WorldWideScience

Sample records for superatmospheric oxygen concentrations

  1. Effect of modified atmosphere packaging (MAP) with low and superatmospheric oxygen on the quality and antioxidant enzyme system of golden needle mushrooms (Flammulina velutipes) during postharvest storage

    NARCIS (Netherlands)

    Wang, Cheng T.; Wang, Chang T.; Cao, Y.P.; Nout, M.J.R.; Sun, B.G.; Liu, L.

    2011-01-01

    To quantify the effect of oxygen concentrations on the quality and antioxidant enzyme system of stored golden needle mushroom, modified atmosphere packaging (MAP) with low and initial superatmospheric oxygen was applied during mushroom storage, and physiological changes associated with postharvest

  2. Effect of modified atmosphere packaging (MAP) with low and superatmospheric oxygen on the quality and antioxidant enzyme system of golden needle mushrooms (Flammulina velutipes) during postharvest storage

    NARCIS (Netherlands)

    Wang, Cheng T.; Wang, Chang T.; Cao, Y.P.; Nout, M.J.R.; Sun, B.G.; Liu, L.

    2011-01-01

    To quantify the effect of oxygen concentrations on the quality and antioxidant enzyme system of stored golden needle mushroom, modified atmosphere packaging (MAP) with low and initial superatmospheric oxygen was applied during mushroom storage, and physiological changes associated with postharvest d

  3. A Small Oxygen Concentrator

    Science.gov (United States)

    1985-12-01

    150- S40- 20- 10 0 0 10 i0 30 40 NUIT PRESS=R (psig Figure 7. Percentage of oxygen. versus inlet pressure when using Soc with 131 molecular s ieve. 70...chick valve ano *move the plunger and spring. Disca the plunger; the spring will W• reused. Mill a SS sleeve to 0.535" 0.0. and 0.50" I.D. and press tit...the fjur 1" caps. The i n- side of two of the caps is milled flat to a diameteýr of 7/8". P-Kace one ena of a 10’, length of 1/2" SS tube in each Of

  4. Super-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition.

  5. Medical Oxygen Concentrator for Microgravity Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have all seen people carrying portable oxygen tanks or concentrators to provide critical life support respiratory oxygen. Heavy, bulky, and for O2 concentrators,...

  6. Effect of oxygen concentration on singlet oxygen luminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longchao; Lin, Lisheng; Li, Yirong; Lin, Huiyun; Qiu, Zhihai [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Gu, Ying [Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853 (China); Li, Buhong, E-mail: bhli@fjnu.edu.cn [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China)

    2014-08-01

    Singlet oxygen ({sup 1}O{sub 2}) is a major phototoxic component in photodynamic therapy (PDT) and its generation is dependent on the availability of tissue oxygen. To examine the effect of oxygen concentration on {sup 1}O{sub 2} detection, two hydrophilic photosensitizer (PS), rose bengal (RB) and meso-metra (N-methyl-4-pyridyl) porphine tetra tosylate (TMPyP) were used as model PS. Irradiation was carried out using 523 nm under hypoxic (2%, 13%), normoxic (21%) and hyperoxic (65%) conditions. The spectral and spatial resolved {sup 1}O{sub 2} luminescence was measured by near-infrared (NIR) photomultiplier tube (PMT) and camera, respectively. Upon the irradiation, the emission signal mainly consisted of background scattering light, PS fluorescence and phosphorescence, and {sup 1}O{sub 2} luminescence. The PS phosphorescence was evidently dependent on the oxygen concentration and PS type, which resulted in the change of emission profile of {sup 1}O{sub 2} luminescence. This change was further demonstrated on {sup 1}O{sub 2} luminescence image. The present study suggests that the low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection. - Highlights: • Both spectral and spatial resolved {sup 1}O{sub 2} luminescence measurements were performed. • Effect of oxygen concentration on {sup 1}O{sub 2} generation was quantitatively evaluated. • Low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection.

  7. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the “Great Oxidation” of the Earth’s surface about 2.3 to 2.4 billion years ago. Here, we show......Molecular oxygen (O2) is the second most abundant gas in the Earth’s atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully...

  8. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  9. High-Pressure Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  10. High-Pressure Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA desires to generate and store gases including oxygen and nitrogen at sub-critical conditions as a part of its lunar and spacecraft atmospheric systems. Oxygen...

  11. Control of Oxygen Concentration by Using a Carbonaceous Substance

    Directory of Open Access Journals (Sweden)

    Mohanad Jadan

    2005-01-01

    Full Text Available The control of oxygen concentration in gas flow may be used in chemical industry, heat power engineering, ecology, automobile construction and other industrial branches. This control is realized over a broad range of oxygen concentrations. The control of the oxygen concentration is based on passing of gas flow through a measuring cavity of radio spectrometer and measurement of a magnetic resonance signal. A change in the magnetic resonance signal of a dispersed carbonaceous substance, placed into the cavity, indicates to the changes in oxygen concentrations. The dispersed anthracite and thermal treatment cellulose substance in the oxygen-free medium are proposed to use as a carbonaceous substance.

  12. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...

  13. A Solar Powered, Ceramic Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Oxygen is an essential treatment for several life-threatening conditions including pneumonia, the single biggest cause of death in children less than five years of...

  14. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  15. Oxygen concentration distribution in an airlift loop reactor

    Institute of Scientific and Technical Information of China (English)

    李国庆; 杨守志; 蔡昭铃; 陈家镛

    1995-01-01

    Oxygen, concentration distributions of the liquid and gas phases along the axial direction of an airlift loop reactor have been calculated for various gas superficial velocities and oxygen consumption rates with water and CMC solutions respectively by applying the axial backmixing model to the riser and the downcomer and the complete mixing model for the separator. The results show that the dissolved oxygen concentration is zero at the bottom part of the downcomer when the rate of dissolved oxygen consumption by microorganisms is very high.

  16. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    Science.gov (United States)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  17. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, L C; Ninomiya, S; Hiraoka, K

    2016-06-01

    Pressure is a key parameter for an ionization source. In this Special Feature article, Lee Chuin Chen and colleagues review super-atmospheric pressure ionization MS with electrospray, corona-discharge-based chemical ionization, and field desorption. They routinely run their mass spectrometer with ion source pressures ranging from several to several tens of atmospheres. A number of strategies have been used to preserve the high vacuum of the instrument while working with a high-pressure (HP) ion source. A recent prototype uses a booster pump with variable pumping speed added to the first pumping stage of the mass spectrometer to regulate a constant vacuum pressure. Further, a new HP-ESI source allowing rapid (a few seconds) online protein digestion MS is also reported. Dr. Lee Chuin Chen is Associate Professor in the Department of Interdisciplinary Research at the University of Yamanashi (Yamanashi, Japan). His main research interest is the development of novel mass spectrometric methods for in-situ medical diagnosis.

  18. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  19. Dissolved oxygen concentration affects hybrid striped bass growth

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  20. [Measurement of oxygen concentration using multimode diode laser absorption spectroscopy].

    Science.gov (United States)

    Gao, Guang-zhen; Cai, Ting-dong; Hu, Bo; Jia, Tian-jun

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used technique for high sensitivity, good selectivity and fast response. It is widely used in environment monitoring, industrial process control and biomedical sensing. In order to overcome the drawbacks of TDLAS including high cost, poor stability and center wavelength shift problem. A multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL-COSPEC-WMS) was used to measure O2 concentration near 760nm at the 1%~30% range of near room temperature. During the experiment, the light is splitter into two beams, respectively through the sample and measuring cell, two receiving optical signal collection containing gas concentration information sent back stage treatment, invert the oxygen concentration through correlation and ratio between measured signal and reference signal, the correlation spectroscopy harmonic detection technique is used to improve the stability of the system and the signal to noise ratio. The result showed that, there was a good linear relationship between the measured oxygen concentration and the actual concentration value. A detection limit of 280 pmm. m in the 1 atmospheric which approved of the same sample. A continuous measurement for oxygen with the standard deviation of 0. 056% in ambient air during approximately 30 minutes confirms the stability and the capability of the system. The design of the system includes soft and hardware can meet the needs of oxygen online monitoring. The experimental device is simple and easy to use, easy to complex environment application.

  1. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    Science.gov (United States)

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  2. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce

    Science.gov (United States)

    A laboratory study was conducted to compare phosphine fumigations under the normal and superatmospheric oxygen levels on toxicity against Nasonovia ribisnigri (Mosley) and effects on postharvest quality of romaine and head lettuce. Low temperature phosphine fumigation was effective against the aphi...

  3. Is the quickness of resuscitation after hypoxia influenced by the oxygen concentration? Metabolomics in piglets resuscitated with different oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Federica Murgia

    2013-06-01

    Full Text Available Perinatal asphyxia is one of the leading causes of morbidity and mortality in the neonatal period. There is an on-going debate in the literature concerning the correct oxygen concentration to be used during neonatal resuscitation. Aim of this study was to investigate whether different metabolic profiles occurred according to oxygen concentration administered and quickness of resuscitation. We tested the hypothesis that the metabolic profile may be affected by the response to the different oxygen concentration and influenced the different time of recovery. Forty male Landrace/Large newborn piglets were the subjects of the present study. As a consequence of the different time of resuscitation, a metabolomics analysis between the two classes of reoxygenated piglets with the slowest and fastest recovery was carried out: first group (4 piglets RT < 15 minutes and second group (6 piglets RT > 68 minutes. In addition, 1H-NMR metabolomics study was performed showing different metabolic profiles between the two groups. The most significant metabolites were: N-phenylacetylglycine, acetoacetate, methanol, glucose, sarcosine, succinate, dimethylamine and alanine. Our results seem to indicate that the rapidity of resuscitation is influenced by the oxygen concentration. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  4. Effects of ambient oxygen concentration on soot temperature and concentration for biodiesel and diesel spray combustion

    KAUST Repository

    Zhang, Ji

    2015-06-01

    Ambient oxygen concentration, a key variable directly related to exhaust gas recirculation (EGR) levels in diesel engines, plays a significant role in particulate matter (PM) and nitrogen oxides (NOx) emissions. The utilization of biodiesel in diesel engines has been investigated over the last decades for its renewable characteristics and lower emissions compared to diesel. In an earlier work, we demonstrated that the soot temperature and concentration of biodiesel were lower than diesel under regular diesel engine conditions without EGR. Soot concentration was quantified by a parameter called KL factor. As a continuous effort, this paper presents an experimental investigation of the ambient oxygen concentration on soot temperature and KL factor during biodiesel and diesel spray combustion. The experiment was implemented in a constant volume chamber system, where the ambient oxygen concentration varied from 21 to 10% and the ambient temperature was kept to 1,000 K. A high speed two-color pyrometry technique was used to measure transient soot temperature and the KL factor of the spray flame. The soot temperature of biodiesel is found to be lower than that of diesel under the same conditions, which follows the same trend from our previous results found when the ambient temperature changes to 21% oxygen conditions. A reduction in ambient oxygen concentration generally reduces the soot temperature for both fuels. However, this is a complicated effect on soot processes as the change of oxygen concentration greatly affects the balance between soot formation and oxidation. The KL factor is observed to be the highest at 12% O2 for diesel and 18% O2 for biodiesel, respectively. On the other hand, the 10% O2 condition shows the lowest KL factor for both fuels. These results can provide quantitative experimental evidences to optimize the ambient oxygen concentration for diesel engines using different fuels for better emissions characteristics. © 2014 American Society of

  5. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    Science.gov (United States)

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional FIO2 while pediatric/adult therapy is administered with high FIO2 . We suspected a connection between FIO2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively (P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively (P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a role for

  6. Hydrogen and oxygen concentrations in IXCs: A compilation

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, L.M.; Terrones, G.T.; Melethil, P.K.

    1996-06-01

    This paper contains four reports and two internal letters that address the estimation of hydrogen and oxygen concentrations in ion exchange columns that treat the water of the K-East and K-West Basins at Hanford. The concern is the flammability of this mixture of gases and planning for safe transport during decommissioning. A transient will occur when the hydrogen filter is temporarily blocked by a sandbag. Analyses are provided for steady-state, transients, and for both wet and dry resins.

  7. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  8. Effects of Dissolved Oxygen Concentration on Oxygen Consumption and Development of Channel Catfish Eggs and Fry: Implications for Hatchery Management

    Science.gov (United States)

    Channel catfish spawns were incubated under controlled conditions to determine the effect of dissolved oxygen (DO) concentration on development and survival. Routine metabolic rate and limiting oxygen concentration were determined on eggs, sac fry and swim-up fry. Eight channel catfish spawns were s...

  9. Growth of E. coli at Nanomolar Concentrations of Oxygen

    Science.gov (United States)

    Stolper, D. A.; Revsbech, N.; Canfield, D. E.

    2009-12-01

    It has been know since the work of Pasteur (1876) that facultative aerobes transition from aerobic to anaerobic metabolisms when molecular oxygen (O2) is removed from the environment. This transition (the “Pasteur Point”) generally occurs when the O2 concentration in gas in equilibrium with a growth medium is ~.01 of the present atmospheric level (PAL) of O2 (Fenchel and Finlay, 1995). In the earth sciences, the Pasteur Point is sometimes assumed to approximate the O2 level below which aerobic processes cease to be viable (e.g., Goldblatt et al., 2006; Parkinson et al., 2008). If true, this assumption implies that aerobic respiration evolved only after the earth’s atmosphere reached O2 concentrations ≥ .01 PAL. In order to investigate whether the Pasteur Point is a valid proxy for the level at which aerobic metabolisms become non-viable, we designed an experiment in which the presence or absence of aerobic respiration could be measured at O2 concentrations significantly below the Pasteur Point. To do this, we grew E. coli K-12 in a sealed, 1 liter glass reactor with well-mixed M9 media maintained at 37°C. O2 was supplied to the reactor by pumping air-saturated water (maintained at 37°C) through a silicone tube that looped through the reactor. The only carbon source available was glycerol. As E. coli K-12 can only metabolize glycerol by using O2 (except under restricted conditions not present in our experimental setup), growth of E. coli K-12 in the medium signifies aerobic growth. We monitored growth by periodically removing media and measuring its optical density spectrophotometrically. In order to monitor O2 concentrations, we employed a new O2-sensing electrode, termed the “Switchable Trace Oxygen Electrode” (STOX) sensor, which can measure O2 concentrations in solutions down to ~3-5 nM (Revsbech et al., 2009). This corresponds to an equilibrated gas with ~10-5 PAL. Our findings indicate that E. coli K-12 can grow aerobically at O2 levels up to

  10. Temporal Dynamics of Dissolved Oxygen Concentrations in the Hyporheic Zone.

    Science.gov (United States)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2016-12-01

    Dissolved oxygen (DO) concentration profiles and DO consumption rates are primary indicators of the redox state of porewaters in the hyporheic zone (HZ). Previous studies (mostly numeric) of reactive solute transport, in the HZ, are steady state and give a fixed, in time, view of the biogeochemical activity and redox state of the HZ. Through the use of a novel, multichannel fiber optic DO measurement system and a robotic surface probe system in a large flume experiment, we have been able to track DO concentration, in the HZ, over time and at high spatial and temporal resolutions never achieved before. Our research shows that in carbon-limited systems (i.e., ones in which organic carbon replenishment is largely episodic), DO concentration profiles and consumption rates will vary as a function of time. As the most readily available organic carbon is consumed, (first near the bed surface/water interface) respiration rates, in that area, will drop and DO will be transported deeper into the HZ. Over time, and lacking either an external source of bioavailable carbon or an alternate electron donor substrate, microbial metabolic activity will slow substantially and the majority of the HZ will be rendered oxic. Hyporheic fluxes affect the time scale of biological reactions resulting in faster growth of the aerobic zone in high-flux systems. While this temporal variability can result in a multitude of DO consumption curves (DO vs. residence time), the careful application of dimensional analysis can collapse the consumption curves to a single characteristic curve that accounts for a wide range of morphology and reactivity.

  11. End expiratory oxygen concentrations to predict central venous oxygen saturation: an observational pilot study

    Directory of Open Access Journals (Sweden)

    Steuerwald Michael

    2006-09-01

    Full Text Available Abstract Background A non-invasive surrogate measurement for central venous oxygen saturation (ScVO2 would be useful in the ED for assessing therapeutic interventions in critically ill patients. We hypothesized that either linear or nonlinear mathematical manipulation of the partial pressure of oxygen in breath at end expiration (EtO2 would accurately predict ScVO2. Methods Prospective observational study of a convenience sample of hemodialysis patients age > 17 years with existing upper extremity central venous catheters were enrolled. Using a portable respiratory device, we collected both tidal breathing and end expiratory oxygen and carbon dioxide concentrations, volume and flow on each patient. Simultaneous ScVO2 measurements were obtained via blood samples collected from the hemodialysis catheter. Two models were used to predict ScVO2: 1 Best-fit multivariate linear regression equation incorporating all respiratory variables; 2 MathCAD to model the decay curve of EtO2 versus expiratory volume using the least squares method to estimate the pO2 that would occur at Results From 21 patients, the correlation between EtO2 and measured ScVO2 yielded R2 = 0.11. The best fit multivariate equation included EtCO2 and EtO2 and when solved for ScVO2, the equation yielded a mean absolute difference from the measured ScVO2 of 8 ± 6% (range -18 to +17%. The predicted ScVO2 value was within 10% of the actual value for 57% of the patients. Modeling of the EtO2 curve did not accurately predict ScVO2 at any lung volume. Conclusion We found no significant correlation between EtO2 and ScVO2. A linear equation incorporating EtCO2 and EtO2 had at best modest predictive accuracy for ScVO2.

  12. Evaluation of the Oxygen Concentrator Prototypes: Pressure Swing Adsorption Prototype and Electrochemical Prototype

    Science.gov (United States)

    Gilkey, Kelly M.; Olson, Sandra L.

    2015-01-01

    An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the

  13. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2017-06-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2 /L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2 /L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  14. Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.

    Science.gov (United States)

    Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il

    2010-05-01

    Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.

  15. Effects of oxygen concentration and flow rate on cognitive ability and physiological responses in the elderly

    Institute of Scientific and Technical Information of China (English)

    Hyun-Jun Kim; Soon-Cheol Chung; Hyun-Kyung Park; Dae-Woon Lim; Mi-Hyun Choi; Hyun-Joo Kim; In-Hwa Lee; Hyung-Sik Kim; Jin-Seung Choi; Gye-Rae Tack

    2013-01-01

    The supply of highly concentrated oxygen positively affects cognitive processing in normal young adults. However, there have been few reports on changes in cognitive ability in elderly subjects following highly concentrated oxygen administration. This study investigated changes in cognitive ability, blood oxygen saturation (%), and heart rate (beats/min) in normal elderly subjects at three different levels of oxygen [21% (1 L/min), 93% (1 L/min), and 93% (5 L/min)] administered during a 1-back task. Eight elderly male (75.3 ± 4.3 years old) and 10 female (71.1 ± 3.9 years old) subjects, who were normal in cognitive ability as shown by a score of more than 24 points in the Mini-Mental State Examination-Korea, participated in the experiment. The experiment consisted of an adaptation phase after the start of oxygen administration (3 minutes), a control phase to obtain stable baseline measurements of heart rate and blood oxygen saturation before the task (2 minutes), and a task phase during which the 1-back task was performed (2 minutes). Three levels of oxygen were administered throughout the three phases (7 minutes). Blood oxygen saturation and heart rate were measured during each phase. Our results show that blood oxygen saturation increased, heart rate decreased, and response time in the 1-back task decreased as the concentration and amount of administered oxygen increased. This shows that administration of sufficient oxygen for optimal cognitive functioning increases blood oxygen saturation and decreases heart rate.

  16. Evaluation of Oxygen Concentrators and Chemical Oxygen Generators at Altitude and Temperature Extremes

    Science.gov (United States)

    2015-04-22

    insulated and is supplied with a nylon cover for further insulation. A pin attached to a wire is pulled to activate the device. Oxygen begins to flow... nylon cover for additional insulation. The device has two pins that must be pulled to initiate the reaction process. Oxygen flow begins seconds

  17. Production Responses of Channel Catfish to Minimum Daily Dissolved Oxygen Concentrations in Earthen Ponds

    Science.gov (United States)

    The purpose of this study was to determine the effects of the minimum daily dissolved oxygen (DO) concentration on production parameters of channel catfish Ictalurus punctatus in earthen ponds. Fifteen one-acre ponds (5 ponds per treatment) were managed as High Oxygen (minimum DO concentrations aver...

  18. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  19. Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner

    Science.gov (United States)

    Liu, Bo; Kruger, Robert; Reinecke, Daniel; Stantz, Keith M.

    2010-02-01

    Purpose: The purpose of this study is to use PCT spectroscopy scanner to monitor the hemoglobin concentration and oxygen saturation change of living mouse by imaging the artery and veins in a mouse tail. Materials and Methods: One mouse tail was scanned using the PCT small animal scanner at the isosbestic wavelength (796nm) to obtain its hemoglobin concentration. Immediately after the scan, the mouse was euthanized and its blood was extracted from the heart. The true hemoglobin concentration was measured using a co-oximeter. Reconstruction correction algorithm to compensate the acoustic signal loss due to the existence of bone structure in the mouse tail was developed. After the correction, the hemoglobin concentration was calculated from the PCT images and compared with co-oximeter result. Next, one mouse were immobilized in the PCT scanner. Gas with different concentrations of oxygen was given to mouse to change the oxygen saturation. PCT tail vessel spectroscopy scans were performed 15 minutes after the introduction of gas. The oxygen saturation values were then calculated to monitor the oxygen saturation change of mouse. Results: The systematic error for hemoglobin concentration measurement was less than 5% based on preliminary analysis. Same correction technique was used for oxygen saturation calculation. After correction, the oxygen saturation level change matches the oxygen volume ratio change of the introduced gas. Conclusion: This living mouse tail experiment has shown that NIR PCT-spectroscopy can be used to monitor the oxygen saturation status in living small animals.

  20. Long-term climate forcing by atmospheric oxygen concentrations

    Science.gov (United States)

    Poulsen, Christopher J.; Tabor, Clay; White, Joseph D.

    2015-06-01

    The percentage of oxygen in Earth’s atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time.

  1. Oxygen concentrators performance with nitrous oxide at 50:50 volume

    Directory of Open Access Journals (Sweden)

    Jorge Ronaldo Moll

    2014-06-01

    Full Text Available Background and objectives: Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Methods: Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293 or of oxygen from concentrators and nitrous oxide (O293N2O. The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Results: Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p < 0.001 for O293 group while a significant decline (p < 0.001 for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. Conclusion: The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume.

  2. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  3. Effect of hyperbaric oxygen therapy combined with autologous platelet concentrate applied in rabbit fibula fraction healing

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Fagundes Neves

    2013-09-01

    Full Text Available OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6-8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each: control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model.

  4. The functioning of oxygen concentrators in resource-limited settings: a situation assessment in two countries.

    Science.gov (United States)

    La Vincente, S F; Peel, D; Carai, S; Weber, M W; Enarson, P; Maganga, E; Soyolgerel, G; Duke, T

    2011-05-01

    The paediatric wards of hospitals in Malawi and Mongolia. To describe oxygen concentrator functioning in two countries with widespread, long-term use of concentrators as a primary source of oxygen for treating children. A systematic assessment of concentrators in the paediatric wards of 15 hospitals in Malawi and nine hospitals in Mongolia. Oxygen concentrators had been installed for a median of 48 months (interquartile range [IQR] 6-60) and 36 months (IQR 12-96), respectively, prior to the evaluation in Malawi and Mongolia. Concentrators were the primary source of oxygen. Three quarters of the concentrators assessed in Malawi (28/36) and half those assessed in Mongolia (13/25) were functional. Concentrators were found to remain functional with up to 30 000 h of use. However, several concentrators were functioning very poorly despite limited use. Concentrators from a number of different manufacturers were evaluated, and there was marked variation in performance between brands. Inadequate resources for maintenance were reported in both countries. Years after installation of oxygen concentrators, many machines were still functioning, indicating that widespread use can be sustained in resource-limited settings. However, concentrator performance varied substantially. Procurement of high-quality and appropriate equipment is critical, and resources should be made available for ongoing maintenance.

  5. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.

    Science.gov (United States)

    Yao, Yijun; Shen, Rui; Pennel, Kelly G; Suuberg, Eric M

    2013-12-01

    In subsurface vapor intrusion, aerobic biodegradation has been considered as a major environmental factor that determines the soil gas concentration attenuation factors for contaminants such as petroleum hydrocarbons. The site investigation has shown that oxygen can play an important role in this biodegradation rate, and this paper explores the influence of oxygen concentration on biodegradation reactions included in vapor intrusion (VI) models. Two different three dimensional (3-D) numerical models of vapor intrusion were explored for their sensitivity to the form of the biodegradation rate law. A second order biodegradation rate law, explicitly including oxygen concentration dependence, was introduced into one model. The results indicate that the aerobic/anoxic interface depth is determined by the ratio of contaminant source vapor to atmospheric oxygen concentration, and that the contaminant concentration profile in the aerobic zone was significantly influenced by the choice of rate law.

  6. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  7. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  8. Regulation of respiration and fermentation to control the plant internal oxygen concentration.

    Science.gov (United States)

    Zabalza, Ana; van Dongen, Joost T; Froehlich, Anja; Oliver, Sandra N; Faix, Benjamin; Gupta, Kapuganti Jagadis; Schmälzlin, Elmar; Igal, Maria; Orcaray, Luis; Royuela, Mercedes; Geigenberger, Peter

    2009-02-01

    Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.

  9. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R

    2004-05-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity.

  10. The effects of different oxygen concentrations on recruitment maneuver during general anesthesia for laparoscopic surgery.

    Science.gov (United States)

    Topuz, Ufuk; Salihoglu, Ziya; Gokay, Banu V; Umutoglu, Tarik; Bakan, Mefkur; Idin, Kadir

    2014-10-01

    Recruitment maneuvers (RMs), which aim to ventilate the collaborated alveolus by temporarily increasing the transpulmonary pressure, have positive effects in relation to respiration, mainly oxygenation. Although many studies have defined the pressure values used during RM and the application period, our knowledge of the effects of different oxygen concentrations is limited. In this study, we aimed to determine the effects of different oxygen concentrations during RM on the arterial oxygenation and respiration mechanics in laparoscopic cases. Thirty-two patients undergoing laparoscopic cholecystectomy were recruited into the study. The patients were randomly divided into 2 groups. RM with a 30% oxygen concentration was performed in patients within the first group (group I, n=16), whereas patients in the second group (group II, n=16) received RM with 100% oxygen. To study respiratory mechanics, dynamic compliance (Cdyn), airway resistance (Raw), and peak inspiratory pressure were measured at 3 different times: 5 minutes after anesthesia induction, 5 minutes after the abdomen was insufflated, and 5 minutes after the abdomen was desufflated. Arterial blood gases were measured during surgery and 30 minutes after surgery (postoperative). The average postoperative partial arterial oxygen pressure values of the patients in groups I and II were 121 and 98 mm Hg, respectively. The difference between the groups was statistically significant. In addition, the decrease in compliance from induction values after desufflation in group II was statistically significant. On the basis of our results, maintaining oxygen concentrations below 100% during RM may be more beneficial in terms of respiratory mechanics and gas exchange.

  11. Predictive Control of Dissolved Oxygen Concentration in Cynoglossus Semilaevis Industrial Aquaculture

    National Research Council Canada - National Science Library

    Hongjing Liu; Yaoguang Wei; Chunhong Liu; Yingyi Chen

    2014-01-01

    .... The changing process of dissolved oxygen concentration contains nonlinearities and big time-delay because it is restricted by multiple factors, so traditional control methods are difficult to control...

  12. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  13. Impact of medium volume and oxygen concentration in the incubator on pericellular oxygen concentration and differentiation of murine chondrogenic cell culture.

    Science.gov (United States)

    Oze, Hiroki; Hirao, Makoto; Ebina, Kosuke; Shi, Kenrin; Kawato, Yoshitaka; Kaneshiro, Shoichi; Yoshikawa, Hideki; Hashimoto, Jun

    2012-02-01

    Previous studies have demonstrated that oxygen environment is an important determinate factor of cell phenotypes and differentiation, although factors which affect pericellular oxygen concentration (POC) in murine chondrogenic cell culture remain unidentified. Oxygen concentrations in vivo were measured in rabbit musculoskeletal tissues, which were by far hypoxic compared to 20% O(2) (ranging from 2.29 ± 1.16 to 4.36 ± 0.51%). Oxygen concentrations in murine chondrogenic cell (C3H10T1/2) culture medium were monitored in different oxygen concentrations (20% or 5%) in the incubator and in different medium volumes (3,700 or 7,400 μl) within 25-cm(2) flasks. Chondrogenic differentiation was assessed by glycosaminoglycan production with quantitative evaluation of Alcian blue staining in 12-well culture dishes. Expression of chondrogenic genes, aggrecan, and type II collagen α1, was examined by quantitative real-time polymerase chain reaction. Oxygen concentrations in medium decreased accordingly with the depth from medium surface, and POC at Day 6 was 18.99 ± 0.81% in 3,700-μl medium (1,480-μm depth) and 13.26 ± 0.23% in 7,400-μl medium (2,960-μm depth) at 20% O(2) in the incubator, which was 4.96 ± 0.08% (1,480-μm depth) and 2.83 ± 0.42% (2,960-μm depth) at 5% O(2), respectively. The differences of POC compared by medium volume were statistically significant (p = 0.0003 at 20% and p = 0.001 at 5%). Glycosaminoglycan production and aggrecan gene expression were most promoted when cultured in moderately low POC, 1,000 μl (2,960-μm depth) at 20% O(2) and 500 μl (1,480-μm depth) at 5% O(2) in 12-well culture dishes. We demonstrate that medium volume and oxygen concentration in the incubator affect not only POC but also chondrogenic differentiation.

  14. Experimental study of effects of oxygen concentration on combustion and emissions of diesel engine

    Institute of Scientific and Technical Information of China (English)

    YAO MingFa; ZHANG QuanChang; ZHENG ZunQin; ZHANG Pang

    2009-01-01

    Effects of oxygen concentration on combustion and emissions of diesel engine are investigated by experiment. The intake oxygen concentration is controlled by adjusting CO2. The results show that very low levels of both soot and NOx emissions can be achieved by modulating the injection pressure, tim-ing, and boost pressure at the low levels of oxygen concentration. However, both CO and HC emissions and fuel consumption distinctly increase at the low levels of oxygen concentration. The results also indicate that NOx emissions strongly depend on oxygen concentration, while soot emissions strongly depend on injection pressure. Decreasing oxygen concentration is the most effective method to control NOx emissions. High injection pressure is necessary to reduce smoke emissions. High injection pres-sure can also decrease the CO and HC emissions and improve engine efficiency. With the increase of intake pressure, both NOx and smoke emissions decrease. However, it is necessary to use the appro-priate intake pressure in order to get the low HC and CO emissions with high efficiency.

  15. Experimental study of effects of oxygen concentration on combustion and emissions of diesel engine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Effects of oxygen concentration on combustion and emissions of diesel engine are investigated by experiment.The intake oxygen concentration is controlled by adjusting CO2.The results show that very low levels of both soot and NOx emissions can be achieved by modulating the injection pressure,tim-ing,and boost pressure at the low levels of oxygen concentration.However,both CO and HC emissions and fuel consumption distinctly increase at the low levels of oxygen concentration.The results also indicate that NOx emissions strongly depend on oxygen concentration,while soot emissions strongly depend on injection pressure.Decreasing oxygen concentration is the most effective method to control NOx emissions.High injection pressure is necessary to reduce smoke emissions.High injection pres-sure can also decrease the CO and HC emissions and improve engine efficiency.With the increase of intake pressure,both NOx and smoke emissions decrease.However,it is necessary to use the appro-priate intake pressure in order to get the low HC and CO emissions with high efficiency.

  16. Trough Concentrations of Vancomycin in Patients Undergoing Extracorporeal Membrane Oxygenation.

    Directory of Open Access Journals (Sweden)

    So Jin Park

    Full Text Available To investigate the appropriateness of the current vancomycin dosing strategy in adult patients with extracorporeal membrane oxygenation (ECMO, between March 2013 and November 2013, patients who were treated with vancomycin while on ECMO were enrolled. Control group consisted of 60 patients on vancomycin without ECMO, stayed in medical intensive care unit during the same study period and with the same exclusion criteria. Early trough levels were obtained within the fourth dosing, and maintenance levels were measured at steady state. A total of 20 patients were included in the analysis in ECMO group. Sixteen patients received an initial intravenous dose of 1.0 g vancomycin followed by 1.0 g every 12 hours. The non-steady state trough level of vancomycin after starting administration was subtherapeutic in 19 patients (95.00% in ECMO group as compared with 40 patients (66.67% in the control group (p = 0.013. Vancomycin clearance was 1.27±0.51 mL/min/kg, vancomycin clearance/creatinine clearance ratio was 0.90 ± 0.37, and elimination rate constant was 0.12 ± 0.04 h-1. Vancomycin dosingfrequency and total daily dose were significantly increased after clinical pharmacokinetic services of the pharmacist based on calculated pharmacokinetic parameters (from 2.10 ± 0.72 to 2.90 ± 0.97 times/day, p = 0.002 and from 32.54 ± 8.43 to 42.24 ± 14.62mg/kg, p = 0.014 in ECMO group in contrast with those (from 2.11 ± 0.69 to 2.37 ± 0.86 times/day, p = 0.071 and from 33.91 ± 11.85 to 31.61 ± 17.50 mg/kg, p = 0.350 in the control group.Although the elimination rate for vancomycin was similar with population parameter of non ECMO patients, the current dosing strategy of our institution for vancomycinin our ICU was not sufficient to achieve the target trough in the initial period in most patients receiving ECMO.

  17. Oxygen supply in disposable shake-flasks: prediction of oxygen transfer rate, oxygen saturation and maximum cell concentration during aerobic growth.

    Science.gov (United States)

    Schiefelbein, Sarah; Fröhlich, Alexander; John, Gernot T; Beutler, Falco; Wittmann, Christoph; Becker, Judith

    2013-08-01

    Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas-liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.

  18. Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor.

    Science.gov (United States)

    Sánchez, Omar; Bernet, Nicolas; Delgenès, Jean-Philippe

    2007-08-01

    A mathematical model based on Activated Sludge Model No. 3 (International Water Association, London) and laboratory-scale experiments were used to investigate ammonia conversion by nitrification in a sequencing batch reactor (SBR). The purpose of the study was to assess the effect of dissolved oxygen concentration on nitrite accumulation in the SBR. As the dissolved oxygen concentration in the SBR depends on the balance between oxygen consumption and oxygen transfer rates, ammonium conversion was measured for different air flowrate values to obtain different dissolved oxygen concentration profiles during the cycle. The ammonia concentration in the feeding medium was 500 mg ammonium as nitrogen (N-NH4(+))/L, and the maximum nitrite concentration achieved during a cycle was approximately 50 mg nitrite as nitrogen (N-NO2)/L. The air flow supplied to the reactor was identified as a suitable parameter to control nitrite accumulation in the SBR. This identification was carried out based on experimental results and simulation with a calibrated model. At a low value of the volumetric mass-transfer coefficient (kLa), the maximum nitrite concentration achieved during a cycle depends strongly on k(L)a, whereas, at a high value of k(L)a, the maximum nitrite concentration was practically independent of kL(a).

  19. A ’Smart’ Molecular Sieve Oxygen Concentrator with Continuous Cycle Time Adjustment.

    Science.gov (United States)

    1996-04-01

    A ’smart’ molecular sieve oxygen concentrator (MSOC) is controlled by a set of computer algorithms . The ’smart’ system automatically adjusts...determine if concentrator performance could be controlled by computer algorithms which continuously adjust concentrator cycle time. A two-bed... Computer algorithms or decision process were developed which allowed the software to control concentrator cycle time. Step changes in product flow from 5

  20. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  1. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  2. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  3. Control of oxygen concentration in BSCCO thin films using solid-state electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsuyoshi (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yatabe, Toshiaki (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yugami, Hiroo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan)); Ishigame, Mareo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan))

    A new electrochemical cell using the oxygen ion conducting solid-state electrolyte, yttria-stabilized zirconia (YSZ), was developed to control the oxygen concentration in high-T[sub c] superconducting Bi[sub 2]Sr[sub 2]Ca[sub 1]Cu[sub 2]O[sub 8+x] (BSCCO) thin films. In the electrochemical cell, YSZ single crystal plate was used as an oxygen ion pump as well as a substrate for the BSCCO thin film. Oxygen ions were removed from or injected into the BSCCO thin film electrochemically by supplying charges to the cell at 500 C in air. T[sub c] and lattice constant c were found to increase with removing oxygen ions from as-fabricated BSCCO thin films, and to decrease with injecting oxygen ions. These parameters varied reversibly and were correlated, depending on the total charges carried by oxygen ions. It was confirmed that this technique is an effective method to control the oxygen concentration in BSCCO thin films.

  4. [Influence of the Concentration of Dissolved Oxygen on Embryonic Development of the Common Toad (Bufo bufo)].

    Science.gov (United States)

    Dmitrieva, E V

    2015-01-01

    Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.

  5. Analysis and methodology for measuring oxygen concentration in liquid sodium with a plugging meter

    Energy Technology Data Exchange (ETDEWEB)

    Nollet, B. K.; Hvasta, M.; Anderson, M. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2012-07-01

    Oxygen concentration in liquid sodium is a critical measurement in assessing the potential for corrosion damage in sodium-cooled fast reactors (SFRs). There has been little recent work on sodium reactors and oxygen detection. Thus, the technical expertise dealing with oxygen measurements within sodium is no longer readily available in the U.S. Two methods of oxygen detection that have been investigated are the plugging meter and the galvanic cell. One of the overall goals of the Univ. of Wisconsin's sodium research program is to develop an affordable, reliable galvanic cell oxygen sensor. Accordingly, attention must first be dedicated to a well-known standard known as a plugging meter. Therefore, a sodium loop has been constructed on campus in effort to develop the plugging meter technique and gain experience working with liquid metal. The loop contains both a galvanic cell test section and a plugging meter test section. Consistent plugging results have been achieved below 20 [wppm], and a detailed process for achieving effective plugging has been developed. This paper will focus both on an accurate methodology to obtain oxygen concentrations from a plugging meter, and on how to easily control the oxygen concentration of sodium in a test loop. Details of the design, materials, manufacturing, and operation will be presented. Data interpretation will also be discussed, since a modern discussion of plugging data interpretation does not currently exist. (authors)

  6. Ability of freshwater fish to extract oxygen at different hydrogen-ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.; McGavock, A.M.; Fuller, A.C.; Markus, H.C.

    1934-01-01

    Pruthi's observations on the stickleback at pH 3.1 have been confirmed for the stickleback as well as several other species of fresh-water fish. Pruthi's criticism of the work of Powers is invalid within the pH range to which the fish are acclimated. The initial oxygen has either no effect on the lethal oxygen or the effect is in the opposite direction from that suggested by Pruthi. Outside of the pH range normal to the species in question the lethal oxygen is dependent in a large measure on the initial oxygen. Several species of freshwater fish--largemouth blackbass, smallmouth blackbass, white crappie, yellow perch, rainbow trout, as well as the goldfish and green sunfish--have the ability to extract oxygen from the water at low oxygen tensions equally well over a fairly wide range of hydrogen-ion concentration. The bluegill has a somewhat narrower range of toleration. The two species of minnow--steel-colored and bluntnose--tolerate a markedly narrower range of difference in hydrogen-ion concentration as shown by the lethal oxygen. The ability of fish to extract oxygen from the water at low pressure depends more or less on the hydrogen-ion concentration of water. The results obtained in this investigation confirm the studies on pH tolerance of fish previously published. These results also confirm the observations that in highly alkaline water fish require a higher concentration of oxygen to survive.

  7. Effect of daily minimum pond dissolved oxygen concentration on hybrid striped bass fingerling yield

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. The purpose of this study was to quantify the production and water quality responses of hybrid striped ...

  8. Effect of dissolved oxygen concentration on growth of fingerling hybrid striped bass

    Science.gov (United States)

    Management of dissolved oxygen (DO) concentration in production ponds is important because fish growth and yield are greater in ponds with higher DO concentrations. The purpose of this study was to evaluate growth and metabolic responses of hybrid striped bass (Morone chrysops x M. saxatilis; HSB) f...

  9. Effect of Dissolved Oxygen Concentration on Development and Hatching of Channel Catfish Ictalurus punctatus Eggs

    Science.gov (United States)

    Recommendations on required dissolved oxygen (DO) concentrations in channel catfish hatcheries vary widely. This study was conducted to determine effects of DO concentration on development and hatching success of channel catfish eggs. Five channel catfish spawns were collected from a pond at the T...

  10. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    Oxygen (O2) is a fundamental parameter for life. It not only profoundly influences the biogeochemical cycling on a global scale, but also deals with the regulation of metabolic processes at microbial level, in particular the transition between aerobic and anaerobic metabolisms. However, until...... recently, due to the lack of high-resolution methods for O2 concentration determination, several oxygen-related processes, such as aerobic respiration in pelagic aquatic ecosystems and in naturally oxygen poor waters (e.g. Oxygen Minimum Zones, OMZs), or the oxygen regulation of nitrification...... and denitrification, were only partially described. In spite of the importance of aerobic respiration as a key process in the global carbon cycle, the available data are still few, and highly biased with respect to season, latitude and depth. The main aims of this Ph.D were to: i) develop and test a highly...

  11. Microbial respiration and gene expression as a function of very low oxygen concentration

    DEFF Research Database (Denmark)

    Tiano, Laura

    recently, due to the lack of high-resolution methods for O2 concentration determination, several oxygen-related processes, such as aerobic respiration in pelagic aquatic ecosystems and in naturally oxygen poor waters (e.g. Oxygen Minimum Zones, OMZs), or the oxygen regulation of nitrification...... of these pure cultures were lower than found for natural communities of NOB (apparent Km values~ 1- 4 µM), but higher than the ones from the well-studied opportunistic NOB Nitrobacter. The expression of high-affinity terminal oxidases in these NOB could, however, not be confirmed. Overall the results of this Ph......Oxygen (O2) is a fundamental parameter for life. It not only profoundly influences the biogeochemical cycling on a global scale, but also deals with the regulation of metabolic processes at microbial level, in particular the transition between aerobic and anaerobic metabolisms. However, until...

  12. Oxygen transfer dynamics and activated sludge floc structure under different sludge retention times at low dissolved oxygen concentrations.

    Science.gov (United States)

    Fan, Haitao; Liu, Xiuhong; Wang, Hao; Han, Yunping; Qi, Lu; Wang, Hongchen

    2017-02-01

    In activated sludge systems, the aeration process consumes the most energy. The energy cost can be dramatically reduced by decreasing the operating dissolved oxygen (DO) concentration. However, low DO may lead to incomplete nitrification and poor settling performance of activated sludge flocs (ASFs). This study investigates oxygen transfer dynamics and settling performances of activated sludge under different sludge retention times (SRTs) and DO conditions using microelectrodes and microscopic techniques. Our experimental results showed that with longer SRTs, treatment capacity and settling performances of activated sludge improved due to smaller floc size and less extracellular polymeric substances (EPS). Long-term low DO conditions produced larger flocs and more EPS per unit sludge, which produced a more extensive anoxic area and led to low oxygen diffusion performance in flocs. Long SRTs mitigated the adverse effects of low DO. According to the microelectrode analysis and fractal dimension determination, smaller floc size and less EPS in the long SRT system led to high oxygen diffusion property and more compact floc structure that caused a drop in the sludge volume index (SVI). In summary, our results suggested that long SRTs of activated sludge can improve the operating performance under low DO conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of cyanide and dissolved oxygen concentration on biological Au recovery.

    Science.gov (United States)

    Kita, Yoshito; Nishikawa, Hiroshi; Takemoto, Tadashi

    2006-07-25

    The number of discarded electric devices containing traces of Au is currently increasing. It is desirable to recover this Au because of its valuable physicochemical properties. Au is usually dissolved with relatively high concentrations of cyanide, which is associated with environmental risk. Chromobacterium violaceum is able to produce and detoxify small amounts of cyanide, and may thus be able to recover Au from discarded electric devices. This study investigated the effects of cyanide and dissolved oxygen concentration on biological Au recovery. Cyanide production by C. violaceum was sufficient to dissolve Au, while maintaining a high cyanide concentration did not enhance Au dissolution. Increased oxygen concentration enhanced Au dissolution from 0.04 to 0.16 mmol/l within the test period of 70 h. Electrochemical measurement clarified this phenomenon; the rest potential of Au in the cyanide solution produced by C. violaceum increased from -400 to -200 mV, while in the sterile cyanide solution, it was constant in cyanide concentrations ranging from 0 to 1.5 mmol/l and increased in dissolved oxygen concentrations ranging from 0 to 0.25 mmol/l. Therefore, it was clarified that dissolved oxygen concentration is the main factor affecting the efficiency of cyanide leaching of gold by using bacteria.

  14. Dependence of the solubility of atmospheric oxygen in weakly alkaline aqueous solutions on surfactant concentration

    Science.gov (United States)

    Chistyakova, G. V.; Koksharov, S. A.; Vladimirova, T. V.

    2012-11-01

    The solubility of atmospheric oxygen in solutions of surfactants of different natures at 293 K and pH 8 is determined by gas chromatography. It is found that additives of nonionic surfactants decrease the oxygen content in the solution in the premicellar region and increase its solubility in the micellar region. It is shown that, for anionic surfactants, a decrease in the solubility of O2 is observed over the entire concentration range.

  15. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    Science.gov (United States)

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  16. Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.

    Science.gov (United States)

    Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E

    2014-09-15

    Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching

  17. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil

    Science.gov (United States)

    Sierra, Carlos A.; Malghani, Saadatullah; Loescher, Henry W.

    2017-02-01

    Determining environmental controls on soil organic matter decomposition is of importance for developing models that predict the effects of environmental change on global soil carbon stocks. There is uncertainty about the environmental controls on decomposition rates at temperature and moisture extremes, particularly at high water content levels and high temperatures. It is uncertain whether observed declines in decomposition rates at high temperatures are due to declines in the heat capacity of extracellular enzymes as predicted by thermodynamic theory, or due to simultaneous declines in soil moisture. It is also uncertain whether oxygen limits decomposition rates at high water contents. Here we present the results of a full factorial experiment using organic soils from a boreal forest incubated at high temperatures (25 and 35 °C), a wide range of water-filled pore space (WFPS; 15, 30, 60, 90 %), and contrasting oxygen concentrations (1 and 20 %). We found support for the hypothesis that decomposition rates are high at high temperatures, provided that enough moisture and oxygen are available for decomposition. Furthermore, we found that decomposition rates are mostly limited by oxygen concentrations at high moisture levels; even at 90 % WFPS, decomposition proceeded at high rates in the presence of oxygen. Our results suggest an important degree of interaction among temperature, moisture, and oxygen in determining decomposition rates at the soil core scale.

  18. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    Science.gov (United States)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  19. Linear Active Disturbance Rejection Control of Dissolved Oxygen Concentration Based on Benchmark Simulation Model Number 1

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    2015-01-01

    Full Text Available In wastewater treatment plants (WWTPs, the dissolved oxygen is the key variable to be controlled in bioreactors. In this paper, linear active disturbance rejection control (LADRC is utilized to track the dissolved oxygen concentration based on benchmark simulation model number 1 (BSM1. Optimal LADRC parameters tuning approach for wastewater treatment processes is obtained by analyzing and simulations on BSM1. Moreover, by analyzing the estimation capacity of linear extended state observer (LESO in the control of dissolved oxygen, the parameter range of LESO is acquired, which is a valuable guidance for parameter tuning in simulation and even in practice. The simulation results show that LADRC can overcome the disturbance existing in the control of wastewater and improve the tracking accuracy of dissolved oxygen. LADRC provides another practical solution to the control of WWTPs.

  20. Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ka; Chang, Yongqin, E-mail: chang@ustb.edu.cn; Lv, Liang; Long, Yi

    2015-10-01

    Highlights: • Nanocrystalline CeO{sub 2} films were prepared by a facile sol–gel spin coating method. • Oxygen vacancy concentrations can be controlled by annealing temperatures. • The films show perfect thermal stability at various annealing temperatures. • PL, XPS and Raman spectra are obviously affected by oxygen vacancy concentrations. - Abstract: Nanocrystalline CeO{sub 2} films with around 250 nm thickness were deposited on Si (0 0 1) substrates by a facile sol–gel process with spin coating method. The films are of cubic fluorite structure, and some lattice distortions exist in the film. The phase stability and small change in lattice parameter at different annealing temperatures indicate the good thermal stability of the nanocrystalline CeO{sub 2} films. The average grain-size and surface roughness of the films increase with the increase of annealing temperature. The content of Ce{sup 3+} and oxygen vacancy is very high in the nanocrystalline CeO{sub 2} films, while, the films still remain cubic phase regardless of its high level non-stoichiometric composition. All the annealed samples show two emission bands, and the defect peak centered at ∼500 nm shows a red-shift. The intensity of the green-emission band increases with the increasing annealing temperature, which might result from the increasing concentration of oxygen vacancies caused by the valence transition from Ce{sup 4+} to Ce{sup 3+}, and it has also been confirmed by the X-ray photoelectron spectroscopy results. This work demonstrates that oxygen vacancy plays an important role on the properties of the nanocrystalline CeO{sub 2} film, and it also provides a possible way to control the concentration of oxygen vacancies.

  1. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    Science.gov (United States)

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155). There is considerable concern that factors such as eutrophication, ...

  2. Feed intake, growth and metabolism of Nile tilapia (Oreochromis niloticus) in relation to dissolved oxygen concentration

    NARCIS (Netherlands)

    Tran-Duy, A.; Dam, van A.A.; Schrama, J.W.

    2012-01-01

    The objectives of the present study were to determine, for Nile tilapia of different body weights and fed to satiation, (1) the incipient dissolved oxygen (DO) concentration at which feed intake starts to level off and (2) the effect of DO on nitrogen and energy balances. Two successive experiments

  3. 77 FR 63217 - Use of Additional Portable Oxygen Concentrators on Board Aircraft

    Science.gov (United States)

    2012-10-16

    ... manufacturer's names (International Biophysics Corporation's LifeChoice and Delphi Medical Systems' RS-00400...Choice and Delphi Medical Systems' RS-00400) back to the list of approved POCs in SFAR 106. Waiver of...: This action amends the FAA's rules for permitting limited use of portable oxygen concentrator...

  4. 75 FR 739 - Use of Additional Portable Oxygen Concentrator Devices on Board Aircraft

    Science.gov (United States)

    2010-01-06

    ... manner to add two more POC devices, Delphi Medical Systems' RS-00400 and Invacare Corporation's XPO2, to... documentation of the devices to the Department of Transportation's Docket Management System. That documentation... Aviation Regulation 106--Rules for Use of Portable Oxygen Concentrator Systems on Board...

  5. 77 FR 4219 - FAA-Approved Portable Oxygen Concentrators; Technical Amendment

    Science.gov (United States)

    2012-01-27

    ... acceptable for use in SFAR 106 are Delphi Medical Systems' RS-00400 (added to the SFAR in 74 FR 2351) and... manufactured by Oxus, Inc. and not by Delphi Medical Systems. The two companies currently manufacturing these... for Use of Portable Oxygen Concentrator Systems On Board Aircraft * * * * * Section 2....

  6. Prediction of oxygen concentration and temperature distribution in loose coal based on B P neural network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jian; WU Guo-guang; XU Hong-feng; MENG Xian-liang; WANG Guang-you

    2009-01-01

    An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures within coal stockpiles, it is vital to obtain information of self-heating conditions and tendencies of spontaneous coal combustion. For laboratory conditions, we de-signed our own experimental equipment composed of a control-heating system, a coal column and an oxygen concentration and temperature monitoring system, for simulation of spontaneous combustion of block coal (13-25 ram) covered with fine coal (0-3 mm). A BP artificial neural network (ANN) with 150 training samples was gradually established over the course of our experiment. Heating time, relative position of measuring points, the ratio of fine coal thickness, artificial density, voidage and activation energy were selected as input variables and oxygen concentration and temperature of coal column as output variables. Then our trained network was applied to predict the trend on the untried experimental data. The results show that the oxygen concentration in the coal column could be reduced below the minimum still able to induce spontaneous combustion of coal-6% by covering the coal pile with fine coal, which would meet the requirement to prevent spontaneous combustion of coal stockpiles. Based on the predic-tion of this ANN, the average errors of oxygen concentration and temperature were respectively 0.5% and 7 ~C, which meet actual tolerances. The implementation of the method would provide a practical guide in understanding the course of self-heating and spontaneous combustion of coal stockpiles.

  7. Effect of Different Silage Storing Conditions on the Oxygen Concentration in the Silo and Fermentation Quality of Rice.

    Science.gov (United States)

    Uegaki, Ryuichi; Kawano, Kazuo; Ohsawa, Ryo; Kimura, Toshiyuki; Yamamura, Kohji

    2017-06-21

    We investigated the effects of different silage storing conditions on the oxygen concentration in the silo and fermentation quality of rice (Oryza sativa L.). Forage rice was ensiled in bottles (with or without space at the bottlemouth, with solid or pinhole cap, and with oxygen scavenger, ethanol transpiration agent, oxygen scavenger and ethanol transpiration agent, or no adjuvant) and stored for 57 days. The oxygen concentration decreased with the addition of the oxygen scavenger and increased with that of the ethanol transpiration agent. The oxygen scavenger facilitated silage fermentation and fungus generation, whereas the ethanol transpiration agent suppressed silage fermentation and fungus generation. However, the combined use of the oxygen scavenger and ethanol transpiration agent facilitated silage fermentation and also suppressed fungus generation. Overall, this study revealed the negative effects of oxygen on the internal silo and the positive effects of the combined use of the oxygen scavenger and ethanol transpiration agent on silage fermentation quality.

  8. [Monitoring of oxygen concentration based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Shuai; Dong, Feng-Zhong; Zhang, Zhi-Rong; Wang, Yu; Kan, Rui-Feng; Zhang, Yu-Jun; Liu, Jian-Guo; Liu, Wen-Qing

    2009-10-01

    Oxygen is a widely used important gas in the industrial process. It is very meaningful to on-line monitor the oxygen concentration for the enhancement of combustion efficiency and reduction in environmental pollution. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique. With the features of tunability and narrow linewidth of distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to accurately implement gas concentration measurement with very high sensitivity. In the present paper, the authors used a DFB laser was used as the light source, and by employing wavelength modulation method and measuring the second harmonic signal of one absorption line near 760 nm of oxygen molecule, the authors built a system for online monitoring of oxygen concentration. The characteristics of the system are as follows: the scope of detection is 0.01%-20%; detection accuracy is 0.1%, long term stability is 1%.

  9. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Petras Ražanskas

    2015-08-01

    Full Text Available This article presents a study of the relationship between electromyographic (EMG signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2 = 0:77 to R2 = 0:98 (for blood lactate and from R2 = 0:81 to R2 = 0:97 (for oxygen uptake were obtained when using random forest regressors.

  10. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus

    NARCIS (Netherlands)

    Tran Duy, A.; Schrama, J.W.; Dam, van A.A.; Verreth, J.A.J.

    2008-01-01

    Feed intake and satiation in fish are regulated by a number of factors, of which dissolved oxygen concentration (DO) is important. Since fish take up oxygen through the limited gill surface area, all processes that need energy, including food processing, depend on their maximum oxygen uptake capacit

  11. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    Science.gov (United States)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  12. Short-Term Molecular Acclimation Processes of Legume Nodules to Increased External Oxygen Concentration

    Science.gov (United States)

    Avenhaus, Ulrike; Cabeza, Ricardo A.; Liese, Rebecca; Lingner, Annika; Dittert, Klaus; Salinas-Riester, Gabriela; Pommerenke, Claudia; Schulze, Joachim

    2016-01-01

    Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30% oxygen around root nodules by measuring nodule H2 evolution. Within about 2 min of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about 8 min later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency toward upregulation during the recovery. The recovery resulted in a new constant activity after about 30 min, corresponding to approximately 90% of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR) peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050) showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds) of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased neoformation of the enzyme. This reaction might be

  13. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  14. Simulations of dissolved oxygen concentration in CMIP5 Earth system models

    Institute of Scientific and Technical Information of China (English)

    BAO Ying; LI Yangchun

    2016-01-01

    The climatologies of dissolved oxygen concentration in the ocean simulated by nine Earth system models (ESMs) from the historical emission driven experiment of CMIP5 (Phase 5 of the Climate Model Inter-comparison Project) are quantitatively evaluated by comparing the simulated oxygen to the WOA09 observation based on common statistical metrics. At the sea surface, distribution of dissolved oxygen is well simulated by all nine ESMs due to well-simulated sea surface temperature (SST), with both globally-averaged error and root mean square error (RMSE) close to zero, and both correlation coefficients and normalized standard deviation close to 1. However, the model performance differs from each other at the intermediate depth and deep ocean where important water masses exist. At the depth of 500 to 1 000 m where the oxygen minimum zones (OMZs) exist, all ESMs show a maximum of globally-averaged error and RMSE, and a minimum of the spatial correlation coefficient. In the ocean interior, the reason for model biases is complicated, and both the meridional overturning circulation (MOC) and the particulate organic carbon flux contribute to the biases of dissolved oxygen distribution. Analysis results show the physical bias contributes more. Simulation bias of important water masses such as North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW) and North Pacific Intermediate Water (NPIW) indicated by distributions of MOCs greatly affects the distributions of oxygen in north Atlantic, Southern Ocean and north Pacific, respectively. Although the model simulations of oxygen differ greatly from each other in the ocean interior, the multi-model mean shows a better agreement with the observation.

  15. Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea

    Science.gov (United States)

    Ahlgren, Joakim; Grimvall, Anders; Omstedt, Anders; Rolff, Carl; Wikner, Johan

    2017-06-01

    Hypoxia and oxygen deficient zones are expanding worldwide. To properly manage this deterioration of the marine environment, it is important to identify the causes of oxygen declines and the influence of anthropogenic activities. Here, we provide a study aiming to explain the declining oxygen levels in the deep waters of the Bothnian Sea over the past 20 years by investigating data from environmental monitoring programmes. The observed decline in oxygen concentrations in deep waters was found to be primarily a consequence of water temperature increase and partly caused by an increase in dissolved organic carbon (DOC) in the seawater (R2Adj. = 0.83) as well as inflow from the adjacent sea basin. As none of the tested eutrophication-related predictors were significant according to a stepwise multiple regression, a regional increase in nutrient inputs to the area is unlikely to explain a significant portion of the oxygen decline. Based on the findings of this study, preventing the development of anoxia in the deep water of the Bothnian Sea is dependent on the large-scale measures taken to reduce climate change. In addition, the reduction of the nutrient load to the Baltic Proper is required to counteract the development of hypoxic and phosphate-rich water in the Baltic Proper, which can form deep water in the Bothnian Sea. The relative importance of these sources to oxygen consumption is difficult to determine from the available data, but the results clearly demonstrate the importance of climate related factors such as temperature, DOC and inflow from adjacent basins for the oxygen status of the sea.

  16. Effect of oxygen-doping concentration on electrical properties of silicon oxycarbide films for memory application

    Science.gov (United States)

    Chen, Da; Huang, Shihua

    2016-07-01

    We first investigate the effect of oxygen-doping concentration on resistive switching (RS) behaviors in SiCxOy, which were prepared by a radio frequency magnetron sputtering at the oxygen partial pressure ranging from 0% to 6%. Bipolar RS behaviors were achieved in all the fabricated devices and all these devices are valence change memories. With the oxygen partial pressure increasing from 0% to 6% (sample-0% has 40 at. % of oxygen), the mean RHRS increases from 4.5 to 64.8 MΩ and then decreases to 1.5 MΩ, indicating that the device exhibits the largest ON/OFF ratio ˜500 at the oxygen partial pressure of about 2%. Based on the analyses of x-ray photoelectron spectroscopy, fitting current-voltage curves, and resistance-temperature measurements, it is clear that the trap filled limit space charge limited current and a Schottky barrier in the interface of the SiCxOy film and p+-Si are suggested to be dominant in the positive and negative biases, respectively. Most importantly, all devices can keep the data more than 104 s and endure more than 102 continuous cycles, thus confirming the nonvolatile properties.

  17. Optimal Control of Oxygen Concentration in a Magnetic Czochralski Crystal Growth by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Concepts and techniques of response surface methodology have been widely applied in many branches of engineering, especially in the chemical and manufacturing areas. This paper presents an application of the methodology in a magnetic crystal Czochralski growth system for single crystal silicon to optimize the oxygen concentration at the crystal growth interface in a cusp magnetic field. The simulation demonstrates that the response surface methodology is a feasible algorithm for the optimization of the Czochralski crystal growth process.

  18. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies

    Science.gov (United States)

    Canfield, D. E.; Teske, A.

    1996-01-01

    The evolution of non-photosynthetic sulphide-oxidizing bacteria was contemporaneous with a large shift in the isotopic composition of biogenic sedimentary sulphides between 0.64 and 1.05 billion years ago. Both events were probably driven by a rise in atmospheric oxygen concentrations to greater than 5-18% of present levels--a change that may also have triggered the evolution of animals.

  19. Periodontal Wound Healing Responses to Varying Oxygen Concentrations and Atmospheric Pressures.

    Science.gov (United States)

    1986-05-01

    ranging from diabetes mellitus to syphilis. The first such chamber was built in the United States by Corning in 1891. In the 1930s, the American Medical...CATALOG NUMBER \\AIT/CI/NR 86-165T 4. TTLE and ubtlte)S. TYPE OF REPORT & PERIOD COVERED Periodontal Wound Healing Responses to TIEisIs/AglrItioW * Varying...OS O6SOSLT SECURITYssona CLSIIAIN DFTIAeelomienasterd ATTACHE ... U. PERIODONTAL WOUND HEALING RESPONSES TO VARYING OXYGEN CONCENTRATIONS AND

  20. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-12-01

    We have measured the reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral-beam injectors using the TMX-U neutral-beam test stand. Our analysis incorporated silicon surface-probe measurements and optical Doppler-shift measurements of the hydrogen alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalence of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, optical monochromator data indicated a reduction in the oxygen concentration of at least a factor of 10 whereas Auger spectroscopy data showed at least a factor-of-eight reduction. Other metallic impurities remained below the level of detection even after gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity, loss of arc operation, and a change in arc performance due to arc chamber gas absorption during operation.

  1. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-10-01

    The reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral beam injectors has been measured. The TMX-U Neutral Beam Test Stand was used for this experiment. Analysis incorporated silicon surface probes and optical Doppler-shift measurements of the Lyman alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalent of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, the oxygen concentration was reduced by at least a factor of 10 according to optical monochromator data, and at least a factor of 8 from Auger spectroscopy data. Simultaneously, other metallic impurities were not increased substantially as a result of gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity and arc operation, and a change in arc performance from arc chamber gas absorption during operation.

  2. In vivo noninvasive monitoring of dissolved oxygen concentration within an implanted tissue-engineered pancreatic construct.

    Science.gov (United States)

    Goh, Fernie; Sambanis, Athanassios

    2011-09-01

    The function of an implanted tissue-engineered pancreatic construct is influenced by many in vivo factors; however, assessing its function is based primarily on end physiologic effects. As oxygen significantly affects cell function, we established a dual perfluorocarbon method that utilizes (19)F nuclear magnetic resonance spectroscopy, with perfluorocarbons as oxygen concentration markers, to noninvasively monitor dissolved oxygen concentration (DO) in βTC-tet cell-containing alginate beads and at the implantation milieu. Beads were implanted in the peritoneal cavity of normal and streptozotocin-induced diabetic mice. Using this method, the feasibility of acquiring real-time in vivo DO measurements was demonstrated. Results showed that the mouse peritoneal environment is hypoxic and the DO is further reduced when βTC-tet cell constructs were implanted. The DO within cell-containing beads decreased considerably over time and could be correlated with the relative changes in the number of viable encapsulated cells. The reduction of construct DO due to the metabolic activity of the βTC-tet cells was also compatible with the implant therapeutic function, as observed in the reversal of hyperglycemia in diabetic mice. The importance of these findings in assessing implant functionality and host animal physiology is discussed. © Mary Ann Liebert, Inc.

  3. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  4. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics.

    Science.gov (United States)

    Goto, E; Both, A J; Albright, L D; Langhans, R W; Leed, A R

    1996-12-01

    Lettuce (Lactuca sativa L., cv. Ostinata) growth experiments were carried out to study the effect of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system. Pure O2 and N2 gas were supplied to the hydroponic system for precise DO control. This system made it easy to increase the DO concentration beyond the maximum (or saturation) concentration possible when bubbling air into water. Eleven day old lettuce seedlings were grown for 24 days under various DO concentrations: sub-saturated, saturated, and super-saturated. There was no significant difference in fresh weight, shoot and root dry weights among the DO concentrations: 2.1 (25% of saturated at 24 degrees C), 4.2 (50%), 8.4 (saturated), and 16.8 (200%) mg/L. The critical DO concentration for vigorous lettuce growth was considered to be lower than 2.1 mg/L. Neither root damage nor delay of shoot growth was observed at any of the studied DO concentrations.

  5. Pulmonary interstitial fibrosis following near-drowning and exposure to short-term high oxygen concentrations.

    Science.gov (United States)

    Glauser, F L; Smith, W R

    1975-09-01

    Following near-drowning in fresh water, a 19-year-old man experienced severe adult respiratory distress syndrome, necessitating ventilatory support with positive end-expiratory pressure and high oxygen concentrations. Post-extubation, his course was highlighted by persistent hypoxemia and interrupted by a lung abscess which responded promptly to antibiotics. Pulmonary function tests were consistent with severe restrictive disease and chest radiograph revealed persistent bilateral alveolar and interstitial infiltrates. An open lung biopsy on the 26th hospital day showed interstitial fibrosis. Over the ensuing two months, the chest radiograph and pulmonary function tests returned towards normal. We attribute the pulmonary fibrosis to incomplete resolution of the alveolar interstitial pathology secondary to the near-drowning and exposure to high oxygen mixtures.

  6. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses...... of some common, invasive and rare weed species to reduced light levels in greenhouse experiments. The seed germination response of some weed species, field crops, and vegetables to different oxygen concentrations was also quantified in the laboratory experiments. The effect of east-west (EW) and north......-south (NS) row orientations on weed biomass and grain yield of summer barley, oilseed rape, triticale and oat in Denmark was examined. The effect of rolling on biomass production of weeds and grain yield of cereals in Denmark was also investigated in field experiments. It also described that hypoxia...

  7. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR).

    Science.gov (United States)

    Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin

    2017-01-01

    The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Nielsen, Jens Bredal; Villadsen, John

    1997-01-01

    The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 mM (co...... and cysteine decreased at low dissolved oxygen concentrations. On the basis of the intracellular pool measurements, metabolic control analysis is performed, and the flux control coefficients for the first two enzymes in the penicillin biosynthetic pathway, i.e., delta......The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 m......M (corresponding to 7% and 131% air saturation at 1 bar) solely through manipulations of the inlet gas composition. At dissolved oxygen concentrations above 0.06-0.08 mM, a constant specific penicillin productivity of around 22 (mu mol/g of DW)/h is maintained. At lower oxygen concentrations, the specific...

  9. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise

    Directory of Open Access Journals (Sweden)

    Askew Christopher D

    2009-12-01

    Full Text Available Abstract Background It has been proposed that adenosine triphosphate (ATP released from red blood cells (RBCs may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC. Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

  10. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    Science.gov (United States)

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by

  11. Numerical simulation of dissolved oxygen concentration in water flow over stepped spillways.

    Science.gov (United States)

    Cheng, Xiangju; Chen, Xuewei

    2013-05-01

    This study developed an improved Eulerian model for the simulation of an air-water flow field over stepped spillways. The improved drag model applied different drag coefficients for bubbles and for free surface flows or gas cavities. Void fraction and turbulence correction were used in determining the bubble drag coefficient. The calculated air entrainment and air-water velocity could be adapted using these parameters. With the improved drag model, the Eulerian simulations predicted the location of the inception point, the distributions of air void fraction, velocity distributions, and pressure distributions. The change in the dissolved oxygen (DO) concentration from upstream of the stepped spillways, to downstream, was simulated based on the improved computational fluid dynamics model and the transport equation for DO transferring. The numerical DO concentration coincided with the experimental results. Therefore, the improved CFD model and the numerical methods presented here can provide possible optimization tools for strong air entrainment flows.

  12. Distribution of Nile perch Lates niloticus in southern Lake Victoria is determined by depth and dissolved oxygen concentrations

    NARCIS (Netherlands)

    Goudswaard, P.C.; Katunzi, E.F.B.; Wanink, J.H.; Witte, F.

    2011-01-01

    Although Nile perch Lates niloticus is assumed to be sensitive to low oxygen concentrations, it was found in deep water in Lake Victoria, where oxygen depletion is common during the rainy season. Since factors determining Nile perch distribution are not well understood its spatial distribution in

  13. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation.

    Science.gov (United States)

    Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S

    2008-09-01

    The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.

  14. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    Science.gov (United States)

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A new highly sensitive method to assess respiration rates and kinetics of natural planktonic communities by use of the switchable trace oxygen sensor and reduced oxygen concentrations.

    Science.gov (United States)

    Tiano, Laura; Garcia-Robledo, Emilio; Revsbech, Niels Peter

    2014-01-01

    Oxygen respiration rates in pelagic environments are often difficult to quantify as the resolutions of our methods for O2 concentration determination are marginal for observing significant decreases during bottle incubations of less than 24 hours. Here we present the assessment of a new highly sensitive method, that combine Switchable Trace Oxygen (STOX) sensors and all-glass bottle incubations, where the O2 concentration was artificially lowered. The detection limit of respiration rate by this method is inversely proportional to the O2 concentration, down to <2 nmol L(-1) h(-1) for water with an initial O2 concentration of 500 nmol L(-1). The method was tested in Danish coastal waters and in oceanic hypoxic waters. It proved to give precise measurements also with low oxygen consumption rates (∼7 nmol L(-1) h(-1)), and to significantly decrease the time required for incubations (≤14 hours) compared to traditional methods. This method provides continuous real time measurements, allowing for a number of diverse possibilities, such as modeling the rate of oxygen decrease to obtain kinetic parameters. Our data revealed apparent half-saturation concentrations (Km values) one order of magnitude lower than previously reported for marine bacteria, varying between 66 and 234 nmol L(-1) O2. Km values vary between different microbial planktonic communities, but our data show that it is possible to measure reliable respiration rates at concentrations ∼0.5-1 µmol L(-1) O2 that are comparable to the ones measured at full air saturation.

  16. Singlet Molecular Oxygen on Ice: Rates of Formation and Steady State Concentrations

    Science.gov (United States)

    Bower, J. P.; Anastasio, C.

    2007-12-01

    Singlet molecular oxygen (1O2*), the first electronically excited state of molecular oxygen, reacts rapidly with certain types of environmental pollutants such as furans, phenols, and polycyclic aromatic hydrocarbons (PAHs). Its formation requires the absorption of light by a chromophore (a.k.a. sensitizer), which subsequently transfers energy to ground state molecular oxygen. In the environment, 1O2* chemistry has been studied primarily in the aqueous phase, such as in surface waters or cloud and fog drops. In this work, we expand our current understanding by investigating the rate of formation (Rf) and steady state concentration ([1O2*]) of 1O2* on ice. To investigate 1O2* kinetics, we use a chemical probe technique in which photoformed 1O2* reacts with furfuryl alcohol (FFA). To generate 1O2*, we illuminated frozen samples containing a sensitizer (Rose Bengal, RB) at 549 nm. The concentration of total solutes in each sample was controlled using sodium sulfate (Na2SO4). Following illumination, the decay of FFA was measured using high performance liquid chromatography (HPLC). Ice tests were conducted at 253, 263, and 268 K. Liquid tests for comparison were conducted at 278 K. Results showed dramatically faster (~104) FFA decay on ice than in liquid samples prepared from the same solutions, in agreement with the calculated solute concentration factor in the quasi-liquid layer (QLL) on ice compared to bulk solution. Varying the concentration of RB resulted in similar changes in both Rf and [1O2*], with magnitudes of change close to those expected. Changing temperature and total solutes, both of which control the volume of the QLL on ice, revealed two model regimes: FFA as a major (1) or minor (2) sink of 1O2*. Experimental results from the former regime show good agreement with expected values for both Rf and [1O2*]. Experiments in the later regime are currently in progress. We will also discuss the potential implications of 1O2* to the chemistry of naturally

  17. The experimental study of a new pressure equalization step in the pressure swing adsorption cycle of a portable oxygen concentrator.

    Science.gov (United States)

    Li, Jianhua

    2014-01-01

    For portable oxygen concentrator by pressure swing adsorption (PSA) method, its volume, mass, power, oxygen flux and oxygen saving efficiency are the most important parameters which are affected strongly by the PSA cycle. In this paper, we propose a new pressure equalization step to optimize the PSA cycle. According to the experimental results, when the product ends of two beds are connected and the feed gas is switched from the high pressure bed to the low pressure bed during the pressure equalization step, the system has a larger oxygen flux, a less energy consumption and a more simple structure.

  18. Plasma concentrations of oseltamivir and oseltamivir carboxylate in critically ill children on extracorporeal membrane oxygenation support.

    Directory of Open Access Journals (Sweden)

    Enno D Wildschut

    Full Text Available INTRODUCTION: To evaluate the effect of extracorporeal membrane oxygenation (ECMO support on pharmacokinetics of oseltamivir and oseltamivir carboxylate (OC in children. METHODOLOGY: Steady state 0-12 hour pharmacokinetic sampling was performed in new influenza A (H1N1 infected children treated with oseltamivir while on ECMO support. Cmax, Cmin and AUC(0-12 h were calculated. The age-specific oseltamivir dosage was doubled to counter expected decreased plasma drug concentrations due to increased volume of distribution on ECMO support. PRINCIPAL FINDINGS: Three patients were enrolled aged 15, 6 and 14 years in this pharmacokinetic case series. For two children the OC plasma concentrations were higher than those found in children and adults not on ECMO. These increased plasma concentrations related to the increased oseltamivir dosage and decreased kidney function. In one patient suboptimal plasma concentrations coincided with a decreased gastric motility. CONCLUSION: Oseltamivir pharmacokinetics do not appear to be significantly influenced by ECMO support. Caution is required in case of nasogastric administration and decreased gastric motility. Due to the limited number of (paediatric patients available further multicenter studies are warranted.

  19. Influence of Chemical Oxygen Demand Concentrations on Anaerobi Ammonium Oxidation by Granular Sludge From EGSB Reactor

    Institute of Scientific and Technical Information of China (English)

    JING KANG; JIAN-LONG WANG

    2006-01-01

    Objective To investigate the effect of chemical oxygen demand (COD) concentrations on the anaerobic ammonium oxidation (ANAMMOX). Methods An Expanded Granular Sludge Bed (EGSB) reactor was used to cultivate the granular sludge and to perform the ANAMMOX reaction in the bench scale experiment. NH4+-N and NO2--N were measured by usingcolorimetric method. NO3--N was analyzed by using the UV spectrophotometric method. COD measurement was based on digestion with potassium dichromate in concentrated sulphuric acid. Results When the COD concentrations in the reactors were 0 mg/L, 200 mg/L, 350 mg/L, and 550 mg/L, respectively, the NH4+-N removal efficiency was 12.5%, 14.2%, 14.3%, and 23.7%; the removal amount of NO2--N was almost the same; the nitrate removal efficiency was 16.8%, 94.5%, 86.6%, and 84.2% and TN removal efficiency was 16.3%, 50.7%, 46.9%, and 50.4%, moreover, the COD removal efficiency concentrations have a significant influence on anaerobic ammonium oxidation by granular sludge.

  20. Raising and controlling study of dissolved oxygen concentration in closed-type aeration tank.

    Science.gov (United States)

    Chen, C K; Lo, S L

    2005-07-01

    This study investigated the promotion and control of dissolved oxygen (DO) concentration of the closed-type aeration tank via practical experiments in the wastewater treatment system of a 5-star hotel in Taipei. As with limited and treasured space in Taiwan, before the completion of the sewer system construction in cities, to utilize the mat foundation under large buildings as the space of sewage treatment plant still has been one of the alternatives of those sewage treatments. However, aeration tanks constructed in the mat foundation of buildings have smaller effective water depth, which will cause a lower total transfer amount of DO. Controlling the total exhaust gas flow rate can increase the pressure on such closed-type aeration tanks. The DO concentration thus may increase according to Henry's Law. Furthermore, it may enable operators to adjust the DO concentration of the aeration tank more precisely and thus sustain optimal operating conditions in these treatment facilities. Practical experiments indicated that the DO concentration of aeration tank maintains an average of 3.8 mg l(-1), obtaining the optimum operating conditions. The efficiency of the biological treatment facilities in the mat foundation could be markedly improved.

  1. Concentrated Electrolyte for the Sodium-Oxygen Battery: Solvation Structure and Improved Cycle Life.

    Science.gov (United States)

    He, Mingfu; Lau, Kah Chun; Ren, Xiaodi; Xiao, Neng; McCulloch, William D; Curtiss, Larry A; Wu, Yiying

    2016-12-05

    Alkali metal-oxygen batteries are of great interests for energy storage because of their unparalleled theoretical energy densities. Particularly attractive is the emerging Na-O2 battery because of the formation of superoxide as the discharge product. Dimethyl sulfoxide (DMSO) is a promising solvent for this battery but its instability towards Na makes it impractical in the Na-O2 battery. Herein we report the enhanced stability of Na in DMSO solutions containing concentrated sodium trifluoromethanesulfonimide (NaTFSI) salts (>3 mol kg(-1) ). Raman spectra of NaTFSI/DMSO electrolytes and ab initio molecular dynamics simulation reveal the Na(+) solvation number in DMSO and the formation of Na(DMSO)3 (TFSI)-like solvation structure. The majority of DMSO molecules solvating Na(+) in concentrated solutions reduces the available free DMSO molecules that can react with Na and renders the TFSI anion decomposition, which protects Na from reacting with the electrolyte. Using these concentrated electrolytes, Na-O2 batteries can be cycled forming sodium superoxide (NaO2 ) as the sole discharge product with improved long cycle life, highlighting the beneficial role of concentrated electrolytes for Na-based batteries.

  2. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere

    Science.gov (United States)

    Kasting, J. F.

    1987-01-01

    Simple (one-dimensional) climate models suggest that carbon dioxide concentrations during the Archean must have been at least 100-1000 times the present level to keep the Earth's surface temperature above freezing in the face of decreased solar luminosity. Such models provide only lower bounds on CO2, so it is possible that CO2 levels were substantially higher than this and that the Archean climate was much warmer than today. Periods of extensive glaciation during the early and late Proterozoic, on the other hand, indicate that the climate at these times was relatively cool. To be consistent with climate models CO2 partial pressures must have declined from approximately 0.03 to 0.3 bar around 2.5 Ga ago to between 10(-3) and 10(-2) bar at 0.8 Ga ago. This steep decrease in carbon dioxide concentrations may be inconsistent with paleosol data, which implies that pCO2 did not change appreciably during that time. Oxygen was essentially absent from the Earth's atmosphere and oceans prior to the emergence of a photosynthetic source, probably during the late Archean. During the early Proterozoic the atmosphere and surface ocean were apparently oxidizing, while the deep ocean remained reducing. An upper limit of 6 x 10(-3) bar for pO2 at this time can be derived by balancing the burial rate of organic carbon with the rate of oxidation of ferrous iron in the deep ocean. The establishment of oxidizing conditions in the deep ocean, marked by the disappearance of banded iron formations approximately 1.7 Ga ago, permitted atmospheric oxygen to climb to its present level. O2 concentrations may have remained substantially lower than today, however, until well into the Phanerozoic.

  3. Comparison of oxygen consumption in rats during uphill (concentric) and downhill (eccentric) treadmill exercise tests.

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-09-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p < 0.05) in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key PointsVO2 in rats during treadmill race in eccentric and concentric conditions were measured.A novel breath-by-breath device allowing direct access to the animal was used.THREE DIFFERENT SLOPES: +15%, -15% and -30% were used.VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different.

  4. Comparison of Oxygen Consumption in Rats During Uphill (Concentric) and Downhill (Eccentric) Treadmill Exercise Tests

    Science.gov (United States)

    Chavanelle, Vivien; Sirvent, Pascal; Ennequin, Gaël; Caillaud, Kévin; Montaurier, Christophe; Morio, Béatrice; Boisseau, Nathalie; Richard, Ruddy

    2014-01-01

    The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC) contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON) reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max). In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON) and downhill (ECC) running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%), positive (+15% incline: CON+15%) and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%). Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec). Conversely, VO2 values were lower (p VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds). Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases. Key Points VO2 in rats during treadmill race in eccentric and concentric conditions were measured. A novel breath-by-breath device allowing direct access to the animal was used. Three different slopes: +15%, -15% and -30% were used. VO2 values obtained in the -30% eccentric and the +15% concentric conditions were not significantly different. PMID:25177200

  5. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  6. Effect of oxygen on active Al concentration in ZnO:Al thin films made by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Kodu, M., E-mail: Margus.Kodu@ut.ee; Arroval, T.; Avarmaa, T.; Jaaniso, R.; Kink, I.; Leinberg, S.; Savi, K.; Timusk, M.

    2014-11-30

    Highlights: • C-axis oriented ZnO:Al thin films were made by pulsed laser deposition. • The nominal Al doping concentration was between 1 and 10 at%. • Films were deposited in oxygen atmosphere and in vacuum. • The effective Al concentration was influenced by deposition ambient. • Vacuum-deposited films had much higher electron concentrations. - Abstract: Al doped ZnO is used as a material for transparent conductive electrodes in solar energy and display screen applications, as well as semiconducting material in electronic and photonic devices. For effective use it is essential to control the electrical and optical properties of ZnO:Al thin films. In order to investigate the influence of oxygen environment on effective Al solubility and intrinsic defects introduced at high doping levels during the film growth, ZnO:Al thin films were deposited in vacuum and oxygen background by pulsed laser deposition method. Films were doped with varying Al concentrations by using targets with Al doping levels of 1–10 at%. In vacuum, substantially increased free electron concentrations were observed for all Al doping levels, which indicates that the formation of acceptor-type defects, acting as electron killer centers, was largely suppressed during the growth in oxygen-poor conditions. The dependence of carrier mobility from Al concentration was also greatly influenced by oxygen conditions during the film growth, suggesting that ionized impurity concentrations in the films deposited in vacuum and oxygen background were significantly different. The results were interpreted in the context of intrinsic acceptor-type defects V{sub Zn} (zinc vacancy), which concentration is strongly modified by the presence of oxygen during the film deposition. These vacancies are assumed to influence free electron concentration and electron mobility by acting as deep electron acceptors and charged electron scattering centers (V{sub Zn}{sup 2−})

  7. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mgO2L(-1), which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Three-dimensional non-linear numerical analysis on the oxygen concentration field in underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lanhe [College of Mineral Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008 (China)

    2004-10-15

    The stability of the process of underground coal gasification and its gas compositions depend on, to a large extent, the features of the convection diffusion of the gas and the dynamical conditions of chemical reactions. The dynamic distribution of the gasification agent concentration, in particular, has a great influence on the combustion and gasification reactions. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. Additionally, the determination method of the major model parameters is explained. In order to curb such pseudo-physical effects as numerical oscillation and surfeit frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm-the upstream weighted multi-cell balance method is adopted in this paper to solve the numerical models established. The author also analyzed and discussed the simulated calculation results, which show that, except very few points in loosening zone, where the relative calculation error is comparatively high (>20%) resulting from the low oxygen concentration, the relative calculation error of other points falls between 7% and 17%. Therefore, the calculation value and the experiment value take on a good conformity. According to the simulated results, the calculation value of the oxygen concentration is a little bit lower than the experiment one. On top of that, with the prolonging of gasification time, in high temperature zone, the change gradient of oxygen concentration for experiment value is bigger than that of the calculation value. The oxygen concentration is in direct proportion to its

  9. Evaluation of a portable oxygen concentrator to provide fresh gas flow to dogs undergoing anesthesia.

    Science.gov (United States)

    Burn, Jessica; Caulkett, Nigel A; Gunn, Marta; Cooney, Claire; Kutz, Susan J; Boysen, Søren R

    2016-06-01

    This study evaluated the ability of a portable oxygen concentrator (POC) to provide fresh gas to an anesthetic machine via an Ayre's T-piece or a Bain circuit. Fraction of inspired oxygen (FiO2) was compared at flows of 0.5 to 3.0 L/min. Measured FiO2 was 96% at flow rates ≥ 1 L/min. Mean battery life at 1.0, 2.0, and 3.0 L/min was 4.21 ± 0.45, 2.62 ± 0.37 and 1.5 ± 0.07 hours, respectively. The POC proved to be useful and effective during 2 power outages. The POC was sufficient to prevent rebreathing in 70% of dogs using a T-piece circuit and 20% of dogs with a Bain circuit. A significant negative correlation between inspired CO2 and O2 flow rates was noted. A significant positive correlation between inspired CO2 and ETCO2 was documented. The occurrence of hypercarbia was associated with low O2 flow. Battery back-up was essential during power outages. The POC can be effectively used for delivery of anesthesia.

  10. MORPHOLOGICAL CHARACTERISTICS OF TOMATO IRRIGATED WITH WASTEWATERS WITH DIFFERENT OXYGEN CONCENTRATIONS

    Directory of Open Access Journals (Sweden)

    İsmail Taş

    2016-07-01

    Full Text Available Water scarcity is an ever-aggravating problem worldwide. In particular, there is greater emphasis placed on arid and semi-arid regions like Turkey. Although quite much progress have been achieved, several countries today are still faced to imbalanced water demands and water supplies especially in summer periods due to simultaneous low precipitations, high evaporations and increasing demands for irrigation. Major portion of irrigated agriculture is supported by fresh irrigation water resources, which are surface and groundwater. Not surprisingly, the decrease in natural water resources caused by drought and population growth enforced authorities to establish and to encourage the reuse of wastewater. In this study, different hygiene treatments (control, activated carbon treatment, activated carbon+hydrogen peroxide treatment, ozone treatment and hydrogen peroxide treatment were used for the effluent of Ankara Municipal Wastewater Treatment Plant. Following hygiene treatments, wastewater was used as irrigation water for tomato. The oxygen concentration was achieved as 10 mg/l in all treatments. Oxygen treated wastewater had significant positive influences on some morphological characteristics of tomato.

  11. Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations.

    Science.gov (United States)

    Uribe-Alvarez, Cristina; Chiquete-Félix, Natalia; Contreras-Zentella, Martha; Guerrero-Castillo, Sergio; Peña, Antonio; Uribe-Carvajal, Salvador

    2016-02-01

    Staphylococcus epidermidis has become a major health hazard. It is necessary to study its metabolism and hopefully uncover therapeutic targets. Cultivating S. epidermidis at increasing oxygen concentration [O2] enhanced growth, while inhibiting biofilm formation. Respiratory oxidoreductases were differentially expressed, probably to prevent reactive oxygen species formation. Under aerobiosis, S. epidermidis expressed high oxidoreductase activities, including glycerol-3-phosphate dehydrogenase, pyruvate dehydrogenase, ethanol dehydrogenase and succinate dehydrogenase, as well as cytochromes bo and aa3; while little tendency to form biofilms was observed. Under microaerobiosis, pyruvate dehydrogenase and ethanol dehydrogenase decreased while glycerol-3-phosphate dehydrogenase and succinate dehydrogenase nearly disappeared; cytochrome bo was present; anaerobic nitrate reductase activity was observed; biofilm formation increased slightly. Under anaerobiosis, biofilms grew; low ethanol dehydrogenase, pyruvate dehydrogenase and cytochrome bo were still present; nitrate dehydrogenase was the main terminal electron acceptor. KCN inhibited the aerobic respiratory chain and increased biofilm formation. In contrast, methylamine inhibited both nitrate reductase and biofilm formation. The correlation between the expression and/or activity or redox enzymes and biofilm-formation activities suggests that these are possible therapeutic targets to erradicate S. epidermidis.

  12. Comparison of Oxygen Consumption in Rats During Uphill (Concentric and Downhill (Eccentric Treadmill Exercise Tests

    Directory of Open Access Journals (Sweden)

    Vivien Chavanelle, Pascal Sirvent, Gaël Ennequin, Kévin Caillaud, Christophe Montaurier, Béatrice Morio, Nathalie Boisseau, Ruddy Richard

    2014-09-01

    Full Text Available The study of the physiological adaptations of skeletal muscle in response to eccentric (ECC contraction is based on protocols in which exercise intensities are determined relative to the concentric (CON reference exercise (as percentage of the CON maximal oxygen consumption, or VO2max. In order to use similar exercise protocols in rats, we compared the VO2 values during uphill (CON and downhill (ECC running tests. VO2 was measured in 15 Wistar rats during incremental treadmill running exercises with different slopes: level (0%, positive (+15% incline: CON+15% and negative (i15% incline: ECC-15%; and 130% incline: ECC-30%. Similar VO2 values were obtained in the ECC-30% and CON+15% running conditions at the three target speeds (15, 25 and 35 cm/sec. Conversely, VO2 values were lower (p < 0.05 in the ECC-15% than in the CON+15% condition (CON+15% VO2/ECC-15% VO2 ratios ranging from 1.86 to 2.05 at the three target speeds. Thus, doubling the downhill slope gradient in ECC condition leads to an oxygen consumption level that is not significantly different as in CON condition. These findings can be useful for designing animal research protocols to study the effects of ECC and CON exercise in ageing population or subjects suffering from cardiovascular diseases.

  13. Formation of dioxins on NiO and NiCl2 at different oxygen concentrations.

    Science.gov (United States)

    Yang, Jie; Yan, Mi; Li, Xiaodong; Lu, Shengyong; Chen, Tong; Yan, Jianhua; Olie, Kees; Buekens, Alfons

    2015-08-01

    Model fly ash (MFA) containing activated carbon (AC) as source of carbon, NaCl as source of chlorine and either NiO or NiCl2 as de novo catalyst, was heated for 1h at 350 °C in a carrier gas flow composed of N2 containing 0, 6, 10, and 21 vol.% O2, to study the formation of PCDD/Fs (dioxins) and its dependence on oxygen. The formation of PCDD/Fs with NiCl2 was stronger by about two orders of magnitude than with NiO and the difference augmented with rising oxygen concentration. The thermodynamics of the NiO-NiCl2 system were represented, X-ray absorption near edge structural (XANES) spectroscopy allowed to probe the state of oxidation of the nickel catalyst in the MFA and individual metal species were distinguished using the LCF (Linear combination fitting) technique: thus three supplemental nickel compounds (Ni2O3, Ni(OH)2, and Ni) were found in the fly ash. Principal Component Analysis (PCA) indicates that both Ni2O3 and NiCl2 probably played an important role in the formation of PCDD/Fs.

  14. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs.

    Science.gov (United States)

    Faust, L; Temmink, H; Zwijnenburg, A; Kemperman, A J B; Rijnaarts, H H M

    2014-12-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable organic chemicals. Little is known about the effect of the dissolved oxygen concentration (DO) on this bioflocculation process. To examine this effect, two HL-MBRs were operated, respectively at a low (1 mg L(-1)) and a higher (4 mg L(-1)) DO. The higher DO resulted in a better flocculation efficiency, i.e. 92% of the colloidal COD in the sewage flocculated compared to 69% at the lower DO. The difference was attributed to a higher microbial production of extracellular polymeric substances at a DO of 4 mg L(-1) and to more multivalent cations (calcium, iron and aluminium) being distributed to the floc matrix. In addition, the HL-MBR that was operated at a DO of 4 mg L(-1) gave a bigger mean floc size, a lower supernatant turbidity, better settleability and better membrane filterability than the HL-MBR that was operated at a DO of 1 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of dissolved oxygen concentration on red pigment and citrinin production by Monascus purpureus ATCC 36928

    Directory of Open Access Journals (Sweden)

    D. G. Pereira

    2008-06-01

    Full Text Available The present study investigated the effects of agitation speed, N (200, 500, 600 or 700 rpm, and dissolved oxygen concentration, C (120, >70, 70, 60, 10 or < 10%, on red pigment and citrinin production by Monascus purpureus ATCC 36928, cultivated in liquid medium by a batch process. The gas flow rate was the same for all runs with C controlled by means of the incoming gas composition control (air/N2 or air/O2. From the response surface plots it can be verified that the effect of C was greater than that of N on the production of both metabolites. The absorbance for red pigments varied from 1.6 U (C< 10%; N=200 rpm up to 3.3 U (C=60%; N=600 rpm, an increase of 106%, while citrinin concentration increased 257%, from 14.2 to 50.7 mg.L-1. The most appropriate conditions were C=60% and N=600rpm, under which the highest red pigment absorbance (3.3U and half of the highest citrinin concentration were obtained.

  16. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    Science.gov (United States)

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  17. Sensitivity of Oxygen Isotopes of Sulfate in Ice Cores to Past Changes in Atmospheric Oxidant Concentrations

    Science.gov (United States)

    Sofen, E. D.; Alexander, B.; Kunasek, S. A.; Mickley, L.; Murray, L. T.; Kaplan, J. O.

    2009-12-01

    The oxygen isotopic composition (Δ17O) of sulfate from ice cores allows for a quantitative assessment of the past oxidative capacity of the atmosphere, which has implications for the lifetime of pollutants (e.g. CO) and greenhouse gases (e.g. CH4), and changes in the sulfur budget on various timescales. Using Δ17O of sulfate measurements from the WAIS-Divide, Antarctica and Site-A, Greenland ice cores as constraints, we use the GEOS-Chem global three-dimensional chemical transport model to study changes in the concentrations of OH, O3, and H2O2 and their impact on sulfate Δ17O between the preindustrial and present-day. The Greenland ice core sulfate oxygen isotope observations are insensitive to changes in oxidant concentrations on the preindustrial-industrial timescale due to the rising importance of metal catalyzed S(IV) oxidation in mid- to high-northern latitudes resulting from anthropogenic metal emissions. The small change in Antarctic ice core sulfate Δ17O observations on this timescale is consistent with simultaneous increases in boundary layer O3 (32%) and H2O2 (49%) concentrations in the Southern Hemisphere, which have opposing effects on the sulfate O-isotope anomaly. Sulfate Δ17O is insensitive to the relatively small (-12%) decrease in Southern Hemisphere OH concentrations on this timescale due to the dominance of in-cloud versus gas-phase formation of sulfate in the mid-to-high southern latitudes. We find that the fraction of sulfate formed globally through gas-phase oxidation has not changed substantially between preindustrial and present times, however the total amount of sulfate formed in the gas-phase has nearly quadrupled due to rising anthropogenic emissions of sulfur dioxide. Measurements over a glacial-interglacial cycle from the Vostok core indicate dramatic changes in the Δ17O of sulfate on this timescale, which provide a strong constraint for glacial-era atmospheric chemistry modeling efforts. We will present preliminary results of

  18. Hyperosmotic Agents and Antibiotics Affect Dissolved Oxygen and pH Concentration Gradients in Staphylococcus aureus Biofilms.

    Science.gov (United States)

    Kiamco, Mia Mae; Atci, Erhan; Mohamed, Abdelrhman; Call, Douglas R; Beyenal, Haluk

    2017-03-15

    Biofilms on wound surfaces are treated topically with hyperosmotic agents, such as medical-grade honey and cadexomer iodine; in some cases, these treatments are combined with antibiotics. Tissue repair requires oxygen, and a low pH is conducive to oxygen release from red blood cells and epithelialization. We investigated the variation of dissolved oxygen concentration and pH with biofilm depth and the variation in oxygen consumption rates when biofilms are challenged with medical-grade honey or cadexomer iodine combined with vancomycin or ciprofloxacin. Dissolved oxygen and pH depth profiles in Staphylococcus aureus biofilms were measured using microelectrodes. The presence of cadexomer iodine with vancomycin or ciprofloxacin on the surface of the biofilm permitted a measurable concentration of oxygen at greater biofilm depths (101.6 ± 27.3 μm, P = 0.02; and 155.5 ± 27.9 μm, P = 0.016, respectively) than in untreated controls (30.1 μm). Decreases in pH of ∼0.6 and ∼0.4 units were observed in biofilms challenged with medical-grade honey alone and combined with ciprofloxacin, respectively (P dissolved oxygen concentration and penetration depth into the biofilm, while medical-grade honey was associated with a lower pH; not all treatments established a bactericidal effect in the time frame used in the experiments.IMPORTANCE Reports about using hyperosmotic agents and antibiotics against wound biofilms focus mostly on killing bacteria, but the results of these treatments should additionally be considered in the context of how they affect physiologically important parameters, such as oxygen concentration and pH. We confirmed that the combination of a hyperosmotic agent and an antibiotic results in greater dissolved oxygen and reduced pH within an S. aureus biofilm. Copyright © 2017 American Society for Microbiology.

  19. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.

    2012-10-01

    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  20. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Science.gov (United States)

    Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges

    2016-01-01

    Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783

  1. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration

    DEFF Research Database (Denmark)

    Hansen, M.C.; Palmer, R.J.; Udsen, C.

    2001-01-01

    . A lower limit of oxygen concentration for maturation of the GFP fluorophore was determined: fluorescence was emitted at 0.1 p.p.m. dissolved oxygen (in conventionally prepared anaerobic media lacking reducing agents), whereas no fluorescence was detected in the presence of 0.025 p.p.m. dissolved oxygen......Use of green fluorescent protein (GFP) as a molecular reporter is restricted by several environmental factors, such as its requirement for oxygen in the development of the fluorophore, and its poor fluorescence at low pH. There are conflicting data on these limitations, however, and systematic...... (lateral or vertical) within the >50 mum thick biofilm, and fluorescence development after the shift to aerobic conditions occurred throughout the biofilm (even at the substratum). This suggests that oxygen gradients, which might result in reduced GFP fluorescence, did not exist in the >50 mum thick...

  2. The induction of Sinorhizobium meliloti C4-dicarboxylate transport system(Dct)is regulated by oxygen concentration

    Institute of Scientific and Technical Information of China (English)

    WEN Jin; NAN Beiyan; Fergal O'Gara; WANG Yiping

    2005-01-01

    The Sinorhizobium meliloti C4-dicarboxylate transport (Dct) system is essential for symbiotic nitrogen fixation. The dctA gene, encoding the C4-dicarboxylate permease, is expressed in both free living and symbiotic cells. But in free living cells expression of dctD and dctB is absolutely required for the expression of dctA. In this study, in order to investigate the effect of oxygen concentration on the induction of Dct system, E. coli DH5α strain which carries the plasmid-encoded dctABD operon was used in tube assays. It was found that the specific induction of Dct system occurred only at a certain depth under the surface of M63- 0.6% agar media, suggesting that Dct system could respond to oxygen concentration during succinate-induced expression. Furthermore, when measured at different oxygen concentrations, the highest expression level was observed at oxygen concentration of 2%. Thus, we predict that in addition to dicarboxylates, the induction of Dct system may also regulated by oxygen concentration.

  3. Detection of low bottom water oxygen concentrations in the North Sea; implications for monitoring and assessment of ecosystem health

    Directory of Open Access Journals (Sweden)

    N. Greenwood

    2009-08-01

    Full Text Available This paper presents new results from high temporal resolution observations over two years (2007 and 2008 from instrumented moorings deployed in the central North Sea, at the Oyster Grounds and on the northern slope of Dogger Bank (North Dogger. The water column was stratified in the summer at both sites, leading to limited exchange of the water in the bottom mixed layer. Data from these moorings revealed the variable nature of summer oxygen depletion at the Oyster Grounds. The combination of in situ and ship-based measurements allowed the physical and biological conditions leading to decreasing dissolved oxygen concentrations in bottom water to be examined. The concentration of dissolved oxygen in the bottom water at both sites was observed to decrease throughout the summer period after the onset of stratification. Depleted dissolved oxygen concentration (6.5 mg l−1, 71% saturation was measured at the North Dogger, a site which is not significantly influenced by anthropogenic nutrient inputs. Lower oxygen saturation (5.2 mg l−1, 60% saturation was measured for short durations at the Oyster Grounds. Increasing bottom water temperature accounted for 55% of the decrease in dissolved oxygen concentration at the Oyster Grounds compared to 10% at North Dogger.

    Dissolved oxygen concentration in bottom water at the Oyster Grounds was shown to be strongly influenced by short term events including storm events and pulses of biomass input. In contrast, dissolved oxygen concentration in bottom water at the North Dogger reflected longer seasonal processes such as gradual temperature increases and a more steady supply of biomass to the bottom mixed layer. The differences between the study sites shows the need for an improved understanding of the mechanisms driving these processes if the use of oxygen in marine management and ensuring ecosystem health is to be meaningful and successful in the future. These observations

  4. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Science.gov (United States)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  5. Investigating the role that the Southern Ocean biological pump plays in determining global ocean oxygen concentrations and deoxygenation

    OpenAIRE

    Keller, David; Oschlies, Andreas

    2013-01-01

    Global ocean circulation connects marine biogeochemical cycles through the long-range transport of nutrients and oxygen with the Southern Ocean (SO) acting as a water mass crossroads. The biological pump in the SO has been shown to play an important role in these dynamics and the amount of export production is known to have a large impact on remote deep ocean nutrients and dissolved inorganic carbon. However, the role that the SO biological pump plays in determining ocean oxygen concentration...

  6. NIRS-Derived Tissue Oxygen Saturation and Hydrogen Ion Concentration Following Bed Rest

    Science.gov (United States)

    Lee, S. M. C.; Everett, M. E.; Crowell, J. B.; Westby, C. M.; Soller, B. R.

    2010-01-01

    Long-term bed rest (BR), a model of spaceflight, results in a decrease in aerobic capacity and altered submaximal exercise responses. The strongest BR-induced effects on exercise appear to be centrally-mediated, but longer BR durations may result in peripheral adaptations (e.g., decreased mitochondrial and capillary density) which are likely to influence exercise responses. PURPOSE: To measure tissue oxygen saturation (SO2) and hydrogen ion concentration ([H+]) in the vastus lateralis (VL) using near infrared spectroscopy (NIRS) during cycle ergometry before and after . 30 d of BR. METHODS: Eight subjects performed a graded exercise test on a cycle ergometer to volitional fatigue 7 d before (pre-BR) and at the end or 1 day after BR (post-BR). NIRS spectra were collected from a sensor adhered to the skin overlying the VL. Oxygen consumption (VO2) was measured by open circuit spirometry. Blood volume (BV) was measured before and after BR using the carbon monoxide rebreathing technique. Changes in pre- and post-BR SO2 and [H+] data were compared using mixed model analyses. BV and peak exercise data were compared using paired t-tests. RESULTS: BV (pre-BR: 4.3+/-0.3, post-BR: 3.7+/-0.2 L, mean+/-SE, p=.01) and peak VO2 (pre-BR: 1.98+/-0.24, post-BR: 1.48 +/-0.21 L/min, padaptations which contribute to cardiovascular and muscular deconditioning as measured by NIRS-derived SO2 and [H+] in the VL and may contribute to lower post-BR exercise tolerance. Supported by the National Space Biomedical Research Institute through NASA NCC 9-58

  7. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  8. A New Approach for Removal of Nitrogen Oxides from Synthetic Gas-streams under High Concentration of Oxygen in Biofilters

    Institute of Scientific and Technical Information of China (English)

    Shao Bin HUANG; Ju Guang ZHANG; He Ping HU; Yue SITU

    2005-01-01

    The potential of using denitrifying and nitrifying concurrent biofilters for the removal of nitrogen oxides from synthetic gas streams was studied under the condition of high oxygen concentration. It was found that more than 85% of nitric oxide was removed from synthetic combustion gas-streams which contained 20% oxygen and 350 μL/L NO, with a residence time of60 seconds. In the process, it was found that the existing of oxygen showed no evident negative effect on the efficiency of nitrogen removal.

  9. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    Science.gov (United States)

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.

  10. Using dissolved oxygen concentrations to determine mixed layer depths in the Bellingshausen Sea

    Directory of Open Access Journals (Sweden)

    K. Castro-Morales

    2012-01-01

    Full Text Available Concentrations of oxygen (O2 and other dissolved gases in the oceanic mixed layer are often used to calculate air-sea gas exchange fluxes. The mixed layer depth (zmix may be defined using criteria based on temperature or density differences to a reference depth near the ocean surface. However, temperature criteria fail in regions with strong haloclines such as the Southern Ocean where heat, freshwater and momentum fluxes interact to establish mixed layers. Moreover, the time scales of air-sea exchange differ for gases and heat, so that zmix defined using oxygen may be different than zmix defined using temperature or density. Here, we propose to define an O2-based mixed layer depth, zmix(O2, as the depth where the relative difference between the O2 concentration and a reference value at a depth equivalent to 10 dbar equals 0.5 %. This definition was established by analysis of O2 profiles from the Bellingshausen Sea (west of the Antarctic Peninsula and corroborated by visual inspection. Comparisons of zmix(O2 with zmix based on potential temperature differences, i.e., zmix(0.2 °C and zmix(0.5 °C, and potential density differences, i.e., zmix(0.03 kg m−3 and zmix(0.125 kg m−3, showed that zmix(O2 closely follows zmix(0.03 kg m−3. Further comparisons with published zmix climatologies and zmix derived from World Ocean Atlas 2005 data were also performed. To establish zmix for use with biological production estimates in the absence of O2 profiles, we suggest using zmix(0.03 kg m−3, which is also the basis for the climatology by

  11. Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil).

    Science.gov (United States)

    Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C

    2009-06-01

    The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.

  12. Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis.

    Science.gov (United States)

    Paltrinieri, Saverio; Ravicini, Sara; Rossi, Gabriele; Roura, Xavier

    2010-12-01

    Leishmania infantum interferes with the oxidative metabolism of phagocytes. In order to assess whether derivatives of reactive oxygen metabolites (d-ROMs) decrease due to infection or increase due to inflammation, d-ROMs were measured in serum collected from control dogs (Group 1; n = 12), from dogs seropositive for Leishmania either symptomatic (Group 2; n = 27) or not (Group 3; n = 14), and from dogs with other diseases (Group 4; n = 16). The concentrations of d-ROMs in the four groups, expressed in Carratelli Units (U CARR) were, respectively, 75.4 ± 39.5 (median, 81.6), 108.2 ± 96.3 (73.4), 73.5 ± 62.2 (62.0), 127.7 ± 97.3 (94.3). There were no significant differences between groups, but dogs with values higher than the reference interval were found, mostly in Groups 2 and 4 (which had serum C-reactive protein levels consistent with inflammation), whilst low values were occasionally found in Groups 2 and 3. Inflammation may mask decreases in d-ROMs induced by Leishmania infection.

  13. Control of oxygen vacancies and Ce{sup +3} concentrations in doped ceria nanoparticles via the selection of lanthanide element

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, N., E-mail: nader83@vt.edu; Meehan, K.; Hudait, M.; Jain, N. [Virginia Tech, Bradley Department of Electrical and Computer Engineering (United States)

    2012-10-15

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce{sup +4} into Ce{sup +3} and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  14. Relative sensitivity of soluble guanylate cyclase and mitochondrial respiration to endogenous nitric oxide at physiological oxygen concentration.

    Science.gov (United States)

    Rodríguez-Juárez, Félix; Aguirre, Enara; Cadenas, Susana

    2007-07-15

    Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.

  15. Inference of atomic oxygen concentration from remote sensing of optical aurora

    Science.gov (United States)

    Shepherd, M. G.; McConnell, J. C.; Tobiska, W. K.; Gladstone, G. R.; Chakrabarti, S.; Schmidtke, G.

    1995-09-01

    A remote sensing method has been developed for the determination of the [O]/[O-MSIS] ratio in aurora, using ratios of the O I (557.7 nm) and N+2 (391.4 nm) emissions. It is shown that the method can be used for the analysis of measurements integrated along the line of sight, provided data only above the emission rate peak are used. The method is applied to the case of horizontal viewing from a vertically oriented rocket so that a large volume of space was sampled around the rocket. The method can potentially be applied to satellite limb images, provided some independent information about the location of the aurora is available, as it was for the rocket observations. Photometric measurements of the N+2 (391.4 nm) and O I (557.7 nm) emissions obtained during the Energy Budget Campaign 1980 on flight E-2 with the instrument EF11 and its reflight in 1981 were used in the analysis presented. During the first flight the rocket horizontally viewed two distinct aurorae, a nearby diffuse patch, and a more distant pulsating aurora. Results obtained by the same EF11 instrument on a second flight through an auroral arc in 1981 are also presented. Two types of atomic oxygen variability were found in both of the flights. In the first type, [O] is increased above [O-MSIS] by a factor of 1.5 at 180 km, is equal to the MSIS model at 160 km, and is less than MSIS below that; that is, the scale height of [O] was increased. The experimental I(557.7)/I(391.4) ratio was constant with altitude. In the second type, the [O] was depleted by about a factor of 2 over the altitude range of 120-180 km, while the I(557.7)/I(391.4) ratio decreased with altitude. The inferred atomic oxygen concentrations of 0.5 to 2 with respect to MSIS suggested different vertical flows on the two cases. Independent evidence is provided by atmospheric composition measurements made during the same campaign.

  16. Rapid depletion of dissolved oxygen in 96 well microtitre plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration

    OpenAIRE

    Cotter, John J.; O'Gara, James P.; Casey, Eoin

    2009-01-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the...

  17. Effect of Sm on Gas-Sensing Properties of SnO2 with Different Oxygen Vacancy Concentrations

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The SnO2-x with different oxygen vacancy concentrations was modified by adding Sm. The modified SnO2-x was investigated by means of X-ray diffraction, X-ray photoelectron spectroscope, and scanning electron microscopy. Its gas-sensing properties to C2H6, C6H14, C2H5OH, CO, and H2 were studied too. The experiment results show that the gas-sensing properties of Sm/SnO2-x depend upon the amount of oxygen vacancies, therefore it is possible to improve gas-sensing properties of doped SnO2 by controlling its concentration of oxygen vacancy.

  18. The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium

    NARCIS (Netherlands)

    Stal, L.

    2017-01-01

    Heterocysts are differentiated cells formed by some filamentous, diazotrophic (dinitrogen-fixing)cyanobacteria. The heterocyst is the site of dinitrogen fixation providing the oxygen-sensitivenitrogenase with a low-oxygen environment. The diffusion of air into the heterocyst is a compromisebetween t

  19. Effect of dissolved oxygen concentration (microaerobic and aerobic) on selective enrichment culture for bioaugmentation of acidic industrial wastewater.

    Science.gov (United States)

    Quan, Ying; Han, Hui; Zheng, Shaokui

    2012-09-01

    The successful application of bioaugmentation is largely dependent on the selective enrichment of culture with regards to pH, temperature, salt, or specific toxic organic pollutants. In this study, we investigated the effect of dissolved oxygen (DO) concentrations (aerobic, >2 mg L(-1); microaerobic, concentrations (aerobic/microaerobic) should be considered a secondary selective pressure to achieve successful bioaugmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Science.gov (United States)

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  1. Effects of pressure, oxygen concentration, and forced convection on flame spread rate of Plexiglas, Nylon and Teflon

    Science.gov (United States)

    Notardonato, J. J.; Burkhardt, L. A.; Cochran, T. H.

    1974-01-01

    Experiments were conducted in which the burning of cylindrical materials in a flowing oxidant stream was studied. Plexiglas, Nylon, and Teflon fuel specimens were oriented such that the flames spread along the surface in a direction opposed to flowing gas. Correlations of flame spread rate were obtained that were power law relations in terms of pressure, oxygen concentration, and gas velocity.

  2. Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus)

    NARCIS (Netherlands)

    Tran, N.T.K.; Dinh, Ngu T.; Tin, Nguyen Hong; Roem, A.J.; Schrama, J.W.; Verreth, J.A.J.

    2016-01-01

    The present study was undertaken to evaluate the individual and combined effects of oxygen concentration and
    diet composition on the growth, nutrient utilization and intestinal morphology of Nile tilapia (Oreochromis
    niloticus). Two recirculating aquaculture systems were used to create the

  3. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    Directory of Open Access Journals (Sweden)

    C. Kalogridis

    2014-01-01

    Full Text Available The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOC in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the Oak Observatory of the Observatoire de Haute Provence (O3HP located in the southeast of France. The field site presents one dominant tree species, Quercus pubescens L., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK and methacrolein (MACR and several other oxygenated VOC (OxVOC were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS, and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2–8 mg m−2 h1. Net isoprene normalised flux (at 30 °C, 1000 μmol m−2 s−1 was estimated at 6.6 mg m−2 h−1. The (MVK+MACR-to-isoprene ratio was used to assess the degree of isoprene oxidation. In-canopy chemical oxidation of isoprene was found to be weak, as indicated by the low (MVK+MACR-to-isoprene ratio (~ 0.13 and low MVK+MACR fluxes, and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy. Evidence of direct emission of methanol was also found exhibiting

  4. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs in vitro and in vivo.

    Science.gov (United States)

    Goh, Fernie; Long, Robert; Simpson, Nicholas; Sambanis, Athanassios

    2011-07-01

    Noninvasive in vivo monitoring of tissue implants provides important correlations between construct function and the observed physiologic effects. As oxygen is a key parameter affecting cell and tissue function, we established a monitoring method that utilizes (19) F nuclear magnetic resonance (NMR) spectroscopy, with perfluorocarbons (PFCs) as oxygen concentration markers, to noninvasively monitor dissolved oxygen concentration (DO) in tissue engineered implants. Specifically, we developed a dual PFC method capable of simultaneously measuring DO within a tissue construct and its surrounding environment, as the latter varies among animals and with physiologic conditions. In vitro studies using an NMR-compatible bioreactor demonstrated the feasibility of this method to monitor the DO within alginate beads containing metabolically active murine insulinoma βTC-tet cells, relative to the DO in the culture medium, under perfusion and static conditions. The DO profiles obtained under static conditions were supported by mathematical simulations of the system. In vivo, the dual PFC method was successful in tracking the oxygenation state of entrapped βTC-tet cells and the surrounding peritoneal DO over 16 days in normal mice. DO measurements correlated well with the extent of cell growth and host cell attachment examined postexplantation. The peritoneal oxygen environment was found to be variable and hypoxic, and significantly lower in the presence of metabolically active cells. The significance of the dual PFC system in providing critical DO measurements for entrapped cells and other tissue constructs, in vitro and in vivo, is discussed. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  5. Effects of Variable Oxygen Concentrations on the Sinking Fluxes and Composition of Organic Matter in The Baltic Sea

    Science.gov (United States)

    Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.

    2016-02-01

    The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.

  6. Effects of dissolved oxygen concentration and iron addition on immediate-early gene expression of Magnetospirillum gryphiswaldense MSR-1.

    Science.gov (United States)

    Zhuang, Shiwen; Anyaogu, Diana Chinyere; Kasama, Takeshi; Workman, Mhairi; Mortensen, Uffe Hasbro; Hobley, Timothy John

    2017-06-15

    We report the effects of dissolved oxygen (DO) concentration and iron addition on gene expression of Magnetospirillum gryphiswaldense MSR-1 cells during fermentations, focusing on 0.25-24 h after iron addition. The DO was strictly controlled at 0.5% or 5% O2, and compared with aerobic condition. Uptake of iron (and formation of magnetosomes) was only observed in the 0.5% O2 condition where there was little difference in cell growth and carbon consumption compared to the 5% O2 condition. Quantitative reverse transcription PCR analysis showed a rapid (within 0.25 h) genetic response of MSR-1 cells after iron addition for all the genes studied, except for MgFnr (oxygen sensor gene) and fur (ferric uptake regulator family gene), and which in some cases was oxygen dependent. In particular, expression of sodB1 (superoxide dismutase gene) and feoB1 (ferrous transport protein B1 gene) was markedly reduced in cultures at 0.5% O2 compared to those at higher oxygen tensions. Moreover, expression of katG (catalase-peroxidase gene) and feoB2 (ferrous transport protein B2 gene) was reduced markedly by iron addition, regardless of oxygen conditions. These data provide a greater understanding of molecular response of MSR-1 cells to environmental conditions associated with oxygen and iron metabolisms, especially relevant to immediate-early stage of fermentation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    Science.gov (United States)

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.

  8. Portable Cathode-Air-Vapor-Feed Electrochemical Medical Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions present significant new challenges to crew health care capabilities, particularly in the efficient utilization of on-board oxygen...

  9. Portable Cathode-Air-Vapor-Feed Electrochemical Medical Oxygen Concentrator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space exploration missions present significant new challenges to crew health care capabilities, particularly in the efficient utilization of on-board oxygen...

  10. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations

    National Research Council Canada - National Science Library

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-01-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations...

  11. Position Paper: The Feasibility of Lowering Oxygen Concentrations Aboard Submarines in Order to Improve Fire Safety.

    Science.gov (United States)

    2014-09-26

    judgment. Impaired coordination. (32) 0 114 Intermittent breathing. Rapid fatigue. Loss of muscle control. (21) 10,000 109 COMPENSATED HYPOXIA (25...fire safety; fire retardance; submarines; submersibles; oxygen: aerohypoxia; hypoxia ; hypercapnia; carbon dioxide; carbon monoxide; altitude...reduce the partial pressure of atmos- pheric oxygen (P.)2) to the point of causing hypoxia . Since residents of Denver per- form complex tas&s at a P0

  12. [Effect of reduced oxygen concentrations and hydrogen sulfide on the amino acid metabolism and mesenchymal cells proliferation].

    Science.gov (United States)

    Plotnikova, L N; Berezovskii, V A; Veselskii, S P

    2015-01-01

    We investigated the effect of hydrogen sulfide donor (10(-12) mol/l NaHS--I group) alone and together with the reduced oxygen concentrations (5% O2--II group, 3% O2--III group, 24 h) on the biological processes of human stem cells culture. It was shown that the cells proliferation by the third day of cultivation in I, II and III group decreased 1,7; 2,8 and 4,2 times. On the 4th day of culture proliferation inhibited in I, II and III group by 29; 33 and 54% compared to the control. Thus, adverse effects NaHS enhanced by reducing the oxygen concentration. It was established that in all experimental versions rapidly absorbed from the culture medium amino acids: cysteine and cystine, serine and aspartic acid, valine and tryptophan, proline and hydroxyproline, which are involved in the synthesis of proteins, in particular collagen. In the culture medium increased the concentration of free amino acids of the three factions: arginine, histidine and taurine; glycine and methionine; alanine and glutamine. We believe that in the applied concentration of hydrogen sulfide donor in conditions of low oxygen in a gaseous medium incubation inhibits the proliferation and alters the amino acid metabolism of human cells line 4BL.

  13. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    Science.gov (United States)

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  14. An in silico analysis of oxygen uptake of a mild COPD patient during rest and exercise using a portable oxygen concentrator

    Directory of Open Access Journals (Sweden)

    Katz I

    2016-09-01

    Full Text Available Ira Katz,1,2 Marine Pichelin,1 Spyridon Montesantos,1 Min-Yeong Kang,3 Bernard Sapoval,3,4 Kaixian Zhu,5 Charles-Philippe Thevenin,5 Robert McCoy,6 Andrew R Martin,7 Georges Caillibotte1 1Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France; 2Department of Mechanical Engineering, Lafayette College, Easton, PA, USA; 3Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Palaiseau, 4Centre de Mathématiques et de leurs Applications, CNRS, UniverSud, Cachan, 5Centre Explor!, Air Liquide Healthcare, Gentilly, France; 6Valley Inspired Products, Inc, Apple Valley, MN, USA; 7Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada Abstract: Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered, and pulse delay (the time for the pulse to be initiated from the start of inhalation as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth, can be

  15. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    Energy Technology Data Exchange (ETDEWEB)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  16. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility

    Institute of Scientific and Technical Information of China (English)

    Wolf-BernhardSchill; KerstinDefosse; Hans-HilhelmKoyro; NorbertWeissmann

    2003-01-01

    Aim:To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility.Methods:In washed spermatozoa from 67 ejaculates,the oxygen consumption was determined.Following calculation of the total oxygen consumed by the Ideal Gas Law,the energy consumption of spermatozoa was calculated.In addition,the zinc content of the sperm was determined using an atomic absorption spectrometer.The resulting data were correlated to the vitality and motility.Results:The oxygen consumption averaged 0.24μmol/106 sperm×24h,0.28μmol/106 live sperm×24h and 0.85μmol/106 live & motile sperm×24h.Further calculations revealed that sperm motility was the most energy consuming process(164.31mJ/106 motile spermatozoa×24h),while the oxygen consumption of the total spermatozoa was 46.06mJ/106 spermatozoa ×24h.The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations(r=-0.759;P<0.0001 and r=-0.441;P<0.0001,respectively).However,when correlating sperm energy consumption with the zinc content,a significant positive relation(r=0.323;P=0.01)was observed.Conclusion:Poorly motile sperm are actually wasting the available energy.Moreover,our data clearly support the “Geometric Clutch Model”of the oneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility,especially progressive motility.

  17. Feasibility and reliability of an automated controller of inspired oxygen concentration during mechanical ventilation

    OpenAIRE

    Saihi, Kaouther; Richard, Jean-Christophe M; Gonin, Xavier; Krüger, Thomas; Dojat, Michel; Brochard, Laurent

    2014-01-01

    Introduction Hypoxemia and high fractions of inspired oxygen (FiO2) are concerns in critically ill patients. An automated FiO2 controller based on continuous oxygen saturation (SpO2) measurement was tested. Two different SpO2-FiO2 feedback open loops, designed to react differently based on the level of hypoxemia, were compared. The results of the FiO2 controller were also compared with a historical control group. Methods The system measures SpO2, compares with a target range (92% to 96%), and...

  18. Effect of 50% and maximal inspired oxygen concentrations on respiratory variables in isoflurane-anesthetized horses

    Directory of Open Access Journals (Sweden)

    Lerche Phillip

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to compare the effects of 0.5 fraction of inspired oxygen (FiO2 and >0.95 FiO2 on pulmonary gas exchange, shunt fraction and oxygen delivery (DO2 in dorsally recumbent horses during inhalant anesthesia. The use of 0.5 FiO2 has the potential to reduce absorption atelectasis (compared to maximal FiO2 and augment alveolar oxygen (O2 tensions (compared to ambient air thereby improving gas exchange and DO2. Our hypothesis was that 0.5 FiO2 would reduce ventilation-perfusion mismatching and increase the fraction of pulmonary blood flow that is oxygenated, thus improving arterial oxygen content and DO2. Results Arterial partial pressures of O2 were significantly higher than preanesthetic levels at all times during anesthesia in the >0.95 FiO2 group. Arterial partial pressures of O2 did not change from preanesthetic levels in the 0.5 FiO2 group but were significantly lower than in the >0.95 FiO2 group from 15 to 90 min of anesthesia. Alveolar to arterial O2 tension difference was increased significantly in both groups during anesthesia compared to preanesthetic values. The alveolar to arterial O2 tension difference was significantly higher at all times in the >0.95 FiO2 group compared to the 0.5 FiO2 group. Oxygen delivery did not change from preanesthetic values in either group during anesthesia but was significantly lower than preanesthetic values 10 min after anesthesia in the 0.5 FiO2 group. Shunt fraction increased in both groups during anesthesia attaining statistical significance at varying times. Shunt fraction was significantly increased in both groups 10 min after anesthesia but was not different between groups. Alveolar dead space ventilation increased after 3 hr of anesthesia in both groups. Conclusions Reducing FiO2 did not change alveolar dead space ventilation or shunt fraction in dorsally recumbent, mechanically ventilated horses during 3 hr of isoflurane anesthesia. Reducing FiO2 in

  19. Lanthanum Distribution and Oxygen Vacancy Concentration in SrBi4-x Lax Ti4O15

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun; Chen Xiaobing

    2004-01-01

    The Raman and X-ray photoemission spectroscopy of lanthanum-doped SrBi4Ti4O15 (SBLT -x, x =0.00, 0. 05, 0. 10, 0. 25, 0.50, 0. 75 and 1.00) ferroelectric ceramics were investigated to explore the La substitution site and the influence of La-doping on the oxygen vacancy concentration. The results suggest that La3+ions behave pronounced site selectivity for the A site in the case of x ≤ 0.10, and they are incorporated into Bi2O2 layers at higher content. The oxygen vacancy concentration declines with La-doping, and the decrease seems saturated as La content is higher than 0.10.

  20. Effect of daily minimum dissolved oxygen concentration on production of channel x blue hybrid catfish

    Science.gov (United States)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to pond dissolved oxygen management strategies. The purpose of this study was to quantify the production and water quality responses of the cha...

  1. Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity

    NARCIS (Netherlands)

    Raso, S.; Genugten, van B.; Vermuë, M.H.; Wijffels, R.H.

    2012-01-01

    In large-scale microalgal production in tubular photobioreactors, the build-up of O2 along the tubes is one of the major bottlenecks to obtain high productivities. Oxygen inhibits the growth, since it competes with carbon dioxide for the Rubisco enzyme involved in the CO2 fixation to generate

  2. Routine Metabolic Rate and Limiting Oxygen Concentration of Freshwater Prawn Macrobrachium rosenbergii Larvae

    Science.gov (United States)

    Malaysian prawns, Macrobrachium rosenbergii, are hatched and raised indoors in small tanks. Prawns may be raised and shipped at high densities which could result in low dissolved oxygen (DO) conditions. Because DO may play an important role in prawn development and survival, we measured routine me...

  3. Lamp enables measurement of oxygen concentration in presence of water vapor

    Science.gov (United States)

    Brisco, F. J.; Moorhead, J. E.; Paige, W. S.

    1967-01-01

    Open-electrode ultraviolet source lamp radiates sufficient energy at 1800 angstroms and 1470 angstroms for use in a double-beam, duel-wavelength oxygen sensor. The lamp is filled with xenon at a pressure of 100 mm of Hg.

  4. Effect of oxygen concentration on fire growth of various types of cable bending in horizontal and vertical orientations

    Science.gov (United States)

    Pangaribuan, Adrianus; Dhiputra, I. M. K.; Nugroho, Yulianto S.

    2017-03-01

    Electrical cable is a whole of the material including metal (cooper) conductor and its insulation, when an electrical cable is flowed by electric current, based on its own capacity, the temperature of cable conductor increases gradually. If the current flows above the cable carrying capacity, then an extreme temperature rises are expected. When temperature increase, the electric current flow inside cable conductor will decrease gradually related to the resistance and could occur repeatedly in a period. Since electrical faults on electrical cable system are often suspected as the cause of fires, thus this research aims to investigate measures of preventing the fire to start by means of controlling oxygen concentration in a cable compartment. The experimental work was conducted in laboratory by using electrical power cable of 1.5 mm2 size. Two transparent chambers were applied for studying the effect of vertical and horizontal orientations on the cable temperature rise, under various oxygen concentration of the gas streams. In the present work, the electrical was maintained at a constant level during a typical test run. Parametric studies reported in the paper include the use of a bare and insulated cables as well as the bending shape of the cable lines of a straight cable, coiled cable and randomly bent cable which were loaded with the same electric load and oxygen concentration in the gas supply.

  5. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring

    DEFF Research Database (Denmark)

    Ingerslev, Hans Jakob; Hindkjær, Johnny Juhl; Kirkegaard, Kirstine

    2012-01-01

    -points are given as hours after fertilisation Results: The timing of the first two cleavage cycles resulting in a 4-cell embryo was not significantly different between the groups. The timing of the third cleavage cycle, i.e. division to 5, 6, 7 and 8 cells was delayed for embryos cultured in 20% oxygen (P5cell =0......Introduction: Data from a number of studies indicate -but not unequivocally- that culture of embryos in 5% O2 compared to 20% O2 improves blastocyst formation in humans and various animal species and may yield better pregnancy rates in IVF. The detrimental effects of atmospheric oxygen were...... recently demonstrated to occur from first cleavage cycle in mice using time-lapse microscopy, with the largest impact on the pre-compaction stages. However, embryonic development in mice differs in many aspects from human embryonic development. The objective of this retrospective, descriptive study...

  6. CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

    Science.gov (United States)

    Poulsen, Christopher J; Tabor, Clay; White, Joseph D

    2015-06-12

    The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time.

  7. The Effects of Differing Oxygen Concentrations on Reaction Time Performance at Altitude

    Science.gov (United States)

    2014-12-04

    needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection...Lumb, A. B. (2007). Just a little oxygen to breathe as you go off to sleep… is it always a good idea? British Journal of Anesthesia , 99 (6), 769-771...R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114 (3), 510-532. Van Diest, I., Stegen, K., Van de Woestijne

  8. [Effects of breathing high concentrations of oxygen on changes in blood indices during bicycle exercise].

    Science.gov (United States)

    Nagata, A; Yoshida, M; Fuke, T; Miyazato, I; Shiba, K

    1990-01-01

    The purpose of this study is to examine effects of hyperoxic gas mixtures on changes of blood indices during bicycle exercise of human. Oxygen-enriched gases (30% O2) were inspired during the ramp load exercise of 25 watt/min. Changes of blood indices were analyzed with Sequential Multiple Analyzer with the computer (SMAC). The improvement of exercise performance were discussed about relationship between function of hyperoxic gas and physiological mechanism. Three experimental conditions were set as follows (I) 30% O2 +N2 gases balance, (II) air (21% O2), and (III) 30% O2 +2% CO2 +N2 gases balance. Arterial blood were sampled from the radial artery of the forearm in order to analyze following items; 1) pH level, PaO2, PaCO2, and HCO3 of these blood gases, 2) Blood sugar, TG, and F-CH of the blood contents, 3) red blood corpuscle, white blood corpuscle, Hb, and Ht values, 4) LDH, CK, GOT, and GPT of the blood enzymes, 5) TP, ALB, Na, K, Ca and Cl of the electric ions. In the case of inspiring hyperoxic gases, the recovery rate of blood indices increased after this ramp load exercise remarkably, and the whole exercise metabolism were removed from acidosis tendency to alkalosis value of the resting condition significantly. At hyperoxic experimental conditions, the blood sugar and oxygen consumption were much more decreased than these at normal oxygen content one during both states of exercise and recovery times. These data of the blood indices would support strongly to the hypothesis that improvement of oxygen delivery should be depended upon the enhanced performance with the hyperoxic gases. There might be effects of the hyperoxia on the cellular metabolism and on function of the vascular muscle during those aerobic exercise.

  9. Effect of reduced light and low oxygen concentration on germination, growth and establishment of some plants

    DEFF Research Database (Denmark)

    Yasin, Muhammad

    Many abiotic factors effect plants germination, growth, and development. This Ph.D. study elucidates the effect of reduced light, low oxygen and seed dormancy on germination and growth of some weed species, field crops and vegetables. One study describes the growth and developmental responses of ...... improved the germination of the problematic invader Alliaria petiolate of North American forests. A method was developed to break seed dormancy of the herb garlic mustard using chemicals....

  10. Technical Note: Particulate reactive oxygen species concentrations and their association with environmental conditions in an urban, subtropical climate

    Directory of Open Access Journals (Sweden)

    S. S. Khurshid

    2014-02-01

    Full Text Available Reactions between hydrocarbons and ozone or hydroxyl radicals lead to the formation of oxidized species, including reactive oxygen species (ROS, and secondary organic aerosol (SOA in the troposphere. ROS can be carried deep into the lungs by small aerodynamic particles where they can cause oxidative stress and cell damage. While environmental studies have focused on ROS in the gas-phase and rainwater, it is also important to determine concentrations of ROS on respirable particles. Samples of PM2.5 collected over 3 h at midday on 40 days during November 2011 and September 2012 show that the particulate ROS concentration in Austin, Texas ranged from a minimum value of 0.02 nmol H2O2 (m3 air−1 in December to 3.81 nmol H2O2 (m3 air−1 in September. Results from correlation tests and linear regression analysis on particulate ROS concentrations and environmental conditions (which included ozone and PM2.5 concentrations, temperature, relative humidity, precipitation and solar radiation indicate that ambient particulate ROS is significantly influenced by the ambient ozone concentration, temperature and incident solar radiation. Particulate ROS concentrations measured in this study were in the range reported by other studies in the US, Taiwan and Singapore. This study is one of the first to assess seasonal variations in particulate ROS concentrations and helps explain the influence of environmental conditions on particulate ROS concentrations.

  11. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration.

    Science.gov (United States)

    Di Bella, Gaetano; Torregrossa, Michele

    2013-08-01

    Simultaneous nitrification and denitrification (SND) together with organic removal in granules is usually carried out without Dissolved Oxygen (DO) concentration control, at "low DO" (with a DOoxygen control with big sized granules. More specifically, the paper presents a experimentation focused on the analysis of two Sequencing Batch Reactors (SBRs), in bench scale, working with different aerobic sludge granules, in terms of granule size, and high DO concentration, (with concentration varying from anoxic conditions, about DO ∼0 mg/L, to values close to those of saturation, >7-8 mg/L, during feast and famine conditions respectively). In particular, different strategies of cultivation and several organic and nitrogen loading rate have been applied, in order to evaluate the efficiencies in SND process without dissolved oxygen control. The results show that, even under conditions of high DO concentration, nitrogen and organic matter can be simultaneously removed, with efficiency >90%. Nevertheless, the biological conditions in the inner layer of the granule may change significantly between small and big granules, during the feast and famine periods. From point of view of granule stability, it is also interesting that with a particle size greater than 1.5mm, after the cultivation start-up, the granules are presented stable for a long period (about 100 days) and, despite the variations of operational conditions, the granules breaking was always negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  13. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Temmink, B.G.; Zwijnenburg, A.; Kemperman, A.J.B.; Rijnaarts, H.

    2014-01-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable

  14. Rocket observation of atomic oxygen and night airglow: Measurement of concentration with an improved resonance fluorescence technique

    Directory of Open Access Journals (Sweden)

    K. Kita

    Full Text Available An improved resonant fluorescence instrument for measuring atomic oxygen concentration was developed to avoid the Doppler effect and the aerodynamic shock effect due to the supersonic motion of a rocket. The shock effect is reduced by adopting a sharp wedge-shaped housing and by scanning of the detector field of view to change the distance between the scattering volume and the surface of the housing. The scanning enables us to determine absolute values of atomic oxygen concentration from relative variation of the scattered light signal due to the self-absorption. The instrument was calibrated in the laboratory, and the numerical simulation reproduced the calibration result. Using the instrument, the altitude profile of atomic oxygen concentration was observed by a rocket experiment at Uchinoura (31°N on 28 January 1992. The data obtained from the rocket experiment were not perfectly free from the shock effect, but errors due to the effect were reduced by the data analysis procedure. The observed maximum concentration was 3.8× 1011 cm–3 at altitudes around 94 km. The systematic error is estimated to be less than ±0.7×1011 cm–3 and the relative random error is less than±0.07× 1011 cm–3at the same altitudes. The altitude profile of the OI 557.7-nm airglow was also observed in the same rocket experiment. The maximum volume emission rate was found to be 150 photons cm–3 s–1 at 94 km. The observed altitude profiles are compared with the MSIS model and other in situ observations.

  15. [Effect of the change in sulphate and dissolved oxygen mass concentration on metal release in old cast iron distribution pipes].

    Science.gov (United States)

    Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng

    2013-09-01

    To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.

  16. Nutrient maximums related to low oxygen concentrations in the southern Canada Basin

    Institute of Scientific and Technical Information of China (English)

    JIN Ming-ming; SHI Jiuxin; LU Yong; CHEN Jianfang; GAO Guoping; WU Jingfeng; ZHANG Haisheng

    2005-01-01

    The phenomenon of nutrient maximums at 70~200 m occurred only in the region of the Canada Basin among the world oceans. The prevailing hypothesis was that the direct injection of the low-temperature high-nutrient brines from the Chukchi Sea shelf (<50 m) in winter provided the nutrient maximums. However, we found that there are five problems in the direct injection process. Formerly Jin et al. considered that the formation of nutrient maximums can be a process of locally long-term regeneration. Here we propose a regeneration-mixture process. Data of temperature, salinity, oxygen and nutrients were collected at three stations in the southern Canada Basin during the summer 1999 cruise. We identified the cores of the surface, near-surface, potential temperature maximum waters and Arctic Bottom Water by the diagrams and vertical profiles of salinity, potential temperature, oxygen and nutrients. The historical 129Ⅰ data indicated that the surface and near-surface waters were Pacific-origin, but the waters below the potential temperature maximum core depth was Atlantic-origin. Along with the correlation of nutrient maximums and very low oxygen contents in the near-surface water, we hypothesize that, the putative organic matter was decomposed to inorganic nutrients; and the Pacific water was mixed with the Atlantic water in the transition zone. The idea of the regeneration-mixture process agrees with the historical observations of no apparent seasonal changes, the smooth nutrient profiles, the lowest saturation of CaCO3 above 400 m, low rate of CFC-11 ventilation and 3H-3He ages of 8~18 a around the nutrient maximum depths.

  17. Theoretical constraints on oxygen and carbon dixoide concentrations in the Precambrian atmosphere

    Science.gov (United States)

    Kasting, James F.

    1987-01-01

    Theoretical arguments which bear on the time histories of atmospheric oxygen and carbon dioxide during the Precambrian are reviewed and extended. It is shown that reasonably tight constraints can be placed on atmospheric pCO2 during the early and late Proterozoic, based on the observation that parts of the earth were glaciated at those times. It is demonstrated that an upper bound on early Proterozoic pO2 can be derived from a simple box model of the atmosphere-ocean system.

  18. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations.

    Science.gov (United States)

    Nagodawithana, T W; Castellano, C; Steinkraus, K H

    1974-09-01

    By using 7 x 10(8) cells of Saccharomyces cerevisiae per ml with which 25 degrees Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 x 10(7) to 7.8 x 10(8) cells per ml. At the lowest level of inoculum, 1.1 x 10(7) cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar.

  19. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth

    Science.gov (United States)

    Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.

    2017-01-01

    Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0  ±  4.2 μM to 30.1  ±  16.1 μM with tumor growth from 150  ±  80 mm3 to 1300  ±  650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8  ±  24.7% to 20.2  ±  4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p  Pearson’s correlation coefficient equals 0.8).

  20. Direct measurement of local oxygen concentration in the bone marrow of live animals

    Science.gov (United States)

    Spencer, Joel A.; Ferraro, Francesca; Roussakis, Emmanuel; Klein, Alyssa; Wu, Juwell; Runnels, Judith M.; Zaher, Walid; Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Yusuf, Rushdia; Côté, Daniel; Vinogradov, Sergei A.; Scadden, David T.; Lin, Charles P.

    2014-04-01

    Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.

  1. Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos

    NARCIS (Netherlands)

    Molenaar, R.; Meijerhof, R.; Anker, van den I.; Heetkamp, M.J.W.; Borne, van den J.J.G.C.; Kemp, B.; Brand, van den H.

    2010-01-01

    Environmental conditions during incubation such as temperature and O2 concentration affect embryo development that may be associated with modifications in nutrient partitioning. Additionally, prenatal conditions can affect postnatal nutrient utilization. Using broiler chicken embryos, we studied the

  2. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.

    Science.gov (United States)

    Chopda, Viki R; Rathore, Anurag S; Gomes, James

    2015-11-01

    Biomass production by baker's yeast in a fed-batch reactor depends on the metabolic regime determined by the concentration of glucose and dissolved oxygen in the reactor. Achieving high biomass concentration in turn is dependent on the dynamic interaction between the glucose and dissolved oxygen concentration. Taking this into account, we present in this paper the implementation of a decoupled input-output linearizing controller (DIOLC) for maximizing biomass in a fed-batch yeast process. The decoupling is based on the inversion of 2×2 input-output matrix resulting from global linearization. The DIOLC was implemented online using a platform created in LabVIEW employing a TCP/IP protocol via the reactor's built-in electronic system. An improvement in biomass yield by 23% was obtained compared to that using a PID controller. The results demonstrate superior capability of the DIOLC and that the cumulative effect of smoother control action contributes to biomass maximization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Optical noninvasive calculation of hemoglobin components concentrations and fractional oxygen saturation using a ring-scattering pulse oximeter

    Science.gov (United States)

    Abdallah, Omar; Stork, Wilhelm; Muller-Glaser, Klaus

    2004-06-01

    The deficiencies of the currently used pulse oximeter are discussed in diverse literature. A hazardous pitfalls of this method is that the pulse oximeter will not detect carboxyhemoglobin (COHb) and methemoglobin (metHb) concentrations. This leads to incorrect measurement of oxygen saturation by carbon monoxide poisoning and methemoglobinemia. Also the total hemoglobin concentration will not be considered and can only be measured in-vitro up to now. A second pitfall of the standard pulse oximetry is that it will not be able to show a result by low perfusion of tissues. This case is available inter alia when the patient is under shock or has a low blood pressure. The new non-invasive system we designed measures the actual (fractional) oxygen saturation and hemoglobin concentration. It will enable us also to measure COHb and metHb. The measurement can be applied at better perfused body central parts. Four or more light emitting diodes (LEDs) or laser diodes (LDs) and five photodiodes (PDs) are used. The reflected light signal detected by photodiodes is processed using a modified Lambert-Beer law (I=I0×e-α.d ). According to this law, when a non scattering probe is irradiated with light having the incident intensity I0, the intensity of transmitted light I decays exponentially with the absorption coefficient a of that probe and its thickness d. Modifications of this law have been performed following the theoretical developed models in literature, Monte Carlo simulation and experimental measurement.

  4. Study on the output current for electrochemical low-energy neutrino detector with regards to oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Shoya; Ishibashi, Kenji; Riyana, Eka Sapta [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Aida, Yani Nur [SyarifHidatatullah State Islamic University, Jakarta (Indonesia); Nakamura, Shohei [Infrastructure System Company, Hitachi, Tokyo (Japan); Imahayashi, Yoichi [Mitsubishi Electric, Tokyo (Japan)

    2016-12-15

    Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

  5. Impact of microbial physiology and microbial community structure on pharmaceutical fate driven by dissolved oxygen concentration in nitrifying bioreactors.

    Science.gov (United States)

    Stadler, Lauren B; Love, Nancy G

    2016-11-01

    Operation at low dissolved oxygen (DO) concentrations (concentration can impact pharmaceutical biotransformation rates during wastewater treatment both directly and indirectly: directly by acting as a limiting substrate that slows the activity of the microorganisms involved in biotransformation; and indirectly by shaping the microbial community and selecting for a community that performs pharmaceutical biotransformation faster (or slower). In this study, nitrifying bioreactors were operated at low (∼0.3 mg/L) and high (>4 mg/L) DO concentrations to understand how DO growth conditions impacted microbial community structure. Short-term batch experiments using the biomass from the parent reactors were performed under low and high DO conditions to understand how DO concentration impacts microbial physiology. Although the low DO parent biomass had a lower specific activity with respect to ammonia oxidation than the high DO parent reactor biomass, it had faster biotransformation rates of ibuprofen, sulfamethoxazole, 17α-ethinylestradiol, acetaminophen, and atenolol in high DO batch conditions. This was likely because the low DO reactor had a 2x higher biomass concentration, was enriched for ammonia oxidizers (4x higher concentration), and harbored a more diverse microbial community (3x more unique taxa) as compared to the high DO parent reactor. Overall, the results show that there can be indirect benefits from low DO operation over high DO operation that support pharmaceutical biotransformation during wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Graded tunnelling barrier and oxygen concentration in thermally grown ultrathin SiO{sub x} gate oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gitlin, Daniel [Device Physics Laboratory, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400 (United States); Karp, James [Device Physics Laboratory, Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400 (United States); Moyzhes, Boris [Geballe Laboratory for Advanced Materials, McCullough Building, Stanford University, CA 94305-4045 (United States)

    2007-04-07

    Barrier parameters of a thermally grown SiO{sub x} gate oxide are derived by relating the SIMS oxygen concentration profile to the barrier height. Even in the simple analytical form such a graded barrier model agrees with the tunnelling current and its voltage dependence in both directions. Asymmetrical tunnelling I-Vs in the symmetrical n{sup +}Si-SiO{sub x}-n{sup +}Si structure are due to both graded barrier and penetration of carriers into the gate oxide at the SiO{sub x}-Si substrate interface.

  7. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    Science.gov (United States)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  8. Effects of Changes in Colored Light on Brain and Calf Muscle Blood Concentration and Oxygenation

    Directory of Open Access Journals (Sweden)

    J. Weinzirl

    2011-01-01

    Full Text Available Color light therapy is a therapeutic method in complementary medicine. In color therapy, light of two contrasting colors is often applied in a sequential order. The aim of this study was to investigate possible physiological effects, i.e., changes in the blood volume and oxygenation in the brain and calf muscle of healthy subjects who were exposed to red and blue light in sequential order. The hypothesis was that if a subject is first exposed to blue and then red light, the effect of the red light will be enhanced due to the contrastingly different characteristics of the two colors. The same was expected for blue light, if first exposing a subject to red and then to blue light. Twelve healthy volunteers (six male, six female were measured twice on two different days by near-infrared spectroscopy during exposure to colored light. Two sequences of colored light were applied in a controlled, randomized, crossover design: first blue, then red, and vice versa. For the brain and muscle, the results showed no significant differences in blood volume and oxygenation between the two sequences, and a high interindividual physiological variability. Thus, the hypothesis had to be rejected. Comparing these data to results from a previous study, where subjects were exposed to blue and red light without sequential color changes, shows that the results of the current study appear to be similar to those of red light exposure. This may indicate that the exposure to red light was preponderant and thus effects of blue light were outweighed.

  9. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions.

    Science.gov (United States)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-08-30

    Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°С and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  10. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed

    Science.gov (United States)

    Maes, J.; Stevens, M.; Breine, J.

    2007-10-01

    The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.

  11. Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophila.

    Science.gov (United States)

    Wang, Yong-Hong; Fang, Xiang-Ling; Li, Yu-Ping; Zhang, Xing

    2010-10-01

    To evaluate the effects of dissolved oxygen (DO) control strategy on cell growth and the production of antibiotic (cyclo(2-Me-BABA-Gly)) by Xenorhabdus nematophila. The effects of different agitation speeds and DO concentrations on cell growth and antibiotic activity of X. nematophila YL001 were examined. Experiments showed that higher agitation speeds and DO concentrations at earlier fermentation stage were favorable for cell growth and antibiotic production. At mid- and later-stage, properly decreasing DO concentration can strengthen cell growth and antibiotic production. Based on the kinetic information about the effects of agitation speeds and DO concentrations on the fermentation, the two-stage DO control strategy in which DO concentration was controlled to 70% in the first 18 h, and then switched to 50% after 18 h, was established to improve the biomass and antibiotic activity. By applying this DO-shift strategy in X. nematophila YL001 fermentation, maximal antibiotic activity and biomass reached 252.0+/-6.10 U/mL and 30.04+/-2.50 g/L, respectively, thus was 18.99% and 15.36% more than in the cultures at constantly 50% DO. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2014-05-01

    Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.

  14. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  15. Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres.

    Science.gov (United States)

    Kwon, Eilhann E; Castaldi, Marco J

    2012-12-04

    The thermal degradation of tires under various oxygen concentrations (7-30%/Bal. N(2)) was investigated thermo-gravimetrically at 10 °C min(-1) heating rate over a temperature range from ambient to 1000 °C. Significant mass loss (~55%) was observed at the temperature of 300-500 °C, where the thermal degradation rate was almost identical and independent of oxygen concentrations due to simultaneous volatilization and oxidation. A series of gas chromatography/mass spectroscopy (GC/MS) measurements taken from the effluent of a thermo-gravimetric analysis (TGA) unit at temperature of 300-5000 °C leads to the overall thermal degradation mechanisms of waste tires and some insights for understanding evolution steps of air pollutants including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs). In order to describe the fundamental mechanistic behavior on tire combustion, the main constituents of tires, styrene butadiene rubber (SBR) and polyisoprene (IR), has been investigated in the same experimental conditions. The thermal degradation of SBR and IR suggests the reaction mechanisms including bond scissions followed by hydrogenation, gas phase addition reaction, and/or partial oxidation.

  16. [The effects of the microwaves on E. coli cells depend on oxygen concentration and static magnetic field].

    Science.gov (United States)

    Ushakov, V L; Alipov, E D; Shcheglov, V S; Beliaev, I Ia

    2006-01-01

    The effects of non-thermal microwaves (MW), 10(-4) and 10(-10) W/cm(2), on conformation of nucleoids in E. coli cells were analyzed by the method of anomalous viscosity time dependence (AVTD). MW exposure was performed at different values of static magnetic field and concentration of oxygen, 8-90 microT, and 2.3-7.8 mg/l, respectively. It was shown, that slight changes in both static magnetic field and oxygen concentration result in significant changes of MW effects up to their disappearance. It was established, that changes in static magnetic field affected significantly the time kinetics of the MW effects. The obtained data provide further evidence for strong dependence of the effects of non-thermal microwaves on physical parameters of exposure and physiological factors. These dependences should be taken into account in replication studies. The obtained results encourage further investigation of possible modulation of non-thermal MW effects by additional electromagnetic fields.

  17. Volatile Release and Ignition Behaviors of Single Coal Particles at Different Oxygen Concentrations Under Microgravity

    Science.gov (United States)

    Liu, Bing; Zhang, Zhezi; Zhang, Hai; Zhang, Dongke

    2016-05-01

    An experimental study on ignition and combustion of single coal particles under different O 2 concentrations was conducted at both normal (1-g) and microgravity ( μ-g) in the first time. The surface and centre temperatures of the bituminous coal particle with initial diameter of ˜ 2.0mm were measured by the monochromatic imaging technique using a short wavelength infrared (SWIR) camera and an embedded fine thermocouple respectively. Results revealed that at μ-g, ignition of the tested coal particles was homogeneous. O 2 concentration significantly affects the shape, ignition temperature and ignition delay time of the volatile flames. A mathematical model considering thermal conduction inside the coal particle was developed to describe the ignition process of single particle, adopting the volatile matter flammability limit as the homogeneous ignition criterion. The predicted ignition temperatures were slightly lower but closer to μ-g data. And the predicted variation trends of ignition temperature and delay time under different O 2 concentrations agreed well with the μ-g experimental results.

  18. HRE-Type Genes are Regulated by Growth-Related Changes in Internal Oxygen Concentrations During the Normal Development of Potato (Solanum tuberosum) Tubers

    National Research Council Canada - National Science Library

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-01-01

    ... in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow...

  19. Increased apparatus dead space and tidal volume increase blood concentrations of oxygen and sevoflurane in overweight patients: a randomised controlled clinical study.

    OpenAIRE

    Enekvist, Bruno; Bodelsson, Mikael; Johansson, Anders

    2011-01-01

    General anaesthesia impairs respiratory function in overweight patients. We wanted to determine whether increased tidal volume (VT), with unchanged end-tidal carbon dioxide partial pressure (PETCO2), affects blood concentrations of oxygen and sevoflurane in overweight patients.

  20. Effect of Hyperbaric Oxygen Therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    Directory of Open Access Journals (Sweden)

    Hilsted Linda

    2010-06-01

    Full Text Available Abstract Background Hydrogen cyanide (HCN and carbon monoxide (CO may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN intoxication results in cytotoxic hypoxia leading to organ dysfunction and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood. Objective The purpose of the present study was to determine whole blood CN concentrations in fire victims before and after HBO treatment. Materials and methods The patients included were those admitted to the hospital because of CO intoxication, either as fire victims with smoke inhalation injuries or from other exposures to CO. In thirty-seven of these patients we measured CN concentrations in blood samples, using a Conway/microdiffusion technique, before and after HBO. The blood samples consisted of the remaining 2 mL from the arterial blood gas analysis. CN concentration in blood from fire victims was compared to 12 patients from non-fire accidents but otherwise also exposed to CO intoxication. Results The mean WB-CN concentration before patients received HBO did not differ significantly between the two groups of patients (p = 0.42. The difference between WB-CN before and after HBO did not differ significantly between the two groups of patients (p = 0.7. Lactate in plasma before and after did not differ significantly between the two groups of patients. Twelve of the 25 fire patients and one of the non-fire patients had been given a dose of hydroxycobalamin before HBO. Discussion and Conclusion CN

  1. The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration

    Science.gov (United States)

    Payne, Rebecca C.; Britt, Amber V.; Chen, Howard; Kasting, James F.; Catling, David C.

    2016-09-01

    Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the middle Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2. Here we use a 1-D radiative-convective climate model (with no cloud feedback) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10%-35% by volume). Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.

  2. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations

    Science.gov (United States)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2017-04-01

    Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two branched fatty acids that shared a similar production pattern as brGDGTs among the experimental treatments and may be associated with brGDGT biosynthesis.

  3. Bacterial reduction of ferric iron and co-respiration of O2 and Fe3+ at various oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2005-11-01

    Full Text Available Acidiphilium SJH, was cultivated in laboratory bioreactor under aerobic, micro-aerobic and anaerobic conditions. The bacterium oxidized organic substratum D-galactose to carbon dioxide using oxygen and ferric iron as terminal electron acceptor. The reduction of ferric iron to ferrous iron was observed in either fully aerobic or anoxic conditions. Bacterial growth measured as turbidity and the substrate oxidation measured as CO2 production showed an exponential pattern. The maximum specific growth rate μ = 0,12 h-1 (generation time of 5.8 h was observed under aerobic conditions. The molar ratio of CO2 produced to O2 consumed CO2/O2 of approx. 1.16 in fully aerobic conditions indicate bacterial preference of oxygen as electron acceptor though weak reduction of ferric iron by the bacterial culture was apparent. Under conditions with the oxygen limitation, the molar CO2/O2 ratio increased to above 4 with a marked prevalence of Fe3+ as the electron acceptor. The co-respiration of both oxygen and ferric iron regardless of the concentration of soluble oxygen suggests a constitutive synthesis of the “iron-reductase” enzyme system in this bacterium. On the other hand, the bacterial growth was inhibited in cultures sparged with a pure nitrogen gas. The organic substrate oxidation and ferric iron reduction by apparently non-growing bacteria was linear and extremely slow for a few days. The recovery and acceleration of bacterial growth and ferric iron reduction was observed after changing the inconvenient incubation in pure N2 atmosphere into incubation allowing the CO2 accumulation within the medium in a closed reactor. Reduction of ferric iron to ferrous iron in micro-aerobic conditions proceeded most rapidly and completely. The change in the Fe3+/Fe2+ ratio caused decrease of the oxidation-reduction potential of the medium (Eh from approx. 800 mV to approx.350 mV with respect to the Nernst’s equation.

  4. Assessment of the menstrual cycle upon total hemoglobin, water concentration, and oxygen saturation in the female breast

    Science.gov (United States)

    Jiang, Shudong; Pogue, Brian W.; Srinivasan, Subhadra; Soho, Sandra; Poplack, Steven P.; Tosteson, Tor D.; Paulsen, Keith D.

    2003-07-01

    Near-infrared imaging can be used in humans to characterize changes in breast tumor tissue by imaging total hemoglobin and water concentrations as well as oxygen saturation. In order to improve our understanding of these changes, we need to carefully quantify the range of variation possible in normal tissues for these parameters. In this study, the effect of the subject"s menstrual cycle was examined by imaging their breast at the follicular (7-14 days of the cycle) and secretory phases (21-28 days of the cycle), using our NIR tomographic system. In this system, a three layer patient interface is used to measure 3 planes along the breast from chest wall towards the nipple at 1cm increments. Seven volunteers in their 40s were observed for 2 menstrual cycles and all of these volunteers recently had normal mammograms (ACR 1) with heterogeneously dense breast composition. The results show that average total hemoglobin in the breast increased in many subjects between 0 to 15% from the follicular phase to secretory phase. Oxygen saturation and water concentration changes between these 2 parts of the cycle were between -6.5% to 12% for saturation and between -33% to 28% for water concentration. While the data averaged between subjects showed no significant change existed between phases, it was clear that individual subjects did exhibit changes in composition which were consistent from cycle to cycle. Understanding what leads to this heterogeneity between subjects will be an important factor in utilizing these measurements in clinical practice.

  5. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry.

    Science.gov (United States)

    Kim, Hyo Won; McCloskey, Bryan D; Choi, Tae Hwan; Lee, Changho; Kim, Min-Joung; Freeman, Benny D; Park, Ho Bum

    2013-01-23

    Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O(2) concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier's principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.

  6. A hyperoxic lung injury model in premature rabbits: the influence of different gestational ages and oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Roberta Munhoz Manzano

    Full Text Available BACKGROUND: Many animal models have been developed to study bronchopulmonary dysplasia (BPD. The preterm rabbit is a low-cost, easy-to-handle model, but it has a high mortality rate in response to the high oxygen concentrations used to induce lung injury. The aim of this study was to compare the mortality rates of two models of hyperoxia-induced lung injury in preterm rabbits. METHODS: Pregnant New Zealand white rabbits were subjected to caesarean section on gestational day 28 or 29 (full term  = 31 days. The premature rabbits in the 28-day gestation group were exposed to room air or FiO₂ ≥95%, and the rabbits in the 29-day gestation group were exposed to room air or FiO₂  = 80% for 11 days. The mean linear intercept (Lm, internal surface area (ISA, number of alveoli, septal thickness and proportion of elastic and collagen fibers were quantified. RESULTS: The survival rates in the 29-day groups were improved compared with the 28-day groups. Hyperoxia impaired the normal development of the lung, as demonstrated by an increase in the Lm, the septal thickness and the proportion of elastic fibers. Hyperoxia also decreased the ISA, the number of alveoli and the proportion of collagen fibers in the 28-day oxygen-exposed group compared with the control 28-day group. A reduced number of alveoli was found in the 29-day oxygen exposed animals compared with the control 29-day group. CONCLUSIONS: The 29-day preterm rabbits had a reduced mortality rate compared with the 28-day preterm rabbits and maintained a reduction in the alveoli number, which is comparable to BPD in humans.

  7. Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic-inorganic hybrid materials.

    Science.gov (United States)

    Okada, Hiroshi; Tanaka, Kazuo; Chujo, Yoshiki

    2014-06-15

    Platinum(II) octaethylporphyrin (PtOEP)-loaded organic-inorganic hybrids were obtained via the microwave-assisted sol-gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Gutthann, Franziska; Egert, Melanie; Marques, Alexandra; Appel, Jens

    2007-02-01

    In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.

  9. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-08-01

    In this study, a comparison between generalized regression neural network (GRNN) and multiple linear regression (MLR) models is given on the effectiveness of modelling dissolved oxygen (DO) concentration in a river. The two models are developed using hourly experimental data collected from the United States Geological Survey (USGS Station No: 421209121463000 [top]) station at the Klamath River at Railroad Bridge at Lake Ewauna. The input variables used for the two models are water, pH, temperature, electrical conductivity, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), the mean absolute error (MAE), Willmott's index of agreement (d), and correlation coefficient (CC) statistics. Of the two approaches employed, the best fit was obtained using the GRNN model with the four input variables used.

  10. Laboratory installation for the study of atomic-oxygen and ozone detectors and certain methodological aspects concerning the determination of oxygen-atom concentration by the methods of NO and NO2 titration

    Science.gov (United States)

    Bromberg, D. V.; Perov, S. P.

    A laboratory installation is described which can be used to study various characteristics of atomic oxygen and ozone in the pressure range from 0.01 to 50 Pa. The installation can be used to calibrate rocketborne sensors intended for measurements in the middle atmosphere. Systematic and random errors connected with the determination of oxygen-atom concentration by the NO2 and NO titration methods are examined.

  11. The Effect of Inspired Oxygen Concentration and Transportation Time on Arterial Hemoglobin Oxygen Saturation During Transport from the Operating Room to the Postanesthesia Care UnitCare Unit

    Science.gov (United States)

    1996-08-14

    oxygen to all ambulatory patients recovering from general anesthesia. The second study involved 71 healthy pediatric patients undergoing general...Male/Female 7. ASA Status (I, II, III) _ 8. Anesthetic Agent Enflurane Halothane Desflurane Isoflurane Nitrous oxide Propofol 9. Narcotic

  12. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.

  13. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment.

    Science.gov (United States)

    Bellou, Stamatia; Makri, Anna; Triantaphyllidou, Irene-Eva; Papanikolaou, Seraphim; Aggelis, George

    2014-04-01

    Yarrowia lipolytica, an ascomycete with biotechnological potential, is able to form either yeast cells or hyphae and pseudohyphae in response to environmental conditions. This study shows that the morphology of Y. lipolytica, cultivated in batch cultures on hydrophilic (glucose and glycerol) and hydrophobic (olive oil) media, was not affected by the nature of the carbon source, nor by the nature or the concentration of the nitrogen source. By contrast, dissolved oxygen concentration (DOC) should be considered as the major factor affecting yeast morphology. Specifically, when growth occurred at low or zero DOC the mycelial and/or pseudomycelial forms predominated over the yeast form independently of the carbon and nitrogen sources used. Experimental data obtained from a continuous culture of Y. lipolytica on glycerol, being used as carbon and energy source, demonstrated that the mycelium-to-yeast form transition occurs when DOC increases from 0.1 to 1.5 mg l(-1). DOC also affected the yeast physiology, as the activity of enzymes implicated in lipid biosynthesis (i.e. ATP-citrate lyase, malic enzyme) was upregulated at high DOC whereas the activity of enzymes implicated in glycerol assimilation (such as glycerol dehydrogenase and kinase) remained fundamentally unaffected in the cell-free extract.

  14. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  15. Chemistry and Mechanism of Interaction Between Molybdenite Concentrate and Sodium Chloride When Heated in the Presence of Oxygen

    Science.gov (United States)

    Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.

    2017-04-01

    Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.

  16. Effects of Dissolved Oxygen Tension and Ammonium Concentration on Polyhydroxybutyrate Synthesis from Cassava Starch by Bacillus cereus IFO 13690

    Directory of Open Access Journals (Sweden)

    Margono .

    2015-11-01

    Full Text Available generated by an Adobe application 11.5606 Attempting to get low price of raw material for producing polyhydroxybutyrate is always studied. Tapioca starch is one of the raw material with low price. The objective of this research was to study the effects of initial ammonium concentration and dissolved oxygen tension (doT on producing PHB by Bacillus cereus IFO 13690 with tapioca starch as the carbon source. This fermentation was carried out in 5 L fementors with a 2 L working volume, temperature of 30 oC, and agitation of 500 rpm. The pH medium was controlled at 5.6 after it came down from the initial pH of 6.8. Meanwhile, the initial doT was 100 % air saturation and also came down to and maintained at doT of experiment, i.e. 1 , 5 , or 10 % air saturation. The best result was obtained when the initial ammonium concentration was 5 g/L and the doT value maintained at 5 % air saturation. By this conditions, the cell growth reached 5,457 g cell dry weight/L containing PHB of 2.42 % cell dry weigh after 29 hours fermentation. Normal 0 36 false false false

  17. Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2

    Science.gov (United States)

    Semkow, K. W.; Haskin, L. A.

    1985-01-01

    The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.

  18. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    Science.gov (United States)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of

  19. Oxygen concentration profiles and the consumption rates at the sediment-water interface off Hachinohe, Northeastern Japan.

    Science.gov (United States)

    Oguri, K.; Toyofuku, T.; Fontanier, C.; Schiebel, R.; de Noojer, L. J.; Koho, K.; Reichart, G. J.; Kitazato, H.

    2012-04-01

    The intermediate waters off Hachinohe (northeastern Japan) signify one of the lowest oxygen (O2) concentrations in the open ocean around Japanese islands today, indicating below 40μM O2 between 800 to 1200m water depths due to high seasonal primary productivity at the sea surface. To investigate biogeochemical microenvironments, especially to unravel the relationships and interactions between distributions of benthic organisms and the O2 distributions where the low O2 water intersect the sea floor, we conducted a multidisciplinary cruise (KT11-20) by R/V Tansei-maru, JAMSTEC from 21 to 25/Aug/2011. During the cruise, we selected twelve sampling sites offshore from 50 to 2000m in water depth. Dissolved O2 concentrations 10m above the sea floor at 200, 500, 1000, 1250, and 2000m absolute water depths were 253, 112, 36.4, 33.1 and 70μM, respectively. From 500, 1000, and 2000m sites, undisturbed sediment cores were collected using with a multiple core sampler. O2 microprofiles in these cores were measured after on board incubations of >7 hours, using an incubator set to the temperatures and O2 concentrations observed at the sampling sites. O2 penetration depths at the respective sites at 500, 1000, and 2000m were 1.5-2.8, 3.9-6.8 and 5.0mm respectively, which implies O2 consumption rates (using the model by Berg et al. 1998) of 2.7-4.2, 0.6-0.7 and 1.4-1.6 mmol/m2/d, respectively. Our results indicate that in O2 depleted area off Hachinohe, minimum remineralization of organic materials by molecular O2 diffusion is very low in the area impacted by O2 depletion (1000m) nevertheless the O2 penetration depths at the site show deeper values than those from 500m depth.

  20. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    Science.gov (United States)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode

  1. Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures

    Science.gov (United States)

    Granier, A.; Chéreau, D.; Henda, K.; Safari, R.; Leprince, P.

    1994-01-01

    The validity of actinometry to monitor oxygen atom concentration in O2-N2 microwave discharges created by surface wave is investigated. The plasma is created with a gas flow in a quartz tube of inner diameter 16 mm at pressures in the Torr range. First, it is shown that the reliability of actinometry can be deduced from the longitudinal profile of the actinometry signal. Second, absolute concentrations of oxygen atoms are estimated from the experimental actinometry signal and agree satisfactorily with concentrations simultaneously measured by vacuum ultraviolet (VUV) absorption downstream from the plasma. Moreover, upon varying the nitrogen percentage (0%-100%), it is evidenced that the actinometry signal is proportional to the concentration measured by VUV absorption. Furthermore, it is evidenced that the oxygen dissociation rate is only 2% in pure oxygen plasmas, while it reaches 15% (433 MHz) or 30% (2450 MHz) for mixtures containing more than 20% of nitrogen. This drastic increase in [O] upon the addition of N2 is extensively discussed and, finally, attributed to a decrease in the recombination frequency of oxygen atoms on the quartz wall, in the presence of nitrogen.

  2. Notes on the exposure of several species of fish to sudden changes in the hydrogen-ion concentration of the water and to an atmosphere of pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.

    1931-01-01

    Several species of fish have been subjected to higher concentrations of dissolved oxygen when an atmosphere of pure oxygen was maintained over the surface of the water and also with a super-stratum of pure oxygen under pressure. Several species of fish have been subjected to sudden transfers from low O/sub 2/ to high O/sub 2/ and the reverse. (5.6 p.p.M. to 40.33 p.p.M. and from 41.0 to 7.3 p.p.M.) The results show (a) that different sizes of several species of fish tolerate large and sudden changes in the concentration of O/sub 2/ in either direction, (b) that these fish can live in water containing a large excess of dissolved oxygen with a super-stratum of pure oxygen over the surface (c) that several species of fish can stand pressure of 10 to 13 lbs. for a period of 24 hours and pressures from 15 to 19 lbs for shorter periods. The increase in dissolved oxygen is followed by a slowing down of the respiratory movements. No instances of exophthalmus, opaqueness of the lens, and of the accumulation of gas bubbles were observed. No fish were observed to lose their equilibrium except in the pressure experiment where depression occurred too rapidly. That exposure to a high concentration of dissolved oxygen with a super-stratum of pure oxygen at atmospheric pressures and under small pressure is not harmful is inferred from the small number of fish lost and from the length of time they survived the experiment. The data presented here suggest that they may by applicable to the problem of handling fish in transportation.

  3. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Huang, Ying; Heinrich, Christin; Scholz, Jens; Steinfath, Markus; Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de

    2012-04-15

    In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10 {mu}M SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen. -- Highlights: Black-Right-Pointing-Pointer Effects of salicylic acid on colon carcinoma cells grown under normoxic and hypoxic conditions Black-Right-Pointing-Pointer Salicylic acid increases caspase-3/7 activity and hydrogen peroxide release under normoxia Black-Right-Pointing-Pointer Salicylic acid decreases pro-survival erk-1/2 phosphorylation under normoxia Black-Right-Pointing-Pointer Salicylic acid does

  4. A new method combining soil oxygen concentration measurements with the quantification of gross nitrogen turnover rates and associated formation of N2O and N2 emissions

    Science.gov (United States)

    Gütlein, Adrian; Dannenmann, Michael; Sörgel, Christoph; Meier, Rudi; Meyer, Astrid; Kiese, Ralf

    2014-05-01

    Climate change and the expansion of land use have led to significant changes in terrestrial ecosystems. These include changes in the biogeochemical cycle of nitrogen and therewith implications for biodiversity, water cycle and pedosphere-atmosphere exchange. To understand these impacts detailed research on nitrogen turnover and fluxes are conducted at various (semi-) natural and managed ecosystems in the Mt. Kilimanjaro region. In this context, we execute 15N tracing analyses on soil samples in our stable isotope laboratory including a new experimental setup. The soils were sampled from different forest ecosystems of Mt. Kilimanjaro varying in altitude (1600 - 4500 m) and will be analyzed for gross rates of ammonification and nitrification, gross rates of microbial inorganic N uptake as well as for the gaseous losses of ^15N2 and ^15N2O using ^15NH4+ and ^15NO3- tracing and pool dilution approaches. Since nitrogen turnover of nitrification and denitrification is dependent on soil oxygen concentrations we developed an incubation method which allows to adjust soil samples to different oxygen concentrations. For this purpose, soil is incubated in glass bottles with side tubes to ensure a constant gas flow over the whole incubation time. To adjust the oxygen levels in the laboratory experiment as close as possible to the natural conditions, we started to monitor soil oxygen concentrations with a FirestingO2 Sensor (Pyroscience) connected to a timer and a datalogger (MSR 145 IP 60 E3333) at a Mt. Kilimanjaro rainforest site. The equipment is complemented with soil temperature, moisture and pressure sensors (MSR 145 IP 60). A solar panel connected to an energy source guarantees a working time for over 2 years by a measuring frequency of 20 seconds each 30 minutes. The new laboratory incubation method together with in-situ oxygen concentration measurements in soils will facilitate laboratory incubations with realistic oxygen concentrations and thus will allow for a better

  5. Effects of Dissolved Oxygen Concentration and Iron Addition on Immediate-early Gene Expression of Magnetospirillum gryphiswaldense MSR-1

    DEFF Research Database (Denmark)

    Zhuang, Shiwen; Anyaogu, Diana Chinyere; Kasama, Takeshi

    2017-01-01

    iron addition for all the genes studied, except for MgFnr (oxygen sensor gene) and fur (ferric uptake regulator family gene), and which in some cases was oxygen-dependent. In particular, expression of sodB1 (superoxide dismutase gene) and feoB1 (ferrous transport protein B1 gene) were markedly reduced...... in cultures at 0.5% O2 compared to those at higher oxygen tensions. Moreover, expression of katG (catalase-peroxidase gene) and feoB2 (ferrous transport protein B2 gene) was reduced markedly by iron addition, regardless of oxygen conditions. The data provides a greater understanding of molecular response...

  6. concentration

    Directory of Open Access Journals (Sweden)

    Seth F. Oppenheimer

    1999-01-01

    Full Text Available We consider a model for biochemical oxygen demand (BOD in a semi-infinite river where the BOD is prescribed by a time varying function at the left endpoint. That is, we study the problem with a time varying boundary loading. We obtain the well-posedness for the model when the boundary loading is smooth in time. We also obtain various qualitative results such as ordering, positivity, and boundedness. Of greatest interest, we show that a periodic loading function admits a unique asymptotically attracting periodic solution. For non-smooth loading functions, we obtain weak solutions. Finally, for certain special cases, we show how to obtain explicit solutions in the form of infinite series.

  7. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Science.gov (United States)

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2017-01-01

    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  8. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2017-07-01

    In this paper, several extreme learning machine (ELM) models, including standard extreme learning machine with sigmoid activation function (S-ELM), extreme learning machine with radial basis activation function (R-ELM), online sequential extreme learning machine (OS-ELM), and optimally pruned extreme learning machine (OP-ELM), are newly applied for predicting dissolved oxygen concentration with and without water quality variables as predictors. Firstly, using data from eight United States Geological Survey (USGS) stations located in different rivers basins, USA, the S-ELM, R-ELM, OS-ELM, and OP-ELM were compared against the measured dissolved oxygen (DO) using four water quality variables, water temperature, specific conductance, turbidity, and pH, as predictors. For each station, we used data measured at an hourly time step for a period of 4 years. The dataset was divided into a training set (70%) and a validation set (30%). We selected several combinations of the water quality variables as inputs for each ELM model and six different scenarios were compared. Secondly, an attempt was made to predict DO concentration without water quality variables. To achieve this goal, we used the year numbers, 2008, 2009, etc., month numbers from (1) to (12), day numbers from (1) to (31) and hour numbers from (00:00) to (24:00) as predictors. Thirdly, the best ELM models were trained using validation dataset and tested with the training dataset. The performances of the four ELM models were evaluated using four statistical indices: the coefficient of correlation (R), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE). Results obtained from the eight stations indicated that: (i) the best results were obtained by the S-ELM, R-ELM, OS-ELM, and OP-ELM models having four water quality variables as predictors; (ii) out of eight stations, the OP-ELM performed better than the other three ELM models at seven stations while the R

  9. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  10. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.

    Science.gov (United States)

    Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J

    2011-12-15

    Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30°C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25°C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25°C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under

  11. Optimal concentration and time window for proliferation and differentiation of neural stem cells from embryonic cerebral cortex:5% oxygen preconditioning for 72 hours

    Institute of Scientific and Technical Information of China (English)

    Li-li Yuan; Ying-jun Guan; Deng-dian Ma; Hong-mei Du

    2015-01-01

    Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygenin vitro. MTT assay, neurosphere number, and immunolfuorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell prolif-eration and neuronal differentiation. Our ifndings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.

  12. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO) for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure...

  13. Response of export production and dissolved oxygen concentrations in oxygen minimum zones to pCO2 and temperature stabilization scenarios in the biogeochemical model HAMOCC 2.0

    Science.gov (United States)

    Beaty, Teresa; Heinze, Christoph; Hughlett, Taylor; Winguth, Arne M. E.

    2017-02-01

    Dissolved oxygen (DO) concentration in the ocean is an important component of marine biogeochemical cycles and will be greatly altered as climate change persists. In this study a global oceanic carbon cycle model (HAMOCC 2.0) is used to address how mechanisms of oxygen minimum zone (OMZ) expansion respond to changes in CO2 radiative forcing. Atmospheric pCO2 is increased at a rate of 1 % annually and the model is stabilized at 2 ×, 4 ×, 6 ×, and 8 × preindustrial pCO2 levels. With an increase in CO2 radiative forcing, the OMZ in the Pacific Ocean is controlled largely by changes in particulate organic carbon (POC) export, resulting in increased remineralization and thus expanding the OMZs within the tropical Pacific Ocean. A potential decline in primary producers in the future as a result of environmental stress due to ocean warming and acidification could lead to a substantial reduction in POC export production, vertical POC flux, and thus increased DO concentration particularly in the Pacific Ocean at a depth of 600-800 m. In contrast, the vertical expansion of the OMZs within the Atlantic is linked to increases POC flux as well as changes in oxygen solubility with increasing seawater temperature. Changes in total organic carbon and increase sea surface temperature (SST) also lead to the formation of a new OMZ in the western subtropical Pacific Ocean. The development of the new OMZ results in dissolved oxygen concentration of ≤ 50 µmol kg-1 throughout the equatorial Pacific Ocean at 4 times preindustrial pCO2. Total ocean volume with dissolved oxygen concentrations of ≤ 50 µmol kg-1 increases by 2.4, 5.0, and 10.5 % for the 2 ×, 4 ×, and 8 × CO2 simulations, respectively.

  14. HRE-type genes are regulated by growth-related changes in internal oxygen concentrations during the normal development of potato (Solanum tuberosum) tubers.

    Science.gov (United States)

    Licausi, Francesco; Giorgi, Federico Manuel; Schmälzlin, Elmar; Usadel, Björn; Perata, Pierdomenico; van Dongen, Joost Thomas; Geigenberger, Peter

    2011-11-01

    The occurrence of hypoxic conditions in plants not only represents a stress condition but is also associated with the normal development and growth of many organs, leading to adaptive changes in metabolism and growth to prevent internal anoxia. Internal oxygen concentrations decrease inside growing potato tubers, due to their active metabolism and increased resistance to gas diffusion as tubers grow. In the present work, we identified three hypoxia-responsive ERF (StHRE) genes whose expression is regulated by the gradual decrease in oxygen tensions that occur when potato tubers grow larger. Increasing the external oxygen concentration counteracted the modification of StHRE expression during tuber growth, supporting the idea that the actual oxygen levels inside the organs, rather than development itself, are responsible for the regulation of StHRE genes. We identified several sugar metabolism-related genes co-regulated with StHRE genes during tuber development and possibly involved in starch accumulation. All together, our data suggest a possible role for low oxygen in the regulation of sugar metabolism in the potato tuber, similar to what happens in storage tissues during seed development.

  15. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6.

    Science.gov (United States)

    Yang, Xinping; Wang, Shimei; Zhou, Lixiang

    2012-01-01

    Pseudomonas stutzeri D6, selectively isolated from activated sludge was used to study NO(2)(-) and NH(4)(+) production from denitrification processes. Changes in carbon type, C/N ratio and oxygen concentration significantly influenced the magnitude of NO(2)(-) and NH(4)(+) accumulation through denitrification. D6 showed a preference for citrate and acetate, which led to the largest quantity of nitrate reduced and which were exhausted most rapidly, with minimal intermediate products accumulation. It is found that at higher initial organic carbon concentration or for directly metabolic carbon type more complete denitrification could be obtained as a result of increase of the oxygen consumption rate by substrate stimulation. The higher the oxygen concentration in the culture was, the higher the intermediate products concentration became. The experiment showed that NO(2)(-) and NH(4)(+) production was only slightly influenced by nitrate concentration. Biological nitrogen removal systems should be optimized to promote complete denitrification to minimize NO(2)(-) and NH(4)(+) accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Antioxidant effect of hyaluronan on polymorphonuclear leukocyte-derived reactive oxygen species is dependent on its molecular weight and concentration and mainly involves the extracellular space

    Directory of Open Access Journals (Sweden)

    Rafał Krasiński

    2009-05-01

    Full Text Available Introduction: Hyaluronan (HA, a component of the extracellular matrix, may regulate immune cell functions through its interactions with cellular receptors. Besides its effect on cytokine and chemokine production, its antioxidant properties have been described. However, the mechanisms of this are not fully elucidated. The aim of this study was to evaluate the relationship between HA concentration and molecular weight and its antioxidant properties towards human neutrophils. Also assessed was whether the antioxidant effect of HA is connected with a reduction in intracellular oxygen potential, which could indicate its direct effect on neutrophil respiratory burst.Materials/Methods: The relationship between HA’s antioxidant properties and its concentration and molecular weight was assessed by the luminol-enhanced chemiluminescence method (CL. To evaluate the effect of HA on intracellular oxygen potential selectively, the dihydrorhodamine 123 (DHR123 flow cytometric method was used.Results: Reduction of both HA molecular weight and its concentration decreased its antioxidant properties in the CL method. A selective effect of HA on intracellular oxygen potential measured by the DHR123 method was not shown.Conclusions: The antioxidant properties of HA are related to both its molecular weight and its concentration. The lack of an antioxidant effect of HA in the DHR123 test compared with a significant reduction in CL values at the same HA concentration suggests that HA acts mainly as a chemical ROI scavenger in the extracellular space.

  17. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO(2-x)/Cu toward Enhanced Activity for Preferential CO Oxidation.

    Science.gov (United States)

    Chen, Shaoqing; Li, Liping; Hu, Wanbiao; Huang, Xinsong; Li, Qi; Xu, Yangsen; Zuo, Ying; Li, Guangshe

    2015-10-21

    Catalysts are urgently needed to remove the residual CO in hydrogen feeds through selective oxidation for large-scale applications of hydrogen proton exchange membrane fuel cells. We herein propose a new methodology that anchors high concentration oxygen vacancies at interface by designing a CeO2-x/Cu hybrid catalyst with enhanced preferential CO oxidation activity. This hybrid catalyst, with more than 6.1% oxygen vacancies fixed at the favorable interfacial sites, displays nearly 100% CO conversion efficiency in H2-rich streams over a broad temperature window from 120 to 210 °C, strikingly 5-fold wider than that of conventional CeO2/Cu (i.e., CeO2 supported on Cu) catalyst. Moreover, the catalyst exhibits a highest cycling stability ever reported, showing no deterioration after five cycling tests, and a super long-time stability beyond 100 h in the simulated operation environment that involves CO2 and H2O. On the basis of an arsenal of characterization techniques, we clearly show that the anchored oxygen vacancies are generated as a consequence of electron donation from metal copper atoms to CeO2 acceptor and the subsequent reverse spillover of oxygen induced by electron transfer in well controlled nanoheterojunction. The anchored oxygen vacancies play a bridging role in electron capture or transfer and drive molecule oxygen into active oxygen species to interact with the CO molecules adsorbed at interfaces, thus leading to an excellent preferential CO oxidation performance. This study opens a window to design a vast number of high-performance metal-oxide hybrid catalysts via the concept of anchoring oxygen vacancies at interfaces.

  18. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  19. Effects of bottom water oxygen concentrations on mercury distribution and speciation in sediments below the oxygen minimum zone of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Mason, R.P.; Jayachandran, S.; Vudamala, K.; Armoury, K.; Sarkar, Arindam; Chakraborty, S.; Bardhan, P.; Naik, R.

    in controlling the distribution and speciation of Hg in the sediments. This study suggests that increased concentrations of inert Corg (with C/N > 11) increased Hg-Corg complexation and decreased the net methylation rate of Hg...

  20. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Directory of Open Access Journals (Sweden)

    Aura Silva

    2014-01-01

    Full Text Available Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES or lactated Ringer’s (LR on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N=6 or LR (GRL; N=6. Bleeding caused a decrease of more than 50% in mean arterial pressure (P<0.01 and a decrease in cerebral oximetry (P=0.039, bispectral index, and electroencephalogram total power (P=0.04 and P<0.01, resp., while propofol plasma concentrations increased (P<0.01. Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P=0.03 and the cerebral oxygenation (P=0.008 decreased in the GLR and were significantly lower than in GHES (P=0.02. Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations.

  1. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Science.gov (United States)

    Venâncio, Carlos; Souza, Almir P.; Ferreira, Luísa Maria; Branco, Paula Sério; de Pinho, Paula Guedes; Amorim, Pedro; Ferreira, David A.

    2014-01-01

    Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES) or lactated Ringer's (LR) on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N = 6) or LR (GRL; N = 6). Bleeding caused a decrease of more than 50% in mean arterial pressure (P < 0.01) and a decrease in cerebral oximetry (P = 0.039), bispectral index, and electroencephalogram total power (P = 0.04 and P < 0.01, resp.), while propofol plasma concentrations increased (P < 0.01). Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P = 0.03) and the cerebral oxygenation (P = 0.008) decreased in the GLR and were significantly lower than in GHES (P = 0.02). Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations. PMID:24971192

  2. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas.

    Science.gov (United States)

    Nghiem, Long D; Manassa, Patrick; Dawson, Marcia; Fitzgerald, Shona K

    2014-12-01

    This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed.

  3. Modelling the mitigation of hydrogen deflagrations in a nuclear waste silo ullage by depleting the oxygen concentration with nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Holborn, P.G., E-mail: holborpg@lsbu.ac.uk; Battersby, P.; Ingram, J.M.; Averill, A.F.; Nolan, P.F.

    2013-10-15

    Highlights: • Examine the effect of reduced O{sub 2} on H{sub 2} burning velocity. • Model the effect of reduced oxygen level on overpressure for a transient H{sub 2} release. • Low O{sub 2} levels significantly reduce H{sub 2} burning velocity and explosion overpressure. -- Abstract: It is expected that significant transient releases of hydrogen could occur during the decommissioning of a nuclear waste storage plant that would result in a transient flammable atmosphere. Interest has been expressed in the use of nitrogen dilution in a vented silo ullage space in order to reduce the oxygen level and thereby mitigate the overpressure rise should a hydrogen–air deflagration occur. In the work presented here the data characterising the influence of oxygen depletion via nitrogen dilution upon the burning velocity of hydrogen–air mixtures have been obtained using the COSILAB code (and also compared with experimental test data). These data have then been used with the FLACS-HYDROGEN CFD-tool to try to predict the potential explosion overpressure reduction that might be achieved using oxygen depletion (via nitrogen dilution), for a transient hydrogen bubble sudden gaseous release (SGR) scenario occurring in a silo ullage type geometry. The simulation results suggest that using nitrogen dilution to deplete the oxygen levels to 12.5% or 9.9% would produce only a relatively modest reduction in the predicted peak overpressure. However, with an oxygen depletion level of 7%, the rate of pressure rise is more substantially slowed and the predicted maximum pressure rise is significantly reduced.

  4. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro.

    Science.gov (United States)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-08-08

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  5. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika, E-mail: lingappa@bcm.edu

    2014-08-08

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.

  6. Research and Design of Monitoring Alarm System for Mine Oxygen Concentration%矿井低氧监测报警系统的研究与设计

    Institute of Scientific and Technical Information of China (English)

    钟文峰

    2013-01-01

    In order to prevent the mine suffocation incidents from happening again, the design of monitoring alarm system for mine oxygen concentration based on microcontroller automotive anti-suffocation. With PIC16 microcontroller as the main control center, the system is capable of real-time monitoring of the concentration of oxygen in mine, and with Zigbee wireless sensor networks technology the monitoring datas to be sent to PIC16 for treatment and to be dynamic displaied on the LED digital tube connected PIC16. When the oxygen concentration is too low, the system automatically starts the alarm device. Through the contrast experiment with oxygen concentration detector, this system can accurately monitoring the oxygen concentration inside the mine, and be able to realize the alarm function. If the mine is to be installed the system, to avoid potential safety problems due to the lack of oxygen in mine.%为了防止矿井窒息事故的发生,设计了一种基于单片机的矿井低氧监测报警系统。该系统以PIC16单片机为主控中心,系统能够实时监测矿井内氧气浓度,并将监测到的数据通过Zigbee无线传感网技术传送到PIC16进行处理,再由连接在PIC16上的LED数码管动态显示氧气浓度。当氧气含量过低时,系统自动启动报警。通过与氧气浓度探测仪对比实验,该系统能够较准确地监测出矿井内氧气浓度,能够实现报警功能。矿井内安装此系统,可随时测量井下氧气浓度,避免矿工因氧气不足带来的安全隐患。

  7. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    Science.gov (United States)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  8. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    OpenAIRE

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had...

  9. Impact of minimum daily dissolved oxygen concentration on production performance of hybrid female channel catfish x male blue catfish

    Science.gov (United States)

    Hybrid Catfish (female Channel Catfish Ictalurus punctatus X male Blue Catfish I. furcatus) were reared during two years as single-batch crops under two different dissolved oxygen (DO) regimes each year; a high-DO (control) treatment in which the minimum daily DO was maintained above 3.8 ppm during ...

  10. Production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Science.gov (United States)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...

  11. Dissolved oxygen

    National Research Council Canada - National Science Library

    1981-01-01

    Dissolved oxygen concentrations in the waters of Botany Bay and Georges and Cooks Rivers vary mainly as a result of tidal water movements, algal and macrophytic growth and decay, and effects of storms...

  12. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    Science.gov (United States)

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS.

  13. Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes.

    Science.gov (United States)

    George, S M; Richardson, L C; Pol, I E; Peck, M W

    1998-05-01

    The measured heat resistance of cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes was up to eightfold greater when they were grown, heated and recovered anaerobically rather than aerobically. Measured heat resistance was highest when anaerobic gas mixtures were used (time at 59 degrees C for a 6-decimal (6-D) reduction of E. coli O157:H7, 19-24 min); moderate when low concentrations of oxygen (0.5-1%) were included (time for a 6-D reduction, 5-17 min); and lowest when higher concentrations of oxygen (2-40%) were used (time for a 6-D reduction, 3 min). This effect was principally attributed to the recovery conditions, and a greater effect was noted at lower heating temperatures. The use of reduced oxygen concentration (gas mixture or a vacuum, might therefore increase the risk of these pathogens surviving heat treatments applied to food. It is also possible that foods that are packed in air but with a low redox potential might allow the survival of heated cells, and thus the anticipated level of safety might not be achieved.

  14. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor

    Institute of Scientific and Technical Information of China (English)

    Yiming Su; Yalei Zhang; Xuefei Zhou; Ming Jiang

    2013-01-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor.During the operating period,it was observed that low nitrate concentrations affected sludge volume index significantly.Unlike the existing hypothesis,the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions.When nitrate concentration was below 4 mg/L,low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments.When filamentous bacteria riched in nitrate reached the anoxic zone,where they were exposed to high levels of carbon but limited nitrate,they underwent denitrification.However,when nonfilamentous bacteria were exposed to similar conditions,denitrification was restrained due to their intrinsic nitrate limitation.Hence,in order to avoid filamentous bulking,the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L,or alternatively,the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO-3-N/g SS.

  15. Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods

    Science.gov (United States)

    Tan, Chun Hui; Tan, Sin Tee; Lee, Hock Beng; Yap, Chi Chin; Yahaya, Muhammad

    2016-11-01

    Band gap energy and surface defect on the nanostructure play an important role especially in determining the performance and properties of the optical based gas sensor. In this report, ZnO nanorods (ZNRs) with various growth concentrations were successfully synthesized using a facile wet chemical approach. The gas sensing performance of the ZNRs samples with different concentrations were tested toward the highly hazardous carbon monoxide (CO) gas at a concentration of 10 ppm operated at room temperature. It was found that the 40 mM ZNRs sample exhibited the highest response coupled with the shortest response time (123.3 ± 1.3 s) and recovery time (7.7 ± 0.3 s). The high response and accelerated sensing reaction were attributed to the band gap narrowing of the 40 mM ZNRs induced by the increase in oxygen vacancy related defect states, and it is directly proportional to the CO gas sensing activity. These defects acted as the oxygen trap sites which will promote the oxygen adsorption on the surface of ZNRs and enhanced its gas sensing capability. The ZNRs reported herein which exhibits a high sensitivity, fast and reversible response with rapid recovery have great potential to be used in toxic gas sensing applications at room temperature.

  16. Mixed Convection Blowoff Limits as a Function of Oxygen Concentration and Upward Forced Stretch Rate for Burning Pmma Rods of Various Sizes

    Science.gov (United States)

    Marcum, Jeremy W.; Ferkul, Paul V.; Olson, Sandra L.

    2017-01-01

    Normal gravity flame blowoff limits in an axisymmetric pmma rod geometry in upward axial stagnation flow are compared with microgravity Burning and Suppression of Solids II (BASS-II) results recently obtained aboard the International Space Station. This testing utilized the same BASS-II concurrent rod geometry, but with the addition of normal gravity buoyant flow. Cast polymethylmethacrylate (pmma) rods of diameters ranging from 0.635 cm to 3.81 cm were burned at oxygen concentrations ranging from 14 to 18 by volume. The forced flow velocity where blowoff occurred was determined for each rod size and oxygen concentration. These blowoff limits compare favorably with the BASS-II results when the buoyant stretch is included and the flow is corrected by considering the blockage factor of the fuel. From these results, the normal gravity blowoff boundary for this axisymmetric rod geometry is determined to be linear, with oxygen concentration directly proportional to flow speed. We describe a new normal gravity upward flame spread test method which extrapolates the linear blowoff boundary to the zero stretch limit to resolve microgravity flammability limits, something current methods cannot do. This new test method can improve spacecraft fire safety for future exploration missions by providing a tractable way to obtain good estimates of material flammability in low gravity.

  17. Gas exchange and the coagulation system of the blood during the effect on the body of high concentrations of oxygen and carbon dioxide

    Science.gov (United States)

    Palosh, L.; Agadzhanyan, N. A.; Davydov, G. A.; Rybakov, B. K.; Sergiyenko, A. S.

    1974-01-01

    Maximum permissible concentrations of oxygen and carbon dioxide in a controlled atmosphere were determined by evaluating their effects on human gas exchange, blood coagulation, and tolerances to acute hypoxia, acceleration, and physical loads. It was found that functional disturbances depend on the concentration of respiratory gases and the length of stay in an altered atmosphere. By changing the atmospheric composition and by bringing the gaseous environment into accordance with the work and rest regimen and energy expenditures, the general reactivity of the body changes favorably.

  18. Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique

    Science.gov (United States)

    Seeger, Thomas; Jonuscheit, Joachim; Schenk, Martin; Leipertz, Alfred

    2003-12-01

    Using combined 'smeared' vibrational coherent anti-Stokes Raman spectroscopy (VCARS) and dual-broadband rotational CARS (DBB-RCARS) simultaneous measurements of temperature and relative concentrations of O 2/N 2 and CH 4/N 2 have been conducted in a fuel-rich ( φ=10), laminar, partially premixed CH 4/air-flame. The equivalence ratio was calculated from the relative concentration data determined. Using a dye laser which has been tuned to the Q-branch transitions of methane both VCARS and DBB-CARS signals were generated and detected simultaneously by a conventional DBB-RCARS-setup and a planar BOXCARS phase-matching scheme. In contrast to previous approaches, an important advantage of this technique is that no modification of the experimental setup is necessary which would increase the complexity of the system. Due to its molecular symmetry, methane can only be observed by VCARS. The DBB-RCARS approach was used to probe nitrogen and oxygen. In this way the measured signal is separated into two parts. The relative intensity of the 'smeared' VCARS signal determines the relative concentration of methane and the residual DBB-RCARS signal is evaluated by a conventional contour fit to obtain the temperature and the relative concentration of oxygen. Radial temperature and concentration profiles are measured at different downstream positions in the flame. A comparison of the obtained temperatures with previous results from spontaneous Raman scattering and filtered Rayleigh scattering indicates good agreement.

  19. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2016-10-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  20. A portable analog lock-in amplifier for accurate phase measurement and application in high-precision optical oxygen concentration detection

    Science.gov (United States)

    Chen, Xi; Chang, Jun; Wang, Fupeng; Wang, Zongliang; Wei, Wei; Liu, Yuanyuan; Qin, Zengguang

    2017-03-01

    A portable analog lock-in amplifier capable of accurate phase detection is proposed in this paper. The proposed lock-in amplifier, which uses the dual-channel orthometric signals as the references to build the xy coordinate system, can detect the relative phase between the input and x-axis based on trigonometric function. The sensitivity of the phase measurement reaches 0.014 degree, and a detection precision of 0.1 degree is achieved. At the same time, the performance of the lock-in amplifier is verified in the high precision optical oxygen concentration detection. Experimental results reveal that the portable analog lock-in amplifier is accurate for phase detection applications. In the oxygen sensing experiments, 0.058% oxygen concentration resulted in 0.1 degree phase shift detected by the lock-in amplifier precisely. In addition, the lock-in amplifier is small and economical compared with the commercial lock-in equipments, so it can be easily integrated in many portable devices for industrial applications.

  1. The effects of oxygen concentration, stress, temperature, and cold work on the constant-load stress-rupture behavior of INCOLOY alloy 908

    Energy Technology Data Exchange (ETDEWEB)

    Morra, M.M.; Steeves, M.M.; Ballinger, R.G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1997-06-01

    Constant load stress rupture tests were performed on INCOLOY{reg_sign} alloy 908*. The test matrix varied O{sub 2} concentration, applied load, temperature, and percent cold work. The mechanism for high temperature intergranular fracture in alloy 908 is stress assisted intergranular oxidation cracking. A direct correlation between percent intergranular fracture and O{sub 2} concentration exists. This result is comparable to the oxidation assisted, intergranular fracture behavior of alloy 718. The depth of intergranular oxidation is controlled by both the O{sub 2} concentration and the Cr concentration in the alloy. A transition from intergranular to external oxidation in alloy 908 occurs when the concentration of O{sub 2} is below 0.1 ppm. An oxygen concentration threshold based on zero percent intergranular fracture is a better indicator of the potential for intergranular fracture during heat treatment than one based on time to rupture. An O{sub 2} concentration below 0.1 ppm is recommended for heat treatment of alloy 908 in the presence of residual or applied tensile stresses.

  2. Inhaled nitric oxide and high concentrations of oxygen in pediatrics patients with congenital cardiopathy and pulmonary hypertension: report of five cases

    Directory of Open Access Journals (Sweden)

    Werther Brunow de Carvalho

    Full Text Available Five patients with ages ranging from 6 months to 3 years were analyzed. All received inhaled nitric oxide (NO - 20 parts per million (ppm and oxygen (0(2 - at a concentration of 90-95% by means of an oxygen hood. Mean Pulmonary Artery Pressure (MPAP, Mean Aortic Pressure (MAoP, Pulmonary Vascular Resistance (PVR and Systemic Vascular Resistance (SVR were measured and the calculation of their relationship to pulmonary/systemic flow (Qp/Qs was performed by the catheterization' of the femoral artery vein. Three patients presented reduction in PVR and increase in Qp/Qs. There were no systemic alterations or any side effect from using NO.

  3. Activity of type i methanotrophs dominates under high methane concentration: Methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun Feng; Reinsch, Sabine; Ambus, Per

    2017-01-01

    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorg......Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy...... in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH4 oxidation. Given the structural heterogeneity of crusts, CH4 oxidation activity likely varies spatially as constrained by the combined effects of CH4, O2, and inorganic N availability...

  4. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration

    DEFF Research Database (Denmark)

    Hansen, M.C.; Palmer, R.J.; Udsen, C.

    2001-01-01

    Use of green fluorescent protein (GFP) as a molecular reporter is restricted by several environmental factors, such as its requirement for oxygen in the development of the fluorophore, and its poor fluorescence at low pH. There are conflicting data on these limitations, however, and systematic...... biofilm of this organism. Production of lactic acid and the subsequent acidification in batch cultures of S. gordonii DL1 led to a decrease in fluorescence intensity. However, severe pH reduction was prevented when the bacterium was grown as a biofilm in a flowcell, and a homogeneous distribution...

  5. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    Science.gov (United States)

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical

  6. Effect of Dissolved Oxygen, Temperature, Initial Cell Count, and Sugar Concentration on the Viability of Saccharomyces cerevisiae in Rapid Fermentations1

    Science.gov (United States)

    Nagodawithana, Tilak W.; Castellano, Carmine; Steinkraus, Keith H.

    1974-01-01

    By using 7 × 108 cells of Saccharomyces cerevisiae per ml with which 25° Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 × 107 to 7.8 × 108 cells per ml. At the lowest level of inoculum, 1.1 × 107 cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar. PMID:4607742

  7. Temperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite

    Science.gov (United States)

    Gehler, Alexander; Gingerich, Philip D.; Pack, Andreas

    2016-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by terrestrial and marine proxies. The CIE was the result of a massive release of carbon into the atmosphere. However, the carbon source and quantities of CO2 and CH4 greenhouse gases that contributed to global warming are poorly constrained and highly debated. Here we combine an established oxygen isotope paleothermometer with a newly developed triple oxygen isotope paleo-CO2 barometer. We attempt to quantify the source of greenhouse gases released during the Paleocene-Eocene transition by analyzing bioapatite of terrestrial mammals. Our results are consistent with previous estimates of PETM temperature change and suggest that not only CO2 but also massive release of seabed methane was the driver for CIE and PETM.

  8. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies

    CSIR Research Space (South Africa)

    Motaung, DE

    2015-01-01

    Full Text Available O ) and zinc vacancies(VZn) are the main defects and that their relative concentration decreases within creasing particlesizes, resulting in decreased ferromagnet- ism (FM). Moreover, the sensing performance decreased with an increase in nanostructures...

  9. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    KAUST Repository

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  10. Water Temperature, Specific Conductance, pH, and Dissolved-Oxygen Concentrations in the Lower White River and the Puyallup River Estuary, Washington, August-October 2002

    Science.gov (United States)

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1oC (degrees Celsius) at river mile 4.9 and 19.6oC at river mile 1.8 exceeded the water-quality standard of 18oC at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River. Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  11. Water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the lower White River and the Puyallup River estuary, Washington, August-October 2002

    Science.gov (United States)

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  12. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    DEFF Research Database (Denmark)

    Holtappels, Moritz; Glud, Ronnie N.; Doris, Daphne

    2013-01-01

    -print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations...

  13. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones

    DEFF Research Database (Denmark)

    Larsen, Morten; Lehner, Philipp; Borisov, Sergey M.

    2016-01-01

    Conventional sensors for the quantification of O2 availability in aquatic environments typically have limits of detection (LOD) of  > 1 μmol L−1 and do not have sufficient resolution to reliably measure concentrations in strongly O2 depleted environments. We present a novel trace optical sensor b...

  14. Oxygenic Photosynthesis As A Protection Mechanism For Cyanobacteria Against Iron-Encrustation In Environments With High Fe2+ Concentrations

    Directory of Open Access Journals (Sweden)

    Danny eIonescu

    2014-09-01

    Full Text Available If O2 is available at circumneutral pH, Fe2+ is rapidly oxidized to Fe3+, which precipitates as FeO(OH. Neutrophilic iron oxidizing bacteria have evolved mechanisms to prevent self-encrustation in iron. Hitherto, no mechanism has been proposed for cyanobacteria from Fe2+ rich environments; these produce O2 but are seldom found encrusted in iron. We used two sets of illuminated reactors connected to two groundwater aquifers with different Fe2+ concentrations (0.9 µM vs. 26 µM in the Äspö Hard Rock Laboratory, Sweden. Cyanobacterial biofilms developed in all reactors and were phylogenetically different between the reactors. Unexpectedly, cyanobacteria growing in the Fe2+-poor reactors were encrusted in iron, whereas those in the Fe2+-rich reactors were not. In-situ microsensor measurements showed that O2 concentrations and pH near the surface of the cyanobacterial biofilms from the Fe2+-rich reactors were much higher than in the overlying water. This was not the case for the biofilms growing at low Fe2+ concentrations. Measurements with enrichement cultures showed that cyanobacteria from the Fe2+-rich environment increased their photosynthesis with increasing Fe2+ concentrations, whereas those from the low Fe2+ environment were inhibited at Fe2+ > 5 µM. Modeling based on in-situ O2 and pH profiles showed that cyanobacteria from the Fe2+-rich reactor were not exposed to significant Fe2+ concentrations. We propose that, due to limited mass transfer, high photosynthetic activity in Fe2+-rich environments forms a protective zone where Fe2+ precipitates abiotically at a non-lethal distance from the cyanobacteria. This mechanism sheds new light on the possible role of cyanobacteria in precipitation of banded iron formations.

  15. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    Science.gov (United States)

    Mcclure, Donald J.

    1988-01-01

    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  16. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH3-N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DO<0.5mg/L led to the highest dehydrogenase activity. According to the different purposes, the optimal treatment time was different. The most pigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  18. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry.

    Science.gov (United States)

    Ehlenfeldt, M K; Prior, R L

    2001-05-01

    Antioxidant capacity, as measured by oxygen radical absorbance capacity (ORAC), and total phenolic and total anthocyanin contents were evaluated in fruit tissues of 87 highbush blueberry (Vacciniumcorymbosum L.) and species-introgressed highbush blueberry cultivars. ORAC and phenolic levels were evaluated in leaf tissues of the same materials. Average values for ORAC, phenolics, and anthocyanins in fruit were 15.9 ORAC units, 1.79 mg/g (gallic acid equivalents), and 0.95 mg/g (cyanidin-3-glucoside equivalents), respectively. Cv. Rubel had the highest ORAC per gram of fresh weight values, at 31.1 units, and cv. Elliott had the highest values on the basis of ORAC per square centimeter of surface area. In leaf tissue, values for both ORAC and phenolics were significantly higher than in fruit tissue, with mean values of 490 ORAC units and 44.80 mg/g (gallic acid equivalents), respectively. Leaf ORAC had a low, but significant, correlation with fruit phenolics and anthocyanins, but not with fruit ORAC. An analysis of ORAC values versus calculated midparent values in 11 plants from the 87-cultivar group in which all parents were tested suggested that, across cultivars, ORAC inheritance is additive. An investigation of ORAC values in a family of 44 cv. Rubel x Duke seedlings showed negative epistasis for ORAC values, suggesting Rubel may have gene combinations contributing to ORAC that are broken up during hybridization.

  19. Comparison of cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine spontaneously breathing 50% or maximal oxygen concentrations.

    Science.gov (United States)

    Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip

    2015-04-01

    This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.

  20. Thermospheric atomic oxygen concentrations from WINDII O+(2P→2D) 732 nm emission: Comparisons with the NRLMSISE-00 and C-IAM models and with GUVI observations

    Science.gov (United States)

    Shepherd, Gordon G.; Cho, Young-Min; Fomichev, Victor I.; Martynenko, Oleg V.

    2016-09-01

    Thermospheric atomic oxygen concentrations have been retrieved from observations by the Wind Imaging Interferometer (WINDII) O+(2P→2D) 732 and 733 nm emissions and are compared with results obtained by the Global Ultraviolet Imager (GUVI). Although the observations compared were taken ten years apart, the periods were selected on the basis of solar activity, using the Canadian Ionosphere and Atmosphere Model (C-IAM) to bridge the time gap. Results from all of these were compared with those from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter (NRLMSISE-00) model. Comparisons were made on the basis of F10.7 solar flux, day of year, local time, season, latitude and longitude. The WINDII local time variations showed enhanced values for the Northern spring season. Latitude and longitude plots showed smooth variations for NRLMSISE-00 and large variations for both WINDII and GUVI observations; in particular a depression in atomic oxygen concentration around 40 °S latitude and 100 °E longitude that is tentatively identified with a longitudinal wave 1 that does not propagate in local time but has an annual variation. The averaged values showed the WINDII values to be 0.75 that of NRLMSISE-00 compared with 0.80 for GUVI. Thus the WINDII values agreed with those of GUVI to within 6%, although taken 10 years apart.

  1. Determination of negative oxygen ions concentration in Lanshan County%蓝山县空气负氧离子浓度测定

    Institute of Scientific and Technical Information of China (English)

    扶巧梅; 李沅山; 何斌; 舒巍; 刘彩红

    2015-01-01

    选择蓝山县有代表性的地段作为取样点,采用 DLY —3F 型森林大气测量仪测定样点的空气负离子浓度。测定结果表明,蓝山空气质量超 CI 评价标准,水域周边空气负离子含量最高,整体空气清洁,利于休闲和生态旅游开发。%Selected the representative area of Lanshan County as sample points,,and determined negative oxygen ions concentration of sample point used by the DLY — 3F forest atmosphere measuring instrument.The results show that air quality of Lanshan County was exceed the standard of CI,and the negative oxygen ions concentration of water area was the highest.The air of Lanshan county was cleanness,and it could benefit leisure and eco-tourism development.

  2. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda;

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood....

  3. 不同供氧流量对新生儿头罩吸氧的吸入氧浓度和动脉血二氧化碳分压的影响%Oxygen concentration analyzer combines with blood gas analysis to lead the choice of oxygen flow with oxygen hood for the newborn

    Institute of Scientific and Technical Information of China (English)

    宋才好; 何燕

    2012-01-01

    目的 检测新生儿头罩吸氧时不同供氧流量下患儿血液中二氧化碳分压(PaCO2)与吸入氧浓度(FIO2)的变化关系,分析得出新生儿安全头罩用氧的规律.方法 调节氧气流量,测定在不同流量下新生儿头罩内FIO2.结果 氧气流量在3 L/min以下时,3组FIO2均小于35%,中小号头罩组有CO2潴留;氧流量在3~5 L/min时,中小号头罩组FIO2为35%左右,大号头罩组FIO2接近30%,小号头罩组有CO2潴留;氧流量在5~7 L/min时,中小头罩组FIO2为40%~50%,大号头罩组FIO2接近40%,3组均无CO2潴留;氧流量大于7 L/min时,3组FIO2均在50%以上,无CO2潴留.结论 纯氧下,选择流量在3~5 L/min,选择大中号头罩吸氧相对安全.对于没有空氧混合仪及氧浓度检测设备的基层医院进行氧气治疗有一定指导作用.%Objective By monitoring the relationship of change between pressure of carbon dioxide ( Paco2 ) and inspired oxygen concentration ( Fio2 ) when the newborn oxygen hood with different flow of oxygen, to analyze and obtain laws of newborn s safe oxygen hood. Methods The oxygen flow rate was adjusted, Fio, and Paco, in the hood under different oxygen flow were measured. Results When oxygen flow was under 3L/MIN, Fio2 of the all three groups was less than 35% , and medium and small hood groups had CO2 retention; when oxygen flow was between 3 -5L/MIN, the Fio2 of medium and small hood groups was around 35% and Fio2 of large hood group was close to 30% , and small group hood had CO2 retention; when oxygen flow was between 5 - 7L/MIN, the Fio, of medium and small hood groups was 40 -50% while the large hood group was close to 40% , and three groups had no CO2 retention; when oxygen flow was greater than 7L/MIN, the Fio2 of three groups was above 50% , without CO2 retention. Conclusion When pure oxygen is used, the oxygen flow is between 3 - 5L/ MIN, selection of the large and medium oxygen hood is relatively safe. It plays a guiding role for primary

  4. Oxygen measurements to improve singlet oxygen dosimetry

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) involves interactions between the three main components of light fluence, photosensitizer concentration, and oxygenation. Currently, singlet oxygen explicit dosimetry (SOED) has focused on the first two of these components. The macroscopic model to calculate reacted singlet oxygen has previously involved a fixed initial ground state oxygen concentration. A phosphorescence-based oxygen probe was used to measure ground state oxygen concentration throughout treatments for mice bearing radioactively induced fibroscarcoma tumors. Photofrin-, BPD-, and HPPH-mediated PDT was performed on mice. Model-calculated oxygen and measured oxygen was compared to evaluate the macroscopic model as well as the photochemical parameters involved. Oxygen measurements at various depths were compared to calculated values. Furthermore, we explored the use of noninvasive diffuse correlation spectroscopy (DCS) to measure tumor blood flow changes in response to PDT to improve the model calculation of reacted singlet oxygen. Mice were monitored after treatment to see the effect of oxygenation on long-term recurrence-free survival as well as the efficacy of using reacted singlet oxygen as a predictive measure of outcome. Measurement of oxygenation during treatment helps to improve SOED as well as confirm the photochemical parameters involved in the macroscopic model. Use of DCS in predicting oxygenation changes was also investigated.

  5. Effects of transient bottom water currents and oxygen concentrations on benthic exchange rates as assessed by eddy correlation measurements

    Science.gov (United States)

    Holtappels, Moritz; Glud, Ronnie N.; Donis, Daphne; Liu, Bo; Hume, Andrew; WenzhöFer, Frank; Kuypers, Marcel M. M.

    2013-03-01

    correlation (EC) measurements in the benthic boundary layer (BBL) allow estimating benthic O2 uptake from a point distant to the sediment surface. This noninvasive approach has clear advantages as it does not disturb natural hydrodynamic conditions, integrates the flux over a large foot-print area and allows many repetitive flux measurements. A drawback is, however, that the measured flux in the bottom water is not necessarily equal to the flux across the sediment-water interface. A fundamental assumption of the EC technique is that mean current velocities and mean O2 concentrations in the bottom water are in steady state, which is seldom the case in highly dynamic environments like coastal waters. Therefore, it is of great importance to estimate the error introduced by nonsteady state conditions. We investigated two cases of transient conditions. First, the case of transient O2 concentrations was examined using the theory of shear flow dispersion. A theoretical relationship between the change of O2 concentrations and the induced vertical O2 flux is introduced and applied to field measurements showing that changes of 5-10 μM O2 h-1 result in transient EC-fluxes of 6-12 mmol O2 m-2 d-1, which is comparable to the O2 uptake of shelf sediments. Second, the case of transient velocities was examined with a 2D k-ɛ turbulence model demonstrating that the vertical flux can be biased by 30-100% for several hours during changing current velocities from 2 to 10 cm s-1. Results are compared to field measurements and possible ways to analyze and correct EC-flux estimates are discussed.

  6. Humidity and Inspired Oxygen Concentration During High-Flow Nasal Cannula Therapy in Neonatal and Infant Lung Models.

    Science.gov (United States)

    Chikata, Yusuke; Ohnishi, Saki; Nishimura, Masaji

    2017-05-01

    High-flow nasal cannula therapy (HFNC) for neonate/infants can deliver up to 10 L/min of heated and humidified gas, and FIO2 can be adjusted to between 0.21 and 1.0. With adults, humidification and actual FIO2 are known to vary according to inspiratory and HFNC gas flow, tidal volume (VT), and ambient temperature. There have been few studies focused on humidification and FIO2 in HFNC settings for neonates/infants, so we performed a bench study to investigate the influence of gas flow, ambient temperature, and respiratory parameters on humidification and actual FIO2 in a neonate/infant simulation. HFNC gas flow was set at 3, 5, and 7 L/min, and FIO2 was set at 0.3, 0.5, and 0.7. Spontaneous breathing was simulated using a 2-bellows-in-a-box model of a neonate lung. Tests were conducted with VT settings of 20, 30, and 40 mL and breathing frequencies of 20 and 30 breaths/min. Inspiratory time was 0.8 s with decelerating flow waveform. The HFNC tube was placed in an incubator, which was either set at 37°C or turned off. Absolute humidity (AH) and actual FIO2 were measured for 1 min using a hygrometer and an oxygen analyzer, and data for the final 3 breaths were extracted. At all settings, when the incubator was turned on, AH was greater than when it was turned off (P incubator was turned off, as gas flow increased, AH increased (P < .001); however, VT did not affect AH (P = .16). As gas flow increased, actual FIO2 more closely corresponded to set FIO2 . When gas flow was 3 L/min, measured FIO2 decreased proportionally more at each FIO2 setting increment (P < .001). AH was affected by ambient temperature and HFNC gas flow. Actual FIO2 depended on VT when gas flow was 3 L/min. Copyright © 2017 by Daedalus Enterprises.

  7. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co{sup 2+} doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, B. [Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Choudhury, A., E-mail: ajc@tezu.ernet.i [Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Maidul Islam, A.K.M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Alagarsamy, P. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2011-03-15

    Co doped TiO{sub 2} nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co{sub 3}O{sub 4}, which is the oxidation result of metallic Co or cobalt clusters present on the host TiO{sub 2}. - Research highlights: > Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. > On air annealing the sample loses ferromagnetism giving rise to paramagnetism. > Saturation magnetization decreases at higher doping concentration. > Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  8. Atmospheric Oxygen Concentrations for the Past 350 Myr Modeled from the δ13C of C3 Land Plants

    Science.gov (United States)

    Nordt, L.; Breecker, D.

    2016-12-01

    Numerous studies have focused on the systematic collection of long-term d13C records from marine sediments, but no such isotopic compilation exists for C3 land plants. Consequently, we gathered a meta-data base of 8003 plant-derived δ13C values (ISOORG) from various carbon sources binned into 5 myr time steps. The results of this investigation were reported in a recent publication showing that most δ13C sources co-vary with ten CIEs during the last 400 myr. For this paper we culled ISOORG to produce ISOORG16-H that contains 7025 plant-derived δ13C values from paleo-moist environments to reflect secular controls on the δ13C of C3 plants. We then constructed atmospheric pO2 curves for the past 350 myr using prior experimental work showing a direct relationship between the ∆13C of C3 plants and pO2 concentration. Periods of hyperoxia (25-30% pO2) were identified from 300-250, 225-190, and 110-105 myr, and intervals of hypoxia (10-15% pO2) from 350-345, 245-230, and 185-115 myr. During the last 150 myr, pO2 stabilized at 17-24% except for a notable positive excursion from 110-105 myr. Hyperoxia, apparently from widespread carbon burial, supports the notion of insect gigantism during the Late Paleozoic. Hypoxia during the early Triassic correlates with the coal gap following the collapse of Paleozoic ecosystems. Rising pO2 in the late Triassic seems to reflect renewed carbon burial from reorganization of Mesozoic ecosystems. The middle Mesozoic is characterized by low pO2 during an intense greenhouse interval, with ambient conditions ensuing thereafter possibly linked to carbon burial from the radiation of angiosperms. pO2 concentrations >14% suggest wildfires persisted through the study interval except possibly at 160 and 140 myr. Intervals of low pO2 concentration were likely accompanied by lower atmospheric pressure and higher temperatures, particularly from 245-230 myr and 180-120 myr. Our O2 reconstructions conform with GEOCARBSULF, but not with proxy

  9. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    Science.gov (United States)

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabamäe, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration ( 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates.

  10. Measuring a 10,000-fold enhancement of singlet molecular oxygen (1O2*) concentration on illuminated ice relative to the corresponding liquid solution

    Science.gov (United States)

    Bower, Jonathan P.; Anastasio, Cort

    2013-08-01

    Much attention has focused on the highly reactive hydroxyl radical in the oxidation of trace organic compounds on snow and ice (and subsequent release of volatile organics to the atmospheric boundary layer) but other oxidants are likely also important in this processing. Here we examine the ice chemistry of singlet molecular oxygen (1O2*), which can be significant in atmospheric water drops but has not been examined in ice or snow. To examine 1O2* on ice we illuminate laboratory ices containing Rose Bengal (RB) as the source of 1O2*, furfuryl alcohol (FFA) as the probe, and Na2SO4 to control the total solute concentration. We find that the 1O2*-mediated loss of FFA (and, thus, the 1O2* concentration) is up to 11,000 times greater on ice than in the equivalent liquid sample at the same photon flux. We attribute this large increase in the 1O2* steady-state concentration to the freeze-concentration of solutes into liquid-like regions (LLRs) in/on ice: compared to the initial solution, in the LLRs of ice the sources for 1O2* are highly concentrated, while the concentration of the dominant sink for 1O2* (i.e., water) remains largely unchanged. Similar to results expected in liquid solution, rates of FFA loss in ice depend on both the initial sensitizer concentration and temperature, providing evidence that these reactions occur in LLRs. However, we find that the enhancement in 1O2* concentrations on ice does not follow predictions from freezing-point depression, likely because experiments were conducted below the eutectic temperature for sodium sulfate, where all of the salt should have precipitated. We also explore a method for separating 1O2* and rad OH contributions to FFA oxidation in laboratory ices and show its application to two natural snow samples. We find that 1O2* concentrations in these snows are approximately 100 times higher than observed in polluted, mid-latitude fog waters, showing that the enhancement of 1O2* on ice is environmentally relevant and that

  11. Chloride concentrations and stable isotopes of hydrogen and oxygen in surface water and groundwater in and near Fish Creek, Teton County, Wyoming, 2005-06

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.

    2010-01-01

    Fish Creek, an approximately 25-kilometer long tributary to the Snake River, is located in Teton County in western Wyoming near the town of Wilson. The U.S. Geological Survey, in cooperation with the Teton Conservation District, conducted a study to determine the interaction of local surface water and groundwater in and near Fish Creek. In conjunction with the surface water and groundwater interaction study, samples were collected for analysis of chloride and stable isotopes of hydrogen and oxygen in water. Chloride concentrations ranged from 2.9 to 26.4 milligrams per liter (mg/L) near Teton Village, 1.2 to 4.9 mg/L near Resor's Bridge, and 1.8 to 5.0 mg/L near Wilson. Stable isotope data for hydrogen and oxygen in water samples collected in and near the three cross sections on Fish Creek are shown in relation to the Global Meteoric Water Line and the Local Meteoric Water Line.

  12. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jun [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Miao, Lingzhan, E-mail: mlz1988@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Chao, E-mail: hhuhjy973@126.com [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China); Wang, Peifang; Ao, Yanhui; Qian, Jin; Dai, Shanshan [Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-07-15

    Highlights: • Temporal and spatial inhibitory effects of ZnO NPs on biofilms were investigated. • 50 mg/L nano-ZnO inhibited the microbial activities only in biofilm outer layer. • Adsorbed ZnO NPs had no adverse effects on the cell membrane integrity of biofilms. • Dissolution of ZnO NPs to toxic zinc ions was the main mechanism of toxicity. - Abstract: The presence of ZnO NPs in waste streams can negatively affect the efficiency of biological nutrient removal from wastewater. However, details of the toxic effects of ZnO NPs on microbial activities of wastewater biofilms have not yet been reported. In this study, the temporal and spatial inhibitory effects of ZnO NPs on the O{sub 2} respiration activities of aerobic wastewater biofilms were investigated using an O{sub 2} microelectrode. The resulting time–course microelectrode measurements demonstrated that ZnO NPs inhibited O{sub 2} respiration within 2 h. The spatial distributions of net specific O{sub 2} respiration were determined in biofilms with and without treatment of 5 or 50 mg/L ZnO NPs. The results showed that 50 mg/L of nano-ZnO inhibited the microbial activities only in the outer layer (∼200 μm) of the biofilms, and bacteria present in the deeper parts of the biofilms became even more active. Scanning electron microscopy (SEM) analysis showed that the ZnO NPs were adsorbed onto the biofilm, but these NPs had no adverse effects on the cell membrane integrity of the biofilms. It was found that the inhibition of O{sub 2} respiration induced by higher concentrations of ZnO NPs (50 mg/L) was mainly due to the release of zinc ions by dissolution of the ZnO NPs.

  13. Activity of Type I Methanotrophs Dominates under High Methane Concentration: Methanotrophic Activity in Slurry Surface Crusts as Influenced by Methane, Oxygen, and Inorganic Nitrogen.

    Science.gov (United States)

    Duan, Yun-Feng; Reinsch, Sabine; Ambus, Per; Elsgaard, Lars; Petersen, Søren O

    2017-07-01

    Livestock slurry is a major source of atmospheric methane (CH), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH emissions. This study examined conditions for CH oxidation by in situ measurements of oxygen (O) and nitrous oxide (NO), as a proxy for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O, CH, and inorganic N on CH oxidation, using CH to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm, confining the potential for aerobic CH oxidation to a shallow layer. Nitrous oxide accumulated within or below the zone of O depletion. With 10 ppmv CH there was no O limitation on CH oxidation at O concentrations as low as 2%, whereas CH oxidation at 10 ppmv CH was reduced at ≤5% O. As hypothesized, CH oxidation was in general inhibited by inorganic N, especially NO, and there was an interaction between N inhibition and O limitation at 10 ppmv CH, as indicated by consistently stronger inhibition of CH oxidation by NH and NO at 3% compared with 20% O. Recovery of C in phospholipid fatty acids suggested that both Type I and Type II MOB were active, with Type I dominating high-concentration CH oxidation. Given the structural heterogeneity of crusts, CH oxidation activity likely varies spatially as constrained by the combined effects of CH, O, and inorganic N availability in microsites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations.

    Science.gov (United States)

    Turner, Jennifer; Quek, Lake-Ee; Titmarsh, Drew; Krömer, Jens O; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  15. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

    Science.gov (United States)

    Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian

    2015-07-01

    Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.

  16. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.

    Science.gov (United States)

    Polinkovsky, Mark; Gutierrez, Edgar; Levchenko, Andre; Groisman, Alex

    2009-04-21

    We describe the design, operation, and applications of two microfluidic devices that generate series of concentrations of oxygen, [O(2)], by on-chip gas mixing. Both devices are made of polydimethylsiloxane (PDMS) and have two layers of channels, the flow layer and the gas layer. By using in-situ measurements of [O(2)] with an oxygen-sensitive fluorescent dye, we show that gas diffusion through PDMS leads to equilibration of [O(2)] in an aqueous solution in the flow layer with [O(2)] in a gas injected into the gas layer on a time scale of approximately 1 sec. Injection of carbon dioxide into the gas layer causes the pH in the flow layer to drop within approximately 0.5 sec. Gas-mixing channel networks of both devices generate series of 9 gas mixtures with different [O(2)] from two gases fed to the inlets, thus creating regions with 9 different [O(2)] in the flow layer. The first device generates nitrogen-oxygen mixtures with [O(2)] varying linearly between 0 and 100%. The second device generates nitrogen-air mixtures with [O(2)] varying exponentially between 0 and 20.9%. The flow layers of the devices are designed for culturing bacteria in semi-permeable microchambers, and the second device is used to measure growth curves of E. coli colonies at 9 different [O(2)] in a single experiment. The cell division rates at [O(2)] of 0, 0.2, and 0.5% are found to be significantly different, further validating the capacity of the device to set [O(2)] in the flow layer with high precision and resolution. The degree of control of [O(2)] achieved in the devices and the robustness with respect to oxygen consumption due to respiration would be difficult to match in a traditional large-scale culture. The proposed devices and technology can be used in research on bacteria and yeast under microaerobic conditions and on mammalian cells under hypoxia.

  17. Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Jephias Gwamuri

    2016-01-01

    Full Text Available The opportunity for substantial efficiency enhancements of thin film hydrogenated amorphous silicon (a-Si:H solar photovoltaic (PV cells using plasmonic absorbers requires ultra-thin transparent conducting oxide top electrodes with low resistivity and high transmittances in the visible range of the electromagnetic spectrum. Fabricating ultra-thin indium tin oxide (ITO films (sub-50 nm using conventional methods has presented a number of challenges; however, a novel method involving chemical shaving of thicker (greater than 80 nm RF sputter deposited high-quality ITO films has been demonstrated. This study investigates the effect of oxygen concentration on the etch rates of RF sputter deposited ITO films to provide a detailed understanding of the interaction of all critical experimental parameters to help create even thinner layers to allow for more finely tune plasmonic resonances. ITO films were deposited on silicon substrates with a 98-nm, thermally grown oxide using RF magnetron sputtering with oxygen concentrations of 0, 0.4 and 1.0 sccm and annealed at 300 °C air ambient. Then the films were etched using a combination of water and hydrochloric and nitric acids for 1, 3, 5 and 8 min at room temperature. In-between each etching process cycle, the films were characterized by X-ray diffraction, atomic force microscopy, Raman Spectroscopy, 4-point probe (electrical conductivity, and variable angle spectroscopic ellipsometry. All the films were polycrystalline in nature and highly oriented along the (222 reflection. Ultra-thin ITO films with record low resistivity values (as low as 5.83 × 10−4 Ω·cm were obtained and high optical transparency is exhibited in the 300–1000 nm wavelength region for all the ITO films. The etch rate, preferred crystal lattice growth plane, d-spacing and lattice distortion were also observed to be highly dependent on the nature of growth environment for RF sputter deposited ITO films. The structural, electrical

  18. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  19. Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration.

    Science.gov (United States)

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Miao, Jun Ying; Yin, De Ling; Zhang, Shang Li

    2006-02-01

    Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.

  20. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Siddiqui, Maqsood A; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Ahamed, Maqusood

    2015-02-01

    Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health. © 2013 Wiley Periodicals, Inc.

  1. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  2. Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China

    Science.gov (United States)

    Wang, Jingzhi; Xu, Hongmei; Guinot, Benjamin; Li, Lijuan; Ho, Steven Sai Hang; Liu, Suixin; Li, Xiaoping; Cao, Junji

    2017-08-01

    Indoor and outdoor concentrations of polycyclic aromatic hydrocarbons (PAHs), oxygenated-PAHs (OPAHs), and nitro-PAHs (NPAHs) associated with PM2.5 particles were monitored in a middle-school classroom from 8 to 22 March 2012 in Xi'an, China. The total PAHs ranged from 49.6 to 140.0 ng/m3 in outdoors and 50.3 to 111.6 ng/m3 in indoors, while OPAHs and NPAHs showed averages of 19.1 and 16.4 ng/m3, 0.1039 and 0.0785 ng/m3 for outdoor and indoor air, respectively. Strong correlations were found between indoor (I) and outdoor (O), and the I/O ratios were coal combustion, and motor vehicle emissions were the main sources for PAHs (which accounted for 30%, 27.4% and 26%, respectively, by PMF), but, secondary particle formation was important for the OPAHs and NPAHs. Inhalation cancer risks associated with outdoor and indoor particles were 6.05 × 10- 5 and 5.44 × 10- 5, respectively, and so higher than the cancer risk guideline of 10- 6. Although the cancer risk of NPAHs is negligible for its lower concentrations, their potential for direct mutagenic effects should not be ignored.

  3. Effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs on the production of reactive oxygen species by activated rat neutrophils

    Directory of Open Access Journals (Sweden)

    Paino I.M.M.

    2005-01-01

    Full Text Available The release of reactive oxygen specie (ROS by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM, indomethacin (12 µM, naproxen (160 µM, piroxicam (13 µM, and tenoxicam (30 µM were incubated at 37ºC in PBS (10 mM, pH 7.4, for 30 min with rat neutrophils (1 x 10(6 cells/ml stimulated by phorbol-12-myristate-13-acetate (100 nM. The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6. For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6. Using the myeloperoxidase (MPO/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%, indomethacin (97 ± 2, 100 ± 1%, naproxen (56 ± 8, 76 ± 3%, piroxicam (77 ± 5, 99 ± 1%, and tenoxicam (90 ± 2, 100 ± 1%, respectively (N = 3. These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.

  4. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    concentrations while the area of OH* emission is larger than the area of Band A and Band B emissions at higher O2 concentrations, for a given ambient temperature. Moreover, the mixture stoichiometry was analyzed using a reformulated definition of excess air ratio for diluted combustion, and this shows that more mixing is required to achieve complete combustion for low ambient oxygen concentration conditions where longer and wider flames are observed. This observation is also verified by the flame length estimated from the NL images. © 2013 Copyright Taylor and Francis Group, LLC.

  5. O mínimo de oxigênio na costa leste do Brasil entre 7-22ºS The minimum oxygen concentration in easthern Brasilian coast between 7-22ºS

    Directory of Open Access Journals (Sweden)

    Argeo Magliocca

    1978-01-01

    Full Text Available In the South Atlantic nearly the Brazilian coast, at low latitudes, the layer of minimum oxygen concentration shows distinct values between the Equatorial region (7ºS and the region limited by latitudes of 18-22ºS. In the vicinity of the Equator the minimum concentration is remarkably clear (2,0 ml/l at 7ºS and at 22ºS the minima values raise up to 4.0-4.5 ml/l. The minimum oxygen layer follows the isopynics surfaces (σt = 26.8-27.2 in depths of 300-400 m (7ºS and 600-800 m (22ºS . The oxygen concentration in this area results from a biochemical and physical processes, due to the presence of poor water Brazil Current southward and the rich one Intermediate Antartic water flowing northward.

  6. Oxygen sensing and signaling.

    Science.gov (United States)

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  7. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... Operating conditions were maintained constant but the adipate and dissolved oxygen concentrations (DOC) were varied separately in a range from I to 37.5 g l(-1) and from 2% to 125% air saturation (%AS), respectively. The total beta-lactams specific productivity, r(p) (total) was not significantly changed...

  8. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    Science.gov (United States)

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R (2)), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R (2), and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  9. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence

    Science.gov (United States)

    Naranjo, Ramon C.; Niswonger, Richard G.; Clinton Davis,

    2015-01-01

    Flow paths and residence times in the hyporheic zone are known to influence biogeochemical processes such as nitrification and denitrification. The exchange across the sediment-water interface may involve mixing of surface water and groundwater through complex hyporheic flow paths that contribute to highly variable biogeochemically active zones. Despite the recognition of these patterns in the literature, conceptualization and analysis of flow paths and nitrogen transformations beneath riffle-pool sequences often neglect to consider bed form driven exchange along the entire reach. In this study, the spatial and temporal distribution of dissolved oxygen (DO), nitrate (NO3-) and ammonium (NH4+) were monitored in the hyporheic zone beneath a riffle-pool sequence on a losing section of the Truckee River, NV. Spatially-varying hyporheic exchange and the occurrence of multi-scale hyporheic mixing cells are shown to influence concentrations of DO and NO3- and the mean residence time (MRT) of riffle and pool areas. Distinct patterns observed in piezometers are shown to be influenced by the first large flow event following a steady 8 month period of low flow conditions. Increases in surface water discharge resulted in reversed hydraulic gradients and production of nitrate through nitrification at small vertical spatial scales (0.10 to 0.25 m) beneath the sediment-water interface. In areas with high downward flow rates and low MRT, denitrification may be limited. The use of a longitudinal two-dimensional flow model helped identify important mechanisms such as multi-scale hyporheic mixing cells and spatially varying MRT, an important driver for nitrogen transformation in the riverbed. Our observations of DO and NO3- concentrations and model simulations highlight the role of multi-scale hyporheic mixing cells on MRT and nitrogen transformations in the hyporheic zone of riffle-pool sequences. This article is protected by copyright. All rights reserved.

  10. Measurement of excited oxygen (O2:[sup 1][Delta]g) concentration by spontaneous emission. Hakko kyodo ni yoru reiki sanso ([sup 1][Delta]g) nodo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1993-11-25

    The concentration of excited oxygen ([sup 1][Delta]g), which was generated by microwave discharge in a pure oxygen flow, was measured from the intensity of spontaneous emission. The conversion factor to density was determined by spectroscopic analysis of the rotational structure and calibration of the emission intensity using a black-body furnace as light source. Consequently, a good agreement was found between the observed profiles and those calculated from spectroscopic data, and it was illustrated that the absolute concentration can be obtained by coupling band analysis and the calibration method. In addition, even when the concentration was low, it was shown that the excited oxygen concentration can be measured by considering the reflection at the cell wall. The excited oxygen concentration at the microwave discharge cavity was estimated to be around 1% under the pressure ranging from 0.5 torr to 2 torr. Furthermore, the comparison of the profiles calculated at different temperature provided that the band profile can be a good indicator of gas temperature when the signal-to-noise ratio is high. 9 refs., 10 figs., 2 tabs.

  11. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  12. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.El Golfo de Papagayo, costa Pacífica de Costa Rica, es una de las tres regiones de afloramiento estacional de Mesoamérica. Las características físicas y químicas del agua que aflora no habían sido estudiadas. Durante 29 horas en Abril 2009, se estudiaron la temperatura superficial del mar (TSM, la concentración de oxígeno disuelto, salinidad, pH y la presión parcial de CO2 (pCO2, en la Marina Papagayo, Bahía Culebra. Con base en las mediciones de pH y pCO2 se calculó el estado de saturación de la aragonita (Ω y otros parámetros del sistema de carbonatos como lo es el carbono orgánico disuelto (COD y la alcalinidad total (AT. Los resultados indican que el arrastre por convecci

  13. Vertical modeling of the nitrogen cycle in the eastern tropical South Pacific oxygen deficient zone using high-resolution concentration and isotope measurements

    Science.gov (United States)

    Peters, Brian D.; Babbin, Andrew R.; Lettmann, Karsten A.; Mordy, Calvin W.; Ulloa, Osvaldo; Ward, Bess B.; Casciotti, Karen L.

    2016-11-01

    Marine oxygen deficient zones (ODZs) have long been identified as sites of fixed nitrogen (N) loss. However, the mechanisms and rates of N loss have been debated, and traditional methods for measuring these rates are labor-intensive and may miss hot spots in spatially and temporally variable environments. Here we estimate rates of heterotrophic nitrate reduction, heterotrophic nitrite reduction (denitrification), nitrite oxidation, and anaerobic ammonium oxidation (anammox) at a coastal site in the eastern tropical South Pacific (ETSP) ODZ based on high-resolution concentration and natural abundance stable isotope measurements of nitrate (NO3-) and nitrite (NO2-). These measurements were used to estimate process rates using a two-step inverse modeling approach. The modeled rates were sensitive to assumed isotope effects for NO3- reduction and NO2- oxidation. Nevertheless, we addressed two questions surrounding the fates of NO2- in the ODZ: (1) Is NO2- being primarily reduced to N2 or oxidized to NO3- in the ODZ? and (2) what are the contributions of anammox and denitrification to NO2- removal? Depth-integrated rates from the model suggest that 72-88% of the NO2- produced in the ODZ was oxidized back to NO3-, while 12-28% of NO2- was reduced to N2. Furthermore, our model suggested that 36-74% of NO2- loss was due to anammox, with the remainder due to denitrification. These model results generally agreed with previously measured rates, though with a large range of uncertainty, and they provide a long-term integrated view that compliments incubation experiments to obtain a broader picture of N cycling in ODZs.

  14. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  15. Distribution of Negative Oxygen Ions Concentration and Assessment of Air Quality in Campus%校园空气负氧离子浓度分布与空气质量评价

    Institute of Scientific and Technical Information of China (English)

    叶宏萌; 郑茂钟; 姜嘉祺; 谢行冬

    2015-01-01

    Level of negative oxygen ions concentration reflects not only the air quality, but also directly affect the comfort and health.This paper studied distribution and evaluation of negative oxygen ions concentration in campus of Wuyi university.The re-sults showed that negative oxygen ions concentration was affected by human activity, altitude, the air flow, dynamic water and vege-tation distribution and other comprehensive factors in the different functional areas of the campus.Meanwhile, negative oxygen ions changes according to weather and diurnal variations.Ranges of negative oxygen ion concentration are as follows:heavy rain days>rain days>rain cloudy>clear;diurnal variation order:AM>evening>noon.In summary, the measurement results showed that the air quality levels achieved stability three or four, air was fresh and conducive to human health.%空气负氧离子浓度水平不仅反映了空气质量,还直接影响人们的舒适程度和健康状况。研究武夷学院空气负氧离子浓度含量发现,其受人类活动力度、海拔高度、空气流通状况、动态水体和植被分布等综合因素影响,并具有明显的气象变化和日变化特征。负氧离子浓度含量排序为:暴雨天>小雨天>雨后阴天>晴天;一日中上午>傍晚>中午。测量结果表明该校园整体空气质量等级达到四级或者三级,空气清新,有利于师生健康。

  16. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C[sub 6]0 are used, and it succeeds in the measurement. Kotai hyomen no sanso nodo, C[sub 60] mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C[sub 6]0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition's reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn't need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  17. NAL-Tokyo Institute of Technology: Oxygen concentration on the surface of the solid, C{sub 6}0 are used, and it succeeds in the measurement; Kotai hyomen no sanso nodo, C{sub 60} mochii sokuteini seiko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    NAL succeeded in oxygen concentration measurement on the surface of the solid which fralen (C{sub 6}0) which was the same base body in cooperation with Tokyo Institute of Technology, biotechnology course as to carbon was used for fralen absorbs light, and materiality to be returned in the condition (base bottom condition) of the place by this activated condition`s reacting for the activated condition with oxygen is used. The condition that became of this fralen was used, and oxygen pressure (concentration) developed how to measure it. Oxygen pressure on the surface of the irradiation is measured the light with applying fralen on the surface of the measurement solid and spraying oxygen gas on the application side. So far, 100 points and more of holes were made on the surface of the model, and a pressure sensor was installed, and pressure measurement was being done, and it was as it were the measurement of the meeting body of the point in the aircraft and the wind experiment of the rocket model. The application of fralen, light only irradiates it, and oxygen pressure can be measured easily in the way of measuring it this time. Moreover, it is the measurement of the non-contact and non-destruction side. The illuminant, which makes fralen activated condition again, is sufficient with the visible light, and it is said that it doesn`t need to use purple outside light about it. If light can irradiate it again, the surface pressure of which part can be measured, too. (translated by NEDO)

  18. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  19. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... from 15 to 7%AS, r(p) (total) increased to 25 mumol g DW-1 h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity....

  20. Analytical determination of Chemical Oxygen Demand in samples considered to be difficult to analyse: solid substrates and liquid samples with high suspended solid concentrations

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    Chemical oxygen demand (COD) is a critical analytical parameter in the field of waste and wastewater treatment processes, and more specifically in anaerobic digestion processes. However, little is known about the COD measurement quality of anaerobic digestion samples. Taking into account the lack...

  1. Analytical determination of Chemical Oxygen Demand in samples considered to be difficult to analyse: solid substrates and liquid samples with high suspended solid concentrations

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    Chemical oxygen demand (COD) is a critical analytical parameter in the field of waste and wastewater treatment processes, and more specifically in anaerobic digestion processes. However, little is known about the COD measurement quality of anaerobic digestion samples. Taking into account the lack...... PTs related with COD determination have been organised, and the results reported have been compared; showing the importance of continuous participation in proficiency testing (PT) schemes in order to improve the results obtained....

  2. Solid state oxygen sensor

    Science.gov (United States)

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  3. Biological effects of short-term, high-concentration exposure to methyl isocyanate. IV. Influence on the oxygen-binding properties of guinea pig blood.

    OpenAIRE

    Maginniss, L A; Szewczak, J M; Troup, C M

    1987-01-01

    Whole blood oxygen equilibrium curves (O2 ECs), blood buffer lines, and several hematologic properties were determined for adult guinea pigs exposed to 700 ppm methyl isocyanate (MIC) for 15 min. MIC inhalation effected a significant reduction of blood O2 affinity; the half-saturation pressure (P50) at 38 degrees C increased from the control (untreated) level of 22.8 +/- 0.1 mm Hg to values ranging from 28.5 to 43.7 mm Hg for experimental animals. MIC exposure had no apparent influence on O2 ...

  4. Using oxygen at home

    Science.gov (United States)

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  5. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations.

    Science.gov (United States)

    Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia

    2017-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Oxygen supply and consumption in soilless culture: evaluation of an oxygen simulation model for cucumber

    NARCIS (Netherlands)

    Baas, R.; Wever, G.; Koolen, A.J.; Tariku, E.; Stol, K.J.

    2001-01-01

    A soil oxygen simulation model (OXSI) was tested and evaluated for evaluating growing media with respect to aeration. In the model, local oxygen concentrations are calculated from coefficients of diffusion and consumption (respiration), assuming equilibrium conditions. Apparent oxygen diffusion coef

  7. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Science.gov (United States)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  8. Fate of Sb(V) and Sb(III) species along a gradient of pH and oxygen concentration in the Carnoulès mine waters (Southern France).

    Science.gov (United States)

    Resongles, Eléonore; Casiot, Corinne; Elbaz-Poulichet, Françoise; Freydier, Rémi; Bruneel, Odile; Piot, Christine; Delpoux, Sophie; Volant, Aurélie; Desoeuvre, Angélique

    2013-08-01

    The speciation and behaviour of antimony were investigated in surface waters downstream from the abandoned Pb-Zn Carnoulès mine (Gard, France). These waters exhibit a permanent gradient of oxygen concentration and pH, ranging from acid suboxic in Reigous Creek at the outlet of sulfide tailings impoundment, to near neutral oxygenated at downstream sites along the rivers Amous and Gardon. The concentration of total dissolved (Sb attenuation. Speciation analysis carried out during three surveys indicated that Sb(III) represented up to 70% of the total dissolved Sb concentration at the source of Reigous Creek, while Sb(V) represented less than 50%. Field characterization showed that Sb(III) and Sb(V) species were attenuated through dilution and were also removed from the dissolved phase during downstream transport. Speciation analysis in suspended particulate matter extracts gave a distribution of particulate Sb into 70 to 100% of Sb(III) and less than 30% of Sb(V). The removal of Sb(III) and Sb(V) species from the dissolved phase was concordant with the oversaturation of Reigous Creek water relative to Sb(III)- and Sb(V)-oxides and Sb(III)- and Sb(V)-Fe oxides. Sb(III) was more efficiently removed than Sb(V) or As(III) and it was no more detectable in the dissolved phase at downstream sites in the rivers Amous and Gardon. Conversely, the concentration of Sb(V) in the rivers Amous and Gardon still denoted contamination arising from the Carnoulès mine. The range of log Kd values, from 2.4 L kg(-1) to 4.9 L kg(-1), indicated that Sb was mainly transported in the dissolved phase downstream the Reigous Creek input. Altogether, these results give a better understanding of the fate of Sb downstream from sulfide-rich mining wastes.

  9. [Apneic oxygenation].

    Science.gov (United States)

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used.

  10. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)(y)MnO3 +/-delta

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2000-01-01

    Two precise algorithms are devised for the calculation of defect concentrations in A-site acceptor doped ABO(3) perovskites. The two models contain nine species including cation vacancies on the A- and B-site. The small polaron model is based on three redox levels of the B-ion. A large polaron mo......(-2) arm. (C) 2000 Elsevier Science B.V. All rights reserved....

  11. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    Science.gov (United States)

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  12. Dissolved carbon dioxide and oxygen concentrations in purge of vacuum-packaged pork chops and the relationship to shelf life and models for estimating microbial populations.

    Science.gov (United States)

    Adams, K R; Niebuhr, S E; Dickson, J S

    2015-12-01

    The objectives of this study were to determine the dissolved CO2 and O2 concentrations in the purge of vacuum-packaged pork chops over a 60 day storage period, and to elucidate the relationship of dissolved CO2 and O2 to the microbial populations and shelf life. As the populations of spoilage bacteria increased, the dissolved CO2 increased and the dissolved O2 decreased in the purge. Lactic acid bacteria dominated the spoilage microflora, followed by Enterobacteriaceae and Brochothrix thermosphacta. The surface pH decreased to 5.4 due to carbonic acid and lactic acid production before rising to 5.7 due to ammonia production. A mathematical model was developed which estimated microbial populations based on dissolved CO2 concentrations. Scanning electron microscope images were also taken of the packaging film to observe the biofilm development. The SEM images revealed a two-layer biofilm on the packaging film that was the result of the tri-phase growth environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Oxygen Therapy

    OpenAIRE

    2000-01-01

    LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood ox...

  14. Crescimento de alevinos de jundiá, Rhamdia quelen (Pisces, Pimelodidae, em diferentes concentrações de oxigênio dissolvido = Growth of silver catfish Rhamdia quelen (Pisces, Pimelodidae fingerlings in different dissolved oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Giancarlo Maffezzolli

    2006-01-01

    Full Text Available O objetivo deste estudo foi avaliar o crescimento de alevinos de jundiá, Rhamdia quelen, em 5 concentrações de oxigênio dissolvido: 1,3 (T1, 2,4 (T2, 3,7 (T3, 5,4 (T4 e 7,5 mg O2/L (T5. O estudo utilizou o modelo experimental inteiramente ao acaso com 3 repetições e foi conduzido por 25 dias. Os alevinos foram distribuídos em tanques circulares de fibra de vidro de 150 L mantidos na escuridão e dotados de aeração mecânica, filtro biológico e renovação de água, nadensidade de 34 indivíduos/tanque. A sobrevivência foi menor nos extremos testados (T1 e T5. Maior crescimento em peso e em comprimento e melhor conversão alimentar foram obtidos com o aumento da concentração de oxigênio dissolvido. Os alevinos de jundiá apresentaram incremento em peso, mesmo na menor concentração de oxigênio dissolvido (T1, e T4 produziu os melhores efeitos sobre o desenvolvimento.This study's aim was evaluate the growth of silver catfish (Rhamdia quelen fingerlings on five dissolved oxygen concentrations: 1,3 (T1, 2,4 (T2, 3,7 (T3, 5,4 (T4 and 7,5 mg O2/L (T5. A completely random design experiment with three repetitions was used and the experiment was carried out during 25 days. Fingerlings were distributed in circular, 150-L fiberglass tanks kept in darkness, endowed with mechanic and biological filters and water renewal, at a stocking density of 34 individuals/tank. Survival was lower at the extreme tested levels (T1 and T5. Better growth in weight, length and food conversion were found at increasing oxygen concentrations. Even at the lowest oxygen concentration (T1 fingerlings showed growth increase. The best effects on silver catfish fingerlings development was observed at T4.

  15. Design of Oxygen Concentration Detection Based on WiFi and Cloud Intelligent%基于WiFi的云智能血氧仪设计研究∗

    Institute of Scientific and Technical Information of China (English)

    翟永前; 奚吉; 赵力

    2015-01-01

    Combined with the latest developments in communications technology,this paper presented a detection system of oxygen concentration based on WiFi and intelligent cloud. The system utilizes cloud computing to fulfill fuzzy neural, and network to achieve the ant colony optimization algorithm,which not only reduces the complexity of the perceived end hardware and software design,and effectively improves the oxygen detection accuracy,real-time tracking and more condu-cive to long-term maintenance of health data oxygen. Experimental Results shows the design is safe and reliable,consist-ent with the development of intelligent health care,so it has good application and promotional value.%结合通信技术最新发展,本文通过引入云智能,提出了一种基于WiFi的云智能血氧浓度检测系统。该系统利用云计算实现了模糊神经网络的蚁群优化算法,不仅降低了感知端的软硬件设计的复杂度,而且有效提高了血氧检测精度,更有利于血氧健康数据的实时跟踪和长期维护。实验结果表明,本文提出的设计安全可靠,符合智能医疗的发展方向,因此具有较好的应用及推广价值。

  16. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    Science.gov (United States)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  17. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area].

    Science.gov (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning

    2015-10-01

    The off-axis integrated cavity output spectroscopy technique was used to measure air CO2 concentration, stable carbon (δ13C) and oxygen (δ18C) isotope ratios on the Fourth Ring Road (FRR) and in the green space system of Beijing Institute of Landscape Architecture (BILA) in summer and winter seasons. The variations of CO2 concentration, δ13C value, δ18C value and the differences of them between the FRR and the BILA, which were correlated with traffic volume and meteorological factors, were analyzed at half-hour timescale. The results showed that traffic volume on the FRR was large both in summer and winter with obvious morning and evening rush hours, and more than 150 thousands vehicles were observed everyday during the observation periods. Diurnal variation of the CO2 concentration showed a two-peak curve both on the FRR and in the green space system of the BILA. In contrast, diurnal variation of δ13C value was a two-trough curve while diurnal variation of δ18O value was a single-trough curve. The differences of CO2 concentration, δ13C value and δ18O value between the FRR and the green space system of BILA in summer were greater than those in winter. The carbon isotope partitioning results showed that in summer vehicle exhaust contributed 64.9% to total atmospheric CO2 of the FRR during measurement time, while heterotrophic respiration contributed 56.3% to total atmospheric CO2 of the green space system in BILA. However, in winter atmospheric CO2 from both the FRR and green space system mostly came from vehicle exhaust. Stepwise regression analysis indicated that differences of CO2 concentration between the FRR and green space system were significantly related to vehicle volume and solar radiation at half-hour timescale, while solar radiation and relative humidity were the main meteorological factors causing δ13 and δ18O differences between the FRR and green space system. Plants in the green space system strongly assimilated CO2 from fossil fuel burning

  18. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.

    Science.gov (United States)

    Shen, Dong-Sheng; He, Ruo; Liu, Xin-Wen; Long, Yan

    2006-08-25

    Upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenols was used to investigate the feasibility of anaerobic biotreatment of synthetic wastewater containing pentachlorophenol (PCP) with additional sucrose as carbon source. Two sets of UASB reactors were operated at one time. But the seeded sludge for the two reactors was different and Reactor I was seeded with the sludge that was acclimated to PCP completely for half a year, and Reactor II was seeded with the mixed sludge that was acclimated for half a year to PCP, 4-CP, 3-CP or 2-CP, respectively. The degradation of PCP and the operation fee treating the wastewater are affected by the concentration of MEDS (microorganism easily degradable substrate). So the confirmation of the suitable ratio of [COD] and [PCP] was the key factor of treating the wastewater containing PCP economically and efficiently. During the experiment, the synthetic wastewater with 180.0 mg L(-1) PCP and 1250-10000 mg L(-1) COD could be treated steadily in the experimental Reactor I. The removal efficiency of PCP was more than 99.5% and the removal efficiency of COD was up to 90%. [PCP] (concentration of PCP) in effluent was less than 0.5 mg L(-1). [PCP] in influent could affect proper [COD] (concentration of COD) range in influent that was required for maintenance of steady running of the experimental reactor with a hydraulic retention time (HRT) from 20 to 22 h. [PCP] in influent would directly affect the necessary [COD] in influent when the UASB reactor ran normally and treated the wastewater containing PCP. When [PCP] was 100.4, 151.6 and 180.8 mg L(-1) in influent, respectively, [COD] in influent had to be controlled about 1250-7500, 2500-5000 and 5000 mg L(-1) to maintain the UASB reactor steady running normally and contemporarily ensure that [COD] and [PCP] in effluent were less than 300 and 0.5 mg L(-1), respectively. With the increase of [PCP] in influent, the range of variation

  19. 循环流化床高浓度富氧燃烧试验研究%Experimental Study on Oxy-fuel Combustion With High Oxygen Concentration in a Circulating Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    谭力; 李诗媛; 李伟; 寿恩广; 吕清刚

    2014-01-01

    In order to investigate the effects of combustion temperature and atmosphere on the combustion stability, CO2 concentration and gaseous pollutants emissions in flue gas, in a 0.1 MW circulating fluidized bed (CFB) oxy-fuel combustion facility, oxy-combustion experiments with Datong coal were carried out at O2/CO2 and O2/ recycled flue gas (RFG) atmosphere with high oxygen concentration. The test results show that when the oxygen concentration of the primary air ranges from 49.6%to 55.2%and that of the secondary air is in the range from 45.3%to 51.7%, the CFB oxy-fuel combustion facility maintains stably at O2/RFG atmosphere. In flue gas, CO2 concentration can reach above 90%, SO2 concentration is 87 to 197 mg/MJ, N2O concentration is 48 to 78 mg/MJ, and NO concentration is only 19 to 44 mg/MJ. Compared with the result of O2/CO2 combustion, the concentration of CO and SO2 increases to a certain degree, while N2O concentration decreases obviously, and NO concentration basically remains the same.%#在0.1 MW循环流化床富氧燃烧试验系统上,进行了大同烟煤在O2/再循环烟气(RFG)和O2/CO2配气下的高浓度富氧燃烧试验,研究燃烧温度和气氛对燃烧稳定性、烟气中CO2浓度和气体污染物排放的影响。研究结果表明,O2/RFG气氛下,在一次风氧气浓度为49.6%~55.2%、二次风氧气浓度为45.3%~51.7%范围内,循环流化床能够稳定运行,烟气中CO2浓度达到90%以上,SO2浓度为87~197 mg/MJ,N2O浓度为48~78 mg/MJ,NO仅为19~44 mg/MJ。与O2/CO2配气燃烧相比,O2/RFG燃烧时除NO浓度基本不变外,CO与SO2浓度均有一定程度的增加,而N2O浓度则明显降低。

  20. Appreciating Oxygen

    Science.gov (United States)

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  1. Medidas da concentração de oxigênio dissolvido na superfície da água Measurements of dissolved oxygen concentration at water surface

    Directory of Open Access Journals (Sweden)

    Johannes Gerson Janzen

    2008-09-01

    Full Text Available A transferência de gases através da interface ar-água é um processo importante para ciclos climáticos de grande escala e para sistemas ambientais menores como rios, lagos, córregos e estações de tratamento de esgoto. Para avançar no entendimento dos princípios básicos envolvidos no fenômeno é necessária a utilização de técnicas e aparatos experimentais adequados. Neste estudo, foram realizadas medidas de concentração através da utilização de micro sonda de oxigênio, em tanque de grade oscilante. A dimensão do elemento sensor da micro sonda é da ordem de alguns micra. Os resultados demonstram a possibilidade de medir, sob condições turbulentas controladas similares às encontradas no ambiente, as flutuações de concentração de oxigênio no interior da camada limite existente imediatamente abaixo da interface ar-água.Gas transfer across the air-water interface is an important process for large-scale climate cycles as well as smaller environmental systems such as rivers, lakes, streams, and wastewater treatment basins. To improve the understanding of the basic principles involved in this phenomenon it is necessary to use suitable apparatus and experimental techniques. In this study, a microprobe has been used for measurements of oxygen concentration in an oscillating-grid tank. The microprobe has tip dimensions of the order of a few microns. The results demonstrate that it is feasible to measure, under controlled turbulence conditions that are representative for environmental situations, the fluctuating oxygen concentrations that take place in a boundary layer below the air-water interface.

  2. Oxygen detection using evanescent fields

    Science.gov (United States)

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  3. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive never ripe tomato mutants.

    Science.gov (United States)

    Tari, Irma; Poór, Péter; Gémes, Katalin

    2011-09-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of RO S and a higher NO content in the apical root cells. In wild-type plants NO production seems to be RO S(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant RO S accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10(-3) M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.

  4. Oxygen Therapy

    Science.gov (United States)

    ... oxygen at very high altitudes (like in the mountains or in an airplane) even if you do ... Med Vol 171. P1-P2, 2005 ATS Patient Education Series © 2016 American Thoracic Society www. thoracic. org ...

  5. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  6. Effects of dissolved oxygen concentration and flow velocity on corrosion of carbon steel in tap water; Suidosuichu ni okeru tansoko fushoku ni oyobosu yoson sanso nodo to ryusoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M.; Ouchi, M. [Miura Institute of Research and Development, Ehime (Japan); Fujii, T.; Shiraishi, H.; Kawahito, A. [Miura Co. Ltd., Ehime (Japan)

    1998-05-15

    Discussions were given on the effects of dissolved oxygen (DO) concentration and flow velocity on temporary corrosion of carbon steel in tap water by using a membrane-type deaerator which uses a hollow fiber membrane for air separation. In deaerated air with DO at 0.5 mg per liter, active corrosion took place, in which corrosion rate increases with flow velocity in a range from 0.5 to 2.0 m/s. The corrosion rate in a carbon steel in deaerated air with flow velocity of 0.5 m/s and DO of 0.5 mg per liter decreased to 1/4 to 1/5 of that in non-deaerated water, showing effectiveness in preventing corrosion and red water in pipings in buildings. The corrosion prevention effect is more excellent especially in low flow velocity regions, meaning it being suitable for corrosion prevention in building pipings for water supply which is low in flow velocity and often subjected to stagnation. It was found that, even at about the same flow velocity, the deaerated water is on the safer side than the non-deaerated water. With waters having DO of 2.0 and 4.0 mg per liter, the corrosion rate decreased when flow velocity is higher than 1 m/s, with appearance of passivation trend. There is a relation with high reproducibility between the corrosion rate in the carbon steel and oxygen supply amount, whereas the curve showed a maximum value. This maximum value is thought a transition point from active state corrosion to passive state corrosion. 9 refs., 6 figs., 2 tabs.

  7. Continuous home oxygen therapy.

    Science.gov (United States)

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  8. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    Science.gov (United States)

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  9. A Low-Power Medical Oxygen Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. The commercial medical oxygen generators based on...

  10. A Compact Medical Oxygen Generator for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An on-board oxygen concentrator is required during long duration manned space missions to supply medical oxygen. Commercial medical oxygen generators are pressure...

  11. The Measurement of Dissolved Oxygen

    Science.gov (United States)

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  12. 溶解氧浓度对连续流活性污泥工艺反硝化除磷的影响%Effects of dissolved oxygen concentration on denitrifying phosphorus removal in continuous-flow activated sludge process

    Institute of Scientific and Technical Information of China (English)

    王荣昌; 司书鹏; 郑翔; 杨殿海; 励建全; 赵建夫

    2011-01-01

    @@ 引言 随着水体富营养化问题的日渐突出,污水处理技术逐渐从单一去除有机物为目的的阶段进入既要去除有机物又要脱氮除磷的深度处理阶段[1].%Effects of dissolved oxygen (DO) concentration on removal performance of nitrogen and phosphorus were investigated in a pilot-scale anaerobic-anoxic-aerobic (A2/O) activated sludge process for treating municipal wastewater. During run operation, sludge recycling ratio and internal mixed liquid recirculation ratio were kept constant at 150% and 100%, respectively. The results showed that DO concentration played an important role in nutrient removal by A2/O process. Denitrifying phosphorus removal was observed when aerobic tank was kept at low DO (DO=1. 0-1.5 mg · L-1) conditions. The best performance of nutrient removal was achieved when DO concentration was kept at 0. 2 mg · L-1 in anoxic tank and 1.0 mg · L-1 in aerobic tank. Total nitrogen (TN) and total phosphorus (TP) removal was about 64.6% and 89.6%, respectively. TN and TP concentration in the effluent was (11.9± 5. 3)mg · L-1and (0. 17±0.09) mg· L-1 , respectively. TP removal in anoxic tank was about 48.2% of the total TP removal by the whole process. Denitrifying phosphorus removal became an important way of dephosphorization. Denitrifying phosphorus removal bacteria (DPB) accounted for 55.7% of the total phosphorus accumulating organisms (PAOs) based on the results of denitrifying phosphorus removal activity analysis. The analysis for particle diameter distributions showed that the particle diameter of activated sludge in aerobic tank was larger than those in anaerobic and anoxic tanks. Larger particle diameter resulted in the existence of anaerobic or anoxic microenvironments in the sludge particles in aerobic tank, which favored the survival and propagation of DPBs in the whole system. Therefore, the nutrient removal performance and cost-efficiency of conventional activated sludge processes can

  13. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  14. The natural history of oxygen.

    Science.gov (United States)

    Dole, M

    1965-09-01

    The nuclear reactions occurring in the cores of stars which are believed to produce the element oxygen are first described. Evidence for the absence of free oxygen in the early atmosphere of the earth is reviewed. Mechanisms of creation of atmospheric oxygen by photochemical processes are then discussed in detail. Uncertainty regarding the rate of diffusion of water vapor through the cold trap at 70 km altitude in calculating the rate of the photochemical production of oxygen is avoided by using data for the concentration of hydrogen atoms at 90 km obtained from the Meinel OH absorption bands. It is estimated that the present atmospheric oxygen content could have been produced five to ten times during the earth's history. It is shown that the isotopic composition of atmospheric oxygen is not that of photosynthetic oxygen. The fractionation of oxygen isotopes by organic respiration and oxidation occurs in a direction to enhance the O(18) content of the atmosphere and compensates for the O(18) dilution resulting from photosynthetic oxygen. Thus, an oxygen isotope cycle exists in nature.

  15. The generation of oxygen radicals after drinking of oxygenated water.

    Science.gov (United States)

    Schoenberg, M H; Hierl, T C; Zhao, J; Wohlgemuth, N; Nilsson, U A

    2002-03-28

    It has been speculated whether ingestion of oxygenated water can lead to an enhanced generation of oxygen radicals. The purpose of three prospective randomized blinded clinical studies was therefore to measure if, when and at which oxygen content in the water,drinking of oxygenated water induces the generation of radicals. Moreover in the fourth prospective,randomized, blinded study possible longterm effects of drinking oxygenated water were examined. Altogether 66 volunteers were drinking 300 ml oxygenated or tap water within 15 minutes. Before drinking, altogether 15 ml of blood from the antecubital vein was collected for determination of ascorbyl radicals with ESR, routine laboratory data (hemoglobin, erythrocytes, hematocrit, leukocytes, thrombocytes, uric acid) and the vitamins A,C,E by HPLC. After drinking the ascorbyl radical measurements were repeated from blood of the antecubital vein. In the longterm study ( fourth study) the volunteers had to undergo the same procedure, as described above, at day 1 and day 21. In the meantime they were drinking per day three times 300 ml either oxygenated water or tap water. All subjects exhibited normal vitamin levels in all three studies. Concommitantly in the fourth study there was no statistically relevant alteration of vitamin concentrations during the observation period of three weeks in the verum and placebo-group. 30 minutes after drinking oxygenated water the concentration of ascorbyl radicals increased significantly by median 42 % from median 48 to 65 nmol/l. This increase of ascorbyl radicals after 30 minutes was reproducible in all studies. The levels of ascorbyl radicals remained elevated for 60 minutes after drinking and returned to normal after 120 minutes. This increase was independent of the oxygen concentration in the water, beginning at 30 mg oxygen/l. Water containing 15 mg oxygen/l did not lead to an enhanced radical formation. Longterm consumption of oxygenated water attenuated the ascorbyl radical

  16. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    and bottom water very low concentration. The stations at the freshwater end showed relatively higher oxygen concentration than the stations at the sea-end. Plots of oxygen against salinity showed peaks at the extreme ends (freshwater and seawater). Another...

  17. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  18. Reversible Oxygenation of Oxygen Transport Proteins.

    Science.gov (United States)

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  19. Double wavelengths ratio in detection of the concentrations of reactive oxygen species%双波长比例法测定单细胞活性氧探析

    Institute of Scientific and Technical Information of China (English)

    赵成瑞; 崔香丽; 吴博威

    2011-01-01

    Objective To establish the double wavelengths ratio for detecting the concentrations of reactive oxygen species( ROS) in single cell. Methods ①Adult rat cardiomyocytes were isolated by enzymatic dissociation. Fluorescence signals of the single cell were recorded by the ion imaging system for finding Lhe two excitation wavelengths which made the biggest and the smallest fluorescence signal intensities. ②Cardiomyocytes were perfused with BPS4 to imitate the ischemia/reperfusion model. Some cardiomyocytes were reperfused with GSH. The intracellular ROS concentrations were measured. ,Results ①The values of the fluorescence intensity at 480 nm and 420 nm were the higgest and smallest . respectively. F480/F420 was used to represenl the intracellular ROS concentrations. ②At mimic ischemia and reperfusion stages,intracellular ROS fluorescence intensities ( F480/F420) increased progressively to ( 115. 27 ±4. 52) % and ( 1 16. 99 ± 3. 99 ) % of pre-ischemia respectively. When CSH was used in reperfusion , ROS fluorescence intensity decreased quickly to ( 101. 14 ±3. 20) % of pre-ischemia. Conclusion Double wavelengths ratio could be used to detect intracellular ROS.%目的 建立双波长比例法测定单细胞活性氧的方法. 方法 ①酶法急性分离成年大鼠心室肌细胞,用离子影像系统测定荧光信号,确定荧光强度值变化相反的两个激发光波长.②BPS-4装置灌流心肌细胞,模拟心肌缺血/再灌注模型及再灌注时应用还原型谷胱甘肽,用双波长比例法测定细胞内活性氧含量变化,验证此法. 结果 ①荧光强度值最大和最小的激发光波长分别是:480 nm和420 nm,以F480/F420的比值表示活性氧的含量.②心室肌细胞在模拟缺血期和恢复再灌注期的相对F480/F420分别为缺血前的(115.27±4.52)%和(116.99±3.99)%,在再灌注期给予GSH,则活性氧含量降为缺血前的(101.14±3.20)%. 结论 双波长比例法可用于测定细胞内活性氧.

  20. 冰温结合不同比例氧气气调对冷却肉的保鲜效果%Effect of modified atmosphere package with varying oxygen concentrations combined with controlled freezing-point storage on pork fresh-keeping

    Institute of Scientific and Technical Information of China (English)

    谢晶; 李建雄; 潘迎捷

    2009-01-01

    试验研究了在冰温基础上结合不同含氧比例气调对冷却猪肉保鲜的影响,试验设置冰温、冷藏(4℃)、真空包装+冰温、20%CO_2+80%O_2(高氧)+冰温、20%CO_2+20%O_2+60%N_2(低氧)+冰温、20%CO_2+80%N_2(无氧)+冰温6个试验组,测定菌落总数、挥发性盐基氮、汁液流失率、保水能力和色差.结果表明:冰温条件下高氧和低氧的菌落总数24 d还未超过冷却肉卫生标准,且两组之间无显著差异(P>0.05);在整个贮藏期内高氧气调和低氧气调可以维持冷却肉的色泽在一个小的范围内变化;高氧气调和低氧气调8 d后汁液流失率显著高于单纯冰温和无氧气调(P<0.05),高氧气调12 d后汁液流失率显著高于低氧气调(P<0.05),同时高氧气调8 d后持水能力显著大于低氧气调(P<0.05).在冰温条件下,80%O_2和20%O_2都能长时间维护冷却肉的色泽,均能较好抑制微生物的增殖,但在汁液流失率、保水能力方面各有优势.%Effect of modified atmosphere packaging with varying oxygen concentrations combined controlled freezing-point storage on pork fresh-keeping was studied. By determining physicochemical parameters such as total plate count, total volatile base nitrogen (TVB-N), drip loss, water holding capacity and color, the qualities of pork under controlled freezing-point storage, chill storage, vacuum package+controlled freezing-point storage, 20%CO_2+80%O_2 (high oxygen)+controlled freezing-point storage, 20%CO_2+20%O_2+60%N_2 (low oxygen)+controlled freezing-point storage and 20%CO_2+80%N_2(no oxygen)+controlled freezing-point storage were compared. It showed that total plate count under high oxygen and low oxygen did not exceed the hygiene standard of pork after twenty-four days, and there was no significant difference between them(P>0.05). High oxygen modified atmosphere package(MAP) and low oxygen MAP maintained the color better. The drip losses of high oxygen MAP and low oxygen MAP after eight

  1. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  2. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  3. Design and Development of Electrochemical Oxygen Meter in Liquid Sodium

    Institute of Scientific and Technical Information of China (English)

    WANG; Mi; DONG; Jing-ya; MI; Zheng-feng; FU; Xiao-gang

    2015-01-01

    Dissolved oxygen concentration is of particular importance in characterizing sodium attack,so an accurate means of measuring and controlling oxygen is crucial.China Institute of Atomic Energy has been developing online oxygen meter for liquid sodium since last year.Oxygen meter can

  4. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    Science.gov (United States)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  5. PERFORMANCE OF A SEQUENTIAL MOVING BED BIOFILM REACTOR UNDER DIFFERENT DISSOLVED OXYGEN CONCENTRATIONS = DESEMPENHO DE UM REATOR SEQUENCIAL COM BIOFILME EM LEITO MÓVEL SOB DIFERENTES CONCENTRAÇÕES DE OXIGÊNIO

    Directory of Open Access Journals (Sweden)

    Rodrigo de Freitas Bueno

    2015-11-01

    Full Text Available The study evaluated the behavior of a mobile pilot containing plastic substrates system (carries for treatment of domestic sewage in different Dissolved oxygen (DO. For evaluation of the process were put into operation two reactors under equal conditions, differing only by the introduction in one of the support means (called SMBBR; that without the support medium, SBR. The study had two main steps, the first systems were operated in the range of 1.5-2.0 DO mgO2/L (typical value for such a procedure resulted in a COD removal exceeding 90%, nitrogen and total phosphorus exceeding 78% in both reactors. In Step II, the systems were operated with a DO concentration in the range of 0.3-0.8 mgO2/L, in order to evaluate the effect of lowering the DO concentration in the removal of organic material, and strengthening the process of denitrification. The results at this stage showed a COD removal and total nitrogen exceeding 90% and 83% total phosphorus. When comparing the results between steps, it can be said that the decrease in DO concentration did not affect the removal of organic matter and nutrients, and the fact improve the removal of total nitrogen the biggest gain this operating configuration is related to spending energy required for aeration system where you can get a reduction of 68% less than traditional processes. Further, during operation of the system SMBBR process was more stable than the SBR operable not is being adversely affected by the influent load variations. = O objetivo do estudo foi avaliar o comportamento de um sistema piloto contendo suportes plásticos móveis (carries para tratamento de esgoto sanitário em diferentes concentrações de oxigênio dissolvido (OD. Para avaliação do processo foram colocados em operação dois reatores sob condições iguais, diferindo apenas pela introdução em um deles do meio suporte (denominado SMBBR; aquele sem meio suporte, de SBR. O estudo teve duas etapas principais, na primeira os

  6. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular sta...... concentrations. The method was demonstrated on nitrifying biofilms growing on snail and mussel shells, showing clear effects of metabolic activity on oxygen concentrations. © 2014 Wiley Periodicals, Inc....

  7. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  8. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  9. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    Science.gov (United States)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  10. Scheele's Priority for the Discovery of Oxygen

    Science.gov (United States)

    Cassebaum, H.; Schufle, J. A.

    1975-01-01

    Concludes that Carl Scheele first observed oxygen and clearly understood what he was observing in June 1771, when he heated manganese dioxide with concentrated sulfuric acid. This was more than three years before Lavoisier or Priestley (who is usually credited with the discovery of oxygen) made similar observations. (Author/MLH)

  11. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  12. Atmospheric oxygenation three billion years ago

    DEFF Research Database (Denmark)

    Crowe, Sean; Døssing, Lasse Nørbye; Beukes, Nicolas J.;

    2013-01-01

    It is widely assumedthat atmospheric oxygen concentrations remained persistently low (less than 1025 timespresent levels) for about the first 2 billion years of Earth’s history1. The first long-term oxygenation of the atmosphere is thought tohave taken place around2.3 billion years ago, during th...

  13. Atmospheric oxygenation three billion years ago

    DEFF Research Database (Denmark)

    Crowe, Sean; Døssing, Lasse Nørbye; Beukes, Nicolas J.

    2013-01-01

    It is widely assumedthat atmospheric oxygen concentrations remained persistently low (less than 1025 timespresent levels) for about the first 2 billion years of Earth’s history1. The first long-term oxygenation of the atmosphere is thought tohave taken place around2.3 billion years ago, during th...

  14. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  15. Microsheet Glass In Solar Concentrators

    Science.gov (United States)

    Richter, Scott W.

    1993-01-01

    Microsheet glass used as highly protective covering material for developmental concentrating reflectors for solar power systems. Together with other materials, possible to fabricate lightweight, highly reflective, accurate, and long-lived concentrators. Desirable properties include durability and smoothness. Glass not affected by ultraviolet radiation, and not degraded by atomic oxygen, found in low orbits around Earth. Though concentrators intended for use in outer space, noteworthy that terrestrial concentrator fabricated with glass sheet 0.7 mm thick.

  16. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    Science.gov (United States)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  17. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  18. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  19. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  20. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne

    2014-01-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late...... Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first...... appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans...

  1. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti;

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...... solutions were obtained for the problem. Moreover, the numerical solution is sufficiently general that it can be used to simulate oxygen concentration profiles in films consisting of more than two layers. Data obtained from the bilayer films yield a diffusion coefficient for oxygen in poly...

  2. Spatial Variations in Vitreous Oxygen Consumption.

    Science.gov (United States)

    Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark

    2016-01-01

    We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M(-1) s(-1) ± 0.708 M(-1) s(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration.

  3. The debate on continuous home oxygen therapy.

    Science.gov (United States)

    Díaz Lobato, Salvador; García González, José Luis; Mayoralas Alises, Sagrario

    2015-01-01

    Two studies published in the early 80s, namely the Nocturnal Oxygen Therapy Trial (NOTT) and the Medical Research Council Trial (MRC), laid the foundations for modern home oxygen therapy. Since then, little progress has been made in terms of therapeutic indications, and several prescription-associated problems have come to light. Advances in technology have gone hand in hand with growing disregard for the recommendations in clinical guidelines on oxygen therapy. The introduction of liquid oxygen brought with it a number of technical problems, clinical problems related to selecting candidate patients for portable delivery devices, and economic problems associated with the rising cost of the therapy. Continuous home oxygen therapy has been further complicated by the recent introduction of portable oxygen concentrators and the development in quick succession of a range of delivery devices with different levels of efficiency and performance. Modern oxygen therapy demands that clinicians evaluate the level of mobility of their patients and the mobility permitted by available oxygen sources, correctly match patients with the most appropriate oxygen source and adjust the therapy accordingly. The future of continuous home oxygen therapy lies in developing the ideal delivery device, improving the regulations systems and information channels, raise patient awareness and drive research. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  4. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  5. Oxygen saturations of medical inpatients in a Malawian hospital: cross-sectional study of oxygen supply and demand

    Directory of Open Access Journals (Sweden)

    Hywel-Gethin Tudur Evans

    2012-05-01

    Full Text Available Normal 0 false false false EN-GB JA X-NONE Oxygen is a World Health Organisation listed essential drug yet provision of oxygen in developing countries often fails to meet demand.  The aim of this study was to evaluate the need for supplementary oxygen against oxygen delivery capacity at a large teaching hospital in Malawi.  A cross‐sectional study of all adult medical inpatients and assessment of oxygen provision over a 24‐hour period was conducted.    144 patients were included in the study, 14 of whom met local and international criteria for oxygen therapy (oxygen saturations of <90%.  Four were receiving oxygen.  Of the 8 oxygen concentrators available, only 4 were functional.  In conclusion, we identified a need for oxygen that was greater than the supply.

  6. Transabdominal oxygenation using perfluorocarbons.

    Science.gov (United States)

    Chiba, T; Harrison, M R; Ohkubo, T; Rollins, M D; Albanese, C T; Jennings, R W

    1999-05-01

    Evaluation of the intraabdominal (intraperitoneal and intraluminal) administration of oxygen-saturated perfluorocarbon on both portal and arterial blood oxygenation. Eight male rabbits were divided into the test (n = 5) and control (n = 3) groups. Each underwent intrajejunal, intraperitoneal, and intravascular (artery, portal vein) catheter placements along with ligation of the duodenum and the terminal ileum under general anesthesia. The test group received oxygen-saturated perfluorotripropylamine (FTPA), and the control group received oxygen desaturated FTPA. The oxygen delivery was assessed by serial blood gas measurements before and after the administration of FTPA. The administration of oxygen-saturated FTPA significantly increased the partial pressure of oxygen within both the arterial and the portal venous blood (PaO2, PpVO2) without significant changes in PCO2 values. Oxygen desaturated FTPA failed to show any effects on blood gas values. Compared with oxygen desaturated FTPA, oxygen-saturated FTPA increased PaO2, PpVO2, and oxygen saturation (artery, portal vein) significantly at some, but not all of the time-points measured. The intraabdominal administration of saturated FTPA improved both the portal venous and the arterial oxygenation. This new mode of oxygenation may be helpful as an adjunct to conventional oxygen delivery systems.

  7. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  8. Oxygen permeable membrane for oxygen enriched combustion

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S. (Matsushita Research Inst., Tokyo, Japan); Saito, Y.; Kawahito, M.; Ito, Y.; Tsuchiya, S.; Sugata, K.

    1983-02-01

    An oxygen enriched air production system using gas separation membranes has been developed to be used for fuel combustion systems. High oxygen permeable scopolymers, including three dimensional structure, have been synthesized through condensation of polyvinylphenol with some, ..cap alpha..,..omega..-bis (diethylamino) polydimethylsiloxanes. The experimental results showed that the oxygen permeability through the copolymer varies as a function of the dimethylsiloxane content of the copolymers. Such composition dependence of the oxygen permeability was explained on the basis of polymer constitution. Typical values of the oxygen permeability, 3.4 x 10/sup -8/ (cc x cm/cm/sup 2/ x sec x cmHg) and ..cap alpha.., 2.1, were obtained at 72% of dimethylsiloxane content. The copolymers are soluble in most common organic solvents and uniform, defect-free membranes as thin as 1000 Angstroms have been formed by spreading solutions of the copolymer on water. Composite membranes fabricated by applying the membranes to porous support materials were used for practical gas separation and 30% oxygen enriched air was produced from ambient air. A new type oxygen enriched combustion system, which is more efficient for energy saving, has been developed by utilizing oxygen enriched air thus produced. 15 references, 15 figures, 1 table.

  9. Influence of oceanographic fronts and low oxygen on the distribution ...

    African Journals Online (AJOL)

    The study focuses on ichthyoplankton populations in the southern Angola Current, the ... in relation to distribution patterns of temperature, salinity and dissolved oxygen. ... It is hypothesised that low oxygen concentrations have a strong impact on the ... fish larvae, hypoxia, ichthyoplankton, oxygen minimum layer, recruitment

  10. Oxygen dynamics and flow patterns of Dysidea avara (Porifera: Demospongiae)

    NARCIS (Netherlands)

    Schläppy, M.L.; Hoffmann, F.; Roy, H.; Wijffels, R.H.; Mendola, D.; Sidri, M.; Beer, de D.

    2007-01-01

    The present publication presents oxygen properties and pumping behaviour of Dysidea avara. Oxygen profiles were measured near and inside the atrial space of the osculum with a Clark-type micro-electrode. Pumping sponges had profiles with oxygen concentrations marginally lower than that of the

  11. Concentrated Ownership

    DEFF Research Database (Denmark)

    Rose, Caspar

    2014-01-01

    , especially minority shareholders. Concentrated ownership is associated with benefits and costs. Concentrated ownership may reduce agency costs by increased monitoring of top management. However, concentrated ownership may also provide dominating owners with private benefits of control.......This entry summarizes the main theoretical contributions and empirical findings in relation to concentrated ownership from a law and economics perspective. The various forms of concentrated ownership are described as well as analyzed from the perspective of the legal protection of investors...

  12. Oxygen Effects in Anaerobic Digestion - II

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2010-04-01

    Full Text Available Standard models describing bio-gasification using anaerobic digestion do not include necessary processes to describe digester dynamics under the conditions of oxygen presence. Limited oxygenation in anaerobic digestion can sometimes be beneficial. The oxygen effects included anaerobic digestion model, ADM 1-Ox, was simulated against experimental data obtained from laboratory scale anaerobic digesters operated under different oxygenation conditions. ADM 1-Ox predictions are generally in good agreement with the trends of the experimental data. ADM 1-Ox simulations suggest the existence of an optimum oxygenation level corresponding to a peak methane yield. The positive impact of oxygenation on methane yield is more pronounced at conditions characterized by low hydrolysis rate coefficients (slowly degradable feed and low biomass concentrations. The optimum oxygenation point moves towards zero when the hydrolysis rate coefficient and the biomass concentration increase. Accordingly, the impact of oxygenation on methane yield can either be positive or negative depending on the digestion system characteristics. The developed ADM 1-Ox model can therefore be a valuable tool for recognizing suitable operating conditions for achieving the maximum benefits from partial aeration in anaerobic digestion.

  13. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  14. Measuring Traces Of Oxygen By Resonant Electron Attachment

    Science.gov (United States)

    Man, Kin Fung; Boumsellek, Said; Chutjian, Ara

    1995-01-01

    Method of detecting trace amounts of oxygen based on dissociative attachment of electrons to oxygen molecules followed by measurement of resulting flux of negative oxygen ions in mass spectrometer. High sensitivity achieved in method by exploiting resonance in dissociative attachment of electrons to oxygen molecules: electron-attachment cross section rises to high peak at incident electron kinetic energy of 6.2 eV. Relative concentrations below 1 ppb detected. Devised to increase sensitivity of detection of oxygen in processing chambers in which oxygen regarded as contaminant; for example, chambers used in making semiconductor devices and in growing high-purity crystals.

  15. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...

  16. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J;

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  17. Oxygen status during haemodialysis. The Cord-Group

    DEFF Research Database (Denmark)

    Nielsen, A L; Jensen, H Æ; Hegbrant, J

    1995-01-01

    Hypoxia during haemodialysis, mainly acetate, has been reported several times. In our study we have monitored oxygen status during 258 bicarbonate haemodialyses. A significant drop below 80 mmHg in mean oxygen tension occurred. Mean oxygen saturation reflected this drop but did not reach levels...... below 90%. The mean oxygen concentration was on the whole critical low, though slightly increasing during each haemodialysis session due to ultrafiltration. It is concluded that both hypoxia and hypoxaemia do occur during bicarbonate haemodialysis. To a group of patients generally having limited cardiac...... reserves, a poor oxygen status is a potentially serious complication to haemodialysis. Monitoring oxygen status is thus advisable....

  18. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  19. Hyperbaric oxygen therapy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  20. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  1. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  2. Home Oxygen Therapy

    Science.gov (United States)

    ... Teenagers Living With Lung Disease Articles written by Respiratory Experts Home Oxygen Therapy More and more people are using oxygen therapy ... April 12, 2012 Revised: © 2017 American Association for Respiratory Care

  3. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  4. Cryptococcus neoformans and oxygen

    OpenAIRE

    Vladislav,Raclavsky

    2006-01-01

    Oxygen is essential to life of all organisms except for obligate anaerobic species, because it is necessary for energy generation and also for some biosynthetic pathways. However, sensitivity to low oxygen levels can vary widely in different organisms and cell types. The pathogenic yeast species Cryptococcus neoformans is known to love oxygen. In response to the lack of oxygen (hypoxia), this yeast delays budding without resigning DNA replication, which eventually results in unique cell cycle...

  5. Rational use of oxygen in medical disease and anesthesia

    DEFF Research Database (Denmark)

    Meyhoff, Christian S; Staehr, Anne K; Rasmussen, Lars S

    2012-01-01

    Supplemental oxygen is often administered during anesthesia and in critical illness to treat hypoxia, but high oxygen concentrations are also given for a number of other reasons such as prevention of surgical site infection (SSI). The decision to use supplemental oxygen is, however, controversial......, because of large heterogeneity in the reported results and emerging reports of side-effects. The aim of this article is to review the recent findings regarding benefits and harms of oxygen therapy in anesthesia and acute medical conditions....

  6. Cool oxygen plasma oxidation of the organic matter of coal

    Energy Technology Data Exchange (ETDEWEB)

    Korobetskii, I.A.; Nazimov, S.A.; Romanchuk, V.V. [COAL-C Ltd., Kemerovo (Russian Federation)

    1997-12-31

    Oxidation of the sapropelitic coals has been carried out by cool oxygen plasma. The changes in concentration of oxygen- and hydrogen-containing groups of organic matter were observed by photoacoustic FTIR-spectroscopy during the cool oxygen plasma oxidation (COPO). The accumulation of oxygen-containing bands, such as C-O and O-H, during COPO was shown. The complete elimination of aromatic and aliphatic structure occurred in first two hours of oxidation. (orig.)

  7. Oxygen requirements of the earliest animals

    Science.gov (United States)

    Mills, Daniel B.; Ward, Lewis M.; Jones, CarriAyne; Sweeten, Brittany; Forth, Michael; Treusch, Alexander H.; Canfield, Donald E.

    2014-03-01

    A rise in the oxygen content of the atmosphere and oceans is one of the most popular explanations for the relatively late and abrupt appearance of animal life on Earth. In this scenario, Earth's surface environment failed to meet the high oxygen requirements of animals up until the middle to late Neoproterozoic Era (850-542 million years ago), when oxygen concentrations sufficiently rose to permit the existence of animal life for the first time. Although multiple lines of geochemical evidence support an oxygenation of the Ediacaran oceans (635-542 million years ago), roughly corresponding with the first appearance of metazoans in the fossil record, the oxygen requirements of basal animals remain unclear. Here we show that modern demosponges, serving as analogs for early animals, can survive under low-oxygen conditions of 0.5-4.0% present atmospheric levels. Because the last common ancestor of metazoans likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content of the atmosphere and oceans. Instead, other ecological and developmental processes are needed to adequately explain the origin and earliest evolution of animal life on Earth.

  8. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  9. Identification of an Archean marine oxygen oasis

    Energy Technology Data Exchange (ETDEWEB)

    Riding, Dr Robert E [University of Tennessee (UT); Fralick, Dr Philip [Lakehead University, Canada; Liang, Liyuan [ORNL

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  10. 铜富氧底吹熔池熔炼过程机理及多相界面行为%Mechanism and multiphase interface behavior of copper sulfide concentrate smelting in oxygen-enriched bottom blowing furnace

    Institute of Scientific and Technical Information of China (English)

    郭学益; 王亲猛; 廖立乐; 田庆华; 张永柱

    2014-01-01

    通过深入分析铜富氧底吹熔池熔炼过程,结合铜冶金过程相关理论,构建了底吹熔炼体系机理模型。该模型在反应区沿纵向分为7个功能层,分别为烟气层、矿料分解过渡层、渣层、造渣过渡层、造锍过渡层、弱氧化层和强氧化层;炉内沿横向分为反应区、分离过渡区和液相澄清区3个功能区;各层/区分别承担不同的功能,构成一个有机整体,在熔体流场作用下,体系中多相多组元如CuFeS2、FeS2、Cu2S、FeS、2FeO·SiO2、Cu2O、FeO、Fe3O4、SO2、H2O、N2、S2等因物化性质差异,通过层/区间的界面进行快速传质行为;底吹熔炼体系处于动态的非稳态相平衡状态,氧势-硫势在炉内纵向及横向方向上均有梯度变化,通过合理控制不同层/区的氧势-硫势大小,可强化反应过程,进一步提升底吹炉熔炼能力。%Mechanism model of copper oxygen-enriched bottom blowing smelting (BBS) is constructed by analyzing smelting process deeply, combined with related theories of copper metallurgical process. Model ’s cross section includes seven functional layers, i.e. gas layer, mineral decomposition transition layer, slag layer, slag formation transition layer, matte formation transition layer, weak oxide layer and strong oxide layer. Longitudinal section is divided into three functional regions, including reaction region, separation transition region and liquid phase clarification region. The layers or regions play different roles and constitute an organic unit. Ploycomponent, such as CuFeS2,FeS2,Cu2S,FeS,2FeO·SiO2,Cu2O,FeO,Fe3O4,SO2,H2O,N2 and S2, transfers quickly through the interface between different layers and regions, with the effect of character differentiation and fluid flow. BBS is at the state of dynamic non-steady multiphase equilibrium, and the value of oxygen and sulfur potential changes gradually in longitudinal and cross direction, and the capacity of BBS can be

  11. THE EFFECT OF LOW CONCENTRATION OXYGEN INHALATION ON TRACHEA AND LUNG TISSUE OF THE RATS EXPOSED TO FORMALIN%低浓度吸氧对福尔马林暴露大鼠气管及肺组织的保护作用

    Institute of Scientific and Technical Information of China (English)

    聂晓进; 刘海平; 王切; 任国山

    2012-01-01

    目的 给予福尔马林暴露大鼠吸入低浓度氧气后,观察其气管及肺组织的光、电镜形态学改变,为预防及治疗福尔马林对呼吸系统的损伤提供理论基础.方法 18只雄性SD大鼠随机分成对照组、福尔马林暴露组、福尔马林暴露+吸氧组,每组6只.对照组大鼠呼吸自然空气,福尔马林暴露组大鼠及福尔马林暴露+吸氧组大鼠每天吸入福尔马林12h,福尔马林暴露+吸氧组大鼠福尔马林暴露完毕后立即吸入浓度为29%的氧气,1次/d,1h/次.对照组和福尔马林暴露组大鼠此时呼吸自然空气.连续吸入25d后处死大鼠取气管、肺组织,通过光学显微镜和透射电镜观察其形态学改变.结果 与福尔马林暴露组相比,福尔马林暴露+吸氧组大鼠光学显微镜下可见气管及肺组织的水肿及炎性改变均有所减轻,透射电镜下虽然板层小体结构仍显紊乱,但Ⅱ型肺泡上皮细胞胞浆内未见空泡;肺泡腔内虽仍可见红细胞及少量坏死细胞碎片,但也未见空泡.结论 低浓度吸氧可改善福尔马林暴露所导致的大鼠气管及肺组织的病理损伤.%Objective SD rats inhaled low concentration oxygen after exposed to formalin and the morphology change of trachea and lung tissue was observed to provide a theoretical basis for the prevention and treatment of respiratory system damage induced by formalin. Methods Eighteen SD rats were randomly divided into control group, formalin group and formalin + oxygen group. Control group breathed air in the box. Formalin group and formalin + oxygen group inhaled formalin for 12 hours every day in the box. After formalin exposure,the control group and formalin group breathed air,The formalin + oxygen group was immediately provided with 29% oxygen in a airtight container for one hour every day. After 25 days, the morphology change of trachea and lung tissue was observed by the optical microscope and transmission electron microscope. Results

  12. Concentration risk

    Directory of Open Access Journals (Sweden)

    Matić Vesna

    2016-01-01

    Full Text Available Concentration risk has been gaining a special dimension in the contemporary financial and economic environment. Financial institutions are exposed to this risk mainly in the field of lending, mostly through their credit activities and concentration of credit portfolios. This refers to the concentration of different exposures within a single risk category (credit risk, market risk, operational risk, liquidity risk.

  13. The impact of arterial oxygen tension on venous oxygen saturation in circulatory failure.

    Science.gov (United States)

    Ho, Kwok Ming; Harding, Richard; Chamberlain, Jenny

    2008-01-01

    Central and mixed venous oxygen saturations have been used to guide resuscitation in circulatory failure, but the impact of arterial oxygen tension on venous oxygen saturation has not been thoroughly evaluated. This observational study investigated the impact of arterial oxygen tension on venous oxygen saturation in circulatory failure. Twenty critically ill patients with circulatory failure requiring mechanical ventilation and a pulmonary artery catheter in an intensive care unit in a tertiary hospital in Western Australia were recruited. Samples of arterial blood, central venous blood, and mixed venous blood were simultaneously and slowly drawn from the arterial, central venous, and pulmonary artery catheter, respectively, at baseline and after the patient was ventilated with 100% inspired oxygen for 5 min. The blood samples were redrawn after a significant change in cardiac index (>or =10%) from the baseline, occurring within 24 h of study enrollment while the patient was ventilated with the same baseline inspired oxygen concentration, was detected. An increase in inspired oxygen concentration significantly increased the arterial oxygen tension from 12.5 to 38.4 kPa (93.8-288 mmHg) (mean difference, 25.9 kPa; 95% confidence interval [CI], 7.5-31.9 kPa; P arterial oxygen tension on venous oxygen saturation was more significant than the effect associated with changes in cardiac index (mean difference, 2.8%; 95% CI, -0.2% to 5.8%; P = 0.063). In conclusion, arterial oxygen tension has a significant effect on venous oxygen saturation, and this effect is more significant and consistent than the effect associated with changes in cardiac index.

  14. Effects of purge step on enrichment of low concentration oxygen-bearing coal mine methane based on proportion pressure swing adsorption%反吹过程对等比例变压吸附法分离富集低浓度含氧煤层气的影响

    Institute of Scientific and Technical Information of China (English)

    李永玲; 刘应书; 杨雄; 孟宇; 张传钊

    2012-01-01

    The safety of the adsorption process for low concentration (less than 30% ) coal mine methane was analyzed and studied based on the theory of coward explosion triangle, and then a new safe method for enriching low concentration coal mine methane, called the proportion pressure swing adsorption (PPSA) , was put forward. Furthermore , the effects of purge steps on the enrichment process for low concentration coal mine methane based on proportional pressure swing adsorption were investigated experimentally. The results show that purge steps are helpful to decreasing the oxygen and methane concentration in the exhaust gas, and the oxygen and methane concentration decrease with the increase of the purge time. But the purge steps also decrease the methane concentration in the product. So purge steps can be used in the PPSA process to make the oxygen concentration of the exhaust gas in the safe range and ensure the safety of the enrichment for low concentration coal mine. But the purge time should be appropriately controlled to prevent the methane concentration in the desorption gas from reducing too much.%在Coward爆炸三角形的基础上分析研究了低浓度煤层气(甲烷浓度低于30%)吸附富集过程的安全性,提出了一种安全分离富集低浓度煤层气的方法——等比例变压吸附(PPSA)法,并且通过实验研究了用PPSA法时增加反吹过程对低浓度煤层气吸附富集效果和安全性的影响.结果表明:循环步骤中设置反吹过程有利于降低排放气中甲烷和氧气的体积分数.反吹时间越长,排放气中甲烷和氧气体积分数越低,但会使解吸气即产品气中甲烷浓度降低.为了确保低浓度煤层气吸附富集过程的安全性,可以适当地对吸附塔进行反吹,降低排放气中氧气浓度,使之处于安全范围内.但是反吹时间不宜过长,以免使解吸气中甲烷浓度降低过多,使产品气品质不满足后续设备的使用要求.

  15. 高铜铅精矿富氧底吹工业实践%Industrial Practice of Rich Oxygen Bottom Blowing Process of Smelting High Copper Content of Lead Concentrate

    Institute of Scientific and Technical Information of China (English)

    陈学兴; 欧阳坤

    2014-01-01

    A lead factory had smelted a batch of high copper content of lead concentrate , through two months of industrial practice , high copper content of lead concentrate had certain influence to the produc-tion of bottom blowing furnace and fuming furnace . The industrial test results showed that copper can be enriched in the crude lead and matte , the copper content of crude lead can reach more than 10 percent , the copper content of matte can reach more than 40 percent , the copper content of slag can be controlled under 0 .65 percent , and the recovery rate of copper can reach more than 90 percent .%某铅厂处理了一批高铜铅精矿,通过2个月的工业生产,入炉原料含铜高对底吹炉、烟化炉生产有一定影响,整个工业试验结果表明,铜可以在粗铅及锍中富集,粗铅含铜可达10%以上,锍含铜可达40%以上,弃渣含铜可控制在0.65%以下,铜的回收率可达90%。

  16. Rule of oxygen transmission in dump leaching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the chemical equations, the flux and concentration of oxygen required during bacterial leaching sulfuric mineral were investigated; the rule of air bubble transmitted in granular was researched in the Dump Leaching Plant of Dexing Copper Mine. The results show that lack of oxygen in dump leaching is the critical factor of restricting leaching reaction. Pyrite is the primary oxygen-consuming mineral in bioleaching. When its content is too high, it needs a great deal of oxygen for reaction and competes for the finite oxygen with objective minerals, and thus the leaching velocity decreases greatly. The average size of ore particles and diameter of bubbles are the key parameters affecting the mass transfer coefficient. Reverse analysis was adopted, and it shows that 44.8 m3 air per unit ore can meet the requirement of production if the molar ratio of pyrite to chalcopyrite is 10.

  17. Usinas concentradoras de oxigênio: evolução da fração inspirada de oxigênio e repercussões no paciente anestesiado em sistema com absorvedor de CO2. Estudo piloto Fábricas concentradoras de oxígeno: evolución de la fracción inspirada de oxígeno y repercusiones en el paciente anestesiado en sistema con absorvedor de CO2. Estudio piloto Oxygen concentrators: evolution of inspired concentration of oxygen and repercussions in an anesthetized patient with CO2 absorber system. Pilot study

    Directory of Open Access Journals (Sweden)

    Jorge R. Moll

    2007-12-01

    frescos (FGF de O(293 500 mL.min-1. Se evaluaron las variables peso, edad, tipo y tiempo de los procedimientos quirúrgicos; fracción inspirada y expirada del CO2 (FiCO2, P ET CO2; fracción inspirada O2 (FiO2 y concentración O2 (O2ent del FGF. Las variables P ET CO2, FiO2 y O2 ent fueron medidas después de la intubación y a cada 10 minuto hasta el final de la anestesia. Los resultados fueron sometidos a tratamiento estadístico, considerándose significativo p BACKGROUND AND OBJECTIVES: Resolution 1355/92 of the Conselho Federal de Medicina approved minimal standards for the installation and operation of oxygen concentrators (PSA and recommended University Hospitals to undertake a prospective analysis in order to improve the system. It motivated this pilot study whose objective was to determine the clinical viability of using PSA oxygen by analyzing the variation in oxygen concentration in the fresh gas flow (FGF outlet and in the inspired concentration of oxygen. METHODS: An observational study with 30 patients, ASA I, undergoing upper abdominal surgeries using a CO2 absorber system and fresh gas flow (FGF O(293 at 500 mL.min-1. Weight, age, type and duration of the surgery, inspired and expired fraction of CO2 (FiCO2, P ET CO2; inspired fraction of O2 (FiO2; and O2 concentration (O2ent in the FGF. The following parameters were measured after intubation and every 10 minutes until the end of the procedure: P ET CO2, FiO2, and O2. Results underwent statistical analysis and p < 0.05 was considered significant. RESULTS: The inspired fraction of carbon dioxide was equal to zero in all patients and moments of the study, but there was a significant reduction in P ET CO2 with time. The variables O2ent and FiO2 had similar tendencies with time (p = 0.1283, but the variable O2ent presented higher means (p < 0.001; evolution of mean O2ent and FiO2 was observed (p < 0.05. CONCLUSIONS: This study demonstrated that the use of PSA oxygen, within the conditions proposed for the

  18. Oxygen Control for an Industrial Pilot-Scale Fed-Batch Filamentous Fungal Fermentation

    OpenAIRE

    Bodizs, Levente; Titica, Mariana; Faria, Nuno; Srinivasan, Bala; Dochain, Denis; Bonvin, Dominique

    2007-01-01

    Industrial filamentous fungal fermentations are typically operated in fed- batch mode. Oxygen control represents an important operational challenge due to the varying biomass concentration. In this study, oxygen control is implemented by manipulating the substrate feed rate, i.e. the rate of oxygen consumption. It turns out that the setpoint for dissolved oxygen represents a trade-off since a low dissolved oxygen value favors productivity but can also induce oxygen limitation. This pape...

  19. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection, with d...

  20. Oxygen Requirements for the Cambrian Explosion

    Institute of Scientific and Technical Information of China (English)

    Xingliang Zhang; Linhao Cui

    2016-01-01

    Hypoxic tolerance experiments may be helpful to constrain the oxygen requirement for animal evolution. Based on literature review, available data demonstrate that fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst mollusks are the least sensitive. Mortalities occur where O2 concentrations are below 2.0 mg/L, equivalent to saturation with oxygen content about 25% PAL (present atmospheric level). Therefore, the minimal oxygen requirement for maintaining animal diversity since Cambrian is determined as 25% PAL. The traditional view is that a rise in atmospheric oxygen concentrations led to the oxygenation of the ocean, thus triggering the evolution of animals. Geological and geochemical studies suggest a constant increase of the oxygen level and a contraction of anoxic oceans during Ediacaran–Cambrian transition when the world oceans experienced a rapid diversification of metazoan lineages. However, fossil first appearances of animal phyla are obviously asynchronous and episodic, showing a sequence as:basal metazoans>lophotrochozoans>ecdysozoans and deuterostomes. According to hitherto known data of fossil record and hypoxic sensitivity of animals, the appearance sequence of different animals is broadly consistent with their hypoxic sensitivity:animals like molluscs and annelids that are less sensitive to hypoxia appeared earlier, while animals like echinoderms and fishes that are more sensitive to hypoxia came later. Therefore, it is very likely that the appearance order of animals is corresponding to the increasing oxygen level and/or the contraction of anoxic oceans during Ediacaran–Cambrian transition.

  1. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  2. Avaliação cardiocirculatória do sevofluorano como agente de manutenção anestésica em cães, em diferentes concentrações de oxigênio e óxido nitroso Sevoflurane cardiocirculatory study in dogs with different oxygen and nitrous oxide concentrations

    Directory of Open Access Journals (Sweden)

    V.N.L.S. Oliva

    2000-04-01

    Full Text Available Com o objetivo de avaliar as alterações cardiocirculatórias resultantes da manutenção anestésica com sevofluorano, três grupos de 10 cães cada foram anestesiados por 60 minutos com fluxo diluente de 100% de oxigênio (grupo 1, de 50% de oxigênio e de óxido nitroso (grupo 2 ou 27% de oxigênio e 63% de óxido nitroso (grupo 3. A tranqüilização foi realizada com levomepromazina (0,5 mg/kg e a indução com tiopental (12,5 mg/kg. A freqüência cardíaca apresentou elevação significativa após a indução (PThirty healthy mongrel dogs, premedicated with levomepromazine (0.5mg/kg and induced with tiopental sodium were anesthetized for 60 minutes as follow:group 1 (G1 sevoflurane in oxygen 100%; group 2 (G2 sevoflurane in nitrous oxide and oxygen 50% each and group 3 (G3 sevoflurane in oxygen 27% and nitrous oxide 63%. Heart rate increased significantly after induction (P<0.05, maintaining higher than baseline values in all groups. Mean and systolic arterial pressures decreased (P<0.05 along the time but the mean blood pressure variation was different between groups (G1concentration, the anesthetical requirement decrease significantly.

  3. Oxygen absorbers in food preservation: a review.

    Science.gov (United States)

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  4. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  5. A 99 percent purity molecular sieve oxygen generator

    Science.gov (United States)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  6. Oxygen precipitation behavior in heavily arsenic doped silicon crystals

    Science.gov (United States)

    Haringer, Stephan; Gambaro, Daniela; Porrini, Maria

    2017-01-01

    Silicon crystals containing different levels of arsenic concentration and oxygen content were grown, and samples were taken at various positions along the crystal, to study the influence of three main factors, i.e. the initial oxygen content, the dopant concentration and the thermal history, on the nucleation of oxygen precipitates during crystal growth and cooling in the puller. The crystal thermal history was reconstructed by means of computer modeling, simulating the temperature distribution in the crystal at several growth stages. The oxygen precipitation was characterized after a thermal cycle of 4 h at 800 °C for nuclei stabilization +16 h at 1000 °C for nuclei growth. Oxygen precipitates were counted under microscope on the cleaved sample surface after preferential etching. Lightly doped silicon samples were also included, as reference. Our results show that even in heavily arsenic doped silicon the oxygen precipitation is a strong function of the initial oxygen concentration, similar to what has been observed for lightly doped silicon. In addition, a precipitation retardation effect is observed in the arsenic doped samples when the dopant concentration is higher than 1.7×1019 cm-3 compared to lightly doped samples with the same initial oxygen content and crystal thermal history. Finally, a long permanence time of the crystal in the temperature range between 450 °C and 750 °C enhances the oxygen precipitation, showing that this is an effective temperature range for oxygen precipitation nucleation in heavily arsenic doped silicon.

  7. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  8. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  9. Measuring tissue oxygenation

    Science.gov (United States)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  10. Modelling Dissolved Oxygen/Sediment Oxygen Demand under Ice in a Shallow Eutrophic Prairie Reservoir

    Directory of Open Access Journals (Sweden)

    Julie A. Terry

    2017-02-01

    Full Text Available Dissolved oxygen is an influential factor of aquatic ecosystem health. Future predictions of oxygen deficits are paramount for maintaining water quality. Oxygen demands depend greatly on a waterbody’s attributes. A large sediment–water interface relative to volume means sediment oxygen demand has greater influence in shallow systems. In shallow, ice-covered waterbodies the potential for winter anoxia is high. Water quality models offer two options for modelling sediment oxygen demand: a zero-order constant rate, or a sediment diagenesis model. The constant rate is unrepresentative of a real system, yet a diagenesis model is difficult to parameterise and calibrate without data. We use the water quality model CE-QUAL-W2 to increase the complexity of a zero-order sediment compartment with limited data. We model summer and winter conditions individually to capture decay rates under-ice. Using a semi-automated calibration method, we find an annual pattern in sediment oxygen demand that follows the trend of chlorophyll-a concentrations in a shallow, eutrophic Prairie reservoir. We use chlorophyll-a as a proxy for estimation of summer oxygen demand and winter decay. We show that winter sediment oxygen demand is dependent on the previous summer’s maximum chlorophyll-a concentrations.

  11. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Emnéus, Jenny

    2010-01-01

    A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O-2 gradients were correlated with measured oxygen concentrations....... The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used...... for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions....

  12. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  13. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  14. Electrochemical Oxygen Sensor Development for Liquid Sodium

    Science.gov (United States)

    Nollet, Billy K.

    Safe operation of a sodium-cooled fast reactor (SFR) requires in-depth understanding of the corrosion implications of liquid sodium coolant on reactor materials. Dissolved oxygen concentration is of particular importance in characterizing sodium attack, so an accurate means of measuring and controlling oxygen is crucial. There is significant room for improvement in current oxygen sensing technology, so extensive research has been conducted at the University of Wisconsin-Madison to address this issue. Experimental facilities and electrochemical oxygen sensors have been developed, tested, and analyzed. This research is discussed in detail in this report. The oxygen sensors tested in this research were developed using a yttria stabilized zirconia (YSZ) electrolyte whereas many of the past research in this field was conducted with yttria doped thoria (YDT or YST) electrolytes. Thorium, an alpha emitter, is expensive and increasingly difficult to acquire, so motivation to switch to a new material exists. YSZ is commonly used as the electrolyte for solid oxide fuel cells, and ample data is available for high temperature ionic conduction of this material. While some work has been done with YSZ in oxygen sensors (the automotive field, for example, uses YSZ O2 sensors), research on YSZ sensors in sodium is limited. A thorough study of YSZ-based electrochemical oxygen sensors must include detailed corrosion testing and analysis of YSZ in liquid sodium, careful oxygen sensor development and testing, and finally, a comprehensive analysis of the acquired sensor data. The research presented in this report describes the design and development of an electrochemical oxygen sensor for use in sodium using a YSZ electrolyte through the previously-mentioned steps. The designed sensors were subjected to a series of hypotheses which advance common understanding of oxygen sensor signal. These results were used in conjunction with past research to form reliable conclusions.

  15. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    Science.gov (United States)

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  16. Atmospheric oxygenation three billion years ago.

    Science.gov (United States)

    Crowe, Sean A; Døssing, Lasse N; Beukes, Nicolas J; Bau, Michael; Kruger, Stephanus J; Frei, Robert; Canfield, Donald E

    2013-09-26

    It is widely assumed that atmospheric oxygen concentrations remained persistently low (less than 10(-5) times present levels) for about the first 2 billion years of Earth's history. The first long-term oxygenation of the atmosphere is thought to have taken place around 2.3 billion years ago, during the Great Oxidation Event. Geochemical indications of transient atmospheric oxygenation, however, date back to 2.6-2.7 billion years ago. Here we examine the distribution of chromium isotopes and redox-sensitive metals in the approximately 3-billion-year-old Nsuze palaeosol and in the near-contemporaneous Ijzermyn iron formation from the Pongola Supergroup, South Africa. We find extensive mobilization of redox-sensitive elements through oxidative weathering. Furthermore, using our data we compute a best minimum estimate for atmospheric oxygen concentrations at that time of 3 × 10(-4) times present levels. Overall, our findings suggest that there were appreciable levels of atmospheric oxygen about 3 billion years ago, more than 600 million years before the Great Oxidation Event and some 300-400 million years earlier than previous indications for Earth surface oxygenation.

  17. Extracorporeal membrane oxygenation circuitry.

    Science.gov (United States)

    Lequier, Laurance; Horton, Stephen B; McMullan, D Michael; Bartlett, Robert H

    2013-06-01

    The extracorporeal membrane oxygenation circuit is made of a number of components that have been customized to provide adequate tissue oxygen delivery in patients with severe cardiac and/or respiratory failure for a prolonged period of time (days to weeks). A standard extracorporeal membrane oxygenation circuit consists of a mechanical blood pump, gas-exchange device, and a heat exchanger all connected together with circuit tubing. Extracorporeal membrane oxygenation circuits can vary from simple to complex and may include a variety of blood flow and pressure monitors, continuous oxyhemoglobin saturation monitors, circuit access sites, and a bridge connecting the venous access and arterial infusion limbs of the circuit. Significant technical advancements have been made in the equipment available for short- and long-term extracorporeal membrane oxygenation applications. Contemporary extracorporeal membrane oxygenation circuits have greater biocompatibility and allow for more prolonged cardiopulmonary support time while minimizing the procedure-related complications of bleeding, thrombosis, and other physiologic derangements, which were so common with the early application of extracorporeal membrane oxygenation. Modern era extracorporeal membrane oxygenation circuitry and components are simpler, safer, more compact, and can be used across a wide variety of patient sizes from neonates to adults.

  18. Highest Oxygen Bar

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The world’s highest altitude Lhalu Wetland in Tibet is rebounding from past environmental damage In Lhasa, where the oxygen content is just 60 percent of that of the plain area, a place known as the "natural oxygen bar"is highly prized by residents.

  19. Plants and Oxygen

    NARCIS (Netherlands)

    Bailey-Serres, J.N.

    2009-01-01

    In this oratie I will first consider the fundamental nature of oxygen and its role within the plant cell and then will summarize studies on the cellular low-oxygen response that are interwoven with international efforts to provide farmers with rice that endures prolonged periods of complete

  20. Oxygen therapy - infants

    Science.gov (United States)

    ... may not work well and may die. Your baby may not grow properly. Many of the developing organs, including the brain and heart, may be injured. Too much oxygen can also cause injury. Breathing too much oxygen can damage the lung. ...

  1. Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Lüke, C.; Speth, D.R.; Kox, M.A.R.; Villanueva, L.; Jetten, M.S.M.

    2016-01-01

    Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen

  2. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone.......Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more...... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  3. The relation between oxygen saturation level and retionopathy of prematurity

    Directory of Open Access Journals (Sweden)

    Mohammad Gharavi Fard

    2016-03-01

    Full Text Available Introduction: Oxygen therapy used for preterm infant disease might be associated with oxygen toxicity or oxidative stress. The exact oxygen concentration to control and maintain the arterial oxygen saturation balance is not certainly clear. We aimed to compare the efficacy of higher or lower oxygen saturations on the development of severe retinopathy of prematurity which is a major cause of blindness in preterm neonates. Methods: PubMed was searched for obtaining the relevant articles. A total of seven articles were included after studying the titles, abstracts, and the full text of retrieved articles at initial search. Inclusion criteria were all the English language human clinical randomized controlled trials with no time limitation, which studied the efficacy of low versus high oxygen saturation measured by pulse oximetry in preterm infants.Result: It can be suggested that lower limits of oxygen saturations have higher efficacy at postmesetural age of ≤28 weeks in preterm neonates. This relation has been demonstrated in five large clinical trials including three Boost trials, COT, and Support.Discussion: Applying higher concentrations of oxygen supplementations at mesentural age ≥32 weeks reduced the development of retinopathy of prematurity. Lower concentrations of oxygen saturation decreased the incidence and the development of retinopathy of prematurity in preterm neonates while applied soon after the birth.Conclusions: Targeting levels of oxygen saturation in the low or high range should be performed cautiously with attention to the postmesentural age in preterm infants at the time of starting the procedures.

  4. Compact intra- and extracorporeal oxygenator developments.

    Science.gov (United States)

    Cattaneo, Giorgio; Strauss, Andreas; Reul, Helmut

    2004-07-01

    For patients with acute lung failure, mechanical ventilation entails the risk of lung tissue damage due to high oxygen pressure and concentration. Membrane oxygenation for one to two weeks can rest the lungs due to decreased ventilation parameters, representing a potential bridge to recovery, but implies the substantial risks of blood damage, plasma leakage and infection, which often have fatal results for patients. At the Helmholtz Institute in Aachen, two types of membrane oxygenators, which aim to overcome previous limits, are under development. Both present compact designs, reduced surface and priming volumes and easier handling. HEXMO is a miniaturized extracorporeal membrane oxygenator. The integration of a small rotary blood pump into the centre of the oxygenator reduces the amount of tubing and connectors in the system. Blood is convectively warmed by the pump motor housing, thus, the use of a heat-exchanger can be avoided. This compact design reduces surface and priming volume and allows better handling, especially in critical situations. A second development is the intravascular oxygenator HIMOX, which is inserted directly into the vena cava. Priming volume and blood contact surface are reduced, as well as infection risk and control needs for the patient. A new cross-flow fibre configuration is used for improving gas transfer within the limited space inside the vena cava. A microaxial blood pump is integrated into the device for compensating the pressure drop across the fibres and allowing venous return and physiological pressure in the organs proximal to the oxygenator.

  5. Involvement of singlet oxygen in biochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. (Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, Canada); Singh, H.; Kremers, W.; Koroll, G.W.

    1981-01-01

    Reliable monitoring of singlet oxygen in biological systems is complicated by reactions of superoxide anions and hydroxyl radicals, which can often be present. However, tryptophan is now emerging as a potential monitor of singlet oxygen and other reactive oxy-species, in aqueous solutions, on the basis of the following results. Tryptophan reacts with singlet oxygen to produce N-form lykynurenine (FK), kynurenine (K), 2-carboxy-3a hydroxy-1,2,3,3a,8,8a-hexahydropyrrlo-(2,3b)-indole (HPI) and an unidentified product. It also reacts with hydroxyl radicals; in the presence of oxygen, six products are formed which include 5-hydroxy-tryptophan, FK, K, and HPI; in the absence of oxygen, K and HPI are not formed and a different unidentified product is formed. The relative yields of the common products in these three cases are different. Trytophan does not react with superoxide anions. Thus, by comparing the products formed and their ratios, tyrptophan can be used as a discriminating monitor for singlet oxygen, superoxide anions and hydroxyl radicals. On direct irradiation of tryptophan, at 280 nm, only two products (FK and HPI) are formed in measurable yields. In reaction with high concentrations of hydrogen peroxide, seven products result. Again, the relative ratios of the common products in these cases are different than the ones described above. In radiolysis, in the absence of oxygen, the decomposition of tryptophan is negligible. (JMT)

  6. Regulation of atmospheric oxygen during the Proterozoic

    Science.gov (United States)

    Laakso, Thomas A.; Schrag, Daniel P.

    2014-02-01

    Many studies suggest that oxygen has remained near modern levels throughout the Phanerozoic, but was much less abundant from the “Great Oxygenation Event” around 2.4 Ga until the late Neoproterozoic around 600 Ma (Kump, 2008). Using a simple model, we show that the maintenance of atmospheric pO2 at ∼1% of present atmospheric levels (PAL) is inconsistent with modern biogeochemical cycling of carbon, sulfur and iron unless new feedbacks are included. Low oxygen conditions are stable in our model if the flux of phosphorus to the oceans was greatly reduced during the Proterozoic. We propose a mechanism to reduce this flux through the scavenging of phosphate ions with an “iron trap” driven by greater surface mobility of ferrous iron in a low pO2 world. Incorporating this feedback leads to two stable equilibria for atmospheric oxygen, the first quantitative hypothesis to explain both Proterozoic and Phanerozoic O2 concentrations.

  7. Breast tumor oxygenation in response to carbogen intervention assessed simultaneously by three oxygen-sensitive parameters

    Science.gov (United States)

    Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli

    2003-07-01

    Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.

  8. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  9. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones

    DEFF Research Database (Denmark)

    Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage

    2014-01-01

    Highly sensitive STOX O-2 sensors were used for determination of in situ O-2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O-2 uptake rates of water masses at various depths within these OMZs. Oxygen...... was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima...... efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (K-m values) ranging from about 10 to about 200 nmol L-1. (C) 2014 The Authors. Published by Elsevier Ltd....

  10. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  11. Oxygen foreshock of Mars

    Science.gov (United States)

    Yamauchi, M.; Lundin, R.; Frahm, R. A.; Sauvaud, J.-A.; Holmström, M.; Barabash, S.

    2015-12-01

    Mars Express (MEX) has operated for more than 10 years in the environment of Mars, providing solar wind ion observations from the Analyzer of Space Plasmas and Energetic Atoms experiment's Ion Mass Analyser (IMA). On 21 September 2008, MEX/IMA detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock and this distribution was observed continuously up to more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. This is the first time that a substantial amount of planetary oxygen is observed upstream of the bow shock. Although rare, this is not the only IMA observation of foreshock-like oxygen: oxygen ions are sometimes observed for a short period of time (<5 min) inside the foreshock region. These observations suggest a new escape channel for planetary ions through the acceleration in the bow shock-magnetosheath region.

  12. Southern Ocean biological impacts on global ocean oxygen

    Science.gov (United States)

    Keller, David P.; Kriest, Iris; Koeve, Wolfgang; Oschlies, Andreas

    2016-06-01

    Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.

  13. Modeling Fish Growth in Low Dissolved Oxygen

    Science.gov (United States)

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  14. Intraoperative transfusion threshold and tissue oxygenation

    DEFF Research Database (Denmark)

    Nielsen, K; Dahl, B; Johansson, P I;

    2012-01-01

    Transfusion with allogeneic red blood cells (RBCs) may be needed to maintain oxygen delivery during major surgery, but the appropriate haemoglobin (Hb) concentration threshold has not been well established. We hypothesised that a higher level of Hb would be associated with improved subcutaneous...

  15. Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ward, B.B.; Tuit, C.B.; Jayakumar, A.; Rich, J.J.; Moffett, J.; Naqvi, S.W.A.

    Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors...

  16. Effects of oxygen concentration on the growth of Nannochloropsis sp.

    NARCIS (Netherlands)

    Raso, S.

    2013-01-01

    ANannochloropsissp. is a promising microalgal resource for production of food, feed and bio-based commodities, as it can grow relatively fast and combines high lipid content with high content of poly-unsaturated fatty acids. High productivity with constant product quality can be achieved in fully

  17. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  18. Effects of oxygen concentration on the growth of Nannochloropsis sp.

    NARCIS (Netherlands)

    Raso, S.

    2013-01-01

    ANannochloropsissp. is a promising microalgal resource for production of food, feed and bio-based commodities, as it can grow relatively fast and combines high lipid content with high content of poly-unsaturated fatty acids. High productivity with constant product quality can be achieved in fully co

  19. Oxygen Sensor Based on the Principle of Electrochemical Pump

    Institute of Scientific and Technical Information of China (English)

    罗瑞贤; 刘恩辉; 任凤彩; 陈霭璠

    1994-01-01

    A high-temperature oxygen sensor of limiting.current with a porous layer on the cathode te limit the diffusion rate of oxygen is investigated and fabricated.The solid electrolyte is made of Yttria-doped stabilized zirooma (YSZ) and the porous platinum film electrode is deposited on the surface of YSZ.The relation between temperature and oxygen concentration is tested at 629°-780℃ in a mixture of N2 and O2 with the oxygen concentration being 0-37%.Experimental results show a linear output with the oxygen concentration.The temperature-dependence of its output can be explained by taking into account a mixed diffusion control mechanism of the ordinary and Knudsen diffusion.The operating principle,structure and performance of the sensor are discussed.

  20. Central oxygen pipeline failure

    African Journals Online (AJOL)

    Anaesthetic and critical care staff play a governing role in the comprehension of a ... complete central oxygen pipeline failure occurred throughout. Tygerberg Hospital. ..... emergency stations and at plant room emergency supply manifolds.

  1. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  2. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  3. De-oxygenation

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Kortzinger, A.

    to expand and intensify, associated with human-driven global warming. Oxygen depletion in coastal waters is also increasing in many parts of the world, related to nutrient enrichment.  Although some species can tolerate low oxygen levels, most marine... Events. By contrast, OMZs were stronger during the warm Dansgaard-Oeschger Events (Schulz et al., 1998). Human influences Among the changes that human activities are now bringing about in the marine physico-chemical environment is the general loss...

  4. Nitric Oxide is Required for Homeostasis of Oxygen and Reactive Oxygen Species in Barley Roots under Aerobic Conditions

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Kruger, Nicholas J

    2014-01-01

    Oxygen, the terminal electron acceptor for mitochondrial electron transport, is vital for plants because of its role in the production of ATP by oxidative phosphorylation. While photosynthetic oxygen production contributes to the oxygen supply in leaves, reducing the risk of oxygen limitation...... of mitochondrial metabolism under most conditions, root tissues often suffer oxygen deprivation during normal development due to the lack of an endogenous supply and isolation from atmospheric oxygen. Since changes in oxygen concentration have multiple effects on metabolism and energy production (Geigenberger......), but the extent to which NO might also play a role in the energy metabolism of roots under normal aerobic conditions is unknown. Mitochondria, whose functions are central to aerobic metabolism, are the major source of NO in plants, and potential targets for NO include cytochrome c oxidase in the mitochondrial...

  5. The EMOSFET as an oxygen sensor: constant current potentiometry

    NARCIS (Netherlands)

    Hendrikse, J.; Olthuis, W.; Bergveld, P.

    1999-01-01

    In a previous paper, a novel type of potentiometric dissolved oxygen sensor was introduced. The transduction principle of the sensor is based on the modulation of the work function of an iridium oxide film by the ratio of IrIII/IrIV oxide in the film. This ratio depends on the oxygen concentration i

  6. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias;

    2016-01-01

    For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  7. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve

    Directory of Open Access Journals (Sweden)

    Julie-Ann Collins

    2015-09-01

    The delivery of oxygen by arterial blood to the tissues of the body has a number of critical determinants including blood oxygen concentration (content, saturation (SO2 and partial pressure, haemoglobin concentration and cardiac output, including its distribution. The haemoglobin–oxygen dissociation curve, a graphical representation of the relationship between oxygen satur­ation and oxygen partial pressure helps us to understand some of the principles underpinning this process. Historically this curve was derived from very limited data based on blood samples from small numbers of healthy subjects which were manipulated in vitro and ultimately determined by equations such as those described by Severinghaus in 1979. In a study of 3524 clinical specimens, we found that this equation estimated the SO2 in blood from patients with normal pH and SO2 >70% with remarkable accuracy and, to our knowledge, this is the first large-scale validation of this equation using clinical samples. Oxygen saturation by pulse oximetry (SpO2 is nowadays the standard clinical method for assessing arterial oxygen saturation, providing a convenient, pain-free means of continuously assessing oxygenation, provided the interpreting clinician is aware of important limitations. The use of pulse oximetry reduces the need for arterial blood gas analysis (SaO2 as many patients who are not at risk of hypercapnic respiratory failure or metabolic acidosis and have acceptable SpO2 do not necessarily require blood gas analysis. While arterial sampling remains the gold-standard method of assessing ventilation and oxygenation, in those patients in whom blood gas analysis is indicated, arterialised capillary samples also have a valuable role in patient care. The clinical role of venous blood gases however remains less well defined.

  8. Differential Diode Laser Sensor for High-Purity Oxygen Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact portable sensor for determining the purity of oxygen concentrations near 100 percent is proposed based on differential absorption of two beams from a diode...

  9. Effects of Eu3+-doped Concentration and Matricial Oxygen Vacancies on The Luminescence Properties of Ca2-xEuxSnO4%Eu3+掺杂浓度及基质氧空位对Ca2-x Eux SnO4发光性能的影响

    Institute of Scientific and Technical Information of China (English)

    王肖芳; 张弛; 邓朝勇

    2016-01-01

    采用高温固相法制备Ca2-xSnO4∶xEu3+(x=0,0.001,0.005,0.01,0.015,0.02)发光材料,分别在空气和真空氛围中进行烧结,研究Eu3+掺杂浓度及基质中氧空位对样品发光性能的影响。随着Eu3+离子浓度的增加,发射强度呈逐渐增大的趋势,主发射峰由两个分别位于614 nm和618 nm的峰逐步合为一个位于616 nm的发射峰。在Ca2-x SnO4∶xEu3+样品的激发光谱中,存在着200~295 nm的Eu3+-O2-电荷迁移带,随着Eu3+离子浓度的增加,电荷迁移带的峰位由271 nm红移到286 nm。此外,在Eu3+离子掺杂浓度相同的情况下,真空中烧结得到样品的发光强度是空气中烧结得到样品的2倍。这是由于在真空氛围中烧结产生的氧空位增加使得传导电子密度升高,导致发光强度增加。而且,氧空位的增加导致电子陷阱的增多,这使得Ca2-x SnO4∶xEu3+样品的余辉性能得到了很大程度的提高。%Ca2-xSnO4∶xEu3+(x=0, 0. 001, 0. 005, 0. 01, 0. 015, 0. 02)phosphors were prepared by solid-state reaction method in air and vacuum atmosphere, respectively. The influence of Eu3+-doped concentration and oxygen vacancies on the luminescence properties were investigated. With the increas-ing of Eu3+ concentration, the emission intensity increases and the two main emission peaks at 614 nm and 618 nm gradually become one at about 616 nm. In the excitation spectra of Ca2-x SnO4∶xEu3+, the band between 200 nm and 295 nm is charge transfer band of Eu3+-O2-. The peak of charge transfer band moves from 271 nm to 286 nm with increasing Eu3+ concentration. In addition, under the same concen-tration of Eu3+, the luminescence intensity of samples sintered in vacuum is twice as much as that in air. Because the oxygen vacancies increase in the samples sintered in vacuum atmosphere, the conduction electron density rises, which leads to the higher emission intensity. Furthermore, the increase of electron trap leads to the

  10. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  11. Purging dissolved oxygen by nitrogen bubble aeration

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    We apply aeration with nitrogen microbubbles to water in order to see whether oxygen gas originally dissolved in the water at one atmosphere is purged by the aeration. The concentration of dissolved oxygen (DO) is detected by a commercial DO meter. To detect the dissolved nitrogen (DN) level, we observe the growth of millimetre-sized bubbles nucleated at glass surfaces in contact with the aerated water and compare it with the Epstein-Plesset theory that accounts for DO/DN diffusions and the presence of the glass surfaces. Comparisons between the experiment and the theory suggest that the DO in the water are effectively purged by the aeration.

  12. Venous oxygen saturation.

    Science.gov (United States)

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Oxygen mass transfer in fermentation of bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    R. Ríos

    2011-12-01

    Full Text Available The purpose of this work was to obtain a correlation based on literature, depicting the relationships betwen the physical oxygen transfer rate (OTR and microbial oxygen uptake rate (OUR in order to determine the conditions (mass transfer coefficient, resulting on diferents combinations of aereations and agitations rates, under which growth will not be limited by oxygen. This correlation was adapted to culture with B. thuringiensis in order to estimate what biomass concentration are feasible for the physical limits set by operations conditions before microbial activity becomes limited by oxygen.

  14. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  15. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  16. Oxygen challenge magnetic resonance imaging in healthy human volunteers.

    Science.gov (United States)

    Dani, Krishna A; Moreton, Fiona C; Santosh, Celestine; Lopez, Rosario; Brennan, David; Schwarzbauer, Christian; Goutcher, Colin; O'Hare, Kevin; Macrae, I Mhairi; Muir, Keith W

    2017-01-01

    Oxygen challenge imaging involves transient hyperoxia applied during deoxyhaemoglobin sensitive (T2*-weighted) magnetic resonance imaging and has the potential to detect changes in brain oxygen extraction. In order to develop optimal practical protocols for oxygen challenge imaging, we investigated the influence of oxygen concentration, cerebral blood flow change, pattern of oxygen administration and field strength on T2*-weighted signal. Eight healthy volunteers underwent multi-parametric magnetic resonance imaging including oxygen challenge imaging and arterial spin labelling using two oxygen concentrations (target FiO2 of 100 and 60%) administered consecutively (two-stage challenge) at both 1.5T and 3T. There was a greater signal increase in grey matter compared to white matter during oxygen challenge (p challenge imaging. Reductions in cerebral blood flow did not obscure the T2*-weighted signal increases. In conclusion, the optimal protocol for further study should utilise target FiO2 = 100% during a single oxygen challenge. Imaging at both 1.5T and 3T is clinically feasible.

  17. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  18. Oxygen ion conductors

    Directory of Open Access Journals (Sweden)

    Stephen J Skinner

    2003-03-01

    A very interesting subgroup of this class of materials are the oxides that display oxygen ion conductivity. As well as the intrinsic interest in these materials, there has been a continued drive for their development because of the promise of important technological devices such as the solid oxide fuel cell (SOFC, oxygen separation membranes, and membranes for the conversion of methane to syngas1. All of these devices offer the potential of enormous commercial and ecological benefits provided suitable high performance materials can be developed. In this article we will review the materials currently under development for application in such devices with particular reference to some of the newly discovered oxide ion conductors.

  19. Neurological oxygen toxicity.

    Science.gov (United States)

    Farmery, Scott; Sykes, Oliver

    2012-10-01

    SCUBA diving has several risks associated with it from breathing air under pressure--nitrogen narcosis, barotrauma and decompression sickness (the bends). Trimix SCUBA diving involves regulating mixtures of nitrogen, oxygen and helium in an attempt to overcome the risks of narcosis and decompression sickness during deep dives, but introduces other potential hazards such as hypoxia and oxygen toxicity convulsions. This study reports on a seizure during the ascent phase, its potential causes and management and discusses the hazards posed to the diver and his rescuer by an emergency ascent to the surface.

  20. Cerebral oxygenation after birth

    DEFF Research Database (Denmark)

    Hessel, Trine W; Hyttel-Sorensen, Simon; Greisen, Gorm

    2014-01-01

    AIM: To compare absolute values of regional cerebral tissue oxygenation (cStO2 ) during haemodynamic transition after birth and repeatability during steady state for two commercial near-infrared spectroscopy (NIRS) devices. METHODS: In a prospective observational study, the INVOS 5100C and FORE......: The INVOS and FORE-SIGHT cStO2 estimates showed oxygenation-level-dependent difference during birth transition. The better repeatability of FORE-SIGHT could be due to the lower response to change in saturation....