron; Hongo, Hitomi; Perez-Enciso, Miguel; Rasmussen, Morten; Frantz, Laurent; Megens, Hendrik-Jan; Crooijmans, Richard; Groenen, Martien; Arbuckle, Benjamin; Benecke, Nobert; Strand Vidarsdottir, Una; Burger, Joachim; Cucchi, Thomas; Dobney, Keith; Larson, Greger

    2013-01-01

    Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages. PMID:23180578

  2. DNA methylation profiling at single-base resolution reveals gestational folic acid supplementation influences the epigenome of mouse offspring cerebellum

    Directory of Open Access Journals (Sweden)

    Subit eBarua

    2016-05-01

    Full Text Available It is becoming increasingly more evident that lifestyle, environmental factors, and maternal nutrition during gestation can influence the epigenome of the developing fetus and thus modulate the physiological outcome. Variations in the intake of maternal nutrients affecting one-carbon metabolism may influence brain development and exert long-term effects on the health of the progeny. In this study, we investigated whether supplementation with high maternal folic acid during gestation alters DNA methylation and gene expression in the cerebellum of mouse offspring. We used reduced representation bisulfite sequencing to analyze the DNA methylation profile at the single-base resolution level. The genome-wide DNA methylation analysis revealed that supplementation with higher maternal folic acid resulted in distinct methylation patterns (P < 0.05 of CpG and non-CpG sites in the cerebellum of offspring. Such variations of methylation and gene expression in the cerebellum of offspring were highly sex-specific, including several genes of the neuronal pathways. These findings demonstrate that alterations in the level of maternal folic acid during gestation can influence methylation and gene expression in the cerebellum of offspring. Such changes in the offspring epigenome may alter neurodevelopment and influence the functional outcome of neurologic and psychiatric diseases.

  3. Mitochondrial DNA reveals unexpected diversity of chubs (genus Squalius; Cypriniformes, Actinopterygii in the Adriatic basin

    Directory of Open Access Journals (Sweden)

    Ivana Buj

    2015-12-01

    Full Text Available The genus Squalius comprises more than 40 species inhabiting various freshwater habitats. They are distributed in Europe and Asia, with particularly high diversity recorded in the Mediterranean area. The taxonomic status of many populations is still matter of debate. With this investigation we aimed to help in resolving taxonomic uncertainties of the chubs distributed in the Adriatic basin in Croatia and Bosnia and Herzegovina. Phylogenetic reconstruction based on mitochondrial gene for cytochrome b revealed high diversity of chubs in the investigated area. Two evolutionary independent lineages are revealed: the first one comprising species Sq. svallize, Sq. tenellus, Sq. illyricus and Sq. zrmanjae; whereas the second lineage corresponds with Sq. squalus. High intraspecific structuring of Sq. squalus was detected, implying necessity of taxonomic revision of that species. Based on the obtained results, most important aspects of the evolutionary history of the genus Squalius in the Adriatic basin will be discussed and evolutionary significant units identified.

  4. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    OpenAIRE

    2010-01-01

    BACKGROUND: Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g...

  5. Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations.

    Directory of Open Access Journals (Sweden)

    Changqing Zhou

    Full Text Available BACKGROUND: The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years migration of the western tarnished plant bug into agricultural habitats across the western United States. CONCLUSIONS/SIGNIFICANCE: This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study.

  6. Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis.

    Science.gov (United States)

    Grzybowski, Tomasz; Malyarchuk, Boris A; Derenko, Miroslava V; Perkova, Maria A; Bednarek, Jarosław; Woźniak, Marcin

    2007-06-01

    Mitochondrial DNA sequence variation was examined by the control region sequencing (HVS I and HVS II) and RFLP analysis of haplogroup-diagnostic coding region sites in 570 individuals from four regional populations of Poles and two Russian groups from northwestern part of the country. Additionally, sequences of complete mitochondrial genomes representing K1a1b1a subclade in Polish and Polish Roma populations have been determined. Haplogroup frequency patterns revealed in Poles and Russians are similar to those characteristic of other Europeans. However, there are several features of Slavic mtDNA pools seen on the level of regional populations which are helpful in the understanding of complex interactions of the Eastern and Western Slavic populations with other European groups. One of the most important is the presence of subhaplogroups U5b1b1, D5, Z1 and U8a with simultaneous scarcity of haplogroup K in populations of northwestern Russia suggesting the participation of Finno-Ugrian tribes in the formation of mtDNA pools of Russians from this region. The results of genetic structure analyses suggest that Russians from Velikii Novgorod area (northwestern Russia) and Poles from Suwalszczyzna (northeastern Poland) differ from all remaining Polish and Russian samples. Simultaneously, northwestern Russians and northeastern Poles bear some similarities to Baltic (Latvians) and Finno-Ugrian groups (Estonians) of northeastern Europe, especially on the level of U5 haplogroup frequencies. The occurrence of K1a1b1a subcluster in Poles and Polish Roma is one of the first direct proofs of the presence of Ashkenazi-specific mtDNA lineages in non-Jewish European populations.

  7. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Science.gov (United States)

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across

  8. Ancient DNA reveals prehistoric gene-flow from siberia in the complex human population history of North East Europe.

    Directory of Open Access Journals (Sweden)

    Clio Der Sarkissian

    Full Text Available North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present. We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a, a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population

  9. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.

    Science.gov (United States)

    Geisen, S; Laros, I; Vizcaíno, A; Bonkowski, M; de Groot, G A

    2015-09-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities.

  10. Comprehensive SNP scan of DNA repair and DNA damage response genes reveal multiple susceptibility loci conferring risk to tobacco associated leukoplakia and oral cancer.

    Science.gov (United States)

    Mondal, Pinaki; Datta, Sayantan; Maiti, Guru Prasad; Baral, Aradhita; Jha, Ganga Nath; Panda, Chinmay Kumar; Chowdhury, Shantanu; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2013-01-01

    Polymorphic variants of DNA repair and damage response genes play major role in carcinogenesis. These variants are suspected as predisposition factors to Oral Squamous Cell Carcinoma (OSCC). For identification of susceptible variants affecting OSCC development in Indian population, the "maximally informative" method of SNP selection from HapMap data to non-HapMap populations was applied. Three hundred twenty-five SNPs from 11 key genes involved in double strand break repair, mismatch repair and DNA damage response pathways were genotyped on a total of 373 OSCC, 253 leukoplakia and 535 unrelated control individuals. The significantly associated SNPs were validated in an additional cohort of 144 OSCC patients and 160 controls. The rs12515548 of MSH3 showed significant association with OSCC both in the discovery and validation phases (discovery P-value: 1.43E-05, replication P-value: 4.84E-03). Two SNPs (rs12360870 of MRE11A, P-value: 2.37E-07 and rs7003908 of PRKDC, P-value: 7.99E-05) were found to be significantly associated only with leukoplakia. Stratification of subjects based on amount of tobacco consumption identified SNPs that were associated with either high or low tobacco exposed group. The study reveals a synergism between associated SNPs and lifestyle factors in predisposition to OSCC and leukoplakia.

  11. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    Directory of Open Access Journals (Sweden)

    Karyna eRosario

    2015-07-01

    Full Text Available Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA viruses that encode a conserved replication initiator protein (Rep in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs, which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.

  12. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats - Implications for Conservation.

    Directory of Open Access Journals (Sweden)

    Berihun Gebremedhin

    Full Text Available Human population expansion and associated degradation of the habitat of many wildlife species cause loss of biodiversity and species extinctions. The small Simen Mountains National Park in Ethiopia is one of the last strongholds for the preservation of a number of afro-alpine mammals, plants and birds, and it is home to the rare endemic Walia ibex, Capra walie. The narrow distribution range of this species as well as potential competition for resources with livestock, especially with domestic goat, Capra hircus, may compromise its future survival. Based on a curated afro-alpine taxonomic reference library constructed for plant taxon identification, we investigated the diet of the Walia ibex and addressed the dietary overlap with domestic goat using DNA metabarcoding of faecal samples. Faeces of both species were collected from different localities in the National Park. We show that both species are browsers, with forbs, shrubs and trees comprising the largest proportion of their diet, supplemented by grasses. There was a considerable overlap in dietary preferences. Several of the preferred diet items of the Walia ibex (Alchemilla sp., Hypericum revolutum, Erica arborea and Rumex sp. were also among the most preferred diet items of the domestic goat. These results indicate that there is potential for competition between the two species, especially during the dry season, when resources are limited. Our findings, in combination with the expected increase in domestic herbivores, suggest that management plans should consider the potential threat posed by domestic goats to ensure future survival of the endangered Walia ibex.

  13. Singular value decomposition of 3-D DNA melting curves reveals complexity in the melting process.

    Science.gov (United States)

    Haq, I; Chowdhry, B Z; Chaires, J B

    1997-01-01

    The thermal denaturation of synthetic deoxypolynucleotides of defined sequence was studied by a three dimensional melting technique in which complete UV absorbance spectra were recorded as a function of temperature. The results of such an experiment defined a surface bounded by absorbance, wavelength, and temperature. A matrix of the experimental data was built, and analyzed by the method of singular value decomposition (SVD). SVD provides a rigorous, model-free analytical tool for evaluating the number of significant spectral species required to account for the changes in UV absorbance accompanying the duplex--to--single strand transition. For all of the polynucleotides studied (Poly dA-Poly dT; [Poly (dAdT)]2; Poly dG-Poly dC; [Poly(dGdC)]2), SVD indicated the existence of at least 4-5 significant spectral species. The DNA melting transition for even these simple repeating sequences cannot, therefore, be a simple two-state process. The basis spectra obtained by SVD analysis were found to be unique for each polynucleotide studied. Differential scanning calorimetry was used to obtain model free estimates for the enthalpy of melting for the polynucleotides studied, with results in good agreement with previously published values.

  14. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA.

    Science.gov (United States)

    Larson, Greger; Liu, Ranran; Zhao, Xingbo; Yuan, Jing; Fuller, Dorian; Barton, Loukas; Dobney, Keith; Fan, Qipeng; Gu, Zhiliang; Liu, Xiao-Hui; Luo, Yunbing; Lv, Peng; Andersson, Leif; Li, Ning

    2010-04-27

    The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as "cryptic domestication," given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East.

  15. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability.

    Science.gov (United States)

    de Vere, Natasha; Jones, Laura E; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J; Creer, Simon; Ford, Col R

    2017-02-16

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet.

  16. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea.

    Science.gov (United States)

    Pearman, John K; Irigoien, Xabier; Carvalho, Susana

    2016-04-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore-offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  17. Population structure of Purple Sandpipers (Calidris maritima) as revealed by mitochondrial DNA and microsatellites.

    Science.gov (United States)

    LeBlanc, Nathalie M; Stewart, Donald T; Pálsson, Snaebjörn; Elderkin, Mark F; Mittelhauser, Glen; Mockford, Stephen; Paquet, Julie; Robertson, Gregory J; Summers, Ron W; Tudor, Lindsay; Mallory, Mark L

    2017-05-01

    The Purple Sandpiper (Calidris maritima) is a medium-sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.

  18. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  19. Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes: Petroicidae).

    Science.gov (United States)

    Christidis, Les; Irestedt, Martin; Rowe, Dianne; Boles, Walter E; Norman, Janette A

    2011-12-01

    The Australasian robins (Petroicidae) comprise a relatively homogeneous group of small to medium-sized insectivorous birds. Their center of diversity is Australia and New Guinea (40 species) but seven species have managed to colonize geographically distant islands such as Tanimbar, New Britain, New Zealand, New Caledonia, Norfolk Island, Vanuatu, Solomon Islands, Fiji and Samoa. To resolve the evolutionary relationships within the Petroicidae, we here present the results of a phylogenetic analysis of sequence data from two mitochondrial genes (ND2, CO1) and one nuclear intron (β-Fibrinogen intron 5) for all 14 genera and 40 of the 46 currently recognized species. All phylogenetic analyses identified six primary lineages, treated here as subfamilies, within the Petroicidae: (1) Eopsaltriinae comprising Eopsaltria (excluding E. flaviventris), Tregellasia, Peneothello, Melanodryas, Poecilodryas and Heteromyias; (2) Drymodinae comprising Drymodes; (3) Microecinae comprising Microeca, Monachella and Eopsaltria flaviventris; (4) Petroicinae comprising Petroica and Eugerygone; (5) Pachycephalopsinae comprising Pachycephalopsis; and (6) Amalocichlinae comprising Amalocichla. The genera Eopsaltria, Microeca, Peneothello and Poecilodryas were found to be paraphyletic. Based on assessments of phylogenetic branching patterns and/or DNA divergence it also was apparent that Eopsaltriaaustralis, Tregellasialeucops, Melanodryascucullata, Heteromyiasalbispecularis, Drymodessupercilious and Microecaflavigaster may each comprise more than one species. The Petroicidae display a complex biogeographical history involving repeated radiations both within, and across Australia and New Guinea. It appears that dispersal into smaller islands such as New Britain, Tanimbar and the South Pacific has only been undertaken by species with a "flycatcher" body form.

  20. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights

    Science.gov (United States)

    Gómez, Soledad; Castellano, Giancarlo; Mayol, Gemma; Queiros, Ana; Martín-Subero, José I.; Lavarino, Cinzia

    2015-01-01

    Neuroblastoma (NB) is one of the most frequently occurring extracranial solid tumors of childhood (Maris et al., 2007 [1]; Brodeur, 2003 [2]). Probability of cure varies according to patient's age, extent of disease and tumor biology (Maris et al., 2007 [1]; Brodeur, 2003 [2]; Cohn et al., 2009 [3]). However, the etiology of this developmental tumor is unknown. Recent evidence has shown that pediatric solid tumors, including NB, harbor a paucity of recurrent genetic mutations, with a significant proportion of recurrent events converging on epigenetic mechanisms (Cheung et al., 2012 [4]; Molenaar et al., 2012 [5]; Pugh et al., 2013 [6]; Sausen et al., 2013 [7]. We have analyzed the DNA methylome of neuroblastoma using high-density microarrays (Infinium Human Methylation 450k BeadChip) to define the epigenetic landscape of this pediatric tumor and its potential clinicopathological impact. Here, we provide the detail of methods and quality control parameters of the microarray data used for the study. Methylation data has been deposited at NCBI Gene Expression Omnibus data repository, accession number GSE54719; superseries record GSE54721. PMID:26484286

  1. Use of DNA barcoding to reveal species composition of convenience seafood.

    Science.gov (United States)

    Huxley-Jones, Elizabeth; Shaw, Jennifer L A; Fletcher, Carly; Parnell, Juliette; Watts, Phillip C

    2012-04-01

    Increased education of consumers can be an effective tool for conservation of commercially harvested marine species when product labeling is accurate and allows an informed choice. However, generic labeling (e.g., as white fish or surimi) and mislabeling of seafood prevents this and may erode consumer confidence in seafood product labels in general. We used DNA barcoding to identify the species composition of two types of convenience seafood (i.e., products processed for ease of consumption): fish fingers (long pieces of fish covered with bread crumbs or batter, n = 241) and seafood sticks (long pieces of cooked fish, n = 30). In products labeled as either white fish or surimi, four teleost species were present. Less than 1.5% of fish fingers with species-specific information were mislabeled. Results of other studies show substantially more mislabeling (e.g., >25%) of teleost products, which likely reflects the lower economic gains associated with mislabeling of convenience seafood compared with whole fillets. In addition to species identification, seafood product labels should be required to contain information about, for example, harvesting practices, and our data indicate that consumers can have reasonable confidence in the accuracy of the labels of convenience seafood and thus select brands on the basis of information about current fisheries practice.

  2. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses.

    Science.gov (United States)

    Lira, Jaime; Linderholm, Anna; Olaria, Carmen; Brandström Durling, Mikael; Gilbert, M Thomas P; Ellegren, Hans; Willerslev, Eske; Lidén, Kerstin; Arsuaga, Juan Luis; Götherström, Anders

    2010-01-01

    Multiple geographical regions have been proposed for the domestication of Equus caballus. It has been suggested, based on zooarchaeological and genetic analyses that wild horses from the Iberian Peninsula were involved in the process, and the overrepresentation of mitochondrial D1 cluster in modern Iberian horses supports this suggestion. To test this hypothesis, we analysed mitochondrial DNA from 22 ancient Iberian horse remains belonging to the Neolithic, the Bronze Age and the Middle Ages, against previously published sequences. Only the medieval Iberian sequence appeared in the D1 group. Neolithic and Bronze Age sequences grouped in other clusters, one of which (Lusitano group C) is exclusively represented by modern horses of Iberian origin. Moreover, Bronze Age Iberian sequences displayed the lowest nucleotide diversity values when compared with modern horses, ancient wild horses and other ancient domesticates using nonparametric bootstrapping analyses. We conclude that the excessive clustering of Bronze Age horses in the Lusitano group C, the observed nucleotide diversity and the local continuity from wild Neolithic Iberian to modern Iberian horses, could be explained by the use of local wild mares during an early Iberian domestication or restocking event, whereas the D1 group probably was introduced into Iberia in later historical times.

  3. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    Science.gov (United States)

    de Vere, Natasha; Jones, Laura E.; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J.; Creer, Simon; Ford, Col R.

    2017-01-01

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet. PMID:28205632

  4. Crystal structure of the breakage-reunion domain of DNA gyrase.

    Science.gov (United States)

    Morais Cabral, J H; Jackson, A P; Smith, C V; Shikotra, N; Maxwell, A; Liddington, R C

    1997-08-28

    DNA gyrase is a type II DNA topoisomerase from bacteria that introduces supercoils into DNA. It catalyses the breakage of a DNA duplex (the G segment), the passage of another segment (the T segment) through the break, and then the reunification of the break. This activity involves the opening and dosing of a series of molecular 'gates' which is coupled to ATP hydrolysis. Here we present the crystal structure of the 'breakage-reunion' domain of the gyrase at 2.8 A resolution. Comparison of the structure of this 59K (relative molecular mass, 59,000) domain with that of a 92K fragment of yeast topoisomerase II reveals a very different quaternary organization, and we propose that the two structures represent two principal conformations that participate in the enzymatic pathway. The gyrase structure reveals a new dimer contact with a grooved concave surface for binding the G segment and a cluster of conserved charged residues surrounding the active-site tyrosines. It also shows how breakage of the G segment can occur and, together with the topoisomerase II structure, suggests a pathway by which the T segment can be released through the second gate of the enzyme. Mutations that confer resistance to the quinolone antibacterial agents cluster at the new dimer interface, indicating how these drugs might interact with the gyrase-DNA complex.

  5. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding.

    Directory of Open Access Journals (Sweden)

    Eeva M Soininen

    Full Text Available Sympatric species are expected to minimize competition by partitioning resources, especially when these are limited. Herbivores inhabiting the High Arctic in winter are a prime example of a situation where food availability is anticipated to be low, and thus reduced diet overlap is expected. We present here the first assessment of diet overlap of high arctic lemmings during winter based on DNA metabarcoding of feces. In contrast to previous analyses based on microhistology, we found that the diets of both collared (Dicrostonyx groenlandicus and brown lemmings (Lemmus trimucronatus on Bylot Island were dominated by Salix while mosses, which were significantly consumed only by the brown lemming, were a relatively minor food item. The most abundant plant taxon, Cassiope tetragona, which alone composes more than 50% of the available plant biomass, was not detected in feces and can thus be considered to be non-food. Most plant taxa that were identified as food items were consumed in proportion to their availability and none were clearly selected for. The resulting high diet overlap, together with a lack of habitat segregation, indicates a high potential for resource competition between the two lemming species. However, Salix is abundant in the winter habitats of lemmings on Bylot Island and the non-Salix portion of the diets differed between the two species. Also, lemming grazing impact on vegetation during winter in the study area is negligible. Hence, it seems likely that the high potential for resource competition predicted between these two species did not translate into actual competition. This illustrates that even in environments with low primary productivity food resources do not necessarily generate strong competition among herbivores.

  6. African origin for Madagascan dogs revealed by mtDNA analysis

    Science.gov (United States)

    Ardalan, Arman; Oskarsson, Mattias C. R.; van Asch, Barbara; Rabakonandriania, Elisabeth; Savolainen, Peter

    2015-01-01

    Madagascar was one of the last major land masses to be inhabited by humans. It was initially colonized by Austronesian speaking Indonesians 1500–2000 years ago, but subsequent migration from Africa has resulted in approximately equal genetic contributions from Indonesia and Africa, and the material culture has mainly African influences. The dog, along with the pig and the chicken, was part of the Austronesian Neolithic culture, and was furthermore the only domestic animal to accompany humans to every continent in ancient times. To illuminate Madagascan cultural origins and track the initial worldwide dispersal of dogs, we here investigated the ancestry of Madagascan dogs. We analysed mtDNA control region sequences in dogs from Madagascar (n=145) and compared it with that from potential ancestral populations in Island Southeast Asia (n=219) and sub-Saharan Africa (n=493). We found that 90% of the Madagascan dogs carried a haplotype that was also present in sub-Saharan Africa and that the remaining lineages could all be attributed to a likely origin in Africa. By contrast, only 26% of Madagascan dogs shared haplotypes with Indonesian dogs, and one haplotype typical for Austronesian dogs, carried by more than 40% of Indonesian and Polynesian dogs, was absent among the Madagascan dogs. Thus, in contrast to the human population, Madagascan dogs seem to trace their origin entirely from Africa. These results suggest that dogs were not brought to Madagascar by the initial Austronesian speaking colonizers on their transoceanic voyage, but were introduced at a later stage, together with human migration and cultural influence from Africa. PMID:26064658

  7. Intergenic DNA sequences from the human X chromosome reveal high rates of global gene flow

    Directory of Open Access Journals (Sweden)

    Wall Jeffrey D

    2008-11-01

    Full Text Available Abstract Background Despite intensive efforts devoted to collecting human polymorphism data, little is known about the role of gene flow in the ancestry of human populations. This is partly because most analyses have applied one of two simple models of population structure, the island model or the splitting model, which make unrealistic biological assumptions. Results Here, we analyze 98-kb of DNA sequence from 20 independently evolving intergenic regions on the X chromosome in a sample of 90 humans from six globally diverse populations. We employ an isolation-with-migration (IM model, which assumes that populations split and subsequently exchange migrants, to independently estimate effective population sizes and migration rates. While the maximum effective size of modern humans is estimated at ~10,000, individual populations vary substantially in size, with African populations tending to be larger (2,300–9,000 than non-African populations (300–3,300. We estimate mean rates of bidirectional gene flow at 4.8 × 10-4/generation. Bidirectional migration rates are ~5-fold higher among non-African populations (1.5 × 10-3 than among African populations (2.7 × 10-4. Interestingly, because effective sizes and migration rates are inversely related in African and non-African populations, population migration rates are similar within Africa and Eurasia (e.g., global mean Nm = 2.4. Conclusion We conclude that gene flow has played an important role in structuring global human populations and that migration rates should be incorporated as critical parameters in models of human demography.

  8. DNA barcoding reveals limited accuracy of identifications based on folk taxonomy.

    Directory of Open Access Journals (Sweden)

    Hugo J de Boer

    Full Text Available BACKGROUND: The trade of plant roots as traditional medicine is an important source of income for many people around the world. Destructive harvesting practices threaten the existence of some plant species. Harvesters of medicinal roots identify the collected species according to their own folk taxonomies, but once the dried or powdered roots enter the chain of commercialization, accurate identification becomes more challenging. METHODOLOGY: A survey of morphological diversity among four root products traded in the medina of Marrakech was conducted. Fifty-one root samples were selected for molecular identification using DNA barcoding using three markers, trnH-psbA, rpoC1, and ITS. Sequences were searched using BLAST against a tailored reference database of Moroccan medicinal plants and their closest relatives submitted to NCBI GenBank. PRINCIPAL FINDINGS: Combining psbA-trnH, rpoC1, and ITS allowed the majority of the market samples to be identified to species level. Few of the species level barcoding identifications matched the scientific names given in the literature, including the most authoritative and widely cited pharmacopeia. CONCLUSIONS/SIGNIFICANCE: The four root complexes selected from the medicinal plant products traded in Marrakech all comprise more than one species, but not those previously asserted. The findings have major implications for the monitoring of trade in endangered plant species as morphology-based species identifications alone may not be accurate. As a result, trade in certain species may be overestimated, whereas the commercialization of other species may not be recorded at all.

  9. Genetic diversity within Schistosoma haematobium: DNA barcoding reveals two distinct groups.

    Directory of Open Access Journals (Sweden)

    Bonnie L Webster

    Full Text Available BACKGROUND: Schistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the genetic diversity of Schistosoma haematobium, a DNA 'barcoding' study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1 and the NADH-dehydrogenase subunit 1 snad1. The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1 that is predominately made up of parasites from the African mainland and the other (Group 2 that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1 representing 1574 (80% of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands. CONCLUSIONS/SIGNIFICANCE: The high occurrence of the haplotype (H1 suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic 'bottleneck' followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis.

  10. Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes

    Science.gov (United States)

    Pravin, Narayanaperumal; Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2016-11-01

    Eight transition metal complexes were designed to achieve maximum biological efficacy. They were characterized by elemental analysis and various other spectroscopic techniques. The monomeric complexes were found to espouse octahedral geometry and non-electrolytic nature. The DNA interaction propensity of the complexes with calf thymus DNA (CT-DNA), studied at physiological pH by spectrophotometric, spectrofluorometric, cyclic voltammetry, and viscometric techniques revealed intercalation as the possible binding mode. Fascinatingly, the complexes were found to exhibit greater binding strength than that of the free ligands. A strong hypochromism and a slight red shift were exhibited by complex 5 among the other complexes. The intrinsic binding constant values of all the complexes compared to cisplatin reveal that they are excellent metallonucleases than that of cisplatin. The complexes were also shown to reveal displacement of the ethidium bromide, a strong intercalator using fluorescence titrations. Gel electrophoresis was used to divulge the competence of the complexes in cleaving the supercoiled pBR322 plasmid DNA. From the results, it is concluded that the complexes, especially 5, are excellent chemical nucleases in the presence of H2O2. Furthermore, the in vitro antimicrobial screening of the complexes exposes that these complexes are excellent antimicrobial agents. Overall the effect of coligands is evident from the results of all the investigations.

  11. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution.

    Science.gov (United States)

    Mitchell, Kieren J; Llamas, Bastien; Soubrier, Julien; Rawlence, Nicolas J; Worthy, Trevor H; Wood, Jamie; Lee, Michael S Y; Cooper, Alan

    2014-05-23

    The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed that these birds are the closest relatives of the New Zealand kiwi and are distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence toward gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche after the extinction of the dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  12. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  13. A cryptic heterogametic transition revealed by sex-linked DNA markers in Palearctic green toads.

    Science.gov (United States)

    Stöck, M; Croll, D; Dumas, Z; Biollay, S; Wang, J; Perrin, N

    2011-05-01

    In sharp contrast to birds and mammals, most cold-blooded vertebrates have homomorphic (morphologically undifferentiated) sex chromosomes. This might result either from recurrent X-Y recombination (occurring e.g. during occasional events of sex reversal) or from frequent turnovers (during which sex-determining genes are overthrown by new autosomal mutations). Evidence for turnovers is indeed mounting in fish, but very few have so far been documented in amphibians, possibly because of practical difficulties in identifying sex chromosomes. Female heterogamety (ZW) has long been established in Bufo bufo, based on sex reversal and crossing experiments. Here, we investigate a sex-linked marker identified from a laboratory cross between Palearctic green toads (Bufo viridis subgroup). The F(1) offspring produced by a female Bufo balearicus and a male Bufo siculus were phenotypically sexed, displaying an even sex ratio. A sex-specific marker detected in highly reproducible AFLP genotypes was cloned. Sequencing revealed a noncoding, microsatellite-containing fragment. Reamplification and genotyping of families of this and a reciprocal cross showed B. siculus to be male heterogametic (XY) and suggested the same system for B. balearicus. Our results thus reveal a cryptic heterogametic transition within bufonid frogs and help explain patterns of hybrid fitness within the B. viridis subgroup. Turnovers of genetic sex-determination systems may be more frequent in amphibians than previously thought and thus contribute to the prevalence of homomorphic sex chromosomes in this group. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  14. cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii.

    Science.gov (United States)

    Shi, Yaohua; Zheng, Xing; Zhan, Xin; Wang, Aimin; Gu, Zhifeng

    2016-06-01

    Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E ≤ -10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster.

  15. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures

    Science.gov (United States)

    Sagredo, Sandra; de la Cruz, Fernando; Moncalián, Gabriel

    2016-01-01

    During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures. PMID:27027740

  16. Ternary complexes of cobalt cysteinylglycine with histidylserine and histidylphenylalanine-stabilities and DNA cleavage properties

    Indian Academy of Sciences (India)

    Pulimamidi R Reddy; Pallerla Manjula

    2007-11-01

    Interaction of cobalt cysteinylglycine with histidylserine and histidylphenylalanine was investigated in a 1 : 1 : 1 ratio at 35°C and 0.10 mol dm-3 ionic strength. Their stabilities and geometries were determined. Their DNA binding and cleavage properties were investigated. The intrinsic binding constants () for DNA bound 1 and 2 (3.03 × 103 M-1 for 1 and 3.87 × 103 M-1 for 2) were determined. Even though the negative charge on the complexes reduced their affinity for DNA, there was an enhancement of binding through specificity. The degradation of plasmid DNA was achieved by cobalt dipeptide complexes [CoII(CysGly)(HisSer)] (1) and [CoII(CysGly)(HisPhe)] (2). Cleavage experiments revealed that 1 and 2 cleave supercoiled DNA (form I) to nicked circular (form II) through hydrolytic pathway at physiological H. The DNA hydrolytic cleavage rate constants for complexes 1 and 2 were determined to be 0.62 h-1, for 1 and 0.38 h-1 for 2 respectively.

  17. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures.

    Science.gov (United States)

    Sagredo, Sandra; de la Cruz, Fernando; Moncalián, Gabriel

    2016-01-01

    During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.

  18. Studies on DNA Cleaved by Seryl-histidine Dipeptide%丝组二肽对DNA的切割作用的研究

    Institute of Scientific and Technical Information of China (English)

    万荣; 王宁; 赵玉芬

    2001-01-01

    Linear and supercoiled DNA were cleaved by HPLC purified seryl-histidine dipeptide(SH). It was found that the DNA fragments produced by the reaction of SH and DNA could be ligated together by T4 DNA ligase. This result implied that the SH was the first example of the ion-free artificial DNA cleavage agent that could split DNA by hydrolysis mechanism.

  19. Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa).

    Science.gov (United States)

    Bass, David; Cavalier-Smith, Thomas

    2004-11-01

    This study presents the first 18S rRNA multi-library environmental PCR survey of a single protozoan phylum, Cercozoa Cavalier-Smith 1998, from a range of different habitats. Phylogenetic analysis reveals at least nine novel clades within the phylum, several possibly at the level of order or above. Further experiments are described to ascertain the true ecological and geographical distributions of some clades that might be inferred from the tree to be restricted in either or both ways. These results suggest that the diversity of cercozoan taxa may run into thousands of lineages, making it comparable in diversity to the largest better-characterized protozoan phyla, e.g. Ciliophora (ciliates and suctorians) and Foraminifera. New sequences of cultured Spongomonas, Metromonas and Metopion are also presented. In the light of these additions, and the increased taxon sampling from the environmental libraries, some revisions of cercozoan classification are made: the transfer of Spongomonadea from Reticulofilosa to Monadofilosa; the removal of Metopiida from Sarcomonadea; and the creation of the new order Metromonadida, currently containing the single genus Metromonas. Although Metromonas groups with weak to moderate support with Chlorarachnea, it is here placed in superclass Monadofilosa, to which it is morphologically more similar.

  20. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns.

    Directory of Open Access Journals (Sweden)

    Megan L Coghlan

    Full Text Available Traditional Chinese medicine (TCM has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus and Saiga antelope (Saiga tatarica. Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety

  1. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns.

    Science.gov (United States)

    Coghlan, Megan L; Haile, James; Houston, Jayne; Murray, Dáithí C; White, Nicole E; Moolhuijzen, Paula; Bellgard, Matthew I; Bunce, Michael

    2012-01-01

    Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when

  2. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, M Sajjad; Khan, Arif M; Mansoor, Shahid; Shah, Ghulam S; Zafar, Yusuf

    2014-01-01

    Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  3. An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile.

    Science.gov (United States)

    Hekkala, Evon; Shirley, Matthew H; Amato, George; Austin, James D; Charter, Suellen; Thorbjarnarson, John; Vliet, Kent A; Houck, Marlys L; Desalle, Rob; Blum, Michael J

    2011-10-01

    The Nile crocodile (Crocodylus niloticus) is an ancient icon of both cultural and scientific interest. The species is emblematic of the great civilizations of the Nile River valley and serves as a model for international wildlife conservation. Despite its familiarity, a centuries-long dispute over the taxonomic status of the Nile crocodile remains unresolved. This dispute not only confounds our understanding of the origins and biogeography of the 'true crocodiles' of the crown genus Crocodylus, but also complicates conservation and management of this commercially valuable species. We have taken a total evidence approach involving phylogenetic analysis of mitochondrial and nuclear markers, as well as karyotype analysis of chromosome number and structure, to assess the monophyletic status of the Nile crocodile. Samples were collected from throughout Africa, covering all major bioregions. We also utilized specimens from museum collections, including mummified crocodiles from the ancient Egyptian temples at Thebes and the Grottes de Samoun, to reconstruct the genetic profiles of extirpated populations. Our analyses reveal a cryptic evolutionary lineage within the Nile crocodile that elucidates the biogeographic history of the genus and clarifies long-standing arguments over the species' taxonomic identity and conservation status. An examination of crocodile mummy haplotypes indicates that the cryptic lineage corresponds to an earlier description of C. suchus and suggests that both African Crocodylus lineages historically inhabited the Nile River. Recent survey efforts indicate that C. suchus is declining or extirpated throughout much of its distribution. Without proper recognition of this cryptic species, current sustainable use-based management policies for the Nile crocodile may do more harm than good.

  4. Diversification of Schistosoma japonicum in Mainland China revealed by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Qin Ping Zhao

    Full Text Available BACKGROUND: Schistosoma japonicum still causes severe parasitic disease in mainland China, but mainly in areas along the Yangtze River. However, the genetic diversity in populations of S. japonicum has not been well understood across its geographical distribution, and such data may provide insights into the epidemiology and possible control strategies for schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: In this study infected Oncomelania snails were collected from areas in the middle and lower (ML reaches of the Yangtze River, including Hubei, Hunan, Anhui, Jiangxi and Jiangsu provinces, and in the upper reaches of the river, including Sichuan and Yunnan provinces in southwest (SW China. The adult parasites obtained from experimentally infected mice using isolated cercariae were sequenced individually for several fragments of mitochondrial regions, including Cytb-ND4L-ND4, 16S-12S and ND1. Populations in the ML reaches exhibited a relatively high level of diversity in nucleotides and haplotypes, whereas a low level was observed for populations in the SW, using either each single fragment or the combined sequence of the three fragments. Pairwise analyses of F-statistics (Fst revealed a significant genetic difference between populations in the ML reaches and those in the SW, with limited gene flow and no shared haplotypes in between. It is rather obvious that genetic diversity in the populations of S. japonicum was significantly correlated with the geographical distance, and the geographical separation/isolation was considered to be the major factor accounting for the observed difference between populations in the ML reaches and those in the SW in China. CONCLUSIONS: S. japonicum in mainland China exhibits a high degree of genetic diversity, with a similar pattern of genetic diversity as observed in the intermediate host snails in the same region in China.

  5. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China.

    Science.gov (United States)

    Ichikawa-Seki, Madoka; Peng, Mao; Hayashi, Kei; Shoriki, Takuya; Mohanta, Uday Kumar; Shibahara, Toshiyuki; Itagaki, Tadashi

    2017-02-01

    The well-known pathogens of fasciolosis, Fasciola hepatica (Fh) and Fasciola Gigantica (Fg), possess abundant mature sperms in their seminal vesicles, and thus, they reproduce bisexually. On the other hand, aspermic Fasciola flukes reported from Asian countries, which have no sperm in their seminal vesicles, probably reproduce parthenogenetically. The aim of this study was to reveal the origin of aspermic Fasciola flukes. The nuclear single copy markers, phosphoenolpyruvate carboxykinase and DNA polymerase delta, were employed for analysis of Fasciola species from China. The hybrid origin of aspermic Fasciola flukes was strongly suggested by the presence of the Fh/Fg type, which includes DNA fragments of both F. hepatica and F. gigantica. China can be regarded as the cradle of the interspecific hybridization because F. hepatica and F. gigantica were detected in the northern and southern parts of China, respectively, and hybrids flukes were distributed between the habitats of the two species. The Chinese origin was supported by the fact that a larger number of mitochondrial NADH dehydrogenase subunit 1 (nad1) haplotypes was detected in Chinese aspermic Fasciola populations than in aspermic populations from the neighbouring countries. Hereafter, 'aspermic' Fasciola flukes should be termed as 'hybrid' Fasciola flukes.

  6. A molecular study of the tardigrade Echiniscus testudo (Echiniscidae reveals low DNA sequence diversity over a large geographical area

    Directory of Open Access Journals (Sweden)

    Aslak JØRGENSEN

    2007-09-01

    Full Text Available In the present study we investigate the genetic diversity within the asexually reproducing tardigrade Echiniscus testudo. The present study is the first to sample a tardigrade species for comparison of DNA sequence diversity between widely separated samples. Echiniscus testudo was sampled at 13 localities spanning three continents. DNA sequences of the mitochondrial COI gene and the nuclear ITS2 sequence were used to investigate the genetic diversity and phylogeographic structure of the various asexual lineages. Terrestrial tardigrades with the capability of entering a cryptobiotic state are assumed to have a high passive dispersal potential through airborne transport. Our results show moderate (ITS2 to high (COI haplotype diversity and low sequence diversity that indicate evolution of haplotypes within distinct asexual lineages and a high dispersal potential. No isolation by distance was detected by Mantel tests. Different phylogeny inference methods (neighbor-joining, maximum parsimony, maximum likelihood and Bayesian inference revealed little topological resolution, but minimum spanning networks showed some phylogeographic patterns. The COI and ITS2 minimum spanning networks show patterns that indicate dispersal of several haplotypes from founding populations. In conclusion our data show a low genetic diversity and a relatively high haplotype diversity indicating that E. testudo is a young species with a high dispersal potential.

  7. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp. and a recently extinct lineage of spotted kiwi.

    Directory of Open Access Journals (Sweden)

    Lara D Shepherd

    Full Text Available The little spotted kiwi (Apteryx owenii is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis, with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species survived on the South Island mainland until more recently than previously thought.

  8. Evolutionary dynamics of Anolis sex chromosomes revealed by sequencing of flow sorting-derived microchromosome-specific DNA.

    Science.gov (United States)

    Kichigin, Ilya G; Giovannotti, Massimo; Makunin, Alex I; Ng, Bee L; Kabilov, Marsel R; Tupikin, Alexey E; Barucchi, Vincenzo Caputo; Splendiani, Andrea; Ruggeri, Paolo; Rens, Willem; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2016-10-01

    Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome.

  9. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp.) and a recently extinct lineage of spotted kiwi.

    Science.gov (United States)

    Shepherd, Lara D; Worthy, Trevor H; Tennyson, Alan J D; Scofield, R Paul; Ramstad, Kristina M; Lambert, David M

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii) formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species) survived on the South Island mainland until more recently than previously thought.

  10. Genetic variability in tench (Tinca tinca L. as revealed by PCR-RFLP analysis of mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Liliana Di Stasio

    2012-01-01

    Full Text Available Four mitochondrial DNA segments, ND1, ND6, cyt b and D-loop, were analysed by polymerase chain reaction-restriction fragment lenght polymorphism (PCR-RFLP in 14 tench (Tinca tinca L. populations located in Europe and Asia; also data on five Italian populations previously analysed for the same mtDNA segments were included in the study. All the considered segments were polymorphic and originated a total of 9 composite haplotypes, which were clustered into two haplogroups, A and B, possibly corresponding to the Western and Eastern phylogroups previously described in tench. Nine out of 19 populations showed polymorphism, with haplotype diversity ranging from 0.246 to 0.643 and nucleotide diversity from 0.009 to 0.078. Seventy-five percent of the pairwise comparisons were significant, indicating a high between-population variability. The Neighbour-Joining tree revealed the presence of three clusters, including purepopulations, with only A or B haplogroup, and mixedpopulations, with both haplogroups. The possibility of identifying populations with different haplotypes has practical implications for both conservation and supportive stocking.

  11. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L. and a possible relationship with insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xia

    Full Text Available BACKGROUND: Insect midgut microbiota is important in host nutrition, development and immune response. Recent studies indicate possible links between insect gut microbiota and resistance to biological and chemical toxins. Studies of this phenomenon and symbionts in general have been hampered by difficulties in culture-based approach. In the present study, DNA sequencing was used to examine the midgut microbiota of diamondback moth (DBM, Plutella xylostella (L., a destructive pest that attacks cruciferous crops worldwide. Its ability to develop resistance to many types of synthetic insecticide and even Bacillus thuringiensis toxins makes it an important species to study. METHODOLOGY/PRINCIPAL FINDINGS: Bacteria of the DBM larval midgut in a susceptible and two insecticide (chlorpyrifos and fipronil resistant lines were examined by Illumina sequencing sampled from an insect generation that was not exposed to insecticide. This revealed that more than 97% of the bacteria were from three orders: Enterobacteriales, Vibrionales and Lactobacillales. Both insecticide-resistant lines had more Lactobacillales and the much scarcer taxa Pseudomonadales and Xanthomonadales with fewer Enterobacteriales compared with the susceptible strain. Consistent with this, a second study observed an increase in the proportion of Lactobacillales in the midgut of DBM individuals from a generation treated with insecticides. CONCLUSIONS/SIGNIFICANCE: This is the first report of high-throughput DNA sequencing of the entire microbiota of DBM. It reveals differences related to inter- and intra-generational exposure to insecticides. Differences in the midgut microbiota among susceptible and insecticide-resistant lines are independent of insecticide exposure in the sampled generations. While this is consistent with the hypothesis that Lactobacillales or other scarcer taxa play a role in conferring DBM insecticide resistance, further studies are necessary to rule out other

  12. Circulating Cell-Free DNA from Colorectal Cancer Patients May Reveal High KRAS or BRAF Mutation Load

    NARCIS (Netherlands)

    Mouliere, F.; Messaoudi, S. El; Gongora, C.; Guedj, A.S.; Robert, B.; Rio, M. del; Molina, F.; Lamy, P.J.; Lopez-Crapez, E.; Mathonnet, M.; Ychou, M.; Pezet, D.; Thierry, A.R.

    2013-01-01

    We used a novel method based on allele-specific quantitative polymerase chain reaction (Intplex) for the analysis of circulating cell.free DNA (ccfDNA) to compare total ccfDNA and KRAS- or BRAF-mutated ccfDNA concentrations in blood samples from mice xenografted with the human SW620 colorectal cance

  13. Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer.

    Science.gov (United States)

    Juan P. Jaramillo-Correa; Jean Beaulieu; F. Thomas Ledig; Jean. Bousqueter

    2006-01-01

    Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only...

  14. Collaborating functions of BLM and DNA topoisomerase I in regulating human rDNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, Patrick M. [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Acharya, Samir, E-mail: samir.acharya@osumc.edu [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna [Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of rDNA repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated rRNA transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and in vitro transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. In vitro helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity on a control DNA:DNA duplex substrate. Reciprocally, BLM enhances the DNA relaxation activity of DNA topoisomerase I on supercoiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

  15. Dynamic Simulation of Single DNA Molecule at the Base Level

    Institute of Scientific and Technical Information of China (English)

    LEI Xiao-Ling; WANG Xiao-Feng; HU Jun; FANG Hai-Ping

    2005-01-01

    @@ A mesoscopic discrete dsDNA model at the base level is proposed based on the statistical model (Phys. Rev. Lett.82 (1999) 4560). The numerical simulations reproduce the 65 pN plateau and those on the force vs extension for different supercoiling degrees are favourable with the experimental data. Our model has potential applications on the study of short DNA segments and provides a bridge between the statistical models and atomic modelling.

  16. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood.

    Science.gov (United States)

    Toperoff, Gidon; Aran, Dvir; Kark, Jeremy D; Rosenberg, Michael; Dubnikov, Tatyana; Nissan, Batel; Wainstein, Julio; Friedlander, Yechiel; Levy-Lahad, Ephrat; Glaser, Benjamin; Hellman, Asaf

    2012-01-15

    Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032-1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824-1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586-0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM.

  17. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    Science.gov (United States)

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  18. mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Brantacanadensis).

    Science.gov (United States)

    Paxinos, Ellen E; James, Helen F; Olson, Storrs L; Sorenson, Michael D; Jackson, Jennifer; Fleischer, Robert C

    2002-02-05

    Phylogenetic analysis of 1.35 kb of mtDNA sequence from fossils revealed a previously unknown radiation of Hawaiian geese, of which only one representative remains alive (the endangered Hawaiian goose or nene, Branta sandvicensis). This radiation is nested phylogenetically within a living species, the Canada goose (Branta canadensis) and is related most closely to the large-bodied lineage within that species. The barnacle goose (Branta leucopsis) is also nested within the Canada goose species and is related most closely to the small-bodied lineage of Canada geese. The peripheral isolation of the barnacle goose in the Palearctic apparently allowed the evolution of its distinctive plumage pattern, whereas the two Nearctic lineages of Canada geese share a primitive plumage pattern. The Hawaiian lineage of Canada geese diverged more dramatically, splitting into at least three species that differ in body size, body proportions, and flight ability. One fossil species, limited to the island of Hawaii, was related closely to the nene but was over four times larger, flightless, heavy-bodied and had a much more robust cranium. Application of a rate calibration to levels of DNA divergence suggests that this species evolved on the island of Hawaii in less than 500,000 years. This date is consistent with the potassium/argon-based age of the island of Hawaii of 430,000-500,000 years. The giant Hawaii goose resembles the moa-nalos, a group of massive, extinct, flightless ducks that lived on older Hawaiian Islands and thus is an example of convergent evolution of similar morphologies in island ecosystems.

  19. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    Directory of Open Access Journals (Sweden)

    Antton Alberdi

    Full Text Available Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%. As prey we detected one dipteran genus (Tipulidae and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae, and one at genus level (Rhyacia sp., Noctuidae. Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level, mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  20. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    Science.gov (United States)

    Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  1. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Loman, Leine; Petra, Bob

    1995-01-01

    number of our reporter plasmid (corresponding to a small decrease in negative supercoiling). However, when cells depleted their carbon and energy source, the ensuing drop in energy state was accompanied by a strong increase in linking number. This increase was not due to reduced transcription of the DNA...

  2. Human DNA contains sequences homologous to the 5'-non-coding region of hepatitis C virus: characterization with restriction endonucleases reveals individual varieties

    Institute of Scientific and Technical Information of China (English)

    Reinhard H Dennin; Jianer Wo

    2003-01-01

    Objective To investigate a 272 base pair section of the 5'-non-coding region of genomic DNA from the peripheral blood monounuclear cells of healthy hepatitis virus C (HCV)-negative human subjects (not patients). Results The suspected HCV-specific sequence was found in the DNA of each subject tested. The pre-PCR digestion assay reveals individual differences in their pattern of methylation, which may be due to possible epigenetic phenomena.Conclusions The results provide formal proof that these HCV-specific sequences are contained in the genomic or extra chromosomal target DNA, and probably belong to a new class of endogenous sequences.

  3. An alternative model for the early peopling of southern South America revealed by analyses of three mitochondrial DNA haplogroups

    National Research Council Canada - National Science Library

    de Saint Pierre, Michelle; Bravi, Claudio M; Motti, Josefina M B; Fuku, Noriyuki; Tanaka, Masashi; Llop, Elena; Bonatto, Sandro L; Moraga, Mauricio

    2012-01-01

    ... seven complete mitochondrial DNA sequences. We identified two novel mtDNA monophyletic clades, preliminarily designated B2l and C1b13, which together with the recently described D1g sub-haplogroup have locally high frequencies...

  4. Genetic effects of some platinum co-ordination complexes on E.coli DNA as revealed by transformation studies

    NARCIS (Netherlands)

    Hoekstra, W.P.M.; Daemen, Toos

    1982-01-01

    E. coli chromosomal DNA was treated with various Pt co-ordination compounds and then used as donor DNA in E. coli transformation. Genetic analysis of transformants obtained with Pt-treated DNA showed effects of cis-diamminedichloroplatinum(II) (cis-Pt(II)) and cis-Pt-dimethyl-1,3-diaminopropane Cl4

  5. Mechanics of the IL2RA Gene Activation Revealed by Modeling and Atomic Force Microscopy

    OpenAIRE

    Pascale Milani; Monique Marilley; Albert Sanchez-Sevilla; Jean Imbert; Cédric Vaillant; Françoise Argoul; Jean-Marc Egly; José Rocca-Serra; Alain Arneodo

    2011-01-01

    Transcription implies recruitment of RNA polymerase II and transcription factors (TFs) by DNA melting near transcription start site (TSS). Combining atomic force microscopy and computer modeling, we investigate the structural and dynamical properties of the IL2RA promoter and identify an intrinsically negative supercoil in the PRRII region (containing Elf-1 and HMGA1 binding sites), located upstream of a curved DNA region encompassing TSS. Conformational changes, evidenced by time-lapse studi...

  6. Extremely underwound chromosomal DNA in nucleoids of mouse sarcoma cells.

    Science.gov (United States)

    Hartwig, M; Matthes, E; Arnold, W

    1981-07-01

    The superhelical properties of chromosomal DNA from cells of a mouse sarcoma were investigated in neutral sucrose gradients containing ethidium bromide. Removal of negative supercoiling from the DNA of the sarcoma cells required a substantially higher dye concentration than was necessary in the case of DNA from cultured mouse fibroblasts. The calculated value of the mean superhelical density in malignant cells (sigma = -0.14) appears abnormally high compared with the value (sigma = -0.09) obtained for DNA of mouse fibroblasts. Chromosomal DNA from mouse sarcoma cells is therefore concluded to be highly deficient in helical turns.

  7. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophili...... genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo....

  8. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions.

    Science.gov (United States)

    Brotherton, Paul; Endicott, Phillip; Sanchez, Juan J; Beaumont, Mark; Barnett, Ross; Austin, Jeremy; Cooper, Alan

    2007-01-01

    Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C > U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy.

  9. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions

    Science.gov (United States)

    Brotherton, Paul; Endicott, Phillip; Sanchez, Juan J.; Beaumont, Mark; Barnett, Ross; Austin, Jeremy; Cooper, Alan

    2007-01-01

    Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C > U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy. PMID:17715147

  10. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media.

    Science.gov (United States)

    Blakeway, Luke V; Power, Peter M; Jen, Freda E-C; Worboys, Sam R; Boitano, Matthew; Clark, Tyson A; Korlach, Jonas; Bakaletz, Lauren O; Jennings, Michael P; Peak, Ian R; Seib, Kate L

    2014-12-01

    Moraxella catarrhalis is a significant cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we characterize a phase-variable DNA methyltransferase (ModM), which contains 5'-CAAC-3' repeats in its open reading frame that mediate high-frequency mutation resulting in reversible on/off switching of ModM expression. Three modM alleles have been identified (modM1-3), with modM2 being the most commonly found allele. Using single-molecule, real-time (SMRT) genome sequencing and methylome analysis, we have determined that the ModM2 methylation target is 5'-GAR(m6)AC-3', and 100% of these sites are methylated in the genome of the M. catarrhalis 25239 ModM2 on strain. Proteomic analysis of ModM2 on and off variants revealed that ModM2 regulates expression of multiple genes that have potential roles in colonization, infection, and protection against host defenses. Investigation of the distribution of modM alleles in a panel of M. catarrhalis strains, isolated from the nasopharynx of healthy children or middle ear effusions from patients with otitis media, revealed a statistically significant association of modM3 with otitis media isolates. The modulation of gene expression via the ModM phase-variable regulon (phasevarion), and the significant association of the modM3 allele with otitis media, suggests a key role for ModM phasevarions in the pathogenesis of this organism.

  11. Structure of the human FOXO4-DBD-DNA complex at 1.9 Å resolution reveals new details of FOXO binding to the DNA.

    Science.gov (United States)

    Boura, Evzen; Rezabkova, Lenka; Brynda, Jiri; Obsilova, Veronika; Obsil, Tomas

    2010-12-01

    FOXO4 is a member of the FOXO subgroup of forkhead transcription factors that constitute key components of a conserved signalling pathway that connects growth and stress signals to transcriptional control. Here, the 1.9 Å resolution crystal structure of the DNA-binding domain of human FOXO4 (FOXO4-DBD) bound to a 13 bp DNA duplex containing a FOXO consensus binding sequence is reported. The structure shows a similar recognition of the core sequence as has been shown for two other FOXO proteins. Helix H3 is docked into the major groove and provides all of the base-specific contacts, while the N-terminus and wing W1 make additional contacts with the phosphate groups of DNA. In contrast to other FOXO-DBD-DNA structures, the loop between helices H2 and H3 has a different conformation and participates in DNA binding. In addition, the structure of the FOXO4-DBD-DNA complex suggests that both direct water-DNA base contacts and the unique water-network interactions contribute to FOXO-DBD binding to the DNA in a sequence-specific manner.

  12. Demographic and random amplified polymorphic DNA analyses reveal high levels of genetic diversity in a clonal violet.

    Science.gov (United States)

    Auge, H; Neuffer, B; Erlinghagen, F; Grupe, R; Brandl, R

    2001-07-01

    We performed demographic and molecular investigations on woodland populations of the clonal herb Viola riviniana in central Germany. We investigated the pattern of seedling recruitment, the amount of genotypic (clonal) variation and the partitioning of genetic variation among and within populations. Our demographic study was carried out in six violet populations of different ages and habitat conditions. It revealed that repeated seedling recruitment takes place in all of these populations, and that clonal propagation is accompanied by high ramet mortality. Our molecular investigations were performed on a subset of three of these six violet populations. Random amplified polymorphic DNA analyses using six primers yielded 45 scorable bands that were used to identify multilocus genotypes, i.e. putative clones. Consistent with our demographic results and independent of population age, we found a large genotypic diversity with a mean proportion of distinguishable genotypes of 0.93 and a mean Simpson's diversity index of 0.99. Using AMOVA we found a strong genetic differentiation among these violet populations with a PhiST value of 0.41. We suggest that a high selfing rate, limited gene flow due to short seed dispersal distances and drift due to founder effects are responsible for this pattern. Although Viola riviniana is a clonal plant, traits associated with sexual reproduction rather than clonality per se are moulding the pattern of genetic variation in this species.

  13. Mitochondrial DNA reveals regional and interregional importance of the central Mediterranean African shelf for loggerhead sea turtles (Caretta caretta

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2008-09-01

    Full Text Available The wide north African continental shelf in the central Mediterranean is known to be one of the few important areas in the basin for loggerhead turtles in the neritic stage. In order to assess the origin of these turtles, sequences of the mtDNA control region were obtained from 70 turtles caught by bottom trawlers in the area, and compared with known sequences from turtles from Mediterranean and Atlantic nesting sites. Five haplotypes were identified (Haplotype diversity = 0.262; nucleotide diversity = 5.4×10-3. Specific haplotypes indicate contributions from distant rookeries such as Turkey and the Atlantic, which shows that Atlantic turtles entering the Mediterranean while in the oceanic phase use at least one Mediterranean continental shelf as a neritic foraging ground. A new haplotype and another one previously found only in foraging areas, highlight the genetic information gaps for nesting sites, which undermine powerful mixed stock analyses. Despite these limitations, the results reveal the regional importance of the study area as a neritic foraging ground for turtles that are probably from most of the Mediterranean nesting aggregates. Therefore, reducing turtle mortality resulting from the high fishing effort in the area should be regarded as key for Mediterranean turtle conservation and is also possibly important for Atlantic populations.

  14. Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei).

    Science.gov (United States)

    Hausdorf, Bernhard; Wilkens, Horst; Strecker, Ulrike

    2011-07-01

    Astyanax has become an important model system for evolutionary studies of cave animals. We investigated correlations of population genetic patterns revealed by microsatellite data and phylogeographic patterns shown by mitochondrial DNA sequences in Mexican cave and surface fish of the genus Astyanax (Characidae, Teleostei) to improve the understanding of the colonization history of this neotropical fish in Central and North America and to assess a recent taxonomic classification. The distribution of nuclear genotypes is not congruent with that of the mitochondrial clades. Admixture analyses suggest there has been nuclear gene flow between populations defined by different mitochondrial clades. The microsatellite data indicate that there was mitochondrial capture of a cave population from adjacent populations. Furthermore, gene flow also occurred between populations belonging to different nuclear genotypic clusters. This indicates that neither the nuclear genotypic clusters nor the mitochondrial clades represent independent evolutionary units, although the mitochondrial divergences are high and in a range usually characteristic for different fish species. This conclusion is supported by the presence of morphologically intermediate forms. Our analyses show that the Trans-Mexican Volcanic Belt limited gene flow, but has been crossed by Astyanax several times. In Yucatán, where obvious geographic barriers are missing, the incongruence between the distribution of nuclear and mitochondrial markers reflects random colonization events caused by inundations or marine transgressions resulting in random phylogeographic breaks. Thus, conclusions about the phylogeographic history and even more about the delimitation of species should not be based on single genetic markers.

  15. Hidden chromosome symmetry: in silico transformation reveals symmetry in 2D DNA walk trajectories of 671 chromosomes.

    Directory of Open Access Journals (Sweden)

    Maria S Poptsova

    Full Text Available Maps of 2D DNA walk of 671 examined chromosomes show composition complexity change from symmetrical half-turn in bacteria to pseudo-random trajectories in archaea, fungi and humans. In silico transformation of gene order and strand position returns most of the analyzed chromosomes to a symmetrical bacterial-like state with one transition point. The transformed chromosomal sequences also reveal remarkable segmental compositional symmetry between regions from different strands located equidistantly from the transition point. Despite extensive chromosome rearrangement the relation of gene numbers on opposite strands for chromosomes of different taxa varies in narrow limits around unity with Pearson coefficient r = 0.98. Similar relation is observed for total genes' length (r = 0.86 and cumulative GC (r = 0.95 and AT (r = 0.97 skews. This is also true for human coding sequences (CDS, which comprise only several percent of the entire chromosome length. We found that frequency distributions of the length of gene clusters, continuously located on the same strand, have close values for both strands. Eukaryotic gene distribution is believed to be non-random. Contribution of different subsystems to the noted symmetries and distributions, and evolutionary aspects of symmetry are discussed.

  16. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity

    Science.gov (United States)

    Ma, Siming; Upneja, Akhil; Galecki, Andrzej; Tsai, Yi-Miau; Burant, Charles F; Raskind, Sasha; Zhang, Quanwei; Zhang, Zhengdong D; Seluanov, Andrei; Gorbunova, Vera; Clish, Clary B; Miller, Richard A; Gladyshev, Vadim N

    2016-01-01

    Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences. DOI: http://dx.doi.org/10.7554/eLife.19130.001 PMID:27874830

  17. DNA

    Science.gov (United States)

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  18. Statistical mechanics of topologically constrained DNA and nucleoprotein complexes

    Science.gov (United States)

    Giovan, Stefan Michael

    A complex connection exists between the 3 dimensional topological state of DNA in living organisms and biological processes including gene expression, DNA replication, recombination and repair. A significant limitation in developing a detailed, quantitative understanding of this connection is due to a lack of rigorous methods to calculate statistical mechanical properties of DNA molecules with complex topologies, including supercoiling, looping and knotting. This dissertation's main focus is on developing such methods and applying them to realistic DNA and nucleoprotein models. In chapter 2, a method is presented to calculate free energies and J factors of protein mediated DNA loops by normal mode analysis (NMA). This method is similar to calculations performed previously but with several significant advances. We apply the method to the specific case of DNA looping mediated by Cre recombinase protein. J factors calculated by our method are compared to experimental measurements to extract geometric and elastic properties of the Cre-DNA synaptic complex. In particular, the results suggest the existence of a synaptic complex that is more flexible than previously expected and may be explained by a stable intermediate in the reaction pathway that deviates significantly from the planar crystal structure. Calculating free energies of DNA looping is difficult in general, especially when considering intermediate length scales such as plasmid sized DNA which may readily adopt multiple topological states. In chapter 3, a novel method is presented to obtain free energies of semiflexible biopolymers with fixed topologies and arbitrary ratios of contour length L to persistence length P. High accuracy is demonstrated by calculating free energies of specific DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex

  19. Ruthenium(II) complexes of saccharin with dipyridoquinoxaline and dipyridophenazine: Structures, biological interactions and photoinduced DNA damage activity.

    Science.gov (United States)

    Kumar, Priyaranjan; Dasari, Srikanth; Patra, Ashis K

    2017-08-18

    Ruthenium complexes trans-[Ru(sac)2(dpq)2] (1) and trans-[Ru(sac)2(dppz)2] (2) where sac is artificial sweetener saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one1,1-dioxide (Hsac)), dpq = dipyrido[3,2-d:2',3'-f]quinoxaline and dppz = dipyrido[3,2-a:2',3'-c]phenazine have been synthesized and thoroughly characterized using various analytical and spectral techniques. Saccharin known to act as carbonic anhydrase IX (CA IX) inhibitor which is a biomarker for highly aggressive and proliferative tumor in hypoxic stress, so inhibition of CA IX is a potential strategy for anticancer chemotherapy. The solid state structures, photophysical properties, photostability, DNA and protein binding affinity, and DNA photocleavage activity were explored. The structural analysis revealed Ru(II) centre is in discrete mononuclear, distorted octahedral {RuN6} coordination geometry with two monoanionic nitrogen donor saccharinate ligands and two neutral bidentate nitrogen donors ligands dpq and dppz. cis-[Ru(sac)2(dppz)2] (cis-2) geometrical isomer was also isolated and structurally characterized by X-ray crystallography. The photo-induced dissociation of monodentate saccharin ligand is observed when irradiated at UV-A light of 365 nm. The complexes show significant binding affinity to the calf thymus DNA (Kb ∼ 10(5) M(-1)) through significant intercalation through planar dpq and dppz ligands. Interaction of complexes 1 and 2 with bovine serum albumin (BSA) showed remarkable tryptophan emission quenching (KBSA ∼10(5) M(-1)). The complexes showed appreciable photoinduced DNA cleavage activity upon irradiation of low power UV-A light of 365 nm from supercoiled (SC) to its nicked circular (NC) form at micromolar complex concentrations. Photocleavage mechanistic studies in presence of O2 reveals involvement of reactive oxygen species (ROS) mediated through ligand-centered (3)ππ* and/or (3)MLCT excited states generated upon photoactivation leads to nicking of

  20. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.

    2015-01-01

    N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable...... organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10ºC. Multivariate statistical analysis of the bacterial diversity data (DNA......The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º...

  1. Mass spectrometric proteomics reveals that nuclear protein positive cofactor PC4 selectively binds to cross-linked DNA by a trans-platinum anticancer complex.

    Science.gov (United States)

    Du, Zhifeng; Luo, Qun; Yang, Liping; Bing, Tao; Li, Xianchan; Guo, Wei; Wu, Kui; Zhao, Yao; Xiong, Shaoxiang; Shangguan, Dihua; Wang, Fuyi

    2014-02-26

    An MS-based proteomic strategy combined with chemically functionalized gold nanoparticles as affinity probes was developed and validated by successful identification and quantification of HMGB1, which is well characterized to interact selectively with 1,2-cross-linked DNA by cisplatin, from whole cell lysates. The subsequent application of this method to identify proteins responding to 1,3-cross-linked DNA by a trans-platinum anticancer complex, trans-PtTz (Tz = thiazole), revealed that the human nuclear protein positive cofactor PC4 selectively binds to the damaged DNA, implying that PC4 may play a role in cellular response to DNA damage by trans-PtTz.

  2. Crystal Structure of DNA-PKcs Reveals a Large Open-Ring Cradle Comprised of HEAT Repeats

    Science.gov (United States)

    Sibanda, Bancinyane L.; Chirgadze, Dimitri Y.; Blundell, Tom L.

    2009-01-01

    Broken chromosomes arising from DNA double strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation1, 2, 3. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holo-enzyme that comprises DNA-dependent protein kinase catalytic subunit (DNA-PKcs)4, 5 and the heterodimer Ku70/Ku80, plays a major role in non-homologous end joining (NHEJ), the main pathway in mammals used to repair double strand breaks6, 7, 8. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4128 amino acids and belonging to the phosphotidyl inositol 3-kinase (PI3-K)- related protein family9. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest10, 11. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA12. Here we present the crystal structure of human DNA-PKcs at 6.6Å resolution, in which the overall fold is for the first time clearly visible. The many α-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The C-terminal kinase domain is located on top of this structure and a small HEAT repeat domain that likely binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair. PMID:20023628

  3. Mitochondrial DNA haplotyping revealed the presence of mixed up benign and neoplastic tissue sections from two individuals on the same prostatic biopsy slide.

    Science.gov (United States)

    Alonso, A; Alves, C; Suárez-Mier, M P; Albarrán, C; Pereira, L; Fernández de Simón, L; Martín, P; García, O; Gusmão, L; Sancho, M; Amorim, A

    2005-01-01

    DNA typing was requested to investigate a presumptive cancer diagnosis error by confirming whether benign and cancerous prostatic tissue in the same presurgical haematoxylin and eosin stained slide belonged to the same person. After independent histological re-examination of the slide by a pathologist, manual slide dissection was used to guarantee independent and high recovery DNA isolation from each tissue section, avoiding carryover and background contamination. Nuclear DNA quantification performed by real time polymerase chain reaction (PCR) revealed the absence of human DNA for short tandem repeat (STR) typing. Mitochondrial DNA was only obtained by performing PCR of very short fragments ( approximately 100 bp), indicating high DNA degradation. Different low frequency hypervariable region I haplotypes were obtained from each tissue section (normal tissue section haplotype: 16224C, 16234T, 16311C, 16356C; cancer tissue section haplotype: 16256T, 16270T, 16293G). Only the normal tissue section haplotype matched that obtained from the patient's blood sample, indicating that the cancer tissue section originated from an unknown patient. These results supported the hypothesis of sample mix up during block processing or slide preparation by a carryover mechanism. Mitochondrial genetic typing is recommended to exclude the possibility of carryover artefacts when low DNA content and high degradation compromise conventional STR typing.

  4. Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding

    Energy Technology Data Exchange (ETDEWEB)

    Sidote,D.; Barbieri, C.; Wu, T.; Stock, A.

    2008-01-01

    The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 Angstroms resolution. The structure establishes a 10-stranded {beta} fold for the LytTR domain and reveals its mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This mode of protein-DNA interaction provides a potential target for future antimicrobial drug design.

  5. Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with a Novel Mode of Binding

    Science.gov (United States)

    Sidote, David J.; Barbieri, Christopher M.; Wu, Ti; Stock, Ann M.

    2008-01-01

    SUMMARY The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 Å resolution. The structure establishes a 10-stranded β fold for the LytTR domain and reveals a novel mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA-binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This novel mode of protein-DNA interacton provides a potential target for future antimicrobial drug design. PMID:18462677

  6. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding.

    Science.gov (United States)

    Sidote, David J; Barbieri, Christopher M; Wu, Ti; Stock, Ann M

    2008-05-01

    The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 A resolution. The structure establishes a 10-stranded beta fold for the LytTR domain and reveals its mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This mode of protein-DNA interaction provides a potential target for future antimicrobial drug design.

  7. Simultaneous in situ hybridization for DNA and RNA reveals the presence of HPV in the majority of cervical cancer cells.

    Science.gov (United States)

    D'Amato, L; Pilotti, S; Longoni, A; Donghi, R; Rilke, F

    1992-02-01

    Thirteen cases of invasive squamous cell carcinoma of the uterine cervix containing HPV types 16 or 18 DNA sequences, as detected by Southern blot analysis, were investigated by in situ hybridization on routine paraffin sections, using 35S nick-translated DNA probes. Simultaneous in situ hybridization for DNA and RNA showed that in ten out of 13 cases (77%) the percentage of tumor cells containing HPV 16 or 18 varied from 75 to 100%. In one case, harboring both in situ and invasive carcinoma, the same type of HPV DNA was detected in both components. This finding suggests that neoplastic cells retained the viral genome during progression to invasiveness.

  8. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing.

    Science.gov (United States)

    Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian

    2015-01-01

    To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.

  9. DNA Topoisomerase 1 Prevents R-loop Accumulation to Modulate Auxin-Regulated Root Development in Rice.

    Science.gov (United States)

    Shafiq, Sarfraz; Chen, Chunli; Yang, Jing; Cheng, Lingling; Ma, Fei; Widemann, Emilie; Sun, Qianwen

    2017-06-05

    R-loop structures (RNA:DNA hybrids) have important functions in many biological processes, including transcriptional regulation and genome instability among diverse organisms. DNA topoisomerase 1 (TOP1), an essential manipulator of DNA topology during RNA transcription and DNA replication processes, can prevent R-loop accumulation by removing the positive and negative DNA supercoiling that is made by RNA polymerases during transcription. TOP1 is required for plant development, but little is known about its function in preventing co-transcriptional R-loop accumulation in various biological processes in plants. Here we show that knockdown of OsTOP1 strongly affects rice development, causing defects in root architecture and gravitropism, which are the consequences of misregulation of auxin signaling and transporter genes. We found that R-loops are naturally formed at rice auxin-related gene loci, and overaccumulate when OsTOP1 is knocked down or OsTOP1 protein activity is inhibited. OsTOP1 therefore sets the accurate expression levels of auxin-related genes by preventing the overaccumulation of inherent R-loops. Our data reveal R-loops as important factors in polar auxin transport and plant root development, and highlight that OsTOP1 functions as a key to link transcriptional R-loops with plant hormone signaling, provide new insights into transcriptional regulation of hormone signaling in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Molecular analyses reveal two geographic and genetic lineages for tapeworms, Taenia solium and Taenia saginata, from Ecuador using mitochondrial DNA.

    Science.gov (United States)

    Solano, Danilo; Navarro, Juan Carlos; León-Reyes, Antonio; Benítez-Ortiz, Washington; Rodríguez-Hidalgo, Richar

    2016-12-01

    Tapeworms Taenia solium and Taenia saginata are the causative agents of taeniasis/cysticercosis. These are diseases with high medical and veterinary importance due to their impact on public health and rural economy in tropical countries. The re-emergence of T. solium as a result of human migration, the economic burden affecting livestock industry, and the large variability of symptoms in several human cysticercosis, encourage studies on genetic diversity, and the identification of these parasites with molecular phylogenetic tools. Samples collected from the Ecuadorian provinces: Loja, Guayas, Manabí, Tungurahua (South), and Imbabura, Pichincha (North) from 2000 to 2012 were performed under Maximum Parsimony analyses and haplotype networks using partial sequences of mitochondrial DNA, cytochrome oxidase subunit I (COI) and NADH subunit I (NDI), from Genbank and own sequences of Taenia solium and Taenia saginata from Ecuador. Both species have shown reciprocal monophyly, which confirms its molecular taxonomic identity. The COI and NDI genes results suggest phylogenetic structure for both parasite species from south and north of Ecuador. In T. solium, both genes gene revealed greater geographic structure, whereas in T. saginata, the variability for both genes was low. In conclusion, COI haplotype networks of T. solium suggest two geographical events in the introduction of this species in Ecuador (African and Asian lineages) and occurring sympatric, probably through the most common routes of maritime trade between the XV-XIX centuries. Moreover, the evidence of two NDI geographical lineages in T. solium from the north (province of Imbabura) and the south (province of Loja) of Ecuador derivate from a common Indian ancestor open new approaches for studies on genetic populations and eco-epidemiology.

  11. Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass

    DEFF Research Database (Denmark)

    Povlsen, Lou K; Beli, Petra; Wagner, Sebastian A;

    2012-01-01

    components of DNA-damage signalling, as well as on proteins not previously implicated in this process. Our results uncover a critical role for PCNA-associated factor PAF15 (p15(PAF)/KIAA0101) ubiquitylation during DNA replication. During unperturbed S phase, chromatin-associated PAF15 is modified by double...

  12. Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (

    NARCIS (Netherlands)

    Trimbos, K.B.; Doorenweerd, C.; Kraaijeveld, K.; Musters, C.J.M.; Groen, N.M.; de Knijff, P.; Piersma, T.; de Snoo, G.R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies a

  13. Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the black-tailed godwit (Limosa limosa)

    NARCIS (Netherlands)

    Trimbos, Krijn B.; Doorenweerd, Camiel; Kraaijeveld, Ken; Musters, C.J.M.; Groen, Niko M.; Knijff, Peter de; Piersma, Theunis; de Snoo, Geert R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies a

  14. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    Science.gov (United States)

    Daniel L. Lindner; Tor Carlsen; Henrik Nilsson; Marie Davey; Trond Schumacher; Havard. Kauserud

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular...

  15. Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the black-tailed godwit (Limosa limosa)

    NARCIS (Netherlands)

    Trimbos, Krijn B.; Doorenweerd, Camiel; Kraaijeveld, Ken; Musters, C.J.M.; Groen, Niko M.; Knijff, Peter de; Piersma, Theunis; de Snoo, Geert R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies

  16. Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (

    NARCIS (Netherlands)

    Trimbos, K.B.; Doorenweerd, C.; Kraaijeveld, K.; Musters, C.J.M.; Groen, N.M.; de Knijff, P.; Piersma, T.; de Snoo, G.R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies

  17. Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (

    NARCIS (Netherlands)

    Trimbos, K.B.; Doorenweerd, C.; Kraaijeveld, K.; Musters, C.J.M.; Groen, N.M.; de Knijff, P.; Piersma, T.; de Snoo, G.R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies a

  18. Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the black-tailed godwit (Limosa limosa)

    NARCIS (Netherlands)

    Trimbos, Krijn B.; Doorenweerd, Camiel; Kraaijeveld, Ken; Musters, C.J.M.; Groen, Niko M.; Knijff, Peter de; Piersma, Theunis; de Snoo, Geert R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies a

  19. Combined DNA and lipid analyses of sediments reveal changes in Holocene phytoplankton populations in an Antarctic lake

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Coolen, M.J.L.; Muyzer, G.; Rijpstra, W.I.C.; Schouten, S.; Volkman, J.K.

    2004-01-01

    Preserved ribosomal DNA of planktonic phototrophic algae was recovered from Holocene anoxic sediments of Ace Lake (Antarctica), and the ancient community members were identified based on comparative sequence analysis. The similar concentration profiles of DNA of haptophytes and their traditional lip

  20. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Science.gov (United States)

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  1. Large-scale asymmetric introgression of cytoplasmic DNA reveals Holocene range displacement in a North American boreal pine complex.

    Science.gov (United States)

    Godbout, Julie; Yeh, Francis C; Bousquet, Jean

    2012-08-01

    Jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta var. latifolia) are two North American boreal hard pines that hybridize in their zone of contact in western Canada. The main objective of this study was to characterize their patterns of introgression resulting from past and recent gene flow, using cytoplasmic markers having maternal or paternal inheritance. Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) diversity was assessed in allopatric populations of each species and in stands from the current zone of contact containing morphological hybrids. Cluster analyses were used to identify genetic discontinuities among groups of populations. A canonical analysis was also conducted to detect putative associations among cytoplasmic DNA variation, tree morphology, and site ecological features. MtDNA introgression was extensive and asymmetric: it was detected in P. banksiana populations from the hybrid zone and from allopatric areas, but not in P. contorta populations. Very weak cpDNA introgression was observed, and only in P. banksiana populations. The mtDNA introgression pattern indicated that central Canada was first colonized by migrants from a P. contorta glacial population located west of the Rocky Mountains, before being replaced by P. banksiana migrating westward during the Holocene. In contrast, extensive pollen gene flow would have erased the cpDNA traces of this ancient presence of P. contorta. Additional evidence for this process was provided by the results of canonical analysis, which indicated that the current cpDNA background of trees reflected recent pollen gene flow from the surrounding dominant species rather than historical events that took place during the postglacial colonization.

  2. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities.

    Science.gov (United States)

    Guo, Yang; Kragelund, Birthe B; White, Malcolm F; Peng, Xu

    2015-06-19

    The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), both encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5' → 3' ssDNA exonuclease activity, in addition to the previously demonstrated ssDNA endonuclease activity. Further, in vitro pull-down assay demonstrated interactions between gp17 and gp18 and between gp18 and gp19 with the former being mediated by the intrinsically disordered C-terminus of gp17. The strand-displacement replication mode proposed previously for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair.

  3. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis as Revealed by Mitochondrial and Microsatellite DNA

    Directory of Open Access Journals (Sweden)

    Minmin Chen

    2014-06-01

    Full Text Available Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS, and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY and Tongling (TL and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP.

  4. Preparation of Ag/AgBr/TiO2 as Catalyst Carriers and Its Damage to Plasmid DNA andTetrahymena

    Institute of Scientific and Technical Information of China (English)

    LIU Liwei; ZHANG Yinlong

    2015-01-01

    The composites based on the TiO2 are potentially used in wetland pollution control. In this work, the biological effect of the Ag/AgBr/TiO2/Active carbon (AC) composites was studied on the plasmid DNA andTetrahymena membrane. The atomic force micrograph (AFM) images showed that, in the presence of the composites under illumination, most pUC18 DNA molecules showed quite different topography and were opened and relaxed circle shapes. After DNA was catalyzed for 40 min, all supercoiled and circular DNA were changed into the linear DNA molecules. The gel electrophoresis experiment confirmed the results and demonstrated the dynamic process of DNA degradation. ATR-FTIR spectra revealed that amide groups and PO2− of the phospho-lipid phospho-diester onTetrahymena surface were oxidized in the presence of the composites under illumination. An increase in the lfuorescence polarization of DPH was observed, relfecting a signiifcant decrease in membrane lfuidity ofTetrahymena.

  5. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting

    Science.gov (United States)

    Fosado, Y. A. G.; Michieletto, D.; Marenduzzo, D.

    2017-09-01

    There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.

  6. Crystal structure of TNF-α-inducing protein from Helicobacter pylori in active form reveals the intrinsic molecular flexibility for unique DNA-binding.

    Directory of Open Access Journals (Sweden)

    Mingming Gao

    Full Text Available Tipα (TNF-α-inducing protein from Helicobacter pylori is a carcinogenic effector. Studies on this protein revealed that a homodimer linked by a pair of intermolecular disulfide bridges (Cys25-Cys25 and Cys27-Cys27 was absolutely necessary for its biological functions. The activities of Tipα would be abolished when both disulfide bridges were disrupted. The crystal structures of Tipα reported to date, however, were based on inactive, monomeric mutants with their N-terminal, including residues Cys25 and Cys27, truncated. Here we report the crystal structure of H. pylori Tipα protein, TipαN(25, at 2.2Å resolution, in which Cys25 and Cys27 form a pair of inter-chain disulfide bridges linking an active dimer. The disulfide bridges exhibit structural flexibility in the present structure. A series of structure-based mutagenesis, biochemical assays and molecular dynamic simulations on DNA-Tipα interactions reveal that Tipα utilizes the dimeric interface as the DNA-binding site and that residues His60, Arg77 and Arg81 located at the interface are crucial for DNA binding. Tipα could bind to one ssDNA, two ssDNA or one dsDNA in experiments, respectively, in the native or mutant states. The unique DNA-binding activities of Tipα indicate that the intrinsic flexible nature of disulfide bridges could endow certain elasticity to the Tipα dimer for its unique bioactivities. The results shed light on the possible structural mechanism for the functional performances of Tipα.

  7. Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy.

    Science.gov (United States)

    Righolt, Christiaan H; Guffei, Amanda; Knecht, Hans; Young, Ian T; Stallinga, Sjoerd; van Vliet, Lucas J; Mai, Sabine

    2014-08-01

    Advances in light microscopy have enabled the visualization of DNA in the interphase nucleus with more detail than is visible with conventional light microscopy. The nuclear architecture is assumed to be different in cancer cells compared to normal cells. In this paper we have studied, for the first time, the organization of nuclear DNA and that of DNA-free space in control lymphocytes, Hodgkin cells and Reed-Sternberg cells using 3D structured illumination microscopy (SIM). We have observed detail in these SIM images that was not observed in conventional widefield images. We have measured the size distribution of the DNA structure using granulometry and noted a significant, progressive increase in the amount of sub-micron structures from control lymphocytes to Hodgkin cells to Reed-Sternberg cells. The DNA-free space changes as well; "holes" in the DNA distribution start to appear in the malignant cells. We have studied whether these "holes" are nucleoli by staining for upstream binding factor (UBF), a protein associated with the nucleolus. We have found that the relative UBF content progressively and significantly decreases-or is absent-in the DNA-free space when measured as either the Pearson correlation coefficient with the DNA-free space or as the number of "holes" that contain UBF. Similar differences exist within the population of Reed-Sternberg cells between binucleated and multinucleated cells with four or more subnuclei. To our knowledge, this is the first study that investigates the changes of the nuclear DNA structure in any disease with superresolution light microscopy. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.

  8. Detection of cancer clones in human colorectal adenoma as revealed by increased DNA instability and other bio-markers

    Directory of Open Access Journals (Sweden)

    Y Jin

    2009-06-01

    Full Text Available An immunohistochemical differential staining of cancerous cells with anti-cytidine antibody after denaturation of nuclear DNA by acid hydrolysis with 2N HCl at 30°C for 20 min (DNA-instability test has been used as a marker for malignancy. The test was applied to bioptic tissues of human colorectal polyps assessed histopathologically as hyperplastic polyp (11 cases, tubular adenoma of mild (68 cases, moderate (102 cases, and severe (46 cases dysplasia, and adenocarcinoma (30 cases. The serial sections of the same tissues were also subjected to immunohistochemical staining for Ki67, p53, DNA-fragmentation factor 45 (DFF45 and vascular endothelial growth factor (VEGF. The DNA-instability test was positive in 30 (100% adenocarcinoma cases, 46 (100% severe dysplasia adenoma cases, 36 (35.29% moderate dysplasia adenoma cases, and 8 (11.76% mild dysplasia adenoma cases, indicating malignancy. All hyperplastic polyps were negative to the DNA-instability test. Furthermore, the percentage of glands positive in the DNAinstability test steadily increased in going from mild (10%, to moderate (35%, to severe (100% dysplasia, and adenocarcinoma (100%. All other biological markers tested in the present study showed significantly higher values in those adenoma glands that werepositive to the DNA-instability test, irrespective of the dysplasia grade, as compared to the markers in the adenoma glands that were negative to DNA instability testing. Furthermore, the former values were comparable to those in adenocarcinoma. The results indicate that cancer cell clones are already present at the adenoma stages showing positivity to DNA instability testing, enhanced proliferative activity, p53 mutation and induction of DFF45 and VEGF, at a time when the degree of morphological atypia are not yet large enough for them to be identified as cancer. These factors promote cancer cell proliferation, produce heterogeneous subclones due to DNA instability, enhance their

  9. Chromosomal Locations of 5S and 45S rDNA in Gossypium Genus and Its Phylogenetic Implications Revealed by FISH.

    Science.gov (United States)

    Gan, Yimei; Liu, Fang; Chen, Dan; Wu, Qiong; Qin, Qin; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo

    2013-01-01

    We investigated the locations of 5S and 45S rDNA in Gossypium diploid A, B, D, E, F, G genomes and tetraploid genome (AD) using multi-probe fluorescent in situ hybridization (FISH) for evolution analysis in Gossypium genus. The rDNA numbers and sizes, and synteny relationships between 5S and 45S were revealed using 5S and 45S as double-probe for all species, and the rDNA-bearing chromosomes were identified for A, D and AD genomes with one more probe that is single-chromosome-specific BAC clone from G. hirsutum (A1D1). Two to four 45S and one 5S loci were found in diploid-species except two 5S loci in G. incanum (E4), the same as that in tetraploid species. The 45S on the 7th and 9th chromosomes and the 5S on the 9th chromosomes seemed to be conserved in A, D and AD genomes. In the species of B, E, F and G genomes, the rDNA numbers, sizes, and synteny relationships were first reported in this paper. The rDNA pattern agrees with previously reported phylogenetic history with some disagreements. Combined with the whole-genome sequencing data from G. raimondii (D5) and the conserved cotton karyotype, it is suggested that the expansion, decrease and transposition of rDNA other than chromosome rearrangements might occur during the Gossypium evolution.

  10. PAMAM6 dendrimers and DNA: pH dependent "beads-on-a-string" behavior revealed by small angle X-ray scattering

    CERN Document Server

    Dootz, Rolf; Pfohl, Thomas

    2011-01-01

    DNA interactions with polycations are not only important for our understanding of chromatin compaction but also for characterizing DNA-binding proteins involved in transcription, replication and repair. DNA is known to form several types of liquid-crystalline phases depending, among other factors, on polycation structure and charge density. Theoretical studies and simulations have predicted the wrapping of DNA around spherical positively charged polycations. As a potential mimic of the histone octamer or other DNA wrapping proteins, poly(amido amine) generation 6 (PAMAM6) dendrimers have been chosen for our study. The self-assembly of DNA induced by PAMAM6 has been investigated using small angle X-ray scattering (SAXS) in order to reveal the assemblies' structure dependence on the pH of the environment and on dendrimers concentration. We demonstrate that at pH 8.5 dense phases are formed and characterized by a 2D-columnar hexagonal lattice which is transformed into a 3D hexagonal lattice with increasing dendr...

  11. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  12. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Haile, James Seymour; Möller, Per

    2012-01-01

    approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition...... in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals...

  13. DNA Cleavage Promoted by Cu2+ Complex of N,N'-Bis(2-aminoethyl)-2,6-pyridinedicarboxamide

    Institute of Scientific and Technical Information of China (English)

    LI, Ying; SHENG, Xin; SHAO, Ying; LU, Guo-Yuan

    2007-01-01

    The interaction of Cu2+ complex of N,N'-bis(2-aminoethyl)-2,6-pyridinedicarboxamide (BAP) with DNA was studied by agarose gel electrophoresis analysis. The results indicate that the BAP-Cu2+ complex can promote the cleavage of phosphodiester bond of supercoiled DNA at physiological condition, which is 3.2×106 times higher than DNA natural degradation. A hydrolytic cleaving mechanism through the cooperation of copper ions and functional amino groups was proposed.

  14. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change.

    Directory of Open Access Journals (Sweden)

    Deanna N Edwards

    Full Text Available Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.

  15. Plastid Inheritance in Sweet Potato as Revealed by DNA Restriction Fingerprinting%甘薯质体遗传方式的DNA指纹图谱分析

    Institute of Scientific and Technical Information of China (English)

    方晓华; 张方; 吴乃虎; 胡适宜

    2003-01-01

    用DNA指纹图谱分析了甘薯(Ipomoea batatas Lam.)徐薯18和AB78-1品系及它们的正反交子代叶绿体DNA,结果显示子代叶绿体DNA指纹均与母本相同,而未发现与父本或双亲相同的指纹图谱,因此在该杂交组合中质体遗传方式为母系遗传.这个结论与先前根据细胞学研究所推测的甘薯质体遗传方式不同,表明旋花科植物可能并不存在一个一致的父系或双亲质体传递模式.DNA指纹图谱分析用于质体遗传的研究尚未见报道,本文对其优越性进行了讨论.%The inheritance of chloroplast DNA (cpDNA) in sweet potato ( Ipomoea batatas Lam. ) was analyzed using DNA restriction fingerprinting. The cpDNA fingerprints of hybrids from reciprocal crosses between Xushul8 and AB78-1 were found to be identical to those of their female parents, which reveals that cpDNA of sweet potato is maternally inherited in this intervarietal crossing. This maternal cpDNA transmission pattern does not accord with the putative one based on former cytological studies. The plastid inheritance in Convolvulaceae has been briefly reviewed in this study, and the utility of DNA restriction fingerprinting analysis in the study of plastid inheritance is also discussed.

  16. Intrinsic Differences in Backbone Dynamics between Wild Type and DNA-Contact Mutants of the p53 DNA Binding Domain Revealed by Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Rasquinha, Juhi A; Bej, Aritra; Dutta, Shraboni; Mukherjee, Sujoy

    2017-09-07

    Mutations in p53's DNA binding domain (p53DBD) are associated with 50% of all cancers, making it an essential system to investigate and understand the genesis and progression of cancer. In this work, we studied the changes in the structure and dynamics of wild type p53DBD in comparison with two of its "hot-spot" DNA-contact mutants, R248Q and R273H, by analysis of backbone amide chemical shift perturbations and (15)N spin relaxation measurements. The results of amide chemical shift changes indicated significantly more perturbations in the R273H mutant than in wild type and R248Q p53DBD. Analysis of (15)N spin relaxation rates and the resulting nuclear magnetic resonance order parameters suggests that for most parts, the R248Q mutant exhibits limited conformational flexibility and is similar to the wild type protein. In contrast, R273H showed significant backbone dynamics extending up to its β-sandwich scaffold in addition to motions along the DNA binding interface. Furthermore, comparison of rotational correlation times between the mutants suggests that the R273H mutant, with a higher correlation time, forms an enlarged structural fold in comparison to the R248Q mutant and wild type p53DBD. Finally, we identify three regions in these proteins that show conformational flexibility to varying degrees, which suggests that the R273H mutant, in addition to being a DNA-contact mutation, exhibits properties of a conformational mutant.

  17. De novo design, synthesis and spectroscopic characterization of chiral benzimidazole-derived amino acid Zn(II) complexes: Development of tryptophan-derived specific hydrolytic DNA artificial nuclease agent

    Science.gov (United States)

    Parveen, Shazia; Arjmand, Farukh

    2012-01-01

    Novel ternary dizinc(II) complexes 1- 3, derived from 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol and L-form of amino acids (viz., tryptophan, leucine and valine) were synthesized and characterized by spectroscopic (IR, 1H NMR, UV-vis, ESI-MS) and other analytical methods. To evaluate the biological preference of chiral drugs for inherently chiral target DNA, interaction of 1- 3 with calf thymus DNA in Tris-HCl buffer was studied by various biophysical techniques which reveal that all these complexes bind to CT DNA non-covalently via electrostatic interaction. The higher Kb value of L-tryptophan complex 1 suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of complexes 1 and 2 with nucleotides (5'-GMP and 5'-TMP) were carried out by UV-vis titrations, 1H and 31P NMR which implicates the preferential selectivity of these complexes to N3 of thymine rather than N7 of guanine. Furthermore, complex 1 exhibits efficient DNA cleavage with supercoiled pBR322. The complex 1 cleaves DNA efficiently involving hydrolytic cleavage pathway. Such chiral synthetic hydrolytic nucleases with asymmetric centers are gaining considerable attention owing to their importance in biotechnology and drug design, in particular to cleave DNA with sequence selectivity different from that of the natural enzymes.

  18. [Biases on community structure during DNA extraction of shrimp intestinal microbiota revealed by high-throughput sequencing].

    Science.gov (United States)

    Wen, Chongqing; He, Yaoyao; Xue, Ming; Liang, Huafang; Dong, Junde

    2016-01-04

    High-throughput sequencing technology is increasingly applied in intestinal microbiota of aquatic animals including shrimp. However, there is a lack of standard method or kit for DNA isolation from shrimp intestinal microbiota, and little is known about the effectiveness and biases regarding DNA extraction based on high-throughput sequencing. The aim of this study was to study the biases of different DNA extraction kits on community structure of shrimp intestinal microbiota through high-throughput sequencing, and to better understand the structure and composition of bacterial flora associated with healthy Litopenaeus vannamei. We extracted the total DNA of intestinal microbiota from L. vannamei with three commercial kits designed for DNA extraction from bacteria, stool and tissue (Omega, USA). DNA quality was evaluated based on the absorbance ratios of 260/280 nm by NanoDrop, while DNA concentration was quantified using PicoGreen. Then Illumina MiSeq high-throughput sequencing was used to examine the intestinal bacterial communities following PCR amplification of 16S rDNA V4 region. The yield and purity of the DNA from the Bacterial Kit (SIB) were superior to those from the Stool Kit (SIS), whereas the DNA from Tissue Kit (SIT) presented too small amount to be amplified efficiently. The average sequence reads obtained from SIB and SIS samples were 52151 ± 5085 and 55296 ± 5147 respectively. After resampling at the same depth of 46800 reads, the operational taxonomic unit (OTU) number and Shannon diversity index of SIS samples were significantly higher than those of SIB samples. By contrast, the reproducibility of OTU among SIB replicates was higher than that among SIS replicates. The dominant phyla of SIS and SIB samples were identical, including Proteobacteria, Firmicutes, Bacteroidetes, Planctomycetes, Actinobacteria, and Cyanobacteria. However, the relative abundances of almost all the dominant groups at various taxonomic levels differed greatly between these

  19. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue

    Directory of Open Access Journals (Sweden)

    Woodfine Kathryn

    2011-01-01

    Full Text Available Abstract Background Genes subject to genomic imprinting are mono-allelically expressed in a parent-of-origin dependent manner. Each imprinted locus has at least one differentially methylated region (DMR which has allele specific DNA methylation and contributes to imprinted gene expression. Once DMRs are established, they are potentially able to withstand normal genome reprogramming events that occur during cell differentiation and germ-line DMRs are stably maintained throughout development. These DMRs, in addition to being either maternally or paternally methylated, have differences in whether methylation was acquired in the germ-line or post fertilization and are present in a variety of genomic locations with different Cytosine-phosphate guanine (CpG densities and CTCF binding capacities. We therefore examined the stability of maintenance of DNA methylation imprints and determined the normal baseline DNA methylation levels in several adult tissues for all imprinted genes. In order to do this, we first developed and validated 50 highly specific, quantitative DNA methylation pyrosequencing assays for the known DMRs associated with human imprinted genes. Results Remarkable stability of the DNA methylation imprint was observed in all germ-line DMRs and paternally methylated somatic DMRs (which maintained average methylation levels of between 35% - 65% in all somatic tissues, independent of gene expression. Maternally methylated somatic DMRs were found to have more variation with tissue specific methylation patterns. Most DMRs, however, showed some intra-individual variability for DNA methylation levels in peripheral blood, suggesting that more than one DMR needs to be examined in order to get an overall impression of the epigenetic stability in a tissue. The plasticity of DNA methylation at imprinted genes was examined in a panel of normal and cancer cell lines. All cell lines showed changes in DNA methylation, especially at the paternal germ

  20. Twist/Writhe Partitioning in a Coarse-Grained DNA Minicircle Model

    CERN Document Server

    Sayar, Mehmet; Kabakcioglu, Alkan

    2009-01-01

    Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion, therefore our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially depe...

  1. Direct Base-to-Base Transitions in ssDNA Revealed by Tip-Enhanced Raman Scattering

    CERN Document Server

    Lin, Xiu-Mei; Singh, Prabha; Siegmann, Michael; Kupfer, Stephan; Zhang, Zhenglong; Gräfe, Stefanie; Deckert, Volker

    2016-01-01

    In the present contribution, specifically designed single-stranded DNA (ssDNA) sequences composed of adenine and cytosine were used as nanometric rulers to target the maximum achievable spatial resolution of tip-enhanced Raman spectroscopy (TERS) under ambient conditions. By stepping along a strand with a TERS tip, the obtained spectra allowed for a clear spectral discrimination including conformational information of the nucleobases, and even sharp adenine-cytosine transitions were detected repeatedly with a spatial resolution below 1 nm.

  2. Introgressive hybridization and the evolutionary history of the herring gull complex revealed by mitochondrial and nuclear DNA

    Directory of Open Access Journals (Sweden)

    Zhang Jun

    2010-11-01

    Full Text Available Abstract Background Based on extensive mitochondrial DNA (mtDNA sequence data, we previously showed that the model of speciation among species of herring gull (Larus argentatus complex was not that of a ring species, but most likely due more complex speciation scenario's. We also found that two species, herring gull and glaucous gull (L. hyperboreus displayed an unexpected biphyletic distribution of their mtDNA haplotypes. It was evident that mtDNA sequence data alone were far from sufficient to obtain a more accurate and detailed insight into the demographic processes that underlie speciation of this complex, and that extensive autosomal genetic analysis was warranted. Results For this reason, the present study focuses on the reconstruction of the phylogeographic history of a limited number of gull species by means of a combined approach of mtDNA sequence data and 230 autosomal amplified fragment length polymorphism (AFLP loci. At the species level, the mtDNA and AFLP genetic data were largely congruent. Not only for argentatus and hyperboreus, but also among a third species, great black-backed gull (L. marinus we observed two distinct groups of mtDNA sequence haplotypes. Based on the AFLP data we were also able to detect distinct genetic subgroups among the various argentatus, hyperboreus, and marinus populations, supporting our initial hypothesis that complex demographic scenario's underlie speciation in the herring gull complex. Conclusions We present evidence that for each of these three biphyletic gull species, extensive mtDNA introgression could have taken place among the various geographically distinct subpopulations, or even among current species. Moreover, based on a large number of autosomal AFLP loci, we found evidence for distinct and complex demographic scenario's for each of the three species we studied. A more refined insight into the exact phylogeographic history within the herring gull complex is still impossible, and requires

  3. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), bot...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair.......The majority of archaeal viral genes are of unknown function hindering our understanding of the virus life cycle and viral interactions with their host. Here, we first describe functional characterization of ORF131b (gp17) and ORF436 (gp18) of Sulfolobus islandicus rod-shaped virus 2 (SIRV2), both...... encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U...

  4. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains.

    Science.gov (United States)

    Van der Aa, Niels; Cheng, Jiqiu; Mateiu, Ligia; Zamani Esteki, Masoud; Kumar, Parveen; Dimitriadou, Eftychia; Vanneste, Evelyne; Moreau, Yves; Vermeesch, Joris Robert; Voet, Thierry

    2013-04-01

    Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell's copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.

  5. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA.

    Science.gov (United States)

    Schneider, R; Lurz, R; Lüder, G; Tolksdorf, C; Travers, A; Muskhelishvili, G

    2001-12-15

    The Escherichia coli chromatin protein FIS modulates the topology of DNA in a growth phase-dependent manner. In this study we have investigated the global effect of FIS binding on DNA architecture in vitro. We show that in supercoiled DNA molecules FIS binds at multiple sites in a non-random fashion and increases DNA branching. This global DNA reshaping effect is independent of the helical phasing of FIS binding sites. We propose, in addition to the previously inferred stabilisation of tightly bent DNA microloops in the upstream regions of certain promoters, that FIS may perform the distinct architectural function of organising branched plectonemes in the E.coli nucleoid.

  6. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    Science.gov (United States)

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  7. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  8. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Baelum, Jacob; Tas, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Phillip; Prieme, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  9. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    OpenAIRE

    2008-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation act...

  10. Structure and partitioning of bacterial DNA: determined by a balance of competion and expansion forces?

    DEFF Research Database (Denmark)

    Woldringh, C. L.; Jensen, Peter Ruhdal; Westerhoff, H. V.

    1995-01-01

    The mechanisms that determine chromosome structure and chromosome partitioning in bacteria are largely unknown. Here we discuss two hypotheses: (i) the structure of the Escherichia coli nucleoid is determined by DNA binding proteins and DNA supercoiling, representing a compaction force on the one...... hand, and by the coupled transcription/translation/translocation of plasma membrane and cell wall proteins, representing an expansion force on the other hand; (ii) the two forces are important for the partitioning process of chromosomes....

  11. Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520.

    Directory of Open Access Journals (Sweden)

    Chunying Zhong

    Full Text Available Bacillus thuringiensis is the most widely used bacterial bio-insecticide, and most insecticidal crystal protein-coding genes are located on plasmids. Most strains of B. thuringiensis harbor numerous diverse plasmids, although the plasmid copy numbers (PCNs of all native plasmids in this host and the corresponding total plasmid DNA amount remains unknown. In this study, we determined the PCNs of 11 plasmids (ranging from 2 kb to 416 kb in a sequenced B. thuringiensis subsp. kurstaki strain YBT-1520 using real-time qPCR. PCNs were found to range from 1.38 to 172, and were negatively correlated to plasmid size. The amount of total plasmid DNA (∼8.7 Mbp was 1.62-fold greater than the amount of chromosomal DNA (∼5.4 Mbp at the mid-exponential growth stage (OD(600 = 2.0 of the organism. Furthermore, we selected three plasmids with different sizes and replication mechanisms to determine the PCNs over the entire life cycle. We found that the PCNs dynamically shifted at different stages, reaching their maximum during the mid-exponential growth or stationary phases and remaining stable and close to their minimum after the prespore formation stage. The PCN of pBMB2062, which is the smallest plasmid (2062 bp and has the highest PCN of those tested, varied in strain YBT-1520, HD-1, and HD-136 (172, 115, and 94, respectively. These findings provide insight into both the total plasmid DNA amount of B. thuringiensis and the strong ability of the species to harbor plasmids.

  12. Distinctive Drug-resistant Mutation Profiles and Interpretations of HIV-1 Proviral DNA Revealed by Deep Sequencing in Reverse Transcriptase

    Institute of Scientific and Technical Information of China (English)

    YIN Qian Qian; SHAO Yi Ming; MA Li Ying; LI Zhen Peng; ZHAO Hai; PAN Dong; WANG Yan; XU Wei Si; XING Hui; FENGYi; JIANG Shi Bo

    2016-01-01

    ObjectiveTo investigate distinctive features in drug-resistant mutations(DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-1-infected patients. MethodsForty-three HIV-1-infected individuals receiving first-line antiretroviral therapy were recruited to participate in a multicenter AIDS Cohort Study in Anhui and Henan Provinces in China in 2004. Drug resistance genotyping was performed by bulk sequencing and deep sequencing on the plasma and whole blood of 77 samples, respectively. Drug-resistance interpretation was compared between viral RNA and paired proviral DNA. ResultsCompared with bulk sequencing, deep sequencing could detect more DRMs and samples with DRMs in both viral RNA and proviral DNA. The mutations M184I and M230I were more prevalent in proviral DNA than in viral RNA (Fisher’s exact test,P ConclusionCompared with viral RNA, the distinctive information of DRMsand drug resistance interpretations for proviral DNA could be obtained by deep sequencing, which could provide more detailed and precise information for drug resistance monitoring and the rational design of optimal antiretroviral therapy regimens.

  13. DNA binding and cleavage activity of a structurally characterized Ni(II) Schiff base complex

    Indian Academy of Sciences (India)

    Sarat Chandra Kumar; Abhijit Pal; Merry Mitra; V M Manikandamathavan; Chia -Her Lin; Balachandran Unni Nair; Rajarshi Ghosh

    2015-08-01

    Synthesis and characterization of a mononuclear Ni(II) compound [Ni(L)(H2O)2](NO3)2 [L = N,N'-bis((pyridine-2-yl)phenylidene)-1,3-diaminopropan-2-ol] (1) is reported. 1 crystallizes in triclinic P-1 space group with a = 8.1911(2) Å, b = 11.6624(3) Å, c = 16.5356(4) Å and = 108.8120(10)° , = 91.2010(10)° , = 91.1500(10)° . The binding property of the complex with DNA has been investigated using absorption and emission studies, and viscosity experiment. The binding constant (Kb) and the linear Stern-Volmer quenching constant (Ksv) of the complex have been determined as 9.23 × 10 4 M−1 and 2.0 × 10 4 M−1, respectively. Spectroscopic and hydrodynamic investigations revealed groove or electrostatic nature of binding of 1 with DNA. 1 is also found to induce oxidative cleavage of the supercoiled pUC 18 DNA to its nicked circular form in a concentration dependent manner.

  14. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress

    Indian Academy of Sciences (India)

    INDRAJEET GHODKE; K MUNIYAPPA

    2016-12-01

    In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) protein complex plays pivotal roles in double-strandbreak (DSB) repair, replication stress and telomere length maintenance. Another protein linked to DSB repair is Sae2,which regulates MRX persistence at DSBs. However, very little is known about its role in DNA replication stress andrepair. Here, we reveal a crucial role for Sae2 in DNA replication stress. We show that different mutant alleles of SAE2cause hypersensitivity to genotoxic agents, and when combined with Δmre11 or nuclease-defective mre11 mutantalleles, the double mutants are considerably more sensitive suggesting that the sae2 mutations synergize with mre11mutations. Biochemical studies demonstrate that Sae2 exists as a dimer in solution, associates preferentially withsingle-stranded and branched DNA structures, exhibits structure-specific endonuclease activity and cleaves thesesubstrates from the 5′ end. Furthermore, we show that the nuclease activity is indeed intrinsic to Sae2. Interestingly,sae2G270D protein possesses DNA-binding activity, but lacks detectable nuclease activity. Altogether, our data suggesta direct role for Sae2 nuclease activity in processing of the DNA structures that arise during replication and DNAdamage and provide insights into the mechanism underlying Mre11-Sae2-mediated abrogation of replication stress-relateddefects in S. cerevisiae.

  15. Crystal structure of Δ-[Ru(bpy)2dppz]2+ bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation

    Science.gov (United States)

    Song, Hang; Kaiser, Jens T.; Barton, Jacqueline K.

    2012-08-01

    DNA mismatches represent a novel target in the development of diagnostics and therapeutics for cancer, because deficiencies in DNA mismatch repair are implicated in cancers, and cells that are repair-deficient show a high frequency of mismatches. Metal complexes with bulky intercalating ligands serve as probes for DNA mismatches. Here, we report the high-resolution (0.92 Å) crystal structure of the ruthenium ‘light switch’ complex Δ-[Ru(bpy)2dppz]2+ (bpy = 2,2‧-bipyridine and dppz = dipyridophenazine), which is known to show luminescence on binding to duplex DNA, bound to both mismatched and well-matched sites in the oligonucleotide 5‧-(dCGGAAATTACCG)2-3‧ (underline denotes AA mismatches). Two crystallographically independent views reveal that the complex binds mismatches through metalloinsertion, ejecting both mispaired adenosines. Additional ruthenium complexes are intercalated at well-matched sites, creating an array of complexes in the minor groove stabilized by stacking interactions between bpy ligands and extruded adenosines. This structure attests to the generality of metalloinsertion and metallointercalation as DNA binding modes.

  16. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    Science.gov (United States)

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  17. Revealing the challenges of low template DNA analysis with the prototype Ion AmpliSeq™ Identity panel v2.3 on the PGM™ Sequencer.

    Science.gov (United States)

    Elena, Salata; Alessandro, Agostino; Ignazio, Ciuna; Sharon, Wootton; Luigi, Ripani; Andrea, Berti

    2016-05-01

    Forensic scientists frequently have to deal with the analysis of challenging sources of DNA such as degraded and low template DNA (LtDNA). The capacity to genotype difficult biological traces has been facilitated by emerging technologies. Massive parallel sequencing (MPS) on microchip among other technologies promises high sensitivity and discrimination power. In this study we evaluated the combined use of the Quantifiler(®) Trio DNA Quantification Kit with the prototype Ion AmpliSeq™ Identity panel v2.3 and PGM™ platform in LtDNA</