WorldWideScience

Sample records for super-conducting rf linac

  1. Installation and Commissioning of the Super Conducting RF Linac Cryomodules for the Erlp

    Science.gov (United States)

    Goulden, A. R.; Bate, R.; Buckley, R. K.; Pattalwar, S. M.

    2008-03-01

    An Energy Recovery Linac Prototype (ERLP) is currently being constructed at Daresbury Laboratory, (UK) to promote the necessary skills in science & technology, particularly in photocathode electron gun and Superconducting RF (SRF), to enable the construction of a fourth generation light source, based on energy recovery linacs-4GLS [1]. The ERLP uses two identical cryomodules, one as a booster Linac used to accelerate the beam to 8.5 MeV, the other as an Energy Recovery Linac (ERL) module with an energy gain of 26.5 MeV. Each module consists of two 9- cell cavities operating at a frequency of 1.3 GHz and a temperature of 2 K. As there is no energy recovery in the booster it requires a peak power of 53 kW; whereas the linac module only requires 8 kW. The RF power is supplied by Inductive Output Tube (IOT) amplifiers. The maximum heat load (or the cooling power) required in the SRF system is 180 W at 2 K and is achieved in two stages: a LN2 pre-cooled Linde TCF50 liquefier produces liquid helium at 4.5 K, followed by a 2 K cold box consisting of a JT valve, recuperator and an external room temperature vacuum pumping system. This presentation reports the experience gained during, installation, commissioning and the initial operation of the cryomodules.

  2. A controller for 97 MHz super-conducting QWR for NSC LINAC booster

    Indian Academy of Sciences (India)

    Gopal Joshi; C I Sujo; Bhuban Sahu; Ashutosh Pandey; Ajith Kumar; Jitendra Karande

    2002-12-01

    A resonator controller has been implemented to stabilize the amplitude and phase of rf fields in the super-conducting resonators of NSC LINAC. Due to reduced losses these resonators have intrinsic band width of the order of 0.1 Hz at 97 MHz whereas the vibration-induced center frequency changes are of the order of a few tens of hertz. In the control strategy followed, the resonator is made the frequency selective part of an oscillator. The phase lock is achieved by dynamically adding a phase shift in the oscillator. A slow tuner minimizes the slow drifts in the resonator center frequency. In this paper we present the control strategy, implementation details and performance obtained with this controller.

  3. Design of the SNS Normal Conducting Linac RF Control System

    CERN Document Server

    Regan, A; Rohlev, T S; Wang, Y M; Prokop, M S; Thomson, D W; Regan, Amy; Kwon, Sung-il; Rohlev, Tony S.; Wang, Yi-Ming; Prokop, Mark S.; Thomson, David W.

    2000-01-01

    The Spallation Neutron Source (SNS) is being designed for operation in 2004. The SNS is a 1 GeV machine consisting of a combination normal-conducting and super-conducting linac as well as a ring and target area. The linac front end is a 402.5 MHz RFQ being developed by Lawrence Berkeley Lab. The DTL (at 402.5 MHz) and the CCL (at 805 MHz) stages are being developed by Los Alamos National Laboratory. The expected output energy of the DTL is 87 MeV and that of the CCL is 185 MeV. The RF control system under development for the linac is based on the Low Energy Demonstration Accelerator (LEDA) control system with some new features. This paper will discuss the new design approach and its benefits. Block diagrams and circuit specifics will be addressed. The normal conducting RF control system will be described in detail with references to the super-conducting control system where appropriate.

  4. RF Breakdown in Drift Tube Linacs

    CERN Document Server

    Stovall, J; Lown, R

    2009-01-01

    The highest RF electric field in drift-tube linacs (DTLs) often occurs on the face of the first drift tube. Typically this drift tube contains a quadrupole focusing magnet whose fringing fields penetrate the face of the drift tube parallel to the RF electric fields in the accelerating gap. It has been shown that the threshold for RF breakdown in RF cavities may be reduced in the presence of a static magnetic field. This note offers a “rule of thumb” for picking the maximum “safe” surface electric field in DTLs based on these measurements.

  5. Modeling of the RF system for the normal conducting linac

    Institute of Scientific and Technical Information of China (English)

    GENG Zhe-Qiao; HOU Mi; PEI Guo-Xi

    2008-01-01

    To study the new RF control methods, a mathematic model of the RF system for the normal conducting linac is built and implemented with the software of Matlab. The model contains some typical units of the RF system, such as the klystron, the SLED and the traveling wave accelerating tube. Finally, the model is used to study the working point of the SLED and the adaptive feed forward algorithm for the RF control system. Simulation shows that the model works well as expected.

  6. RF Operation for the 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung Tae; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Song, Young Gi; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The RF systems for the 100MeV linac were constructed. The HPRF system including klystrons, circulators, high power dummy loads, and waveguide components was installed at the klystron gallery, and the LLRF control systems including a commercial FPGA module and a LLRF analog chassis were also installed. The phase stability of the RF reference line was measured with S11 phase under temperature control. The RF systems for 100MeV linac have been operated for a beam commissioning, and the 100MeV proton beam has been supplied to users currently. The RF systems of the 100MeV proton linac for the KOMAC (KOrea Multi-purpose Accelerator Complex) were installed at the Gyeong-ju site. The 100MeV linac consists of a 3MeV RFQ, a 20MeV DTL with four tanks, two MEBT tanks, and seven 100MeV DTL tanks. For the 100MeV linac, nine sets of LLRF control systems and the HPRF systems including 1MW klystrons, circulators and waveguide components have been installed at the klystron gallery, and four high voltage converter modulators to drive nine klystrons have been installed at the modulator room. A RF reference system distributing 300MHz LO signal to each RF control system has also been installed with a temperature control system at the klystron gallery. The requirement of RF field control is within +/- 1% in RF amplitude and +/- 1 degree in RF phase. The RF systems have been operated for the beam commissioning. The installation and operation of the RF system for the 100MeV proton linac are presented in this paper.

  7. Industrial RF Linac Experiences and Laboratory Interactions

    CERN Document Server

    Peiniger, M

    2004-01-01

    Since more than two decades ACCEL Instruments GmbH at Bergisch Gladbach (formerly Siemens/Interatom) is supplying the worldwide accelerator labs with key components like rf cavities and power couplers, s.c. magnets, insertion devices, vacuum chambers and x-ray beamline equipment. Starting with the design and production of turn key SRF accelerating modules in the late 80th, meanwhile ACCEL is engineering, manufacturing, on site commissioning and servicing complete accelerators with guaranteed beam performance. Today, with a staff of more than 100 physicists and engineers and about the same number of manufacturing specialists in our dedicated production facilities, ACCEL's know how and sales volume in this field has accumulated to more than 2000 man years and several hundred Mio €, respectively. Basis of our steady development is a cooperative partnership with the world leading research labs in the respective fields. As an example, for the supply of a turn key 100 MeV injector linac for the Swiss Ligh...

  8. First operation of the rf-focused interdigital linac structure

    Science.gov (United States)

    Joel Starling, W.; Swenson, Donald A.

    2007-08-01

    The new rf-focused interdigital (RFI) linac structure came into operation at the Linac Systems laboratory in May of 2006, after a multi-year development program supported by the US Department of Energy. The RFI linac structure is basically an interdigital (or Wideröe) linac structure with rf quadrupole focusing incorporated into each drift tube. The RFI prototype operates at 200-MHz and consists of an ECR ion source, an Einzel lens LEBT, a radial-strut, four-bar RFQ linac section to 0.75 MeV and an RFI linac section to a final energy of 2.5 MeV. The total length of the prototype is 2.2 m. The RFQ and RFI linac sections are resonantly coupled and require a total of 120 kW of rf power for cavity excitation. The energy of the accelerated beam was confirmed by requiring it to pass through a 2.25-MeV energy-degrading foil. The specifications for the RFI linac prototype were chosen to address the demanding Boron Neutron Capture Therapy medical application. There are, however, many other potential applications for the structure as it has efficiency and size advantages for both protons and heavy ions at a variety of energies and currents. To date, we have achieved a beam current of approximately 1 mA peak at a relatively low duty factor. We continue to improve the performance of the prototype structure on a daily basis as we better understand the optimal operational settings for the prototype system. Now that the first operational milestone for the RFI linac structure has been achieved, Linac Systems will vigorously pursue projects and partnerships for multiple applications such as compact and intense neutron sources, proton and carbon injector linacs for synchrotrons and PET isotope production.

  9. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  10. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  11. SPLinac Computer Simulations of SC Linac RF Systems with Beam

    CERN Document Server

    Tückmantel, Joachim

    2001-01-01

    The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.

  12. RF Design for the Linac Coherent Light Source (LCLS) Injector

    CERN Document Server

    Dowell, D H; Boyce, Richard F; Hodgson, J A; Li, Zenghai; Limborg-Deprey, C; Xiao, Liling; Yu, Nancy

    2004-01-01

    The Linac Coherent Light Source (LCLS) will be the world’s first free electron laser, and the successful operation of this very short-wavelength FEL will require excellent beam quality from its electron source. Therefore a critical component is the RF photocathode injector. This paper describes the design issues of the LCLS RF gun and accelerator structures. The injector consists of a 1.6 cell s-band gun followed by two 3-meter SLAC sections. The gun and the first RF section will have dual RF feeds both to eliminate transverse RF kicks and to reduce the pulsed heating of the coupling ports. In addition, the input coupler cavity of the first accelerator section will be specially shaped to greatly reduce the RF quadrupole fields. The design for the accelerator section is now complete, and the RF design of the gun’s dual coupler and the full cell shape is in progress. These and other aspects of the gun and structure designs will be discussed.

  13. R&D Energy Recovery Linac at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Vladimir; Beavis, D.; Ben-Zvi, Ilan; Blaskiewicz, Michael; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Drees, K.A.; Ganetis, G.; Gamble, Michael; Hahn, H.; Hammons, L.R.; Hershcovitch, A.; Hseuh, H.C.; Jain, A.K.; Kayran, A.; Kewisch, Jorg; Lambiase, R.F.; Lederle, D.L.; Mahler, G.J.; McIntyre, G.; Meng, W.; Nehring, T.C.; Oerter, B.; Pai, C.; Pate, D.; Phillips, Daniel; Pozdeyev, Eduard; Rao, Triveni; Reich, J.; Roser, Thomas; Russo, T.; Smith, K.; Tuozzolo, Joseph; Weiss, D.; Williams, N.W.W.; Yip, Kin; Zaltsman, A.; Bluem, Hans; Cole, Michael; Favale, Anthony; Holmes, D.; Rathke, John; Schultheiss, Tom; Delayen, Jean; Funk, L.; Phillips, H.; Preble, Joseph

    2008-07-01

    Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.

  14. The Development of the Linac Coherent Light Source RF Gun

    CERN Document Server

    Dowell, David H; Lewandowski, James; Limborg-Deprey, Cecile; Li, Zenghai; Schmerge, John; Vlieks, Arnold; Wang, Juwen; Xiao, Liling

    2015-01-01

    The Linac Coherent Light Source (LCLS) is the first x-ray laser user facility based upon a free electron laser (FEL). In addition to many other stringent requirements, the LCLS XFEL requires extraordinary beam quality to saturate at 1.5 angstroms within a 100 meter undulator.[1] This new light source is using the last kilometer of the three kilometer linac at SLAC to accelerate the beam to an energy as high as 13.6 GeV and required a new electron gun and injector to produce a very bright beam for acceleration. At the outset of the project it was recognized that existing RF guns had the potential to produce the desired beam but none had demonstrated it. This paper describes the analysis and design improvements of the BNL/SLAC/UCLA s-band gun leading to achievement of the LCLS performance goals.

  15. Digital RF phase detector for Linac in FEL accelerator

    Institute of Scientific and Technical Information of China (English)

    YU Lu-Yang; YIN Chong-Xian; LIU De-Kang

    2005-01-01

    The digital RF (Radio Frequency) phase detector based on commercial PXI (PCI eXtensions for Instrumentation) modules for the Linac is fully described in the paper. The DBM (Double Balance Mixer) is used as the phase detector and its control and data acquisition system is based on the PXI bus. The software adopts a curve fitting algorithm. The prototype has been tested in the laboratory and the good resolution, accuracy, reproducibility and reliability are expected. The system does not present the problems of analog solution.

  16. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  17. RF Plasma modeling of the Linac4 H− ion source

    CERN Document Server

    Mattei, S; Hatayama, A; Lettry, J; Kawamura, Y; Yasumoto, M; Schmitzer, C

    2013-01-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H− ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The use of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  18. The RF Design of the Linac4 RFQ

    CERN Document Server

    Piquet, Olivier; Desmons, Michel; France, Alain; Lombardi, Alessandra; Rossi, Carlo; Vretenar, Maurizio

    2010-01-01

    In the Linac 4 and the SPL, a 3 MeV RFQ is required to accelerate the Hbeam from the ion source to the DTL input energy. While the 6-meter long IPHI RFQ was initially chosen for this application, a CERN study suggested that a dedicated, shorter 3-meter RFQ might present several advantages. The 2D cross-section is optimized for lower power dissipation, while featuring simple geometrical shape suitable for easy machining. RF stability is evaluated using a 4-wire transmission model and 3D simulations, taking electrode modulation into account. The resulting RFQ is intrinsically stable and does not require rod stabilizers. End circuits are tuned with dedicated rods. RF power is fed via a ridged waveguide and a slot iris. Vacuum port assemblies are positioned prior to brazing to minimize RF perturbation. The 32 tuning slugs form a set of stable sampling, able to tune 9 modes. Tuner parameters are derived from beadpull accuracy specification and fabrication tolerances. Signals delivered by pickup loops inserted in 1...

  19. RF Field Distribution Tuning of Drift Tube Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    To make a design field profile, we performed the RF tuning process for a 100-MeV drift tube linac (DTL) of Korea Multipurpose Accelerator Complex (KOMAC). The tuning process includes the field flatness tuning by using the slug tuners and the tilt sensitivity tuning by using the post couplers. The target values of the tuning process are like followings; - Field uniformity: better than 2% - Tilt sensitivity: less than 150%/MHz. During the tilt sensitivity tuning, we found that the slug tuners prevented the field stabilization if they were inserted too much. However, if the slug tuner positions were limited, then it was not possible to tune the DTL tank to the right resonant frequency. To solve the problem, we attached the tuning rings around each post couplers, which compensate the frequency gap caused by the slug tuner position limitations. We present the tuning process and results in this paper.

  20. IOT RF Power Sources for Pulsed and CW Linacs

    CERN Document Server

    Bohlen, H P

    2004-01-01

    For many years, klystrons have been the preferred RF power amplifiers for both pulsed and CW linacs at UHF and higher frequencies. Their properties have earned them that position. But in recent years in UHF terrestrial television transmitters the earlier predominant klystron has been replaced the Inductive Output Tube (IOT) because the IOT provides higher efficiency and, due to its excellent linearity, can handle the simultaneous amplification of both the vision and the sound signal. Its robustness and life expectancy equals that of a klystron, and it more than compensates its lower gain by a lower price and a smaller size. For linac operation, derivates of UHF TV IOTs, capable of up to 80 kW CW output power, are already available and operating. In L-Band, they are presently joined by recently developed 15 to 30 kW CW IOTs. HOM-IOTs are expected to extend the CW range in UHF to 1 MW and beyond. Pulsed operation of an IOT can be achieved without a high-voltage modulator. Since the beam current is grid-controll...

  1. Design and development of a focusing electromagnet for RF linac of a cargo scanner

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Bhattacharjee, D.; Chandan, Shiv; Choudhury, N.; Sharma, V.; Mittal, K.C.; Gantayet, L.M.

    2014-11-11

    Cargo scanning of contraband objects by high energetic X-rays requires compact and self-contained RF linacs. To achieve this goal, a 6 MeV, 700 W standing wave RF electron linac has been developed at Accelerator and Pulse Power Division, BARC. To obtain the image of scanned objects with good resolution requires a focused electron beam at the target. This paper presents the design, development and integration of a solenoid magnet with a compact RF linac and its performance with electron beam for cargo scanning applications.

  2. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Joseph Thomas III [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rees, Daniel Earl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scheinker, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sheffield, Richard L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-04

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of the different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.

  3. RF control at transient beamloading for high-duty-factor linacs

    Energy Technology Data Exchange (ETDEWEB)

    Chernogubovsky, M.A.; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    An effective RF control with the transient beamloading is the major issue in the operation of the high-duty-factor linacs to suppress the undesirable beam loss. The RF control method is considered to obtain the control principle and the state equation, under the analysis of electrodynamical properties of the excitation in the resonator of the linac due to the transient beamloading. The concept of the directional selective coupling is applied for the RF system to define the main characteristics and to optimize the RF control parameters. (author)

  4. Development of RF linac for high-current applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.C.D.; Lawrence, G.P.; Schneider, J.D.

    1997-12-31

    High-current proton linacs are promising sources of neutrons for material processing and research applications. Recently, a linac design that makes use of a combination of normal-conducting (NC) and superconducting (SC) linac technologies has been proposed for the US Accelerator Production of Tritium Project. As a result, a multi-year engineering development and demonstration (ED and D) program is underway. In this paper, the authors will describe the design and merits of the NC/SC hybrid approach. The scope, technology issues, and present status of the ED and D Program, and the participation of industry will also be described.

  5. Multi-cell disk-and-ring tapered structure for compact RF linacs

    Science.gov (United States)

    Smirnov, A. V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-09-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  6. Design and Development of RF Structures for Linac4

    CERN Document Server

    Vretenar, M; Gerigk, F; Pasini, M; Wegner, R

    2006-01-01

    Linac4 is a new 160 MeV H− linac proposed at CERN to replace the 50 MeV Linac2 as injector to the PS Booster, with the goal of doubling its brightness and intensity. The present design foresees after RFQ and chopping line a sequence of three accelerating structures: a Drift Tube Linac (DTL) from 3 to 40 MeV, a Cell-Coupled DTL (CCDTL) to 90 MeV and a Side Coupled Linac (SCL) up to the final energy. The DTL and CCDTL operate at 352 MHz, while in the SCL the frequency is doubled to 704 MHz. Although the injection in the PS Booster requires only a low duty cycle, the accelerating structures are designed to operate at the high duty cycle required by a possible future extension to a high-power linac driver for a neutrino facility. This paper presents the different accelerating structures, underlining the progress in the design of critical resonator elements, like post-couplers in the DTL, coupling slots in the CCDTL and bridge couplers for the SCL. Prototyping progress for the different structures is reported...

  7. RF characteristics of IHQ linac for heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T.; Sasa, K.; Hayashizaki, N.; Isokawa, K.; Hattori, T. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E. [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania); Schubert, H. [HSI, Tuerkenstrasse 28, 80333 Muenchen (Germany)

    1998-04-01

    At Tokyo institute of technology (TIT), an interdigital-H type quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for {sup 16}O{sup +}). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 M{Omega}/m and therefore, the required power to accelerate {sup 16}O{sup +} ion is 39.5 kW. (orig.) 8 refs.

  8. RF characteristics of IHQ linac for heavy ion implantation

    Science.gov (United States)

    Ito, Takashi; Osvath, E.; Sasa, Kimikazu; Hayashizaki, Noriyosu; Isokawa, Katsushi; Schubert, H.; Hattori, Toshiyuki

    1998-04-01

    At Tokyo Institute of Technology (TIT), an Interdigital-H type Quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for 16O +). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 MΩ/m and therefore, the required power to accelerate 16O + ion is 39.5 kW.

  9. RF phase stability in the 100-MeV proton linac operation

    Science.gov (United States)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  10. AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengjie; Smith, Terry; Nassiri, Alireza; Sun, Yine; Doolittle, Lawrence; Ratti, Alex

    2016-06-01

    To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. The Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.

  11. CERN LINAC4 H- Source and SPL plasma generator RF systems, RF power coupling and impedance measurements

    CERN Document Server

    Paoluzzi, M; Marques-Balula, J; Nisbet, D

    2010-01-01

    In the LINAC4 H- source and the SPL plasma generator at CERN, the plasma is heated by a 100 kW, 2 MHz RF system. Matching of the load impedance to the final amplifier is achieved with a resonant network. The system implements a servo loop for power stabilization and frequency hopping to cope with the detuning effects induced by the plasma. This paper provides a detailed description of the system, including the pulse rate increase to 50 Hz for use in the SPL plasma generator. The performances, measurements of RF power coupling, contribution of the plasma to the impedance as well as first operation are reported.

  12. Design and fabrication of the high-power RF transmission line into the PEFP linac tunnel

    Science.gov (United States)

    Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub

    2012-07-01

    The 100-MeV proton linear accelerator (linac) for the Proton Engineering Frontier Project (PEFP) has been developed and will be installed at the Gyeong-ju site. For the linac, a total of 11 sets of RF systems are required, and the waveguide layout was fixed to install high-power RF (HPRF) systems. One of the important interfaces with the building construction is the high-power radio-frequency (HPRF) transmission line embedded in the tunnel, which is used to transmit 1-MW RF power to each cavity in the tunnel. The waveguide section penetrating into the linac tunnel was designed with a bending structure for radiation shielding, and the dependence of its voltage standing-wave ratio (VSWR) on the chamfer length of the bending was calculated. The HPRF transmission line was fabricated into a piece of waveguide to prevent moisture and any foreign debris inside the 2.5-m thick concrete block. Air leakage was checked with a pressure of 0.25 psig of nitrogen gas, and a maximum VSWR of 1.196 was obtained by measuring the vector reflection coefficients with the quarter-wave transmission section. In this paper, the design and the fabrication of the HPRF transmission line into the PEFP linac tunnel are presented.

  13. Effects of temperature variation on the SLC linac RF system

    Energy Technology Data Exchange (ETDEWEB)

    Decker, F.J.; Akre, R.; Byrne, M.; Farkas, Z.D.; Jarvis, H.; Jobe, K.; Koontz, R.; Mitchell, M.; Pennacchi, R.; Ross, M. [and others

    1995-06-01

    The rf system of the Stanford Linear Collider in California is subjected to daily temperature cycles of up to 15{degrees}C. This can result in phase variations of 15{degrees} at 3 GHz over the 3 km length of the main drive line system. Subsystems show local changes of the order of 3{degrees} over 100 meters. When operating with flat beams and normalized emittances of 0.3*10{sup {minus}5} m-rad in the vertical plane, changes as small as 0.5{degrees} perturb the wakefield tail compensation and make continuous tuning necessary. Different approaches to stabilization of the RF phases and amplitudes are discussed.

  14. High intensity ion beams in rf undulator linac

    Directory of Open Access Journals (Sweden)

    E. S. Masunov

    2008-07-01

    Full Text Available The possibility of using a radio frequency undulator field to accelerate a high intensity ion beam in a linac is discussed. Such an accelerator can be realized using the periodical interdigital H-type resonator structure. The accelerating force is produced by an electric field which is a combination of two or more spatial harmonics, none of them being synchronous with the ion beam. The value of this force is proportional to the squared charge. The equations of motion in Hamiltonian form are derived by means of smooth approximation. The analysis of the 3D effective potential function allows finding the conditions of the beam focusing and acceleration. Two ways to increase ion beam intensity are considered: (i to enlarge beam cross section; (ii to neutralize the beam space charge by accelerating ions with opposite charge signs within the same bunch. The basic results are confirmed by a numerical simulation.

  15. Assembly and RF Tuning of the Linac4 RFQ at CERN

    CERN Document Server

    Rossi, C; Hansen, J; Lallement, JB; Lombardi, AM; Pugnat, D; Vandoni, G; Timmins, M; Vretenar, M; Mathot, S; Piquet, O; Novo, J; Le Noa, Y; France, A; Desmons, M

    2013-01-01

    The fabrication of Linac4 is progressing at CERN with the goal of making a 160 MeV H- beam available to the LHC injection chain as from 2015. In the Linac4 the first stage of beam acceleration, after its extraction from the ion source, is provided by a Radiofrequency Quadrupole accelerator (RFQ), operating at the RF frequency of 352.2 MHz and which accelerates the ion beam to the energy of 3 MeV. The RFQ, made of three modules, one meter each, is of the four-vane kind, has been designed in the frame of a collaboration between CERN and CEA and has been completely machined and assembled at CERN. The paper describes the assembly of the RFQ structure and reports the results of RF low power measurements, in order to achieve the required accelerating field flatness within 1% of the nominal field profile.

  16. Present and next steps of the JAERI superconducting rf linac based FEL program

    Energy Technology Data Exchange (ETDEWEB)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M. [FEL Laboratory at Tokai, Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (JP)] (and others)

    2000-03-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  17. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  18. Status of RF system for the JAERI energy-recovery linac FEL

    Science.gov (United States)

    Sawamura, Masaru; Nagai, Ryoji

    2006-02-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL).

  19. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Science.gov (United States)

    Baptiste, K.; Corlett, J.; Kwiatkowski, S.; Lidia, S.; Qiang, J.; Sannibale, F.; Sonnad, K.; Staples, J.; Virostek, S.; Wells, R.

    2009-02-01

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to ˜1 nC bunch charges with less than 1 mm mrad normalized emittance at high repetition rates (greater than ˜1 MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  20. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Baptiste, K.; Corlett, J.; Kwiatkowski, S.; Lidia, S.; Qiang, J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Sannibale, F. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: fsannibale@lbl.gov; Sonnad, K.; Staples, J.; Virostek, S.; Wells, R. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States)

    2009-02-01

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to {approx}1nC bunch charges with less than 1 mm mrad normalized emittance at high repetition rates (greater than {approx}1MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  1. A CW normal-conductive RF gun for free electron laser and energy recovery linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Baptiste, Kenneth; Corlett, John; Kwiatkowski, Slawomir; Lidia, Steven; Qiang, Ji; Sannibale, Fernando; Sonnad, Kiran; Staples, John; Virostek, Steven; Wells, Russell

    2008-10-08

    Currently proposed energy recovery linac and high average power free electron laser projects require electron beam sources that can generate up to {approx} 1 nC bunch charges with less than 1 mmmrad normalized emittance at high repetition rates (greater than {approx} 1 MHz). Proposed sources are based around either high voltage DC or microwave RF guns, each with its particular set of technological limits and system complications. We propose an approach for a gun fully based on mature RF and mechanical technology that greatly diminishes many of such complications. The concepts for such a source as well as the present RF and mechanical design are described. Simulations that demonstrate the beam quality preservation and transport capability of an injector scheme based on such a gun are also presented.

  2. CW Superconducting RF Photoinjector Development for Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Neumann A.; Rao T.; Anders, W.; Dirsat, M.; Frahm, A. Jankowiak, A.; Kamps, T.; Knobloch, J.; Kugeler, O.; Quast, T.; Rudolph, J.; Schenk, M.; Schuster, M.; Smedley, J.; Sekutowicz, J.; Kneisel, P.; Nietubyc, R.; Will, I.

    2010-10-31

    ERLs have the powerful potential to provide very high current beams with exceptional and tailored parameters for many applications, from next-generation light sources to electron coolers. However, the demands placed on the electron source are severe. It must operate CW, generating a current of 100 mA or more with a normalized emittance of order 1 {micro}m rad. Beyond these requirements, issues such as dark current and long-term reliability are critical to the success of ERL facilities. As part of the BERLinPro project, Helmholtz Zentrum Berlin (HZB) is developing a CWSRF photoinjector in three stages, the first of which is currently being installed at HZB's HoBiCaT facility. It consists of an SRF-cavity with a Pb cathode and a superconducting solenoid. Subsequent development stages include the integration of a high-quantum-efficiency cathode and RF components for high-current operation. This paper discusses the first stage towards an ERL-suitable SRF photoinjector, the present status of the facility and first cavity tests.

  3. The UHV system of the 10 MeV RF electron linac

    Science.gov (United States)

    Bhattacharjee, D.; Jayaprakash, D.; Mishra, R. L.; Nimje, V. T.; Mittal, K. C.

    2008-05-01

    A 10 MeV, 10 kW RF Electron Linac, for Industrial applications, is installed and commissioned at Electron Beam Centre (EBC), Kharghar, Navi Mumbai. The accelerator consists of the electron gun, RF Linac, Vacuum system, Beam diagnostics system, Magnetic sweep scanning system and Scan horn. The accelerator is divided into three sections with gate valves to isolate them, to enable servicing of pumps and modifications. The vacuum requirement in the accelerator is 10-7 mbar considering the breakdown parameters of the RF field within the linac. Total length of the accelerator from electron gun to the scan horn is about 5.0 meters. Vacuum plumb lines are of SS 304 pipes of nominal bores of 100 mm and 150 mm, machined internally to a surface finish of 0.8 μm. It encloses a volume of 156 litres. Total surface area exposed to vacuum is 57,500 cm2. It consists of 5250 cm2 of OFHC Copper, 51300 cm2 of SS 304 and 940 cm2 of ceramic sections. Leak-tightness of the order of 1 × 10-9mbar.l/s is ensured for the whole system, after eliminating the leaks at every stage of the assembly. Baking the plumb line and pumps at 150° C, for eight hours an ultimate vacuum of 2 × 10-7mbar is achieved in the accelerator. Modifications of the vacuum system is undertaken to suit the design changes in the gun and the diagnostic systems.

  4. The UHV system of the 10 MeV RF electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D; Jayaprakash, D; Mishra, R L; Nimje, V T; Mittal, K C [D. Bhattacharjee, Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: dhruvab@barc.gov.in

    2008-05-01

    A 10 MeV, 10 kW RF Electron Linac, for Industrial applications, is installed and commissioned at Electron Beam Centre (EBC), Kharghar, Navi Mumbai. The accelerator consists of the electron gun, RF Linac, Vacuum system, Beam diagnostics system, Magnetic sweep scanning system and Scan horn. The accelerator is divided into three sections with gate valves to isolate them, to enable servicing of pumps and modifications. The vacuum requirement in the accelerator is 10{sup -7} mbar considering the breakdown parameters of the RF field within the linac. Total length of the accelerator from electron gun to the scan horn is about 5.0 meters. Vacuum plumb lines are of SS 304 pipes of nominal bores of 100 mm and 150 mm, machined internally to a surface finish of 0.8 {mu}m. It encloses a volume of 156 litres. Total surface area exposed to vacuum is 57,500 cm{sup 2}. It consists of 5250 cm{sup 2} of OFHC Copper, 51300 cm{sup 2} of SS 304 and 940 cm{sup 2} of ceramic sections. Leak-tightness of the order of 1 x 10{sup -9}mbar.l/s is ensured for the whole system, after eliminating the leaks at every stage of the assembly. Baking the plumb line and pumps at 150 deg. C, for eight hours an ultimate vacuum of 2 x 10{sup -7}mbar is achieved in the accelerator. Modifications of the vacuum system is undertaken to suit the design changes in the gun and the diagnostic systems.

  5. An Rf-gun-driven recirculated linac as injector and FEL driver.

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, A.; Biedron, S.; Eriksson, M.; Freund, H.; Werin, S.

    1999-08-23

    A new pre-injector for the MAX-Laboratory is under design and construction. A thermionic rf gun, designed to operate at medium currents with low back bombardment power, is under construction. The gun will, via a magnetic compressor and energy filter, feed a recirculated linac consisting of two SLED-equipped structures giving 125 MeV each. The first will be delivered in 1999. The system is aimed as a pre-injector for the existing storage rings at MAX-Lab, but will also open up possibilities for a SASE FEL in the UV reaching above 100 MW below 100 run.

  6. Self-consistent 3D simulations of longitudinal halo in rf -linacs

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J J; Lund, S M; Ryne, R D

    1998-08-19

    In order to prevent activation of the beam pipe walls and components of a high power ion accelera- tor: beam loss must be minimized. Here we present self-consistent, 3D particle-in-cell simulations of longi- tudinally mismatched beams including the effects of rf non-linearities using parameters based on the Acceler- ator Production of Tritium linac design. In particular, we explore the evolution of the longitudinal halo distri- bution, i.e., the distribution of particles in longitudinal phase space with oscillation amplitudes significantly larger than amplitudes of particles in the main body or ''core'' of the beam. When a particle reaches a suf- ficiently large amplitude longitudinally it can he lost from the rf bucket and consequently loses synchro- nism with thr rf wave. Such particles will lose energy and so be poorly matched to the transverse focusing field and consequently can be lost transversely. We compare the present simulations in which all particles contribute self-consistently to the self-field to predic- tions of a core/test particle model in which the core distribution has uniformly distributed charge and does not evolve self-consistently. Effects of self-consistent, non-linear space-charge forces, non-linear rf focusing on envelope mismatch induced beam halo are explored through comparisons of both models.

  7. Numerical simulation of the RF plasma discharge in the Linac4 H- ion source

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-08-01

    This paper presents a Particle-In-Cell Monte Carlo Collision simulation of the Radio-Frequency (RF) plasma heating in the Linac4 H- ion source at CERN. The model self-consistently takes into account the electromagnetic field generated by the RF coil, the external static magnetic fields and the resulting plasma response, including a kinetic description of the charged species (e-, H+, H2-, H3+, H-), as well as the atomic and molecular (vibrationally resolved) populations. The simulation is performed for the nominal operational condition of 40 kW RF power and 3 Pa H2 pressure. Results show that the plasma spatial distribution is non-uniform in the plasma chamber, with a density peak of ne = 5 . 1019 m-3 in the RF coil region. In the filter field region the electron density drops by two orders of magnitude, with a substantial reduction of the electron energy as well. This results in a ratio e/H- ≈ 1 in the extraction region. The vibrational population is characterized by a two temperature distribution, with the high vibrational states showing a factor 2 higher termperature. A very good agreement is found between the simulation results and optical emission spectroscopy measurement performed on a dedicated test stand at CERN.

  8. RF power upgrade at the superconducting 1.3 GHz CW LINAC “ELBE” with solid state amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Büttig, Hartmut, E-mail: buettig@hzdr.de [Radiation Source ELBE, Helmholtz Zentrum Dresden-Rossendorf (Germany); Arnold, A.; Büchner, A.; Justus, M.; Kuntsch, M.; Lehnert, U.; Michel, P.; Schurig, R.; Staats, G.; Teichert, J. [Radiation Source ELBE, Helmholtz Zentrum Dresden-Rossendorf (Germany)

    2013-03-11

    The RF power for the superconducting 1.3 GHz CW LINAC “ELBE” has been doubled from less than 10 kW to 20 kW per cavity. In January 2012 the four 10 kW klystrons used to drive the four superconducting cavities of the LINAC have been replaced by pairs of 10 kW solid state power amplifiers (SSPA). ELBE is now worldwide the first 1.3 GHz CW LINAC equipped with solid state RF power amplifiers. This technical note details on this project. -- Highlights: ► We report the first installation of 10 kW solid state RF-amplifiers at 1.3 GHz CW LINAC. ► The sc. cavities of “ELBE” are now driven by a pair of 10 kW solid state amplifiers (SSPA). ► The RF-power upgrade allows doubling the electron beam current (CW). ► Advantages of the new RF system are high reliability, easy service and lower costs.

  9. Dynamic compensation of an rf cavity failure in a superconducting linac

    Directory of Open Access Journals (Sweden)

    Jean-Luc Biarrotte

    2008-07-01

    Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.

  10. Simulations of mode reduction with an intracavity etalon in an RF-Linac based FEL

    Science.gov (United States)

    Oepts, D.; van der Meer, A. F. G.; Best, R. W. B.; van Amersfoort, P. W.; Colson, W. B.

    1989-12-01

    Coherence between successive light pulses from an rf-linac based FEL can be induced by means of an intracavity interferometric element such as an etalon. This considerably reduces the number of active cavity modes and facilitates the selection of a single narrow line from the laser output. Computer simulations for the operation of an etalon in the FELIX design are shown. The model based on the wave equation driven by single particles has been applied in simulations using a small number (up to six) of initially independent pulses. The case with 40 separate pulses in the cavity is treated with a simpler model. The simulations show that a low-finesse etalon suffices to obtain a large degree of coherence between successive pulses. Saturated operation in a reduced number of modes, but with the same total power, is attained with a delay of a few microseconds.

  11. JAERI superconducting RF linac-based free-electron laser-facility

    CERN Document Server

    Minehara, E J; Nagai, R; Kikuzawa, N; Sugimoto, M; Hajima, R; Shizuma, T; Yamauchi, T; Nishimori, N

    2000-01-01

    Recently, the JAERI superconducting RF linac based FEL has been successfully lased to produce 0.36 kW of FEL light using a 100 kW electron beam in quasi-continuous wave operation. A 1 kW class laser is our present program goal, and will be achieved by improving the optical out coupling in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. Our next 5-year program goal is to produce a 100 kW-class FEL laser and multi-MW class electron beam in average, quasi-continuous wave operation. Conceptual and engineering design options needed for such a very high-power operation will be discussed to improve and to upgrade the existing facility.

  12. ACCELERATORS: Tuning of RF amplitude and phase for the drift tube linac in J-PARC

    Science.gov (United States)

    Shen, Guo-Bao; Masanori, Ikegami

    2009-07-01

    The J-PARC linac has three DTL tanks to accelerate the negative hydrogen ions from 3 MeV to 50 MeV. The RF phase and amplitude are adjusted for each cavity with a phase scan method within the accuracy of 1? in phase and 1% in amplitude. The experimental results show a remarkable agreement with the numerical model within a sufficient margin in the tuning of the last two DTL tanks. However, a notable discrepancy between the experiment and the numerical model is seen in the tuning of the first DTL tank. After studying with a three-dimensional multi-particle simulation, the generation of the low energy component and the pronounced filamentation are identified as the main causes of the discrepancy. The optimization of the tuning scheme is also discussed to attain the tuning goal accuracy for the first DTL tank.

  13. Tuning of RF amplitude and phase for the drift tube linac in J-PARC

    Institute of Scientific and Technical Information of China (English)

    SHEN Guo-Bao; Masanori Ikegami

    2009-01-01

    The J-PARC linac has three DTL tanks to accelerate the negative hydrogen ions from 3 MeV to 50 MeV. The RF phase and amplitude are adjusted for each cavity with a phase scan method within the accuracy of 1°in phase and 1% in amplitude. The experimental results show a remarkable agreement with the numerical model within a sufficient margin in the tuning of the last two DTL tanks. However, a notable discrepancy between the experiment and the numerical model is seen in the tuning of the first DTL tank. After studying with a three-dimensional multi-particle simulation, the generation of the low energy component and the pronounced filamentation are identified as the main causes of the discrepancy. The optimization of the tuning scheme is also discussed to attain the tuning goal accuracy for the first DTL tank.

  14. Low level rf system for the European Spallation Source’s Bilbao linac

    Directory of Open Access Journals (Sweden)

    Hooman Hassanzadegan

    2011-05-01

    Full Text Available Design and some performance results of the pulsed digital low level radio frequency (LLRF for the radio frequency quadrupole (RFQ systems of Rutherford Appleton Laboratory–front end test stand and the future European Spallation Source Bilbao linac are presented. For rf field regulation, the design is based on direct rf-to-baseband conversion using an analog in-phase quadrature (IQ demodulator, high-speed sampling of the I/Q components, baseband signal processing in a field-programmable gate array (FPGA, conversion to analog, and IQ modulation. This concept leads to a simple and versatile LLRF system which can be used for a large variety of rf frequencies and virtually any LLRF application including cw, ramping, and pulsed. In order to improve the accuracy of the probe voltage measurement, errors associated with the use of analog IQ demodulators have been identified and corrected by FPGA algorithms and proper setting of the feedback loop parameters. Furthermore, a baseband-equivalent model for the rf plant is developed in MATLAB-Simulink to study the RFQ transient response under beam loading in the presence of phase and delay errors. The effect of the unwanted resonant modes on the feedback loop stability and the LLRF considerations to avoid such instabilities are discussed and compared to some other machines such as the ILC and the European free electron laser . The practical results obtained from tests with a mock-up cavity and an RFQ cold model verify that amplitude and phase stabilities down to a fraction of one percent and one degree and phase margins larger than ±50° can be achieved with this method preserving the linearity and bandwidth of the feedback loops.

  15. The RF-System of the New Gsi High Current Linac Hsi

    CERN Document Server

    Hutter, G; Hartmann, W; Kube, G; Pilz, M; Vinzenz, W

    2000-01-01

    The RF part of the new high current injector-linac HSI consists of five cavities with the new operating frequency of 36 MHz instead of 27 MHz of the removed Wideroe type injector. The calculated power requirements of the cavities including beam load in three structures were between 110 kW for a rebuncher and 1.75 MW pulse-power for the two IH-cavities. The beam load is up to 150 kW for the RFQ and up to 750 kW for the two drift tube tanks. An additional 36 MHz debuncher in the transfer line to the Synchrotron (SIS) will need 120 kW pulse power. We decided to fulfil these demands with amplifiers of only two power classes, namely three amplifiers with 2 MW and six amplifiers with 200 kW pulse output power. The latter ones are also used as drivers for the 2 MW stages. The 200 kW amplifiers were specified in detail by GSI and ordered in the industry. The three 2 MW final amplifiers were designed, constructed and built by GSI. The paper gives an overview of the complete RF system and the operating performance of a...

  16. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mavric, Uros; Vidmar, Matjaz; Chase, Brian; /Fermilab

    2008-06-01

    The proposed RF distribution scheme for the two 15 km long ILC LINACs, uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high performance, low cost, reliable and modular multichannel receiver. At Fermilab we developed a 96 channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In the paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance.

  17. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Mavric, Uros [Fermilab, P.O. Box 500, 60510 Batavia, IL (United States)], E-mail: mavric@fnal.gov; Chase, Brian [Fermilab, P.O. Box 500, 60510 Batavia, IL (United States); Vidmar, Matjaz [Faculty of Electrical Engineering in Ljubljana, Trzaska 25, 1000 Ljubljana (Slovenia)

    2008-08-21

    The proposed RF distribution scheme for the two 15 km long ILC LINACs uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high-performance, low-cost, reliable and modular multichannel receiver. At Fermilab we developed a 96-channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In this paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance.

  18. 3D simulations on output power fluctuation in a short bunch rf-linac FEL

    Science.gov (United States)

    Sentoku, Y.; Furukawa, H.; Mima, K.; Taguchi, T.; Kuruma, S.; Yasuda, H.; Yamanaka, C.; Nakai, S.

    1995-04-01

    A space-time dependent 3D simulation code has been developed in order to analyze the RF-linac FEL oscillator dynamics. Our simulation code employed both the transverse mode spectral method and the longitudinal finite difference method. The electron beam is modeled by a group of super particles which have a density profile in the time domain. In this model the electron beam is able to determine the energy spread and the finite emittance. This simulation code enables us to describe the transverse mode competition and the slippage effects in the resonator cavity. In this paper, a high power infrared FEL with a short bunch electron beam is investigated. The output power fluctuation with cavity desynchronism is simulated with this code. Especially, we investigated the effects of the transverse mode competition, energy spread, and the finite emittance of the electron beam on the output fluctuation. Using FELIX parameters, the FEL oscillator is simulated for 300 passes. The output power oscillates periodically in the case of single transverse mode and not in the case of multi-transverse modes. In a warm beam with multi-transverse modes, the emission is higher than that with a single mode, and the optical pulse shape is almost the after 100 passes. Furthermore, the phase space motion of the laser field is periodic and stable. As a result of the simulation, we recommend that high power infrared FEL operation should include multi-transverse modes in order to get higher emission and a more stable optical pulse.

  19. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.; /Oak Ridge; Garoby, R.; /CERN; Geer, S.; /Fermilab

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  20. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  1. Status of the RF-driven H{sup −} ion source for J-PARC linac

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, H., E-mail: oguri.hidetomo@jaea.go.jp; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Ueno, A.; Shibata, T. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2016-02-15

    For the upgrade of the Japan Proton Accelerator Research Complex linac beam current, a cesiated RF-driven negative hydrogen ion source was installed during the 2014 summer shutdown period, with subsequent operations commencing on September 29, 2014. The ion source has been successfully operating with a beam current and duty factor of 33 mA and 1.25% (500 μs and 25 Hz), respectively. The result of recent beam operation has demonstrated that the ion source is capable of continuous operation for approximately 1100 h. The spark rate at the beam extractor was observed to be at a frequency of less than once a day, which is an acceptable level for user operation. Although an antenna failure occurred during operation on October 26, 2014, no subsequent serious issues have occurred since then.

  2. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  3. ARIEL e-linac. Electron linear accelerator for photo-fission

    Science.gov (United States)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  4. Deflecting RF cavity design for a recirculating linac based facility for ultrafast X-ray science (LUX)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Derun; Corlett, J.N.

    2003-05-01

    We report on superconducting deflecting RF cavity designs for a Recirculating Linac Based Facility for Ultrafast X-ray Science (LUX) at Lawrence Berkeley National Laboratory. The deflecting cavities operate in the lowest dipole mode and are required to produce a temporal correlation within flat electron bunches, as needed for x-ray compression in crystal optics. Deflecting voltage of up to 8.5-MV is required at 3.9-GHz. We present a 7-cell cavity design in this paper. Seven such cavities are required to generate the 8.5 MV deflecting voltage. Longitudinal and transverse impedance from LOM (lower order mode) and HOM (higher order mode) are simulated using the MAFIA code. Short-range and long-range wakefield excited through these impedances are calculated. Beam loading effects of the deflecting mode and LOM modes are estimated. Q values of the LOM monopole modes in the cavity may need to be damped to be below 10{sup 4}-10{sup 5} levels in order to maintain the required energy spread.

  5. Study on interference between far-IR to mm-wave CSR from consecutive electron bunches at BFEL RF-Linac

    CERN Document Server

    Biao, Z J; Xie Jia Li; Zhang Guo Qing

    2001-01-01

    Coherent bending magnet or undulator radiation due to a train of electron bunches is treated as radiation from a multi-slit diffraction array. Based on this model, we numerically analyse the interference among coherent synchrotron radiation emitted from consecutive bunches in a train of bunches, which are accelerated by a 30-MeV RF-linac at BFEL. Some interesting results are as follows: (1) Rapidly oscillating radiation enhancement due to interbunch interference is overlapped on the single bunch spectrum. (2) It consists of a series of spectrum lines corresponding to harmonics of the RF fundamental. (3) Main maximum positions are determined by the 'diffraction condition'. (4) Total intensity is about the square of the number of bunches participating in interference as single bunch intensity. Experimental design to measure interbunch interference at BFEL with the sub-mm and mm-wave Michelson interferometer is presented.

  6. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  7. High-brightness rf linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.

    1986-01-01

    The issue of high brightness and its ramifications in linacs driven by radio-frequency fields is discussed. A history of the RF linacs is reviewed briefly. Some current applications are then examined that are driving progress in RF linacs. The physics affecting the brightness of RF linacs is then discussed, followed by the economic feasibility of higher brightness machines. (LEW)

  8. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    Science.gov (United States)

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  9. Studies of radiation fields of LCLS-II super conducting radio frequency cavities

    Science.gov (United States)

    Santana Leitner, M.; Ge, L.; Li, Z.; Xu, C.; Adolphsen, C.; Ross, M.; Carrasco, M.

    2016-09-01

    The Linac Coherent Light Source II (LCLS-II) will be a hard X-ray Free Electron Laser whose linac can deliver a 1.2 MW CW electron beam with bunch rates up to 1 MHz. To efficiently generate such a high power beam, Super-Conducting Radio-Frequency (SCRF) cavities will be installed in the upstream portion of the existing 3 km Linac at the SLAC National Accelerator Laboratory. The 9-cell niobium cavities will be cooled at 2K inside 35 cryomodules, each containing a string of eight of those cavities followed by a quadrupole. The strong electromagnetic fields in the SCRF cavities will extract electrons from the cavity walls that may be accelerated. Most such dark current will be deposited locally, although some electrons may reach several neighboring cryomodules, gaining substantial energy before they hit a collimator or other aperture. The power deposited by the field emitted electrons and the associated showers may pose radiation and machine protection issues at the cryomodules and also in other areas of the accelerator. Simulation of these effects is therefore crucial for the design of the machine. The in-house code Track3P was used to simulate field emitted electrons from the LCLS-II cavities, and a sophisticated 3D model of the cryomodules including all cavities was written to transport radiation with the Fluka Monte Carlo code, which was linked to Track3P through custom-made routines. This setup was used to compute power deposition in components, prompt and residual radiation fields, and radioisotope inventories.

  10. Drift Tube Linac Conditioning of Tank1

    CERN Document Server

    Shafqat, N; Toor, W A

    2014-01-01

    Tank1 of the Drift Tube Linac (DTL) of the Linac4 has been conditioned at the Linac4 tunnel. The tank was tuned for resonance at 352.2 MHz, and stable operation has been achieved with 725 µs long RF pulses at a repetition rate of 1 Hz. The maximum RF level that has been reached is 810 kW with a pulse width of 600 µs. Since this was the first RF structure exclusively conditioned in the Linac4 tunnel with the operation and control software of Linac4, some related issues and limitations had to be taken into account.

  11. SYSTEM IDENTIFICATION OF THE LINAC RF SYSTEM USING A WAVELET METHOD AND ITS APPLICATIONS IN THE SNS LLRF CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Y. WANG; S. KWON; ET AL

    2001-06-01

    For a pulsed LINAC such as the SNS, an adaptive feed-forward algorithm plays an important role in reducing the repetitive disturbance caused by the pulsed operation conditions. In most modern feed-forward control algorithms, accurate real time system identification is required to make the algorithm more effective. In this paper, an efficient wavelet method is applied to the system identification in which the Haar function is used as the base wavelet. The advantage of this method is that the Fourier transform of the Haar function in the time domain is a sine function in the frequency domain. Thus we can directly obtain the system transfer function in the frequency domain from the coefficients of the time domain system response.

  12. RF Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Brookhaven Natl. Lab.; Belomestnykh, Sergey [SUNY, Stony Brook; Ben-Zvi, Ilan [RIKEN BNL; Blaskiewicz, Michael [RIKEN BNL; Brennan, Joseph [RIKEN BNL; Brutus, Jean Clifford [RIKEN BNL; Fedotov, Alexei [RIKEN BNL; Hahn, Harald [Brookhaven; McIntyre, Gary [RIKEN BNL; Pai, Chien [RIKEN BNL; Smith, Kevin [RIKEN BNL; Tuozzolo, Joseph [RIKEN BNL; Veshcherevich, Vadim [Cornell U., CLASSE; Wu, Qiong [RIKEN BNL; Xin, Tianmu [RIKEN BNL; Xu, Wencan [RIKEN BNL; Zaltsman, Alex [RIKEN BNL

    2016-06-01

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. Currently these two cavities are under fabrication. In this paper we report the RF design of these two cavities.

  13. LINAC 4

    CERN Multimedia

    2013-01-01

    On 13 March, a beam of negative hydrogen ions was injected into the first accelerator module of Linac 4, the linear accelerator which will replace Linac 2. The beam was created in the new source built for Linac 4 and accelerated from 45 kEV to 3 MeV by a radiofrequency quadrupole (RFQ) module, the first link in the Linac 4 accelerator chain. This crucial phase went off without a hitch. The video above shows the new Linac 4 ion source, the low-energy transfer line and the RFQ, with running commentary by Giulia Bellodi and Carlo Rossi from the Beams Department.

  14. The ISS protontherapy LINAC

    Science.gov (United States)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1997-02-01

    The TERA foundation stimulated in the past years a comparative study of compact proton accelerators for therapy and at the end of 1995 the Italian National Institute of Health (Istituto Superiore di Sanità, ISS) decided for the construction of a proton linac for its TOP (Terapia Oncologica con Protoni) project. The TOP-LINAC will be composed of a 7 MeV RFQ+DTL injector followed by a 7-65 MeV section of the innovative 3 GHz SCDTL structure and a 65-200 MeV variable energy SCL 3 GHz structure. A 5-cavity model of the SCDTL has been built and measured on a RF test bench while a 11-cavities prototype (accelerating until 12.5 MeV) is under construction and will be assembled within few months. The TOP LINAC whose construction will start at the end of 1996, will be the first linear accelerator dedicated to proton therapy, and the first 3 GHz proton linac. In this paper the accelerator design and the construction schedule will be presented, and the SCDTL structure RF measurements will be discussed.

  15. S-Band Loads for SLAC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  16. Status of the RFI Linac Prototype

    CERN Document Server

    Swenson, D A

    2004-01-01

    A prototype of the Rf Focused Interdigital (RFI) linac structure is currently under construction at Linac Systems. The RFI linac structure is basically an interdigital (or Wideröe) linac structure with rf quadrupole focusing incorporated into each drift tube. The 200 MHz RFI prototype, consisting of a short RFQ linac followed by a short RFI linac, will accelerate a 20 mA beam of protons from an injection energy of 25 keV to an output energy of 2.50 MeV in a total linac structure length of 1.44 meters. The linac structures are designed for continuous (cw) operation, and will be tested initially at a 33% duty factor. The peak structure power of 66 kW and peak beam power of 50 kW will be supplied by a 144 kW, 33% duty rf power system. A microwave ion source will supply the proton beam and an articulated Einzel lens will steer and focus the beam into the RFQ aperture. The mechanical design of the linac structures will be presented, the calculated performance will be described, the status of the components will b...

  17. Power Coupler Simulations for the Linac4 Drift Tube Linac

    CERN Document Server

    De Michele, G; Ramberger, S

    2011-01-01

    The power coupler is a crucial element in the design of an RF cavity. Power from an RF source is transported towards the cavity by a waveguide and transferred into the cavity by means of a power coupler that is adapted to both the transport mode in the waveguide and the principal resonant mode in the cavity. In the case of Linac4, a rectangular half-height waveguide (WG) WR2300 is used and the connection from this WG to the cavity is achieved by iris coupling through an interconnecting waveguide (IWG) in the tank wall. In this note simulations and measurements on a prototype and studies on Tank1 of the Linac4 Drift Tube Linac (DTL) are discussed in order to define the dimensions of this IWG such that it optimises the power transfer into the cavity.

  18. S波段1kW固态放大器%1kW S-Band RF Solid State Amplifier for BEPC Linac Microwave Driver System

    Institute of Scientific and Technical Information of China (English)

    赵风利; 黄永清

    2003-01-01

    This paper presents the development of a 1kW S-Band RF Solid State Amplifier (SSA) for the BEPC Linac. 1kW peak power with a pulse width of 2-10μs under low voltage operation is achieved by combining eight 160W high power Solid State Amplifiers using a low-loss(0.3dB) combiner. Other key performance parameters are: RF phase drift during pulse≤±1 degree, RF rise time/fall time is 88ns/40ns, RF pulse flatness is 0.7%, and RF power stability is 0.1dB.%S波段1kW固态放大器用于北京正负电子对撞机直线加速器大功率速调管的微波激励. 阐述了其工作原理和性能指标,并对其核心部分--580W放大器模块作了重点介绍. 该放大器达到的主要技术指标如下:工作频率为2856MHz,输出最高脉冲功率为1030W(在放大器合成后输出端测量),脉冲宽度为2-10μs,脉冲前沿/脉冲后沿分别是88ns/40ns,脉内平顶为0.7%. 该放大器自2001年5月在加速器上运行到现在,运行状态良好.

  19. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lenci,S.J.; Eisen, E. L.; Dickey, D. L.; Sainz, J. E.; Utay, P. F.; Zaltsman, A.; Lambiase, R.

    2009-05-04

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.

  20. Current Reversal and Negative Conductance for a Super-Conducting Junctions Device

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2009-01-01

    In the paper, we study a super-conducting junctions device subject to an input periodic signal and a constant force. It is shown that, for this device, we can get current reversals for the current of the electron pairs versus the frequency of the periodic signal and negative conductance for the current of the electron pairs as a function of the constant force.

  1. High gradient linac for proton therapy

    Directory of Open Access Journals (Sweden)

    S. Benedetti

    2017-04-01

    Full Text Available Proposed for the first time almost 30 years ago, the research on radio frequency linacs for hadron therapy experienced a sparkling interest in the past decade. The different projects found a common ground on a relatively high rf operating frequency of 3 GHz, taking advantage of the availability of affordable and reliable commercial klystrons at this frequency. This article presents for the first time the design of a proton therapy linac, called TULIP all-linac, from the source up to 230 MeV. In the first part, we will review the rationale of linacs for hadron therapy. We then divided this paper in two main sections: first, we will discuss the rf design of the different accelerating structures that compose TULIP; second, we will present the beam dynamics design of the different linac sections.

  2. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  3. Status of the RFD Linac Structure Developement

    CERN Document Server

    Swenson, D A

    2000-01-01

    The Proof-of-Principle (POP) prototype of the Rf-Focused Drift tube (RFD) linac structure is currently under test at Linac Systems, after years of delay due to a variety of technical problems. A discussion of these technical problems and their solutions will be presented. The status of these tests will be reported. Plans for future development of this linac structure will be revealed. Potential uses of this linac structure for a variety of scientific, medical, and industrial applications will be described, including: proton linac injectors for proton synchrotrons, compact proton linacs for PET isotope production, epithermal neutron sources for the BNCT application, energy boosters for proton therapy, compact portable neutron sources for thermal neutron radiography, and pulsed cold neutron sources for cold neutron physics and related applications.

  4. LINAC4

    CERN Multimedia

    2017-01-01

    The film illustrates CERN’s new linear accelerator for negative hydrogen ions (H-) Linac4. The klystron hall is shown. In the linac4 tunnel: the H- source, the radiofrequency quadrupole (RFQ), Drift tube (DTL), CCDTL and Pi-mode accelerating structure are shown. The H- dump and transfer line gallery towards the PS-booster are shown. Eventually the bird’s eye view of the booster and PS ring accelerators are shown.

  5. Electron bunch energy and phase feed-forward stabilization system for the Mark V RF-linac free-electron laser.

    Science.gov (United States)

    Hadmack, M R; Jacobson, B T; Kowalczyk, J M D; Lienert, B R; Madey, J M J; Szarmes, E B

    2013-06-01

    An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with the results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.

  6. Testing begins on Linac4

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    On 3 August 2012, the Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152. The site will be the module’s home for almost a year, as the linear accelerator enters the assembly and testing stage.   Final module assembly is carried out before installation in Building 152.  Over the next Long Shutdown (LS2), Linac4 will replace the current Linac2 linear accelerator as the first link in CERN’s accelerator chain. It will deliver particles at 160 MeV to the PS Booster, more than triple the energy currently delivered by Linac2. But before the accelerator team can pop the champagne, the various elements of Linac4 will be tested and re-tested in facilities across CERN. “The first Linac4 tests are currently underway, starting with the CERN-built RFQ,” says Carlo Rossi, a physicist in the RF Group of the Beams (BE) Department and the RFQ project coordinator. “It’s an extremely impre...

  7. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Science.gov (United States)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J. P.; Devaux, J. F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P.; Prazeres, R.

    2016-12-01

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  8. ILC Linac R&D at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; /SLAC

    2006-08-09

    Since the ITRP recommendation in August 2004 to use superconducting rf technology for a next generation linear collider, the former NLC Group at SLAC has been actively pursuing a broad range of R&D for this collider (the ILC). In this paper, the programs concerning linac technology are reviewed. Current activities include the development of a Marx-style modulator and a 10 MW sheet-beam klystron, operation of an L-band (1.3 GHz) rf source using an SNS HVCM modulator and commercial klystrons, design of a more efficient and less costly rf distribution system, construction of a coupler component test stand, fabrication of a prototype positron capture cavity, beam tests of prototype S-band linac beam position monitors and preparations for magnetic center stability measurements of a prototype SC linac quad.

  9. The LINAC4 Power Coupler

    CERN Document Server

    Gerigk, F; Montesinos, E; Riffaud, B; Ugena Tirado, P; Wegner, R

    2011-01-01

    Linac4 is employing three types of accelerating structures after the RFQ: a Drift Tube Linac (DTL), a Cell- Coupled DTL (CCDTL), and a Pi-Mode Structure (PIMS) to accelerate the beam up to 160 MeV at 352.2MHz. The structures are designed for a peak power of approximately 1 MW per power coupler, which is transported via rectangular waveguides from the klystron gallery to the RF cavities. The coupler itself consists of two parts: a ceramic window, which separates the cavity vacuum from the air in the waveguides, and a Tuner-adjustablewaveguide Coupler (TaCo), which couples the RF power through an iris to the cavity. In the frame of the Linac4 R&D both devices have been significantly improvedwith respect to their commonly used design. On the coupler side, the waveguide short circuit with its matched length has been replaced by a fixedlength /4 short circuit. The RF matching is done by a simple piston tuner, which allows a quick matching to different cavity quality factors. In the window part, which usually c...

  10. Emittance coupling driven by space charge in the CSNS linac

    Institute of Scientific and Technical Information of China (English)

    YIN Xue-Jun; FU Shi-Nian; PENG Jun

    2009-01-01

    In the conventional design of RF linacs, the bunched beams are not in thermal equilibrium. The space charge forces couple the particle motions between the transverse and the longitudinal directions. Fur-thermore it will cause the equipartitioning process which leads to emittance growth and halo formation. In the design of the China Spallation Neutron Source (CSNS) linac, three cases are investigated using the Hofmann stability charts. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac.

  11. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  12. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  13. A new ab initio approach to the development of high temperature super conducting materials

    CERN Document Server

    Turner, Philip

    2016-01-01

    We review recent theoretical developments, which suggest that a set of shared principles underpin macroscopic quantum phenomena observed in high temperature super conducting materials, room temperature coherence in photosynthetic processes and the emergence of long range order in biological structures. These systems are driven by dissipative systems, which lead to fractal assembly and a fractal network of charges (with associated quantum potentials) at the molecular scale. At critical levels of charge density and fractal dimension, individual quantum potentials merge to form a charged induced macroscopic quantum potential, which act as a structuring force dictating long range order. Whilst the system is only partially coherent (i.e. only the bosonic fields are coherent), within these processes many of the phenomena associated with standard quantum theory are recovered, with macroscopic quantum potentials and associated forces having their equivalence in standard quantum mechanics. We establish a testable hypo...

  14. RF power coupling for the CSNS DTL

    Institute of Scientific and Technical Information of China (English)

    刘华昌; 彭军; 殷学军; 欧阳华甫; 傅世年

    2011-01-01

    The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-ty

  15. Entangled States in a Single-Qubit Structure with SQUID Coupled with a Super-conducting Resonator

    Institute of Scientific and Technical Information of China (English)

    SONG Jian-Wen; LIANG Bao-Long; HAI Wen-Hua; WANG Ji-Suo; ZHONG Hong-Hua; MENG Xiang-Guo; LUO Xiao-Bing

    2008-01-01

    In this paper, the number-phase quantization scheme of the mesoscopic circuit, which consists of a single-qubit structure with superconducting quantum interference device coupled with a super-conducting resonator, is given. By introducing a unitary matrix and by means of spectral decomposition, the Hamiltonian operator of the system is exactly formulated in compact forms in spin-1/2 notation. The eigenvalues and the eigenstates of the system are investigated. It is found that using this system the entangled states can not only be prepared, but also be manipulated by tuning the magnetic flux through the super-conducting loop.

  16. Appearance of Spatial-Temporal Noise in Super-conducting Junction and Its Effect on Transport of Electron Pairs

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Hui

    2007-01-01

    Transport of electron pairs in super-conducting junction with spatial-temporal noise is investigated.We show that the spatial-temporal noise can produce the current of the electron pairs,which stems from a symmetry breaking of the system induced by the correlation of the spatial-temporal noise with the phase difference.It is found that there is a positive current for the electron pairs,exhibiting a peak with increasing the values of some parameters of the noises.The results provide a theoretical foundation for the further investigation of the super-conducting junction.

  17. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  18. RFI-Based Ion Linac Systems

    Science.gov (United States)

    Swenson, Donald A.

    A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.

  19. Optical emission spectroscopy of the Linac4 and superconducting proton Linac plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J.; Kronberger, M.; Mahner, E.; Schmitzer, C.; Sanchez, J.; Scrivens, R.; Midttun, O.; O' Neil, M.; Pereira, H.; Paoluzzi, M. [European Organization for Nuclear Research, CERN, 1211 Geneva 23 (Switzerland); Fantz, U.; Wuenderlich, D. [Max-Planck-Institut fuer Plasmaphysik, IPP, 85748 Garching (Germany); Kalvas, T.; Koivisto, H.; Komppula, J.; Myllyperkioe, P.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, 40500 Jyvaeskylae (Finland)

    2012-02-15

    CERN's superconducting proton Linac (SPL) study investigates a 50 Hz high-energy, high-power Linac for H{sup -} ions. The SPL plasma generator is an evolution of the DESY ion source plasma generator currently operated at CERN's Linac4 test stand. The plasma generator is a step towards a particle source for the SPL, it is designed to handle 100 kW peak RF-power at a 6% duty factor. While the acquisition of an integrated hydrogen plasma optical spectrum is straightforward, the measurement of a time-resolved spectrum requires dedicated amplification schemes. The experimental setup for visible light based on photomultipliers and narrow bandwidth filters and the UV spectrometer setup are described. The H{sub {alpha}}, H{sub {beta}}, and H{sub {gamma}} Balmer line intensities, the Lyman band and alpha transition were measured. A parametric study of the optical emission from the Linac4 ion source and the SPL plasma generator as a function of RF-power and gas pressure is presented. The potential of optical emission spectrometry coupled to RF-power coupling measurements for on-line monitoring of short RF heated hydrogen plasma pulses is discussed.

  20. Temperature Regulation of the Accelerating Section in CANDLE Linac

    CERN Document Server

    Tunyan, Sergey; Grigoryan, Bagrat

    2005-01-01

    The temperature of the CANDLE S-Band Linac high-power RF components will be regulated by stand-alone closed loop (SACL) water system. The RF components are made of oxygen-free high conductivity copper and respond quickly to temperature changes. Temperature stabilization better than ± 0.1 C is required to achieve a good RF phase and energy stability. The temperature regulation and control philosophy along with the simulation results are discussed.

  1. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    Science.gov (United States)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su; Lee, Byeong-No; Lee, Byung-Chul; Park, Hyung-dal; Song, Ki-back; Song, Ho-seung; Mun, Sangchul; Ha, Donghyup; Chai, Jong-Seo

    2017-04-01

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  2. LINAC4 Footage

    CERN Multimedia

    2017-01-01

    Geneva, 9 May 2017. At a ceremony today, CERN inaugurated its linear accelerator, Linac 4, the newest accelerator acquisition since the Large Hadron Collider (LHC). Linac 4 is due to feed the CERN accelerator complex with particle beams of higher energy, which will allow the LHC to reach higher luminosity by 2021. After an extensive testing period, Linac 4 will be connected to CERN’s accelerator complex during the upcoming long technical shut down in 2019-20. Linac 4 will replace Linac 2, which has been in service since 1978. It will become the first step in CERN’s accelerator chain, delivering proton beams to a wide range of experiments

  3. LINAC4 Footage (HD)

    CERN Multimedia

    2017-01-01

    Geneva, 9 May 2017. At a ceremony today, CERN inaugurated its linear accelerator, Linac 4, the newest accelerator acquisition since the Large Hadron Collider (LHC). Linac 4 is due to feed the CERN accelerator complex with particle beams of higher energy, which will allow the LHC to reach higher luminosity by 2021. After an extensive testing period, Linac 4 will be connected to CERN’s accelerator complex during the upcoming long technical shut down in 2019-20. Linac 4 will replace Linac 2, which has been in service since 1978. It will become the first step in CERN’s accelerator chain, delivering proton beams to a wide range of experiments

  4. Status of the TOP Linac project

    Energy Technology Data Exchange (ETDEWEB)

    Cianfarani, Cesidio [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy); Cisbani, Evaristo [ISS, Viale Regina Elena 199, Rome (Italy); Orlandi, Gianluca [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy); Frullani, Salvatore [ISS, Viale Regina Elena 199, Rome (Italy); Picardi, Luigi [ENEA, Via E. Fermi 45, Frascatim(Rome) (Italy)]. E-mail: picardi@frascati.enea.it; Concetta Ronsivalle [ENEA, Via E. Fermi 45, Frascati (Rome) (Italy)

    2006-06-23

    The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS is a sequence of three pulsed (5 {mu}s 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7-65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL) and a 65-200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The status of the project will be presented. The 7 MeV injector is installed at ENEA-Frascati laboratories. The first SCDTL module structure, composed by nine DTL tanks coupled by eight side cavities, has been built and tested on RF bench, so that it is ready for proton acceleration. The results of the measurements done will be also shown.

  5. Finite Element Thermal Study of the Linac4 Plasma Generatora

    CERN Document Server

    Faircloth, D; Kuchler, D; Lettry, L; Scrivens, R; CERN. Geneva. BE Department

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the RF-powered non-cesiated Linac4 H- ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW RF power, 2 Hz, 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of SPL, an extrapolation of the heat load towards 100 kW RF power, 50 Hz repetition rate and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in HP-SPL.

  6. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; O’Neil, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Steyaert, D; Thaus, N; Hatayama, A; Nishida, K; Shibata, T; Yamamot, T; Otha, M

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the LEBT, RFQ and chopper of Linac4.

  7. Beam loading compensation for the NLC low frequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Miller, R.; Farkas, D.; Raubenheimer, T.; Tang, H.; Yeremian, D.

    1997-03-01

    The NLC low rf linacs are heavily loaded by a beam of about 130 ns in macropulse length (90 bunches) and a current up to 2.75 Amps. Beam loading voltage generates a large energy spread along the bunch train. This energy spread is critical for lattice design and, if not properly compensated, induces emittance growth and in turn lowers the luminosity of the machine. In this paper, the authors study the {Delta}F and {Delta}T beam loading compensation techniques for the NLC low rf linacs. They will apply these methods to the NLC low rf linacs to demonstrate the efficacy of these methods. Finally, they discuss a hybrid {Delta}T + {Delta}F method to improve the efficiency of beam loading compensation.

  8. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  9. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Ventturini, M.; Corlett, J.; Emma, P.; Papadopoulos, C.; Penn, G.; Placidi, M.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Sun, C.; Wells, R.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  10. ACCELERATORS: Emittance coupling driven by space charge in the CSNS linac

    Science.gov (United States)

    Yin, Xue-Jun; Fu, Shi-Nian; Peng, Jun

    2009-09-01

    In the conventional design of RF linacs, the bunched beams are not in thermal equilibrium. The space charge forces couple the particle motions between the transverse and the longitudinal directions. Furthermore it will cause the equipartitioning process which leads to emittance growth and halo formation. In the design of the China Spallation Neutron Source (CSNS) linac, three cases are investigated using the Hofmann stability charts. In this paper, we present the equipartitioning beam study of the CSNS Alvarez DTL linac.

  11. Overview of the RF Systems for LCLS

    CERN Document Server

    McIntosh, Peter; Boyce, Richard; Emma, Paul; Hill, Alan; Rago, Carl

    2005-01-01

    The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

  12. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  13. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  14. RF Tuning Schemes for J-PARC DTL and SDTL

    CERN Document Server

    Ikegami, M

    2004-01-01

    J-PARC linac consists of a 3 MeV RFQ linac, a 50 MeV DTL (Drift Tube Linac), a 190 MeV SDTL (Separate-type DTL), and a 400 MeV ACS (Annular-Coupled Structure) linac. In high-current proton linacs, precise tuning of RF amplitude and phase is indispensable to reduce uncontrolled beam loss and beam-quality deterioration. Especially, accurate RF tuning is essential for J-PARC linac, because requirement for the momentum spread is extremely severe to enable effective injection to the succeeding RCS (Rapid Cycling Synchrotron). In this paper, planned tuning schemes for the DTL and SDTL are presented together with the beam diagnostic layout for the tuning.

  15. RF power coupling for the CSNS DTL

    Science.gov (United States)

    Liu, Hua-Chang; Peng, Jun; Yin, Xue-Jun; Ouyang, Hua-Fu; Fu, Shi-Nian

    2011-01-01

    The China Spallation Neutron Source (CSNS) drift tube linac (DTL) consists of four tanks and each tank is fed by a 2.5 MW klystron. Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design. An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity. The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out. The results from the numerical simulations are in excellent agreement with the analytical results.

  16. RF power coupling for the CSNS DTL

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-Chang; PENG Jun; YIN Xue-Jun; OUYANG Hua-Fu; FU Shi-Nian

    2011-01-01

    The China Spallation Neutron Source(CSNS)drift tube linac(DTL)consists of four tanks and each tank is fed by a 2.5 MW klystron.Accurate predication of RF coupling between the RF cavity and ports is very important for DTL RF coupler design.An iris-type coupler is chosen to couple the RF power to the DTL accelerating cavity.The physical design of the DTL coupler and the calculations of RF coupling between the cavity and coupler are carried out.The results from the numerical simulations are in excellent agreement with the analytical results.

  17. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  18. Linac pre-injector

    CERN Multimedia

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  19. Operation experiences of the super conducting magnet for a gyrotron of the JT-60U ECH system

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Koichi; Seki, Masami; Shimono, Mitsugu; Terakado, Masayuki; Ishii, Kazuhiro; Takahashi, Masami [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    The JT-60U electron cyclotron heating (ECH) system can heat plasmas locally and drive a plasma current with four 1 MW-5 sec gyrotrons. The super conducting magnets (SCM) are required for oscillation of the gyrotron at a working frequency of 110 GHz. The SCM provides a high magnetic field of 4.5T at the cavity inside the gyrotron. This SCM system is characterized by 1) operation without liquid Helium owing to a 4K-refrigerator applied to the magnetic coils, 2) easy maintenance. Operational experiences about the SCM system through a long term experiment for a high power gyrotron are very valuable. According to those operational experiences, it is clarified the 4K-refrigerator should be renewed in order to keep low temperature of the SCM. It is also found that 200 hours or less are required for the super conducting condition (<5K) after long stopping time of the refrigerator up to 150 hours. This is useful information for making a plan about ECH experiments. (author)

  20. Mechanical Engineering of the Linac for the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-03-29

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H{sup {minus}} ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H{sup {minus}} ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H{sup {minus}} input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort.

  1. Proposal for Reduction of Transverse Emittance of BNL 200 MeV Linac

    CERN Document Server

    Alessi, J; Raparia, D; Weng, W T

    2004-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of two major subsystems. First is a 1.2 GeV super-conducting linac (SCL) to replace the booster as injector for the AGS. Second is the performance upgrade for the AGS itself for the higher intensity and repetition rate. For high intensity proton accelerators, such as the upgraded AGS, there are very stringent limitations on uncontrolled beam losses. A direct effect of linac beam emittance is the halo/tail generation in the circulating beam. Studies show the estimated halo/tail generation in the beam for present normalized RMS emittance of linac beam is unacceptable. To reduce the transverse emittance of 200 MeV linac, the existing radio frequency quadrupole linac (RFQ) has to be relocated closer to drift tube linac (DTL) tank 1 to meet emittance requirement for the AGS injection with low loss. This paper will present the various options of matching between RFQ and DTL,...

  2. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  3. X-band RF power sources for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirshner, Mark F.; Kowalczyk, Richard D.; Wilsen, Craig B.; True, Richard B.; Simpson, Ian T.; Wray, John T., E-mail: mark.kirshner@L-3com.com [L-3 Communications Electron Devices, San Carlos, CA (United States)

    2011-07-01

    The majority of medical and industrial linear accelerators (LINACs) in use today operate at S-band. To reduce size and weight, these systems are gradually migrating toward X-band. The new LINACs will require suitable RF components to power them. In anticipation of this market, L-3 Communications Electron Devices Division (EDD) has recently developed a suite of RF sources operating at 9.3 GHz to complement our existing S-band product line. (author)

  4. A hot-spare injector for the APS linac.

    Energy Technology Data Exchange (ETDEWEB)

    Lewellen, J. W.

    1999-04-13

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades.

  5. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  6. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  7. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  8. Analysis of the LSC microbunching instability in MaRIE linac reference design

    Energy Technology Data Exchange (ETDEWEB)

    Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.

  9. Analysis of the LSC microbunching instability in MaRIE linac reference design

    Energy Technology Data Exchange (ETDEWEB)

    Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report [1]. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in [1]. Additionally it was assumed that the beam radius is equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described in [1] provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.

  10. Brookhaven Linac Isotope Producer

    Data.gov (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  11. Design of heavy-ion APF-IH type linac for atomic physics and medical use

    Science.gov (United States)

    Hata, T.; Hattori, T.; Kashiwagi, H.; Takahashi, Y.; Yamamoto, K.; Matsui, S.; Dudu, D.; Osvath, E.; Vata, I.; Yamada, S.

    2002-04-01

    We have studied a compact heavy-ion linac for atomic physics and medical use. The design of the linac was based on using alternating-phase-focus (APF) and interdigital-H (IH) structures which give sufficient electric power efficiency. Thereby, it will be possible to design a small and high efficiency linac. The APF-IH linac was designed to accelerate ions from C 2+ to U 40+, from 30 to 300 keV/u and an operating frequency of 100 MHz. We made a half-scale cold model of this linac using orbit calculation and measured its RF characteristics. Then, we designed a APF-IH type linac using the results of the measurement.

  12. Design of heavy-ion APF-IH type linac for atomic physics and medical use

    Energy Technology Data Exchange (ETDEWEB)

    Hata, T. E-mail: hata@es.titech.ac.jp; Hattori, T.; Kashiwagi, H.; Takahashi, Y.; Yamamoto, K.; Matsui, S.; Dudu, D.; Osvath, E.; Vata, I.; Yamada, S

    2002-04-01

    We have studied a compact heavy-ion linac for atomic physics and medical use. The design of the linac was based on using alternating-phase-focus (APF) and interdigital-H (IH) structures which give sufficient electric power efficiency. Thereby, it will be possible to design a small and high efficiency linac. The APF-IH linac was designed to accelerate ions from C{sup 2+} to U{sup 40+}, from 30 to 300 keV/u and an operating frequency of 100 MHz. We made a half-scale cold model of this linac using orbit calculation and measured its RF characteristics. Then, we designed a APF-IH type linac using the results of the measurement.0.

  13. Ion tracking in photocathode rf guns

    Directory of Open Access Journals (Sweden)

    John W. Lewellen

    2002-02-01

    Full Text Available Projected next-generation linac-based light sources, such as PERL or the TESLA free-electron laser, generally assume, as essential components of their injector complexes, long-pulse photocathode rf electron guns. These guns, due to their design rf pulse durations of many milliseconds to continuous wave, may be more susceptible to ion bombardment damage of their cathodes than conventional rf guns, which typically use rf pulses of microsecond duration. This paper explores this possibility in terms of ion propagation within the gun, and presents a basis for future study of the subject.

  14. Design of RF Power System for CPHS

    Science.gov (United States)

    Cheng, Cheng; Du, Taibin; Guan, Xialing

    The Compact Pulsed Hadron Source (CPHS) system has been proposed and designed by the Department of Engineering Physics of Tsinghua University in Beijing, China. It consists of an accelerator front-end-a highintensity ion source, a 3 MeV radiofrequency quadrupole linac (RFQ), and a 13 MeV drift-tube linac (DTL), a neutron target station, and some experimental stations. In design of our RF power supply, both RFQ and DTL share a single klystron which is capable of 2.5 MW peak RF power and a 3.33% duty factor. The 325 MHz klystron contains a modulating anode and has a 100 kW average output power. Portions of the RF power system, such as pulsed high voltage power supply, modulator, crowbar protection and RF power transmission are all presented in details in this paper.

  15. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  16. RF Group Annual Report 2011

    CERN Document Server

    Angoletta, M E; Betz, M; Brunner, O; Baudrenghien, P; Calaga, R; Caspers, F; Ciapala, E; Chambrillon, J; Damerau, H; Doebert, S; Federmann, S; Findlay, A; Gerigk, F; Hancock, S; Höfle, W; Jensen, E; Junginger, T; Liao, K; McMonagle, G; Montesinos, E; Mastoridis, T; Paoluzzi, M; Riddone, G; Rossi, C; Schirm, K; Schwerg, N; Shaposhnikova, E; Syratchev, I; Valuch, D; Venturini Delsolaro, W; Völlinger, C; Vretenar, M; Wuensch, W

    2012-01-01

    The highest priority for the RF group in 2011 was to contribute to a successful physics run of the LHC. This comprises operation of the superconducting 400 MHz accelerating system (ACS) and the transverse damper (ADT) of the LHC itself, but also all the individual links of the injector chain upstream of the LHC – Linac2, the PSB, the PS and the SPS – don’t forget that it is RF in all these accelerators that truly accelerates! A large variety of RF systems had to operate reliably, often near their limit. New tricks had to be found and implemented to go beyond limits; not to forget the equally demanding operation with Pb ions using in addition Linac3 and LEIR. But also other physics users required the full attention of the RF group: CNGS required in 2011 beams with very short, intense bunches, AD required reliable deceleration and cooling of anti-protons, Isolde the post-acceleration of radioactive isotopes in Rex, just to name a few. In addition to the supply of beams for physics, the RF group has a num...

  17. Beam lines from Linac 1 to PS and Booster

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    View against the direction of the proton beams. The 50 MeV Linac 1 is behind the concrete wall. Its beam emerges from the hole near the centre of the picture. A switching magnet directs the beam either to the PS (to the right in the sense of the beam; original injection line), or lets it go straight on to the Booster (originally 800 MeV, now 1.4 GeV). The huge drum in the line to the Booster is a "debuncher", driven by the 200 MHz RF of the linac. It reduces the beam's momentum spread. This was the last year of Linac 1 as provider of protons to the Booster. Linac 2, nearly completed at the time of this picture, took up trial delivery at the end of 1978, and routine delivery in 1979. The beam line from Linac 2, barely visible here, can be clearly seen on 7802260. Linac 1 had a second life as an ion accelerator.

  18. A Newly Designed and Optimized CLIC Main Linac Accelerating Structure

    CERN Document Server

    Grudiev, A

    2004-01-01

    A new CLIC main-linac accelerating-structure design, HDS (Hybrid Damped Structure), with improved high-gradient performance, efficiency and simplicity of fabrication is presented. The gains are achieved in part through a new cell design which includes fully-profiled rf surfaces optimized to minimize surface fields and hybrid damping using both iris slots and radial waveguides. The slotted irises allow a simple structure fabrication in quadrants with no rf currents across joints. Further gains are achieved through a new structure optimization procedure, which simultaneously balances surface fields, power flow, short and long-range transverse wakefields, rf-to-beam efficiency and the ratio of luminosity to input power. The optimization of a 30 GHz structure with a loaded accelerating gradient of 150 MV/m results in a bunch spacing of seven rf cycles and 32 % rf-to-beam efficiency.

  19. Energy Recovery Linacs for Light Source Applications

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  20. Progress in Induction Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, G J

    2000-09-27

    This presentation will be a broad survey of progress in induction technology over the past four years. Much work has been done on accelerators for hydrodynamic test radiography and other applications. Solid-state pulsers have been developed which can provide unprecedented flexibility and precision in pulse format and accelerating voltage for both ion and electron induction machines. Induction linacs can now be built which can operate with MHz repetition rates. Solid-state technology has also made possible the development of fast kickers for precision control of high current beams. New insulator technology has been developed which will improve conventional induction linacs in addition to enabling a new class of high gradient induction linacs.

  1. Improvement of brain angiographic images using 1.5t super conductive MRI unit of Imam Khomeini Hospital

    Directory of Open Access Journals (Sweden)

    "Takavar A

    2002-05-01

    Full Text Available Fue to the importance of selecting imaging parameters in magnetic resonance brain angiography, this study was carried out to choose optimum theoretical and experimental parameters for improving image controast and resolution and achieve shorter imaging time for practical reasons.A 1.5T super conductive magnet MRI with gradient power of 13 nT/m and Larmour frequency of 63 MHz with imaging coli of 30 cm was used.In this study, 5 healthy volunteers and 34 patients were the subjects of brain angiography. Flip angles of 15-20 degrees for peripheral brain vessels and 35-45 degrees for internal brain vessels were found to give higher contrast and better image resolution with a artifact. Using our optimum imaging parameters, (ie [TR/Te/FA/FOV] [40ms/7cm/20°/1mm 023cm], besides obtaining high quality angiography images, routine imaging time of 9-12 minutes was reduced to 7.3 mintues

  2. Status of Linac4 construction at CERN

    CERN Document Server

    Vretenar, M

    2010-01-01

    Linac4 is a 160 MeV normal-conducting H¯ linear accelerator which is being built at CERN in the frame of a program for increasing the luminosity of the LHC. The project started in 2008 and delivery of beam to the CERN accelerator chain is foreseen from early 2015. The new linac will be housed in an underground tunnel close to the present Linac2; a surface building will house RF and other infrastructure. The civil engineering work started in October 2008 will be soon completed. Installation of the infrastructure will take place in 2011, and from 2012 will be installed the main machine elements. The ion source is presently operational on a test stand, where it will be followed in 2011 by a 3 MeV RFQ under construction in the CERN workshops. Prototypes of the three different types of accelerating structures have been tested; construction of the 22 accelerating cavities has started, supported by a network of agreements with external laboratories and institutions. Commissioning will take place in stages, starting...

  3. Heavy-ion acceleration with a superconducting linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  4. Drift tubes of Linac 2

    CERN Multimedia

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  5. Recirculated and Energy Recovered Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2003-05-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams from an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible from either a conventional linac, or from storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend from high power free-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  6. Recirculated and Energy Recovered Linacs

    CERN Document Server

    Geoffr-Ey-Kraff

    2003-01-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams FR-om an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible FR-om either a conventional linac, or FR-om storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend FR-om high power FR-ee-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  7. Waveguide-coupled cavities for energy recovery linacs

    Science.gov (United States)

    Kurennoy, S. S.; Nguyen, D. C.; Young, L. M.

    2004-08-01

    A novel scheme for energy recovery linacs used as FEL drivers is proposed. It consists of two parallel beam lines, one for electron beam acceleration and the other for the used beam that is bent after passing through a wiggler. The used beam is decelerated by the structure and feeds the cavity fields. The main feature of the scheme is that RF cavities are coupled with waveguides between these two linacs. The waveguide cut through the two beam pipes provides an efficient mechanism for energy transfer. The superconducting RF cavities in the two accelerators can be shaped differently, with an operating mode at the same frequency. This provides HOM detuning and therefore reduces the beam break-up effects. Another advantage of the proposed two-beam scheme is easy tuning of the cavity coupling by changing the waveguide length.

  8. Room-temperature LINAC structures for the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J. H. (James H.); Young, L. M. (Lloyd M.); Kurennoy, S. (Sergey); Crandall, K. R. (Kenneth R.)

    2001-04-01

    Los Alamos National Laboratory is building room-temperature rf accelerating structures for the Spallation Neutron Source (SNS). These structures, for H{sup -} ions, consist of six 402.5-MHz, 2-MW drift-tube linac (DTL) tanks from 2.5 to 87 MeV followed by four 805-MHz, 4-MW coupled-cavity linac (CCL) modules to 186 MeV. The DTL uses permanent magnet quadrupoles inside the drift tubes arranged in a 6{beta}{lambda} FFODDO lattice with every third drift tube available for diagnostics and steering. The CCL uses a 13{beta}{lambda} FODO electromagnetic quadrupole lattice. Diagnostics and magnets occupy the 2.5{beta}{lambda} spaces between 8-cavity segments. This paper discusses design of the rf cavities and low-power modeling work.

  9. Suppression of microbunching instability in the linac coherent light source

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2004-07-01

    Full Text Available A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation, and linac wakefields is studied for the linac coherent light source (LCLS accelerator system. Since the uncorrelated (local energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify rf-gun generated modulations or even shot-noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the free-electron laser performance. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impact of the instability on the quality of the electron beam.

  10. Suppression of Microbunching Instability in the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z

    2004-03-02

    A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation, and linac wakefields is studied for the linac coherent light source (LCLS) accelerator system. Since the uncorrelated (local) energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify rf-gun generated modulations or even shot-noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the free-electron laser performance. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impact of the instability on the quality of the electron beam.

  11. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  12. Status of the Argonne heavy-ion-fusion low-beta linac

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Bogaty, J.M.; Moretti, A.; Sacks, R.A.; Sesol, N.Q.; Wright, A.J.

    1981-01-01

    The primary goal of the experimental program in heavy-ion fusion (HIF) at Argonne National Laboratory (ANL) during the next few years is to demonstrate many of the requirements of a RF linac driver for inertial-fusion power plants. So far, most of the construction effort has been applied to the front end. The ANL program has developed a high-intensity xenon source, a 1.5-MV preaccelerator, and the initial cavities of the low-beta linac. The design, initial tests, and status of the low-beta linac are described.

  13. Status of the Argonne heavy ion fusion low-beta linac

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Bogaty, J.M.; Moretti, A.; Sacks, R.A.; Sesol, N.Q.; Wright, A.J.

    1981-06-01

    The primary goal of the experimental program in heavy ion fusion (HIF) at Argonne National Laboratory (ANL) during the next few years is to demonstrate many of the requirements of a RF linac driver for inertial fusion power plants. So far, most of the construction effort has been applied to the front end. The ANL program has developed a high intensity xenon source, a 1.5 MV preaccelerator, and the initial cavities of the low-beta linac. The design, initial tests and status of the low-beta linac are described. 8 refs.

  14. Design of an L-band normally conducting RF gun cavity for high peak and average RF power

    Science.gov (United States)

    Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.

    2017-05-01

    To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.

  15. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  16. Literature Review on LINACs and FFAGs for Hadron Therapy

    Science.gov (United States)

    Verdú-Andrés, Silvia; Amaldi, Ugo; Faus-Golfe, Ángeles

    The document summarizes the recent papers, presentations and other public information on Radio-Frequency (RF) Linear Accelerators (linacs) and Fixed-Field Alternating-Gradient (FFAG) accelerators for hadron therapy. The main focus is on technical aspects of these accelerators. This report intends to provide a general overview of the state-of-the-art in those accelerators which could be used in short and middle-term for treating cancer.

  17. Design and Construction of the Linac4 Accelerating Structures

    CERN Document Server

    Gerigk, F; Dallocchio, A; Favre, G; Vretenar, M; Wegner, R; Tirado, P Ugena; Rossi, C; Riffaud, B; Ramberger, S; Polini, M; Gentini, L; Geisser, JM; Giguet, JM; Mathot, S; Naumenko, M; Kendjebulatov, E; Tribendis, A; Kryuchkov, Ya

    2013-01-01

    The Linac4 project at CERN is at an advanced state of construction. Prototypes and/or operational modules of the different types of accelerating structures (RFQ, buncher, DTL, CCDTL, and PIMS) have been built and are presently tested. This paper gives the status of the cavity production and reviews the RF and mechanical design of the various structure types. Furthermore the production experience and the first test results shall be presented.

  18. On structure design for the CLIC Booster Linac

    CERN Document Server

    Darvish, Esmat

    2015-01-01

    Using the SUPERFISH code we present a design for a traveling wave (TW) structure of the Booster Linac for CLIC. The structure, consisting of thirty asymmetric cells attached to the beam pipes at two ends, works in 2π/3 operating mode at working frequency 2 GHz. For the corresponding operating mode and frequency, the RF field configuration transmitted through the cavity is obtained. The results are prepared in an RF field data file to be used in the PARMELA code for further beam dynamic study.

  19. Emittance and Phase Space Tomography for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; /Fermilab; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the

  20. Status and operation of the Linac4 ion source prototypes.

    Science.gov (United States)

    Lettry, J; Aguglia, D; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, Ø; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-02-01

    CERN's Linac4 45 kV H(-) ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H(-) beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  1. Status and Operation of the Linac4 Ion Source Prototypes

    CERN Document Server

    Lettry, J; Andersson, P; Bertolo, S; Butterworth, A; Coutron, Y; Dallocchio, A; Chaudet, E; Gil-Flores, J; Guida, R; Hansen, J; Hatayama, A; Koszar, I; Mahner, E; Mastrostefano, C; Mathot, S; Mattei, S; Midttun, O; Moyret, P; Nisbet, D; Nishida, K; O’Neil, M; Ohta, M; Paoluzzi, M; Pasquino, C; Pereira, H; Rochez, J; Sanchez Alvarez, J; Sanchez Arias, J; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Yamamoto, T

    2014-01-01

    CERN’s Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma and pulsed high voltages are described. The first experimental results of two prototypes relying on 2MHz RF- plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator and chopper of Linac4.

  2. Status and operation of the Linac4 ion source prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; O’Neil, M. [CERN, 1211 Geneva 23 (Switzerland); and others

    2014-02-15

    CERN's Linac4 45 kV H{sup −} ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H{sup −} beam of 16–22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  3. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  4. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  5. Linacs for Medical Isotope Production

    Directory of Open Access Journals (Sweden)

    A. Pramudita

    2011-04-01

    Full Text Available This paper reviews efforts on using high energy (25-30 MeV and high power (10-20 kW electron linacs and lower energy (7 MeV proton linacs for medical radioisotope production. Using high energy x-rays from the electron linacs, PET (Positron Emission Tomography radioisotopes are produced through photonuclear reactions such as 19F(γ,n18F, which also allow production of other PET radionuclides 11C, 13N, and 15O. Other mostly used medical radionuclides 99mTc can also be obtained by using the electron linacs, through photofission or photonuclear reactions. Proton linacs for PET have also been recently developed and the product has been available in the market since 2005. The linacs have been tested for 18F production. As a proton accelerator, the target systems and nuclear reactions are similar to the ones used in PET cyclotrons

  6. 5 MW 805 MHz SNS RF System Experience

    CERN Document Server

    Young, Karen A; Hardek, Thomas; Lynch, Michael; Rees, Daniel; Roybal, William; Tallerico, Paul J; Thomas Bradley, Joseph

    2005-01-01

    The RF system for the 805 MHz normal conducting linac of the Spallation Nuetron Source (SNS) accelerator was designed, procured and tested at Los Alamos National Laboratory(LANL) and then installed and commissioned at Oak Ridge National Laboratory (ORNL). The RF power for this room temperature coupled cavity linac (CCL) of SNS accelerator is generated by four pulsed 5 MW peak power klystrons operating with a pulse width of 1.25 mSec and a 60 Hz repetition frequency. The RF power from each klystron is divided and delivered to the CCL through two separate RF windows. The 5 MW RF system advanced the state of the art for simultaneous peak and average power. This paper summarizes the problems encountered, lessons learned and results of the high power testing at LANL of the 5 MW klystrons, 5 MW circulators, 5 MW loads, and 2.5 MW windows.*

  7. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  8. Frequency Control Loop for Drift Tube Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Song, Young Gi; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the preparation of the frequency tracking of the RCCS by connecting the RCCS to low level RF (LLRF) system is described. KOMAC 100-MeV proton accelerator is under operation and supply beam to users. We are developing frequency control function in the LLRF system to control the RCCS in frequency control mode. After the test in the test bench, the system will be applied to the 100-MeV DTL RCCS in order to supply better quality beam to users. A 100-MeV proton accelerator has been developed and the operation and beam service started at Korea Multipurpose Accelerator Complex (KOMAC) in June 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio frequency quadrupole (RFQ) and 100-MeV drift tube linac (DTL). The resonance frequency of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), which are installed at every each tank. Until now, the RCCS has been operating in constant temperature mode which means that the frequency was measured with respect to the RCCS supply temperature before the RF operation, and then the RCCS operates with that temperature throughout the whole operation. The constant temperature operation is simple but the RF stability is not good because many perturbations such as RCCS supply temperature error can cause a frequency change. To stabilize the system better, it is necessary to operate the RCCS in frequency tracking mode.

  9. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  10. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  11. Production design of the drift tube Linac for the CERN Linac4

    CERN Document Server

    Ramberger, S; Cuvet, Y; Dallocchio, A; De Michele, G; Gerigk, F; Giguet, J M; Lallement, J B; Lombardi, A M; Sargsyan, E; Vretenar, M

    2010-01-01

    The design of the Drift Tube Linac (DTL) for the new linear accelerator Linac4 at CERN has been made ready for production: H--ion beams of up to 40 mA average pulse current are to be accelerated from 3 to 50 MeV by three RF cavities operating at 352.2MHz and at duty cycles of up to 10%. In order to provide a margin for longitudinal matching from the chopper line, the longitudinal acceptance has been increased. The synchronous phase starts at -35 deg in Tank1 and ramps linearly to -24 deg over the tank while it went from -30 to -20 deg in the previous design. The accelerating gradient has been reduced to 3.1MV/m in Tank1 and increased to 3.3 MV/m in Tank2 and Tank3 for a better distribution of RF power between tanks that is compatible with a mechanical design. To make the transverse acceptance less sensitive to alignment and gradient errors, the focusing scheme is now FFDD over all 3 tanks. Design features that were demonstrated in earlier reports have been improved for series production. Results of high power...

  12. The design for the LCLS RF photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Alley, R.; Bharadwaj, V.; Clendenin, J.; Emma, P.; Fisher, A.; Frisch, J.; Kotseroglou, T. E-mail: theo@slac.stanford.edu; Miller, R.H.; Palmer, D.T.; Schmerge, J.; Sheppard, J.C.; Woodley, M.; Yeremian, A.D.; Rosenzweig, J.; Meyerhofer, D.D.; Serafini, L

    1999-06-01

    We report on the design of the RF photoinjector of the Linac Coherent Light Source. The RF photoinjector is required to produce a single 150 MeV bunch of {approx}1 nC and {approx}100 A peak current at a repetition rate of 120 Hz with a normalized rms transverse emittance of {approx}1{pi} mm-mrad. The design employs a 1.6-cell S-band RF gun with an optical spot size at the cathode of a radius of {approx}1 mm and a pulse duration with an rms sigma of {approx}3 ps. The peak RF field at the cathode is 150 MV/m with extraction 57 deg. ahead of the RF peak. A solenoidal field near the cathode allows the compensation of the initial emittance growth by the end of the injection linac. Spatial and temporal shaping of the laser pulse striking the cathode will reduce the compensated emittance even further. Also, to minimize the contribution of the thermal emittance from the cathode surface, while at the same time optimizing the quantum efficiency, the laser wavelength for a Cu cathode should be tunable around 260 nm. Following the injection linac the geometric emittance simply damps linearly with energy growth. PARMELA simulations show that this design will produce the desired normalized emittance, which is about a factor of two lower than has been achieved to date in other systems. In addition to low emittance, we also aim for laser amplitude stability of 1% in the UV and a timing jitter in the electron beam of 0.5 ps rms, which will lead to less than 10% beam intensity fluctuation after the electron bunch is compressed in the main linac.

  13. RF design of X-band RF deflector for femtosecond diagnostics of LCLS electron beam

    Science.gov (United States)

    Dolgashev, Valery A.; Wang, Juwen

    2012-12-01

    We designed a successful constant impedance traveling wave X-band rf deflector for electron beam diagnostics at the 14 GeV SLAC Linac Coherent Light Source (LCLS). This is the first practical deflector built with a waveguide coupler. The 1-meter rf deflector produces 24 MeV peak transverse kick when powered with 20 MW of 11.424 GHz rf. The design is based on our experience with high gradient X-band accelerating structures. Several deflectors of this design have been built at SLAC and are currently in use. Here we describe the design and distinguishing features of this device.

  14. Error and jitter effect studies on the SLED for BEPCII-linac

    CERN Document Server

    Shi-Lun, Pei; Ou-Zheng, Xiao

    2011-01-01

    RF pulse compressor is a device to convert a long RF pulse to a short one with much higher peak RF magnitude. SLED can be regarded as the earliest RF pulse compressor used in large scale linear accelerators. It is widely studied around the world and applied in the BEPC and BEPCII linac for many years. During the routine operation, the error and jitter effects will deteriorate the SLED performance either on the output electromagnetic wave amplitude or phase. The error effects mainly include the frequency drift induced by cooling water temperature variation and the frequency/Q0/{\\beta} unbalances between the two energy storage cavities caused by mechanical fabrication or microwave tuning. The jitter effects refer to the PSK switching phase and time jitters. In this paper, we re-derived the generalized formulae for the conventional SLED used in the BEPCII linac. At last, the error and jitter effects on the SLED performance are investigated.

  15. Generation of sub-picosecond electron bunches from RF photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Zhang, R. [California Univ., Los Angeles, CA (United States). Dept. of Physics; Pellegrini, C. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1997-03-11

    In this paper we discuss the possibility to generate sub-picosecond electron bunches directly from a photoinjector by illuminating a photo-cathode in an RF cavity with a phase-locked sub-picosecond laser pulse. In particular, we address all de-bunching effects taking place during acceleration and transport through a photoinjector. We provide analysis of the beam dynamics, as well as the comparison with numerical simulations. The possible performances of the present SATURNUS linac setup are presented, as well as the anticipated capabilities of a multi-cell RF gun structure based on the PWT linac presently in operation at UCLA. (orig.).

  16. Compact LINAC for deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S S [Los Alamos National Laboratory; O' Hara, J F [Los Alamos National Laboratory; Rybarcyk, L J [Los Alamos National Laboratory

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  17. Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga

    2007-06-01

    The success and continuing progress of the three operating FELs based on Energy Recovery Linacs (ERLs), the Jefferson Lab IR FEL Upgrade, the Japan Atomic Energy Agency (JAEA) FEL, and the Novosibirsk High Power THz FEL, have inspired multiple future applications of ERLs, which include higher power FELs, synchrotron radiation sources, electron cooling devices, and high luminosity electron-ion colliders. The benefits of using ERLs for these applications are presented. The key accelerator physics and technology challenges of realizing future ERL designs, and recent developments towards resolving these challenges are reviewed.

  18. Fermilab drift tube Linac revisited

    Energy Technology Data Exchange (ETDEWEB)

    Milorad Popovic

    2004-05-12

    Using the PARMILA code running under PC-WINDOWS, the present performance of the Fermilab Drift Tube Linac has been analyzed in the light of new demands on the Linac/Booster complex (the Proton Source). The Fermilab Drift Tube Linac (DTL) was designed in the sixties as a proton linac with a final energy of 200 MeV and a peak current of 100mA. In the seventies, in order to enable multi-turn charge exchange injection into the Booster, the ion source was replaced by an H- source with a peak beam current of 25mA. Since then the peak beam current was steadily increased up to 55mA. In the early nineties, part of the drift tube structure was replaced with a side-coupled cavity structure in order to increase the final energy to 400 MeV. The original and still primary purpose of the linac is to serve as the injector for the Booster. As an added benefit, the Neutron Therapy Facility (NTF) was built in the middle seventies. It uses 66MeV protons from the Linac to produce neutrons for medical purposes. The Linac/Booster complex was designed to run at a fundamental cycling rate of 15Hz, but beam is accelerated on every cycle only when NTF is running. Until recently the demand from the High Energy Physics program resulted in an average linac beam repetition rate of order 1 Hz. With the MiniBoone experiment and the NuMI program, the demands on the Proton Source have changed, with emphasis on higher beam repetition rates up to 7.5Hz. Historically the beam losses in the linac were small, localized at one spot, so activation was not an important issue. With higher beam rate, this has the potential to become the dominant issue. Until today all tuning in the linac and Proton Source was governed by two goals: to maximize the peak beam current out of the linac and to minimize the beam losses in the linac. If maximal peak current from the linac is no longer a primary goal, then the linac quadrupoles can be adjusted differently to achieve different goals.

  19. Construction Status of Linac4

    CERN Document Server

    Gerigk, F; Garoby, R; Hanke, K; Lombardi, A M; MacCaferri, R; Maury, S; Rossi, C; Vretenar, M

    2010-01-01

    The civil engineering works of the Linac4 linear accelerator at CERN started in October 2008 and regular machine operation is foreseen for 2013. Linac4 will accelerate H−ions to an energy of 160 MeV for injection into the PS Booster (PSB). It will thus replace the ageing Linac2, which presently injects at 50 MeV into the PSB, and it will also represents the first step in the injector upgrade for the LHC aiming at increasing its luminosity. This paper reports on the status of the design and construction of the main machine elements, which will be installed in the linac tunnel from the beginning of 2012 onwards, on the progress of the civil engineering and on the ongoing activities at the Linac4 test stand.

  20. Optimization of SRF Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Tom [JLAB

    2013-09-01

    This work describes preliminary results of a new software tool that allows one to vary parameters and understand the effects on the optimized costs of construction plus 10 year operations of an SRF linac, the associated cryogenic facility, and controls, where operations includes the cost of the electrical utilities but not the labor or other costs. It derives from collaborative work done with staff from Accelerator Science and Technology Centre, Daresbury, UK several years ago while they were in the process of developing a conceptual design for the New Light Source project.[1] The initial goal was to convert a spread sheet format to a graphical interface to allow the ability to sweep different parameter sets. The tools also allow one to compare the cost of the different facets of the machine design and operations so as to better understand the tradeoffs. The work was first published in an ICFA Beam Dynamics News Letter.[2] More recent additions to the software include the ability to save and restore input parameters as well as to adjust the Qo versus E parameters in order to explore the potential costs savings associated with doing so. Additionally, program changes now allow one to model the costs associated with a linac that makes use of energy recovery mode of operation.

  1. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  2. ILC RF System R and D

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris; /SLAC

    2012-07-03

    The Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system proposed for the ILC linacs. Current activities include the long-term evaluation of a 120 kV Marx Modulator driving a 10 MW Multi-Beam Klystron, design of a second-generation Marx Modulator, testing of a sheet-beam gun and beam transport system for a klystron, construction of an rf distribution system with remotely-adjustable power tapoffs, and development of a system to combine the power from many klystrons in low-loss circular waveguide where it would be tapped-off periodically to power groups of cavities. This paper surveys progress during the past few years.

  3. DESIGN AND FABRICATION OF THE BEAM POSITION MONITOR FOR THE PEFP LINAC

    Directory of Open Access Journals (Sweden)

    HYEOK-JUNG KWON

    2013-08-01

    Full Text Available The beam position monitor (BPM is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  4. Calculation of acceptance of high intensity superconducting proton linac for Project X

    CERN Document Server

    Saini, A; Solyak, N; Mishra, S; Yakovlev, V

    2011-01-01

    Project-X is the proposed high intensity proton facility to be built at Fermilab, US. Its Superconducting Linac, to be used at first stage of acceleration, will be operated in continuous wave (CW) mode. The Linac is divided into three sections on the basis of operating frequencies & six sections on the basis of family of RF cavities to be used for the acceleration of beam from 2.5 MeV to 3 GeV. The transition from one section to another can limit the acceptance of the Linac if these are not matched properly. We performed a study to calculate the acceptance of the Linac in both longitudinal and transverse plane. Investigation of most sensitive area which limits longitudinal acceptance and study of influence of failure of beam line elements at critical position, on acceptance are also performed.

  5. Design and Fabrication of the Beam Position Monitor for the PEFP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeokjung; Kim, Hansung; Seol, Kyungtae; Ryu, Jinyeong; Jang, Jiho; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-08-15

    The beam position monitor (BPM) is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL)101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA) feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  6. The KONUS IH-DTL proposal for the GSI UNILAC poststripper linac replacement

    Science.gov (United States)

    Hähnel, H.; Ratzinger, U.; Tiede, R.

    2017-07-01

    Motivated by the necessary replacement of the GSI UNILAC poststripper linac, a compact and efficient linac design based on IH-type cavities has been developed. Using KONUS beam dynamics, it was possible to design a linac consisting of only five cavities that can be operated by the existing UNILAC RF amplifier structure. The transversal focusing scheme is based on magnetic quadrupole triplet lenses. The optimized design provides full transmission and low emittance growth for the design current of 15 emA U28+, accelerating the beam from 1.4 MeV/u to 11.4 MeV/u. Extensive error studies were performed to define tolerances and verify the stability of the design with respect to misalignment and injection parameters. The design provides a compact and cost effective alternative to a new Alvarez linac. With a total length of just 22.8 meters it will leave room for future energy upgrades in the UNILAC tunnel.

  7. Development of a large proton accelerator for innovative researches; development of high power RF source

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K. H.; Lee, K. O.; Shin, H. M.; Chung, I. Y. [KAPRA, Seoul (Korea); Kim, D. I. [Inha University, Incheon (Korea); Noh, S. J. [Dankook University, Seoul (Korea); Ko, S. K. [Ulsan University, Ulsan (Korea); Lee, H. J. [Cheju National University, Cheju (Korea); Choi, W. H. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-05-01

    This study was performed with objective to design and develop the KOMAC proton accelerator RF system. For the development of the high power RF source for CCDTL(coupled cavity drift tube linac), the medium power RF system using the UHF klystron for broadcasting was integrated and with this RF system we obtained the basic design data, operation experience and code-validity test data. Based on the medium power RF system experimental data, the high power RF system for CCDTL was designed and its performed was analyzed. 16 refs., 64 figs., 27 tabs. (Author)

  8. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Troy [Fermilab; Diamond, J. S. [Fermilab; McDowell, D. [Fermilab; Nicklaus, D. [Fermilab; Prieto, P. S. [Fermilab; Semenov, A. [Fermilab

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  9. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  10. Linac Envelope Optics

    CERN Document Server

    Baartman, Rick

    2015-01-01

    I develop the formalism that allows calculation of beam envelopes through a linear accelerator given its on-axis electric field. Space charge can naturally be added using Sacherer formalism. A complicating feature is that the reference particle's energy-time coordinates are not known a priori. Since first order matrix formalism applies to deviations from the reference particle, this means the reference particle's time and energy must be calculated simultaneously with the beam envelope and transfer matrix. The code TRANSOPTR is used to track envelopes for general elements whose infinitesimal transfer matrices are known, and in the presence of space charge. Incorporation of the linac algorithm into TRANSOPTR is described, and some examples given.

  11. Development of the RF system for the KOMAC MEBT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Gu; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Cho, Yong-Sub [KOMAC, Gyeongju (Korea, Republic of)

    2015-05-15

    In the 100 MeV proton linear accelerator (Linac) for KOMAC, the RF source will power two-accelerator cavities (an RFQ, a DTL1) operated at a frequency of 350 MHz. The low level RF (LLRF) system for 100 MeV proton linear accelerator provides field control including an RFQ and a DTL at 350 MHz. In our system, an accelerating electric field stability of ±1% in amplitude and ±1° in phase is required for the RF system. Eleven radio-frequency (RF) systems are required for the 100 MeV accelerator, which are one RF system for the radio-frequency quadrupole (RFQ) cavity, one RF system for the 20 MeV drift tube linear accelerator (DTL) tanks, two RF systems for the medium-energy beam transmission (MEBT) tanks, and seven RF systems for the 100 MeV DTL tanks. Now a total of 9 RF systems are being operated. To improve the beam quality, the additional RF system for MEBT (Medium Energy Beam Transport) is needed. An addition of a MEBT RF system will reduce loss of beam quantity caused by gab between 20 MeV DTL tank and 100 MeV DTL tank. RF system for MEBT is being installed. The condition of the test is 350 MHz, 9% pulse duty (1.5 ms, 60 Hz), 4 kW(peak power). Perfecting an RF system of MEBT will reduce loss of beam quantity.

  12. Coupler design for an L-band electron linac

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; TANG Xiao; SHI Rong-Jian; HOU Mi

    2012-01-01

    The RF coupler is a key component for an accelerating structure which is the most important component for a linac.In order to feed microwave power into the accelerating cavities effectively,the coupler has to be well matched with the feeding waveguide.In this paper,an electron linac coupler was designed,constructed and tested.A numerical simulation method based on the Kyhl's method was employed to search for the optimal dimensions of the coupler.The frequency and the coupling coefficient as a function of the coupler dimensions were also calculated.The results fitted the Kyhl's method simulation results well and gave tolerances of the coupler.The coupler was brazed to the accelerating cavities and it was cold-tested and hot-tested.The experimental results were consistent with the numerical simulation results.

  13. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  14. Linac4 low energy beam measurements with negative hydrogen ions.

    Science.gov (United States)

    Scrivens, R; Bellodi, G; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J-B; Lettry, J; Lombardi, A; Midttun, Ø; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-02-01

    Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  15. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  16. Control system by the technological electron Linac KUT-20

    CERN Document Server

    Akchurin, Y I; Gurin, V A; Demidov, N V

    2001-01-01

    The high-power technological electron linac KUT-20 was developed at the Science Research Complex 'Accelerator' of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun,a klystron type buncher and an accelerating cavity.With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1A,the beam energy will be up to 20 MeV.An average beam power is planned to be 20 kW.All systems of the accelerator are controlled by a computerised control system. The program and technical complex consist of PC equipped with fast ADC control console, synchronization unit, microprocessor-operated complexes.

  17. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  18. Design of a Marx-Topology Modulator for FNAL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Butler, T. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kufer, M. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pfeffer, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wolff, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-28

    The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.

  19. System design for the FAIR proton LINAC BPMs

    Energy Technology Data Exchange (ETDEWEB)

    Forck, Peter; Almalki, Mohammed; Clemente, Gianluigi; Groening, Lars; Kaufmann, Wolfgang; Kowina, Piotr [GSI (Germany); Simon, Claire [CEA Centre d' Etudes Nucleaires de Saclay (France). IRFU; Ackermann, Wolfgang [TU Darmstadt (Germany). TEMF

    2013-07-01

    The planned Proton LINAC at the FAIR facility will provide a beam current of 70 mA accelerated to 70 MeV by novel CH-type DTLs. Four-fold button Beam Position Monitor (BPM) will be installed at 14 locations along the LINAC. The specification for position measurement is 0.1 mm spatial resolution and for time-of-flight beam velocity determination the accuracy must be 8.5 ps corresponding to 1 degree with respect to the 325 MHz acceleration frequency. Finite element and finite integration technique calculations by CST Particle Studio for non-relativistic velocities were performed to determine the signal characteristic in time- and frequency domain. Most of these BPMs are mounted only about 40 mm upstream of the CH cavities and the BPM signal strength caused by the cavity residual rf-power was estimated. The technical layout of the BPM system is discussed.

  20. A development of BPM for P-LINAC at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed; Kester, Oliver; Forck, Peter; Kaufmann, Wolfgang; Sieber, Thomas; Kowina, Piotr; Vinzenz, Wolfgang; Krueger, Christoph [GSI, Darmstadt (Germany); Simon, Claire [CEA/DSM/IRFU (France); Tinta, Dejan; Hrovatin, Rok; Lemut, Promoz [Instrumentation Technologies, Solkan (Slovenia)

    2014-07-01

    Four-fold button Beam Position Monitor (BPM) has been developed for the planned Proton LINAC at the FAIR facility. These monitors will be installed at 14 locations along the LINAC and four of them will be mounted only about 40 mm upstream of the CH cavities. A BPM prototype will be fabricated to evaluate the rf power at the BPM location as generated by cavity excitation as well as to test different options in the mechanical design. For the read-out electronics, the I/Q digital signal processing will be implemented to derive the transverse beam position and the beam phase. This contribution presents the status of the BPM development and focuses on the mechanical design and the optimization of the button pick-ups. The development progress of digital signal processing system is discussed as well.

  1. Design of a Marx-Topology Modulator for FNAL Linac

    CERN Document Server

    Butler, T A; Kufer, M R; Pfeffer, H; Wolff, D

    2015-01-01

    The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.

  2. Installation of the Gbar LINAC

    CERN Multimedia

    Maximilien, Brice

    2017-01-01

    Installation of the GBAR linac in its shielding bunker. The electrons accelerated to 10 MeV toward a target will produce the positrons that are necessary to form anti hydrogen with the antiprotons coming from the ELENA decelerator.

  3. High duty factor plasma generator for CERN's Superconducting Proton Linac.

    Science.gov (United States)

    Lettry, J; Kronberger, M; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, J-M; Küchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-02-01

    CERN's Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN's PS-Booster. Its ion source is a noncesiated rf driven H(-) volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H(-) during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the Large Hadron Collider. It consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H(-) during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H(-) plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the required heat dissipation and maintains the original functionality. Materials with higher thermal conductivity are selected and, wherever possible, thermal barriers resulting from low pressure contacts are removed by brazing metals on insulators. The AlN plasma chamber cooling circuit is inspired from the approach chosen for the cesiated high duty factor rf H(-) source operating at SNS.

  4. Comparison of LINAC-4 Designs

    CERN Document Server

    Crandall, K; Sargsyan, E; Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    We have studied the expected performance of two drift tube linac (DTL) designs proposed for LINAC-4. The two designs use the same cell geometries but are characterized by different phase (φs) and accelerating field (E0) distributions. In addition we have investigated the expected performance of 3 different quadrupole focusing schemes in each design. The expected performance of these 6 variants is compared with respect to their stability and risk of beam loss with alignment errors.

  5. Inner structure of Linac 2

    CERN Multimedia

    1977-01-01

    With the advent of the 800 MeV Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows the inner structure of Linac 2, with drift-tubes hanging on stems under a rigid support structure, soon to be mounted inside tank 1 (750 keV to 10 MeV, the lowest-energy one of 3). Frank Malthouse is standing in the background.

  6. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Science.gov (United States)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  7. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    Energy Technology Data Exchange (ETDEWEB)

    Rimjaem, S., E-mail: sakhorn.rimjaem@cmu.ac.th [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand); Kusoljariyakul, K.; Thongbai, C. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics (ThEP), Commission on Higher Education, Bangkok 10400 (Thailand)

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012{sup ©}. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  8. Acceptance scan technique for the drift tube linac of the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, D. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: jeond@ornl.gov; Stovall, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Takeda, H. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nath, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Billen, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Young, L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kisselev, I. [Institute for Nuclear Research of RAS, Troitsk, Russia (Russian Federation); Shishlo, A. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Aleksandrov, A. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Assadi, S. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chu, C.M. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cousineau, S. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Danilov, V. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Galambos, J. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Henderson, S. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, S. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kravchuk, L. [Institute for Nuclear Research of RAS, Troitsk, Russia (Russian Federation); Tanke, E. [SNS Project, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2007-01-01

    For high intensity proton accelerators, it is vital to reduce the machine activation by minimizing the beam loss from many sources. One of such sources is longitudinal mismatch. To minimize a potential mismatch, it is important to set accurately the rf set-point (rf field amplitude and phase) of a high-intensity linac such as the drift tube linac (DTL) of the spallation neutron source. A widely used technique called the acceptance scan was studied extensively and applied successfully to tune the DTL tanks since the initial commissioning. From the acceptance scan one can obtain the longitudinal beam profile at the entrance of each DTL tank. But except tank 1, acceptance scan alone cannot determine the incoming beam energy deviation, leading to small uncertainties in the rf set point.

  9. High-Power Linac for the Spallation Neutron Source

    Science.gov (United States)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  10. High Quality RF resonant cavity for high gradient linacs

    CERN Document Server

    TianXiu-fang,; Deguo, Xun; Kun, Liu; yong, Hou; Jian, Cheng

    2015-01-01

    In traditional accelerating structures, maximum amplitudes of accelerating fields are restricted by Joule heating losses in conducting walls and electron breakdown. In this paper, a composite accelerating cavity utilizing a resonant, periodic structure with a dielectric sphere located at a spherical conducting cavity center is presented. The presence of the dielectric in the central part of the resonance cavity shifts the magnetic fields maximum from regions close to the metallic wall towards the dielectric surface, which strongly lowers the skin effect losses in the wall. By using the existing ultra-low loss Sapphire dielectrics, we make theory analyze and numerical calculations by MATLAB, and further make simulated calculation by CST for comparison. The results show that all field components at the metallic wall are either zero or very small, so one can expect the cavity to be less prone to electrical breakdowns than the traditional cavity. And the quality factor Q can be three orders of magnitude higher th...

  11. Induction Linac Pulsers

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, Andris

    2011-01-07

    The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is

  12. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  13. Design of a Cavity of Drift Tube Linac

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-long; LV; Wei-xing; LI; Jin-hai; HUANG; Jun; WU; Qing-feng

    2013-01-01

    The drift tube Linac(DTL)is used as accelerating of low energy proton beam with high intensity.Its operating frequency is 325 MHz with handling power of 2.5 kW.The cavity of DTL consists of circularwaveguide,drift tube,post coupler and tuner.First,the beam parameters of the cavity of DTL is calculated by using beam dynamic codes,and then the electromagnetic field distribution and RF parameters of the cavity of DTL is calculated by using

  14. Tools to Predict Beam Breakup in Recirculating Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard; Nikolitsa Merminga; Byung Yunn

    2003-05-01

    An important limitation on the maximum beam current in a recirculating linac is due to beam breakup caused by higher order modes (HOM) excited in the RF cavities. A HOM delivers a transverse kick to a beam bunch, the bunch on the next pass can then drive the HOM and cause it to grow until the beam is lost. Two codes, MATBBU1 and TDBBU2, have been written to estimate the threshold current for a set of HOMs and accelerator optics. The relative merits and limitations of each is discussed in detail.

  15. An Energy Recovery Electron Linac On Ring Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga; Geoffrey Krafft; Valeri Lebedev; Ilan Ben-Zvi

    2001-09-01

    Electron-proton/ion colliders with center of mass energies between 14 GeV and 100 GeV (protons) or 63 GeV/A (ions) and luminosities at the 10{sup 33} (per nucleon) level have been proposed recently as a means for studying hadronic structure. Electron beam polarization appears to be crucial for many of the experiments. Two accelerator design scenarios have been examined in detail: colliding rings and recirculating linac-on-ring. Although the linac-on-ring scenario is not as well developed as the ring-ring scenario, comparable luminosities appear feasible. The linac-on-ring option presents significant advantages with respect to: (1) spin manipulations; (2) reduction of the synchrotron radiation load in the detectors; (3) a wide range of continuous energy variability. Rf power and beam dump considerations require that the electron linac recover the beam energy. This technology has been demonstrated at Jefferson Lab's IR FEL with cw current up to 5 mA and beam energy up to 50 MeV. Based on extrapolations from actual measurements and calculations, energy recovery is expected to be feasible at higher currents (a few hundred mA) and higher energies (a few GeV) as well. The report begins with a brief overview of Jefferson Lab's experience with energy recovery and summarize its benefits. Luminosity projections for the linac-ring scenario based on fundamental limitations are presented next. The feasibility of an energy recovery electron linac-on-proton ring collider is investigated and four conceptual point designs are shown corresponding to electron to proton energies of: 3 GeV on 15 GeV, 5 GeV on 50 GeV and 10 GeV on 250 GeV, and for gold ions with 100 GeV/A. The last two designs assume that the protons or ions are stored in the existing RHIC accelerator. Accelerator physics issues relevant to proton rings and energy recovery linacs are discussed next and a list of required R and D for the realization of such a design is presented.

  16. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  17. A study of a test APF-IH type linac as an injector for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T. E-mail: thattori@nr.titech.ac.jp; Yamamoto, K.; Hayashizaki, N.; Kashiwagi, H.; Takahashi, Y.; Hata, T.; Okada, S.; Sugita, T.; Aoki, M.; Okamura, M.; Yamada, S.; Osvath, E.; Dudu, D.; Vata, I

    2002-04-01

    We are studying a heavy-ion interdigital H (IH) type linear accelerator as an injector for a cancer therapy synchrotron. The compact IH linac accelerates C{sup 4+} ions from 65 keV/u up to 6 MeV/u with an alternating phase focus (APF) structure. The linac cavity is 3.1 m in length and operates at a frequency of 100 MHz. A test APF-IH linac was designed to accelerate C{sup 4+} ions from 40 keV/u to 2 MeV/u with an operating frequency of 100 MHz. From particle orbit calculations, using an energy width of {+-}0.2%, this linac can accept a transverse emittance of 100 {pi} mm mrad, a longitudinal phase of 35 deg. and a beam intensity of several 100 {mu}A. The test cavity has 1.4 m in length and 56 cm in diameter. We made a basic, half-scale model cavity of this linac and plan to measure its RF characteristics. Using the results of these measurements, a final design of this linac will be determined.

  18. A study of a test APF-IH type linac as an injector for cancer therapy

    Science.gov (United States)

    Hattori, T.; Yamamoto, K.; Hayashizaki, N.; Kashiwagi, H.; Takahashi, Y.; Hata, T.; Okada, S.; Sugita, T.; Aoki, M.; Okamura, M.; Yamada, S.; Osvath, E.; Dudu, D.; Vata, I.

    2002-04-01

    We are studying a heavy-ion interdigital H (IH) type linear accelerator as an injector for a cancer therapy synchrotron. The compact IH linac accelerates C 4+ ions from 65 keV/u up to 6 MeV/u with an alternating phase focus (APF) structure. The linac cavity is 3.1 m in length and operates at a frequency of 100 MHz. A test APF-IH linac was designed to accelerate C 4+ ions from 40 keV/u to 2 MeV/u with an operating frequency of 100 MHz. From particle orbit calculations, using an energy width of ±0.2%, this linac can accept a transverse emittance of 100 π mm mrad, a longitudinal phase of 35° and a beam intensity of several 100 μA. The test cavity has 1.4 m in length and 56 cm in diameter. We made a basic, half-scale model cavity of this linac and plan to measure its RF characteristics. Using the results of these measurements, a final design of this linac will be determined.

  19. High Frequency Linacs for Hadrontherapy

    Science.gov (United States)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  20. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  1. Linac3 - 1992-1994

    CERN Multimedia

    CERN; A Van der Shueren; Jean-Claude Vialis

    1995-01-01

    This film reports the differents steps of the construction in differents places (Italy, Germany, France) from 29 October 1992 to 29 April 1994. This linac, commissioned in summer 1994, presently provides beams of 208Pb53+. A 14 GHz ECR ion source operating in the "afterglow" mode produces Pb 27+ ions at 2.5 keV/u. This beam is accelerated in an RFQ and a three tank IH linac to 4.2 MeV/u where stripping in a 1 um carbon foil to a charge state distribution centered around Pb53+ takes place. 53+ ions are selected from this mixture in a magnetic filter before being transported to the PS Booster and other circular machines. Linac3, the more common name for this machine, was built by a truly international collaboration involving France, Italy, Germany, Italy, Sweden, Switzerland, India, the Czech Republic and CERN.

  2. Spallation Neutron Source High Power RF Installation and Commissioning Progress

    CERN Document Server

    McCarthy, Michael P; Bradley, Joseph T; Fuja, Ray E; Gurd, Pamela; Hardek, Thomas; Kang, Yoon W; Rees, Daniel; Roybal, William; Young, Karen A

    2005-01-01

    The Spallation Neutron Source (SNS) linac will provide a 1 GeV proton beam for injection into the accumulator ring. In the normal conducting (NC) section of this linac, the Radio Frequency Quadupole (RFQ) and six drift tube linac (DTL) tanks are powered by seven 2.5 MW, 402.5 MHz klystrons and the four coupled cavity linac (CCL) cavities are powered by four 5.0 MW, 805 MHz klystrons. Eighty-one 550 kW, 805 MHz klystrons each drive a single cavity in the superconducting (SC) section of the linac. The high power radio frequency (HPRF) equipment was specified and procured by LANL and tested before delivery to ensure a smooth transition from installation to commissioning. Installation of RF equipment to support klystron operation in the 350-meter long klystron gallery started in June 2002. The final klystron was set in place in September 2004. Presently, all RF stations have been installed and high power testing has been completed. This paper reviews the progression of the installation and testing of the HPRF Sys...

  3. A High Intensity Linac for the National Spallation Neutron Source

    Science.gov (United States)

    Jason, A.; Bhatia, T.; Billen, J.; Schrage, D.; Kurennoy, S.; Krawczyk, F.; Lynch, M.; Nath, S.; Shafer, R.; Takeda, H.; Tallerico, P.; Wangler, T.; Wood, R.; Young, L.; Grand, P.; McKenzie-Wilson, R.

    1997-05-01

    The National Spallation Neutron Source to be constructed at Oak Ridge National Laboratory, requires a linac capable of delivering up to 5 MW of beam power to an accumulator ring with a nominal 6.2% duty factor and an energy of 1 GeV. Los Alamos, responsible for the linac design, has developed an appropriate room-temperature linac that consists of a drift-tube section from 2.5 to 20 MeV, a coupled-cavity drift-tube section to 100 MeV, and a coupled-cavity section to 1 GeV. The initial scenario requires an average 1.1-mA beam current with a corresponding 28 mA peak current and a 1.2-Mhz chopped time structure corresponding to the ring period. Upgrade to a 4.4 mA average current requires funneling with a peak current of 112 mA in the high-energy sections. Further parameters are presented along with beam dynamics and structure choices and mechanical and rf engineering considerations.

  4. Design development of the SCDTL structure for the TOP linac

    Science.gov (United States)

    Picardi, L.; Ronsivalle, C.; Spataro, B.

    1999-04-01

    The Side Coupled Drift Tube Linac (SCDTL) is an attractive 3 GHz accelerating structure composed of short DTL tanks coupled together by side coupling cavities, in the course of development of the 200 MeV proton linear accelerator for proton therapy planned for the Terapia Oncologica con Protoni (TOP) program of the Italian National Institute of Health (Istituto Superiore di Sanità, ISS). The TOP Linac will be used to boost to 70 MeV the 7 MeV proton beam from a linac injector. Our main concern is to investigate in detail the characteristics of the structure in terms of RF properties of the accelerating mode, like longitudinal and transverse shunt impedance and quality factor, and of the other modes that cause the origin of the tank dispersion curve, in order to stabilize the behaviour under operating conditions. Calculations performed with the computer three-dimensional (3D) codes MAFIA and SOPRANO on the smallest unit of the system (a single DTL tank without coupling cavities) and experimental measurements made on a prototype have shown good agreement. Two possible supporting stem configurations (single stem and two stems 180° apart for each drift tube) were examined and a comparison of the results in both cases are discussed.

  5. Design development of the SCDTL structure for the TOP linac

    CERN Document Server

    Picardi, L; Spataro, B

    1999-01-01

    The Side Coupled Drift Tube Linac (SCDTL) is an attractive 3 GHz accelerating structure composed of short DTL tanks coupled together by side coupling cavities, in the course of development of the 200 MeV proton linear accelerator for proton therapy planned for the Terapia Oncologica con Protoni (TOP) program of the Italian National Institute of Health (Istituto Superiore di Sanita, ISS). The TOP Linac will be used to boost to 70 MeV the 7 MeV proton beam from a linac injector. Our main concern is to investigate in detail the characteristics of the structure in terms of RF properties of the accelerating mode, like longitudinal and transverse shunt impedance and quality factor, and of the other modes that cause the origin of the tank dispersion curve, in order to stabilize the behaviour under operating conditions. Calculations performed with the computer three-dimensional (3D) codes MAFIA and SOPRANO on the smallest unit of the system (a single DTL tank without coupling cavities) and experimental measurements m...

  6. Effects Of Field Distortions In Ih-apf Linac

    CERN Document Server

    Kapin, Valery; Yamada, S

    2004-01-01

    The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.

  7. LIBO - A linac-booster for protontherapy Construction and tests of a prototype

    CERN Document Server

    Amaldi, Ugo; Crandall, K; Toet, D Z; Weiss, M; Zennaro, R; Rosso, E; Szeless, Balázs; Vretenar, M; Cicardi, C; De Martinis, C; Giove, D; Davino, D; Masullo, M R; Vaccaro, Vittorio G

    2004-01-01

    LIBO is a proton accelerator that operates at 3 GHz, the same frequency as the one adopted in the about 7500 electron linacs used for radiotherapy all over the world. Such a high frequency was chosen to obtain a large gradient (on average more than 10 MV/m), and thus a short linac (about 15 m) to boost the energy of the protons, extracted at about 60 MeV from a cyclotron, up to the 200 MeV needed for the treatment of deep-seated tumours. This paper describes the design study of the full 3 GHz Side Coupled Linac (modular structure, nine modules) and the construction and tests of the LIBO prototype (first module), which was built to accelerate protons from 62 to 74 MeV with an RF peak power of 4.4 MW. The items discussed are the beam dynamics parameters of the module (longitudinal and transverse acceptances), the constructional elements and procedures, the accuracies of the various mechanical elements, the cooling system, the RF tuning, the RF measurement and the RF power tests. These tests showed that, after a...

  8. Small hard X-ray source using X-band linac

    CERN Document Server

    Uesaka, M; Iijima, H; Tsuchihashi, K; Urakawa, J; Higo, T; Akemoto, M; Hayano, H

    2002-01-01

    For application to dynamic angiographies and life science, small hard X-ray source by laser electron beam collision using X-band linac has been developed. The outline of X-band linac system and the X-ray intensity are discussed. The X-ray intensity of some combinations of laser and electron sources was evaluated by numerical calculations. Four kinds of combinations such as photo-cathode RF-gun + short pulse laser, thermionic-cathode RF-gun + Q-switch Nd:YAG laser, multi-bunch photo-cathode RF-gun + laser accumulator and 200 MeV electron storage ring + laser accumulator were investigated. X-band RF-gun is being used and S-band Mg photo-cathode RF-gun is studied. The X-ray intensity of the thermionic-cathode RF-gun + Q-switch Nd:YAG laser is 10 sup 7 phons/s(total) at 50 keV. This value can be used for structure analysis of protein. (S.Y.)

  9. Progress Report on SIMULINK Modelling of RF Cavity Control for SPL Extension to LINAC4 Theory and Analysis behind Simulation Results of SPL Model Using I/Q Components in SIMULINK to Date, Including Lorentz Force Effects and Multiple Cavities Driven by Single Feedback Loop

    CERN Document Server

    Hernandez, M

    2011-01-01

    In the context of a luminosity upgrade for the LHC within the coming years, works have started on LINAC4 to provide an infrastructure for updating the LHC supplier chain. In order to achieve energy levels and particles per bunch necessary for the expected rate of events at LHC detectors and related experiments, a project proposal is underway for an appended Superconducting Proton LINAC (SPL) that will run from the normal conducting LINAC4 and LP-SPL onto the LHC supplier chain. Thus, the SPL will have two main functions: Firstly, to provide H- beam for injection into the PS2 which is compatible with LHC luminosity. For this purpose the SPL will accelerate the output beam of LINAC4 from 1GeV to 4GeV,removing, at the same time, the necessity for PSB operation in the LHC supply chain. Secondly, it will provide an infrastructure upgradeable to meet the needs of all potential high-power proton users at CERN (EURISOL) and possibly neutrino production facilities. For high-power applications of this nature the SPL wi...

  10. Beam tests on a proton linac booster for hadron therapy

    CERN Document Server

    De Martinis, C; Berra, P; Birattari, C; Calabretta, L; Crandall, K; Giove, D; Masullo, M R; Mauri, M; Rosso, E; Rovelli, A; Serafini, L; Szeless, Balázs; Toet, D Z; Vaccaro, Vittorio G; Weiss, M; Zennaro, R

    2002-01-01

    LIBO is a 3 GHz modular side-coupled proton linac booster designed to deliver beam energies up to 200 MeV, as required for the therapy of deep seated tumours. The injected beam of 50 to 70 MeV is produced by a cyclotron like those in several hospitals and research institutes. A full-scale prototype of the first module with an input/output energy of 62/74 MeV, respectively, was designed and built in 1999 and 2000. Full power RF tests were carried out successfully at CERN using a test facility at LIL at the end of the year 2000. In order to prove the feasibility of the acceleration process, an experimental setup with this module was installed at the INFN Laboratorio Nazionale del Sud (LNS) in Catania during 2001. The superconducting cyclotron provided the 62 MeV test beam. A compact solid-state RF modulator with a 4 MW klystron, made available by IBA-Scanditronix, was put into operation to power the linac. In this paper the main features of the accelerator are reviewed and the experimental results obtained duri...

  11. Spiral 2 Cryogenic System for The Superconducting LINAC

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  12. RF transformer

    Science.gov (United States)

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  13. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  14. Modification and alignment of beam line of 10 MeV RF electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barnwal, R; Ghodke, S R; Bhattacharjee, D; Kumar, M; Jayaprakash, D; Chindarkar, A R; Mishra, R L; Kumar, M; P, Dixit K; S, Acharya; Barje, S R; Lawangare, N K; C, Saroj P; Nimje, V T; Chandan, S; Tillu, A R; V, Sharma; Chavan, R B [Accelerator and Pulse Power Division, BARC, Mumbai, India-400085 (India); Dolas, S [Centre for Design and Manufacturing, BARC, Mumbai, India-400085 (India); Kulkarni, S Y [SAMEER, IIT Powai campus, Mumbai, India-400076 (India)], E-mail: rajesh_barc47@indiatimes.com (and others)

    2008-05-01

    A 10 MeV, 10 kW RF industrial Electron linac designed and developed at BARC is installed at the Electron Beam Center Kharghar, Navi Mumbai. The entire RF accelerator assembly consists of Electron gun, RF source, RF linac structure, Beam diagnostic chamber, Drift tube, Scanning magnet, Beam sensing aperture, Scan horn, and is spread over two floors at EBC. The paper discusses in detail about the alignment procedure adopted for the equipments of 10 MeV RF beamline. The complete electron beamline will be maintained under ultra high vacuum of the order of 10-7 torr. The paper discusses about the present problem of alignment, measurement technique of alignment, reason for misalignment, possible ways to solve the problem, equipment used for alignment, supports and arrestors, verification of alignment under vacuum.

  15. Modification & alignment of beam line of 10 MeV RF electron beam accelerator

    Science.gov (United States)

    Barnwal, R.; Ghodke, S. R.; Bhattacharjee, D.; Kumar, M.; Jayaprakash, D.; Chindarkar, A. R.; Mishra, R. L.; Dolas, S.; Kulkarni, S. Y.; Kumar, M.; P, Dixit K.; S, Acharya; Barje, S. R.; Lawangare, N. K.; C, Saroj P.; Nimje, V. T.; Chandan, S.; Tillu, A. R.; V, Sharma; Chavan, R. B.; V, Yadav; P, Roychowdhury; Mittal, K. C.; Chakravarthy, D. P.; Ray, A. K.

    2008-05-01

    A 10 MeV, 10 kW RF industrial Electron linac designed and developed at BARC is installed at the Electron Beam Center Kharghar, Navi Mumbai. The entire RF accelerator assembly consists of Electron gun, RF source, RF linac structure, Beam diagnostic chamber, Drift tube, Scanning magnet, Beam sensing aperture, Scan horn, and is spread over two floors at EBC. The paper discusses in detail about the alignment procedure adopted for the equipments of 10 MeV RF beamline. The complete electron beamline will be maintained under ultra high vacuum of the order of 10-7 torr. The paper discusses about the present problem of alignment, measurement technique of alignment, reason for misalignment, possible ways to solve the problem, equipment used for alignment, supports & arrestors, verification of alignment under vacuum

  16. Acceleration test of TIT-IHQ linac for heavy ion irradiation

    Science.gov (United States)

    Takashi, Ito; Noriyosu, Hayashizaki; Shinjiro, Matsui; Kimikazu, Sasa; Schubert, H.; Osvath, E.; Toshiyuki, Hattori

    2000-03-01

    We have developed an interdigital-H quadrupole (IHQ) linac for industrial applications. This linac was designed to accelerate particles with charge to mass ratio greater than 1/16 from 21.8 up to 145 keV/u. The particles are focused by an electric quadrupole field exited by fingertips on the drift tubes. This IHQ linac was installed at Tokyo Institute of Technology in 1997 and some tests such as low power tuning and vacuum tests were done. Then, proton acceleration tests ware performed in 1998, and the proton beam was successfully accelerated up to the designed energy. As a result of this experiment, the effective shunt impedance was determined to be 210 MΩ/m, the required RF power consumption was 93 W and the beam transmission rate was about 9%. In this paper, the results of the high power acceleration test with H + ion are described.

  17. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, Robert W [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Merrill, Frank E. [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Walstrom, Peter L. [Los Alamos National Laboratory

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  18. LUX - A recirculating linac-based ultrafast X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2003-08-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme.

  19. The new Linac moves mountains

    CERN Multimedia

    2008-01-01

    The civil engineering work has started for Linac 4, one of the major renovation projects for the CERN accelerator complex. The work will be completed at the end of 2010 and the new linear accelerator is scheduled to be commissioned in 2013.

  20. RF Processing of the Couplers for the SNS Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-07-10

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities.

  1. Increasing SLEDed Linac Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Zoltan D

    2001-11-08

    This note will show how to increase the SLED [1] gradient by varying Q{sub e}, the external Q of the SLED cavity, by increasing its Q{sub 0} and by increasing the compression ratio. If varying the external Q is to be effective, then the copper losses should be small so that Q{sub 0} >> Q{sub e}. Methods of varying Q{sub e} will be indicated but no experimental data will be presented. If we increase the klystron pulse width from 3.5 to 5 {micro}S and increase Q{sub 0} from the present 100000 to 300000, then the gradient increases by 19% and the beam energy increases from 50 to 60 GeV. This note will also discuss SLED operation at 11424 MHz, the NLC frequency. Without Q{sub e} switching, using SLED at 11424 MHz increases the SLAC gradient from 21 MV/m to 34 MV/m, and at the same repetition rate, uses about 1/5 of rf average power. If we also double the compression ratio, we reach 47 MV/m and over 100 GeV beam energy.

  2. RF-thermal-structural-RF coupled analysis on a travelling wave disk-loaded accelerating structure

    Institute of Scientific and Technical Information of China (English)

    PEI Shi-Lun; CHI Yun-Long; ZHANG Jing-Ru; HOU Mi; LI Xiao-Ping

    2012-01-01

    The travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators,and has been studied for many years.In the design process,usually after the dimensions of each cell and the two couplers are finalized,the structure is fabricated and tuned,and then the whole structure RF characteristics are measured by using a vector network analyzer.Before fabrication,the whole structure characteristics (including RF,thermal and structural ones) are less simulated due to the limited capability of currently available computers.In this paper,we described a method for performing RF-thermal-structural-RF coupled analysis on a TW disk-loaded structure using only one PC.In order to validate our method,we first analyzed and compared our RF simulation results on the 3 m long BEPC Ⅱ structure with the corresponding experimental results,which shows very good consistency.Finally,the RF-thermal-structure-RF coupled analysis results on the 1.35 m long NSC KIPT linac accelerating structure are presented.

  3. Testing of super conducting low-beta 704 Mhz cavities at 50 Hz pulse repetition rate in view of SPL- first results

    CERN Document Server

    Höfle, W; Lollierou, J; Valuch, D; Chel, S; Devanz, G; Desmons, M; Piquet, O; Paparella, R; Pierini, P

    2010-01-01

    In the framework of the preparatory phase for the luminosity upgrade of the LHC (SLHC-PP ) it is foreseen to characterize two superconducting RF cavities and demonstrate compliance of the required SPL field stability in amplitude and phase using a prototype LLRF system. We report on the preparation for testing of two superconducting low-beta cavities at 50 Hz pulse repetition rate including the setting-up of the low level RF control system to evaluate the performance of the piezo-tuning system and cavity field stability in amplitude and phase. Results from tests with 50 Hz pulse repetition rate are presented. Simulations of the RF system will be used to predict the necessary specifications for power and bandwidth to control the cavity field and derive specifications for the RF system and its control. Exemplary results of the simulation are presented.

  4. Development of new S-band SLED for PAL-XFEL Linac

    Science.gov (United States)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  5. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  6. The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

    Indian Academy of Sciences (India)

    V Banerjee; Alok Chakrabarti; Arup Bandyopadhyay; T K Bhaumik; M Mondal; T K Chakraborty; H Pande; O Kamigaito; A Goto; Y Yano

    2002-12-01

    A radio frequency quadrupole LINAC has been designed for the VECC-RIB project for an input beam energy of 1.0 keV/u and / ≥ 1/16. The output energy will be about 90 keV/u for a 3.4 m long, 35 MHz structure. A half-scale cold model of the RFQ has been fabricated and tested for rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

  7. CLUSTER: A high-frequency H-mode coupled cavity linac for low and medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, Ugo [TERA Foundation, Via Puccini 11, 28100 Novara (Italy); University of Milano Bicocca, Milan (Italy)], E-mail: Ugo.Amaldi@cern.ch; Citterio, Alessandro; Crescenti, Massimo; Giuliacci, Arianna; Tronci, Cesare; Zennaro, Riccardo [TERA Foundation, Via Puccini 11, 28100 Novara (Italy)

    2007-09-11

    An innovative linear accelerating structure is proposed which is particularly suited for low-current hadrontherapy applications but can also conveniently substitute the conventional proton linacs at present considered for Accelerator Driven Systems and neutrino and muon factories. Its two main features are compactness and good power efficiency at low-medium beam velocities (0.05{<=}{beta}{<=}0.5). The first is achieved through a high working frequency and a consequent high accelerating gradient, the second is obtained by coupling several H-mode cavities together. The structure was dubbed CLUSTER for 'Coupled-cavity Linac USing Transverse Electric Radial field'. To compare the performance of this structure with other hadrontherapy linac designs involving high frequencies, a conceptual study has been performed for an operating frequency of 3 GHz. Moreover, a proof of principle has been obtained through RF measurements on a prototype operating at 1 GHz. An accelerator complex using a CLUSTER linac is also considered for protontherapy purposes. This total accelerator complex, called 'cyclinac', uses a commercial cyclotron as an injector to a high-frequency and high-gradient linac.

  8. Conceptional design of a heavy ion linac injector for HIRFL-CSRm

    Science.gov (United States)

    Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan

    2014-10-01

    A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.

  9. Conceptual SPL RF Main Power Coupler design

    CERN Document Server

    Montesinos, Eric

    2011-01-01

    While the upgrade plans of the LHC injectors had to be reduced in scope in 2010, the Superconducting Proton Linac (SPL) remains a fundamental element of plans for a possible future neutrino facility. Prototyping work is therefore continuing at CERN and the current focus is on the test of a first four cavity SPL-like cryomodule with full power. This report summarizes the parameters for the Main Power Coupler design as discussed and approved within the ‘Review of SPL RF power couplers’, held at CERN in March 2010.

  10. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    Science.gov (United States)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  11. Focusing properties of discrete RF quadrupoles

    Science.gov (United States)

    Li, Zhi-Hui; Wang, Zhi-Jun

    2017-08-01

    The particle motion equation for a Radio Frequency (RF) quadrupole is derived. The motion equation shows that the general transform matrix of a RF quadrupole with length less than or equal to 0.5βλ (β is the relativistic velocity of particles and λ is wavelength of radio frequency electromagnetic field) can describe the particle motion in an arbitrarily long RF quadrupole. By iterative integration, the general transform matrix of a discrete RF quadrupole is derived from the motion equation. The transform matrix is in form of a power series of focusing parameter B. It shows that for length less than βλ, the series up to the 2nd order of B agrees well with the direct integration results for B up to 30, while for length less than 0.5βλ, the series up to 1st order is already a good approximation of the real solution for B less than 30. The formula of the transform matrix can be integrated into linac or beam line design code to deal with the focusing of discrete RF quadrupoles. Supported by National Natural Science Foundation of China (11375122, 11511140277) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA03020705)

  12. first tank of Linac 1

    CERN Multimedia

    This was the first tank of the linear accelerator Linac1, the injection system for the Proton Synchrotron, It ran for 34 years (1958 - 1992). Protons entered at the far end and were accelerated between the copper drift tubes by an oscillating electromagnetic field. The field flipped 200 million times a second (200 MHz) so the protons spent 5 nanoseconds crossing a drift tube and a gap. Moving down the tank, the tubes and gaps had to get longer as the protons gained speed. The tank accelerated protons from 500 KeV to 10 MeV. Linac1 was also used to accelerate deutrons and alpha particles for the Intersecting Storage Rings and oxygen and sulpher ions for the Super Proton Synchrotron heavy ion programme.

  13. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (<Linac Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  14. Status of the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N.; /SLAC

    2011-11-04

    The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

  15. Designs for a LINAC-Ring LHEC

    CERN Document Server

    Zimmermann, F; Ciapala, E; Haug, F; Osborne, J; Schulte, D; Tomas, R; Adolphsen, C; Sun, Y; Calaga, R; Litvinenko, V; Dainton, J; Klein, M; Chattopadhyay, S; Eide, A

    2010-01-01

    We consider three scenarios for the recirculating electron linear accelerator (RLA) of a linac-ring type electronproton collider based on the LHC (LHeC): i) a pulsed linac with a final beam energy of 60 GeV [“p-60”], ii) a higher luminosity configuration with two cw linacs and energyrecovery (ERL) also at 60 GeV [“erl”], and iii) a high energy option using a pulsed linac with 140-GeV final energy [“p-140”]. We discuss parameters, synchrotron radiation, footprints, and performance for the three scenarios.

  16. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  17. RF gun for an intense THz radiation source

    Institute of Scientific and Technical Information of China (English)

    GU Qiang; ZHAO Zhen-Tang; TONG De-Chun; CHEN Li-Fang; XU Xiu-Min

    2008-01-01

    A new facility is under construction at the Shanghai Institute of Applied Physics,to generate femto-second electron bunches and intense coherent THz radiation pulses.A thermionic RF-gun is used to be the electron source of the linac,which is 1.6 cell,π/2,side coupled in design.In the following of this paper,the design,manufacture and beam operation of this gun are presented.

  18. Recent Progress of RF Cavity Study at Mucool Test Area

    CERN Document Server

    Yonehara, Katsuya

    2012-01-01

    In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.

  19. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  20. LLRF05 : Workshop on Low Level RF, CERN. 10-13 October 2005

    CERN Multimedia

    2005-01-01

    Sophisticated Low Level RF systems are needed in modern particle accelerators to deal with the characteristics of state-of-the-art RF accelerating structures and their power sources, and to meet unprecedented levels of performance. The goal of the LLRF05 workshop is to share experience between linac and synchrotron projects (SNS, J-PARC, ILC, LHC etc.) and to discuss the best engineering practice.

  1. Participants of the LLRF05 : Workshop on Low Level RF, CERN 10-13 October 2005

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Sophisticated Low Level RF systems are needed in modern particle accelerators to deal with the characteristics of state-of-the-art RF accelerating structures and their power sources, and to meet unprecedented levels of performance. The goal of the LLRF05 workshop is to share experience between linac and synchrotron projects (SNS, J-PARC, ILC, LHC etc.) and to discuss the best engineering practice.

  2. Phase control system for SSRF linac

    Institute of Scientific and Technical Information of China (English)

    YIN Chongxian; YU Luyang; LIU Dekang

    2008-01-01

    The design of phase control system in Shanghai Synchrotron Radiation Facility (SSRF) linac is presented in this paper. And digital phase detecting algorithm, the key for phase control system, is fully described. The testing results for phase control system in 100MeV linac are discussed in detail.

  3. Ampere Average Current Photoinjector and Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Calaga, R; Cameron, P; Chang, X; Gassner, D M; Hahn, H; Hershcovitch, A; Hseuh, H C; Johnson, P; Kayran, D; Kewisch, J; Lambiase, R F; Litvinenko, Vladimir N; McIntyre, G; Nicoletti, A; Rank, J; Roser, T; Scaduto, J; Smith, K; Srinivasan-Rao, T; Wu, K C; Zaltsman, A; Zhao, Y

    2004-01-01

    High-power Free-Electron Lasers were made possible by advances in superconducting linac operated in an energy-recovery mode, as demonstrated by the spectacular success of the Jefferson Laboratory IR-Demo. In order to get to much higher power levels, say a fraction of a megawatt average power, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for a different application, that of electron cooling of high-energy hadron beams. I will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun employing a new secondary-emission multiplying cathode and an accelerator cavity, both capable of producing of the order of one ampere average current.

  4. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  5. Modulators for the S-band test linac at DESY

    Science.gov (United States)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.

    1995-07-01

    The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.

  6. Error and jitter effect studies on the SLED for the BEPC Ⅱ-linac

    Institute of Scientific and Technical Information of China (English)

    PEI Shi-Lun; LI Xiao-Ping; XIAO Ou-Zheng

    2012-01-01

    An RF pulse compressor is a device used to convert a long RF pulse to a short one with a much higher peak RF magnitude.SLED can be regarded as the earliest RF pulse compressor to be used in large-scale linear accelerators.It has been widely studied around the world and applied in the BEPC and BEPC Ⅱ linac for many years.During routine operation,error and jitter effects will deteriorate the performance of SLED,either on the output electromagnetic wave amplitude or phase.The error effects mainly include the frequency drift induced by cooling water temperature variation and the frequency/Qo/β unbalances between the two energy storage cavities caused by mechanical fabrication or microwave tuning.The jitter effects refer to the PSK switching phase and time jitters.In this paper,we re-derive the generalized formulae for the conventional SLED used in the BEPC Ⅱ linac,and the error and jitter effects on SLED performance are also investigated.

  7. Binary rf pulse compression experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here.

  8. PROCEEDING OF WORKSHOP ON PHOTO-INJECTOR FOR ENERGY RECOVERY LINAC.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.

    2001-01-22

    Workshop on Photo-injectors for Energy Recovery Linac was held at National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) on January 22 and 23, 2001. Fifty people attended the workshop; they came from three countries, representing universities, industries and national laboratories. This is the first workshop ever held on photo-injectors for CW operation, and for the first time, both DC and RF photo-injectors were discussed at the workshop. Workshop covered almost all major issues of photo-injectors, photocathode, laser system, vacuum, DC, 433 MHz/B-factory cavities based RF gun, 1.3 GHz RF gun and beam instrumentation. High quantum efficiency and long live time photocathode is the issue discussed during the workshop. Four working group leaders have done great jobs summarizing the workshop discussion, and identifying the major issues for future R and D.

  9. Beam dynamics studies in the driver LINAC pre-stripper section of the RIA facility

    Indian Academy of Sciences (India)

    E S Lessner; P N Ostroumov

    2002-12-01

    The RIA facility driver LINAC consists of about 400 superconducting (SC) independently phased rf cavities. The LINAC is designed to accelerate simultaneously several charge-state beams to generate as much as 400 kW of uranium beam power. The LINAC beam dynamics is most sensitive to the focusing and accelerating structure parameters of the pre-stripper section, where the uranium beam is accelerated from 0.17 keV/u to 9.4 MeV/u. This section is designed to accept and accelerate two charge states (28 and 29) of uranium beam from an ECR ion source. The pre-stripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters near transitions of the accelerating and focusing lattices must be matched carefully. Several sources of possible effective emittance growth are considered in the design of the pre-stripper section and a tolerance budget is established. Numerical beam dynamics studies include realistic electric and magnetic three-dimensional field distributions in the SC rf cavities and SC solenoids. Error effects in the longitudinal beam parameters are studied.

  10. High Power Conditioning of the 202 MHz IH Tank 2 at the CERN LINAC3

    CERN Document Server

    Broere, J; Kugler, H; Ratzinger, U; Vretenar, Maurizio

    1998-01-01

    High accelerating gradients are very interesting for future machines, and, in particular, for high-current heavy-ion linac projects like the "Inertial Fusion Driver". In order to explore the maximum field achievable in an Interdigital-H type structure (IH), an experiment has been carried out at CERN with the Lead Ion Linac (Linac3). After the 1997 run, the RF amplifiers were rearranged in order to allow the feeding of the IH Tank number 2 (1.54 m long, 28 gaps, frequency of 202.56 MHz) with up to 2 MW pulsed RF power. After two weeks of conditioning at pulse lengths varying between 200 ms and 1 ms with a constant pulse repetition rate of 0.8 Hz, the maximum effective accelerating gradient achieved was 10.7 MV/m. This corresponds to a local field maximum of 75 MV/m, and to fields in excess of 50 MV/m (3.5 times the Kilpatrick limit) on large portions of the drift tube surfaces. This paper reports the conditioning procedure used, the measurements of field emission current at different voltages and pulse lengths...

  11. Progress in the fabrication of the RFQ accelerator for the CERN Linac4

    CERN Document Server

    Rossi, C; Lallement, J B; Lombardi, A M; Mathot, S; Pugnat, D; Timmins, M; Vandoni, G; Vretenar, M; Desmons, M; France, A; Le Noa, Y; Novo, G; Piquet, O

    2010-01-01

    The construction of Linac4, the new 160 MeV CERN H- injector, has started with the goal of improving the LHC injection chain from 2015 with a new higher energy linac. The low energy front end of Linac4 is based on a 352 MHz, 3-m long Radiofrequency Quadrupole (RFQ) accelerator [1]. The RFQ accelerates the 70 mA, 45 keV H- beam from the RF source to the energy of 3 MeV. The fabrication of the RFQ has started at CERN in 2009 and is presently in progress, aiming at the completion of the full structure by early 2011. The RFQ consists of three modules, one meter each; the fabrication alternates machining phases and stress relief cycles, for copper stabilization. Two brazing steps are required: one to assemble the four parts composing a module, and a second one to install the stainless steel flanges. In order to monitor that the tight mechanical and alignment budget is not exceeded, metrology measurements at the CERN workshop and RF bead-pull measurements are performed during the fabrication process. In this paper ...

  12. Large-acceptance linac for accelerating l9w-energy muons

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S [Los Alamos National Laboratory; Jason, Andrew J [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory

    2010-01-01

    We propose a high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field. The acceleration starts immediately after collection of pions from a target by solenoidal magnets and brings muons to a kinetic energy of about 200 MeV over a distance of the order of 10 m. At this energy, both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. The project presents unique challenges - a very large energy spread in a highly divergent beam, as well as pion and muon decays - requiring large longitudinal and transverse acceptances. One potential solution incorporates a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. While the primary applications of such a linac are for homeland defense and industry, it can provide muon fluxes high enough to be of interest for physics experiments.

  13. Dark current and radiation shielding studies for the ILC main linac

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V. [Fermilab; Rakhno, I. L. [Fermilab; Solyak, N. A. [Fermilab; Sukhanov, A. [Fermilab; Tropin, I. S. [Fermilab

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.

  14. High duty factor Plasma Generator for CERN’s Superconducting Proton Linac

    CERN Document Server

    Lettry, J; Scrivens, R; Chaudet, E; Faircloth, D; Favre, G; Geisser, JM; Kuchler, D; Mathot, S; Midttun, O; Paoluzzi, M; Schmitzer, C; Steyaert, D

    2010-01-01

    CERN’s Linac4 is a 160 MeV linear accelerator currently under construction. It will inject negatively charged hydrogen ions into CERN’s PS-Booster. Its ion source is a non-cesiated RF driven H- volume source directly inspired from the one of DESY and is aimed to deliver pulses of 80 mA of H- during 0.4 ms at a 2 Hz repetition rate. The Superconducting Proton Linac (SPL) project is part of the luminosity upgrade of the LHC, it consists of an extension of Linac4 up to 5 GeV and is foreseen to deliver protons to a future 50 GeV Synchrotron (PS2). For the SPL high power option (HP-SPL), the ion source would deliver pulses of 80 mA of H- during 1.2 ms and operate at a 50 Hz repetition rate. This significant upgrade motivates the design of the new water cooled plasma generator presented in this paper. Its engineering is based on the results of a finite element thermal study of the Linac4 H- plasma generator that identified critical components and thermal barriers. A cooling system is proposed which achieves the...

  15. Initial Operation Results of the KOMAC 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyungtae; Kwon, Hyeokjung; Kim, Hansung; Kim, Daeil; Song, Younggi; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. The KOMAC started to provide a proton beam to users on July 2013. A 20-MeV beam line and a 100-MeV beam line have been operated for beam service during the first year. In 2013, the proton linac had been operated for more than 2200 hours and beam service time was 432 hours approximately. The accumulated downtime during the first year in 2013 is 94.7 hours and there were some faults at utilities, high voltage modulators, and RF components. The KOMAC started to provide a proton beam to users on July 2013. The proton linac had been operated for more than 2200 hours and beam service time was 432 hours approximately. Accumulated downtime was 94.7 hours and availability was 82 %. The plan for beam power and operation time in 2014 is 10 kW and 2500 hours respectively.

  16. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    Energy Technology Data Exchange (ETDEWEB)

    J. N. Corlett; W. A. Barletta; S. DeSantis; L. Doolittle; W. M. Fawley; M.A. Green; P. Heimann; S. Leone; S. Lidia; D. Li; A. Ratti; K. Robinson; R. Schoenlein; J. Staples; W. Wan; R. Wells; A.Wolski; A. Zholents; F. Parmigiani; M. Placidi; W. Pirkl; R. A. Rimmer; S. Wang

    2003-05-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

  17. A recirculating linac-based facility for ultrafast X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Placidi, M.; Pirkl, W.; Parmigiani, F.

    2003-05-06

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac, in particular the incorporation of EUV and soft x-ray production. The project has been named LUX - Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10 s fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short-pulse photon production in the 1-10 keV range. High-brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free-electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by four passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility.

  18. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  19. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  20. Development of high gradient IH linac

    Science.gov (United States)

    Isokawa, K.; Hattori, T.; Sasa, K.; Ito, T.; Hayashizaki, N.; Majima, S.; Osvath, E.; Dudu, D.; Yamada, S.

    We have studied Interdigital-H (IH)-type structures for application in heavy-ion inertial fusion (HIF) and other projects, at the Tokyo Institute of Technology (TIT). We have developed an IH linac with a high acceleration rate. It makes use of the fact that IH linacs have 5-10 times as high shunt impedance as Alvarez and RFQs in low and middle regions of energy [1-5]. We calculated trajectories of particles and made experiments by model cavities. Now an IH linac that we call high gradient IH linac is under construction. The calculated result of particle dynamics is that the transverse acceptance and an acceleration rate of this linac are 113π mm mrad and 5.5 MV/m, respectively. This linac is able to accelerate particles with a charge to mass ratio ( q/ A) greater than 1/16 from 219 keV/u up to 600 keV/u. The cavity length of this linac is 1120 mm. The frequency is 81 MHz.

  1. 25th anniversary for Linac-2

    CERN Multimedia

    2003-01-01

    On Friday, 3 October 2003, the Linac team celebrated a quarter century of successful operation of one of its linear accelerators: Linac-2, the proton workhorse of the CERN accelerator complex. Linac-2, CERN's linear proton accelerator, has now been running for 25 years - ample reason for a small celebration. About 30 members of the original team (10 of the initially more than 50 are still working at CERN), and other CERN personnel met on 3 October 2003. Linac-2 is the first link in the accelerator chain Linac-2 - PS Booster - PS - SPS and eventually LHC. Beams from Linac-2 are used after further acceleration in the CERN complex for SPS fixed target physics; for antiproton production for the Antiproton Decelerator (AD); for test beams in the East Experimental Hall and in the PS; for nuclear physics at ISOLDE; for LHC test beams and in the past for both ISR physics and Antiproton production (AA/AC) and test beams in LEAR. Linac-2 was built to obtain higher intensities and better stability than with ...

  2. Superconducting LINAC booster for the Mumbai pelletron

    Indian Academy of Sciences (India)

    B Srinivasan; S K Singh; R G Pillay; M P Kurup; M K Pandey

    2001-08-01

    We are in the process of constructing a superconducting linear accelerator (LINAC), to boost the energy of heavy ion beams from the 14UD Pelletron accelerator, at Tata Institute of Fundamental Research, Mumbai. The accelerating structures in the LINAC are quarter wave resonators (QWR) coated with lead which is superconducting at liquid helium temperature. With feasibility studies having been completed during the course of the 4th and 5th five-year plan periods, culminating with the demonstration of beam acceleration using one accelerating module, the construction of the LINAC is now under way.

  3. BEPCII Injector Linac Upgrade and Beam Instabilities

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-Hong; GENG Zhe-Qiao; PEI Shi-Lun; DENG Bing-Lin; CHEN Zhi-Bi; PEI Guo-Xi; CHI Yun-Long; CHEN Yan-Wei; CAO Jian-She; KONG Xiang-Cheng; ZHAO Feng-Li; HOU Mi; LIU Wei-Bin

    2008-01-01

    The upgrade project of the Beijing Electron Positron Collider (BEPCII) and its injector linac is working well.The linac upgrade aims at a higher injection rate of 50 mA/min into the storage ring,which requires an injected beam with low emittance,low energy spread and high beam orbit and energy stabilities. This goal is finally reached recently by upgrading the linac components and by dealing with rich and practical beam physics,which are described in this study.

  4. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  5. Development of a new initial-beam-loading compensation system and its application to a free-electron-laser linac

    Directory of Open Access Journals (Sweden)

    M. Satoh

    2009-01-01

    Full Text Available We have developed an initial-beam-loading compensation system by a new compensation method, where the system modulates the phase and amplitude of a low-level rf signal simultaneously, thereby optimizing a high-power rf waveform fed to an accelerating structure to compensate the beam energy spread. This compensation system is very compact and can easily be installed in and removed from a klystron system. This system was used in a beam test performed in the 125 MeV electron linac of the Laboratory for Electron Beam Research and Application in Nihon University. Experimental results demonstrate that this system effectively corrects the beam energy spread due to the initial-beam-loading effect. The new compensation method is expected to be effective in the compensation of energy spread in high-intensity and long-pulse beams in electron linacs.

  6. Femtosecond Synchronisation of Ultrashort Pulse Lasers to a Microwave RF Clock

    CERN Document Server

    Winter, Axel; Knabbe, Ernst-Axel; Simonov, Anatoli; Simrock, Stefan; Steffen, Bernd; Sytov, Sergei

    2005-01-01

    A precise synchronization between the laser repetition rate and the linac-RF is mandatory for electro-optic sampling or pump-probe experiments. The level of stability is usually determined by measuring of the spectral noise power density of the feedback signal when the system is locked. However, an independent measurement is needed to confirm this. In this paper, we present an approach exploiting electronic techniques to synchronize a TiSa laser to the RF of the DESY VUVFEL with sub-50 fs stability. The remaining time jitter is measured by an RF monitoring system independent of the locking PLL.

  7. Study on the RF Set Point for the PEFP DTL by using a phase scan method

    Science.gov (United States)

    Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-12-01

    The drift tube linac (DTL) is used to accelerate proton beams from 20 MeV to 100 MeV in the linear accelerator of the Proton Engineering Frontier Project (PEFP). The phase scan signature method is a common technique to determine the radio-frequency (rf) set point, including the rf amplitude and phase, in DTL tanks. In this work, we applied the phase scan method to the first tank of the PEFP's DTL in order to study the procedure for determining the rf set point by using artificial experimental data generated by using the PARMILA code.

  8. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  9. New injectors the Linac4 project and the new H− source

    CERN Document Server

    Lettry, J

    2015-01-01

    Linac4 is a new 160 MeV linear accelerator designed to improve by a factor of 2 the beam brightness out of the LHC injection chain for the needs of the LHC luminosity upgrade. The project started in 2008 and beam commissioning takes place in 2014–2015. The new linac accelerates H− ions that are then stripped at injection into the PS Booster; production of the H− beam takes place in a state-of-the-art ion source of the RF-driven caesiated surface type. Acceleration is provided by four different accelerating sections matched to the increasing beam velocity, including two of novel designs, and focusing is provided by a combination of permanent-magnet and electromagnetic quadrupoles.

  10. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    CERN Document Server

    AUTHOR|(CDS)2085329; Gerigk, Frank; Van Rienen, Ursula

    2017-01-01

    Higher order modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  11. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  12. RF Phase Scan for Beam Energy Measurement of KOMAC DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hansung; Kwon, Hyeokjung; Kim, Seonggu; Lee, Seokgeun; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The energy gain through the drift tube linac is a function of the synchronous phase, therefore, the output beam energy from DTL can be affected by the RF phase setting in low-level RF (LLRF) system. The DTL at Korea Multi-purpose Accelerator Complex (KOMAC) consists of 11 tanks and the RF phase setting in each tank should be matched for synchronous acceleration in successive tanks. That means a proper setting of RF phase in each DTL tank is critical for efficient and loss-free operation. The matching RF phase can be determined based on the output energy measurement from the DTL tank. The beam energy can be measured by several methods. For example, we can use a bending magnet to determine the beam energy because the higher momentum of beam means the less deflection angle in the fixed magnetic field. By measuring the range of proton beam through a material with known stopping power also can be utilized to determine the beam energy. We used a well-known time-of-flight method to determine the output beam energy from the DTL tank by measuring beam phase with a beam position monitor (BPM). Based on the energy measurement results, proper RF operating point could be obtained. We performed a RF phase scan to determine the output beam energy from KOMAC DTL by using a time-of-flight method and to set RF operating point precisely. The measured beam energy was compared with a beam dynamics simulation and showed a good agreement. RF phase setting is critical issue for the efficient operation of the proton accelerator, we have a plan to implement and integrate the RF phase measurement system into an accelerator control system for future need.

  13. RF multipole implementation

    CERN Document Server

    Latina, A

    2012-01-01

    The electromagnetic radio-frequency (RF) field of accelerating structures and crab-cavities can exhibit transverse field components due to asymmetries in the azimuthal direction of the element geometry. Tracking simulations must be performed to evaluate the impact of such transverse RF deflections on the beam dynamics. In an ultra-relativistic regime where the Panofsky-Wenzel theorem is applicable, these RF deflections can be modeled via a multipolar expansion of the generating RF field similarly to what is done with static magnetic elements. The element implementing such RF multipolar fields has been called RF multipole. In this note we present an analytical formulation of a thin RF multipole Hamiltonian, and we explicitly calculate the RF kick and the elements of its first- and second- order transfer matrices. Also, we present the implementation of the corresponding code in MAD-X, plus some tests of tracking, simplecticity, consistency, and reflected maps that we successfully applied to verify the correctne...

  14. The invention that is shaping Linac4

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Accelerator experts are no strangers to innovative optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This is the case with the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.   Drift tubes in a prototype for Linac4, assembled using the new TACM technology. “Assemble and adjust” – that was the technique used to build drift-tube linacs before the arrival of the TACM. Now, the inventors’ motto has become ‘adjust and assemble’. The inversion of these two words represents a real revolution for people working in the field. “The drift tubes are a critical element of Linac4 and they have to satisfy several requirements: they have to be mechanically ...

  15. Beam diagnostic suite for the SNS linac

    Science.gov (United States)

    Hardekopf, R. A.; Kurennoy, S. S.; Power, J. F.; Shafer, R. E.; Stovall, J. E.

    2000-11-01

    The Spallation Neutron Source (SNS) is the next-generation pulsed neutron source to be built in the United States. The accelerator chosen to produce the 2 MW beam power on the neutron-producing target is an H- linear accelerator (linac) to 1 GeV, followed by a proton accumulator ring. The ring compresses the 1 ms long beam bunches from the linac to less than 1 μs. The linac is pulsed at 60 Hz with a 6% duty factor. Stringent control of the pulse structure and stability of the high-intensity H- beam is needed to minimize beam loss in the linac and to optimize injection into the accumulator ring. This requires a set of beam diagnostics that can operate at high peak currents (˜52 mA) with high sensitivity and minimum beam interception.

  16. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  17. Optimization of the beam extraction systems for the Linac4 H- ion source

    Science.gov (United States)

    Fink, D. A.; Lettry, J.; Midttun, Ø.; Scrivens, R.; Steyaert, D.; Valerio-Lizarraga, C. A.

    2015-04-01

    The development of the Linac 4 and its integration into CERN's acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H- beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H- beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm. mrad. The previously installed beam extraction system has been designed for an H- ion beam intensity of 20 mA produced by an RF-volume source with an electron to H- ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H- ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H- source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  18. The general RF tuning for IH-DTL linear accelerators

    Science.gov (United States)

    Lu, Y. R.; Ratzinger, U.; Schlitt, B.; Tiede, R.

    2007-11-01

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C 4+ from 400 keV/ u to 7 MeV/u and used as the linear injector of 430 MeV/ u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 [1]; Y.R. Lu, Frankfurt University Dissertation, 2005. [2

  19. Beam dynamics in rf guns and emittance correction techniques

    Science.gov (United States)

    Serafini, Luca

    1994-02-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results.

  20. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  1. INR proton Linac operation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, Leonid V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary Pr., Moscow 117312 (Russian Federation)]. E-mail: kravchuk@inr.ru

    2006-06-23

    The INR Proton Linear Accelerator is presently under operation for about 2400 h per year with energy about 250 MeV and average current up to 150 {mu}A. The Linac applications are mainly as follows: neutron and condensed matter research at spallation neutron source and neutron spectrometers, isotope production for medicine and industry, beam therapy. The experimental area description and the Linac operational experience are given in the paper.

  2. Optimum frequency and gradient for the CLIC main linac accelerating structure

    CERN Document Server

    Grudiev, A; Wuensch, Walter

    2006-01-01

    A novel procedure for the optimization of CLIC main linac parameters including operating frequency and the accelerating gradient is presented. The optimization procedure takes into account both beam dynamics and high power rf constraints. Beam dynamics constraints are given by emittance growth due to short- and long-range transverse wakefields. RF constraints are given by rf breakdown and pulsed surface heating limitations of the accelerating structure. Interpolation of beam and structure parameters in a wide range allows hundreds of millions of accelerating structures to be analyzed to find the structure with the highest ratio of luminosity to main linac input power, which is used as the figure of merit. The frequency and gradient have been varied in the ranges 12-30 GHz and 90-150 MV/m respectively. It is shown that the optimum frequency lies in the range from 16 to 20 GHz depending on the accelerating gradient and that the optimum gradient is below 100 MV/m. Based on our current understanding of the constr...

  3. Compact X-ray Source using a High Repetition Rate Laser and Copper Linac

    CERN Document Server

    Graves, W S; Brown, P; Carbajo, S; Dolgashev, V; Hong, K -H; Ihloff, E; Khaykovich, B; Lin, H; Murari, K; Nanni, E A; Resta, G; Tantawi, S; Zapata, L E; Kärtner, F X; Moncton, D E

    2014-01-01

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The 100 kHz repetition rate is orders of magnitude beyond existing high brightness copper linacs. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for m...

  4. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  5. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  6. Simulation of large acceptance LINAC for muons

    Energy Technology Data Exchange (ETDEWEB)

    Miyadera, H [Los Alamos National Laboratory; Kurennoy, S [Los Alamos National Laboratory; Jason, A J [Los Alamos National Laboratory

    2010-01-01

    There has been a recent need for muon accelerators not only for future Neutrino Factories and Muon Colliders but also for other applications in industry and medical use. We carried out simulations on a large-acceptance muon linac with a new concept 'mixed buncher/acceleration'. The linac can accept pions/muons from a production target with large acceptance and accelerate muon without any beam cooling which makes the initial section of muon-linac system very compact. The linac has a high impact on Neutrino Factory and Muon Collider (NF/MC) scenario since the 300-m injector section can be replaced by the muon linac of only 10-m length. The current design of the linac consists of the following components: independent 805-MHz cavity structure with 6- or 8-cm-radius aperture window; injection of a broad range of pion/muon energies, 10-100 MeV, and acceleration to 150 - 200 MeV. Further acceleration of the muon beam are relatively easy since the beam is already bunched.

  7. Beam-Based Procedures for RF Guns

    CERN Document Server

    Krasilnikov, Mikhail; Grabosch, H J; Hartrott, Michael; Hui Han, Jang; Miltchev, Velizar; Oppelt, Anne; Petrosyan, Bagrat; Staykov, Lazar; Stephan, Frank

    2005-01-01

    A wide range of rf photo injector parameters has to be optimized in order to achieve an electron source performance as required for linac based high gain FELs. Some of the machine parameters can not be precisely controlled by direct measurements, whereas the tolerance on them is extremely tight. Therefore, this should be met with beam-based techniques. Procedures for beam-based alignment (BBA) of the laser on the photo cathode as well as solenoid alignment have been developed. They were applied at the Photo Injector Test facility at DESY Zeuthen (PITZ) and at the photo injector of the VUV-FEL at DESY Hamburg. A field balance of the accelerating mode in the 1 ½ cell gun cavity is one of the key beam dynamics issues of the rf gun. Since no direct field measurement in the half and full cell of the cavity is available for the PITZ gun, a beam-based technique to determine the field balance has been proposed. A beam-based rf phase monitoring procedure has been developed as well.

  8. Effect of minimum strength of mirror magnetic field (B sub m sub i sub n) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    CERN Document Server

    Arai, H; Lee, S M; Higurashi, Y; Nakagawa, T; Kidera, M; Kageyama, T; Kase, M; Yano, Y; Aihara, T

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B sub m sub i sub n) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B sub m sub i sub n exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (approx 0.49 T) for various charge state heavy ions.

  9. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  10. Higher-order mode calculations, predictions and overview of damping schemes for energy recovering linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, R.A. [Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: rarimmer@jlab.org

    2006-02-01

    This paper gives a brief review of computational methods for calculating higher-order mode (HOM) impedances for RF structures, the cases for which they are appropriate and some comparisons with measurements. An overview of damping schemes suitable for moderate to high current energy recovered linacs (ERLs), is presented, with a discussion of the pro's and con's of each. The influence of number of cells per cavity, cell shape and cell-to-cell coupling are described. The Jefferson Lab Ampere-class cryomodule concept is presented as an example and the issue of HOM power is highlighted.

  11. The Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N

    2003-05-21

    A collaboration of scientists from SLAC, UCLA, Los Alamos National Laboratory, Brookhaven National Laboratory, and Argonne National Laboratory have proposed to build the Linac Coherent Light Source (LCLS) facility, a free-electron laser (FEL) on the SLAC site, spanning photon energies 0.8-8 keV. The laser output will be 8-10 GW with pulse lengths 230 fsec or less. The LCLS will offer unprecedented experimental opportunities in the areas of atomic physics, chemical dynamics, plasma physics, nanoscale dynamics, and biomolecular imaging. SLAC has proposed to begin engineering design of the laser in 2003, leading to project completion in 2008. The laser produces x-rays by the self-amplified spontaneous emission (SASE) process: an intense, highly collimated pulse of 14.5 GeV electrons, traveling through a 122 m-long undulator magnet system, is induced by its own synchrotron radiation to form sub-nanometer-scale bunches. The bunching process enhances the coherence and hence the intensity of the emitted synchrotron radiation. The process is analogous to the instability of a high-gain amplifier; the ''noise'' signal that seeds the instability is the shot noise in the electron beam.

  12. RNB-specific linac development

    CERN Document Server

    Ratzinger, U

    2002-01-01

    The acceleration of secondary, radioactive beams from primary beam driven ion sources provides many challenges when compared to the case of conventional ion beams. The clean separation of the specific ion species, the low beam current, the short life time of the ions as well as the needed energy variability have consequences on the layout of the accelerator. As also experiments with astrophysical relevance are performed, the energy range should go down below 1 MeV/u in some cases. Additionally, to investigate nuclear reactions around the Coulomb barrier, the beam energy should be flexible up to around 8 MeV/u. Short isotope life times below a few milliseconds do not allow for charge breeding. In these cases, low charged ions from 'simple' ion sources have to be accepted by the accelerator. Furthermore, stripping processes along the linac are excluded in case of low beam currents. Multicoincidence experiments profit a lot from cw operation of ion source and accelerators. During the last three decades, room tem...

  13. SNS Low-Level RF Control System Design and Performance

    CERN Document Server

    Ma, Hengjie; Crofford, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    A full digital Low-Level RF controller has been developed for SNS LINAC. Its design is a good example of a modern digital implementation of the classic control theory. The digital hardware for all the control and DSP functionalities, including the final vector modulation, is implemented on a single high-density FPGA. Two models for the digital hardware have been written in VHDL and Verilog respectively, based on a very low latency control algorithm, and both have been being used for supporting the testing and commissioning the LINAC to the date. During the commissioning, the flexibility and ability for precise controls that only digital design on a larger FPGA can offer has proved to be a necessity for meeting the great challenge of a high-power pulsed SCL.

  14. Rf-synchronized imaging for particle and photon beam characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-07-01

    The usefulness of imaging electro-optics for rf-driven accelerators can be enhanced by synchronizing the instruments to the system fundamental frequency or an appropriate subharmonic. This step allows one to obtain micropulse bunch length and phase during a series of linac bunches or storage ring passes. Several examples now exist of the use of synchroscan and dual-sweep streak cameras and/or image dissector tubes to access micropulse scale phenomena (10 to 30 ps) during linac and storage ring operations in the US, Japan, and Europe. As space permits, selections will be presented from the list of phase stability phenomena on photoelectric injectors, micropulse length during a macropulse, micropulse elongation effects, transverse Wakefield effects within a micropulse, and submicropulse phenomena on a stored beam. Potential applications to the subsystems of the Advanced Photon Source (APS) will be briefly addressed.

  15. Novel Linac Structures For Low-Beta Ions And For Muons

    Science.gov (United States)

    Kurennoy, Sergey S.

    2011-06-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  16. Novel linac structures for low-beta ions and for muons

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S [Los Alamos National Laboratory

    2010-01-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies - the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ) - are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis - are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of {approx}200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed O-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  17. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  18. Autopilot regulation for the Linac4 H- ion source

    Science.gov (United States)

    Voulgarakis, G.; Lettry, J.; Mattei, S.; Lefort, B.; Costa, V. J. Correia

    2017-08-01

    Linac4 is a 160 MeV H- linear accelerator part of the upgrade of the LHC injector chain. Its cesiated surface H- source is designed to provide a beam intensity of 40-50mA. It is operated with periodical Cs-injection at typically 30 days intervals [1] and this implies that the beam parameters will slowly evolve during operation. Autopilot is a control software package extending CERN developed Inspector framework. The aim of Autopilot is to automatize the mandatory optimization and cesiation processes and to derive performance indicators, thus keeping human intervention minimal. Autopilot has been developed by capitalizing on the experience from manually operating the source. It comprises various algorithms running in real-time, which have been devised to: • Optimize the ion source performance by regulation of H2 injection, RF power and frequency. • Describe the performance of the source with performance indicators, which can be easily understood by operators. • Identify failures, try to recover the nominal operation and send warning in case of deviation from nominal operation. • Make the performance indicators remotely available through Web pages.Autopilot is at the same level of hierarchy as an operator, in the CERN infrastructure. This allows the combination of all ion source devices, providing the required flexibility. Autopilot is executed in a dedicated server, ensuring unique and centralized control, yet allowing multiple operators to interact at runtime, always coordinating between them. Autopilot aims at flexibility, adaptability, portability and scalability, and can be extended to other components of CERN's accelerators. In this paper, a detailed description of the Autopilot algorithms is presented, along with first results of operating the Linac4 H- Ion Source with Autopilot.

  19. A new technique for RF distribution

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn; Wildman, David

    2014-07-01

    For independent phase and amplitude control, RF cavities are often driven by one power source per cavity. In many cases it would be advantageous in terms of cost to instead use one higher power source for many cavities. Vector modulators have been developed, which, when used with a single source provide for the independent phase and amplitude control which would have been otherwise lost. The key components of these vector modulators are a novel type of phase shifter — adjustable fast phase shifters with perpendicularly biased garnets. The vector modulators have been constructed and used with a single klystron in a 3.4 MeV test linac to successfully accelerate proton beam.

  20. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    Science.gov (United States)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  1. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  2. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  3. The Eindhoven linac-racetrack microtron combination

    Energy Technology Data Exchange (ETDEWEB)

    Theuws, W.H.C.; Botman, J.I.M.; Hagedoorn, H.L.; Timmermans, C.J. [Tech. Univ., Eindhoven (Netherlands). Cyclotron Lab.

    1998-04-01

    The Eindhoven linac-race track microtron (RTM) combination has been designed to serve as injector for an electron storage ring. The linac is a 10 MeV travelling-wave linac (type M.E.L. SL75/10). In the RTM a 5 MeV standing-wave cavity, which is synchronized with the linac, accelerates the electron beam 13 times, such that the extraction energy is 75 MeV. The RTM end magnets are two-sector magnets tilted in their median planes, to provide strong focusing forces for optimal electron-optical properties. Closed-orbit conditions are fulfilled with the help of small correction dipoles located in the RTM drift space; the magnetic-field strengths of these correction dipoles are adjusted on the basis of beam-position measurements. Isochronous acceleration is accomplished by position- and phase-measurements. A low-cost elaborate diagnostic system will be used for efficient commissioning of the combination of the 10 MeV linac and the 10-75 MeV RTM. (orig.) 10 refs.

  4. The Eindhoven linac-racetrack microtron combination

    Science.gov (United States)

    Theuws, W. H. C.; Botman, J. I. M.; Hagedoorn, H. L.; Timmermans, C. J.

    1998-04-01

    The Eindhoven linac-race track microtron (RTM) combination has been designed to serve as injector for an electron storage ring. The linac is a 10 MeV travelling-wave linac (type M.E.L. SL75/10). In the RTM a 5 MeV standing-wave cavity, which is synchronized with the linac, accelerates the electron beam 13 times, such that the extraction energy is 75 MeV. The RTM end magnets are two-sector magnets tilted in their median planes, to provide strong focusing forces for optimal electron-optical properties. Closed-orbit conditions are fulfilled with the help of small correction dipoles located in the RTM drift space; the magnetic-field strengths of these correction dipoles are adjusted on the basis of beam-position measurements. Isochronous acceleration is accomplished by position- and phase-measurements. A low-cost elaborate diagnostic system will be used for efficient commissioning of the combination of the 10 MeV linac and the 10-75 MeV RTM.

  5. A magnetized Einzel lens electron dump for the Linac4 H− ion source

    CERN Document Server

    Midttun, O; Kronberger, M; Lettry, J; Pereira, H; Scrivens, R

    2013-01-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H−) into CERN’s Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H− and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  6. A magnetized Einzel lens electron dump for the Linac4 H- ion source

    Science.gov (United States)

    Midttun, Ø.; Kalvas, T.; Kronberger, M.; Lettry, J.; Pereira, H.; Scrivens, R.

    2013-02-01

    Linac4 is a 160 MeV linear accelerator which will inject negative hydrogen ions (H-) into CERN's Proton Synchrotron Booster, a required upgrade to improve the beam brightness in the LHC injector chain. A volume production RF ion source, based on the design of the DESY RF source was implemented, but showed considerable electron dump ablation during operation at 45 keV beam energy. To reduce the electron beam power density in the dump, a magnetized Einzel lens is designed that reduces the beam energy to 10 keV before permanentmagnets dump the electrons on a tungsten surface. Presented in this paper are simulations of the design using IBSimu, the tunable range of parameters depending on the extracted H- and electron current, as well as details of the implementation, the choice of pulsed power converters and the electrode alignment system. In addition, simulations of proton extraction from this source will be shown.

  7. Linac4 DTL Prototype: Theoretical Model, Simulation and Low Energy Measurements

    CERN Document Server

    Grespan, F; Gerigk, F; Ramberger, S

    2010-01-01

    A one meter long hot prototype of the LINAC4 DTL, built in a collaboration with INFN Legnaro, was delivered to CERN in 2008. It was then copper plated at CERN is and is presently prepared for high-power testing at the CERN test stand in SM18. In this paper we present 2D/3D simulations and the first RF low-power measurements to verify the electromagnetic properties of the cavity and to tune it before the high-power RF tests. In particular, the influence of the post couplers was studied in order to guarantee stabilization of the accelerating field during operation. We present an equivalent circuit model of the DTL, together with a comparison of 3D simulations and measurement results for the hot model.

  8. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  9. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  10. Wake field effects in APT linac

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1998-12-31

    The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The high current leads to stringent restrictions on allowable beam losses (<1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, the author studies these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. Here he concentrates on two features specific to the APT linac: loss factors for the design {beta} < 1 and CW beam structure.

  11. Electro neutrons around a 12 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Perez L, L. H., E-mail: fermineutron@yahoo.com [Instituto Zacatecano del Tumor, A. C., Lago de la Encantada No. 294, Fracc. Lomas del Lago, Zacatecas (Mexico)

    2012-10-15

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A {yields} (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  12. Stabilization Strategies for Drift Tube Linacs

    CERN Document Server

    AUTHOR|(CDS)2085420; Lamehi Rashti, Mohammad

    The average axial electric fields in drift tube linac cavities are known to be sensitive with respect to the perturbation errors. Postcoupler is a powerful stabilizer devices that is used to reduce this sensitivity of average axial field. Postcouplers are the cylindrical rod which is extended from cavity wall toward the drift tube without touching the drift tube surface. Postcouplers need to be adjusted to the right length to stabilize the average axial field. Although postcouplers are used successfully in many projects, there is no straightforward procedure for postcouplers adjustment and it has been done almost based on trial and errors. In this thesis, the physics and characteristics of postcouplers has been studied by using an equivalent circuit model and 3D finite element method calculations. Finally, a straightforward and accurate method to adjust postcouplers has been concluded. The method has been verified by using experimental measurements on CERN Linac4 drift tube linac cavities.

  13. Energy Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Jefferson Lab, Newport News, VA; Krafft, Geoffrey A. [Jefferson Lab, Newport News, VA; Johnson, Rolland [Muons, Inc., Batavia, IL; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  14. Diagnostics For Recirculating And Energy Recovered Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey A. Krafft; Jean-Claude Denard

    2002-12-18

    In this paper, the electron beam diagnostics developed for recirculating electron accelerators will be reviewed. The main novelties in dealing with such accelerators are: to have sufficient information and control possibilities for the longitudinal phase space, to have means to accurately set the recirculation path length, and to have a means to distinguish the beam passes on measurements of position in the linac proper. The solutions to these problems obtained at Jefferson Laboratory and elsewhere will be discussed. In addition, more standard instrumentation (profiling and emittance measurements) will be reviewed in the context of recirculating linacs. Finally, and looking forward, electron beam diagnostics for applications to high current energy recovered linacs will be discussed.

  15. Neutron and photon spectra in LINACs.

    Science.gov (United States)

    Vega-Carrillo, H R; Martínez-Ovalle, S A; Lallena, A M; Mercado, G A; Benites-Rengifo, J L

    2012-12-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10(-6) and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage.

  16. On the Feasibility of Accelerating Deuterons in Linac4

    CERN Document Server

    Stovall, J; Garcia Tudela, M; Ramberger, S; Crandall, K

    2011-01-01

    The Linac4 normal-conducting linac is comprised of three sections, DTL, CCDTL and PIMS. It is designed to accelerate H-minus ions to a final energy of 160 MeV. The objective of this study is to investigate the feasibility of accelerating deuterons in this linac for injection into the PS Booster.

  17. LUX — A Recirculating Linac-based Ultrafast X-ray Source

    Science.gov (United States)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M. A.; Heimann, P.; Leone, S. R.; Lidia, S.; Li, D.; Parmigiani, F.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Zholents, A.

    2004-05-01

    We describe the design of a proposed source of ultra-fast synchrotron radiation x-ray pulses based on a recirculating superconducting linac, with an integrated array of ultrafast laser systems. The source produces x-ray pulses with duration of 10-50 fs at a 10 kHz repetition rate, with tunability from EUV to hard x-ray regimes, and optimized for the study of ultra-fast dynamics. A high-brightness rf photocathode provides electron bunches. An injector linac accelerates the beam to the 100 MeV range, and is followed by four passes through a 700 MeV recirculating linac. Ultrafast hard x-ray pulses are obtained by a combination of electron bunch manipulation, transverse temporal correlation of the electrons, and x-ray pulse compression. EUV and soft x-ray pulses as short as 10 fs are generated in a harmonic-cascade free electron laser scheme. We describe the facility major systems and peformance.

  18. End-to-End Beam Simulations for the MSU RIA Driver Linac

    CERN Document Server

    Wu, X; Gorelov, D; Grimm, T L; Marti, F; York, R C; Zhao, Q

    2004-01-01

    The Rare Isotope Accelerator (RIA) driver linac proposed by Michigan State University (MSU) will use a 10th sub-harmonic based, superconducting, cw linac to accelerate light and heavy ions to final energies of ≤400 MeV/u with beam powers of 100 to 400 kW. The driver linac uses superconducting quarter-wave, half-wave, and six-cell elliptical cavities with frequencies ranging from 80.5 MHz to 805 MHz for acceleration, and superconducting solenoids and room temperature quadrupoles for transverse focusing. For the heavier ions, two stages of charge-stripping and multiple-charge-state acceleration will be used to meet the beam power requirements and to minimize the requisite accelerating voltage. End-to-end, three-dimensional (3D), beam dynamics simulations from the ECR to the radioactive beam production targets have been performed. These studies include a 3D analysis of multi-charge-state beam acceleration, evaluation of transverse misalignment and rf errors on the machine performance, modeling of the c...

  19. Matching the laser generated p bunch into a crossbar-H drift tube linac

    Science.gov (United States)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  20. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  1. Deuterons Acceleration in I-100 Linac

    CERN Document Server

    Antipov, Yu M; Batarin, V A; Gorin, Yu P; Davydov, V V; Maltsev, A P; Nizhegorodtsev, V V; Pilipenko, C I; Starodubrovsky, E K; Surenskii, A V; Taplyakov, V A; Troyanov, E F; Tyurin, N E

    2003-01-01

    High energy deuteron beams are of great interest for fundamental and applied researches. Creation of such beams on IHEP accelerator complex in energy range 0,1(plus-minus)35 GeV/u significantly widens the research possibili-ties with relativistic deuterons in our country. Accelerated deuterons are also à precondition for other light nuclei acceleration in IHEP. IHEP Alvarez type proton I-100 linac can be used as light ions injector. In this work the results of deuterons acceleration studies in I-100 linac are presented.

  2. Preinjector for Linac 1, accelerating column

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070X. High up on the wall of the Faraday cage (7403073X) is this drum-shaped container of the ion source (7403083X). It is mounted at the HV end of the accelerating column through which the ions (usually protons; many other types of ions in the course of its long history) proceed through the Faraday cage wall to the low-energy end (at ground potential) of Linac 1. The 520 kV accelerating voltage was supplied by a SAMES generator (7403074X).

  3. Preliminary Study on the RF tuning of CSNS DTL

    OpenAIRE

    Yin, Xuejun; Li, Ahong; Xiao, Yongchuang; Chen, Qiang; Liu, Huachang; Gong, Keyun; Fu, Shinan

    2013-01-01

    In the R&D of the CSNS Drift Tube Linac (DTL), the first unit tank with 28 drift tubes has been developed. The axial accelerating field is ramped from 2.2MV/m to 3.1MV/m in this tank. The required field flatness is less than 2 % with the standard deviation of 1 % for the beam dynamics. And the field stability should be less than 1% for machine stable operation. After the successful alignment, the RF tuning was carried out focusing on the field profile measurement. Four slug tuners and 11 post...

  4. Special MAFIA postprocessors for the analysis of RF structures

    Science.gov (United States)

    Browman, M. J.

    1992-08-01

    This paper describes three stand-alone programs that use the electromagnetic fields generated by the MAFIA 2.04 codes to analyze radio-frequency (RF) cavities. Illustrations are provided that show how these codes are used to do the following: (1) analyze the effect of the coupling slots on the electric and magnetic fields of the linacs for the APLE Prototype Experiment (APEX) and the Advanced Free-Electron Laser (AFEL); (2) verify the Panofsky-Wenzel theorem for a high-energy deflecting cavity proposed for the Accelerator Transmutation of Waste (ATW) project; and (3) study the effectiveness of that deflecting cavity.

  5. An RF input coupler for a superconducting single cell cavity

    Energy Technology Data Exchange (ETDEWEB)

    Fechner, B.; Ouchi, Nobuo; Kusano, Joichi; Mizumoto, Motoharu; Mukugi, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Krawczyk, F.

    1999-03-01

    Japan Atomic Energy Research Institute proposes a high intensity proton accelerator for the Neutron Science Project. A superconducting linac is a main option for the high energy part of the accelerator. Design and development work for the superconducting accelerating cavities (resonant frequency of 600 MHz) is in progress. Superconducting cavities have an advantage of very high accelerating efficiency because RF wall loss is very small and much of the RF power fed to the cavity is consumed for the beam acceleration. On the other hand, an RF input coupler for the superconducting cavity has to be matched to the beam loading. Therefore, estimation of coupling coefficient or external quality factor (Qext) of the RF input coupler is important for the design of the couplers. In this work, Qext`s were calculated by the electromagnetic analysis code (MAFIA) and were compared with those by the measurements. A {beta} (ratio of the particle velocity to the light velocity) = 0.5 single-cell cavity with either axial coupler or side coupler was used in this work. In the experiments, a model cavity made by copper is applied. Both 2- and 3-dimensional calculations were performed in the axial coupler geometry and the results were compared. The agreements between calculated and measured values are good and this method for calculation of Qext is confirmed to be proper for the design of the RF input couplers. (author)

  6. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  7. rf improvements for Spallation Neutron Source H-ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon W [ORNL; Fuja, Raymond E [ORNL; Goulding, Richard Howell [ORNL; Hardek, Thomas W [ORNL; Lee, Sung-Woo [ORNL; McCarthy, Mike [ORNL; Piller, Chip [ORNL; Shin, Ki [ORNL; Stockli, Martin P [ORNL; Welton, Robert F [ORNL

    2010-01-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

  8. Superconducting, energy variable heavy ion linac with constant β, multicell cavities of CH-type

    Directory of Open Access Journals (Sweden)

    S. Minaev

    2009-12-01

    Full Text Available An energy variable ion linac consisting of multigap, constant-β cavities was developed. The effect of phase sliding, unavoidable in any constant-β section, is leading to a coherent rf phase motion, which fits well to the H-type structures with their long π-mode sections and separated lenses. The exact periodicity of the cell lengths within each cavity results in technical advantages, such as higher calculation accuracy when only one single period can be simulated, simpler manufacturing, and tuning. This is most important in the case of superconducting cavities. By using this concept, an improved design for a 217 MHz cw superconducting heavy ion linac with energy variation has been worked out. The small output energy spread of ±3  AkeV is provided over the whole range of energy variation from 3.5 to 7.3 AMeV. These capabilities would allow for a competitive research in the field of radiochemistry and for a production of super heavy elements (SHE, especially. A first 19-cell cavity of that type was designed, built, and rf tested successfully at the Institute for Applied Physics (IAP Frankfurt. A 325.224 MHz, seven-cell cavity with constant β=0.16 is under development and will be operated in a frequency controlled mode. It will be equipped with a power coupler and beam tests with Unilac beams at GSI are foreseen.

  9. Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

    Science.gov (United States)

    Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki; Ikegami, Masanori

    2015-02-01

    In the J-PARC (Japan Proton Accelerator Research Complex) linac, an energy-upgrade project has started to achieve a design beam power of 1 MW at the exit of the downstream synchrotron. To account for the significant beam parameter upgrades, we will use the newly-fabricated beam monitors for the beam commissioning. This paper discusses the design and assembly of the beam position monitor, phase monitor, current monitor, transverse profile monitor, and beam loss monitor for the energy-upgraded linac. We periodically installed the newly-fabricated monitors for the upgraded beam line, as well as for longitudinal matching, because of the frequency jump between the original RF cavity and the newly-developed cavity. We employed two debunchers to correct for momentum spread and jitter. To account for the new debunchers, we fabricated and installed additional pairs of phase monitors in order to tune the debunchers to the adequate RF set point. Finally, we propose commissioning plans to support the beam monitor check. We will begin to establish the 181-MeV operation to confirm the proper functioning of beam monitors. Herein, we will examine the response to changes of the knobs that control the quadrupole magnets after the energy upgrade. After proper functioning of the beam monitors is confirmed, we will use the new beam monitors to establish the 400-MeV acceleration operation.

  10. Error analysis in post linac to driver linac transport beam line of RAON

    Science.gov (United States)

    Kim, Chanmi; Kim, Eun-San

    2016-07-01

    We investigated the effects of magnet errors in the beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator in Korea (RAON). The P2DT beam line is bent by 180-degree to send the radioactive Isotope Separation On-line (ISOL) beams accelerated in Linac-3 to Linac-2. This beam line transports beams with multi-charge state 132Sn45,46,47. The P2DT beam line includes 42 quadrupole, 4 dipole and 10 sextupole magnets. We evaluate the effects of errors on the trajectory of the beam by using the TRACK code, which includes the translational and the rotational errors of the quadrupole, dipole and sextupole magnets in the beam line. The purpose of this error analysis is to reduce the rate of beam loss in the P2DT beam line. The distorted beam trajectories can be corrected by using six correctors and seven monitors.

  11. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    Indian Academy of Sciences (India)

    NITA S KULKARNI; RINKY DHINGRA; VINIT KUMAR

    2016-11-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a $2\\pi/3$ mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Threedimensional transient simulations of the accelerating structure along with the input and output couplers have beenperformed using the software CST-MWS to explicitly demonstrate this feature.

  12. Single-shot method for measuring femtosecond bunch length in linac-based free-electron lasers

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2010-09-01

    Full Text Available There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs. In this report, following the method of Ricci and Smith [Phys. Rev. ST Accel. Beams 3, 032801 (2000PRABFM1098-440210.1103/PhysRevSTAB.3.032801], we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  13. Pressurized rf cavities in ionizing beams

    Science.gov (United States)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  14. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  15. The Linac Coherent Light Source Project

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, John N

    2003-08-11

    The Linac Coherent Light Source Project will make use of the last kilometer of the SLAC Linac to create the world's first ''hard'' x-ray laser. A high-brightness photocathode gun and 150 MeV pre-accelerator will be installed in an alcove adjoining the main linac tunnel. It will provide 1 nanocoulomb electron bunches at 120 Hz. The main linac will be modified to incorporate two chicane bunch compressors. Electron bunches with 230 fsec FWHM duration and 3400 ampere peak current will be delivered to the enclosure presently housing the Final Focus Test Beam Facility. These electron bunches will pass through a 122-meter undulator channel, producing a burst of coherent x-rays with peak brightness ten orders of magnitude higher than is presently available from the brightest third-generation storage ring sources. This extraordinary brightness and coherence is the result of the ''self-amplified spontaneous emission'' (SASE) process. The LCLS Project will include x-ray optics, diagnostics and beamline facilities in two experiment halls, respectively located 40 meters and 322 meters from the source of x-rays. The LCLS will be constructed by a collaboration of US laboratories: Argonne National Labs, Lawrence Livermore National Lab, and SLAC. A conceptual design has been completed and funds for a more complete design are expected in October 2002. The Project completion date is September 2008.

  16. Cyclotron and linac production of Ac-225.

    Science.gov (United States)

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney.

  17. Preinjector for Linac 1, SAMES generator

    CERN Multimedia

    1974-01-01

    For a description of the Linac 1 preinjector, please see first 7403070x. When the original 520 kV Cockcroft-Walton generator broke down in 1973, it was replaced by this much smaller 520 kV SAMES generator, seen here sitting on the floor of the Faraday cage.

  18. Linac4 H{sup −} ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Lettry, J., E-mail: Jacques.lettry@cern.ch; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C. [CERN-ABP, 1211 Geneva 23 (Switzerland); and others

    2016-02-15

    CERN’s 160 MeV H{sup −} linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H{sup −} source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H{sup −} source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  19. MARS15 Simulation of Radiation Environment at the ESS Linac

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Eidelman, Yu. I. [Euclid Techlabs, Solon; Rakhno, I. L. [Fermilab; Tchelidze, L. [ESS, Lund; Tropin, I. S. [Fermilab

    2016-12-01

    Comprehensive studies with the MARS15(2016) Monte-Carlo code are described on evaluation of prompt and residual radiation levels induced by nominal and accidental beam losses in the 5-MW, 2-GeV European Spallation Source (ESS) Linac. These are to provide a basis for radiation shielding design verification through the accelerator complex. The calculation model is based on the latest engineering design and includes a sophisticated algorithm for particle tracking in the machine RF cavities as well as a well-established model of the beam loss. Substantial efforts were put in solving the deep-penetration problem for the thick shielding around the tunnel with numerous complex penetrations. It allowed us to study in detail not only the prompt dose, but also component and air activation, radiation loads on the soil outside the tunnel, and skyshine studies for the complicated 3-D surface above the machine. Among the other things, the newest features in MARS15 (2016), such as a ROOT-based beamline builder and a TENDL-based event generator for nuclear interactions below 100 MeV, were very useful in this challenging application

  20. RFQ Drift-Tube Proton Linacs in IHEP

    CERN Document Server

    Budanov, Yu; Ivanov, S V; Maltsev, A P; Maltsev, I G; Stepanov, V B; Strekalovskyh, S A; Teplyakov, V A; Zenin, V

    2004-01-01

    A linac with drift tubes and RF quadrupoles (alias, an RFQ DTL) constitutes a natural extension of the RFQ concept towards higher beam energies. Complementing an RFQ with drift tubes intermitted by spacer electrodes separates functions of focusing and acceleration. Such a structure allows for an increased accelerating rate and upgrades shunt impedance to values competitive against those inherent in the other common accelerator types. Various accelerating/focusing structures for the RFQ DTLs were implemented in IHEP. Their succession is marked by a progress in performance, which is due to efforts in design, manufacturing technology and calculation technique advances that facilitated R&D of such the structures. A sound practical expertise in the field is accumulated. The 30 MeV RFQ DTL is in service as an injector for a 1.5 GeV PS of IHEP since 1985. An upgraded successor – the RFQ DTL, employing a cavity loaded by a novel accelerating/focusing structure with an increased accelerating rate, is now ...

  1. A Multi-MW Proton/Electron Linac at KEK

    CERN Document Server

    Belusevic, Radoje

    2014-01-01

    It is proposed that a multi-MW superconducting proton/electron linac (SCL) and a proton injector (PI) be built at KEK. The 3 GeV PI would serve both as an injector to the SCL and a source of proton beams that could be used to copiously produce neutrons and muons. Protons accelerated by the SCL to 20 GeV would be transferred through the KEK Tristan ring in order to create neutrino, kaon and muon beams for fixed-target experiments. At a later stage, a 60 GeV proton synchrotron could be installed inside the Tristan ring. The SCL, comprising 1.3 GHZ superconducting ILC-type rf cavities, could also accelerate polarized or unpolarized electron beams. After acceleration, electrons may traverse an XFEL undulator, or could be used to produce polarized positrons. An SCL-based synchrotron light source for applications in materials science and medicine is also envisaged. The proposed facility would be constructed using the existing KEK accelerator infrastructure.

  2. A new approach to calculate the transport matrix in RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Eidelman, Yu.; /Novosibirsk, IYF; Mokhov, N.; Nagaitsev, S.; Solyak, N.; /Fermilab

    2011-03-01

    A realistic approach to calculate the transport matrix in RF cavities is developed. It is based on joint solution of equations of longitudinal and transverse motion of a charged particle in an electromagnetic field of the linac. This field is a given by distribution (measured or calculated) of the component of the longitudinal electric field on the axis of the linac. New approach is compared with other matrix methods to solve the same problem. The comparison with code ASTRA has been carried out. Complete agreement for tracking results for a TESLA-type cavity is achieved. A corresponding algorithm will be implemented into the MARS15 code. A realistic approach to calculate the transport matrix in RF cavities is developed. Complete agreement for tracking results with existed code ASTRA is achieved. New algorithm will be implemented into MARS15 code.

  3. Statistical simulations of machine errors for LINAC4

    CERN Document Server

    Baylac, M; Froidefond, E; Sargsyan, E

    2006-01-01

    LINAC 4 is a normal conducting H- linac proposed at CERN to provide a higher proton flux to the CERN accelerator chain. It should replace the existing LINAC 2 as injector to the Proton Synchrotron Booster and can also operate in the future as the front end of the SPL, a 3.5 GeV Superconductingg Proton Linac. LINAC 4 consists of a Radio-Frequency Quadrupole, a chopper line, a Drift Tube Linac (DTL) and a Cell Coupled DTL all operating at 352 MHz and finally a Side Coupled Linac at 704 MHz. Beam dynamics was studied and optimized performing end-to-end simulations. This paper presents statistical simulations of machine errors which were performed in order to validate the proposed design.

  4. Locking Lasers to RF in an Ultra Fast FEL

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  5. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  6. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  7. A coaxial HOM coupler for a superconducting RF cavity and its low-power measurement results

    Institute of Scientific and Technical Information of China (English)

    SUN An; TANG Ya-Zhe; ZHANG Li-Ping; LI Ying-Min; Han-Sung Kim

    2011-01-01

    A resonant buildup of beam-induced fields in a superconducting radio frequency(RF)cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode(HOM)couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility)HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project(PEFP)in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.

  8. Emittance control and RF bunch compression in the NSRRC photoinjector

    Science.gov (United States)

    Lau, W. K.; Hung, S. B.; Lee, A. P.; Chou, C. S.; Huang, N. Y.

    2011-05-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  9. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  10. RF gymnastics in synchrotrons

    CERN Document Server

    Garoby, R

    2011-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. 'RF gymnastics' designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance, or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  11. RF Gymnastics in Synchrotrons

    CERN Document Server

    Garoby, R

    2005-01-01

    The RF systems installed in synchrotrons can be used to change the longitudinal beam characteristics. "RF gymnastics" designates manipulations of the RF parameters aimed at providing such non-trivial changes. Some keep the number of bunches constant while changing bunch length, energy spread, emittance or distance between bunches. Others are used to change the number of bunches. After recalling the basics of longitudinal beam dynamics in a hadron synchrotron, this paper deals with the most commonly used gymnastics. Their principle is described as well as their performance and limitations.

  12. Geolocation of RF signals

    CERN Document Server

    Progri, Ilir

    2011-01-01

    ""Geolocation of RF Signals - Principles and Simulations"" offers an overview of the best practices and innovative techniques in the art and science of geolocation over the last twenty years. It covers all research and development aspects including theoretical analysis, RF signals, geolocation techniques, key block diagrams, and practical principle simulation examples in the frequency band from 100 MHz to 18 GHz or even 60 GHz. Starting with RF signals, the book progressively examines various signal bands - such as VLF, LF, MF, HF, VHF, UHF, L, S, C, X, Ku, and, K and the corresponding geoloca

  13. Conceptual design of a high-brightness linac for soft X-ray SASE-FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Pirro, G.D.G. Di; Drago, A.; Esposito, A.; Ferrario, M. E-mail: massimo.ferrario@lnf.infn.it; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Laurelli, P.; Ligi, C.; Marcellini, F.; Migliorati, M.; Milardi, C.; Palumbo, L.; Pellegrino, L.; Preger, M.; Raimondi, P.; Ricci, R.; Sanelli, C.; Sgamma, F.; Spataro, B.; Serio, M.; Stecchi, A.; Stella, A.; Tazzioli, F.; Vaccarezza, C.; Vescovi, M.; Vicario, C.; Zobov, M.; Acerbi, E.; Alessandria, F.; Barni, D.; Bellomo, G.; Birattari, C.; Bonardi, M.; Boscolo, I.; Bosotti, A.; Broggi, F.; Cialdi, S.; DeMartinis, C.; Giove, D.; Maroli, C.; Michelato, P.; Monaco, L.; Pagani, C.; Petrillo, V.; Pierini, P.; Serafini, L.; Sertore, D.; Volpini, G.; Chiadroni, E.; Felici, G.; Levi, D.; Mastrucci, M.; Mattioli, M.; Medici, G.; Petrarca, G.S.; Catani, L.; Cianchi, A.; D' Angelo, A.; Salvo, R.D.R. Di; Fantini, A.; Moricciani, D.; Schaerf, C.; Bartolini, R.; Ciocci, F.; Dattoli, G.; Doria, A.; Flora, F.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Mezi, L.; Ottaviani, P.L.; Picardi, L.; Quattromini, M.; Renieri, A.; Ronsivalle, C.; Avaldi, L.; Carbone, C.; Cricenti, A.; Pifferi, A.; Perfetti, P.; Prosperi, T.; Albertini, V.R.V. Rossi; Quaresima, C.; Zema, N

    2003-07-11

    FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R and D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR-ENEA-INFN-University of Roma 'Tor Vergata' study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, leading to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S-band normal conducting linac with high-brightness photoinjector integrated in an RF compressor.

  14. 3D Emittances Tailoring Techniques and Optimization with Space Charge for the Future CERN PS Booster Operations with Linac4

    CERN Document Server

    Forte, Vincenzo; Benedetto, Elena; Bracco, Chiara; Cieslak-Kowalska, Magdalena; Di Giovanni, Gian Piero

    2016-01-01

    In the frame of the LIU (LHC Injectors Upgrade) project, the CERN PS Booster is going to be renovated to host a new H⁻ charge-exchange injection from the Linac4. One important feature of the new injection scheme is the possibility to tailor a wide range of 3D emittances for CERN's different users in an intensity span in the order of 5·10⁹ to 1.6·10¹³ protons per PSB ring. This paper gives an overview of 3D multi-turn injection techniques, focusing on the future LHC beams, which aim at reaching high brightness, and on highest intensity beams (ISOLDE), where losses are the main concern. Complete RF capture simulations and transverse injection maps, including space charge effects, are presented and also intended to be used during the commissioning with Linac4.

  15. A 25.5 MHz double-coaxial lambda/4-resonator as a rebuncher in heavy ion linac system

    CERN Document Server

    Yoshida, K; Hashimoto, Y; Masuda, H; Niki, K

    1999-01-01

    A 25.5 MHz double-coaxial lambda/4-resonator has been constructed to be used as a rebuncher between a 25.5 MHz RFQ linac and a 51 MHz interdigital-H linac for the acceleration of short-lived nuclei. By employing a double coaxial structure, the resonator length is only 130 cm; the length of the natural lambda/4-resonator is 294 cm. The resonator, 69 cm in inner diameter, has six acceleration gaps. The bare shunt impedance is 40.6 M OMEGA/m. The ions with a charge-to-mass ratio 1/10 can be rebunched by feeding an rf power of 1.4 kW.

  16. The elbe accelerator facility starts operation with the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schneider, C; Schurig, R; Staufenbiel, F; Teichert, J; Kamps, T; Rudolph, J; Schenk, M; Klemz, G; Will, I

    2010-01-01

    As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will ...

  17. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  18. Reconfigurable RF Filters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space microelectronics and hardening technologies and products, to research and develop a novel rad hard/tolerant RF...

  19. H$^{-}$ ion source for CERN's Linac4 accelerator: simulation, experimental validation and optimization of the hydrogen plasma

    CERN Document Server

    Mattei, Stefano; Lettry, Jacques

    2017-07-25

    Linac4 is the new negative hydrogen ion (H$^-$) linear accelerator of the European Organization for Nuclear Research (CERN). Its ion source operates on the principle of Radio-Frequency Inductively Coupled Plasma (RF-ICP) and it is required to provide 50~mA of H$^-$ beam in pulses of 600~$\\mu$s with a repetition rate up to 2 Hz and within an RMS emittance of 0.25~$\\pi$~mm~mrad in order to fullfil the requirements of the accelerator. This thesis is dedicated to the characterization of the hydrogen plasma in the Linac4 H$^-$ ion source. We have developed a Particle-In-Cell Monte Carlo Collision (PIC-MCC) code to simulate the RF-ICP heating mechanism and performed measurements to benchmark the fraction of the simulation outputs that can be experimentally accessed. The code solves self-consistently the interaction between the electromagnetic field generated by the RF coil and the resulting plasma response, including a kinetic description of charged and neutral species. A fully-implicit implementation allowed to si...

  20. RF Measurement Concepts

    CERN Document Server

    Caspers, F

    2014-01-01

    For the characterization of components, systems and signals in the radiofrequency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a ra ther complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the operating principles of n...

  1. The general RF tuning for IH-DTL linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.R. [Key State Laboratory of Nuclear Physics and Technology, Peking University (China)], E-mail: yrlu@pku.edu.cn; Ratzinger, U. [Institute of Applied Physics, Frankfurt University (Germany); Schlitt, B. [Gesellschaft fuer Schwerionenforschung, mbH, Darmstadt (Germany); Tiede, R. [Institute of Applied Physics, Frankfurt University (Germany)

    2007-11-21

    The RF tuning is the most important research for achieving the resonant frequency and the flatness of electric field distributions along the axis of RF accelerating structures. The six different tuning concepts and that impacts on the longitudinal field distributions have been discussed in detail combining the RF tuning process of a 1:2 modeled 20.85 MV compact IH-DTL cavity, which was designed to accelerate proton, helium, oxygen or C{sup 4+} from 400 keV/u to 7 MeV/u and used as the linear injector of 430 MeV/u synchrotron [Y.R. Lu, S. Minaev, U. Ratzinger, B. Schlitt, R.Tiede, The Compact 20MV IH-DTL for the Heidelberg Therapy Facility, in: Proceedings of the LINAC Conference, Luebeck, Germany, 2004 ; Y.R. Lu, Frankfurt University Dissertation, 2005. ] in Heidelberg Heavy Ion Cancer Therapy (HICAT). Some of tuning concepts are also suitable and effective for the tuning of RFQ and/or other RF accelerating structures. Finally good field flatness in IH-DTL cavity has been realized successfully. The experience got from the model cavity tuning benefits real power cavity tuning, which is only needed to be tuned by the plungers. The cavity had a beam commissioning successfully for the initial beam acceleration at the end of 2006.

  2. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  3. Wake Field Effects in the APT Linac.

    Science.gov (United States)

    Kurennoy, Sergey

    1998-04-01

    The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. While wake-field effects are usually considered negligible in proton linacs, an analysis for the APT accelerator has been performed to exclude potential problems at such a high current leading to beam losses. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. The only noticeable effect is the HOM heating of the 5-cell superconducting cavities. However, it has an acceptable level and will be further reduced by HOM couplers.

  4. Electronics Platform of PS Linac 1 Preinjector

    CERN Multimedia

    1974-01-01

    For servicing during shutdowns, a draw-bridge from a door in the Faraday cage led to the "electronics platform" of the linac 1 preinjector (at 520 kV when in operation) and the top of the electronics platform was lifted on hydraulic jacks for easy access. Henry Charmot is busy with a service. The platform contained the electronics for the ion source, controlled from outside the Faraday cage via an infrared optical link. The ion source, also at 520 kV potential, is housed in the drum, visible in the background, on the insulator column, which at its right end is mounted at ground potential. Behind the wall, to the right, is the 50 MeV linac 1. See also 7403064X, 7403066X, 7403124.

  5. Accelerator Control System at KEKB and Linac

    CERN Document Server

    Furukawa, Kazuro; Kadokura, Eiichi; Kurashina, Miho; Mikawa, Katsuhiko; Nakamura, Tatsuro; Odagiri, Jun-ichi; Satoh, Masanori; Suwada, Tsuyoshi

    2012-01-01

    KEKB completed all of the technical milestones, and had offered important insights into the flavor structure of elementary particles, especially the CP violation. The accelerator control system at KEKB and injector linac was initiated by a combination of scripting languages at the operation layer and EPICS at the equipment layer. During the project many features were implemented to achieve extreme performance out of the machine. Especially the online linkage to the accelerator simulation played an essential role. In order to further improve the reliability and flexibility two major concepts were additionally introduced later in the project, namely the channel access everywhere and the dual-tier controls. Based on the improved control system a concept of virtual accelerators were realized that enables the single injector linac serve as three separate injectors to KEKB HER, LER and Photon Factory, respectively. Those control technologies are indispensable for the future particle accelerators.

  6. Re-circulating linac vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-05-09

    The vacuum system for a proposed 2.5 GeV, 10{Mu}A recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10{Mu}A average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing.

  7. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H- source taking into account the effect of the plasma

    Science.gov (United States)

    Grudiev, A.; Lettry, J.; Mattei, S.; Paoluzzi, M.; Scrivens, R.

    2014-02-01

    Numerical simulation of the CERN LINAC4 H- source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  8. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    Science.gov (United States)

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  9. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, J. D. (John D.); Brown, R. L. (Richard L.); Brown, S. K. (Stanley K.); Bustos, G. R. (Gerald R.); Crow, M.L. (Martin L.); Gregory, W. S.; Hood, M. E. (Michael E.); Jurney, J. D. (James D.); Medalen, I. (Ivan); Owen, A. C. (Albert C.); Weiss, Robert E.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems.

  10. Wake field effect analysis in APT linac

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.

    1998-12-31

    The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The APT linac comprises both the normal conducting (below 211 MeV) and superconducting (SC) sections. The high current leads to stringent restrictions on allowable beam losses (< 1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, the authors study these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. The main conclusion is that the only noticeable effect is the HOM heating of the 5-cell SC cavities. It, however, has an acceptable level and, in addition, will be taken care of by HOM couplers.

  11. Wake Field Effect Analysis in APT Linac

    CERN Document Server

    Kurennoy, S S

    1998-01-01

    The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The APT linac comprises both the normal conducting (below 211 MeV) and superconducting (SC) sections. The high current leads to stringent restrictions on allowable beam losses (<1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, we study these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. Our main conclusion is that the only noticeable effect is the HOM heating of the 5-cell SC cavities. It, however, has an acceptable level and, in addition, will be taken care of by HOM couplers.

  12. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  13. Prototype of linac BLM at NSRL

    Science.gov (United States)

    Zeng, Ming; Li, Yuxiong; Gong, Guanghua; Li, Juexin; Shao, Beibei; Zhao, Zhengguo

    2007-08-01

    A prototype of the Beam Loss Monitoring (BLM) System for the linac and transportation line has been built up in National Synchrotron Radiation Laboratory. Different from the storage ring, the radiation field around linac and transportation line have a duty factor of 10 -6 and a dose rate of hundreds Gy/h. The Monte-Carlo calculation gave the dose, flux, energy and direction distributions of the radiation field. According to the simulation result, the proper type of detector was chosen and the installation positions were selected accordingly. The widely used ionization chamber is not suitable to give accurate and real-time information of beam loss due to its large dimension and slow respond speed. Several PIN silicon diode-based detectors were designed and tested, and a charge-balanced integrating amplifier circuit was applied to read out the charge. A distributed data acquisition system based on embedded Ethernet technology was implemented in the prototype, which can offer a web server from the microcontroller. From preliminary tests, this new prototype was proved to be sensitive to the change of the linac status, and is a useful tool for monitoring and adjusting machine parameters. Further analyses are required to achieve a more accurate measurement of the beam loss.

  14. Wake fields in SLAC Linac Collimators

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Decker, F. -J. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Smith, H. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sullivan, M. [SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  15. Preinjector for Linac 1, Faraday cage

    CERN Multimedia

    1974-01-01

    The 50 MeV Linac 1 started up in 1958 as injector to the 26 GeV PS, with a 520 kV Cockcroft-Walton generator as its preinjector, housed in a vast Faraday cage, visible here. When the Cockcroft-Walton broke down in 1973, it was replaced by a much smaller SAMES generator, of the kind used for electrostatic separators. From 1980 on, Linac 2 took over as injector for the 800 MeV Booster, and Linac 1 continued as injector for LEAR. In 1984, the electrostatic preinjector (i.e. the Faraday cage with its contents, SAMES generator and all) was replaced by a 520 keV RFQ. At the lower left corner we see the HV connectors to the SAMES generator, at the right edge part of the opened electronics-platform. Jean-Luc Vallet sees to it that all parts are properly grounded. See also 7403073X, 7403074X, 7403081X, 7403083X.

  16. Linac4: the final assembly stage is under way

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The Linac4 radiofrequency quadrupole (RFQ) module was installed at the accelerator test-stand in Building 152 last August. After an assembly phase and tests that concluded last March with the acceleration of a hydrogen beam to 3 MeV, the module has just been permanently installed in the new Linac4 tunnel (Building 400). The installation of the MEBT (Medium Energy Beam Transport) will begin shortly, followed by the start of the first Linac4 commissioning phase.     To find out more about the Linac4 RFQ module, read the previous Bulletin articles published in Nos. 21-22/2010 and 35-36/2012.

  17. Evaluation of photoneutron production at high energy LINACS

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.

    1995-04-24

    This report describes an estimate of neutron production at a 9 MeV LINAC, and the potential for photoactivation of materials present at the LINAC facility. It was found that only isotopes of U, W, Ta, and Pb had daughters whose activities might be measurable. The LINAC was found to be capable of producing in the neighborhood of 10{sup 10} neutrons/second from these heavy metals, and that subsequent neutron activation might be more of a concern. Monte Carlo simulation of neutron transport and capture in the concrete and steel found in the LINAC vault indicates that {sup 55}Fe may be produced in measurable quantities.

  18. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  19. A monitor unit "odometer" for measuring linac workload.

    Science.gov (United States)

    Evans, M D; Larkin, J J; Léger, P; Podgorsak, E B

    2001-12-01

    The annual linac workload is often required by regulatory agencies to assess compliance with license conditions. Summation of the monitor units produced by the machine is generally used for this purpose. Various methods of estimating this value have inherent inaccuracies. We have built an integrating Monitor Unit "odometer" that is able to automatically accumulate all MUs delivered by the linac and segregate the total by mode (photon or electron) and energy. The device has been used to record clinical linac MU workloads for 10 months, and was installed in a new dual-energy linac during the acceptance and commissioning process.

  20. The design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    CERN Document Server

    Huang, Liang-Sheng; Ji, Hong-Fei

    2016-01-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary application, such as biology, material and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design was worked out, and all the important beam dynamics issues were investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, the achromatic structure is proposed and slow extraction method with RF knock-out is adopted and optimized.

  1. LUX - a recirculating linac-based facility for ultrafast X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Barletta, W.A.; DeSantis, S.; Doolittle, L.; Fawley, W.M.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Penn, G.; Ratti, A.; Reinsch, M.; Schoenlein, R.; Staples, J.; Stover, G.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wolski, A.; Wurtele, J.; Zholents, A.

    2004-06-29

    We present recent developments in design concepts for LUX - a source of ultra-short synchrotron radiation pulses based on a recirculating superconducting linac. The source produces high-flux x-ray pulses with duration of 100 fs or less at a 10 kHz repetition rate, optimized for the study of ultra-fast dynamics across many fields of science [1]. Cascaded harmonic generation in free-electron lasers (FEL's) produces coherent radiation in the VUV-soft x-ray regime, and a specialized technique is used to compress spontaneous emission for ultra-short-pulse photon production in the 1-10 keV range. High-brightness electron bunches of 2-3 mm-mrad emittance at 1 nC charge in 30 ps duration are produced in an rf photocathode gun and compressed to 3 ps duration following an injector linac, and recirculated three times through a 1 GeV main linac. In each return path, independently tunable harmonic cascades are inserted to produce seeded FEL radiation in selected photon energy ranges from approximately 20 eV with a single stage of harmonic generation, to 1 keV with a four-stage cascade. The lattice is designed to minimize emittance growth from effects such as coherent synchrotron radiation (CSR), and resistive wall wakefields. Timing jitter between pump lasers and x-ray pulses is minimized by use of a stable optical master oscillator, distributing timing signals over actively stabilized fiber-optic, phase-locking all lasers to the master oscillator, and generating all rf signals from the master oscillator. We describe technical developments including techniques for minimizing power dissipation in a high repetition rate rf photocathode gun, beam dynamics in two injector configurations, independently tunable beamlines for VUV and soft x-ray production by cascaded harmonic generation, a fast kicker design, timing systems for providing synchronization between experimental pump lasers and the x-ray pulse, and beamline design for maintaining nm-scale density modulation.

  2. Interdigital H -mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Mibe, T.; Yoshida, M.; Hasegawa, K.; Kondo, Y.; Hayashizaki, N.; Iwashita, Y.; Iwata, Y.; Kitamura, R.; Saito, N.

    2016-04-01

    We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from β =v /c =0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 π and 0.195 π mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

  3. APPLICATION OF SUPER CONDUCTING MAGNETIC ENERGY STORAGE SYSTEM—SMES IN WIND POWER SYSTEM OF NETWORK-FORMING%超导储能单元在并网型风力发电系统的应用

    Institute of Scientific and Technical Information of China (English)

    陈星莺; 刘孟觉; 单渊达

    2001-01-01

    风力发电系统发展的趋势是将风力发电机组直接与高压电网相连(简称并网型风力发电系统—)。但风速变化造成风力涡轮机机械功率变化,会使发电机输出的有功和无功产生波动,从而使电网的电能质量下降。该文提出使用超导储能SMES(super conducting magnetic energy storage system)单元使风力发电机组输出的电压和频率稳定。文中详细介绍了SMES的调节能理及其最优控制方法,建立了SMES模型和加入SMES后系统的线性化仿真模型,采用基因算法求最优反馈矩阵,并借助MATLAB软件包设计控制器,仿真结果表明SMES单元对并网型风力发电系统中风力发电机的输出稳定具有极大的改善作用。

  4. Application of Super Conducting Graphite Activated Reactor for Brine Treatment in Chlor-alkali Industry%超导石墨活化反应器在氯碱行业盐水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    姜民选; 冯杰

    2012-01-01

    详细讨论了氯碱行业盐水处理中一种新型工艺的应用,保持现有工艺路线,安装螯合树脂塔增效装置——超导石墨活化反应器,使树脂塔连续运行时间延长10-15 d。可减少树脂塔再生用酸、碱、纯水,优化装置界区内水平衡,达到节能减排的目的。%The paper discussed the application of a new technology for brine treatment in chlor-alkali industry in detail. Keeping exist process, the installation of super conducting graphite activated reactor could prolong the running time of chelating resin towers for 10-15 days. Also, the reactor could reduce the amount of acid, alkali, pure water for resin tower regeneration, optimize the water balance of the device region, and achieve the purpose of energy saving and emission reduction.

  5. Basics of RF electronics

    CERN Document Server

    Gallo, A

    2011-01-01

    RF electronics deals with the generation, acquisition and manipulation of high-frequency signals. In particle accelerators signals of this kind are abundant, especially in the RF and beam diagnostics systems. In modern machines the complexity of the electronics assemblies dedicated to RF manipulation, beam diagnostics, and feedbacks is continuously increasing, following the demands for improvement of accelerator performance. However, these systems, and in particular their front-ends and back-ends, still rely on well-established basic hardware components and techniques, while down-converted and acquired signals are digitally processed exploiting the rapidly growing computational capability offered by the available technology. This lecture reviews the operational principles of the basic building blocks used for the treatment of high-frequency signals. Devices such as mixers, phase and amplitude detectors, modulators, filters, switches, directional couplers, oscillators, amplifiers, attenuators, and others are d...

  6. Upgrade of X-band thermionic cathode RF gun for Compton scattering X-ray source

    Science.gov (United States)

    Taniguchi, Yoshihiro; Sakamoto, Fumito; Natsui, Takuya; Yamamoto, Tomohiko; Hashimoto, Eiko; Lee, KiWoo; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Higo, Toshiyasu; Fukuda, Shigeki; Akemoto, Mitsuo

    2009-09-01

    A Compton scattering X-ray source consisting of an X-band (11.424 GHz) electron linear accelerator (linac) and Q-switched Nd: YAG laser is currently under development at the University of Tokyo. Monochromatic X-rays are required for a variety of medical and biological applications. The X-ray source produces monochromatic X-rays via collision between a 35-MeV multi-bunch (104 bunches in a 1 μs RF pulse) electron beam and 1.4 J/10 ns (532 nm) Nd: YAG laser pulse. The linac uses an X-band 3.5-cell thermionic cathode RF gun and an alpha magnet as an injector. Until now, electron beam generation (2 MeV, 1 pC/bunch at the exit of the injector), beam acceleration, and X-ray generation have been verified. In order to increase X-ray energy and intensity, we have completed the design and construction of a new RF gun with relevant modifications in some structures. In this paper, we describe the details of the concepts of designing a new RF gun and discuss future works.

  7. CTF3 Probe Beam LINAC Commissioning and Operations

    CERN Document Server

    Farabolini, W; Curtoni, A; Girardot, P; Peauger, F; Simon, C S; Chevallay, E; Divall Csatari, M; Lebas, N; Petrarca, M; Palaia, A; Ruber, R J M Y; Ziemann, V G

    2010-01-01

    The probe beam LINAC, CAL­IFES, of the CLIC Test Fa­cil­i­ty (CTF3) has been de­vel­oped by CEA Saclay, LAL Orsay and CERN to de­liv­er trains of short bunch­es (0.75 ps) spaced by 0.666 ps at an en­er­gy around 170 MeV with a charge of 0.6 nC to the TBTS (Two-beam Test Stand) in­tend­ed to test the high gra­di­ent CLIC ac­cel­er­at­ing struc­tures. Based on 3 for­mer LIL ac­cel­er­at­ing struc­tures and on a newly de­vel­oped RF pho­to-in­jec­tor, the whole ac­cel­er­a­tor is pow­ered with a sin­gle 3 GHz klystron de­liv­er­ing puls­es of 45 MW through a RF pulse com­pres­sion cav­i­ty and a net­work of waveg­uides, split­ters, phase-shifters and an at­ten­u­a­tor. We re­late here re­sults col­lect­ed dur­ing the var­i­ous com­mis­sion­ing and op­er­a­tion pe­ri­ods which led to nom­i­nal per­for­mances and sta­ble beam char­ac­ter­is­tics de­liv­ered to the TBTS. Progress has been made in the laser sys­tem for beam charge and sta...

  8. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  9. Rf2a and rf2b transcription factors

    Science.gov (United States)

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  10. Commercial Superconducting Electron Linac for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry Lee [Niowave, Inc., Lansing, MI (United States); Boulware, Charles H. [Niowave, Inc., Lansing, MI (United States); Hollister, Jerry L. [Niowave, Inc., Lansing, MI (United States); Jecks, Randall W. [Niowave, Inc., Lansing, MI (United States); Mamtimin, Mayir [Niowave, Inc., Lansing, MI (United States); Starovoitova, Valeriia [Niowave, Inc., Lansing, MI (United States)

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  11. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  12. A Pencil Beam for the Linac4 commissioning

    CERN Document Server

    Lallement, JB

    2010-01-01

    In order to characterize the different accelerating structures and transport lines of Linac4 and to proceed to its commissioning, we need to produce a low current, low emittance beam. This note describes the generation of two pencil beams and their dynamic through the Linac.

  13. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  14. Photonuclear reactions with zinc : A case for clinical linacs

    NARCIS (Netherlands)

    Boztosun, I.; Dapo, H.; Karakoc, M.; Ozmen, S. F.; Cecen, Y.; Coban, A.; Caner, T.; Bayram, E.; Saito, T. R.; Akdogan, T.; Bozkurt, V.; Kucuk, Y.; Kaya, D.; Harakeh, M. N.

    2015-01-01

    The use of bremsstrahlung photons produced by a linac to induce photonuclear reactions is wide spread. However, using a clinical linac to produce the photons is a new concept. We aimed to induce photonuclear reactions on zinc isotopes and measure the subsequent transition energies and half-lives. Fo

  15. Development of an Eddy Current Septum for LINAC4

    CERN Document Server

    Barnes, M; Borburgh, J; Fowler, T; Goddard, B; Ueda, A; Weterings, W

    2008-01-01

    A linear accelerator (linac) is the first stage of the CERN accelerator complex. The linac defines the beam quality for subsequent stages of acceleration and the reliability has to be high as a fault of the linac shuts down all other machines. The existing linacs at CERN were designed 30 or more years ago: recent upgrades allowed the linacs to reach LHC requirements but also showed that they are at the limit of their brightness and intensity capabilities. A replacement Superconducting Proton Linac (SPL) has been proposed; the initial part of the SPL is termed LINAC4. The LINAC4 injection bump would be made up of a set of four pulsed dipole magnets; the first of these magnets (BS1) must act as a septum with a thin element dividing the high-field region of the circulating beam from the field-free region through which injected $H^{-}$ beam must pass. The initial specifications for BS1 required; a deflection of 66 mrad at 160 MeV, achieved with a peak field of 628 mT and a length of 250 mm: the field fall time wa...

  16. Calibration of Super-Kamiokande Using an Electron Linac

    CERN Document Server

    Fukuda, Y; Ichihara, E; Inoue, K; Ishihara, K; Ishino, H; Itow, Y; Kajita, T; Kameda, J; Kasuga, S; Kobayashi, K; Kobayashi, Y; Koshio, Y; Martens, K; Miura, M; Nakayama, S; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Halverson, P G; Hsu, J; Kropp, W R; Price, L R; Reines, F; Smy, M B; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Flanagan, J W; Kibayashi, A; Learned, J G; Matsuno, S; Stenger, V J; Takemori, D; Ishii, T; Kanzaki, J; Kobayashi, T; Mine, S; Nakamura, K; Nishikawa, K; Oyama, Y; Sakai, A; Sakuda, M; Sasaki, O; Echigo, S; Kohama, M; Suzuki, A T; Haines, T J; Blaufuss, E; Kim, B K; Sanford, R; Svoboda, R; Chen, M L; Conner, Z; Goodman, J A; Sullivan, G W; Hill, J; Jung, C K; Mauger, C; McGrew, C; Sharkey, E; Viren, B; Yanagisawa, C; Doki, W; Miyano, K; Okazawa, H; Saji, C; Takahata, M; Nagashima, Y; Takita, M; Yamaguchi, T; Yoshida, M; Kim, S B; Etoh, M; Fujita, K; Hasegawa, A; Hasegawa, T; Hatakeyama, S; Iwamoto, T; Koga, M; Maruyama, T; Ogawa, H; Shirai, J; Suzuki, A; Tsushima, F; Koshiba, M; Nemoto, M; Nishijima, K; Futagami, T; Hayato, Y; Kanaya, Y; Kaneyuki, K; Watanabe, Y; Kielczewska, D; Doyle, R A; George, J S; Stachyra, A L; Wai, L L; Wilkes, R J; Young, K K; Kobayashi, H

    1999-01-01

    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1 percent uncertainty.

  17. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    Science.gov (United States)

    Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.

    2016-09-01

    The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  18. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    Science.gov (United States)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  19. LUX: a design study for a linac-/laser-based ultrafast x-ray source

    Science.gov (United States)

    Corlett, John N.; Barletta, William A.; DeSantis, Stefano; Doolittle, Larry; Fawley, William M.; Heimann, Philip; Leone, Stephen; Lidia, Steven; Li, Derun; Penn, Gregory; Ratti, Alex; Reinsch, Matheus; Schoenlein, Robert; Staples, John; Stover, Gregory; Virostek, Steve; Wan, Weishi; Wells, Russell; Wilcox, Russell; Wolski, Andy; Wurtele, Jonathan; Zholents, Alexander A.

    2004-11-01

    We describe the design concepts for a potential future source of femtosecond x-ray pulses based on synchrotron radiation production in a recirculating electron linac. Using harmonic cascade free-electron lasers (FEL's) and spontaneous emission in short-period, narrow-gap insertion devices, a broad range of photon energies are available with tunability from EUV to hard x-ray regimes. Photon pulse durations are controllable and range from 10 fs to 200 fs, with fluxes 107-1012 photons per pulse. Full spatial and temporal coherence is obtained for EUV and soft X-rays. A fiber laser master oscillator and stabilized timing distribution scheme are proposed to synchronize accelerator rf systems and multiple lasers throughout the facility, allowing timing synchronization between sample excitation and X-ray probe of approximately 20-50 fs.

  20. Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source

    CERN Document Server

    Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

    2014-01-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  1. Continuous wave superconducting radio frequency electron linac for nuclear physics research

    Science.gov (United States)

    Reece, Charles E.

    2016-12-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. We review the development, implementation, and performance of SRF systems for CEBAF from its early beginnings to the commissioning of the 12 GeV era.

  2. Chromaticity of the lattice and beam stability in energy-recovery linacs

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  3. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  4. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-06-01

    Full Text Available Higher order modes (HOMs may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  5. End-to-End Beam Dynamics Simulations for the ANL-RIA Driver Linac

    CERN Document Server

    Ostroumov, P N

    2004-01-01

    The proposed Rare Isotope Accelerator (RIA) Facility consists of a superconducting (SC) 1.4 GV driver linac capable of producing 400 kW beams of any ion from hydrogen to uranium. The driver is configured as an array of ~350 SC cavities, each with independently controllable rf phase. For the end-to-end beam dynamics design and simulation we use a dedicated code, TRACK. The code integrates ion motion through the three-dimensional fields of all elements of the driver linac beginning from the exit of the electron cyclotron resonance (ECR) ion source to the production targets. TRACK has been parallelized and is able to track large number of particles in randomly seeded accelerators with misalignments and a comprehensive set of errors. The simulation starts with multi-component dc ion beams extracted from the ECR. Beam losses are obtained by tracking up to million particles in hundreds of randomly seeded accelerators. To control beam losses a set of collimators is applied in designated areas. The end-to-end simulat...

  6. Beam dynamic design of a high intensity injector for proton linac

    Science.gov (United States)

    Dou, Wei-Ping; Wang, Zhi-Jun; Jia, Fang-Jian; He, Yuan; Wang, Zhi; Lu, Yuan-Rong

    2016-08-01

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  7. Beam dynamic design of a high intensity injector for proton linac

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Wei-Ping, E-mail: douweiping@impcas.ac.cn [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Wang, Zhi-Jun [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Jia, Fang-Jian [State Key Lab of Nuclear Physics and Technology, Peking University, Beijing 100847 (China); He, Yuan, E-mail: hey@impcas.ac.cn [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Wang, Zhi; Lu, Yuan-Rong [State Key Lab of Nuclear Physics and Technology, Peking University, Beijing 100847 (China)

    2016-08-11

    A compact room-temperature injector is designed to accelerate 100 mA proton beam from 45 keV to 4.06 MeV for the proposed high intensity proton linac at State Key Lab of Nuclear Physics and Technology in Peking university. The main feature is that the Radio Frequency Quadruple (RFQ) and the Drift Tube linac (DTL) sections are merged in one piece at the total length of 276 cm. The beam is matched in transverse directions with an compact internal doublet instead of an external matching section in between. The design has reached a high average accelerating gradient up to 1.55 MV/m with transmission efficiency of 95.9% at the consideration of high duty factor operation. The operation frequency is chose to be 200 MHz due to the already available RF power source. The injector combines a 150 cm long 4-vanes RFQ internal section from 45 keV to 618 keV with a 126 cm long H-type DTL section to 4.06 MeV. In general the design satisfy the challenges of the project requirements. And the details are presented in this paper.

  8. Gas Injection And Fast Pressure-Rise Measurements For The Linac4 H− Source

    CERN Document Server

    Mahner, E; Lettry, J; Mattei, S; O'Neil, M; Neupert, H; Pasquino, C; Schmitzer, C

    2013-01-01

    In the era of the Large Hadron Collider, the CERN injector complex comprising the 34 years old Linac2 with its primary proton source, is presently upgraded with a new linear accelerator for H− (Linac4). The design, construction, and test of volume production and cesiated RF-driven H− ion sources is presently ongoing with the final goal of producing an H− beam with 80 mA beam current, 45 keV beam energy, 500 s pulse length, and a repetition rate of 2 Hz. In order to have quantitative information of the hydrogen gas density at the moment of plasma ignition the dynamic vacuum properties of the plasma generator were studied experimentally. We describe the experimental setup and present fast pressure-rise measurements for different parameters of the gas injection system, such as gas species (H2, He, N2, Ar), piezo valve voltage pulse length (200 - 500 s), and injection pressure (400 - 2800 mbar). The obtained data are compared with a conductance model of the plasma generator.

  9. The hot prototype of the Pi-mode structure for LINAC4

    CERN Document Server

    Gerigk, F; Bourquin, P; Dallocchio, A; Favre, G; Geisser, J M; Gentini, L; Giguet, J M; Mathot, S; Polini, M; Pugnat, D; Riffaud, B; Sgobba, S; Tardy, T; Ugena Tirado, P; Vretenar, M

    2010-01-01

    The PIMS (Pi-Mode-Structure) cavities for Linac4 are made of 7 coupled cells operating in !-mode at a frequency of 352 MHz. The mechanical concept is derived from the 5-cell cavities used in the LEP machine, whereas cell length and coupling are adapted for proton acceleration in the range from 50 to 160 MeV. Linac4 will be the first machine to employ this type of cavities for low-beta protons. During the first years of operation the PIMS will be used at low duty cycle (0.1%) as part of the consolidated LHC proton injector complex. It is designed, however, to operate eventually in a high duty cycle (10%) proton injector, which could be used as proton front-end for neutrino or RIB applications. To prepare for the series construction of the 12 PIMS units the first cavity (102 MeV beam energy) has been designed and constructed at CERN, to be used as a hot prototype for RF tests and as a pre-series mechanical unit. In this paper we report on some of the design features, the construction experience, and first measu...

  10. The CLIC Test Facility (CTF3) which allowed the first electron beam recombination in order to multiply the RF frequency from 3 GHz up to 15 GHz.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210005_11: The CTF3 linac accelerates an electron beam up to 350 MeV. Photo 0210005_1: At the front, the yellow dipole is used for the spectrometer line. At the back, a doublet of blue quadrupole for the matching. Photo 0210005_03: The CTF3 transfer line between the electron linac and the isochronous ring. Photo 0210005_04: One arc of the EPA isochronous ring. Photo 0210005_06: The CTF3 bunching system. The first RF wave guide feeds the Pre-Buncher while the second RF wave guide feeds the Buncher. They provide a bunched electron beam at 4 MeV. The blue magnet is a solenoid around the Buncher. Photo 0210005_07: A LIL accelerating structure used for CTF3. It is 4.5 meters long and provides an energy gain of 45 MeV. One can see 3 quadrupoles around the RF structure.

  11. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  12. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  13. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system in

  14. Analysis of High Order Modes in 1.3 GHZ CW SRF Electron Linac for a Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A. [Fermilab; Vostrikov, A. [Fermilab; Yakovlev, V. [Fermilab

    2013-01-01

    Design of a Light Source (LS) based on the continuous wave superconducting RF (CW SRF) electron linac is currently underway. This facility will provide soft coherent X-ray radiation for a braod spectrum of basic research applications. Quality of the X-ray laser radiation is affected by the electron beam parameters such as the stability of the transverse beam position and longitudinal and transverse beam emittances. High order modes (HOMs) excited in the SRF structures by a passing beam may deteriorate the beam quality and affect the beam stability. Deposition of HOM energy in the walls of SRF cavities adds to the heat load of he cryogenic system and leads to the increased cost of building and operation of the linac. In this paper we evaluate effects of HOMs in an LS CW SRF linac based on Tesla-type 9-cell 1.3 GHz cavities. We analyze non-coherent losses and resonance excitation of HOMs. We estimate heat load due to the very high frequency HOMs. We study influence of the HOMs on the transverse beam dynamics.

  15. Upgrade of the L-Band Linac at ISIR, Osaka University for a Far-Infrared FEL

    CERN Document Server

    Kato, Ryukou; Kashiwagi, Shigeru; Suemine, Shoji; Yamamoto, Tamotsu

    2004-01-01

    We are developing the far-infrared free-electron laser (FEL) using the L-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. The first lasing of the FEL was obtained at wavelengths from 32 to 40 μm in 1994, and the wavelength region has been extended up to 150 μm. The linac was designed and constructed for producing the high-intensity single-bunch beam for pulse radiolysis, so that the filling time of the accelerating structure is 1.8 μs long and the maximum macropulse length of the electron beam is limited to 2 μs, though the duration of the RF pulse can be extended to 4 μs. As a result, the FEL could not reach power saturation because the number of amplification times was limited. Recently, the linac has been extensively remodeled to realize high operational stability and reproducibility for advanced studies in beam science and technology. Almost all the peripheral components are replaced with new ones. At this opportunity, ...

  16. Photon and photoneutron spectra produced in radiotherapy Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte Km. 1, Via Paipa Tunja, Boyaca (Colombia); Benites R, J. L. [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico); Lallena, A. M., E-mail: fermineutron@yahoo.com [Universida de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, E-18071 Granada (Spain)

    2011-10-15

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10{sup -6} and 1 MeV. Neutron and Bremsstrahlung spectra show the same features regardless of the linac voltage. The amount of photons and neutrons produced by the 15 MV linac is smaller than that found for the 18 MV linac. As expected, Bremsstrahlung spectra ends according to the voltage used to accelerate the electrons. (Author)

  17. Range of Possible Beam Current in Linac4

    CERN Document Server

    Lallement, J-B; CERN. Geneva. BE Department

    2009-01-01

    Linac4 is a new accelerator under construction at CERN. It is designed to accelerate H- ions to 160MeV, for injection into the existing Proton Synchrotron Booster (PSB). It is also the front-end of the SPL Linac, a high energy proton driver that will reach the energy of 5GeV. The Linac baseline design has been done for a nominal beam peak current of 70mA but it will certainly have to deal with different currents. 132 out of 155 quadrupoles in the Linac are permanent magnets, this choice of using PMQ having fixed gradient, mainly in the DTL and in the CCDTL may then entail issues concerning the beam transverse matching and quality from current different from the nominal one. In this paper, we present the beam dynamics performances in Linac4 obtained for different currents.

  18. The Pre-Injector Linac for the Diamond Light Source

    CERN Document Server

    Christou, C

    2004-01-01

    The Diamond Light Source is a new medium-energy high brightness synchrotron light facility which is under construction on the Rutherford Appleton Laboratory site in the U.K. The accelerator facility can be divided into three major components; a 3 GeV 561 m circumference storage ring, a full-energy booster synchrotron and a 100 MeV pre-injector linac. This paper describes the linac design and plans for operation. The linac is supplied by ACCEL Instruments GmbH under a turn-key contract, with Diamond Light Source Ltd. providing linac beam diagnostics, control system hardware and standard vacuum components. Commissioning of the linac will take place in early 2005 and user operation of the facility will commence in 2007.

  19. Online impedance matching system for ICRH-RF experiments on SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.; Singh, M.; Jadav, H.M.; Mishra, K.; Singh, Raj; Kulkarni, S.V.; Bora, D.

    2015-11-15

    High-power radio frequency (RF) heating system in the frequency range of ion cyclotron range of frequencies (ICRF) on tokamak needs a mechanism for matching impedance seen by the antenna in presence of plasma to the generator output impedance for maximum transfer of RF power to the plasma with minimum reflections to avoid damage to the generator. The impedance of the antenna is strongly dependent on edge plasma parameters and the impedance sometimes changes as fast as 10{sup −4} s, while the RF generators used can deliver full power only into constant load impedance. Hence, the matching system with dynamic response in between generator and antenna is very much essential for high power ICRF experiments when the plasma is of longer duration with variable load impedance. For ICRF system on SST-1 tokamak, two automatic matching systems are employed each for one transmission line, which consists of motorized stub tuners and phase shifters to match the antenna impedance in the time scale of 120 ms. As a part of initial testing, online impedance matching system is tested with individual transmission lines and then both the lines are matched simultaneously on a variable dummy load which simulates the plasma load. In order to deliver power to both the lines from a single RF generator, hybrid coupler is used which also protects RF generator from reflections up to certain extent. However for hybrid coupler has to work properly and both the lines should see same load impedance. The automatic matching system is installed on tokamak state super-conducting tokamak (SST-1) and is tested up to 140 kW power in the vacuum vessel of the tokamak. Here we present the details of the online matching system and its testing results. The significant result is that we could match the variable load impedance with the generator impedance within 120 ms by suitably adjusting the step counts of the motor controller.

  20. Argonne CW Linac (ACWL) -- Legacy from SDI and opportunities for the future

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, G.E.; Yule, T.J.

    1994-08-01

    The former Strategic Defense Initiative Organization (SDIO) invested significant resources over a 6-year period to develop and build an accelerator to demonstrate the launching of a cw beam with characteristics suitable for a space-based Neutral Particle Beam (NPD) system. This accelerator, the CWDD (Continuous Wave Deuterium Demonstrator) accelerator, was designed to accelerate 80 mA cw of D{sup {minus}} to 7.5 MeV. A considerable amount of hardware was constructed and installed in the Argonne-based facility, and major performance milestones were achieved before program funding from the Department of Defense ended in October 1993. Existing assets have been turned over to Argonne. Assets include a fully functional 200 kV cw D{sup {minus}} injector, a cw RFQ that has been tuned, leak checked and aligned, beam lines and a high-power beam stop, all installed in a shielded vault with appropriate safety and interlock systems. In addition, there are two high power (1 MW) cw rf amplifiers and all the ancillary power, cooling and control systems required for a high-power accelerator system. The SDI mission required that the CWDD accelerator structures operate at cryogenic temperatures (26 K), a requirement that placed severe limitations on operating period (CWDD would have provided 20 seconds of cw beam every 90 minutes). However, the accelerator structures were designed for full-power rf operation with water cooling and ACWL (Argonne Continuous Wave Linac), the new name for CWDD in its water-cooled, positive-ion configuration, will be able to operate continuously. Project status and achievements will be reviewed. Preliminary design of a proton conversion for the RFQ, and other proposals for turning ACWL into a testbed for cw-linac engineering, will be discussed.

  1. Reliability engineering in RF CMOS

    OpenAIRE

    2008-01-01

    In this thesis new developments are presented for reliability engineering in RF CMOS. Given the increase in use of CMOS technology in applications for mobile communication, also the reliability of CMOS for such applications becomes increasingly important. When applied in these applications, CMOS is typically referred to as RF CMOS, where RF stands for radio frequencies.

  2. rf traveling-wave electron gun for photoinjectors

    Science.gov (United States)

    Schaer, Mattia; Citterio, Alessandro; Craievich, Paolo; Reiche, Sven; Stingelin, Lukas; Zennaro, Riccardo

    2016-07-01

    The design of a photoinjector, in particular that of the electron source, is of central importance for free electron laser (FEL) machines where a high beam brightness is required. In comparison to standard designs, an rf traveling-wave photocathode gun can provide a more rigid beam with a higher brightness and a shorter pulse. This is illustrated by applying a specific optimization procedure to the SwissFEL photoinjector, for which a brightness improvement up to a factor 3 could be achieved together with a double gun output energy compared to the reference setup foreseeing a state-of-the-art S-band rf standing-wave gun. The higher brightness is mainly given by a (at least) double peak current at the exit of the gun which brings benefits for both the beam dynamics in the linac and the efficiency of the FEL process. The gun design foresees an innovative coaxial rf coupling at both ends of the structure which allows a solenoid with integrated bucking coil to be placed around the cathode in order to provide the necessary focusing right after emission.

  3. Optimal RF Systems for Lightly Loaded Superconducting Structures

    CERN Document Server

    Zwart, Townsend; Graves, William S; Wang, D; Zolfaghari, Abbi

    2004-01-01

    Recent developments in the field of RF accelerators have created a demand for power amplifiers that can support very high accelerating gradients, 15-25 MV/m, in superconducting structures with extremely low losses. Free electron lasers (FEL’s) with modest beam current, I< 10 uA, or based on energy recovery linacs (ERL’s) may have intrinsic power demands of less than 1 kW/m. We present the design of an amplifier and external tuner system that will efficiently meet this requirement. The RF amplifier, an Inductive Output Tube (IOT), offers high AC/RF efficiency, flexible power output and switching capability without the need for external modulation. The tuner circuit makes use of low loss ferrite phase shifters to create a moderate quality standing wave (Q~100-1000) between the amplifier and the superconducting cavity. An alternative design based on a shorter cavity structure and employing solid state amplifiers is also presented. The expected performance characteristics of both systems are described.

  4. Beam commissioning for a superconducting proton linac

    Science.gov (United States)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  5. Linac-driven spallation-neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Jason, A.J.

    1995-05-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications.

  6. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  7. The CLIC RF power source a novel scheme of two-beam acceleration for electron-positron linear colliders

    CERN Document Server

    Braun, Hans Heinrich; D'Amico, Tommaso Eric; Delahaye, Jean Pierre; Guignard, Gilbert; Johnson, C D; Millich, Antonio; Pearce, Peter; Riche, A J; Rinolfi, Louis; Ruth, Ronald D; Schulte, Daniel; Thorndahl, Lars; Valentini, M; Wilson, Ian H; Wuensch, Walter; CERN. Geneva

    1998-01-01

    We discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded conventional, low-frequency (approx. 1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive-beams with gaps between. This train of drive beams is distributed from the end of the linac in the opposite direction to the main beam down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible, and can be used to accelerate beams for linear colliders over the...

  8. High frequency CARM driver for RF LINACS. Progess report, year 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-30

    Progress during the second year of this program has been noteworthy in both theoretical and experimental areas. Two experiments on a CARM oscillator were performed and analysed. The first long-pulse operation of a CARM oscillator was carried out, with output powers of approximately 100 kW and operating efficiencies of approximately 2%. Much has been learned from the analysis of the first two experiments, and both the amplifier and oscillator experiments planned for the next year will benefit substantially from the knowledge gained during these oscillator experiments. We have installed and tested an new electron gun made by Thompson Tubes Electroniques of France. This gun has now operated at up to 580 kV on our modulator; use of this gun for the upcoming CARM experiments should result in a significant increase in performance due to a much better beam quality and the capability of operation at a much higher voltage. In the theoretical area, Year II has seen substantial improvements to the MIT CARM codes. The amplifier and oscillator codes have been successfully benchmarked against other codes, linear theory, aid experimental work. This includes the development of multimode CARM amplifier linear and nonlinear theory, the theory of harmonic CARMs, and the inclusion of TM modes in the nonlinear simulations. In addition, work this spring has centered on the effects of AC longitudinal space charge on CARM linear gain. CARM amplifier phase stability has been studied theoretically and found to be significantly better than that of free-electron lasers, relativistic klystrons, or gyroklystrons, provided the device is properly designed. Both multimode simulations and particle-in-cell simulations have been carried out to study mode competition effects between convectively unstable and absolutely unstable modes. Improvement of the Pierce-Wiggler code, named TRAJIK for modeling the beam formation prior to tie interaction region has been carried out.

  9. High Power Experiment of X-Band Thermionic Cathode RF Gun for Compton Scattering X-ray Source

    Science.gov (United States)

    Sakamoto, Fumito; Uesaka, Mitsuru; Dobashi, Katsuhiro; Yamamoto, Tomohiko; Meng, De; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Matsuo, Kenichi; Sakae, Hisaharu; Yamamoto, Masashi

    2006-11-01

    We are currently developing a compact monochromatic X-ray source based on laser-electron collision. To realize remarkably compact-, high-intensity- and highly-stable-system, we adopt an X-band multi-bunch liner accelerator (linac) and reliable Q-switch laser. The X-ray yields by the multi-bunch electron beam and Q-switch Nd: YAG laser of 1.4 J/10 ns (FWHM) (532 nm, second harmonic) is 107 photons/RF-pulse (108 photons/sec for 10 Hz operation). The injector of the system consists of a 3.5-cell X-band thermionic cathode RF gun and an alpha magnet. So far we have achieved beam generation from the X-band thermionic cathode RF gun. The peak beam energy is 2 MeV. This experimental high energy (˜2 MeV) beam generation from the X-band thermionic cathode RF gun is the first in the world. In this paper, we describe the system of the Compton scattering X-ray source based on the X-band linac, experimental results of X-band thermionic cathode RF gun and the details of the experimental setup for Compton scattering X-ray generation that are under construction.

  10. Conceptual Design of the Low-Power and High-Power SPL A Superconducting H$^-$ Linac at CERN

    CERN Document Server

    Atieh, S; Aviles Santillana, I; Bartmann, W; Borburgh, J; Brunner, O; Calatroni, S; Capatina, O; Chambrillon, J; Ciapala, E; Eshraqi, M; Ferreira, L; Garoby, R; Goddard, B; Hessler, C; Hofle, W; Horvath-Mikulas, S; Junginger, T; Kozlova, E; Lebbos, E; Lettry, J; Liao, K; Lombardi, A M; Macpherson, A; Montesinos, E; Nisbet, D; Otto, T; Paoluzzi, M; Papke, K; Parma, V; Pillon, F; Posocco, P; Ramberger, S; Rossi, C; Schirm, K; Schuh, M; Scrivens, R; Torres Sanchez, R; Valuch, D; Valverde Alonso, N; Wegner, R; Weingarten, W; Weisz, S

    2014-01-01

    The potential for a superconducting proton linac (SPL) at CERN started to be seriously considered at the end of the 1990s. In the first conceptual design report (CDR), published in 2000 [1], most of the 352 MHz RF equipment from LEP was re-used in an 800 m long linac, and the proton beam energy was limited to 2.2 GeV. During the following years, the design was revisited and optimized to better match the needs of a high-power proton driver for neutrino physics. The result was a more compact (470 m long) accelerator capable of delivering 5 MW of beam power at 3.5 GeV, using state-of-the-art superconducting RF cavities at 704 MHz. It was described in a second CDR, published in 2006 [2]. Soon afterwards, when preparation for increasing the luminosity of the LHC by an order of magnitude beyond nominal became an important concern, a low-power SPL (LP-SPL) was studied as a key component in the renovation of the LHC injector complex. The combination of a 4 GeV LP-SPL injecting into a new 50 GeV synchrotron (PS2) was ...

  11. Status of the 7 MeV/u, 217 MHz Injector Linac for the Heidelberg Cancer Therapy Facility

    CERN Document Server

    Schlitt, B; Hutter, G; Klos, F; Lu, Y; Minaev, S A; Mühle, C; Ratzinger, U; Schlitt, B; Tiede, R; Vinzenz, W; Will, C; Zurkan, O

    2004-01-01

    A clinical synchrotron facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany, starting in 2005. The status of the ECR ion source systems, the beam line components of the low energy beam transport lines, the 400 keV/u RFQ and the 20 MV IH-cavity as well as the linac rf system will be reported. Two prototype magnets of the linac quadrupole magnets have been built at GSI and have been tested successfully. A test bench for the 1.4 MW, 217 MHz cavity amplifier built by industry has been installed at GSI including a 120 kW driver amplifier which will be used also for high power tests of the RFQ. A test bench for the RFQ using proton beams is presently being set up at the IAP. RF tuning of the 1:2 scaled IH-DTL model as well as Microwave Studio simulations of the model and the power cavity have been also performed at the IAP [1].

  12. PHYSICS RESULTS OF THE NSLS-II LINAC FRONT END TEST STAND

    Energy Technology Data Exchange (ETDEWEB)

    Fliller R. P.; Gao, F.; Yang, X.; Rose, J.; Shaftan, T.; Piel, C

    2012-05-20

    The Linac Front End Test Stand (LFETS) was installed at the Source Development Laboratory (SDL) in the fall of 2011 in order to test the Linac Front End. The goal of these tests was to test the electron source against the specifications of the linac. In this report, we discuss the results of these measurements and the effect on linac performance.

  13. High-Power Multimode X-Band RF Pulse Compression System for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tantawi, S.G.; Nantista, C.D.; Dolgashev, V.A.; Pearson, C.; Nelson, J.; Jobe, K.; Chan, J.; Fant, K.; Frisch, J.; /SLAC; Atkinson, D.; /LLNL, Livermore

    2005-08-10

    We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  14. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2000-07-11

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  15. rf SQUID metamaterials

    OpenAIRE

    Lazarides, N.; Tsironis, G. P.

    2007-01-01

    An rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability, above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing it...

  16. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  17. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  18. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  19. Update of the Linac4-PSB Transfer Line

    CERN Document Server

    HEIN, Lutz

    2010-01-01

    The installation of Linac4 represents the first step of the upgrade plans of the CERN accelerator complex for the future in order to raise the available proton flux to attain amongst others the LHC ultimate luminosity. This linac is capable to accelerate H--ions from 45keV to 160MeV, which will be injected into the Proton Synchrotron Booster (PSB). The increase of energy from 50MeV (Linac2) to 160MeV (Linac4) allows to overcome the space charge limitations at the PSB injection, which is the main bottleneck towards higher beam brightness in the downstream accelerator chain. In order to preserve beam quality from the outlet of Linac4 to PSB injection the design of the transfer line becomes crucial. As the location of Linac4 was chosen in view of upgrade scenarios, the construction of a new transfer line is foreseen, see ref.[1] and ref.[2]. Here part of the Linac2-PSB transfer line will be re-used. In the new part of the transfer line the beam is horizontally and vertically adjusted towards the bending magnet B...

  20. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  1. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  2. High intensity SRF proton linac workshop (vugraphs)

    Energy Technology Data Exchange (ETDEWEB)

    Rusnak, B.A.

    1995-11-01

    The meeting is divided into four sections. The first section is the general introduction and included opening remarks and an overview of APT (accelerator product of tritium). The second section contains vugraphs from the cavity-structures working group. The third section is comprised of vugraphs from the couplers and rf working group. And the fourth section contains vugraphs of the system integration group.

  3. Injection schemes for the TOP Linac; Schemi di iniezione per il TOP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L.; Ronsivalle, C. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; Bartolini, R. [Istituto Superiore di Sanita' , Rome (Italy)

    1999-07-01

    In this report two schemes are studied for the injection in the SCDTL section of the TOP Linac of the proton beam produced by a 7 MeV linear accelerator. The project derives by an agreement between ENEA (National Agency for New Technology, Energy and Environment) and ISS. In these new versions of the design the constraint of a synchronization of the radio frequencies of the two accelerators is suppressed. [Italian] In questo rapporto sono studiati due schemi di iniezione nella sezione accelerante SCDTL a 3 GHz del TOP (terapia oncologica con protoni) linac del fascio di protoni generato da un acceleratore lineare di 7 MeV. L'acceleratore e' frutto di una convenzione tra L'ENEA e l'Istituto Superiore di Sanita'. Rispetto a versioni precedenti del progetto, viene eliminato il vincolo della sincronizzazione delle radiofrequenze dei due acceleratori.

  4. RF Based Spy

    Directory of Open Access Journals (Sweden)

    Robot Prerna Jain

    2014-04-01

    Full Text Available The intention of this paper is to reduce human victims in terrorist attack such as 26/11. So this problem can be overcome by designing the RF based spy robot which involves wireless camera. so that from this we can examine rivals when it required. This robot can quietly enter into enemy area and sends us the information via wireless camera. On the other hand one more feature is added in this robot that is colour sensor. Colour sensor senses the colour of surface and according to that robot will change its colour. Because of this feature this robot can’t easily detected by enemies. The movement of this robot is wirelessly controlled by a hand held RF transmitter to send commands to the RF receiver mounted on the moving robot. Since human life is always Valueable, these robots are the substitution of soldiers in war areas. This spy robot can also be used in star hotels, shopping malls, jewelry show rooms, etc where there can be threat from intruders or terrorists.

  5. Preliminary study on the RF tuning of CSNS DTL

    Science.gov (United States)

    Yin, Xue-Jun; Li, A.-Hong; Xiao, Yong-Chuang; Chen, Qiang; Liu, Hua-Chang; Gong, Ke-Yun; Fu, Shi-Nian

    2014-02-01

    In the R&D of the CSNS Drift Tube Linac (DTL), the first unit tank with 28 drift tubes has been developed. The axial accelerating field is ramped from 2.2 MV/m to 3.1 MV/m in this tank. The required field flatness is less than ±2% with the standard deviation of 1% for the beam dynamics; the field stability should be less than 1% for machine stable operation. After successful alignment, RF tuning was carried out focusing on the field profile measurement. Four slug tuners and eleven post couplers were applied in this procedure. The ramped field and required stability had been achieved by fine adjustment of the slug tuners and post couplers. In this paper, the preliminary tuning results are presented and discussed.

  6. Preliminary Study on the RF tuning of CSNS DTL

    CERN Document Server

    Yin, Xuejun; Xiao, Yongchuang; Chen, Qiang; Liu, Huachang; Gong, Keyun; Fu, Shinan

    2013-01-01

    In the R&D of the CSNS Drift Tube Linac (DTL), the first unit tank with 28 drift tubes has been developed. The axial accelerating field is ramped from 2.2MV/m to 3.1MV/m in this tank. The required field flatness is less than 2 % with the standard deviation of 1 % for the beam dynamics. And the field stability should be less than 1% for machine stable operation. After the successful alignment, the RF tuning was carried out focusing on the field profile measurement. Four slug tuners and 11 post couplers were applied in this procedure. The ramped filed and required stability had been achieved by fine adjustment of the slug tuners and post couplers. In this paper, the preliminary tuning results are presented and discussed.

  7. Cryostat for Testing HIE-Isolde Superconducting RF Cavities

    CERN Document Server

    Capatina, O; Cuccuru, G; Pasini, M; Renaglia, T; Therasse, M; Vullierme, B

    2011-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN [1], with the objective of increasing the energy and intensity of the delivered radioactive ion beams (RIB). This project aims to fill the request for a more energetic post-accelerated beam by means of a new superconducting (SC) linac based on Quarter Wave Resonators (QWR). A research and development (R&D) programme looking at all the different aspects of the SC linac started in 2008 and continued throughout 2010. The R&D effort has particularly focused on the development of the high β cavities (β = 10.3%) for which the Nb sputtered on Cu substrate technology has been adopted. Two prototype cavities were manufactured and are undergoing RF cold tests. The pre-series cavity manufacturing is under way using 3D forged Cu billets. A single vacuum cryostat was designed and built to test these cavities at liquid helium temperatures. This paper details the main design concep...

  8. Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field

    CERN Document Server

    Gonnella, Dan

    2015-01-01

    Future particle accelerators such as the the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac (ERL) require hundreds of superconducting RF (SRF) cavities operating in continuous wave (CW) mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0). In order to reach these high Q0's in the case of LCLS-II, nitrogen-doping has been proposed as a cavity preparation technique. When dealing with Q0's greater than 1x10^10, the effects of ambient magnetic field on Q0 become significant. Here we show that the sensitivity that a cavity has to ambient magnetic field is highly dependent on the cavity preparation. Specifically, standard electropolished and 120C baked cavities show a sensitivity of ~0.8 and ~0.6 nOhm/mG trapped, respectively, while nitrogen-doped cavities show a sensitivity of ~2 to 5 nOhm/mG trapped. Less doping results in weaker sensitivity. This difference in sensitivities is ...

  9. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  10. Using basic electromagnetism to introduce LINAC4 (CERN)

    Science.gov (United States)

    Cid-Vidal, Xabier; Cid, Ramon; Vretenar, Maurizio

    2016-07-01

    The LHC is the last element of CERN’s accelerator complex, which is a succession of machines with increasingly higher energies. Everything starts in the 50 MeV linear accelerator (LINAC2), but a new linear accelerator, the 160 MeV LINAC4, will replace LINAC2 in 2018, upgrading LHC injectors to higher intensity and eventually increasing the luminosity of LHC. The aim of this article is briefly introducing this new accelerator, and presenting a simple application of some fundamental laws of magnetism to be taken to the secondary school classrooms.

  11. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  12. An induction linac developed for FEL application

    Science.gov (United States)

    de Mascureau, J.; Anthouard, Ph.; Bardy, J.; Eyharts, Ph.; Eyl, P.; Launspach, J.; Thevenot, M.; Villate, D.

    1992-07-01

    An induction linac is being studied and built at CESTA for FEL application. At first we studied the induction technology and namely the high-voltage (HV) generators and the induction cells. A HV generator designed to feed the cells with calibrated pulses (150 kV, 50 ns, δV/V magnetic switches. This generator is planned for kHz repetition-rate operation. A prototype induction cell has also been built and tested with a cable generator. An electron injector (1.5 MeV, 1.5kA) has been designed and is now under test: it uses ten induction cells and a thermionic dispenser cathode. Numerical codes have been developed and simulations have been compared with experimental results for HV generators, induction cells, and the injector. An induction accelerating module has been studied and we plan to have the accelerator working at 3 MeV in 1992.

  13. Performance of a first generation X-band photoelectron rf gun

    Science.gov (United States)

    Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Li, H.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-05-01

    Building more compact accelerators to deliver high brightness electron beams for the generation of high flux, highly coherent radiation is a priority for the photon science community. A relatively straightforward reduction in footprint can be achieved by using high-gradient X-band (11.4 GHz) rf technology. To this end, an X-band injector consisting of a 5.5 cell rf gun and a 1-m long linac has been commissioned at SLAC. It delivers an 85 MeV electron beam with peak brightness somewhat better than that achieved in S-band photoinjectors, such as the one developed for the Linac Coherent Light Source (LCLS). The X-band rf gun operates with up to a 200 MV /m peak field on the cathode, and has been used to produce bunches of a few pC to 1.2 nC in charge. Notably, bunch lengths as short as 120 fs rms have been measured for charges of 5 pC (˜3 ×107 electrons), and normalized transverse emittances as small as 0.22 mm-mrad have been measured for this same charge level. Bunch lengths as short as 400 (250) fs rms have been achieved for electron bunches of 100 (20) pC with transverse normalized emittances of 0.7 (0.35) mm-mrad. We report on the performance and the lessons learned from the operation and optimization of this first generation X-band gun.

  14. BXERL photo-injector based on a 217 MHz normal conducting RF gun

    Institute of Scientific and Technical Information of China (English)

    LIU Sheng-Guang; HUANG Tong-Ming; XU Jin-Qiang

    2011-01-01

    The Beijing X-ray Energy Recovery Linac(BXERL)test facility is proposed in Institute of High Physics(IHEP).In this proposal,the main linac requires the injector to provide an electron beam with 5 MeV energy and 10 mA average current.An injector based on DC gun technology is the first candidate electron source for BXERL.However,the field emission in the DC gun cavity makes it much more difficult to increase the high voltage to more than 500 kV.Another technology based on a 217 MHz normal conducting RF gun is proposed as the backup injector for this test facility.We have designed this RF gun with 2D SUPERFISH code and 3D MICROWAVE STUDIO code.In this paper,we present the optimized design of the gun cavity,the gun RF parameters and the set-up of the whole injector system.The detailed beam dynamics have been done and the simulation results show that the injector can generate electron bunches with RMS normalizedemittance 1.0 πmm.mrad,bunch length 0.77 mm,beam energy 5.0 MeV and energy spread 0.60%.

  15. Determination of discharge parameters via OES at the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Briefi, S., E-mail: stefan.briefi@physik.uni-augsburg.de [AG Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, 86135 Augsburg (Germany); Fink, D.; Mattei, S.; Lettry, J. [Linac4 Ion Source Team, CERN-ABP, 1211 Geneva 23 (Switzerland); Fantz, U. [AG Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, 86135 Augsburg (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany)

    2016-02-15

    Optical emission spectroscopy (OES) measurements of the atomic Balmer series and the molecular Fulcher transition have been carried out at the Linac4 ion source in order to determine plasma parameters. As the spectroscopic system was only relatively calibrated, the data evaluation only yielded rough estimates of the plasma parameters (T{sub e} ≈ 1.2 eV, n{sub e} ≈ 1 × 10{sup 19} m{sup −3}, and n{sub H}/n{sub H{sub 2}} ≈ 0.5 at standard operational parameters). The analysis of the Fulcher transition revealed a non-thermal “hockey-stick” rotational population of the hydrogen molecules. At varying RF power, the measurements at the on-axis line of sight (LOS) showed a peak in the rotational temperatures between 25 and 40 kW of RF power, whereas a steady decrease with power was observed at a tilted LOS, indicating the presence of strong plasma parameter gradients.

  16. Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy

    Science.gov (United States)

    Berra, Paolo

    2007-12-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.

  17. Transient beam-loading model and compensation in Compact Linear Collider main linac

    CERN Document Server

    Kononenko, O

    2011-01-01

    A new model to compensate for the transient beam loading in the CLIC main linac is developed. It takes into account the CLIC specific power generation scheme and the exact 3D geometry of the accelerating structure including couplers. A new method of calculating unloaded and loaded voltages during the transient is proposed and a dedicated optimization scheme of the rf pulse to compensate the transient beam-loading effect is presented. It is demonstrated that the 0.03% limit on the rms relative bunch-to-bunch energy spread in the main beam after acceleration can be reached. The optimization technique has been used to increase the rf to beam efficiency while preserving the CLIC requirements and to compensate for the energy spread caused by the Balakin-Novokhatski-Smirnov damping and transient process in the subharmonic buncher. Effects of charge jitters in the drive and main beams are studied. It is shown that within the 0.1% CLIC specification limit on the rms spread in beams charge the energy spread is not sig...

  18. The invention that shapes Linac4: Tolerance Aligned Cantileaver Mounting (TACM) system to build drift tube linacs

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    Accelerator experts are no new to original optimizations of existing techniques and to the development of novel solutions. Sometimes, they even come up with ideas that have the potential to revolutionize the field. This was indeed the case for the Tolerance Aligned Cantilever Mounting (TACM) system, a completely new way of supporting the drift tubes, one of the core elements of linear accelerators. The new, patent-pending technique will be implemented at Linac4.Interview with Suitbert Ramberger, Project engineer for the Linac4 Drift Tube Linac (DTL).

  19. Photonuclear reactions with Zinc: A case for clinical linacs

    CERN Document Server

    Boztosun, I; Karakoç, M; Özmen, S F; Çeçen, Y; Çoban, A; Caner, T; Bayram, E; Saito, T R; Akdoğan, T; Bozkurt, V; Kuçuk, Y; Kaya, D; Harakeh, M N

    2015-01-01

    The use of bremsstrahlung photons produced by a linac to induce photonuclear reactions is wide spread. However, using a clinical linac to produce the photons is a new concept. We aimed to induce photonuclear reactions on zinc isotopes and measure the subsequent transition energies and half-lives. For this purpose, a bremsstrahlung photon beam of 18 MeV endpoint energy produced by the Philips SLI-25 linac has been used. The subsequent decay has been measured with a well-shielded single HPGe detector. The results obtained for transition energies are in good agreement with the literature data and in many cases surpass these in accuracy. For the half-lives, we are in agreement with the literature data, but do not achieve their precision. The obtained accuracy for the transition energies show what is achievable in an experiment such as ours. We demonstrate the usefulness and benefits of employing clinical linacs for nuclear physics experiments.

  20. Vacuum simulation of the LINAC4 H- source

    CERN Document Server

    Chiara Pasquino, CP; Jacques Lettry, JL

    2012-01-01

    The 160 MeV H- Linac4 will replace the 50 MeV proton Linac2. Linac4 H- source is the new ion source. In order to study its dynamic behaviour from the vacuum point of view, the electrical network – vacuum analogy have been used. This technique allows the evaluation of the hydrogen partial pressure profile as a function of time and position, giving important information about plasma chamber and LEBT pressures. Aiming at benchmarking the following simulations, several experimental calibration campaigns are foreseen in the near future: the H- source of Linac4 requires a pulsed injection of hydrogen to reach the typically 0.1 mbar pressure mandatory for plasma formation. First preliminary results show good agreement between the experimental and the simulated profiles.

  1. A Radiation shielding study for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  2. RLA and ERL Designs for a LINAC-RING LHEC

    CERN Document Server

    Zimmermann, F; Ciapala, E; Haug, F; Osborne, J; Schulte, D; Tomas, R; Adolphsen, C; Sun, Y; Litvinenko, V; Dainton, J; Klein, M; Chattopadhyay, S; Eide, A

    2010-01-01

    We consider three different scenarios for the recirculating electron linear accelerator (RLA) of a linac-ring type electron-proton collider based on the LHC (LHeC): i) a basic version consisting of a pulsed, 1.7 km long linac with a final beam energy of 60 GeV [“p-60”], ii) a higher luminosity configuration with a two cw linacs and energy-recovery (ERL) also at 60 GeV [“erl”], and iii) a high energy option using a pulsed linac of 3.9 km length with final energy of 140 GeV [“p-140”]. We discuss the parameters, synchrotron radiation, footprints, and the performance for the three scenarios.

  3. An integrated computer control system for the ANU linac

    Science.gov (United States)

    Davidson, P. M.; Foote, G. S.

    1996-02-01

    One facet of the installation of the superconducting linac at the ANU is the need for computer control of a variety of systems, such as beam transport, resonator RF, cryogenics and others. To accommodate this, a number of control interfaces (for example, analogue signals and RS232 serial lines) must be employed. Ideally, all of the systems should be able to be controlled from a central location, remote from the actual devices. To this end a system based around VAX computers and VME crates has been designed and is currently being developed and implemented. A VAXstation is used to issue control messages and perform high-level functions, while VME crates containing appropriate modules (primarily DACs, ADCs and digital I/O boards) control the devices. The controllers in the VME crates are AEON rtVAX modules running a real-time operating system. Communication with the VAXstation is via DECnet, on a private ethernet to allow communication rates unaffected by unrelated network activity and potentially increasing the security of the system by providing a possible network isolation point. Also on this ethernet are a number of terminal servers to control RS232 devices. A central database contains all device control and monitoring parameters. The main control process running on the VAXstation is responsible for maintaining the current values of the parameters in the database and for dispatching control messages to the appropriate VME crate or RS232 serial line. Separate graphical interface processes allow the operator to interact with the control process, communicating through shared memory. Many graphics processes can be active simultaneously, displaying either on a single or on multiple terminals. Software running on the rtVAX controllers handles the low-level device-specific control by translating messages from the main control process to VME commands which set hardware outputs on VME modules. Similarly, requests for the value of a parameter result in the rtVAX program

  4. Signal Processor for Spring8 Linac BPM

    CERN Document Server

    Yanagida, K; Dewa, H; Hanaki, H; Hori, T; Kobayashi, T; Mizuno, A; Sasaki, S; Suzuki, S; Takashima, T; Taniushi, T; Tomizawa, H

    2001-01-01

    A signal processor of the single shot BPM system consists of a narrow-band BPF unit, a detector unit, a P/H circuit, an S/H IC and a 16-bit ADC. The BPF unit extracts a pure 2856MHz RF signal component from a BPM and makes the pulse width longer than 100ns. The detector unit that includes a demodulating logarithmic amplifier is used to detect an S-band RF amplitude. A wide dynamic range of beam current has been achieved; 0.01 ~ 3.5nC for below 100ns input pulse width, or 0.06 ~ 20mA for above 100ns input pulse width. The maximum acquisition rate with a VME system has been achieved up to 1kHz.

  5. RF power generation

    CERN Document Server

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  6. Other RF power sources

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, G.Ya. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1999-09-01

    The main subjects discussed in this paper are as follows. Triode tube; main characteristics of the equivalent schematic of the amplifying stage. Requirements for operation of a triode stage loaded with an accelerating cavity. Influence of parameters of the output stage and transmission line length on the output impedance of RF system for the beam. Typical design of the power output stage. Magnetron, travelling-wave tube, principles of operation, main parameters. Magnetron loaded with a microtron cavity, methods of coupling, requirements for stable operation. Magnicon - BHF generator with a circular deflection of the electron beam, principle of operation, results of development. (author)

  7. SPS RF cavity

    CERN Multimedia

    1974-01-01

    The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. A power of up to 790 kW can be supplied to each giving a total accelerating voltage of about 8 MV. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities.

  8. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  9. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  10. Post-accelerator LINAC design for the VECC RIB project

    Indian Academy of Sciences (India)

    Arup Bandyopadhyay

    2002-12-01

    Variable Energy Cyclotron Centre (VECC) is presently developing an ISOL post-acclerator type of RIB facility. The scheme utilises the existing = 130 room temperature variable energy cyclotron machine as the primary accelerator for the production of RIBs and radio frequency quadrupole (RFQ) and LINAC modules for the post-acceleration. The design aspects of these postaccelerator LINAC modules will be discussed in this paper.

  11. High power operational experience with the LANSCE Linac

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2008-01-01

    The heart of the Los Alamos Neutron Science Center (LANSCE) is a pulsed linear accelerator that is used to simultaneously provide H+ and H- beams to several user facilities. This accelerator contains two Cockcroft-Walton style injectors, a 100-MeV drift tube linac and an 800-MeV coupled cavity linac. This presentation will touch on various aspects of the high power operation including performance, tune-up strategy, beam losses and machine protection.

  12. Linac 1 in the process of being pulled back

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1985-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions and, from 1981 to 1996, of protons and negative hydrogen ions for LEAR. In 1984, its Cockcroft-Walton preinjector was replaced by a much smaller RFQ, which allowed it to be moved to a more convenient location.

  13. Quadrupole Law and Steering Options in the Linac4 DTL

    CERN Document Server

    Stovall, J

    2009-01-01

    The Linac4 drift-tube linac (DTL) reference design has been modified to reduce the power consumption in tank 1 by adjusting the accelerating field and phase laws. In this note we investigate three options for the transverse focusing lattice, quadrupole law, and two options for beam steering. We use acceptance, sensitivity to alignment errors and the probabiity of beam loss as figures of merit for evaluating each option.

  14. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  15. Effect of cooling water on stability of NLC linac components

    Energy Technology Data Exchange (ETDEWEB)

    F. Le Pimpec et al.

    2003-02-11

    Vertical vibration of linac components (accelerating structures, girders and quadrupoles) in the NLC has been studied experimentally and analytically. Effects such as structural resonances and vibration caused by cooling water both in accelerating structures and quadrupoles have been considered. Experimental data has been compared with analytical predictions and simulations using ANSYS. A design, incorporating the proper decoupling of structure vibrations from the linac quadrupoles, is being pursued.

  16. Status and plans for Linac4 installation and commissioning

    CERN Document Server

    Vretenar, M; Arnaudon, L; Baudrenghien, P; Bellodi, G; Broere, J; Brunner, O; Comblin, J F; Coupard, J; Dimov, V A; Fuchs, J F; Funken, A; Gerigk, F; Granemann Souza, E; Hanke, K; Hansen, J; Yarmohammadi Satri, M; Kozsar, I; Lallement, J B; Lenardon, F; Lettry, J; Lombardi, A M; Maglioni, C; Midtun, O; Mikulec, B; Nisbet, D; Paoluzzi, M; Raich, U; Ramberger, S; Roncarolo, F; Rossi, C; Sanchez Alvarez, J L; Scrivens, R; Tan, J; Valerio-Lizarraga, C A; Vollaire, J; Wegner, R; Weisz, S; Zocca, F

    2014-01-01

    Linac4 is a normal conducting 160 MeV Hˉ linear accelerator presently being installed and progressively commissioned at CERN. It will replace the ageing 50 MeV Linac2 as injector of the PS Booster (PSB), increasing at the same time its brightness by a factor of two thanks to the higher injection energy. This will be the first step of a program to increase the beam brightness in the LHC injectors for the needs of the High-Luminosity LHC project. After a series of beam measurements on a dedicated test stand the 3 MeV Linac4 front-end, including ion source, RFQ and a beam chopping line, has been recommissioned at its final position in the Linac4 tunnel. Commissioning of the following section, the Drift Tube Linac, is starting. Beam commissioning will take place in steps of increasing energy, to reach the final 160 MeV in 2015. An extended beam measurement phase including testing of stripping equipment for the PSB and a year-long test run to assess and improve Linac4 reliability will take place in 2016, prior to...

  17. Beam dynamics studies of the HIE-LINAC at CERN

    CERN Document Server

    Fraser, MA

    2008-01-01

    We present a beam dynamics study of the superconducting (SC) HIE-LINAC proposed to replace the existing normal conducting REX-ISOLDE accelerating infrastructure at CERN. The Linear Accelerator Numerical Analysis (LANA) code was used to run first-order simulations of the HIE-LINAC in order to study the beam quality during acceleration. A resonance in the transverse emittance growth at ejection from the HIE-LINAC was discovered and understood as a parametric coupling between the longitudinal and transverse dynamics. The dangerous effect of this resonance can be avoided for all mass-to-charge states in the range 2.5 ≤ A/q ≤ 4.5, if the linac is operated with a transverse phase advance higher than 70 degrees. The transverse emittance growth is minimised along the HIE-LINAC if operated above a transverse phase advance of 90 degrees per focusing period. Without a dedicated matching region between the two sections of the HIE-LINAC a solution for matching the beam was found by using the solenoids in the low-energ...

  18. LANSCE RF System Refurbishment

    CERN Document Server

    Rees, Daniel; Kwon, Sung-il; Lyles, John T M; Lynch, Michael; Prokop, Mark; Reass, William; Tallerico, Paul J

    2005-01-01

    The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new R...

  19. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  20. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.