International Nuclear Information System (INIS)
Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.
1988-08-01
Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs
Quantum Erasure: Quantum Interference Revisited
Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.
2005-01-01
Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro
2014-01-01
Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low...... suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference....
Generalized Multiphoton Quantum Interference
Directory of Open Access Journals (Sweden)
Max Tillmann
2015-10-01
Full Text Available Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.
Graphene quantum interference photodetector
Directory of Open Access Journals (Sweden)
Mahbub Alam
2015-03-01
Full Text Available In this work, a graphene quantum interference (QI photodetector was simulated in two regimes of operation. The structure consists of a graphene nanoribbon, Mach–Zehnder interferometer (MZI, which exhibits a strongly resonant transmission of electrons of specific energies. In the first regime of operation (that of a linear photodetector, low intensity light couples two resonant energy levels, resulting in scattering and differential transmission of current with an external quantum efficiency of up to 5.2%. In the second regime of operation, full current switching is caused by the phase decoherence of the current due to a strong photon flux in one or both of the interferometer arms in the same MZI structure. Graphene QI photodetectors have several distinct advantages: they are of very small size, they do not require p- and n-doped regions, and they exhibit a high external quantum efficiency.
Quantum interference in plasmonic circuits.
Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery
2013-10-01
Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.
'Quantum interference with slits' revisited
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.
Principles of quantum interference
International Nuclear Information System (INIS)
Jones, K.R.W.
1990-01-01
A new approach to quantum state determination is developed using data in the form of observed eigenvectors. An exceedingly natural inversion of such data results when the quantum probability rule is recognised as a conditional. The reversal of this conditional via Bayesian methods results in an inferred probability density over states which readily reduces to a density matrix estimator. The inclusion of concepts drawn from communication theory then defines an optimal state determination problem which is explored on Hilbert spaces of arbitrary finite dimensionality. 33 refs
"Quantum Interference with Slits" Revisited
Rothman, Tony; Boughn, Stephen
2011-01-01
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…
Quantum Interference and Coherence Theory and Experiments
Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald
2005-01-01
For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.
Parton showers with quantum interference
Nagy, Zoltan
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations.
Parton showers with quantum interference
International Nuclear Information System (INIS)
Nagy, Zoltan; Soper, Davison E.
2007-01-01
We specify recursive equations that could be used to generate a lowest order parton shower for hard scattering in hadron-hadron collisions. The formalism is based on the factorization soft and collinear interactions from relatively harder interactions in QCD amplitudes. It incorporates quantum interference between different amplitudes in those cases in which the interference diagrams have leading soft or collinear singularities. It incorporates the color and spin information carried by partons emerging from a hard interaction. One motivation for this work is to have a method that can naturally cooperate with next-to-leading order calculations
Excitonic quantum interference in a quantum dot chain with rings.
Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang
2008-04-16
We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.
General Quantum Interference Principle and Duality Computer
International Nuclear Information System (INIS)
Long Guilu
2006-01-01
In this article, we propose a general principle of quantum interference for quantum system, and based on this we propose a new type of computing machine, the duality computer, that may outperform in principle both classical computer and the quantum computer. According to the general principle of quantum interference, the very essence of quantum interference is the interference of the sub-waves of the quantum system itself. A quantum system considered here can be any quantum system: a single microscopic particle, a composite quantum system such as an atom or a molecule, or a loose collection of a few quantum objects such as two independent photons. In the duality computer, the wave of the duality computer is split into several sub-waves and they pass through different routes, where different computing gate operations are performed. These sub-waves are then re-combined to interfere to give the computational results. The quantum computer, however, has only used the particle nature of quantum object. In a duality computer, it may be possible to find a marked item from an unsorted database using only a single query, and all NP-complete problems may have polynomial algorithms. Two proof-of-the-principle designs of the duality computer are presented: the giant molecule scheme and the nonlinear quantum optics scheme. We also propose thought experiment to check the related fundamental issues, the measurement efficiency of a partial wave function.
Electron quantum interferences and universal conductance fluctuations
International Nuclear Information System (INIS)
Benoit, A.; Pichard, J.L.
1988-05-01
Quantum interferences yield corrections to the classical ohmic behaviour predicted by Boltzmann theory in electronic transport: for instance the well-known ''weak localization'' effects. Furthermore, very recently, quantum interference effects have been proved to be responsible for statistically different phenomena, associated with Universal Conductance Fluctuations and observed on very small devices [fr
Quantum eraser for three-slit interference
Indian Academy of Sciences (India)
Naveed Ahmad Shah
2017-11-09
Nov 9, 2017 ... Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is 'erased', the interference can reappear. Such a set-up is ...
Collision-induced destructive quantum interference
International Nuclear Information System (INIS)
Yang Xihua; Sun Zhenrong; Zhang Shi'an; Ding Liang'en; Wang Zugeng
2005-01-01
We conduct theoretical studies on the collision-induced destructive quantum interference of two-colour two-photon transitions in an open rhomb-type five-level system with a widely separated doublet by the density matrix approach. The effects of the collision-induced decay rates, the ratio of the transition dipole moments and the energy separation of the doublet on the interference are analysed. It is shown that a narrow dip appears in the excitation spectrum due to the collision-induced destructive interference, and that the narrow interference dip still exists even when the collision broadening is comparable to the energy separation of the doublet. The physical origin of the collision-induced destructive quantum interference is analysed in the dressed-atom picture
Metasurface-Enabled Remote Quantum Interference.
Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang
2015-07-10
An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.
Quantum interference effects for the electronic fluctuations in quantum dots
Energy Technology Data Exchange (ETDEWEB)
Ramos, J.G.G.S. [Universidade Federal da Paraiba (UFPB), Rio Tinto, PB (Brazil). Departamento de Ciencias Exatas; Hussein, M.S. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Barbosa, A.L.R. [Universidade Federal Rural de Pernambuco (UAEADTec/UFRPE), Recife, PE (Brazil). Unidade Academica de Ensino a Distancia. Pos-Graduacao em Fisica Aplicada
2014-07-01
For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)
Quantum interference effects for the electronic fluctuations in quantum dots
International Nuclear Information System (INIS)
Ramos, J.G.G.S.; Hussein, M.S.; Barbosa, A.L.R.
2014-01-01
For the main quantum interference term of coherent electronic transport, we study the effect of temperature, perpendicular and/or parallel magnetic fields, spin-orbit coupling and tunneling rates in both metallic grains and mesoscopic heterostructures. We show that the Zeeman effects determines a crucial way to characterize the quantum interference phenomena of the noise for anisotropic systems (mesoscopic heterostructures), qualitatively distinct from those observed in isotropic structures (metallic grains). (author)
Quantum interference vs. quantum chaos in the nuclear shell model
International Nuclear Information System (INIS)
Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E
2015-01-01
In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%
Understanding quantum interference in general nonlocality
International Nuclear Information System (INIS)
Wang Haijun
2011-01-01
In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].
Quantum interference experiments with complex organic molecules
International Nuclear Information System (INIS)
Eibenberger, S. I.
2015-01-01
Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to
Generalized quantum interference of correlated photon pairs
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-01-01
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143
Quantum coherence generated by interference-induced state selectiveness
Garreau, Jean Claude
2001-01-01
The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.
Destructive quantum interference in spin tunneling problems
von Delft, Jan; Henley, Christopher L.
1992-01-01
In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...
Readout of the atomtronic quantum interference device
Haug, Tobias; Tan, Joel; Theng, Mark; Dumke, Rainer; Kwek, Leong-Chuan; Amico, Luigi
2018-01-01
A Bose-Einstein condensate confined in ring shaped lattices interrupted by a weak link and pierced by an effective magnetic flux defines the atomic counterpart of the superconducting quantum interference device: the atomtronic quantum interference device (AQUID). In this paper, we report on the detection of current states in the system through a self-heterodyne protocol. Following the original proposal of the NIST and Paris groups, the ring-condensate many-body wave function interferes with a reference condensate expanding from the center of the ring. We focus on the rf AQUID which realizes effective qubit dynamics. Both the Bose-Hubbard and Gross-Pitaevskii dynamics are studied. For the Bose-Hubbard dynamics, we demonstrate that the self-heterodyne protocol can be applied, but higher-order correlations in the evolution of the interfering condensates are measured to readout of the current states of the system. We study how states with macroscopic quantum coherence can be told apart analyzing the noise in the time of flight of the ring condensate.
RF system for the super conducting proton linac
International Nuclear Information System (INIS)
Touchi, Y.
2001-01-01
In this paper, we introduce the several types of RF sources used for proton liner accelerators. Also we discus the undesirable characteristics of super-conducting cavities, and the influence of the large beam loading for an accelerating field. We propose the RF system for the super-conducting proton linear accelerators using the Diacrode or IOT taking these effects into account. (author)
Quasiparticle Interference Studies of Quantum Materials.
Avraham, Nurit; Reiner, Jonathan; Kumar-Nayak, Abhay; Morali, Noam; Batabyal, Rajib; Yan, Binghai; Beidenkopf, Haim
2018-06-03
Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of these surface states have provided a wealth of spectroscopic characterization, with the successful cooperation of ab initio calculations. The method of quasiparticle interference imaging proves to be particularly useful for probing the dispersion relation of the surface bands. Herein, how a variety of additional fundamental electronic properties can be probed via this method is reviewed. It is demonstrated how quasiparticle interference measurements entail mesoscopic size quantization and the electronic phase coherence in semiconducting nanowires; helical spin protection and energy-momentum fluctuations in a topological insulator; and the structure of the Bloch wave function and the relative insusceptibility of topological electronic states to surface potential in a topological Weyl semimetal. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum interference effects in nanostructured Au
Pratumpong, P; Evans, S D; Johnson, S; Howson, M A
2002-01-01
We present results on the magnetoresistance and temperature dependence of the resistivity for nanostructured Au produced by chemical means. The magnetoresistance was typical of highly disordered metals exhibiting quantum interference effects. We fitted the data and were able to determine the spin-orbit scattering relaxation time to be 10 sup - sup 1 sup 2 s and we found the inelastic scattering time at 10 K to be 10 sup - sup 1 sup 1 s. The inelastic scattering rate varied as T sup 3 between 4 and 20 K, which is typical for electron-phonon scattering in disordered metals.
Medical applications of superconducting quantum interference devices
International Nuclear Information System (INIS)
Uehara, Gen
2011-01-01
SQUIDs (Superconducting Quantum Interference Devices) are applied to clinical areas and basic medical science fields because of their potential for measuring a minute magnetic signal from the human body. Magnetoencephalography, one of their applications, is used for the functional mapping of the brain cortex before surgery and the localization of focus of epilepsy. Recently, their applications to the early-stage detection of dementia and the localization of brain ischemia are suggested. Another application of SQUIDs is magnetospinography, which detects the conduction block in spinal cord signal propagation. (author)
Two-photon quantum interference in a Michelson interferometer
International Nuclear Information System (INIS)
Odate, Satoru; Wang Haibo; Kobayashi, Takayoshi
2005-01-01
We have observed two-photon quantum interference in a Michelson interferometer. For the first time, we experimentally demonstrated two-photon quantum interference patterns, which show the transition from nonsubwavelength interference fringes to the general subwavelength interference. At the same time, a photon bunching effect was also shown by a postselection. The |1, 1> state with a single photon in a mode corresponding to each arm of the interferometer was exclusively postselected by using path difference between two arms
Two-state vector formalism and quantum interference
International Nuclear Information System (INIS)
Hashmi, F A; Li, Fu; Zhu, Shi-Yao; Zubairy, M Suhail
2016-01-01
We show that two-state vector formalism (TSVF), applied to quantum systems that make use of delicate interference effects, can lead to paradoxes. We consider a few schemes of nested Mach–Zehnder interferometers that make use of destructive interference. A particular interpretation of TSVF applied to these schemes makes predictions that are contradictory to quantum theory and can not always be verified. Our results suggest that TSVF might not be a suitable tool to describe quantum systems that make use of delicate quantum interference effects. (paper)
Quantum Interference and Entanglement Induced by Multiple Scattering of Light
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, Asger; Lodahl, Peter
2010-01-01
We report on the effects of quantum interference induced by the transmission of an arbitrary number of optical quantum states through a multiple-scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two...... output modes. It is shown that quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our...
Controlling quantum interference in phase space with amplitude
Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun
2017-01-01
We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...
Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits
International Nuclear Information System (INIS)
Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V
2012-01-01
Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)
Coupled field induced conversion between destructive and constructive quantum interference
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong
2016-12-15
We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.
Time-dependent description of quantum interference nanotransistor
International Nuclear Information System (INIS)
Konopka, M.; Bokes, P.
2012-01-01
In this contribution we have presented simulations of electron current response to applied gate potentials in a ring-shaped quantum interference device. Such device could function like a current-switching quantum-interference transistor. We demonstrated capability of our approach to describe this kind of system keeping full quantum coherence in the description for extended periods of time. This have been achieved thanks to the unique feature of our method which allows for explicit simulations of small quantum subsystems with open boundary conditions. Further generalisation of the method is needed to reduce the number of basis set functions required to describe the system. (authors)
Interference and inequality in quantum decision theory
International Nuclear Information System (INIS)
Cheon, Taksu; Takahashi, Taiki
2010-01-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Interference and inequality in quantum decision theory
Energy Technology Data Exchange (ETDEWEB)
Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)
2010-12-01
The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.
Quantum Interference and Selectivity through Biological Ion Channels.
Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin
2017-01-30
The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.
Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions
O'Connell, Ross C.; Loinaz, Will
2004-01-01
The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distribution of channels and ridges in the carpets. With an understanding of the factors that govern these channels and ridges we have a limited ability to produce a particular pattern of channels and ridges by carefully choosing the ...
Quantum interference between multi photon absorption pathways in organic solid
International Nuclear Information System (INIS)
Rebane, A.; Christensson, N.; Drobizhev, M.; Stepanenko, Y.; Spangler, C.W.
2007-01-01
We demonstrate spatial interference fringe pattern by simultaneous one- and three-photon absorption of UV and near-IR femtosecond pulses in thin film organic solid at room temperature. We use organic dendrimers that are specially designed to have strong fluorescence and very large three-photon absorption cross-section. High fringe visibility allows the quantum interference to be observed by eye
Two-particle interference in standard and Bohmian quantum mechanics
International Nuclear Information System (INIS)
Guay, E; Marchildon, L
2003-01-01
The compatibility of standard and Bohmian quantum mechanics has recently been challenged in the context of two-particle interference, both from a theoretical and an experimental point of view. We analyse different setups proposed and derive corresponding exact forms for Bohmian equations of motion. The equations are then solved numerically, and shown to reproduce standard quantum-mechanical results
A trajectory-based understanding of quantum interference
Energy Technology Data Exchange (ETDEWEB)
Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)], E-mail: asanz@imaff.cfmac.csic.es, E-mail: s.miret@imaff.cfmac.csic.es
2008-10-31
Interference is one of the most fundamental features which characterizes quantum systems. Here we provide an exhaustive analysis of the interfere dynamics associated with wave-packet superpositions from both the standard quantum-mechanical perspective and the Bohmian one. From this analysis, clear and insightful pictures of the physics involved in these kind of processes are obtained, which are of general validity (i.e., regardless of the type of wave packets considered) in the understanding of more complex cases where interference is crucial (e.g., scattering problems, slit diffraction, quantum control scenarios or, even, multipartite interactions). In particular, we show how problems involving wave-packet interference can be mapped onto problems of wave packets scattered off potential barriers.
Experimental statistical signature of many-body quantum interference
Giordani, Taira; Flamini, Fulvio; Pompili, Matteo; Viggianiello, Niko; Spagnolo, Nicolò; Crespi, Andrea; Osellame, Roberto; Wiebe, Nathan; Walschaers, Mattia; Buchleitner, Andreas; Sciarrino, Fabio
2018-03-01
Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.
A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.
Energy Technology Data Exchange (ETDEWEB)
Alessi, J.; Raparia, D.; Ruggiero, A.G.
2000-08-21
This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.
Quantum interference of probabilities and hidden variable theories
International Nuclear Information System (INIS)
Srinivas, M.D.
1984-01-01
One of the fundamental contributions of Louis de Broglie, which does not get cited often, has been his analysis of the basic difference between the calculus of the probabilities as predicted by quantum theory and the usual calculus of probabilities - the one employed by most mathematicians, in its standard axiomatised version due to Kolmogorov. This paper is basically devoted to a discussion of the 'quantum interference of probabilities', discovered by de Broglie. In particular, it is shown that it is this feature of the quantum theoretic probabilities which leads to some serious constraints on the possible 'hidden-variable formulations' of quantum mechanics, including the celebrated theorem of Bell. (Auth.)
Phases, quantum interferences and effective vector meson masses in nuclei
Energy Technology Data Exchange (ETDEWEB)
Soyeur, M.
1996-12-31
We discuss the prospects for observing the mass of {rho}- and {omega}-mesons around nuclear matter density by studying their coherent photoproduction in nuclear targets and subsequent in-medium decay into e{sup +}e{sup -}pairs. The quantum interference of {rho} and {omega}-mesons in the e{sup +}e{sup -}channel and the interference between Bethe-Heitler pairs and dielectrons from vector meson decays are of particular interest. (author). 21 refs.
Observation of quantum interference in molecular charge transport
DEFF Research Database (Denmark)
Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels
2012-01-01
for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface......, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire....
Quantum interference in laser spectroscopy of highly charged lithiumlike ions
Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo
2018-02-01
We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
Real-time single-molecule imaging of quantum interference.
Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus
2012-03-25
The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.
'Quantum interference with slits' revisited
Energy Technology Data Exchange (ETDEWEB)
Rothman, Tony [Princeton University, Princeton, NJ 08544 (United States); Boughn, Stephen, E-mail: trothman@princeton.ed, E-mail: sboughn@haverford.ed [Haverford College, Haverford, PA 09140 (United States)
2011-01-15
Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his calculation as if no approximations are employed. We show that he implicitly makes the same approximations found in classical treatments of interference and that no new physics has been introduced. At the same time, some of the quantum mechanical arguments Marcella gives are, at best, misleading.
Fraunhofer regime of operation for superconducting quantum interference filters
DEFF Research Database (Denmark)
Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.
2008-01-01
Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux...... range of more than 60 dB in the kilohertz range. In the 1-2 GHz range the estimated power gain is 20 dB and the magnetic flux noise level is as low as 10(-4)Phi(0)....
Nonmonotonic quantum-to-classical transition in multiparticle interference
DEFF Research Database (Denmark)
Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag
2013-01-01
Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...
Quantum Physics A First Encounter Interference, Entanglement, and Reality
Scarani, Valerio
2006-01-01
The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed. - ;Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important. background in physics. The first part of the book deals with the phenomenon of single-particle interference...
Quantum interferences reconstruction with low homodyne detection efficiency
Energy Technology Data Exchange (ETDEWEB)
Esposito, Martina; Randi, Francesco [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Titimbo, Kelvin; Zimmermann, Klaus; Benatti, Fabio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Kourousias, Georgios; Curri, Alessio [Sincrotrone Trieste S.C.p.A., Trieste (Italy); Floreanini, Roberto [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy); Parmigiani, Fulvio [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy); University of Cologne, Institute of Physics II, Cologne (Germany); Fausti, Daniele [Universita degli studi di Trieste, Dipartimento di Fisica, Trieste (Italy); Sincrotrone Trieste S.C.p.A., Trieste (Italy)
2016-12-15
Optical homodyne tomography consists in reconstructing the quantum state of an optical field from repeated measurements of its amplitude at different field phases (homodyne data). The experimental noise, which unavoidably affects the homodyne data, leads to a detection efficiency η<1. The problem of reconstructing quantum states from noisy homodyne data sets prompted an intense scientific debate about the presence or absence of a lower homodyne efficiency bound (η>0.5) below which quantum features, like quantum interferences, cannot be retrieved. Here, by numerical experiments, we demonstrate that quantum interferences can be effectively reconstructed also for low homodyne detection efficiency. In particular, we address the challenging case of a Schroedinger cat state and test the minimax and adaptive Wigner function reconstruction technique by processing homodyne data distributed according to the chosen state but with an efficiency η>0.5. By numerically reproducing the Schroedinger's cat interference pattern, we give evidence that quantum state reconstruction is actually possible in these conditions, and provide a guideline for handling optical tomography based on homodyne data collected by low efficiency detectors. (orig.)
The modelling and measurement of super-conducting rock joints
International Nuclear Information System (INIS)
Barton, N.; Makurat, A.; Vik, G.; Loset, F.
1985-01-01
Rock joints exhibiting exceptionally high conductivity have been responsible for severe inflows (10-50 m 3 /min.) and flooding in recent Norwegian tunneling projects. These events may be explained by channeling of flow in partially outwashed mineral fillings, associated with deep weathering in ancient basement rocks. There is also evidence to suggest extensional strain with consistent relationships to regional faulting patterns (Selmer-Olsen 1981). Hydraulic fractures making connection with joint systems that are sheared as a result of increased fluid pressure, has been deduced as the mechanism explaining unusually large fluid losses in the geothermal project in Cornwall, England (Pine and Batchelor, 1984). Such mechanisms also introduce uncertainty into water flood and MHF stimulation treatment of fractured oil and gas reservoirs, particularly when principal stress and joint orientations are poorly understood due to coring and stress measurement problems in weak, overstressed reservoir rocks. The possibility of permanent disposal of nuclear waste in crystalline rock, has also focussed attention on highly conductive (''super-conducting'') joints in nuclear waste programmes in Canada, the USA and in Europe. The bi-modal distributions of joint spacing, continuity, apertures and conductivities resulting from the discovery of super-conducting joints has important implications for the location of planned repositories, due to their dramatic impact on potential transport times. In the laboratory a class of super-conducting joints can be created by shear displacement that causes dilation when shearing non-planar features. Recent biaxial shear testing of rock joints recovered in jointed core has identified a strong coupling of conductivity and shear displacement. The theoretical predictions of constitutive relationships for coupled flow in rock joints (Barton et al. 1985) have been broadly verified
Resonator controller for the super-conducting LINAC
International Nuclear Information System (INIS)
Joshi, Gopal; Sujo, C.I.; Karande, Jitendra
2001-01-01
A resonator controller has been developed at Electronics Division, BARC, to stabilize the amplitude and phase of RF fields in the super-conducting resonators of BARC-TIFR linac. Due to reduced losses these resonators have intrinsic bandwidth of the order of one hertz at 150MHz whereas the vibration induced center frequency changes are of the order of a few hertz. In the control strategy followed the resonator is made the frequency selective part of an oscillator. The phase lock is achieved by dynamically adding a phase shift in the oscillator. In this paper we present the control strategy, implementation details and performance obtained with this controller. (author)
Cross-conjugation and quantum interference: a general correlation?
DEFF Research Database (Denmark)
Valkenier, Hennie; Guedon, Constant M.; Markussen, Troels
2014-01-01
We discuss the relationship between the pi-conjugation pattern, molecular length, and charge transport properties of molecular wires, both from an experimental and a theoretical viewpoint. Specifically, we focus on the role of quantum interference in the conductance properties of cross-conjugated...
Temperature effects on quantum interference in molecular junctions
DEFF Research Database (Denmark)
Markussen, Troels; Thygesen, Kristian Sommer
2014-01-01
A number of experiments have demonstrated that destructive quantum interference (QI) effects in molecular junctions lead to very low conductances even at room temperature. On the other hand, another recent experiment showed increasing conductance with temperature which was attributed to decoheren...
Quantum walk on the line as an interference phenomenon
International Nuclear Information System (INIS)
Knight, Peter L.; Roldan, Eugenio; Sipe, J. E.
2003-01-01
We show that the coined quantum walk on a line can be understood as an interference phenomenon, can be classically implemented, and indeed already has been. The walk is essentially two independent walks associated with the different coin sides, coupled only at initiation. There is a simple analogy between the evolution of walker positions and the propagation of light in a dispersive optical fiber
Intermode traces - fundamental interference phenomenon in quantum and wave physics
Kaplan, A.E.; Stifter, P.; Leeuwen, van K.A.H.; Lamb, W.E.; Schleich, W.P.
1998-01-01
Highly regular spatio-temporal or multi-dimensional patterns in the quantum mechanical probability or classical field intensity distributions can appear due to pair interference between individual eigen-modes of the system forming the so called intermode traces. These patterns are strongly
Towards quantum computation with multi-particle interference
Energy Technology Data Exchange (ETDEWEB)
Tamma, Vincenzo; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm (Germany); Shih, Yanhua [Univ. of Maryland, Baltimore County, Baltimore, MD (Germany). Dept. of Physics
2012-07-01
One of the main challenges in quantum computation is the realization of entangled states with a large number of particles. We have experimentally demonstrated a novel factoring algorithm which relies only on optical multi-path interference and on the periodicity properties of Gauss sums with continuous arguments. An interesting implementation of such a method can, in principle, take advantage of matter-wave interferometers characterized by long-time evolution of a BEC in microgravity. A more recent approach to factorization aims to achieve an exponential speed-up without entanglement by exploiting multi-particle m-order interference. In this case, the basic requirement for quantum computation is interference of an exponentially large number of multi-particle amplitudes.
Optical bistability using quantum interference in V-type atoms
International Nuclear Information System (INIS)
Anton, M A; Calderon, Oscar G
2002-01-01
The behaviour of a V-type three-level atomic system in a ring cavity driven by a coherent field is studied. We consider a V configuration under conditions such that interference between decay channels is important. We find that when quantum interference is taken into account, optical bistability can be realized with a considerable decrease in the threshold intensity and the cooperative parameter. On the other hand, we also include the finite bandwidth of the driving field and study its role in the optical bistable response. It is found that at certain linewidths of the driving field optical bistability is obtained even if the system satisfies the trapping condition and the threshold intensity can be controlled. Furthermore, a change from the optical bistability due to quantum interference to the usual bistable behaviour based on saturation occurs as the driving field linewidth increases
Perspectives for quantum interference with biomolecules and biomolecular clusters
International Nuclear Information System (INIS)
Geyer, P; Sezer, U; Rodewald, J; Mairhofer, L; Dörre, N; Haslinger, P; Eibenberger, S; Brand, C; Arndt, M
2016-01-01
Modern quantum optics encompasses a wide field of phenomena that are either related to the discrete quantum nature of light, the quantum wave nature of matter or light–matter interactions. We here discuss new perspectives for quantum optics with biological nanoparticles. We focus in particular on the prospects of matter-wave interferometry with amino acids, nucleotides, polypeptides or DNA strands. We motivate the challenge of preparing these objects in a ‘biomimetic’ environment and argue that hydrated molecular beam sources are promising tools for quantum-assisted metrology. The method exploits the high sensitivity of matter-wave interference fringes to dephasing and shifts in the presence of external perturbations to access and determine molecular properties. (invited comment)
Quantum interference effects in a cavity QED system
International Nuclear Information System (INIS)
Akram, Uzma; Ficek, Z
2003-01-01
We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity
High-Tc superconductor quantum interference devices
International Nuclear Information System (INIS)
1991-01-01
This patent describes a superconductive quantum interferometric device for sensing a characteristic of a magnetic field. It comprises a substrate having a surface, the substrate being selected from the group which consists of strontium titanate, aluminum oxide, sapphire, ZrO 2 and mixtures thereof; a coating of MgO on the surface of the substrate; two identical thin-strip films of a high-critical temperature superconductor on the coating, each of the films having a pair of mutually parallel arms in the form of superconductor strips extending toward and aligned with super conductor strips forming corresponding arms of the other thin-strip film, and a crossbar strip connecting the arms of each thin-strip film at right angles to the arms, the high-critical-temperature superconductor being selected from the group which consists of yttrium-barium-calcium-copper-oxides, bismuth-strontium-calcium-copper-oxides, thallium-barium-copper-oxides, thallium-barium-calcium-copper-oxides, barium oxide: potassium oxide: bismuth oxides, and calcium oxide: zinc oxide: iron oxides; and insulating films on the coating between corresponding free ends of the arms thin-strip films, the insulating films being composed of a material selected from the group which consists of silicon dioxide, silicon nitride, magnesium oxide and mixture thereof
Phase-space interference in extensive and nonextensive quantum heat engines
DEFF Research Database (Denmark)
Hardal, Ali Ümit Cemal; Paternostro, Mauro; Mustecaplioglu, Ozgur E.
2018-01-01
Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which...
Method of making an improved superconducting quantum interference device
International Nuclear Information System (INIS)
Wu, C.T.; Falco, C.M.; Kampwirth, R.T.
1977-01-01
An improved superconducting quantum interference device is made by sputtering a thin film of an alloy of three parts niobium to one part tin in a pattern comprising a closed loop with a narrow region, depositing a thin film of a radiation shield such as copper over the niobium-tin, scribing a narrow line in the copper over the narrow region, exposing the structure at the scribed line to radiation and removing the deposited copper
Quantum interference in laser-induced nonsequential double ionization
Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing
2017-09-01
Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.
Directly Measuring the Degree of Quantum Coherence using Interference Fringes
Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.
Quantum interference and coherent control in dissipative atomic systems
International Nuclear Information System (INIS)
Paspalakis, E.
1999-01-01
In this thesis we study the effects of quantum interference arising from dissipative processes in atomic systems. First, we identify quantum interference phenomena arising from decay mechanisms. Second, we use dynamical methods (the properties of laser fields) to obtain a tailored response of systems in which such interferences are present. We are mainly concerned with two dissipative processes: spontaneous emission and ionization. First, we study the effects of quantum interference arising from spontaneous emission on the population dynamics and the spontaneous emission spectrum of several multi-level systems. Coherent 'phase' control methods for manipulating the response of systems involving spontaneous emission interference are also proposed. Several interesting phenomena are identified such as partial and total quenching of spontaneous emission, phase dependent population dynamics and coherent population trapping. Next, we consider the process of laser-induced continuum structure, where an atom is coupled by two laser fields to the same electronic continuum. An {it ab initio}, non-perturbative study of this process in helium using the R-Matrix Floquet theory is presented. The results of our numerical calculations are compared with those obtained by simple perturbative models and with recent experimental results. The possibility of coherent population transfer via a continuum of states is then analyzed. We study two distinct atomic systems. A laser-induced continuum structure scheme (unstructured continuum) and a bichromatically driven autoionizing scheme (structured continuum). We find that the same conditions which lead to 'dark' states in these systems lead to efficient population transfer. We also identify parameters detrimental to the transfer efficiency and propose methods to overcome them. Finally, we study short pulse propagation in systems involving interfering dissipation mechanisms. We show that the existence of dark states can lead to loss-free and
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Thermooptic two-mode interference device for reconfigurable quantum optic circuits
Sahu, Partha Pratim
2018-06-01
Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.
Giant fifth-order nonlinearity via tunneling induced quantum interference in triple quantum dots
Directory of Open Access Journals (Sweden)
Si-Cong Tian
2015-02-01
Full Text Available Schemes for giant fifth-order nonlinearity via tunneling in both linear and triangular triple quantum dots are proposed. In both configurations, the real part of the fifth-order nonlinearity can be greatly enhanced, and simultaneously the absorption is suppressed. The analytical expression and the dressed states of the system show that the two tunnelings between the neighboring quantum dots can induce quantum interference, resulting in the giant higher-order nonlinearity. The scheme proposed here may have important applications in quantum information processing at low light level.
Spin separation driven by quantum interference in ballistic rings
International Nuclear Information System (INIS)
Bellucci, S; Onorato, P
2008-01-01
We propose an all-electrical nanoscopic structure where a pure spin current is induced in the transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. The study is essentially based on the spin-orbit coupling (SOC) arising from the laterally confining electric field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the difference in phase acquired by opposite spins states traveling clockwise and counterclockwise. We focus on single-channel transport and solve analytically the spin polarization of the current. We relate the presence of a polarized spin current with the peaks in the longitudinal conductance.
International Nuclear Information System (INIS)
Htoon, H.; Shih, C.K.; Takagahara, T.
2003-01-01
We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI
International Nuclear Information System (INIS)
Everitt, M.J.; Clark, T.D.; Stiffell, P.B.; Prance, R.J.; Prance, H.; Vourdas, A.; Ralph, J.F.
2004-01-01
In this paper we explore the quantum behavior of a superconducting quantum-interference device (SQUID) ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a device for manipulating quantum information, such properties may be of great utility in the future. However, as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of the ring
Energy Technology Data Exchange (ETDEWEB)
Waseem, Muhammad; Irfan, Muhammad [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Qamar, Shahid, E-mail: shahid_qamar@pieas.edu.pk [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)
2012-07-15
In this paper, we propose a scheme to realize three-qubit quantum phase gate of one qubit simultaneously controlling two target qubits using four-level superconducting quantum interference devices (SQUIDs) coupled to a superconducting resonator. The two lowest levels Divides 0 Right-Pointing-Angle-Bracket and Divides 1 Right-Pointing-Angle-Bracket of each SQUID are used to represent logical states while the higher energy levels Divides 2 Right-Pointing-Angle-Bracket and Divides 3 Right-Pointing-Angle-Bracket are utilized for gate realization. Our scheme does not require adiabatic passage, second order detuning, and the adjustment of the level spacing during gate operation which reduce the gate time significantly. The scheme is generalized for an arbitrary n-qubit quantum phase gate. We also apply the scheme to implement three-qubit quantum Fourier transform.
Quantum interference induced by initial system–environment correlations
International Nuclear Information System (INIS)
Man, Zhong-Xiao; Smirne, Andrea; Xia, Yun-Jie; Vacchini, Bassano
2012-01-01
We investigate the quantum interference induced by a relative phase in the correlated initial state of a system which consists in a two-level atom interacting with a damped mode of the radiation field. We show that the initial relative phase has significant effects on both the evolution of the atomic excited-state population and the information flow between the atom and the reservoir, as quantified by the trace distance. Furthermore, by considering two two-level atoms interacting with a common damped mode of the radiation field, we highlight how initial relative phases can affect the subsequent entanglement dynamics. -- Highlights: ► We study the effect of initial correlations in system–bath excitation transfer. ► We study the information flow from the bath to the system via the trace distance. ► We show how entanglement dynamics can be controlled via initial relative phases.
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
International Nuclear Information System (INIS)
Shen Jianqi
2011-01-01
Quantum vacuum mode structure can be changed due to length scale fluctuation of the cross section of a metallic waveguide. Such a structure change in vacuum modes (particularly in cutoff vacuum modes) would lead to dramatic enhancement or inhibition of spontaneous emission decay of atoms and, if the waveguide is filled with a dilute atomic vapor consisting of quantum-coherent atoms of a four-level tripod-configuration system, an optical wave propagating inside the waveguide can be coherently manipulated by tunable constructive and destructive quantum interference between two control transitions (driven by two control fields) in a quite unusual way (e.g., the optical response, in which a three-level dark state is involved, is sensitive to the waveguide dimension variations at certain positions of resonance of the atomic spontaneous emission decay rate). Therefore, an intriguing effect that can be employed to designs of new photonic and quantum optical devices could be achieved based on the present mechanisms of quantum-vacuum manipulation and quantum coherence control.
The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots
Directory of Open Access Journals (Sweden)
Hatef Ali
2010-01-01
Full Text Available Abstract In this work, the absorption coefficient of a metallic photonic crystal doped with nanoparticles has been obtained using numerical simulation techniques. The effects of quantum interference and the concentration of doped particles on the absorption coefficient of the system have been investigated. The nanoparticles have been considered as semiconductor quantum dots which behave as a four-level quantum system and are driven by a single coherent laser field. The results show that changing the position of the photonic band gap about the resonant energy of the two lower levels directly affects the decay rate, and the system can be switched between transparent and opaque states if the probe laser field is tuned to the resonance frequency. These results provide an application for metallic nanostructures in the fabrication of new optical switches and photonic devices.
International Nuclear Information System (INIS)
Li Hong-Yi; Wu Chun-Wang; Chen Yu-Bo; Lin Yuan-Gen; Chen Ping-Xing; Li Cheng-Zu
2013-01-01
We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity—SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology
Quantum interference of ballistic carriers in one-dimensional semiconductor rings
International Nuclear Information System (INIS)
Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.
2000-01-01
Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru
A voltage biased superconducting quantum interference device bootstrap circuit
International Nuclear Information System (INIS)
Xie Xiaoming; Wang Huiwu; Wang Yongliang; Dong Hui; Jiang Mianheng; Zhang Yi; Krause, Hans-Joachim; Braginski, Alex I; Offenhaeusser, Andreas; Mueck, Michael
2010-01-01
We present a dc superconducting quantum interference device (SQUID) readout circuit operating in the voltage bias mode and called a SQUID bootstrap circuit (SBC). The SBC is an alternative implementation of two existing methods for suppression of room-temperature amplifier noise: additional voltage feedback and current feedback. Two circuit branches are connected in parallel. In the dc SQUID branch, an inductively coupled coil connected in series provides the bias current feedback for enhancing the flux-to-current coefficient. The circuit branch parallel to the dc SQUID branch contains an inductively coupled voltage feedback coil with a shunt resistor in series for suppressing the preamplifier noise current by increasing the dynamic resistance. We show that the SBC effectively reduces the preamplifier noise to below the SQUID intrinsic noise. For a helium-cooled planar SQUID magnetometer with a SQUID inductance of 350 pH, a flux noise of about 3 μΦ 0 Hz -1/2 and a magnetic field resolution of less than 3 fT Hz -1/2 were obtained. The SBC leads to a convenient direct readout electronics for a dc SQUID with a wider adjustment tolerance than other feedback schemes.
Superconducting quantum interference monitor of charged particle beam current
International Nuclear Information System (INIS)
Gertsev, K.F.; Mikheev, M.S.
1981-01-01
Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru
International Nuclear Information System (INIS)
Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi
2006-01-01
We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns
Interference with a quantum dot single-photon source and a laser at telecom wavelength
Energy Technology Data Exchange (ETDEWEB)
Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)
2015-09-28
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.
Interference with a quantum dot single-photon source and a laser at telecom wavelength
International Nuclear Information System (INIS)
Felle, M.; Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Farrer, I.; Ritchie, D. A.; Penty, R. V.
2015-01-01
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve.
Ma, Jing-Min; Zhao, Jia; Zhang, Kai-Cheng; Peng, Ya-Jing; Chi, Feng
2011-03-28
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively.PACS numbers:
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
Directory of Open Access Journals (Sweden)
Ma Jing-Min
2011-01-01
Full Text Available Abstract Spin-dependent transport through a quantum-dot (QD ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers:
International Nuclear Information System (INIS)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang
2014-01-01
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.
Electrochemical control of quantum interference in anthraquinone-based molecular switches
DEFF Research Database (Denmark)
Markussen, Troels; Schiøtz, Jakob; Thygesen, Kristian Sommer
2010-01-01
Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone-based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone...... of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference....
2016-01-26
AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects
Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices
Berggren, Susan Anne Elizabeth
This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.
Marshman, Emily; Singh, Chandralekha
2017-01-01
Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…
Compact X-ray source at STF (Super Conducting Accelerator Test Facility)
International Nuclear Information System (INIS)
Urakawa, J
2012-01-01
KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.
Quantum Anatomy of the Classical Interference of n-Photon States in a Mach-Zehnder Interferometer
International Nuclear Information System (INIS)
Ramírez-Cruz, N; Velázquez, V; Bastarrachea-Magnani, M A
2016-01-01
In this work we present the theory for the quantum interference of states with an arbitrary number of photons in a Mach-Zehnder interferometer. We express the mathematical description of the interference in an algebraic way. We show the interference pattern of an average of a n photons input state corresponds to the classical interference pattern, which tells us the last comes from a quantum interference statistical average. Then, we propose to use this scheme to study the statistical transition from quantum to classical interference. (paper)
Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos
2018-04-01
The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.
Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.
Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X
2016-01-21
Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.
Quantum Interference between Autonomous Single-Photon Sources from Doppler-Broadened Atomic Ensemble
Jeong, Teak; Lee, Yoon-Seok; Park, Jiho; Kim, Heonoh; Moon, Han Seb
2017-01-01
To realize a quantum network based on quantum entanglement swapping, bright and completely autonomous sources are essentially required. Here, we experimentally demonstrate Hong-Ou-Mandel (HOM) quantum interference between two independent bright photon pairs generated via the spontaneous four-wave mixing in Doppler-broadened ladder-type 87Rb atoms. Bright autonomous heralded single photons are operated in a continuous-wave (CW) mode with no synchronization or supplemental filters. The four-fol...
Quantum theory of two-photon wavepacket interference in a beamsplitter
International Nuclear Information System (INIS)
Wang, Kaige
2006-01-01
A general theory is derived for the interference of a two-photon wavepacket in a beamsplitter. The theory is presented in the Schroedinger picture so that the quantum nature of the two-photon interference is explicitly revealed. We find that the topological symmetry of the probability-amplitude spectrum of the two-photon wavepacket dominates the nature of the two-photon interference, which may be distinguished by the increase or decrease of the coincidence probability in the absence of interference. However, two-photon entanglement can be identified by the nature of the interference. We demonstrate the necessary and sufficient conditions for perfect two-photon interference. It is shown that a two-photon entangled state with an anti-symmetric spectrum passes through a 50/50 beamsplitter with perfect transparency. The theory provides us with a unified understanding of the various two-photon interference effects. (topical review)
Optical bistability via quantum interference from incoherent pumping and spontaneous emission
International Nuclear Information System (INIS)
Sahrai, M.; Asadpour, S.H.; Sadighi-Bonabi, R.
2011-01-01
We theoretically investigate the optical bistability (OB) in a V-type three-level atomic system confined in a unidirectional ring cavity via incoherent pumping field. It is shown that the threshold of optical bistability can be controlled by the rate of an incoherent pumping field and by interference mechanism arising from the spontaneous emission and incoherent pumping field. We demonstrate that the optical bistability converts to optical multi-stability (OM) by the quantum interference mechanism. - Highlights: → We modulate the optical bistability (OB) in a four-level N-type atomic system. → The threshold of optical bistability can be controlled by the quantum interferences. → OB converts to optical multi-stability (OM) by the quantum interferences. → We discuss the effect of an incoherent pumping field on reduction of OB threshold.
Quantum interference in the system of Lorentzian and Fano magnetoexciton resonances in GaAs
International Nuclear Information System (INIS)
Siegner, U.; Mycek, M.; Glutsch, S.; Chemla, D.S.
1995-01-01
Using femtosecond four-wave mixing (FWM), we study the coherent dynamics of Lorentzian and Fano magnetoexciton resonances in GaAs. For unperturbed Lorentzian magnetoexcitons, we find that the time-integrated FWM signal decays due to dephasing processes as expected for Lorentzian resonances. The time-integrated FWM signal from a single Fano magnetoexciton resonance, however, decays quasi-instantaneously although the dephasing time of the Fano resonance is much longer than the time resolution of the experiment. This fast decay is the manifestation of destructive quantum interference. Although destructive quantum interference in our system is closely related to the dynamics of Fano resonances, for the simultaneous excitation of Lorentzian and Fano magnetoexciton resonances destructive quantum interference also strongly affects the dynamics of Lorentzian magnetoexcitons due to quantum-mechanical coupling between the two types of resonances
On-chip quantum interference of a superconducting microsphere
Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.
2018-04-01
We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.
Quantum interference of position and momentum: A particle propagation paradox
Hofmann, Holger F.
2017-08-01
Optimal simultaneous control of position and momentum can be achieved by maximizing the probabilities of finding their experimentally observed values within two well-defined intervals. The assumption that particles move along straight lines in free space can then be tested by deriving a lower limit for the probability of finding the particle in a corresponding spatial interval at any intermediate time t . Here, it is shown that this lower limit can be violated by quantum superpositions of states confined within the respective position and momentum intervals. These violations of the particle propagation inequality show that quantum mechanics changes the laws of motion at a fundamental level, providing a different perspective on causality relations and time evolution in quantum mechanics.
Resonance fluorescence and quantum interference of a single NV center
Ma, Yong-Hong; Zhang, Xue-Feng; Wu, E.
2017-11-01
The detection of a single nitrogen-vacancy center in diamond has attracted much interest, since it is expected to lead to innovative applications in various domains of quantum information, including quantum metrology, information processing and communications, as well as in various nanotechnologies, such as biological and subdiffraction limit imaging, and tests of entanglement in quantum mechanics. We propose a novel scheme of a single NV center coupled with a multi-mode superconducting microwave cavity driven by coherent fields in squeezed vacuum. We numerically investigate the spectra in-phase quadrature and out-of-phase quadrature for different driving regimes with or without detunings. It shows that the maximum squeezing can be obtained for optimal Rabi fields. Moreover, with the same parameters, the maximum squeezing is greatly increased when the detunings are nonzero compared to the resonance case.
Quantum interference oscillations of the superparamagnetic blocking in an Fe8 molecular nanomagnet
Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.
2013-01-01
We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enabl...
Landau damping effects on collision-induced quantum interference in electron-hole plasmas
International Nuclear Information System (INIS)
Hwa-Min, Kim; Young-Dae, Jung
2007-01-01
The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle θ L = π/4. (authors)
Landau damping effects on collision-induced quantum interference in electron-hole plasmas
Energy Technology Data Exchange (ETDEWEB)
Hwa-Min, Kim [Daegu Univ. Catholic, Dept. of Electronics Engineering (Korea, Republic of); Young-Dae, Jung [Hanyang Univ., Dept. of Applied Physics, Seoul (Korea, Republic of)
2007-07-15
The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle {theta}{sub L} = {pi}/4. (authors)
Description of classical and quantum interference in view of the concept of flow line
Davidovic, M.; Sanz, A. S.; Bozic, M.
2015-01-01
© 2015, Springer Science+Business Media New York. Bohmian mechanics, a hydrodynamic formulation of quantum mechanics, relies on the concept of trajectory, which evolves in time in compliance with dynamical information conveyed by the wave function. Here, this appealing idea is considered to analyze both classical and quantum interference, thus providing an alternative and more intuitive framework to understand the time evolution of waves either in terms of the flow of energy (for instance, fo...
Is the classical law of the addition of probabilities violated in quantum interference?
International Nuclear Information System (INIS)
Arsenovic, Dusan; Bozic, Mirjana; Vuskovic, Lepsa
2002-01-01
We analyse and compare the positive and negative arguments on whether quantum interference violates the classical law of the addition of probabilities. The analysis takes into account the results of recent interference experiments in neutron, electron and atom optics. Nonclassical behaviour of atoms was found in atomic experiments where the measurements included their time of arrival and space distribution. We determine probabilities of elementary events associated with the nonclassical behaviour of particles in interferometers. We show that the emergence of the interference pattern in the process of accumulation of such elementary events is consistent with the classical law of the addition of probabilities
Novel interference effects and a new quantum phase in mesoscopic ...
Indian Academy of Sciences (India)
Mesoscopic systems have provided an opportunity to study quantum effects beyond the ... tance [2], normal electron persistent currents [3], non-local current and voltage relations .... If both Б½ and Б¾ are positive or flow in the same direction of the potential drop then the ..... Fermi distribution function ¼(¯) = (1 + exp[(¯ - ) М]).
Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
Reindl, Marcus; Jöns, Klaus D; Huber, Daniel; Schimpf, Christian; Huo, Yongheng; Zwiller, Val; Rastelli, Armando; Trotta, Rinaldo
2017-07-12
Photonic quantum technologies are on the verge of finding applications in everyday life with quantum cryptography and quantum simulators on the horizon. Extensive research has been carried out to identify suitable quantum emitters and single epitaxial quantum dots have emerged as near-optimal sources of bright, on-demand, highly indistinguishable single photons and entangled photon-pairs. In order to build up quantum networks, it is essential to interface remote quantum emitters. However, this is still an outstanding challenge, as the quantum states of dissimilar "artificial atoms" have to be prepared on-demand with high fidelity and the generated photons have to be made indistinguishable in all possible degrees of freedom. Here, we overcome this major obstacle and show an unprecedented two-photon interference (visibility of 51 ± 5%) from remote strain-tunable GaAs quantum dots emitting on-demand photon-pairs. We achieve this result by exploiting for the first time the full potential of a novel phonon-assisted two-photon excitation scheme, which allows for the generation of highly indistinguishable (visibility of 71 ± 9%) entangled photon-pairs (fidelity of 90 ± 2%), enables push-button biexciton state preparation (fidelity of 80 ± 2%) and outperforms conventional resonant two-photon excitation schemes in terms of robustness against environmental decoherence. Our results mark an important milestone for the practical realization of quantum repeaters and complex multiphoton entanglement experiments involving dissimilar artificial atoms.
Entanglement of distant superconducting quantum interference device rings
International Nuclear Information System (INIS)
Zukarnain, Z Ahmad; Konstadopoulou, A; Vourdas, A; Migliore, R; Messina, A
2005-01-01
We consider two distant mesoscopic SQUID rings, approximated with two-level systems, interacting with two-mode microwaves. The Hamiltonian of the system is used to calculate its time evolution. The cases with microwaves which at t = 0 are in separable states (classically correlated) or entangled states (quantum mechanically correlated) are studied. It is shown that the Josephson currents in the two SQUID rings are also correlated
Quantum interference metrology at deep-UV wavelengths using phase-controlled ultrashort laser pulses
Zinkstok, R. Th; Witte, S.; Ubachs, W.; Hogervorst, W.; Eikema, K. S E
2005-01-01
High-resolution metrology at wavelengths shorter than ultraviolet is in general hampered by a limited availability of appropriate laser sources. It is demonstrated that this limitation can be overcome by quantum-interference metrology with frequency up-converted ultrafast laser pulses. The required
Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer
Directory of Open Access Journals (Sweden)
Yang XF
2010-01-01
Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.
International Nuclear Information System (INIS)
Liu Jiaren; Zhang Zhiyi; Xiao George; Grover, C P
2003-01-01
The spontaneous emission spectrum of a ladder three-level atom with an upper transition driven by a coherent field is calculated under a universal model where various decays, any incoherent pumping and coherent driving are taken into account. The analytical expression for the spectrum profile is given on the basis of the quantum regression theorem. To our knowledge, it is the first time that the quantitative criterion condition Ω ab - γ ac vertical bar, under which quantum destructive interference induced by the coherent driving field occurs, is deduced for the modification of spontaneous emission from the middle level to the ground level. The roles and limits of incoherent pumping, coherent driving and experimental configuration are discussed for realizing the quantum interference and reducing the Doppler effects
International Nuclear Information System (INIS)
Tian, Si-Cong; Tong, Cun-Zhu; Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang
2015-01-01
The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process
Ramsey, Christopher; Del Barco, Enrique; Hill, Stephen; Shah, Sonali; Beedle, Christopher; Hendrickson, David
2008-03-01
The synthetic flexibility of molecular magnets allows one to systematically produce samples with desirable properties such as those with entangled spin states for implementation in quantum logic gates. Here we report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel.
Energy Technology Data Exchange (ETDEWEB)
Tang, Jau
1996-02-01
As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.
Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach
Directory of Open Access Journals (Sweden)
Ø. Langangen
2012-01-01
Full Text Available The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light.
Engineering two-photon high-dimensional states through quantum interference
Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew
2016-01-01
Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685
Quantum interference effects at room temperature in OPV-based single-molecule junctions
DEFF Research Database (Denmark)
Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper
2013-01-01
Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...
Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring
International Nuclear Information System (INIS)
Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang
2010-01-01
The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.
Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.
2012-08-01
We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.
Quantum Interference Oscillations of the Superparamagnetic Blocking in an Fe8 Molecular Nanomagnet
Burzurí, E.; Luis, F.; Montero, O.; Barbara, B.; Ballou, R.; Maegawa, S.
2013-08-01
We show that the dynamic magnetic susceptibility and the superparamagnetic blocking temperature of an Fe8 single molecule magnet oscillate as a function of the magnetic field Hx applied along its hard magnetic axis. These oscillations are associated with quantum interferences, tuned by Hx, between different spin tunneling paths linking two excited magnetic states. The oscillation period is determined by the quantum mixing between the ground S=10 and excited multiplets. These experiments enable us to quantify such mixing. We find that the weight of excited multiplets in the magnetic ground state of Fe8 amounts to approximately 11.6%.
Energy Technology Data Exchange (ETDEWEB)
Blois, A., E-mail: a.blois@ucl.ac.uk; Rozhko, S.; Romans, E. J. [London Centre for Nanotechnology, University College London (UCL), 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Hao, L.; Gallop, J. C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)
2013-12-21
Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.
Brezinski, M E
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.
Brezinski, ME
2018-01-01
Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.
Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Zhan, Zhiqiang; Wu, Weidong
2018-06-01
Direct evidence of quantum interference magnetotransport in polycrystalline germanium films in the variable-range hopping (VRH) regime is reported. The temperature dependence of the conductivity of germanium films fulfilled the Mott VRH mechanism with the form of ? in the low-temperature regime (?). For the magnetotransport behaviour of our germanium films in the VRH regime, a crossover, from negative magnetoconductance at the low-field to positive magnetoconductance at the high-field, is observed while the zero-field conductivity is higher than the critical value (?). In the regime of ?, the magnetoconductance is positive and quadratic in the field for some germanium films. These features are in agreement with the VRH magnetotransport theory based on the quantum interference effect among random paths in the hopping process.
Influence of the Dzyaloshinskii-Moriya exchange interaction on quantum phase interference of spins
Wernsdorfer, Wolfgang; Stamatatos, T. C.; Christou, G.
2009-03-01
Magnetization measurements of a Mn12mda wheel single-molecule magnet (SMM) with a spin ground state of S = 7 show resonant tunneling and quantum phase interference, which are established by studying the tunnel rates as a function of a transverse field applied along the hard magnetization axis. We show how the Dzyaloshinskii-Moriya (DM) exchange interaction can affect the tunneling transitions and quantum phase interference of a SMM. Of particular novelty and importance is the phase-shift observed in the tunnel probabilities of some transitions as a function of the DM vector orientation. Such observations are of importance to potential applications of SMMs that hope to take advantage of the tunneling processes that such molecules can undergo. Ref.: W. Wernsdorfer, T.C. Stamatatos, G. Christou, Phys. Rev. Lett., 101, (28 Nov. 2008).
A parabolic model to control quantum interference in T-shaped molecular junctions
DEFF Research Database (Denmark)
Nozaki, Daijiro; Sevincli, Haldun; Avdoshenko, Stanislav M.
2013-01-01
Quantum interference (QI) effects in molecular devices have drawn increasing attention over the past years due to their unique features observed in the conductance spectrum. For the further development of single molecular devices exploiting QI effects, it is of great theoretical and practical...... interest to develop simple methods controlling the emergence and the positions of QI effects like anti-resonances or Fano line shapes in conductance spectra. In this work, starting from a well-known generic molecular junction with a side group (T-shaped molecule), we propose a simple graphical method...... to visualize the conditions for the appearance of quantum interference, Fano resonances or anti-resonances, in the conductance spectrum. By introducing a simple graphical representation (parabolic diagram), we can easily visualize the relation between the electronic parameters and the positions of normal...
Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes
International Nuclear Information System (INIS)
Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul
2017-01-01
The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.
Automatic adjustment of bias current for direct current superconducting quantum interference device
International Nuclear Information System (INIS)
Makie-Fukuda, K.; Hotta, M.; Okajima, K.; Kado, H.
1993-01-01
A new method of adjusting the bias current of dc superconducting quantum interference device (SQUID) is described. It is shown that the signal-to-noise ratio of a SQUID magnetometer connected in a flux-locked loop configuration is proportional to the second harmonic of the output signal from the SQUID. A circuit configuration that can automatically optimize a SQUID's bias current by measuring this second harmonic and adjusting the bias current accordingly is proposed
International Nuclear Information System (INIS)
Kojima, Fumio; Nagashima, Yoshinori; Suzuki, Daisuke; Kasai, Naoko
1998-01-01
This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart's law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)
Energy Technology Data Exchange (ETDEWEB)
Kojima, Fumio; Nagashima, Yoshinori [Osaka Inst. of Tech. (Japan); Suzuki, Daisuke; Kasai, Naoko
1998-06-01
This paper is concerned with a computational method for detecting and characterizing defect shapes in conducting materials using superconducting quantum interference device (SQUID). The mathematical model is described by electrical potential problems with mixed boundary condition. The model output is then represented by Biot-Savart`s law. The estimation scheme is proposed for reconstructing defect shapes in sample materials with defect. Successful numerical results are reported in order to show the feasibility of the proposed algorithms. (author)
Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
International Nuclear Information System (INIS)
Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi
2016-01-01
High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; Heremans, Jean J.
2015-03-01
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biological functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.
Interferences, ghost images and other quantum correlations according to stochastic optics
International Nuclear Information System (INIS)
Fonseca da Silva, Luciano; Dechoum, Kaled
2012-01-01
There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-01-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
First Ideas Towards the Super-Conducting Magnet Design for the HESR at FAIR
Eichhorn, Ralf; Gussen, Achim; Martin, Siegfried
2005-01-01
The Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the HESR going to be part of the FAIR project at GSI. The HESR is a 50 Tm storage ring for antiprotons, based on a super-conducting magnet technology. On basis of the RHIC Dipole D0 (3.6 T), the magnet design for the HESR has started recently. One key issue will be a very compact layout because of the rather short magnets (been 1.82 m for the dipoles and 0.5 m for the other magnets). This paper will present first ideas of the magnetic and cryogenic layout, give a status report on the achievements so far and discuss the need and possible solutions for a bent magnet with a radius of curvature of 13.2 m.
Quantum interference and control of the optical response in quantum dot molecules
Energy Technology Data Exchange (ETDEWEB)
Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)
2013-11-25
We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.
DEFF Research Database (Denmark)
Gerhardt, Stefan; Iles-Smith, Jake; McCutcheon, Dara
2018-01-01
We report a joint experimental and theoretical study of the interference properties of a single-photon source based on a In(Ga)As quantum dot embedded in a quasiplanar GaAs microcavity. Using resonant laser excitation with a pulse separation of 2 ns, we find near-perfect interference of the emitt...... in excitonic Rabi oscillations....
International Nuclear Information System (INIS)
Handel, P.H.
1998-01-01
The author's recent application of the new Quantum Information Theory Approach (QIT) to Infra Quantum Physics (IQP) explains for the first time the apparent lack of unitarity caused by the entropy increase in the Quantum 1/f Effect (Q1/fE). This allows for a better understanding of the quantum 1/f effect in this paper, showing no resultant entropy increase and therefore no violation of unitarity. This new interpretation involves the concept of von Neumann Quantum Entropy, including the new negative conditional entropy concept for quantum entangled states introduced by QIT. The Q1/fE was applied to many high-tech systems, in particular to ultra small electronic devices. The present paper explains how the additional entropy implied by the Q1/fE arises in spite of the entropy-conserving evolution of the system. On this basis, a general derivation of the conventional and coherent quantum 1/f effect is given. (author)
Tavernelli, Ivano
2018-06-01
Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.
Interference of Photons from a Weak Laser and a Quantum Dot
Ritchie, David; Bennett, Anthony; Patel, Raj; Nicoll, Christine; Shields, Andrew
2010-03-01
We demonstrate two-photon interference from two unsynchronized sources operating via different physical processes [1]. One source is spontaneous emission from the X^- state of an electrically-driven InAs/GaAs single quantum dot with μeV linewidth, the other stimulated emission from a laser with a neV linewidth. We mix the emission from these sources on a balanced non-polarising beam splitter and measure correlations in the photons that exit using Si-avalanche photodiodes and a time-correlated counting card. By periodically switching the polarisation state of the weak laser we simultaneously measure the correlation for parallel and orthogonally polarised sources, corresponding to maximum and minimum degrees of interference. When the two sources have the same intensity, a reduction in the correlation function at time zero for the case of parallel photon sources clearly indicates this interference effect. To quantify the degree of interference, we develop a theory that predicts the correlation function. Data and experiment are then compared for a range of intensity ratios. Based on this analysis we infer a wave-function overlap of 91%, which is remarkable given the fundamental differences between the two sources. [1] Bennett A. J et al Nature Physics, 5, 715--717 (2009).
International Nuclear Information System (INIS)
Hossein Asadpour, Seyyed; Solookinejad, G; Panahi, M; Ahmadi Sangachin, E
2016-01-01
Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily. (paper)
The Relation between Structure and Quantum Interference in Single Molecule Junctions
DEFF Research Database (Denmark)
Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer
2010-01-01
Quantum interference (QI) of electron pathways has recently attracted increased interest as an enabling tool for single-molecule electronic devices. Although various molecular systems have been shown to exhibit QI effects and a number of methods have been proposed for its analysis, simple...... guidelines linking the molecular structure to QI effects in the phase-coherent transport regime have until now been lacking. In the present work we demonstrate that QI in aromatic molecules is intimately related to the topology of the molecule’s π system and establish a simple graphical scheme to predict...
Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu
2014-01-01
We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.
International Nuclear Information System (INIS)
Yang, C.-P.; Han Siyuan
2006-01-01
We show a way to realize an arbitrary rotation gate in a three-level superconducting quantum interference device (SQUID) qubit using resonant interaction. In this approach, the two logical states of the qubit are represented by the two lowest levels of the SQUID and a higher-energy intermediate level is utilized for the gate manipulation. By considering spontaneous decay from the intermediate level during the gate operation, we present a formula for calculating average fidelity over all possible initial states. Finally, based on realistic system parameters, we show that an arbitrary rotation gate can be achieved with a high fidelity in a SQUID
Enhanced quantum interference transport in gold films with random antidot arrays
Directory of Open Access Journals (Sweden)
Zhaoguo Li
2016-09-01
Full Text Available We report on the quantum interference transport of randomly distributed antidot arrays, which were prepared on gold films via the focused ion beam direct writing method. The temperature dependence of the gold films’ resistances with and without random antidot arrays were described via electron–phonon interaction theory. Compared with the pristine gold films, we observed an unexpected enhancement of the weak localization signature in the random antidot array films. The physical mechanism behind this enhancement may originate from the enhancement of electron–electron interactions or the suppression of electron–phonon interactions; further evidence is required to determine the exact mechanism.
DEFF Research Database (Denmark)
Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D
2006-01-01
We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance w...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....
Character of quantum interference on superconducting circuits made of V3Si
International Nuclear Information System (INIS)
Golovashkin, A.I.; Lykov, A.N.; Prishchepa, S.L.
1981-01-01
The characteristics of circuits formed by two parallel superconducting bridge-type contacts made of V 3 Si are studied. The bridges made of V 3 Si films having the 1-30 μm width and 1-2 μm length and the circuits of different areas have been located in a magnetic field perpendicular to the film plane. Current oscillations through the circuit during magnetic field variations have shown themselves through periodic changes in output voltage of the circuit. The attained value of the voltage oscillation amplitude on the parallel bridge-type contacts is 60 μV. For the first time the periodic voltage oscillations are obtained using such circuits during variations of the external magnetic field. The oscillation period is defined by the quantum of magnetic flux. Perspectiveness of V 3 Si for construction of superconducting quantum interference devices is shown [ru
Spectroscopy of systems of two identical atoms: effects of quantum interference
International Nuclear Information System (INIS)
Makarov, A.A.; Yudson, V.I.
2017-01-01
Several effects of quantum interference in spectroscopy of a system of two atoms are discussed. (i) In the system of spatially separated atoms in a one-dimensional (1D) geometry (a single-mode waveguide or photon crystal), a (meta)stable excited entangled state can be formed, its decay being very sensitive to the distance between the atoms and to perturbations which cause a difference between their resonance frequencies. (ii) In a system of closely located atoms in 3D space, the extreme sensitivity of absorption and fluorescence spectra to the direction of the applied magnetic field is demonstrated. These theoretical predictions can be useful for the quantum information processing and ultrasensitive measurements.
Quantum phase slip interference device based on a shaped superconducting nanowire
Energy Technology Data Exchange (ETDEWEB)
Zorin, Alexander; Hongisto, Terhi [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2012-07-01
As was predicted by Mooij and Nazarov, the superconducting nanowires may exhibit, depending on the impedance of external electromagnetic environment, not only quantum slips of phase, but also the quantum-mechanically dual effect of coherent transfer of single Cooper pairs. We propose and realize a transistor-like superconducting circuit including two serially connected segments of a narrow (10 nm by 18 nm) nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a high external impedance (>>h/e{sup 2}∼25.8 kΩ) and, eventually, a charge bias regime. Virtual quantum phase slips in two narrow segments of the wire lead in this case to quantum interference of voltages on these segments making this circuit dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUID) and remarkable periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUID). The obtained experimental results and the model of this QPS transistor will be presented.
Tripathy, Srijeet; Bhattacharyya, Tarun Kanti
2016-09-01
Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.
Magnetic Field Tuning and Quantum Interference in a Cooper Pair Splitter.
Fülöp, G; Domínguez, F; d'Hollosy, S; Baumgartner, A; Makk, P; Madsen, M H; Guzenko, V A; Nygård, J; Schönenberger, C; Levy Yeyati, A; Csonka, S
2015-11-27
Cooper pair splitting (CPS) is a process in which the electrons of the naturally occurring spin-singlet pairs in a superconductor are spatially separated using two quantum dots. Here, we investigate the evolution of the conductance correlations in an InAs CPS device in the presence of an external magnetic field. In our experiments the gate dependence of the signal that depends on both quantum dots continuously evolves from a slightly asymmetric Lorentzian to a strongly asymmetric Fano-type resonance with increasing field. These experiments can be understood in a simple three-site model, which shows that the nonlocal CPS leads to symmetric line shapes, while the local transport processes can exhibit an asymmetric shape due to quantum interference. These findings demonstrate that the electrons from a Cooper pair splitter can propagate coherently after their emission from the superconductor and how a magnetic field can be used to optimize the performance of a CPS device. In addition, the model calculations suggest that the estimate of the CPS efficiency in the experiments is a lower bound for the actual efficiency.
Ballistic transport and quantum interference in InSb nanowire devices
International Nuclear Information System (INIS)
Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe
2017-01-01
An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could
Phase-dependent quantum interference between different pathways in bichromatic harmonic generation
International Nuclear Information System (INIS)
Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao
2009-01-01
This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)
Optical transmission modules for multi-channel superconducting quantum interference device readouts
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)
2013-12-15
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
DEFF Research Database (Denmark)
Markussen, Troels; Stadler, Robert; Thygesen, Kristian Sommer
2011-01-01
Quantum interference (QI) in molecular transport junctions can lead to dramatic reductions of the electron transmission at certain energies. In a recent work [Markussen et al., Nano Lett., 2010, 10, 4260] we showed how the presence of such transmission nodes near the Fermi energy can be predicted...... solely from the structure of a conjugated molecule when the energies of the atomic pz orbitals do not vary too much. Here we relax the assumption of equal on-site energies and generalize the graphical scheme to molecules containing different atomic species. We use this diagrammatic scheme together......, the transmission functions of functionalized aromatic molecules generally display a rather complex nodal structure due to the interplay between molecular topology and the energy of the side group orbital....
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-09-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.
International Nuclear Information System (INIS)
Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R; Sen, Aditi; Sen, Ujjwal
2016-01-01
Disordered systems form one of the centrestages of research in many body sciences and lead to a plethora of interesting phenomena and applications. A paradigmatic disordered system consists of a one-dimensional array of quantum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with natural or engineered quenched disordered couplings in an external magnetic field. These systems allow disorder-induced enhancement for bipartite and multipartite observables. Here we show that simultaneous application of independent quenched disorders results in disorder-induced enhancement, while the same is absent with individual application of the same disorders. We term the phenomenon as constructive interference and the corresponding parameter stretches as the Venus regions. Interestingly, it has only been observed for multiparty entanglement and is absent for the single- and two-party physical quantities. (paper)
International Nuclear Information System (INIS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2014-01-01
Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems
DEFF Research Database (Denmark)
Jørgensen, Jacob Lykkebo
Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...
Quantum-mechanical interference in charge exchange between hydrogen and graphene-like surfaces
International Nuclear Information System (INIS)
Romero, M; Iglesias-García, A; Goldberg, E C
2012-01-01
The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion approximation. We perform an ab initio calculation of the Anderson hybridization function that allows investigation of the effect of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. We find that consideration of the interaction of hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the hybridization function with respect to the Fermi level. Consequently, Fano factors larger than one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the suppression of the hybridization for energies above the Fermi level can explain the unexpected large negative ion formation measured in the scattering of protons by graphite-like surfaces. (paper)
Estimation of induced activity in super conducting cyclotron at VECC: Monte Carlo calculations
International Nuclear Information System (INIS)
Chatterjee, S.; Bandyopadhyay, T.
2011-01-01
Super Conducting Cyclotron (K500) at Variable Energy Cyclotron Centre, Kolkata (VECC) is at an advanced stage of commissioning and has successfully delivered many internal beams (light to heavy particles) up to the extraction radius. One of the external beam lines has already been completed and commissioned. The SCC along with the other subsystems is getting ready to deliver beam for experiments. Beam loss of during beam tuning and also during a steady beam delivery to the different experimental facilities due to many operational factors and requirements. Extraction of beam from the machine to the beam line is also a major player for the loss of beam. The interaction of the lost beam of accelerated charge particles with the machine parts will undergo different nuclear reaction and induced activity will be produced at the different parts of the machine. Moreover secondary neutrons produced having energy maximum limiting to the beam energy will also produce radioactivity in the different parts of the machine as well it will also induce radioactivity on the radiation shield constructed around the accelerator. Radio-activation of different parts of an accelerator, radiation shield walls around the machine and materials available in the room poses a radiation hazard inside the machine vault and experimental caves especially during maintenance of the machine. During the shutdown and maintenance period of the machine occupational workers will be exposed to these induced activity produced during operation of the machine. An effort was made to estimate these residual activity and dose for 80 MeV proton bombarded on Stainless Steel thereon activity produced on different materials like Cu, Al, Concrete and SS of different thickness. Cu, Al, SS are among many other materials which are widely used for fabrication of any accelerator. A simulation of the scenario was created using a Monte Carlo approach using FLUKA 2006.3b-general purpose multi particle transport code. Estimation
International Nuclear Information System (INIS)
Canto, L.F.; Donangelo, R.J.; Farhan, A.R.; Guidry, M.W.; Rasmussen, J.O.; Ring, P.; Stoyer, M.A.
1989-11-01
This paper presents new theoretical results for rotational population patterns in the nuclear SQUID effect. (The term nuclear SQUID is in analogy to the solid-state Superconducting Quantum Interference Devices.) The SQUID effect is an interesting new twist to an old quest to understand Coriolis anti-pairing (CAP) effects in nuclear rotational bands. Two-neutron transfer reaction cross sections among high-spin states have long been touted as more specific CAP probes than other nuclear properties. Heavy projectiles like Sn or Pb generally are recommended to pump the deformed nucleus to as high spin as possible for transfer. The interference and sign reversal of 2n transfer amplitudes at high spin, as predicted in the early SQUID work imposes the difficult requirement of Coulomb pumping to near back-bending spins at closest approach. For Pb on rare earths we find a dramatic departure from sudden-approximation, so that the population depression occurs as low as final spin 10h. 14 refs., 8 figs
Exact Results on Quantum Interference and Magnetoconductance in Variable-Range Hopping
Lin, Yeong-Lieh; Nori, Franco
1997-03-01
We study quantum interference effects on the transition strength for strongly localized electrons hopping on 2D square and 3D cubic lattices in a magnetic field B. In 2D, we obtain closed-form expressions for the tunneling probability between two arbitrary sites by exactly summing the corresponding phase factors of all directed paths connecting them. An analytic expression for the magnetoconductance, as an explicit function of the magnetic flux, is derived. A positive MC is clearly observed when turning on the magnetic field. When the strength of B reaches a certain value, which is inversely proportional to twice the hopping length, the MC is increased by a factor of two compared to that at zero field. The periodicity in the flux of the MC is found to be equal to hc/2e. In the experimentally important 3D case, we show how the interference patterns and the small-B behavior of the magnetoconductance vary according to the orientation of B. Furthermore, for a 3D sample, the effect on the low-flux MC due to the randomness of the angles between the hopping direction and the orientation of B is examined analytically.(Y.-L. Lin and F. Nori, Phys. Rev. Lett. 76), 4580 (1996); Phys. Rev. B 53, 15543 (1996).
International Nuclear Information System (INIS)
Silveira, R. da
1996-07-01
Possible effects of quantum-mechanical interferences between gravitational forces and the nucleus-nucleus Coulomb interaction are discussed. It is shown that, although very small, these effects could be measured using low energy scattering between identical heavy nuclei, e.g. for the system 208 Pb + 208 Pb (E L = 5 MeV). (author)
DEFF Research Database (Denmark)
García-Vela, Alberto; Henriksen, Niels Engholm
2016-01-01
The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of t...
International Nuclear Information System (INIS)
Li Yongqing; Song Peng; Chen Yuehui; Wang Weili; Ma Fengcai
2005-01-01
In our previous theoretical studies [Meng-Tao Sun, Yong-Qing Lee, and Feng-Cai Ma, Chem. Phys. Lett. 371 (2003) 342], we have reported the quantum interference on collision-induced rotational energy transfer on CO (A 1 Π, v = 3) with inert gases, which originates from the difference between the two Λ-related collision potential energy surfaces. The interference angle, which measures the degree of coherence, is presented in this paper. Based on the time-dependent first order Born approximation, taking into account the anisotropic Lennard-Jones interaction potentials, the relation of the interference angle with the factors, including experimental temperature, partner, and rotational quantum number, are obtained. The changing tendencies with them are discussed. This theoretical model is important to understanding and performing this kind of experiment.
Transmission resonances in a semiconductor-superconductor junction quantum interference structure
International Nuclear Information System (INIS)
Takagaki, Y.; Tokura, Y.
1996-01-01
Transport properties in a quantum resonator structure of a normal-conductor endash superconductor (NS) junction are calculated. Quasiparticles in a cavity region undergo multiple reflections due to an abrupt change in the width of the wire and the NS interface. Quantum interference of the reflections modulates the nominal normal reflection probability at the NS boundary. We show that various NS structures can be regarded as the quantum resonator because of the absence of propagation along the NS interface. When the incident energy coincides with the quasibound state energy levels, the zero-voltage conductance exhibits peaks for small voltages applied to the NS junction. The transmission peaks change to dips of nearly perfect reflection when the applied voltage exceeds a critical value. Two branches of the resonance, which are roughly characterized by electron and hole wavelengths, emerge from the individual dip, and the energy difference between them increases with increasing voltage. The electronlike and holelike resonance dips originating from different quasibound states at zero-voltage cross one after another when the voltage approaches the superconducting gap. We find that both crossing and anticrossing can be produced. It is shown that the individual resonance state in the NS system is associated with two zeros and two poles in the complex energy plane. The behavior of the resonance is explained in terms of splitting and merging of the zero-pole pairs. We examine the Green close-quote s function of a one-dimensional NS system in order to find out how the transmission properties are influenced by the scattering from the NS interface. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Yan, Wei; Qu, Junle; Niu, H B
2014-01-01
We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)
Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter
2018-05-01
As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.
Del Barco, Enrique
2009-03-01
We report direct evidence of quantum oscillations of the total spin length of a dimeric molecular nanomagnet through the observation of quantum interference associated with tunneling trajectories between states having different spin quantum numbers. As we outline, this is a consequence of the unique characteristics of a molecular Mn12 wheel which behaves as a (weak) ferromagnetic exchange-coupled molecular dimer: each half of the molecule acts as a single-molecule magnet (SMM), while the weak coupling between the two halves gives rise to an additional internal spin degree of freedom within the molecule, namely that its total spin may fluctuate. This extra degree of freedom accounts for several magnetization tunneling resonances that cannot be explained within the usual giant spin approximation. More importantly, the observation of quantum interference provides unambiguous evidence for the quantum mechanical superposition involving entangled states of both halves of the wheel. Magnetization results obtained in two other versions of this compound, in which the ligands have been modified, show that slight variations of the relative distance between the Mn ions determine whether the molecule behaves as a rigid magnetic unit of spin S = 7 or as two exchange-coupled halves of spin S = 7/2. We analyze the effect of the Dzyaloshinskii-Moriya antisymmetric exchange interaction in a molecule with a centre of inversion symmetry and propose a formal model to account for the observed broken degeneracy that preserves the molecular inversion symmetry.
An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device
Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer
2017-02-01
The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.
Advances in biomagnetic research using high- T{sub c} superconducting quantum interference devices
Energy Technology Data Exchange (ETDEWEB)
Yang, Hong-Chang [Department of Physics/Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Horng, Herng-Er; Yang, S Y [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Liao, Shu-Hsien, E-mail: hcyang@phys.ntu.edu.t [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)
2009-09-15
This review reports the advances of biomagnetic research using high- T{sub c} superconducting quantum interference devices (SQUIDs). It especially focuses on SQUID-detected magnetocardiography (MCG), magnetically labeled immunoassays (MLIs) as well as nuclear magnetic resonance and imaging (NMR/MRI). The progress in MCG that scientists have made and the encountered challenges are discussed here. This study includes the early detection of the electromagnetic change in cardiac activity in animal studies of hypercholesterolemic rabbits, which suggests the possibility of early diagnosis of cardiac disease in clinical applications. The progress on MLIs using measurements of remanence, magnetic relaxation and magnetic susceptibility reduction is presented. The wash-free immunomagnetic reduction shows both high sensitivity and high specificity. NMR/MRI of high spectral resolution and of high signal-to-noise ratio are addressed and discussed. The proton-phosphate J-coupling of trimethyl phosphate ((CH{sub 3}){sub 3}PO{sub 4}) in one shot in microtesla fields is demonstrated. The prospects of biomagnetic applications are addressed. (topical review)
Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I
2011-12-01
In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.
International Nuclear Information System (INIS)
Tanaka, Saburo; Akai, Tomohiro; Takemoto, Makoto; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Ikeda, Yoshio; Suzuki, Shuichi
2010-01-01
We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm 2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods. (cross-disciplinary physics and related areas of science and technology)
High-performance magnetic field sensor based on superconducting quantum interference filters
Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.
2004-08-01
We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.
Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R
2012-07-01
A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
International Nuclear Information System (INIS)
Pretzell, Alf
2012-01-01
This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.
Parasitic effects in superconducting quantum interference device-based radiation comb generators
Energy Technology Data Exchange (ETDEWEB)
Bosisio, R., E-mail: riccardo.bosisio@nano.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy); NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Solinas, P., E-mail: paolo.solinas@spin.cnr.it [SPIN-CNR, Via Dodecaneso 33, 16146 Genova (Italy)
2015-12-07
We study several parasitic effects on the implementation of a Josephson radiation comb generator based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. This system can be used as a radiation generator similarly to what is done in optics and metrology, and allows one to generate up to several hundreds of harmonics of the driving frequency. First we take into account how the assumption of a finite loop geometrical inductance and junction capacitance in each SQUID may alter the operation of the devices. Then, we estimate the effect of imperfections in the fabrication of an array of SQUIDs, which is an unavoidable source of errors in practical situations. We show that the role of the junction capacitance is, in general, negligible, whereas the geometrical inductance has a beneficial effect on the performance of the device. The errors on the areas and junction resistance asymmetries may deteriorate the performance, but their effect can be limited to a large extent by a suitable choice of fabrication parameters.
Detection of bacteria in suspension using a superconducting Quantum interference device
Energy Technology Data Exchange (ETDEWEB)
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.
2003-06-09
We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.
Detection of bacteria in suspension using a superconducting Quantum interference device
International Nuclear Information System (INIS)
Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.
2003-01-01
We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 ± 1.1) x 10 6 L. monocytogenes for a 20 (micro)L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 ± 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria
International Nuclear Information System (INIS)
Mueck, M.; Heiden, C.; Clarke, J.
1994-01-01
A detailed study has been made of the low-frequency excess noise of rf superconducting quantum interference devices (SQUIDs), fabricated from thin niobium films and operated at 4.2 K, with rf bias frequencies of 0.15, 1.7, and 3 GHz. When the SQUIDs were operated in an open-loop configuration in the absence of low-frequency flux modulation, the demodulated rf voltage exhibited a substantial level 1/f noise, which was essentially independent of the rf bias frequency. As the rf bias frequency was increased, the crossover frequency at which the 1/f noise power was equal to the white noise power moved to higher frequencies, because of the reduction in white noise. On the other hand, when the SQUID was flux modulated at 50 kHz and operated in a flux locked loop, no 1/f noise was observed at frequencies above 0.5 Hz. A detailed description of how the combination of rf bias and flux modulation removes 1/f noise due to critical current fluctuations is given. Thus, the results demonstrate that the 1/f noise observed in these SQUIDs is generated by critical current fluctuations, rather than by the hopping of flux vortices in the niobium films
International Nuclear Information System (INIS)
Cheng Yali; Bao Liman; Song Yuntao; Yao Damao
2006-01-01
The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)
DEFF Research Database (Denmark)
Nozaki, Daijiro; Avdoshenko, Stanislav M.; Sevincli, Haldun
2013-01-01
Recently the interest in quantum interference (QI) phenomena in molecular devices (molecular junctions) has been growing due to the unique features observed in the transmission spectra. In order to design single molecular devices exploiting QI effects as desired, it is necessary to provide simple...... rules for predicting the appearance of QI effects such as anti-resonances or Fano line shapes and for controlling them. In this study, we derive a transmission function of a generic molecular junction with a side group (T-shaped molecular junction) using a minimal toy model. We developed a simple method...... to predict the appearance of quantum interference, Fano resonances or anti- resonances, and its position in the conductance spectrum by introducing a simple graphical representation (parabolic model). Using it we can easily visualize the relation between the key electronic parameters and the positions...
Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan
2018-04-11
The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.
Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions
Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen
2018-05-01
Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.
Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations
Energy Technology Data Exchange (ETDEWEB)
Granata, Carmine, E-mail: carmine.granata@cnr.it; Vettoliere, Antonio
2016-02-19
The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In
Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa
2015-11-24
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
International Nuclear Information System (INIS)
Song Yuntao
2004-01-01
It can provide an ultrahigh vacuum location for the plasma operation. In order to improve its vacuum degree and attain a high quality operation environment for plasma, it is very important to proceed 250 degree C baking out to clear the wall before the plasma operation. The paper firstly gives two kinds of structures for the baking of the vacuum vessel, in which one is the baking by electricity and another is baking by the nitrogen gas. Secondly based on the numerical simulation and analysis, some results have been attained such as the baking power, temperature field distribution and thermal stress for the vacuum vessel, which can provide some valuable theory basis for the engineering design and optimization of the baking system of the HT-7U vacuum vessel or other similar super-conducting tokamak devices
Fong de Los Santos, Luis E.
Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of
International Nuclear Information System (INIS)
Myers, Whittier R.
2006-01-01
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 (micro)T. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz -1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm 3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm 3 images of bell peppers and 3 x 3 x 26 mm 3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T 1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T 1 of ex vivo normal and cancerous
Energy Technology Data Exchange (ETDEWEB)
Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)
2006-01-01
This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz^{-1/2} referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm^{3} resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm^{3} images of bell peppers and 3 x 3 x 26 mm^{3} in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T_{1}) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The
International Nuclear Information System (INIS)
Millar, Alasdair J.
2002-01-01
This thesis is concerned with the development of Superconducting Quantum Interference Device (SQUID) gradiometers based on the high temperature superconductor YBa 2 Cu 3 O 7-δ (YBCO). A step-edge Josephson junction fabrication process was developed to produce sufficiently steep (>60 deg) step-edges such that junctions exhibited RSJ-like current-voltage characteristics. The mean I C R N product of a sample of twenty step-edge junctions was 130μV. Step-edge dc SQUIDs with inductances between 67pH and 114pH were fabricated. Generally the SQUIDs had an intrinsic white flux noise in the 10-30μΦ 0 /√Hz range, with the best device, a 70pH SQUID, exhibiting a white flux noise of 5μΦ 0 /√Hz. Different first-order SQUID gradiometer designs were fabricated from single layers of YBCO. Two single-layer gradiometer (SLG) designs were fabricated on 10x10mm 2 substrates. The best balance and lowest gradient sensitivity measured for these devices were 1/300 and 308fT/cm√Hz (at 1 kHz) respectively. The larger baseline and larger flux capture area of the pick-up loops in a large area SLG design, fabricated on 30x10mm 2 substrates, resulted in significant improvements in the balance and gradient field sensitivity with 1/1000 and 50fT/cm√Hz (at 1kHz) measured respectively. To reduce the uniform field effective area of SLOs and therefore reduce the direct pick-up of environmental field noise when operated unshielded, a novel gradiometric SQUID (G-SQUID) device was developed. Fabricated from a single layer of YBCO, the G-SQUIDs with inductances of 67pH, had small uniform field effective areas of approximately 2μm 2 - more than two orders of magnitude smaller than the uniform field effective areas of conventional narrow linewidth SQUIDs of similar inductance. Two designs of G-SQUID were fabricated on 10x10mm 2 substrates. Due to their small effective areas, when cooled unshielded these devices showed no increase in their white flux noise. The best balance achieved for a G
A priori which-way information in quantum interference with unstable particles
International Nuclear Information System (INIS)
Krause, D.E.; Fischbach, E.; Rohrbach, Z.J.
2014-01-01
If an unstable particle used in a two-path interference experiment decays before reaching a detector, which-way information becomes available that reduces the detected interference fringe visibility V. Here we argue that even when an unstable particle does not decay while in the interferometer, a priori which-way information is still available in the form of path predictability P which depends on the particle's decay rate Γ. We further demonstrate that in a matter-wave Mach–Zehnder interferometer using an excited atom with an appropriately tuned cavity, P is related to V through the duality relation P 2 +V 2 =1. - Highlights: • Even undecayed unstable particles exhibit novel interference effects. • Interference is studied in a Mach–Zehnder interferometer with a cavity. • More which-way information is available when using unstable particles. • A relation between which-way information and interference is satisfied
International Nuclear Information System (INIS)
Usenko, O.; Vinante, A.; Wijts, G.; Oosterkamp, T. H.
2011-01-01
We present a scheme to measure the displacement of a nanomechanical resonator at cryogenic temperature. The technique is based on the use of a superconducting quantum interference device to detect the magnetic flux change induced by a magnetized particle attached on the end of the resonator. Unlike conventional interferometric techniques, our detection scheme does not involve direct power dissipation in the resonator, and therefore, is particularly suitable for ultralow temperature applications. We demonstrate its potential by cooling an ultrasoft silicon cantilever to a noise temperature of 25 mK, corresponding to a subattonewton thermal force noise of 0.5 aN/√(Hz).
Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz
2018-05-01
We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.
Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel
2017-02-01
We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-05-01
Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)
Biswas, Prabal; Santra, Prosenjit; Vasava, Kirit; Jayswal, Snehal; Parekh, Tejas; Chauhan, Pradeep; Patel, Hitesh; Pradhan, Subrata
2017-04-01
SST-1, country’s first indigenously built steady state super-conducting tokamak is planned to be equipped with an Nb3Sn based superconducting central solenoid, which will replace the existing copper conductor TR1 coil for the purpose of Ohmic breakdown. This central solenoid (CS) of four layers with each layer having 144 turns with an OD of 573 mm, ID of 423 mm length of 2483 mm will be housed inside a high vacuum, CRYO compatible plug-in cryostat thin shell having formed from SS 304L plate duly rolled and welded to form cylinder along with necessary accessories like LN2 bubble panel, current lead chamber, coil and cylinder support structure etc. This paper will present the design drivers, material selection, advantages and constraints of the plug-in cryostat concept, sub-systems of plug-in cryostat, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, safety issues and diagnostics, on-going works about fabrication, quality assurance/control and assembly/integration aspects with in the existing SST-1 machine bore.
Quantum nonlocality of photon pairs in interference in a Mach-Zehnder interferometer
Czech Academy of Sciences Publication Activity Database
Trojek, P.; Peřina ml., Jan
2003-01-01
Roč. 53, č. 4 (2003), s. 335-349 ISSN 0011-4626 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : entangled photon pairs * nonlocal interference * Mach-Zehender interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.263, year: 2003
Energy Technology Data Exchange (ETDEWEB)
Sun, Yuming, E-mail: ymsun@ytu.edu.cn; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian
2016-10-20
Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C{sub 2}-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What’s more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.
International Nuclear Information System (INIS)
Du, Renjun
2015-01-01
Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.
International Nuclear Information System (INIS)
Anton, M.A.; Calderon, Oscar G.; Carreno, F.
2004-01-01
In this paper we analyze the steady-state populations and gain lineshape of a V-type three-level atom with a closely spaced excited doublet. The atom is driven by a strong coherent field, a weak probe, and a single broadband squeezed vacuum. We focus our attention in the interplay between the quantum interference and the squeezed field on the probe gain. It is shown that the relative phases between the two coherent fields and the squeezed field play an important role in the optical properties of the atom. Specifically, we find that the probe can experience gain without population inversion for proper values of the parameters characterizing the squeezed field and in the absence of incoherent pumping. The system can be tailored to exhibit multiple dispersion regimes accompanied by negligible gain or absorption over a large bandwidth, a desirable feature for obtaining propagation of pulses with negligible distortion
Georgiades, Nikos P.; Polzik, Eugene S.; Kimble, H. Jeff
1999-02-02
An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100's THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 .mu.m to 1.66 .mu.m for fiber optics can be accomplished with a nearly continuous frequency coverage.
Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity.
Okawara, Hiroki; Yamada, Kei; Asada, Hideki
2012-12-07
Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore neutron interferometry with ~5 m arm length and ~10(-4) phase measurement accuracy would place a bound on a CS parameter comparable to the Gravity Probe B satellite.
Uncertainty measurement with belief entropy on interference effect in Quantum-Like Bayesian Networks
Huang, Zhiming; Yang, Lin; Jiang, Wen
2017-01-01
Social dilemmas have been regarded as the essence of evolution game theory, in which the prisoner's dilemma game is the most famous metaphor for the problem of cooperation. Recent findings revealed people's behavior violated the Sure Thing Principle in such games. Classic probability methodologies have difficulty explaining the underlying mechanisms of people's behavior. In this paper, a novel quantum-like Bayesian Network was proposed to accommodate the paradoxical phenomenon. The special ne...
Implications of Lorentz covariance for the guidance equation in two-slit quantum interference
International Nuclear Information System (INIS)
Holland, Peter; Philippidis, Chris
2003-01-01
It is known that Lorentz covariance fixes uniquely the current and the associated guidance law in the trajectory interpretation of quantum mechanics for spin-(1/2) particles. In the nonrelativistic domain this implies a guidance law for the electron which differs by an additional spin-dependent term from that originally proposed by de Broglie and Bohm. In this paper, we explore some of the implications of the modified guidance law. We bring out a property of mutual dependence in the particle coordinates that arises in product states, and show that the quantum potential has scalar and vector components, which implies the particle is subject to a Lorentz-like force. The conditions for the classical limit and the limit of negligible spin are given, and the empirical sufficiency of the model is demonstrated. We then present a series of calculations of the trajectories based on two-dimensional Gaussian wave packets which illustrate how the additional spin-dependent term plays a significant role in structuring both the individual trajectories and the ensemble. The single packet corresponds to quantum inertial motion. The distinct features encountered when the wave function is a product or a superposition are explored, and the trajectories that model the two-slit experiment are given. The latter paths exhibit several new characteristics compared with the original de Broglie-Bohm ones, such as crossing of the axis of symmetry
Interference effects on quantum light group velocity in cavity induced transparency
International Nuclear Information System (INIS)
Eilam, Asaf; Thanopulos, Ioannis
2015-01-01
We investigate the propagation of a quantized probe field in a dense medium composed of three-level Λ-type systems under cavity electromagnetically induced transparency conditions. We treat the medium as composed of collective states of the three-level systems while the light-medium interaction occurs within clusters of such collective states depending on the photon number state of the probe field. We observe slower group velocity for lower photon number input probe field only under conditions of no interference between different clusters of collective states in the system. (paper)
Interference of Multi-Mode Gaussian States and "non Appearance" of Quantum Correlations
Olivares, Stefano
2012-01-01
We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncorrelated multi-mode Gaussian states. In particular, we introduce the notion of "locally the same states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing, i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We also study the interference of orthogonally polarized Gaussian states by means of an interferometric scheme based on a beam splitter, rotators of polarization and polarization filters.
Linearity of high-Tc dc superconducting quantum interference device operated in a flux-locked loop
International Nuclear Information System (INIS)
Nichols, D.G.; Dantsker, E.; Kleiner, R.; Mueck, M.; Clarke, J.
1996-01-01
Measurements have been made of the linearity of a high transition temperature dc superconducting quantum interference device (SQUID) operated at 77 K with 130 kHz flux modulation in a flux-locked loop. The degree of nonlinearity was determined from harmonic generation. A sinusoidal magnetic flux with harmonic content less than -130 dB was applied to the SQUID, which was cooled in a magnetic field below 10 -7 T, and the harmonics at the output of the flux-locked loop were measured with a spectrum analyzer. For input signals at frequencies up to 248 Hz and amplitudes up to 20Φ 0 rms (Φ 0 is the flux quantum), the second, third, and fourth harmonics were each at least 115 dB below the fundamental. At higher frequencies the harmonic content began to increase because of the reduction in the open-loop gain of the flux-locked loop. The magnitude of the harmonics was not measurably changed when the SQUID was cooled in a field of 100 μT. The amplitudes of the even harmonics depended critically on the amplitude of the 130 kHz flux modulation, and became zero when its peak-to-peak value was precisely Φ 0 /2. copyright 1996 American Institute of Physics
Directory of Open Access Journals (Sweden)
Hideki Gotoh
2014-10-01
Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.
Zhao, Xin; Geskin, Victor; Stadler, Robert
2017-03-01
Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.
Magneto-optical quantum interferences in a system of spinor excitons
Kuan, Wen-Hsuan; Gudmundsson, Vidar
2018-04-01
In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.
Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek
2018-04-01
We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.
International Nuclear Information System (INIS)
Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho
2014-01-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
Hall Barbosa, C.
2004-06-01
A technique had been previously developed, based on magnetic field measurements using a superconducting quantum interference device sensor, to localize in three dimensions steel needles lost in the human body. In all six cases that were treated until now, the technique allowed easy surgical localization of the needles with high accuracy. The technique decreases, by a large factor, the surgery time for foreign body extraction, and also reduces the generally high odds of failure. The method is accurate, noninvasive, and innocuous, and with clear clinical importance. Despite the importance of needle localization, the most prevalent foreign body in the modern society is the firearm projectile (bullet), generally composed of lead, a paramagnetic material, thus not presenting a remanent magnetic field as steel needles do. On the other hand, since lead is a good conductor, eddy current detection techniques can be employed, by applying an alternating magnetic field with the aid of excitation coils. The primary field induces eddy currents on the lead, which in turn generate a secondary magnetic field that can be detected by a magnetometer, and give information about position and volume of the conducting foreign body. In this article we present a theoretical study for the development of a localization technique for lead bullets inside the human body. Initially, we present a model for the secondary magnetic field generated by the bullet, given a known applied field. After that, we study possible excitation systems, and propose a localization algorithm based on the detected magnetic field.
Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi
2008-03-01
We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.
Kosevich, Yu. A.; Strelnikov, I. A.
2018-02-01
Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.
International Nuclear Information System (INIS)
Minotani, T.; Enpuku, K.; Kuroki, Y.
1997-01-01
Distortion of voltage versus flux (V endash Φ) relation of a dc superconducting quantum interference device (SQUID) coupled to a multiturn input coil is studied. First, resonant behavior of the coupled SQUID due to the so-called input coil resonance is clarified. It is shown that large rf noise flux is produced by the input coil resonance. This rf flux is added to the SQUID, and results in large rf voltage across the SQUID. In the case where parasitic capacitance exists between the input coil and the ground of the SQUID, this rf voltage produces the rf flux again, i.e., a feedback loop for the rf flux is formed. Taking into account this capacitive feedback, we study the V endash Φ relation of the coupled SQUID. Numerical simulation shows that the V endash Φ relation is distorted considerably by the feedback mechanism. The simulation result explains well the experimental V endash Φ relation of the coupled SQUID. The combination of the input coil resonance with the capacitive feedback is the most likely mechanism for the distorted V endash Φ curve of the coupled SQUID. The condition for occurrence of the distorted V endash Φ curve due to the capacitive feedback is also obtained, and methods to prevent degradation are discussed. copyright 1997 American Institute of Physics
Czech Academy of Sciences Publication Activity Database
Peřina, Jan
2003-01-01
Roč. 48, č. 4 (2003), s. 99-103 ISSN 0447-6441 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010921 Keywords : interference * quantum cryptography * quantum computing * quantum teleportation Subject RIV: BH - Optics, Masers, Lasers
Energy Technology Data Exchange (ETDEWEB)
Wagner, Konrad
2007-09-15
In the framework of the thesis presented here for the first time quantum interference effects in ferromagnetic semiconductors could be uniquely detected. For this wire and ring structures with line widths of few nanometers were fabricated and universal conductivity fluctuations and Aharonov-Bohm oscillations at very low temperatures (<20 mK) were studied. From the analysis of the temperature and length dependence of the fluctuations knowledge about the coherence length and the scattering processes connected with this could be obtained.
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels Engholm
2013-01-01
distributions of the pulses at the rotational resonance frequencies play an important role. Furthermore, we investigate the interference between multiple rotational excitation pathways following prealignment with a nonresonant 800-nm femtosecond pulse. It is shown that such interference can lead...
DEFF Research Database (Denmark)
Unsleber, S.; McCutcheon, Dara; Dambach, M.
We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...
Quantum Interference of Molecules
Indian Academy of Sciences (India)
IAS Admin
in terms of the established laws of classical physics and called for a radically different way of thinking. This led to the ... (Compton, 1922), the exclusion principle (Pauli, 1922), ... tian Huygens had proposed the wave theory of light in. 1690 ...
Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.
2005-05-01
We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.
Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.
2007-01-01
In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.
Energy Technology Data Exchange (ETDEWEB)
Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2010-08-28
The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.
International Nuclear Information System (INIS)
Yang Chuiping; Han Siyuan
2004-01-01
A scheme is proposed for generating Greenberger-Horne-Zeilinger (GHZ) entangled states of multiple superconducting quantum-interference device (SQUID) qubits by the use of a microwave cavity. The scheme operates essentially by creating a single photon through an auxiliary SQUID built in the cavity and performing a joint multiqubit phase shift with assistance of the cavity photon. It is shown that entanglement can be generated using this method, deterministic and independent of the number of SQUID qubits. In addition, we show that the present method can be applied to preparing many atoms in a GHZ entangled state, with tolerance to energy relaxation during the operation
DEFF Research Database (Denmark)
Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde
1993-01-01
Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...... as reference, amplitude variation, and phase shift of the voltage over the tank circuit coupled to the SQUID were measured simultaneously. It is shown that there is qualitative agreement between calculations based on the resistivity shunted junction model and the data. Moreover, using phase detection, signal...... instabilities predicted for the rf-SQUID inductance mode were observed. These signal instabilities may be exploited to enhance the transfer coefficient for measured flux-to-output signal. Journal of Applied Physics is copyrighted by The American Institute of Physics....
International Nuclear Information System (INIS)
Ren Changliang; Hofmann, Holger F.
2011-01-01
To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.
DEFF Research Database (Denmark)
Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael
2015-01-01
We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...
Michielsen, Kristel; Lippert, Thomas; Richter, Marcus; Barbara, Bernard; Miyashita, Seiji; De Raedt, Hans
We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable x, for each passage of a particle through the interferometer. Quantum theory predicts an
International Nuclear Information System (INIS)
Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji
2006-01-01
Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)
Chieh, J J; Hong, C Y
2011-08-01
Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.
Directory of Open Access Journals (Sweden)
Maxim Goryachev
2018-04-01
Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.
Energy Technology Data Exchange (ETDEWEB)
Gravielle, M.S. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)], E-mail: msilvia@iafe.uba.ar; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)
2009-02-15
This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the <1 1 0> direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.
International Nuclear Information System (INIS)
Gravielle, M.S.; Miraglia, J.E.
2009-01-01
This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.
Sarcan, F.; Nutku, F.; Donmez, O.; Kuruoglu, F.; Mutlu, S.; Erol, A.; Yildirim, S.; Arikan, M. C.
2015-08-01
We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications.
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Quantumness beyond quantum mechanics
International Nuclear Information System (INIS)
Sanz, Ángel S
2012-01-01
Bohmian mechanics allows us to understand quantum systems in the light of other quantum traits than the well-known ones (coherence, diffraction, interference, tunnelling, discreteness, entanglement, etc.). Here the discussion focusses precisely on two of these interesting aspects, which arise when quantum mechanics is thought within this theoretical framework: the non-crossing property, which allows for distinguishability without erasing interference patterns, and the possibility to define quantum probability tubes, along which the probability remains constant all the way. Furthermore, taking into account this hydrodynamic-like description as a link, it is also shown how this knowledge (concepts and ideas) can be straightforwardly transferred to other fields of physics (for example, the transmission of light along waveguides).
International Nuclear Information System (INIS)
Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu
2002-01-01
We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions
Quantum optics and fundamentals of quantum theory
International Nuclear Information System (INIS)
Dusek, M.
1997-01-01
Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-06-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 104 ≤ Q ≤ 2 × 104 and the square root of spectral density of current noise referred to the SQUID input √SI = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers PMR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √SI is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of PMR) or the quantization noise due to the resolution of 300-K electronics (for large values of PMR). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit √SI ≤ 5 pA/√Hz, i.e., close to √SI of
International Nuclear Information System (INIS)
Kohjiro, Satoshi; Hirayama, Fuminori; Yamamori, Hirotake; Nagasawa, Shuichi; Fukuda, Daiji; Hidaka, Mutsuo
2014-01-01
White noise of dissipationless microwave radio frequency superconducting quantum interference device (RF-SQUID) multiplexers has been experimentally studied to evaluate their readout performance for transition edge sensor (TES) photon counters ranging from near infrared to gamma ray. The characterization has been carried out at 4 K, first to avoid the low-frequency fluctuations present at around 0.1 K, and second, for a feasibility study of readout operation at 4 K for extended applications. To increase the resonant Q at 4 K and maintain low noise SQUID operation, multiplexer chips consisting of niobium nitride (NbN)-based coplanar-waveguide resonators and niobium (Nb)-based RF-SQUIDs have been developed. This hybrid multiplexer exhibited 1 × 10 4 ≤ Q ≤ 2 × 10 4 and the square root of spectral density of current noise referred to the SQUID input √S I = 31 pA/√Hz. The former and the latter are factor-of-five and seven improvements from our previous results on Nb-based resonators, respectively. Two-directional readout on the complex plane of the transmission component of scattering matrix S 21 enables us to distinguish the flux noise from noise originating from other sources, such as the cryogenic high electron mobility transistor (HEMT) amplifier. Systematic noise measurements with various microwave readout powers P MR make it possible to distinguish the contribution of noise sources within the system as follows: (1) The achieved √S I is dominated by the Nyquist noise from a resistor at 4 K in parallel to the SQUID input coil which is present to prevent microwave leakage to the TES. (2) The next dominant source is either the HEMT-amplifier noise (for small values of P MR ) or the quantization noise due to the resolution of 300-K electronics (for large values of P MR ). By a decrease of these noise levels to a degree that is achievable by current technology, we predict that the microwave RF-SQUID multiplexer can exhibit
Quantum entanglement and quantum teleportation
International Nuclear Information System (INIS)
Shih, Y.H.
2001-01-01
One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)
Information flow due to controlled interference in entangled systems
Indian Academy of Sciences (India)
Abstract. We point out that controlled quantum interference corresponds to measurement in an incomplete basis and implies a nonlocal transfer of classical information. A test of whether such a generalized measurement is permissible in quantum theory is presented.
Quantum Plasmonics: Quantum Information at the Nanoscale
2016-11-06
A schematic of the plasmonic Hong-Ou-Mandel experiment conducted is shown in Figure 2, utilizing a plasmonic beam splitter designed for a 50-50...Bunching of photons at the output port of a 4-port beam splitter due to quantum interference. In order to reach the quantum regime, the coincidence...ports of a 4-port beam splitter , as shown in Figure 1. Quantum interference manifests itself via both photons detected in the same output port
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1975-01-01
An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered
Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; Abouzeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adiguzel, Aytul; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar Saavedra, Juan Antonio; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara Caroline; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Alvarez Piqueras, Damian; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante Eric; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amrouche, Cherifa Sabrina; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anelli, Christopher Ryan; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Anthony, Matthew Thomas; Antonelli, Mario; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Araque Espinosa, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Armstrong, Alexander Iii; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asimakopoulou, Eleni Myrto; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Baluch Bahrasemani, Sina; Bailey, Adam; Baines, John; Bajic, Milena; Bakalis, Christos; Baker, Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barbe, William Mickael; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tylor Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batlamous, Souad; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Helge Christoph; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Ayda; Beddall, Andrew; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas Alfons; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Bellos, Panagiotis; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Juerg; Berlendis, Simon Paul; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Besjes, Geert-jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Birman, Mattias; Bisanz, Tobias; Biswal, Jyoti Prakash; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Bouaouda, Khalil; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brahimi, Nihal; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Brickwedde, Bernard; Briglin, Daniel Lawrence; Britton, Dave; Britzger, Daniel Andreas; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin Hylton; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas; Buescher, Daniel; Buescher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urban, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina Maria; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carra, Sonia; Carrillo Montoya, German David; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo, Florencia Luciana; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Chen, Yu-heng; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael Ryan; Clark, Philip James; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coimbra, Artur Cardoso; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Muino, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, Francois; Cortes-Gonzalez, Arely; Costa, Maria Jose; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Crane, Jonathan; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael Ann; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vincent; Crosetti, Giovanni; Cueto Gomez, Ana Rosario; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cuth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; D'amen, Gabriele; Damp, Johannes Frederic; Dandoy, Jeffrey Rogers; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nicholas Stuart; Danninger, Matthias; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; D'Auria, Saverio; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Beurs, Marcus; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Della Pietra, Massimo; della Volpe, Domenico; Dell'Acqua, Andrea; Dell'Asta, Lidia; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; Demarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; D'eramo, Louis; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; De Almeida Dias, Flavia; Dias do vale, Tiago; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fido; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; D'onofrio, Adelina; D'Onofrio, Monica; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dreyer, Timo; Du, Yanyan; Duarte Campderros, Jorge; Dubinin, Filipp; Dubovsky, Michal; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Duehrssen, Michael; Dulsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Dueren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dysch, Samuel; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel John; Faisca Rodrigues Pereira, Rui Miguel; Fakhrutdinov, Rinat; Falciano, Speranza; Falke, Peter Johannes; Falke, Saskia; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; FARRELL, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Woiciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipcic, Andrej; Filthaut, Frank; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy Mac Gregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; Foerster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia Maria; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz Pawel; Gadatsch, Stefan; Gadow, Paul Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; García, Carmen; García Navarro, José Enrique; Garcia Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gavrilyuk, Alexander; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Helene; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gessner, Gregor; Ghasemi, Sara; Ghasemi Bostanabad, Meisam; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Giannini, Antonio; Gibson, Stephen; Gignac, Matthew; Gillberg, Dag Ingemar; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian Maximilian Volker; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Goncalo, Ricardo; Goncalves Gama, Rafael; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia Lynne; Gonzalez de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gorisek, Andrej; Goshaw, Alfred; Goessling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gravili, Francesco Giuseppe; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Jorn; Grossi, Giulio Cornelio; Grout, Zara Jane; Grud, Christopher; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Guo, Ziyu; Gupta, Ruchi; Gurbuz, Saime; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageboeck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew Straiton; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard; Hayden, Daniel; Hayes, Christopher; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heath, Matthew Peter; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heilman, Jesse; Heim, Sarah; Heim, Timon Frank-thomas; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herrmann, Maximilian Georg; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Honle, Andreas; Hooberman, Benjamin Henry; Hopkins, Walter Howard; Horii, Yasuyuki; Horn, Philipp; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hrynevich, Aliaksei; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis; Huo, Peng; Hupe, Andre Marc; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche Speiser, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Islam, Wasikul; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivina, Anna; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jacka, Petr; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Goeran; Javadov, Namig; Javurek, Tomas; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeong, Jihyun; Jezequel, Stephane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Morales, Fabricio Andres; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis Fawn; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John Stakely; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James Andrew; Kepka, Oldrich; Kersten, Susanne; Kersevan, Borut Paul; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum Robert; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith B F G; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koehler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Natalia; Koeneke, Karsten; Koenig, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinides, Vasilis; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Konstantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Krstic, Jelena; Kruchonak, Uladzimir; Krueger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, Joern Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Lavorgna, Marco; Law, Alexander Thomas; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi Paul; Leblanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee JR, Lawrence; Lee, Shih-Chang; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann, Niklaus; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Leveque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liem Arvidsson, Sebastian; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Tai-hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bo; Liu, Bingxuan; Liu, Hongbin; Liu, Hao; Liu, Jianbei; Liu, Jesse Kar Kee; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yanwen; Liu, Yang; Liu, Yanlin; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Lopez, Jorge Andres; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Losel, Philipp Jonathan; Lou, Xuanhong; Lou, Xinchou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lozano Bahilo, Jose Julio; Lu, Haonan; Lu, Miaoran; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Fred; Luise, Ilaria; Lukas, Wolfgang; Luminari, Lamberto; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, LianLiang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Jumpei; Maekawa, Koki; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Amelia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandic, Igor; Maneira, Jose; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March Ruiz, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel Edison; Marroquim, Fernando; Marshall, Zach; Martensson, Ulf Fredrik Mikael; Marti i Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez Perez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Maettig, Peter; Maurer, Julien; Macek, Bostjan; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Tom; McClymont, Laurie Iain; McDonald, Emily; Mcfayden, Joshua Angus; Mchedlidze, Gvantsa; McKay, Madalyn Ann; McLean, Kayla Dawn; McMahon, Steve; Mcnamara, Peter Charles; Mcnicol, Christopher John; McPherson, Robert; Mdhluli, Joyful Elma; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Mendes Gouveia, Emanuel Demetrio; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jochen; Meyer, Jean-Pierre; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Mijovic, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuz, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh Pradip; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjoernmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Moenig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llacer, Maria; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, Alice Polyxeni; Morris, John; Morvaj, Ljiljana; Moschovakos, Paraschos; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey Andre; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Muskinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanjo, Hajime; Napolitano, Fabrizio; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara Jean May; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Yan Wing; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nibigira, Emery; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; BIN NORJOHARUDDEEN, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Abreu Juliao Ochoa De Castro, Maria Ines; Ochoa, Jean-pierre; O'Connor, Kelsey; Oda, Susumu; Odaka, Shigeru; Oerdek, Serhat; Oh, Alexander; Oh, Seog; Ohm, Christian; Oide, Hideyuki; Okawa, Hideki; Okazaki, Yuta; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason Lea; Olsson, Mats Joakim Robert; Olszewski, Andrzej; Olszowska, Jolanta; O'Neil, Dugan; Onofre, Antonio; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; O'Rourke, Abigail Alexandra; Orr, Robert; Osculati, Bianca; O'Shea, Val; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacalt, Josef; Pacey, Holly Ann; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, Jose Guillermo; Pani, Priscilla; Panizzo, Giancarlo; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Paredes Saenz, Santiago Rafael; Parida, Bibhuti; Parker, Adam Jackson; Parker, Kerry Ann; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pasuwan, Patrawan; Pataraia, Sophio; Pater, Joleen; Pathak, Atanu; Pauly, Thilo; Pearson, Benjamin; Pedersen, Maiken; Pedraza Diaz, Lucia; Costa Batalha Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Sotto-Maior Peralva, Bernardo; Perego, Marta Maria; Pereira Peixoto, Ana Paula; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Reinhild; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettee, Mariel Nelson; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia Maria; Pospisil, Stanislav; Potamianos, Karolos Jozef; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Powell, Thomas Dennis; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-maitland, Michaela; Qureshi, Anum; Rados, Petar Kevin; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel Mauricio; Rauscher, Felix; Rave, Stefan; Ravina, Baptiste; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristic, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodriguez Vera, Ana Maria; Roe, Shaun; Rogan, Christopher Sean; Rohne, Ole; Roehrig, Rainer; Roland, Christophe Pol A; Roloff, Jennifer Kathryn; Romaniouk, Anatoli; Romano, Marino; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan Hans; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Ruehr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather Lynn; Rutherfoord, John; Ruttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Sabatini, Paolo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Sahu, Arunika; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakharov, Alexander; Salamani, Dalila; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Samarati, Jerome; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval Usme, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, Joao; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Timothy Paul; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schaefer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharmberg, Nicolas; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Sebastiani, Cristiano David; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seiss, Todd; Seixas, Jose; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen Jacob; Semprini-Cesari, Nicola; Sen, Sourav; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, Jose Manuel; Silva, Manuel Jr; Silva Oliveira, Marcos Vinicius; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simon, Manuel; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjoelin, Joergen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Soffa, Aaron Michael; Soffer, Abner; Sogaard, Andreas; Su, Daxian; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila- Serrano, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa Corral, David Eduardo; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin Charles; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spano, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spiteri, Dwayne Patrick; Spousta, Martin; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanislaus, Beojan; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon Holtsberg; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Staerz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara Kristina; Strauss, Michael; Strizenec, Pavol; Stroehmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Stupak, John; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, Dms; Sultanov, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian J; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc Bao; Tackmann, Kerstin; Kinghorn-taenzer, Joseph Peter; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Tee, Amy Selvi; Teixeira-Dias, Pedro; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothee; Thiele, Fabian; Thomas, Juergen; Thompson, Stan; Thompson, Paul; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokar, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomiwa, Kehinde Gbenga; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia; Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torro Pastor, Emma; Tosciri, Cecilia; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocme, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Trovato, Fabrizio; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsai, Fang-ying; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tzovara, Eftychia; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Vallance, Robert Adam; Vallier, Alexis Roger Louis; Valls Ferrer, Juan Antonio; Van Daalen, Tal Roelof; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Varvell, Kevin; Vasquez Arenas, Gerardo Alexis; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Vecchio, Valentina; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Vergel Infante, Carlos Miguel; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Vicente Barreto Pinto, Mateus; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Von Buddenbrock, Stefan Erich; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Sfiligoj, Tina; Vuillermet, Raphael; Vukotic, Ilija; Zenis, Tibor; Zivkovic, Lidija; Wagner, Peter; Wagner, Wolfgang; Wagner-kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walbrecht, Verena Maria; Walder, James; Walker, Rodney; Walker, Stuart Derek; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jin; Wang, Jike; Wang, Peilong; Wang, Qing; Wang, Renjie; Wang, Rongkun; Wang, Rui; Wang, Song-Ming; Wang, Wei; Wang, Wenxiao; Wang, Weitao; Wang, Yufeng; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Christian; Weber, Michele; Weber, Stephen Albert; Weber, Sebastian Mario; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Pippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas Daniel; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Wilkins, Lewis Joseph; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Wozniak, Krzysztof; Wraight, Kenneth; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David Paul; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi-lin; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Christopher John; Young, Charles; Yu, Jaehoon; Yu, Jie; Yue, Xiaoguang; Yuen, Stephanie Pui Yan; Zabinski, Bartlomiej; Zacharis, George; Zaffaroni, Ettore; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zaripovas, Donatas Ramilas; Zeissner, Sonja Verena; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Zerwas, Dirk; Zgubic, Miha; Zhang, Dongliang; Zhang, Dengfeng; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Ruiqi; Zhang, Rui; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Heling; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; Zoch, Knut; Zorbas, Theodoros Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz
2018-01-01
This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a $W$ boson and a $b$-quark are significant. Events with exactly two leptons ($ee$, $\\mu\\mu$, or $e\\mu$) and two $b$-tagged jets that satisfy a multi-particle invariant mass requirement are selected from $36.1$ fb$^{-1}$ of proton-proton collision data taken at $\\sqrt{s}=13$ TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within $2\\sigma$ of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constr...
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
. In the first part we use a scattering-matrix formalism combined with results from random-matrix theory to investigate the interference of quantum optical states on a multiple scattering medium. We investigate a single realization of a scattering medium thereby showing that it is possible to create entangled...... states by interference of squeezed beams. Mixing photon states on the single realization also shows that quantum interference naturally arises by interfering quantum states. We further investigate the ensemble averaged transmission properties of the quantized light and see that the induced quantum...... interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light...
Interference-exact radiative transfer equation
DEFF Research Database (Denmark)
Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani
2017-01-01
Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....
3000 Horsepower super conductive field acyclic motor
International Nuclear Information System (INIS)
Marshall, R.
1983-01-01
A 3000 hp acyclic motor was assembled and tested utilizing superconducting field coils. The magnet assembly is designed as a quadrupole magnet, utilizing a multifilamentary niobium titanium superconductor. Each magnet coil is 18 inches in diameter and 10 inches long, and operates at rated current of 200 amperes, providing 5.8 tesla in the bore of the coils in the motor configuration. The average winding current density is 10,600 A/cm 2 . The acyclic motor is of a drum-type design with liquid metal current collectors, and is designed to model full-scale machinery for ship propulsion applications. Laboratory test data verified the electrical and electromagnetic design to be within three percent of the calculated values
Interference contrast in multi-source few photon optics
Laskowski, Wieslaw; Wiesniak, Marcin; Zukowski, Marek; Bourennane, Mohamed; Weinfurter, Harald
2009-01-01
Many recent experiments employ several parametric down conversion (PDC) sources to get multiphoton interference. Such interference has applications in quantum information. We study here how effects due to photon statistics, misalignment, and partial distinguishability of the PDC pairs originating from different sources may lower the interference contrast in the multiphoton experiments.
Burkhard, George F.; Hoke, Eric T.; McGehee, Michael D.
2010-01-01
Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burkhard, George F.
2010-05-31
Accurately measuring internal quantum efficiency requires knowledge of absorption in the active layer of a solar cell. The experimentally accessible total absorption includes significant contributions from the electrodes and other nonactive layers. We suggest a straightforward method for calculating the active layer contribution that minimizes error by subtracting optically-modeled electrode absorption from experimentally measured total absorption. (Figure Presented) © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory of fourfold interference with photon pairs from spatially separated sources
International Nuclear Information System (INIS)
Zhang, Hui Rong; Wang, Ruo Peng
2007-01-01
We present a theory for fourfold quantum interference of photons generated from independent spontaneous parametric down-conversion processes. Closed-form expressions for fourfold quantum interference patterns and visibility are found. The theoretical result for fourfold quantum interference patterns is in good agreement with experimental data reported. Detailed numerical calculations for the dependence of fourfold quantum interference visibility on experimentally controllable parameters are carried out. It is found out that higher visibility can be achieved for small biphoton width, short pump pulse coherence time, and narrow bandwidth of spectral filters. The optimal condition for obtaining at the same time higher fourfold interference visibility and intensity is also discussed
International Nuclear Information System (INIS)
Masiello, David J.; Reinhardt, William P.
2007-01-01
A time-dependent multiconfigurational self-consistent field theory is presented to describe the many-body dynamics of a gas of identical bosonic atoms confined to an external trapping potential at zero temperature from first principles. A set of generalized evolution equations are developed, through the time-dependent variational principle, which account for the complete and self-consistent coupling between the expansion coefficients of each configuration and the underlying one-body wave functions within a restricted two state Fock space basis that includes the full effects of the condensate's mean field as well as atomic correlation. The resulting dynamical equations are a classical Hamiltonian system and, by construction, form a well-defined initial value problem. They are implemented in an efficient numerical algorithm. An example is presented, highlighting the generality of the theory, in which the ballistic expansion of a fragmented condensate ground state is compared to that of a macroscopic quantum superposition state, taken here to be a highly entangled number state, upon releasing the external trapping potential. Strikingly different many-body matter-wave dynamics emerge in each case, accentuating the role of both atomic correlation and mean-field effects in the two condensate states
Free-electron laser and related quantum beams
International Nuclear Information System (INIS)
Minehara, Eisuke J.
2003-01-01
Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)
Free-electron laser and related quantum beams
Energy Technology Data Exchange (ETDEWEB)
Minehara, Eisuke J [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2003-07-01
Past, present and future development programs of the JAERI super-conducting rf linac-based FELs and light sources with and without energy recovery have been discussed and introduced briefly. The JAERI FEL group has successfully discovered, and realized the brand-new FEL lasing mode of 255 fs ultra fast pulse, 6-9% high-efficiency, one GW high peak power, a few kW average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing, we could realize a powerful and efficient free-electron laser (FEL) for industrial uses near future. In order to realize such a tunable, ultra-short-pulse, high averaged-power FEL, we have needed the efficient and powerful CW FEL driver of the JAERI compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. The JAERI energy-recovery and/or super-conducting rf linac driver has been developed to use as an industrial electron irradiator, and millimeter-wave, far-infrared, mid-infrared, near-infrared and shorter wavelength quantum beam sources. (author)
Electron Interference in Ballistic Graphene Nanoconstrictions
DEFF Research Database (Denmark)
Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes
2016-01-01
We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...
Complementarity and quantum walks
International Nuclear Information System (INIS)
Kendon, Viv; Sanders, Barry C.
2005-01-01
We show that quantum walks interpolate between a coherent 'wave walk' and a random walk depending on how strongly the walker's coin state is measured; i.e., the quantum walk exhibits the quintessentially quantum property of complementarity, which is manifested as a tradeoff between knowledge of which path the walker takes vs the sharpness of the interference pattern. A physical implementation of a quantum walk (the quantum quincunx) should thus have an identifiable walker and the capacity to demonstrate the interpolation between wave walk and random walk depending on the strength of measurement
Disorder and decoherence in coined quantum walks
International Nuclear Information System (INIS)
Zhang Rong; Qin Hao; Tang Bao; Xue Peng
2013-01-01
This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)
Coincidence Imaging and interference with coherent Gaussian beams
Institute of Scientific and Technical Information of China (English)
CAI Yang-jian; ZHU Shi-yao
2006-01-01
we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.
Superconducting Quantum Interference based Electromechanical Systems
Etaki, S.
2012-01-01
Mechanical sensors are essential tools for the detection of small forces. This thesis presents the dc SQUID as a detector for the displacement of embedded micromechanical resonators. The device geometry and basic operating principle are described. The SQUID displacement detector reaches an excellent
Young's double-slit interference with two-color biphotons.
Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2017-12-12
In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
Communication: Finding destructive interference features in molecular transport junctions
Energy Technology Data Exchange (ETDEWEB)
Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Hansen, Thorsten [Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK 2100 Copenhagen (Denmark)
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule–electrode couplings, and we demonstrate its utility with several examples.
Experimental entanglement of 25 individually accessible atomic quantum interfaces.
Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming
2018-04-01
A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.
DEFF Research Database (Denmark)
Del Nobile, Eugenio; Kouvaris, Christoforos; Sannino, Francesco
2012-01-01
We study different patterns of interference in WIMP-nuclei elastic scattering that can accommodate the DAMA and CoGeNT experiments via an isospin violating ratio $f_n/f_p=-0.71$. We study interference between the following pairs of mediators: Z and Z', Z' and Higgs, and two Higgs fields. We show ...
International Nuclear Information System (INIS)
Omnes, R.
2000-01-01
The author presents the interpretation of quantum mechanics in a simple and direct way. This book may be considered as a complement of specialized books whose aim is to present the mathematical developments of quantum mechanics. As early as the beginning of quantum theory, Bohr, Heisenberg and Pauli proposed the basis of what is today called the interpretation of Copenhagen. This interpretation is still valid but 2 important discoveries have led to renew some aspects of the interpretation of Copenhagen. The first one was the discovery of the decoherence phenomenon which is responsible for the absence of quantum interferences in the macroscopic world. The second discovery was the achievement of the complete derivation of classical physics from quantum physics, it means that the classical determinism fits in the framework of quantum probabilism. A short summary ends each chapter. (A.C.)
Quantum reality theory and philosophy
Allday, Jonathan
2009-01-01
PrefaceIntroductionAuthorPart I Our First Quantum Object: Light Some Opening Thoughts A Little Light Reading Lasers and Video Cameras Photons An Interference Experiment with Photons Interference as a Wave Effect Mach-Zehnder with Photons Delayed Choice Summary Endnotes Interlude 1: Another Interference Experiment Particles Electrons The Electron Gun The Stern-Gerlach Experiment Turning Things Round Things Get More Puzzling So, Where Did It Go? What Does It All Mean? Some Indications with Other Particles The Long and the Short of It Summary Endnotes Quantum States Where Are We Now? Describing C
Quantum Computer Games: Schrodinger Cat and Hounds
Gordon, Michal; Gordon, Goren
2012-01-01
The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…
Quantum fermions and quantum field theory from classical statistics
International Nuclear Information System (INIS)
Wetterich, Christof
2012-01-01
An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.
Automated Freedom from Interference Analysis for Automotive Software
Leitner-Fischer , Florian; Leue , Stefan; Liu , Sirui
2016-01-01
International audience; Freedom from Interference for automotive software systems developed according to the ISO 26262 standard means that a fault in a less safety critical software component will not lead to a fault in a more safety critical component. It is an important concern in the realm of functional safety for automotive systems. We present an automated method for the analysis of concurrency-related interferences based on the QuantUM approach and tool that we have previously developed....
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Interference effects of categorization on decision making.
Wang, Zheng; Busemeyer, Jerome R
2016-05-01
Many decision making tasks in life involve a categorization process, but the effects of categorization on subsequent decision making has rarely been studied. This issue was explored in three experiments (N=721), in which participants were shown a face stimulus on each trial and performed variations of categorization-decision tasks. On C-D trials, they categorized the stimulus and then made an action decision; on X-D trials, they were told the category and then made an action decision; on D-alone trials, they only made an action decision. An interference effect emerged in some of the conditions, such that the probability of an action on the D-alone trials (i.e., when there was no explicit categorization before the decision) differed from the total probability of the same action on the C-D or X-D trials (i.e., when there was explicit categorization before the decision). Interference effects are important because they indicate a violation of the classical law of total probability, which is assumed by many cognitive models. Across all three experiments, a complex pattern of interference effects systematically occurred for different types of stimuli and for different types of categorization-decision tasks. These interference effects present a challenge for traditional cognitive models, such as Markov and signal detection models, but a quantum cognition model, called the belief-action entanglement (BAE) model, predicted that these results could occur. The BAE model employs the quantum principles of superposition and entanglement to explain the psychological mechanisms underlying the puzzling interference effects. The model can be applied to many important and practical categorization-decision situations in life. Copyright © 2016 Elsevier B.V. All rights reserved.
Quantum Computation and Algorithms
International Nuclear Information System (INIS)
Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.
1999-01-01
It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution
Are Quantum Models for Order Effects Quantum?
Moreira, Catarina; Wichert, Andreas
2017-12-01
The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.
Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Hobson, Art
2011-01-01
An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…
Quantum Computers: A New Paradigm in Information Technology
Mahesh S. Raisinghani
2001-01-01
The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference). Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, i...
Low-intensity interference effects and hidden-variable theories
Energy Technology Data Exchange (ETDEWEB)
Buonomano, V [Universidade Estadual de Campinas (Brazil). Inst. de Matematica
1978-05-11
The double-slit interference experiment and other similar experiments in the low-intensity limit (that is, one photon in the apparatus at a time) are examined in the spirit of Bell's work from the point of view of hidden-variable theories. It is found that there exists a class of hidden-variable theories which disagrees with quantum mechanics for a certain type of interference experiment. A manufactured conceptualization of this class, which is a particle view of interference, is described. An experiment, which appears to be feasible, is proposed to examine this disagreement.
Trajectory description of the quantum–classical transition for wave packet interference
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.
Quantum voting and violation of Arrow's impossibility theorem
Bao, Ning; Yunger Halpern, Nicole
2017-06-01
We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.
Interference and Sensitivity Analysis.
VanderWeele, Tyler J; Tchetgen Tchetgen, Eric J; Halloran, M Elizabeth
2014-11-01
Causal inference with interference is a rapidly growing area. The literature has begun to relax the "no-interference" assumption that the treatment received by one individual does not affect the outcomes of other individuals. In this paper we briefly review the literature on causal inference in the presence of interference when treatments have been randomized. We then consider settings in which causal effects in the presence of interference are not identified, either because randomization alone does not suffice for identification, or because treatment is not randomized and there may be unmeasured confounders of the treatment-outcome relationship. We develop sensitivity analysis techniques for these settings. We describe several sensitivity analysis techniques for the infectiousness effect which, in a vaccine trial, captures the effect of the vaccine of one person on protecting a second person from infection even if the first is infected. We also develop two sensitivity analysis techniques for causal effects in the presence of unmeasured confounding which generalize analogous techniques when interference is absent. These two techniques for unmeasured confounding are compared and contrasted.
Binaural Interference: Quo Vadis?
Jerger, James; Silman, Shlomo; Silverman, Carol; Emmer, Michele
2017-04-01
The reality of the phenomenon of binaural interference with speech recognition has been debated for two decades. Research has taken one of two avenues; group studies or case reports. In group studies, a sample of the elderly population is tested on speech recognition under three conditions; binaural, monaural right and monaural left. The aim is to determine the percent of the sample in which the expected outcome (binaural score-better-than-either-monaural score) is reversed (i.e., one of the monaural scores is better than the binaural score). This outcome has been commonly used to define binaural interference. The object of group studies is to answer the "how many" question, what is the prevalence of binaural interference in the sample. In case reports the binaural interference conclusion suggested by the speech recognition tests is not accepted until it has been corroborated by other independent diagnostic audiological measures. The aim is to attempt to determine the basis for the findings, to answer the "why" question. This article is at once tutorial, editorial and a case report. We argue that it is time to accept the reality of the phenomenon of binaural interference, to eschew group statistical approaches in search of an answer to the "how many" question, and to focus on individual case reports in search of an answer to the "why" question. American Academy of Audiology.
Quantum cryptography: towards realization in realistic conditions
Energy Technology Data Exchange (ETDEWEB)
Imoto, M; Koashi, M; Shimizu, K [NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-01 (Japan); Huttner, B [Universite de Geneve, GAP-optique, 20, Rue de l` Ecole de Medecine CH1211, Geneve 4 (Switzerland)
1997-05-11
Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author) 15 refs., 1 fig., 1 tab.
Quantum cryptography: towards realization in realistic conditions
International Nuclear Information System (INIS)
Imoto, M.; Koashi, M.; Shimizu, K.; Huttner, B.
1997-01-01
Many of quantum cryptography schemes have been proposed based on some assumptions such as no transmission loss, no measurement error, and an ideal single photon generator. We have been trying to develop a theory of quantum cryptography considering realistic conditions. As such attempts, we propose quantum cryptography with coherent states, quantum cryptography with two-photon interference, and generalization of two-state cryptography to two-mixed-state cases. (author)
International Nuclear Information System (INIS)
Chapman, R.S.
1998-01-01
Interfering factors are evident in both limited reagent (radioimmunoassay) and excess reagent (immunometric assay) technologies and should be suspected whenever there is a discrepancy between analytical results and clinical findings in the investigation of particular diseases. The overall effect of interference in immunoassay is analytical bias in result, either positive or negative of variable magnitude. The interference maybe caused by a wide spectrum of factors from poor sample collection and handling to physiological factors e.g. lipaemia, heparin treatment, binding protein abnormalities, autoimmunity and drug treatments. The range of interfering factors is extensive and difficult to discuss effectively in a short review
Four photon interference experiment for the testing of the Greenberger-Horne-Zeilinger theorem
International Nuclear Information System (INIS)
Shih, Y.H.; Rubin, M.H.
1993-01-01
The theory of a four photon interference experiment is investigated for the testing of the Greenberger-Horne-Zeilinger (GHZ) theorem. The strong correlation in the GHZ theorem is due to the multi-particle Einstein-Podolsky-Rosen type entangled quantum state. We present the theory to construct the four photon EPR state for space-time variables. The four photon nonlocal quantum interference effect itself is also of great interest. (orig.)
Laser Interference Lithography
van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.
In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the
Quantum Spin Transport in Mesoscopic Interferometer
Directory of Open Access Journals (Sweden)
Zein W. A.
2007-10-01
Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.
Statistical ensembles in quantum mechanics
International Nuclear Information System (INIS)
Blokhintsev, D.
1976-01-01
The interpretation of quantum mechanics presented in this paper is based on the concept of quantum ensembles. This concept differs essentially from the canonical one by that the interference of the observer into the state of a microscopic system is of no greater importance than in any other field of physics. Owing to this fact, the laws established by quantum mechanics are not of less objective character than the laws governing classical statistical mechanics. The paradoxical nature of some statements of quantum mechanics which result from the interpretation of the wave functions as the observer's notebook greatly stimulated the development of the idea presented. (Auth.)
Super conducting fault current limiter and inductor design
International Nuclear Information System (INIS)
Rogers, J.; Boenig, H.; Chowdhuri, P.; Schermer, R.; Weldon, D.; Wollan, J.
1983-01-01
A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components--superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator--included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits
2008 LHC Open Days: Super(-conducting) events and activities
2008-01-01
Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets. Programme: BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...
Super Conducting and Conventional Magnets Test & Mapping Facilities
Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...
Codebook-based interference alignment for uplink MIMO interference channels
Lee, Hyun Ho; Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2014-01-01
In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base
Sisodia, Mitali; Shukla, Abhishek; Pathak, Anirban
2017-12-01
A scheme for distributed quantum measurement that allows nondestructive or indirect Bell measurement was proposed by Gupta et al [1]. In the present work, Gupta et al.'s scheme is experimentally realized using the five-qubit super-conductivity-based quantum computer, which has been recently placed in cloud by IBM Corporation. The experiment confirmed that the Bell state can be constructed and measured in a nondestructive manner with a reasonably high fidelity. A comparison of the outcomes of this study and the results obtained earlier in an NMR-based experiment (Samal et al. (2010) [10]) has also been performed. The study indicates that to make a scalable SQUID-based quantum computer, errors introduced by the gates (in the present technology) have to be reduced considerably.
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Electromagnetic interference: a radiant future!
Leferink, Frank Bernardus Johannes
2015-01-01
Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the
From quantum dots to quantum circuits
International Nuclear Information System (INIS)
Ensslin, K.
2008-01-01
Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse
Tests of non-local interferences in kaon physics at asymmetric φ-factories
International Nuclear Information System (INIS)
Eberhard, P.H.
1993-01-01
Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K S → K L regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric φ-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...
Zwitters: Particles between quantum and classical
International Nuclear Information System (INIS)
Wetterich, C.
2012-01-01
We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.
Diffraction and interference of single de Broglie-wavelets. Deterministic wave mechanics
International Nuclear Information System (INIS)
Barut, A.O.
1993-05-01
Wavelets are localized nonspreading solutions of massless wave equations which move like massive quantum particles. They form a bridge between classical mechanics of point particles and wave functions of probabilistic quantum mechanics, both of which can be obtained by limiting processes. Here we develop a theory of the propagation of wavelets in the presence of boundaries and derive interference phenomena of quantum theory from the behavior of single events with ''hidden parameters''. (author). 8 refs, 1 fig
Interference of identical particles from entanglement to boson-sampling
International Nuclear Information System (INIS)
Tichy, Malte C
2014-01-01
Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boson and many-fermion interference required for the description of current experiments and for the understanding of novel approaches to quantum computing. The field is motivated via the two-particle case, for which the uncorrelated, classical dynamics of distinguishable particles is compared to the quantum behaviour of identical bosons and fermions. Bunching of bosons is opposed to anti-bunching of fermions, while both species constitute equivalent sources of bipartite two-level entanglement. The realms of indistinguishable and distinguishable particles are connected by a monotonic transition, on a scale defined by the coherence length of the interfering particles. As we move to larger systems, any attempt to understand many particles via the two-particle paradigm fails: in contrast to two-particle bunching and anti-bunching, the very same signatures can be exhibited by bosons and fermions, and coherent effects dominate over statistical behaviour. The simulation of many-boson interference, termed boson-sampling, entails a qualitatively superior computational complexity when compared to fermions. The problem can be tamed by an artificially designed symmetric instance, which allows a systematic understanding of coherent bosonic and fermionic signatures for arbitrarily large particle numbers, and a means to stringently assess many-particle interference. The hierarchy between bosons and fermions also characterizes multipartite entanglement generation, for which bosons again clearly outmatch fermions. Finally, the quantum-to-classical transition between many indistinguishable and many distinguishable particles features non-monotonic structures, which dismisses the single-particle coherence length as unique indicator for
Quantum Instantons and Quantum Chaos
Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.
1999-01-01
Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.
Leakage radiation interference microscopy.
Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter
2013-09-01
We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Temporal interference with frequency-controllable long photons from independent cold atomic sources
Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.
2018-01-01
The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.
Experimental demonstration of quantum contextuality with nonentangled photons
International Nuclear Information System (INIS)
Liu, B. H.; Huang, Y. F.; Gong, Y. X.; Sun, F. W.; Zhang, Y. S.; Li, C. F.; Guo, G. C.
2009-01-01
We present an experimental test of quantum contextuality by using two-photon product states. The experimental results show that the noncontextual hidden-variable theories are violated by nonentangled states in spite of the local hidden-variable theories can be violated or not. We find that the Hong-Ou-Mandel-type quantum interference effect causes the quantum contextuality.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
International Nuclear Information System (INIS)
Liu Jianbin; Wang Jingjing; Xu Zhuo
2017-01-01
The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman’s path integral theory. The visibility of the second-order interference pattern is determined by the properties of the superposed light beams, the ratio between the intensities of these two light beams, and the reflectivity of the asymmetrical beam splitter. Some requirements about the asymmetrical beam splitter have to be satisfied in order to ensure that the visibility of the second-order interference pattern of nonclassical light beams exceeds the classical limit. The visibility of the second-order interference pattern of photons emitted by two independent single-photon sources is independent of the ratio between the intensities. These conclusions are important for the researches and applications in quantum optics and quantum information when an asymmetrical beam splitter is employed. (paper)
The intention interference effect.
Cohen, Anna-Lisa; Kantner, Justin; Dixon, Roger A; Lindsay, D Stephen
2011-01-01
Intentions have been shown to be more accessible (e.g., more quickly and accurately recalled) compared to other sorts of to-be-remembered information; a result termed an intention superiority effect (Goschke & Kuhl, 1993). In the current study, we demonstrate an intention interference effect (IIE) in which color-naming performance in a Stroop task was slower for words belonging to an intention that participants had to remember to carry out (Do-the-Task condition) versus an intention that did not have to be executed (Ignore-the-Task condition). In previous work (e.g., Cohen et al., 2005), having a prospective intention in mind was confounded with carrying a memory load. In Experiment 1, we added a digit-retention task to control for effects of cognitive load. In Experiment 2, we eliminated the memory confound in a new way, by comparing intention-related and control words within each trial. Results from both Experiments 1 and 2 revealed an IIE suggesting that interference is very specific to the intention, not just to a memory load.
Energy Technology Data Exchange (ETDEWEB)
Friege, Gunnar; Scholz, Ruediger (eds.)
2017-07-01
In this book aids for the instruction of quantum physics are described. Especially considered are the conception of the photon, quantum interference, entanglement, the photoelectric effect, and coincidence experiments. (HSI)
Indistinguishability and interference in the coherent control of atomic and molecular processes
International Nuclear Information System (INIS)
Gong Jiangbin; Brumer, Paul
2010-01-01
The subtle and fundamental issue of indistinguishability and interference between independent pathways to the same target state is examined in the context of coherent control of atomic and molecular processes, with emphasis placed on possible 'which-way' information due to quantum entanglement established in the quantum dynamics. Because quantum interference between independent pathways to the same target state occurs only when the independent pathways are indistinguishable, it is first shown that creating useful coherence between nondegenerate states of a molecule for subsequent quantum interference manipulation cannot be achieved by collisions between atoms or molecules that are prepared in momentum and energy eigenstates. Coherence can, however, be transferred from light fields to atoms or molecules. Using a particular coherent control scenario, it is shown that this coherence transfer and the subsequent coherent phase control can be readily realized by the most classical states of light, i.e., coherent states of light. It is further demonstrated that quantum states of light may suppress the extent of phase-sensitive coherent control by leaking out some which-way information while 'incoherent interference control' scenarios proposed in the literature have automatically ensured the indistinguishability of multiple excitation pathways. The possibility of quantum coherence in photodissociation product states is also understood in terms of the disentanglement between photodissociation fragments. Results offer deeper insights into quantum coherence generation in atomic and molecular processes.
Can Two-Photon Interference be Considered the Interference of Two Photons?
International Nuclear Information System (INIS)
Pittman, T.B.; Strekalov, D.V.; Migdall, A.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H.
1996-01-01
We report on a open-quote open-quote postponed compensation close-quote close-quote experiment in which the observed two-photon entangled state interference cannot be pictured in terms of the overlap of the two individual photon wave packets of a parametric down-conversion pair on a beam splitter. In the sense of a quantum eraser, the distinguishability of the different two-photon Feynman amplitudes leading to a coincidence detection is removed by delaying the compensation until after the output of an unbalanced two-photon interferometer. copyright 1996 The American Physical Society
Beamforming design with proactive interference cancelation in MISO interference channels
Li, Yang; Tian, Yafei; Yang, Chenyang
2015-12-01
In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.
Can quantum imaging be classically simulated?
D'Angelo, Milena; Shih, Yanhua
2003-01-01
Quantum imaging has been demonstrated since 1995 by using entangled photon pairs. The physics community named these experiments "ghost image", "quantum crypto-FAX", "ghost interference", etc. Recently, Bennink et al. simulated the "ghost" imaging experiment by two co-rotating k-vector correlated lasers. Did the classical simulation simulate the quantum aspect of the "ghost" image? We wish to provide an answer. In fact, the simulation is very similar to a historical model of local realism. The...
Measurement of gravity and gauge fields using quantum mechanical probes
International Nuclear Information System (INIS)
Anandan, J.
1986-01-01
The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Substation electromagnetic interference
International Nuclear Information System (INIS)
Felic, G.; Shihab, S.
1997-01-01
The electric and magnetic transients in high voltage substations were studied. The electric field measurements were carried out in a 66 kV switchyard of a 500/220/66 kV substation in Melbourne, Australia. The measured waveforms make up a database to be used for reference in the testing of substation control and protection equipment. The objective of this study was to characterize the radiated interference caused by the operation of disconnect switches and circuit breakers. Disconnect switch transients can be a serious hazard for substations because the slow moving contacts during opening and closing can result in arcing events of several seconds duration. Circuit breaker transients were considered to be less hazardous. Transient magnetic fields of at least several tens of A/m can occur during the energization of the capacitor bank. Substation electronic equipment should be tested and protected against the coupling of these transients in order to avoid breakdowns. 5 refs., 4 figs
International Nuclear Information System (INIS)
Robinett, R.W.
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems
International Nuclear Information System (INIS)
Jia, Q.X.; Yan, F.; Mombourquette, C.; Reagor, D.
1998-01-01
Directly coupled dc superconducting quantum interference device (SQUID) magnetometers on LaAlO 3 substrates were fabricated using ramp-edge superconductor/normal-metal/superconductor junctions, where Ag-doped YBa 2 Cu 3 O 7-x was used for the electrode and PrBa 2 Cu 3 O 7-x for the normal-metal barrier. A flux noise of 8x10 -6 Φ 0 Hz -1/2 at 10 kHz measured with a dc bias current was achieved at 75 K, which corresponded to a field sensitivity of 400fTHz -1/2 for a magnetometer with a pick-up loop area of 8.5mmx7.5mm. Most significantly, the noise floor increased at lower frequencies with a frequency dependence slightly less than 1/f. The field noise of the SQUID magnetometers increased by only 25% after cycling the devices from zero field to 500 mG. In a static earth close-quote s magnetic field background, the field noise of the SQUID magnetometers increased by less than a factor of 2. copyright 1998 American Institute of Physics
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
New progress of fundamental aspects in quantum mechanics
International Nuclear Information System (INIS)
Sun Changpu
2001-01-01
The review recalls the conceptual origins of various interpretations of quantum mechanics. With the focus on quantum measurement problems, new developments of fundamental quantum theory are described in association with recent experiments such as the decoherence process in cavity quantum electrodynamics 'which-way' detection using the Bragg scattering of cold atoms, and quantum interference using the small quantum system of molecular C 60 . The fundamental problems include the quantum coherence of a macroscopic object, the von Neumann chain in quantum measurement, the Schroedinger cat paradox, et al. Many land math experiments have been accomplished with possible important applications in quantum information. The most recent research on the new quantum theory by G.'t Hooft is reviewed, as well as future prospects of quantum mechanics
Interference of a thermal Tonks gas on a ring
International Nuclear Information System (INIS)
Das, Kunal K.; Girardeau, M.D.; Wright, E.M.
2002-01-01
A nonzero temperature generalization of the Fermi-Bose mapping theorem is used to study the exact quantum statistical dynamics of a one-dimensional gas of impenetrable bosons on a ring. We investigate the interference produced when an initially trapped gas localized on one side of the ring is released, split via an optical-dipole grating, and recombined on the other side of the ring. Nonzero temperature is shown not to be a limitation to obtaining high visibility fringes
Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case
International Nuclear Information System (INIS)
Anderson, B.P.; Dholakia, K.; Wright, E.M.
2003-01-01
We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation
Classical Limit and Quantum Logic
Losada, Marcelo; Fortin, Sebastian; Holik, Federico
2018-02-01
The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.
Fundamental aspects of quantum theory
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.
1986-01-01
This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
Decoherence in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2005-01-01
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes
Emulating weak localization using a solid-state quantum circuit.
Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M
2014-10-14
Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.
Electromagnetically induced interference in a superconducting flux qubit
International Nuclear Information System (INIS)
Du lingjie; Yu Yang; Lan Dong
2013-01-01
Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Developmental Change in Proactive Interference.
Kail, Robert
2002-01-01
Two studies examined age-related change in proactive interference from previously learned material. The meta-analysis of 26 studies indicated that proactive interference decreased with age. The cross-sectional study found that third through sixth graders' and college students' recall was accurate on Trial 1, but became less so over Trials 2…
Sleep can reduce proactive interference.
Abel, Magdalena; Bäuml, Karl-Heinz T
2014-01-01
Sleep has repeatedly been connected to processes of memory consolidation. While extensive research indeed documents beneficial effects of sleep on memory, little is yet known about the role of sleep for interference effects in episodic memory. Although two prior studies reported sleep to reduce retroactive interference, no sleep effect has previously been found for proactive interference. Here we applied a study format differing from that employed by the prior studies to induce a high degree of proactive interference, and asked participants to encode a single list or two interfering lists of paired associates via pure study cycles. Testing occurred after 12 hours of diurnal wakefulness or nocturnal sleep. Consistent with the prior work, we found sleep in comparison to wake did not affect memory for the single list, but reduced retroactive interference. In addition we found sleep reduced proactive interference, and reduced retroactive and proactive interference to the same extent. The finding is consistent with the view that arising benefits of sleep are caused by the reactivation of memory contents during sleep, which has been suggested to strengthen and stabilise memories. Such stabilisation may make memories less susceptible to competition from interfering memories at test and thus reduce interference effects.
Output Interference in Recognition Memory
Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.
2011-01-01
Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…
Interference Phenomenon with Mobile Displays
Trantham, Kenneth
2015-01-01
A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…
Scarani, Valerio
1998-01-01
The aim of this thesis was to explain what quantum computing is. The information for the thesis was gathered from books, scientific publications, and news articles. The analysis of the information revealed that quantum computing can be broken down to three areas: theories behind quantum computing explaining the structure of a quantum computer, known quantum algorithms, and the actual physical realizations of a quantum computer. The thesis reveals that moving from classical memor...
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Decoherence in quantum cosmology
International Nuclear Information System (INIS)
Halliwell, J.J.
1989-01-01
We discuss the manner in which the gravitational field becomes classical in quantum cosmology. This involves two steps. First, one must show that the quantum state of the gravitational field becomes strongly peaked about a set of classical configurations. Second, one must show that the system is in one of a number of states of a relatively permanent nature that have negligible interference with each other. This second step involves decoherence---destruction of the off-diagonal terms in the density matrix, representing interference. To introduce the notion of decoherence, we discuss it in the context of the quantum theory of measurement, following the environment-induced superselection approach of Zurek. We then go on to discuss the application of these ideas to quantum cosmology. We show, in a simple homogeneous isotropic model, that the density matrix of the Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are traced out. These modes effectively act as an environment which continuously ''monitors'' the scale factor. The coherence width is very small except in the neighborhood of a classical bounce. This means that one cannot really say that a classical solution bounces because the notion of classical spacetime does not apply. The coherence width decreases as the scale factor increases, which has implications for the arrow of time. We also show, using decoherence arguments, that the WKB component of the wave function of the Universe which represents expanding universes has negligible interference with the collapsing component. This justifies the usual assumption that they may be treated separately
Communications in interference limited networks
2016-01-01
This book offers means to handle interference as a central problem of operating wireless networks. It investigates centralized and decentralized methods to avoid and handle interference as well as approaches that resolve interference constructively. The latter type of approach tries to solve the joint detection and estimation problem of several data streams that share a common medium. In fact, an exciting insight into the operation of networks is that it may be beneficial, in terms of an overall throughput, to actively create and manage interference. Thus, when handled properly, "mixing" of data in networks becomes a useful tool of operation rather than the nuisance as which it has been treated traditionally. With the development of mobile, robust, ubiquitous, reliable and instantaneous communication being a driving and enabling factor of an information centric economy, the understanding, mitigation and exploitation of interference in networks must be seen as a centrally important task.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
The origins of macroscopic quantum coherence in high temperature superconductivity
International Nuclear Information System (INIS)
Turner, Philip; Nottale, Laurent
2015-01-01
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
Radio Frequency Interference Mitigation
An, T.; Chen, X.; Mohan, P.; Lao, B. Q.
2017-09-01
The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.
Detection-dependent six-photon Holland-Burnett state interference
Jin, Rui-Bo; Fujiwara, Mikio; Shimizu, Ryosuke; Collins, Robert J.; Buller, Gerald S.; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Takeoka, Masahiro; Sasaki, Masahide
2016-11-01
The NOON state, and its experimental approximation the Holland-Burnett state, have important applications in phase sensing measurement with enhanced sensitivity. However, most of the previous Holland-Burnett state interference (HBSI) experiments only investigated the area of the interference pattern in the region immediately around zero optical path length difference, while the full HBSI pattern over a wide range of optical path length differences has not yet been well explored. In this work, we experimentally and theoretically demonstrate up to six-photon HBSI and study the properties of the interference patterns over a wide range of optical path length differences. It was found that the shape, the coherence time and the visibility of the interference patterns were strongly dependent on the detection schemes. This work paves the way for applications which are based on the envelope of the HBSI pattern, such as quantum spectroscopy and quantum metrology.
Hong–Ou–Mandel interference with two independent weak coherent states
International Nuclear Information System (INIS)
Chen Hua; An Xue-Bi; Wu Juan; Yin Zhen-Qiang; Wang Shuang; Chen Wei; Han Zhen-Fu
2016-01-01
Recently, the Hong–Ou–Mandel (HOM) interference between two independent weak coherent pulses (WCPs) has been paid much attention due to the measurement-device-independent (MDI) quantum key distribution (QKD). Using classical wave theory, articles reported before show that the visibility of this kind of HOM-type interference is ≤ 50%. In this work, we analyze this kind of interference using quantum optics, which reveals more details compared to the wave theory. Analyses confirm the maximum visibility of 50%. And we conclude that the maximum visibility of 50% comes from the two single-photon states in WCPs, without considering the noise. In the experiment, we successfully approach the visibility of 50% by using WCPs splitting from the single pico-second laser source and phase scanning. Since this kind of HOM interference is immune to slow phase fluctuations, both the realized and proposed experiment designs can provide stable ways of high-resolution optical distance detection. (paper)
Quantum erasure with causally disconnected choice.
Ma, Xiao-Song; Kofler, Johannes; Qarry, Angie; Tetik, Nuray; Scheidl, Thomas; Ursin, Rupert; Ramelow, Sven; Herbst, Thomas; Ratschbacher, Lothar; Fedrizzi, Alessandro; Jennewein, Thomas; Zeilinger, Anton
2013-01-22
The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.
The quantum phase-transitions of water
Fillaux, François
2017-08-01
It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.
Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady
2015-06-01
Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.
Quantum theory of measurements as quantum decision theory
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2015-01-01
Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device
International Nuclear Information System (INIS)
Podoshvedov, Sergey A
2005-01-01
We propose to use multi-photon mode entangled states to beat the minimal period of an interference pattern. Using the multi-photon mode entangled states, we show that it is possible to observe an interference effect with a period of minimum size λ/2N in an N-photon absorbing substrate. In the framework of the method developed, we propose a simple scheme for a quantum encoder with a two-photon quantum channel for producing a desired N-photon mode entangled state on which to write an interference pattern with a smaller period, as compared with the one in the case of the use of classical light
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Buechler, Hans Peter; Calcarco, Tommaso; Dressel, Martin
2008-01-01
The following topics are dealt with: Artificial atoms and molecules, tailored from solids, fractional flux quanta, molecular magnets, controlled interaction in quantum gases, the theory of quantum correlations in mott matter, cold gases, and mesoscopic systems, Bose-Einstein condensates on the chip, on the route to the quantum computer, a quantum computer in diamond. (HSI)
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Experimental demonstration of squeezed-state quantum averaging
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Madsen, Lars Skovgaard; Sabuncu, Metin
2010-01-01
We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The averaged variances are prepared probabilistically by means of linear optical interference and measurement-induced conditioning. We verify that the implemented...
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Interference management using direct sequence spread spectrum ...
African Journals Online (AJOL)
Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.
Optical interference with noncoherent states
International Nuclear Information System (INIS)
Sagi, Yoav; Firstenberg, Ofer; Fisher, Amnon; Ron, Amiram
2003-01-01
We examine a typical two-source optical interference apparatus consisting of two cavities, a beam splitter, and two detectors. We show that field-field interference occurs even when the cavities are not initially in coherent states but rather in other nonclassical states. However, we find that the visibility of the second-order interference, that is, the expectation values of the detectors' readings, changes from 100%, when the cavities are prepared in coherent states, to zero visibility when they are initially in single Fock states. We calculate the fourth-order interference, and for the latter case find that it corresponds to a case where the currents oscillate with 100% visibility, but with a random phase for every experiment. Finally, we suggest an experimental realization of the apparatus with nonclassical sources
Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry
Jipdi, M. N.; Tchoffo, M.; Fai, L. C.
2018-02-01
We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.
International Nuclear Information System (INIS)
Kilin, Sergei Ya
1999-01-01
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
Energy Technology Data Exchange (ETDEWEB)
Kilin, Sergei Ya [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
1999-05-31
A new research direction known as quantum information is a multidisciplinary subject which involves quantum mechanics, optics, information theory, programming, discrete mathematics, laser physics and spectroscopy, and depends heavily on contributions from such areas as quantum computing, quantum teleportation and quantum cryptography, decoherence studies, and single-molecule and impurity spectroscopy. Some new results achieved in this rapidly growing field are discussed. (reviews of topical problems)
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Interference, reduced action, and trajectories
Floyd, Edward R.
2006-01-01
Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichroma...
Continuous-wave spatial quantum correlations of light induced by multiple scattering
DEFF Research Database (Denmark)
Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander
2012-01-01
and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....
Sequent Calculus Representations for Quantum Circuits
Directory of Open Access Journals (Sweden)
Cameron Beebe
2016-06-01
Full Text Available When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from 'scratch' in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Interferometric Computation Beyond Quantum Theory
Garner, Andrew J. P.
2018-03-01
There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.
Observation of Fano-Type Interference in a Coupled Cavity-Atom System
International Nuclear Information System (INIS)
Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu
2016-01-01
We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)
Counting statistics of many-particle quantum walks
Mayer, Klaus; Tichy, Malte C.; Mintert, Florian; Konrad, Thomas; Buchleitner, Andreas
2011-06-01
We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
Counting statistics of many-particle quantum walks
International Nuclear Information System (INIS)
Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas
2011-01-01
We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
Skyrmion burst and multiple quantum walk in thin ferromagnetic films
International Nuclear Information System (INIS)
Ezawa, Motohiko
2011-01-01
We propose a new type of quantum walk in thin ferromagnetic films. A giant Skyrmion collapses to a singular point in a thin ferromagnetic film, emitting spin waves, when external magnetic field is increased beyond the critical one. After the collapse the remnant is a quantum walker carrying spin S. We determine its time evolution and show the diffusion process is a continuous-time quantum walk. We also analyze an interference of two quantum walkers after two Skyrmion bursts. The system presents a new type of quantum walk for S>1/2, where a quantum walker breaks into 2S quantum walkers. -- Highlights: → A giant Skyrmion collapses to a singular point by applying strong magnetic field. → Quantum walk is realized in thin ferromagnetic films by Skyrmion collapsing. → Quantum walks for S=1/2 and 1 are exact solvable, where S represents the spin. → Quantum walks for >1/2 presents a new type of quantum walks, i.e., 'multiple quantum walks'. → Skyrmion bursts which occur simultaneously exhibit an interference as a manifestation of quantum walk.
Quantum imaging with undetected photons.
Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton
2014-08-28
Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.
International Nuclear Information System (INIS)
Shen Jianqi; Zeng Ruixi
2017-01-01
Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)
Energy Technology Data Exchange (ETDEWEB)
Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department
1999-07-01
Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.
Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study
International Nuclear Information System (INIS)
Chakraborty, Debdutta; Chattaraj, Pratim Kumar
2014-01-01
Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained
Designing, programming, and optimizing a (small) quantum computer
Svore, Krysta
In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.
Generalized Hofmann quantum process fidelity bounds for quantum filters
Sedlák, Michal; Fiurášek, Jaromír
2016-04-01
We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.
Universal quantum computation in a semiconductor quantum wire network
International Nuclear Information System (INIS)
Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta
2010-01-01
Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.
Interference in motor learning - is motor interference sensory?
DEFF Research Database (Denmark)
Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C
mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...
Exploiting quantum interference in dye sensitized solar cells
DEFF Research Database (Denmark)
Maggio, Emanuele; Solomon, Gemma C.; Troisi, Alessandro
2014-01-01
A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two...... of the possible tunnelling path. Calculations carried out on realistic molecules at the DFT level of theory show how the recombination lifetime can be modulated by changes in the electron-withdrawing (donating) character of the groups connected to the cross-conjugated bridge. Tight binding calculations...
Comment on "Protecting bipartite entanglement by quantum interferences"
Nair, Anjali N.; Arun, R.
2018-03-01
In an interesting article [Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341], Das and Agarwal have discussed the preservation of bipartite entanglement in three-level atoms employing the coherences induced by spontaneous emission. The authors considered various initially entangled qubits prepared from two V -type three-level atoms and showed that more than 50 % of the initial (bipartite) entanglement can be preserved in steady state due to vacuum-induced coherence. In this Comment, we point out that their analytical formulas for the entanglement measure contain errors affecting all the numerical results of that article. We substantiate our claim by giving correct analytical results for the time evolution of the two-atom system.
Reply to "Comment on `Protecting bipartite entanglement by quantum interferences' "
Das, Sumanta; Agarwal, G. S.
2018-03-01
In a recent Comment Nair and Arun, Phys. Rev. A 97, 036301 (2018), 10.1103/PhysRevA.97.036301, it was concluded that the two-qubit entanglement protection reported in our work [Das and Agarwal, Phys. Rev. A 81, 052341 (2010), 10.1103/PhysRevA.81.052341] is erroneous. While we acknowledge the error in analytical results on concurrence when dipole matrix elements were unequal, the essential conclusions on entanglement protection are not affected.
Quantum interference effects in [Co/Bi]n thin films
Directory of Open Access Journals (Sweden)
Athanasopoulos P.
2014-07-01
Full Text Available Magnetoconductivity (MC, Δσ(Β, and Hall coefficient, RH(B, measurements have been performed in polycrystalline thin films of Bi(15nm, Bi(10nm/Co(1nm/Bi(10nm trilayer and [Co(0.7nm/Bi(2nm]10 multilayer, grown by magnetron scattering. The temperature dependence of RH(B curves reveal the existence of a second conduction channel below 250K, that can be assigned to surface states. MC measurements between ±0.4T show at 5K an interplay between weak-antilocalization (WAL in Bi and Bi/Co/Bi films and weal-localization (WL in [Co/Bi]10 multilayer.
Radiofrequency amplifier based on a DC superconducting quantum interference device
International Nuclear Information System (INIS)
Martinis, J.M.; Hilbert, C.; Clarke, J.
1986-01-01
A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield
Principles and applications of superconducting quantum interference devices
1992-01-01
Principles and applications of SQUIDs serves as a textbook and a multi-author collection of critical reviews. Providing both basic aspects and recent progress in SQUIDs technology, it offers a realistic and stimulating picture of the state of the art. It can also contribute to a further development of the field for commercial applications.
Symposium on applications of superconducting quantum interference devices (SQUIDS)
International Nuclear Information System (INIS)
1978-01-01
The abstracts are given of thirteen papers presented at a ''SQUID Symposium'' organized by the Division of Materials Sciences of the U.S. Department of Energy and held March 23--25, 1978, at the University of Virginia. Since SQUID systems have already been utilized in feasibility demonstration in geothermal reservoir exploration, it was recognized that these devices also hold great potential for many other important scientific measurements. Many of these are energy-related, and others include forefront investigations in a diverse group of scientific areas, from biomedical to earthquake monitoring. Research in SQUIDs has advanced so rapidly in recent years that it was felt that a symposium to review the current status and future prospects of the devices would be timely. The abstracts given present an overview of work in this area and hopefully provide an opportunity to increase awareness among basic and applied scientists of the inherent implications of the extreme measurement sensitivity in advanced SQUID systems
WEED INTERFERENCE IN EGGPLANT CROPS
Directory of Open Access Journals (Sweden)
LUIZ JUNIOR PEREIRA MARQUES
2017-01-01
Full Text Available Uncontrolled weed growth interferes with the growth eggplants and crop yields. To control weeds, the main weed species must be identified in crop growing areas and during weed control periods, as weed species might vary in relation to management practices. Therefore, this study aimed to identify the main weed species and determine the periods of weed interference in the eggplant cultivar Nápoli when grown under certain cultural practices, including plant staking and sprout thinning. The experiment was carried out in 2014 using a randomized complete block design, with 3 replications. The treatments consisted of 11 periods of (1 increasing weed control and (2 increasing coexistence of eggplant with weeds from the first day of transplanting (0-14, 0-28, 0-42, 0-56, 0-70, 0-84, 0-98, 0-112, 0-126, 0-140, and up do day 154. Eggplant staking and sprout thinning were performed 42 days after transplanting (DAT. Weed identification and crop yield assessments were performed to determine the Period Before Interference (PBI, Total Period of Interference Prevention (TPIP, and the Critical Period of Interference Prevention (CPIP. The major weeds found in the eggplant cultivar Nápoli were Eleusine indica, Portulaca oleracea, and Cyperus rotundus. Coexistence between the weed community and the eggplant throughout the entire crop production cycle reduced eggplant fruit yield by 78%. The PBI was 29 DAT and the TPIP was 48 DAT, resulting in 19 days of CPIP.
Contextual approach to quantum formalism
Khrennikov, Andrei
2009-01-01
The aim of this book is to show that the probabilistic formalisms of classical statistical mechanics and quantum mechanics can be unified on the basis of a general contextual probabilistic model. By taking into account the dependence of (classical) probabilities on contexts (i.e. complexes of physical conditions), one can reproduce all distinct features of quantum probabilities such as the interference of probabilities and the violation of Bell’s inequality. Moreover, by starting with a formula for the interference of probabilities (which generalizes the well known classical formula of total probability), one can construct the representation of contextual probabilities by complex probability amplitudes or, in the abstract formalism, by normalized vectors of the complex Hilbert space or its hyperbolic generalization. Thus the Hilbert space representation of probabilities can be naturally derived from classical probabilistic assumptions. An important chapter of the book critically reviews known no-go theorems...
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Probing the limits of the quantum world
International Nuclear Information System (INIS)
Arndt, Markus; Zeilinger, Anton; Hornberger, K.
2005-01-01
Molecules with over 100 atoms can be made to interfere, according to recent experiments that study the transition from the quantum to the classical world. Ever since quantum theory was developed during the first quarter of the 20th century, we have lived with a strange division. Objects in our daily lives behave 'normally' - they appear to obey classical physics - whereas microscopic objects can behave counter intuitively and reveal intriguing features of quantum physics. But where exactly is the boundary between the quantum and classical worlds - if, indeed, there is one? If quantum physics is a universal theory, why is it respectable to talk about the quantum behaviour of electrons but not, say, of footballs? One way of answering these questions is to carry out sensitive interferometry experiments, in which a beam of molecules is sent down two different paths and then brought back together again. These experiments reveal that the molecules have both a 'wave' and 'particle' nature, and display quantum behaviour. Recent research by our group has shown, in fact, that molecules with as many as 100 atoms can interfere with one another. These experiments illustrate one of the most unusual aspects of quantum theory, namely that objects can exist in a superposition of different states. (U.K.)
Interference in ballistic motor learning - is motor interference really sensory?
DEFF Research Database (Denmark)
Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C
Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...
Chanda, Rajat
1997-01-01
The book discusses the laws of quantum mechanics, several amazing quantum phenomena and some recent progress in understanding the connection between the quantum and the classical worlds. We show how paradoxes arise and how to resolve them. The significance of Bell's theorem and the remarkable experimental results on particle correlations are described in some detail. Finally, the current status of our understanding of quantum theory is summerised.
Interference effect in the resonant emission of a semiconductor microcavity
Cassabois, G.; Bogani, F.; Triques, A. L.; Delalande, C.; Roussignol, Ph.
2001-07-01
We present a phenomenological description of the coherent emission from a semiconductor microcavity in the strong-coupling regime. We consider two main contributions which are calculated in the framework of the semiclassical approach of the linear dispersion theory: reflectivity corresponds to the response of a uniform microcavity while resonant Rayleigh scattering (RRS) arises from disorder. Our simulations are compared to experimental results obtained at normal incidence in a backscattering geometry by means of cw spectroscopy and interferometric correlation with subpicosecond resolution. In this geometry, a fair agreement is reached assuming interferences between the two aforementioned contributions. This interference effect gives evidence of the drastic modification of the RRS emission pattern of the embedded quantum well induced by the Fabry-Pérot cavity.
Quantum electrodynamics and light rays
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references
Quantum catastrophe of slow light
Leonhardt, Ulf
2001-01-01
Catastrophes are at the heart of many fascinating optical phenomena. The rainbow, for example, is a ray catastrophe where light rays become infinitely intense. The wave nature of light resolves the infinities of ray catastrophes while drawing delicate interference patterns such as the supernumerary arcs of the rainbow. Black holes cause wave singularities. Waves oscillate with infinitely small wave lengths at the event horizon where time stands still. The quantum nature of light avoids this h...
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
I, Quantum Robot: Quantum Mind control on a Quantum Computer
Zizzi, Paola
2008-01-01
The logic which describes quantum robots is not orthodox quantum logic, but a deductive calculus which reproduces the quantum tasks (computational processes, and actions) taking into account quantum superposition and quantum entanglement. A way toward the realization of intelligent quantum robots is to adopt a quantum metalanguage to control quantum robots. A physical implementation of a quantum metalanguage might be the use of coherent states in brain signals.
Introduction to modern theoretical physics. Volume II. Quantum theory and statistical physics
International Nuclear Information System (INIS)
Harris, E.G.
1975-01-01
The topics discussed include the history and principles, some solvable problems, and symmetry in quantum mechanics, interference phenomena, approximation methods, some applications of nonrelativistic quantum mechanics, relativistic wave equations, quantum theory of radiation, second quantization, elementary particles and their interactions, thermodynamics, equilibrium statistical mechanics and its applications, the kinetic theory of gases, and collective phenomena
Two-photon interference : spatial aspects of two-photon entanglement, diffraction, and scattering
Peeters, Wouter Herman
2010-01-01
This dissertation contains scientific research within the realm of quantum optics, which is a branch of physics. An experimental and theoretical study is made of two-photon interference phenomena in various optical systems. Spatially entangled photon pairs are produced via the nonlinear optical
Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T
2017-01-01
We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.
Suppression of tunneling by interference in half-integer--spin particles
Loss, Daniel; DiVincenzo, David P.; Grinstein, G.
1992-01-01
Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.
Tensor network states in time-bin quantum optics
Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl
2018-06-01
The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.
Quantum Logic and Quantum Reconstruction
Stairs, Allen
2015-01-01
Quantum logic understood as a reconstruction program had real successes and genuine limitations. This paper offers a synopsis of both and suggests a way of seeing quantum logic in a larger, still thriving context.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Conducted interference on smart meters
Keyer, Cornelis H.A.; Leferink, Frank
2017-01-01
The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. These meters are called smart meters when equipped with a communication link, and are replacing the conventional electromechanical meters. It is known that
Electromagnetic Interference in Smart Grids
Leferink, Frank; Keyer, Cees
2017-01-01
The increasing conducted interference caused by modern electronic equipment is causing more problems for electronic, or static, energy meters. If equipped with a communication link they are called smart meter. Because the smart meter is a key device in smart grids, any deviation has huge impact on
Interference and memory capacity limitations.
Endress, Ansgar D; Szabó, Szilárd
2017-10-01
Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Beam Splitter for Spin Waves in Quantum Spin Network
Yang, S.; Song, Z.; Sun, C. P.
2005-01-01
We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.
Quantum State Engineering Via Coherent-State Superpositions
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
International Nuclear Information System (INIS)
Kouwenhoven, L.; Marcus, C.
1998-01-01
Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)
Interference enhanced thermoelectricity in quinoid type structures
Energy Technology Data Exchange (ETDEWEB)
Strange, M., E-mail: strange@chem.ku.dk; Solomon, G. C. [Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); Seldenthuis, J. S.; Verzijl, C. J. O.; Thijssen, J. M. [Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft (Netherlands)
2015-02-28
Quantum interference (QI) effects in molecular junctions may be used to obtain large thermoelectric responses. We study the electrical conductance G and the thermoelectric response of a series of molecules featuring a quinoid core using density functional theory, as well as a semi-empirical interacting model Hamiltonian describing the π-system of the molecule which we treat in the GW approximation. Molecules with a quinoid type structure are shown to have two distinct destructive QI features close to the frontier orbital energies. These manifest themselves as two dips in the transmission, that remain separated, even when either electron donating or withdrawing side groups are added. We find that the position of the dips in the transmission and the frontier molecular levels can be chemically controlled by varying the electron donating or withdrawing character of the side groups as well as the conjugation length inside the molecule. This feature results in a very high thermoelectric power factor S{sup 2}G and figure of merit ZT, where S is the Seebeck coefficient, making quinoid type molecules potential candidates for efficient thermoelectric devices.
Construction of a single atom trap for quantum information protocols
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team
2016-05-01
The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.
Quantum information. Teleporation - cryptography - quantum computer
International Nuclear Information System (INIS)
Breuer, Reinhard
2010-01-01
The following topics are dealt with: Reality in the test house, quantum teleportation, 100 years of quantum theory, the reality of quanta, interactionless quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view into the future of quantum optics. (HSI)
Quantum two- and three-person duels
International Nuclear Information System (INIS)
Flitney, Adrian P; Abbott, Derek
2004-01-01
In game theory, a popular model of a struggle for survival among three competing agents is a truel, or three-person generalization of a duel. Adopting the ideas recently developed in quantum game theory, we present a quantum scheme for the problems of duels and truels. In the classical case, the outcome is sensitive to the precise rules under which the truel is performed and can be counterintuitive. These aspects carry over into our quantum scheme, but interference amongst the players' strategies can arise, leading to game equilibria different from the classical case
Equivalence principle and quantum mechanics: quantum simulation with entangled photons.
Longhi, S
2018-01-15
Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Dynamical modeling of pulsed two-photon interference
International Nuclear Information System (INIS)
Fischer, Kevin A; Lagoudakis, Konstantinos G; Vučković, Jelena; Müller, Kai
2016-01-01
Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong–Ou–Mandel, and Mach–Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers. (paper)
Dirac's aether in relativistic quantum mechanics
International Nuclear Information System (INIS)
Petroni, N.C.; Bari Univ.; Vigier, J.P.
1984-01-01
The paper concerns Dirac's aether model, based on a stochastic covariant distribution of subquantum motions. Stochastic derivation of the relativistic quantum equations; deterministic nonlocal interpretation of the Aspect-Rapisarda experiments on the EPR paradox; and photon interference with itself; are all discussed. (U.K.)
Quantum optics of lossy asymmetric beam splitters
Uppu, Ravitej; Wolterink, Tom; Tentrup, Tristan Bernhard Horst; Pinkse, Pepijn Willemszoon Harry
2016-01-01
We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering
Finite groups and quantum physics
International Nuclear Information System (INIS)
Kornyak, V. V.
2013-01-01
Concepts of quantum theory are considered from the constructive “finite” point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution—only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers—a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories—in particular, within the Standard Model.
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Quantum teleportation and multi-photon entanglement
International Nuclear Information System (INIS)
Pan, J.-W.
1999-08-01
The present thesis is the result of theoretical and experimental work on the physics of multiparticle interference. The theoretical results show that a quantum network with simple quantum logic gates and a handful of qubits enables one to control and manipulate quantum entanglement. Because of the present absence of quantum gate for two independently produced photons, in the mean time we also present a practical way to generate and identify multiparticle entangled state. The experimental work has thoroughly developed the necessary techniques to study novel multiparticle interference phenomena. By making use of the pulsed source for polarization entangled photon pairs, in this thesis we report for the first time the experimental realization of quantum teleportation, of entanglement swapping and of production of these-particle entanglement. Using the three-particle entanglement source, here we also present the first experimental realization of a test of local realism without inequalities. The methods developed in these experiments are of great significance both for exploring the field of quantum information and for future experiments on the fundamental tests of quantum mechanics. (author)
Quantum games as quantum types
Delbecque, Yannick
In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other
Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires
Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey
2005-06-01
In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.
REM sleep rescues learning from interference
McDevitt, Elizabeth A.; Duggan, Katherine A.; Mednick, Sara C.
2015-01-01
Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost. PMID:25498222
Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa
2018-02-01
The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.
Interference Lithography for Vertical Photovoltaics
Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert
2009-10-01
We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.
Tuning quantum measurements to control chaos.
Eastman, Jessica K; Hope, Joseph J; Carvalho, André R R
2017-03-20
Environment-induced decoherence has long been recognised as being of crucial importance in the study of chaos in quantum systems. In particular, the exact form and strength of the system-environment interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show here that there is a region between the deep quantum regime and the classical limit where the choice of the monitoring parameter allows one to control the complex behaviour of the system, leading to either the emergence or suppression of chaos. Our work shows that this is a result from the interplay between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the decoherence for different measurement schemes.
Full revivals in 2D quantum walks
International Nuclear Information System (INIS)
Stefanak, M; Jex, I; Kollar, B; Kiss, T
2010-01-01
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.
Many-particle interference beyond many-boson and many-fermion statistics
International Nuclear Information System (INIS)
Tichy, Malte C; Tiersch, Markus; Mintert, Florian; Buchleitner, Andreas
2012-01-01
Identical particles exhibit correlations even in the absence of inter-particle interaction, due to the exchange (anti)symmetry of the many-particle wavefunction. Two fermions obey the Pauli principle and anti-bunch, whereas two bosons favor bunched, doubly occupied states. Here, we show that the collective interference of three or more particles leads to much more diverse behavior than expected from the boson–fermion dichotomy known from quantum statistical mechanics. The emerging complexity of many-particle interference is tamed by a simple law for the strict suppression of events in the Bell multiport beam splitter. The law shows that counting events are governed by widely species-independent interference, such that bosons and fermions can even exhibit identical interference signatures, while their statistical character remains subordinate. Recent progress in the preparation of tailored many-particle states of bosonic and fermionic atoms promises experimental verification and applications in novel many-particle interferometers. (paper)
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Walls, D F
2007-01-01
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook. More than 40 exercises helps readers test their understanding and provide practice in quantitative problem solving.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Image hiding using optical interference
Zhang, Yan; Wang, Weining
2010-09-01
Optical image encryption technology has attracted a lot of attentions due to its large capacitance and fast speed. In conventional image encryption methods, the random phase masks are used as encryption keys to encode the images into white noise distribution. Therefore, this kind of methods requires interference technology to record complex amplitude and is vulnerable to attack techniques. The image hiding methods which employ the phase retrieve algorithm to encode the images into two or more phase masks are proposed, the hiding process is carried out within a computer using iterative algorithm. But the iterative algorithms are time consumed. All method mentioned above are based on the optical diffraction of the phase masks. In this presentation, a new optical image hiding method based on optical interference is proposed. The coherence lights which pass through two phase masks are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are design analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the novelty of the new proposed methods. This method can be expanded for double images hiding.
Carbon nanostructure composite for electromagnetic interference
Indian Academy of Sciences (India)
2015-05-30
based composite materials for electromagnetic interference (EMI) shielding. With more and more electronic gadgets being used at different frequencies, there is a need for shielding them from one another to avoid interference.
Superconducting quantum circuits theory and application
Deng, Xiuhao
Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons
Stapp, Henry P.
2011-01-01
Robert Griffiths has recently addressed, within the framework of a 'consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. O...
Grifoni, Milena
1997-01-01
In this thesis, ratchet systems operating in the quantum regime are investigated. Ratchet systems, also known as Brownian motors, are periodic systems presenting an intrinsic asymmetry which can be exploited to extract work out of unbiased forces. As a model for ratchet systems, we consider the motion of a particle in a one-dimensional periodic and asymmetric potential, interacting with a thermal environment, and subject to an unbiased driving force. In quantum ratchets, intrinsic quantum flu...
Quantum space and quantum completeness
Jurić, Tajron
2018-05-01
Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.
Is It Possible to Find Complete Interference Once Which-Way Information is Obtainable?
Snyder, D M
2004-01-01
The most widely-known formulation of the quantum eraser that used a variant of the double-slit experiment in quantum mechanics is reviewed. Instead of obtaining the expected distribution pattern based on a typical Young-type interference pattern originating at a double slit, which-way information and its associated one-hump distribution is first developed through the release of a photon by a "particle" unrelated to the "particle's" position or momentum prior to the "particle's" passage through the double-slit. Quantum erasure occurs subsequent to the release of the photon resulting in the loss of which-way information. Interestingly, sub-interference patterns (offset by a phase difference) occur that sum to the overall one-hump distribution characteristic of which-way information. This paper explores the possibility of performing quantum erasure using a single form of quantum erasure in an experiment instead of the two possibilities for quantum erasure usually employed (e.g., whether the photon is eliminated ...
Neutron multiwave interference with many resonance coils: a test experiment
Energy Technology Data Exchange (ETDEWEB)
Chetverikov, Yu.O.; Axelrod, L.A.; Syromyatnikov, A.V.; Kraan, W.H.; Rekveldt, M.Th.; Grigoriev, S.V
2004-07-15
A test experiment on neutron multiwave interference based on Ramsey's resonance method of 'separated oscillating fields' has been performed. A neutron passes through N successive resonant coils (h{omega}{sub 0}=2{mu}{sub n}B{sub 0}), which flip the neutron spin with a probability {rho} smaller than 1. These coils are separated by path lengths L, over which a homogeneous field B{sub 1} is present. Since the spin-flip probability {rho} is smaller than 1, the number of waves for a neutron is doubled after each flipper, so as to produce 2{sup N} neutron waves at the end of the setup. The phase difference between any pair of waves is a multiple of a 'phase quantum' determined by the line integral of the field difference B{sub 1}-B{sub 0} over the length L. Highly regular patterns of the quantum mechanical probability R in (B{sub 1},{rho})--space appear owing to pairwise interference between individual waves.
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Kravtsov, K. S.; Radchenko, I. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Korol' kov, A. V. [Academy of Cryptography (Russian Federation); Kulik, S. P., E-mail: sergei.kulik@gmail.com [Moscow State University (Russian Federation); Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Academy of Cryptography (Russian Federation)
2013-05-15
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
International Nuclear Information System (INIS)
Kravtsov, K. S.; Radchenko, I. V.; Korol’kov, A. V.; Kulik, S. P.; Molotkov, S. N.
2013-01-01
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
An accumulator model of semantic interference
van Maanen, Leendert; van Rijn, Hedderik
To explain latency effects in picture-word interference tasks, cognitive models need to account for both interference and stimulus onset asynchrony (SOA) effects. As opposed to most models of picture-word interference, which model the time course during the task in a ballistic manner, the RACE model
47 CFR 27.1221 - Interference protection.
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Interference protection. 27.1221 Section 27... Technical Standards § 27.1221 Interference protection. (a) Interference protection will be afforded to BRS... height benchmark (hbm). (c) Protection for Receiving Antennas not Exceeding the Height Benchmark. Absent...
Quantum-Classical Correspondence Principle for Work Distributions
Directory of Open Access Journals (Sweden)
Christopher Jarzynski
2015-09-01
Full Text Available For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
Koenneker, Carsten
2012-01-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
Quantum ensembles of quantum classifiers.
Schuld, Maria; Petruccione, Francesco
2018-02-09
Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.
Quantum computer games: quantum minesweeper
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Quantum measurement in quantum optics
International Nuclear Information System (INIS)
Kimble, H.J.
1993-01-01
Recent progress in the generation and application of manifestly quantum or nonclassical states of the electromagnetic field is reviewed with emphasis on the research of the Quantum Optics Group at Caltech. In particular, the possibilities for spectroscopy with non-classical light are discussed both in terms of improved quantitative measurement capabilities and for the fundamental alteration of atomic radiative processes. Quantum correlations for spatially extended systems are investigated in a variety of experiments which utilize nondegenerate parametric down conversion. Finally, the prospects for measurement of the position of a free mass with precision beyond the standard quantum limit are briefly considered. (author). 38 refs., 1 fig
Codebook-based interference alignment for uplink MIMO interference channels
Lee, Hyun Ho
2014-02-01
In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multipleoutput (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute the transmit precoder and inform its quantized index to the associated user via limited rate feedback link.We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load tomaintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF. © 2014 KICS.
Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu
2017-08-11
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
Quantum decision theory as quantum theory of measurement
International Nuclear Information System (INIS)
Yukalov, V.I.; Sornette, D.
2008-01-01
We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Doplicher, S.
1996-01-01
We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)
INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-05-01
Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.
Quantum Computers: A New Paradigm in Information Technology
Directory of Open Access Journals (Sweden)
Mahesh S. Raisinghani
2001-01-01
Full Text Available The word 'quantum' comes from the Latin word quantus meaning 'how much'. Quantum computing is a fundamentally new mode of information processing that can be performed only by harnessing physical phenomena unique to quantum mechanics (especially quantum interference. Paul Benioff of the Argonne National Laboratory first applied quantum theory to computers in 1981 and David Deutsch of Oxford proposed quantum parallel computers in 1985, years before the realization of qubits in 1995. However, it may be well into the 21st century before we see quantum computing used at a commercial level for a variety of reasons discussed in this paper. The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This paper discusses some of the current advances, applications, and chal-lenges of quantum computing as well as its impact on corporate computing and implications for management. It shows how quantum computing can be utilized to process and store information, as well as impact cryptography for perfectly secure communication, algorithmic searching, factorizing large numbers very rapidly, and simulating quantum-mechanical systems efficiently. A broad interdisciplinary effort will be needed if quantum com-puters are to fulfill their destiny as the world's fastest computing devices.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
Embracing interference in wireless systems
Gollakota, Shyamnath
2014-01-01
The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra
Interference Mitigation in Cognitive Femtocells
DEFF Research Database (Denmark)
Da Costa, Gustavo Wagner Oliveira; Cattoni, Andrea Fabio; Alvarez Roig, Victor
2010-01-01
, management and optimization can be prohibitive. Instead, self-optimization of an uncoordinated deployment should be considered. Cognitive Radio enabled femtocells are considered to be a promising solution to enable self-optimizing femtocells to effectively manage the inter-cell interference, especially...... in densely deployed femto scenarios. In this paper, two key elements of cognitive femtocells are combined: a power control algorithm and a fully distributed dynamic spectrum allocation method. The resulting solution was evaluated through system-level simulations and compared to the separate algorithms...
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Energy Technology Data Exchange (ETDEWEB)
Steane, Andrew [Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Oxford (United Kingdom)
1998-02-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Time dilation in quantum systems and decoherence
International Nuclear Information System (INIS)
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-01-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.
2010-01-01
The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...
Performance of quantum cloning and deleting machines over coherence
Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis
2017-10-01
Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.
International Nuclear Information System (INIS)
Sakuta, K; Narita, Y; Itozaki, H
2007-01-01
It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression
Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference
Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2018-03-01
Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.
Observation of Interference in Charge Exchange Scattering in He2++He+ Collisions
International Nuclear Information System (INIS)
Kruedener, S.; Melchert, F.; Diemar, K.v.; Pfeiffer, A.; Huber, K.; Salzborn, E.; Uskov, D.B.; Presnyakov, L.P.
1997-01-01
We report the first observation of interference in charge exchange collisions between two ions. Employing the crossed-beams technique in conjunction with signal recovery methods, angular differential cross sections have been measured for charge transfer in He 2+ +He + collisions at barycentric energies between 0.5 and 10.2keV. The oscillatory structure observed is in agreement with quantum calculations and can be interpreted in terms of interference between scattering into gerade and ungerade molecular states, which arise due to the identity of the nuclear charges. copyright 1997 The American Physical Society
Aharonov–Bohm interference in topological insulator nanoribbons
Peng, Hailin
2009-12-13
Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.