WorldWideScience

Sample records for super hms optics

  1. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    McLaren, M

    2013-04-01

    Full Text Available We outline the possibility of optical trapping and tweezing with Super-Gaussian beam profiles. We show that the trapping strength can be tuned continuously by adjusting the order of a Super-Gaussian beam, approaching that of a perfect Gaussian...

  2. Super-resolution optical microscopy: multiple choices.

    Science.gov (United States)

    Huang, Bo

    2010-02-01

    The recent invention of super-resolution optical microscopy enables the visualization of fine features in biological samples with unprecedented clarity. It creates numerous opportunities in biology because vast amount of previously obscured subcellular processes now can be directly observed. Rapid development in this field in the past two years offers many imaging modalities that address different needs but they also complicates the choice of the 'perfect' method for answering a specific question. Here I will briefly describe the principles of super-resolution optical microscopy techniques and then focus on comparing their characteristics in various aspects of practical applications.

  3. Super-resolution optical telescopes with local light diffraction shrinkage

    OpenAIRE

    Changtao Wang; Dongliang Tang; Yanqin Wang; Zeyu Zhao; Jiong Wang; Mingbo Pu; Yudong Zhang; Wei Yan; Ping Gao; Xiangang Luo

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found ...

  4. Optical data transmission at the superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment in the Superconducting Super Collider Detector is discussed.

  5. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  6. Super-resolution optical telescopes with local light diffraction shrinkage

    Science.gov (United States)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  7. Optical super-resolution microscopy in neurobiology.

    Science.gov (United States)

    Sigrist, Stephan J; Sabatini, Bernardo L

    2012-02-01

    Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy methods yielding 2-10-fold higher resolution than conventional microscopy. We here describe the principles behind these techniques as well as their application to the analysis of the molecular architecture of the synapse. Furthermore, we discuss the potential for continued development of super-resolution microscopy as necessary for live imaging of neuronal structure and function in the brain.

  8. Where Do We Stand with Super-Resolution Optical Microscopy?

    Science.gov (United States)

    Nienhaus, Karin; Nienhaus, G Ulrich

    2016-01-29

    Super-resolution fluorescence microscopy has become an invaluable, powerful approach to study biomolecular dynamics and interactions via selective labeling and observation of specific molecules in living cells, tissues and even entire organisms. In this perspective, we present a brief overview of the main techniques and their application to cellular biophysics. We place special emphasis on super-resolution imaging via single-molecule localization microscopy and stimulated emission depletion/reversible saturable optical fluorescence transitions microscopy, and we also briefly address fluorescence fluctuation approaches, notably raster image correlation spectroscopy, as tools to record fast diffusion and transport.

  9. Aberrations and adaptive optics in super-resolution microscopy.

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-08-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy - or rather nanoscopy - to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem.

  10. Super-resolution microscopy of single atoms in optical lattices

    CERN Document Server

    Alberti, Andrea; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter

    2015-01-01

    We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This is especially relevant for closely packed ensembles of atoms where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a m...

  11. Super-resolution microscopy of single atoms in optical lattices

    Science.gov (United States)

    Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter

    2016-05-01

    We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.

  12. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    Science.gov (United States)

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory.

  13. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging (JT-SOFI)

    CERN Document Server

    Zeng, Zhiping; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition....

  14. Novel optical super-resolution pattern with upright edges diffracted by a tiny thin aperture.

    Science.gov (United States)

    Wu, Jiu Hui; Zhou, Kejiang

    2015-08-24

    In the past decade numerous efforts have been concentrated to achieve optical imaging resolution beyond the diffraction limit. In this letter a thin microcavity theory of near-field optics is proposed by using the power flow theorem firstly. According to this theory, the near-field optical diffraction from a tiny aperture whose diameter is less than one-tenth incident wavelength embedded in a thin conducting film is investigated by considering this tiny aperture as a thin nanocavity. It is very surprising that there exists a kind of novel super-resolution diffraction patterns showing resolution better than λ/80 (λ is the incident wavelength), which is revealed for the first time to our knowledge in this letter. The mechanism that has allowed the imaging with this kind of super-resolution patterns is due to the interaction between the incident wave and the thin nanocavity with a complex wavenumber. More precisely, these super-resolution patterns with discontinuous upright peaks are formed by one or three items of the integration series about the cylindrical waves according to our simulation results. This novel optical super-resolution with upright edges by using the thin microcavity theory presented in the study could have potential applications in the future semiconductor lithography process, nano-size laser-drilling technology, microscopy, optical storage, optical switch, and optical information processing.

  15. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    OpenAIRE

    Li, Shen; Chen, Xiang-Dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diam...

  16. Super-resolution optical microscopy based on scannable cantilever-combined microsphere.

    Science.gov (United States)

    Wang, Shuying; Zhang, Dongxian; Zhang, Haijun; Han, Xu; Xu, Rui

    2015-12-01

    We report an ingenious method of super-resolution optical microscopy utilizing scannable cantilever-combined microsphere. By scanning the microsphere over the sample surface in a cantilever-combined microsphere-sample contact state, super-resolution images can be acquired at arbitrary sample regions through near-field information collection by the microsphere. In addition, such a state can effectively reduce the possibility of breaking the cantilever and damaging the microsphere or sample surface. This work has developed a new method and technique of sub-diffraction-limit optical microscopy, and can be practically applied in various fields of micro/nanoscopy.

  17. Design of Super-resolution Filters with a Gaussian Beam in Optical Data Storage Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Sha-Sha; ZHAO Xiao-Feng; LI Cheng-Fang; RUAN Hao

    2008-01-01

    @@ Super-resolution filters based on a Ganssian beam are proposed to reduce the focusing spot in optical data storage systems.Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions.Their performances are analysed and compared with those based on plane wave in detail.The energy utilizations are presented.The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.

  18. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    Science.gov (United States)

    Li, Shen; Chen, Xiang-dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-09-01

    We demonstrate optical far-field super-resolution microscopy using an array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of the nitrogen vacancy center. Locating the nitrogen vacancy center with a spatial resolution of 6.1 nm is realized with charge state depletion nanoscopy. The nanostructures on the surface of a diamond are then imaged with a resolution below the optical diffraction limit. The results offer an approach to build a general-purpose optical super-resolution microscopy technique and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy centers.

  19. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    CERN Document Server

    Li, Shen; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diamond are then imaged with resolution below optical diffraction limit. The results offer an approach to built a general-purpose optical super-resolution microscopy and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy center.

  20. Super-Resolution Optical Fluctuation Bio-Imaging with Dual-Color Carbon Nanodots.

    Science.gov (United States)

    Chizhik, Anna M; Stein, Simon; Dekaliuk, Mariia O; Battle, Christopher; Li, Weixing; Huss, Anja; Platen, Mitja; Schaap, Iwan A T; Gregor, Ingo; Demchenko, Alexander P; Schmidt, Christoph F; Enderlein, Jörg; Chizhik, Alexey I

    2016-01-13

    Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.

  1. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  2. Super-resolution optical microscopy by using dielectric microwires

    Science.gov (United States)

    Darafsheh, Arash; Wu, Gaoxiang; Yang, Shu; Finlay, Jarod C.

    2016-03-01

    We demonstrate that super-resolution imaging of specimens containing sub-diffraction-limited features is feasible by using dielectric microwires fabricated through capillary force lithography followed by photopatterning. As supplementary micron scale cylindrical lenses, we fabricated uniform-sized microwires with and 5 and 10 μm diameters and refractive index ~1.3-1.6. The microwires are placed in contact with the specimen to collect the information of the sub-wavelength features of the specimen and transmit them to the far-field with magnification enabling imaging with two-fold resolution improvement. Potential applications of our imaging technique include biological imaging, microfluidics, and nanophotonics applications.

  3. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  4. Numerical study of super-resolved optical microscopy with partly staggered beams

    Science.gov (United States)

    He, Jinping; Wang, Nan; Kobayashi, Takayoshi

    2016-12-01

    The resolving power of optical microscopy involving two or even more beams, such as pump-probe microscopy and nonlinear optical microscopy, can be enhanced both laterally and longitudinally with partly staggered beams. A numerical study of the new super-resolution imaging technology is performed with vector diffraction theory. The influence of polarization is discussed. A resolving power of sub-100 nm and sub-300 nm in the lateral and longitudinal directions, respectively, is achievable.

  5. Second Approximation Model for Optical Head in Super High Density Storage Technology

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper presents second approximation model for optical head in super high-density storage technology firstly and it is an important part for three grades approximate model of ultra-small-size quantum well corn-shaped laser and simulative calculations. It supplies the important and useful results for the NFOD optical head design with ultra thin active layer and ultra small spot laser.

  6. Follow-up review: recent progress in the development of super-resolution optical microscopy.

    Science.gov (United States)

    Fujita, Katsumasa

    2016-08-01

    The advent of super-resolution microscopy brought a huge impact to various research fields ranging from the fundamental science to medical and industrial applications. The technological development is still ongoing with involving different scientific disciplines and often changing the standard of optical imaging. In this review, I would like to introduce the recent research progress in super-resolution microscopy as a follow-up for the featured issue in Microscopy (Vol. 64, No. 4, 2015) with discussions especially on the current trends and new directions in the technological development.

  7. Super-resolution optical microscopy study of telomere structure

    Science.gov (United States)

    Phipps, Mary Lisa; Goodwin, Peter M.; Martinez, Jennifer S.; Goodwin, Edwin H.

    2016-09-01

    Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5‧-TTAGGG-3‧ in humans) repeated more than a thousand times, a short 3‧ single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3‧ overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded "t-loop." Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies.

  8. 50 CFR 300.182 - HMS international trade permit.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false HMS international trade permit. 300.182... FISHERIES REGULATIONS International Trade Documentation and Tracking Programs for Highly Migratory Species § 300.182 HMS international trade permit. (a) General. An importer, entering for consumption fish or...

  9. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  10. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-02-10

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods.

  11. Fast Super-Resolution Imaging with Ultra-High Labeling Density Achieved by Joint Tagging Super-Resolution Optical Fluctuation Imaging

    Science.gov (United States)

    Zeng, Zhiping; Chen, Xuanze; Wang, Hening; Huang, Ning; Shan, Chunyan; Zhang, Hao; Teng, Junlin; Xi, Peng

    2015-01-01

    Previous stochastic localization-based super-resolution techniques are largely limited by the labeling density and the fidelity to the morphology of specimen. We report on an optical super-resolution imaging scheme implementing joint tagging using multiple fluorescent blinking dyes associated with super-resolution optical fluctuation imaging (JT-SOFI), achieving ultra-high labeling density super-resolution imaging. To demonstrate the feasibility of JT-SOFI, quantum dots with different emission spectra were jointly labeled to the tubulin in COS7 cells, creating ultra-high density labeling. After analyzing and combining the fluorescence intermittency images emanating from spectrally resolved quantum dots, the microtubule networks are capable of being investigated with high fidelity and remarkably enhanced contrast at sub-diffraction resolution. The spectral separation also significantly decreased the frame number required for SOFI, enabling fast super-resolution microscopy through simultaneous data acquisition. As the joint-tagging scheme can decrease the labeling density in each spectral channel, thereby bring it closer to single-molecule state, we can faithfully reconstruct the continuous microtubule structure with high resolution through collection of only 100 frames per channel. The improved continuity of the microtubule structure is quantitatively validated with image skeletonization, thus demonstrating the advantage of JT-SOFI over other localization-based super-resolution methods. PMID:25665878

  12. Optical Communications: Single-laser super-channel

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2011-01-01

    Increasing bandwidth capacities while reducing the number of power-hungry components required to achieve this goal may seem like a contradiction in terms. However, researchers in Europe have now demonstrated a feasible technique whereby a single laser can carry optical data at transmission rates ...

  13. Super-resolution spinning-disk confocal microscopy using optical photon reassignment.

    Science.gov (United States)

    Azuma, Takuya; Kei, Takayuki

    2015-06-01

    Spinning-disk confocal microscopy is a proven technology for investigating 3D structures of biological specimens. Here we report a super-resolution method based on spinning-disk confocal microscopy that optically improves lateral resolution by a factor of 1.37 with a single exposure. Moreover, deconvolution yields twofold improvement over the diffraction limit. With the help of newly modified Nipkow disk which comprises pinholes and micro-lenses on the front and back respectively, emitted photons from specimen can be optically reassigned to the most probable locations they originate from. Consequently, the improvement in resolution is achieved preserving inherent sectioning capabilities of confocal microscopy. This extremely simple implementation will enable reliable observations at super high resolution in biomedical routine research.

  14. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    Science.gov (United States)

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  15. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    OpenAIRE

    Dan, Dan; Ming LEI; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao,Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 ...

  16. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    Science.gov (United States)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  17. The Human Remains from HMS Pandora

    Directory of Open Access Journals (Sweden)

    D.P. Steptoe

    2002-04-01

    Full Text Available In 1977 the wreck of HMS Pandora (the ship that was sent to re-capture the Bounty mutineers was discovered off the north coast of Queensland. Since 1983, the Queensland Museum Maritime Archaeology section has carried out systematic excavation of the wreck. During the years 1986 and 1995-1998, more than 200 human bone and bone fragments were recovered. Osteological investigation revealed that this material represented three males. Their ages were estimated at approximately 17 +/-2 years, 22 +/-3 years and 28 +/-4 years, with statures of 168 +/-4cm, 167 +/-4cm, and 166cm +/-3cm respectively. All three individuals were probably Caucasian, although precise determination of ethnicity was not possible. In addition to poor dental hygiene, signs of chronic diseases suggestive of rickets and syphilis were observed. Evidence of spina bifida was seen on one of the skeletons, as were other skeletal anomalies. Various taphonomic processes affecting the remains were also observed and described. Compact bone was observed under the scanning electron microscope and found to be structurally coherent. Profiles of the three skeletons were compared with historical information about the 35 men lost with the ship, but no precise identification could be made. The investigation did not reveal the cause of death. Further research, such as DNA analysis, is being carried out at the time of publication.

  18. 3D optical coherence tomography super pixel with machine classifier analysis for glaucoma detection.

    Science.gov (United States)

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S

    2011-01-01

    Current standard quantitative 3D spectral-domain optical coherence tomography (SD-OCT) analyses of various ocular diseases is limited in detecting structural damage at early pathologic stages. This is mostly because only a small fraction of the 3D data is used in the current method of quantifying the structure of interest. This paper presents a novel SD-OCT data analysis technique, taking full advantage of the 3D dataset. The proposed algorithm uses machine classifier to analyze SD-OCT images after grouping adjacent pixels into super pixel in order to detect glaucomatous damage. A 3D SD-OCT image is first converted into a 2D feature map and partitioned into over a hundred super pixels. Machine classifier analysis using boosting algorithm is performed on super pixel features. One hundred and ninety-two 3D OCT images of the optic nerve head region were tested. Area under the receiver operating characteristic (AUC) was computed to evaluate the glaucoma discrimination performance of the algorithm and compare it to the commercial software output. The AUC of normal vs glaucoma suspect eyes using the proposed method was statistically significantly higher than the current method (0.855 and 0.707, respectively, p=0.031). This new method has the potential to improve early detection of glaucomatous structural damages.

  19. Limit of detection of a fiber optics gyroscope using a super luminescent radiation source

    CERN Document Server

    Sandoval, G E

    2003-01-01

    The main objective of this work is to establish the dependence of characteristics of the fiber optics gyroscope (FOG) with respect to the parameters of the super luminescent emission source based on doped optical fiber with rare earth elements (Super luminescent Fiber Source, SFS), argument the pumping rate election of the SFS to obtain characteristics limits of the FOG sensibility. By using this type of emission source in the FOG is recommend to use the rate when the direction of the pumping signal coincide with the super luminescent signal. The most results are the proposition and argumentation of the SFS election as emission source to be use in the FOG of the phase type. Such a decision allow to increase the characteristics of the FOG sensibility in comparison with the use of luminescent source of semiconductors emission which are extensively used in the present time. The use of emission source of the SFS type allow to come closer to the threshold of the obtained sensibility limit (detection limit) which i...

  20. SOFI Simulation Tool: A Software Package for Simulating and Testing Super-Resolution Optical Fluctuation Imaging.

    Science.gov (United States)

    Girsault, Arik; Lukes, Tomas; Sharipov, Azat; Geissbuehler, Stefan; Leutenegger, Marcel; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Lasser, Theo

    2016-01-01

    Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a simple qualitative comparison of SOFI images under simulated conditions considering parameters of the microscope setup and essential properties of the biological sample. This tool incorporates SOFI and STORM algorithms, displays and describes the SOFI image processing steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter optimization prior to experimental work. The performance of the simulation tool is demonstrated by comparing simulated results with experimentally acquired data.

  1. Strong terahertz generation by optical rectification of a super-Gaussian laser beam

    Science.gov (United States)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.

    2016-06-01

    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  2. Design and preparation of film for microsphere based optical super-resolution imaging

    Science.gov (United States)

    Pang, Hui; Du, Chunlei; Qiu, Qi; Yin, Shaoyun; Zhang, Man; Deng, Qiling

    2014-08-01

    In this paper, a novel thin film was proposed for optical super-resolution imaging, which contains a layer of closely-arranged barium titanate glass microsphere with diameter about 30-100μm embedded in a transparent polydimethylsiloxane soft mold. Then the imaging mechanism was analyzed by the finite-difference time-domain (FDTD) simulation and spectrum analysis method. Finally, the thin film was prepared and used to image the sample with sub-wavelength feature to confirm the capability of super-resolution imaging. The experimental result shows that an irresolvable Blu-ray DVD disk with feature size of 300nm can be resolved by placing a thin-film on its surface and then look through it with a conventional microscope. The thin film presented here is flexible, lightweight, easy to carry and can be used in the nanophotonics, nanoplasmonics, and biomedical imaging areas.

  3. DMD-based LED-illumination super-resolution and optical sectioning microscopy.

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×10(7) pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  4. Super-resolution stimulated emission depletion imaging of slit diaphragm proteins in optically cleared kidney tissue.

    Science.gov (United States)

    Unnersjö-Jess, David; Scott, Lena; Blom, Hans; Brismar, Hjalmar

    2016-01-01

    The glomerular filtration barrier, consisting of podocyte foot processes with bridging slit diaphragm, glomerular basement membrane, and endothelium, is a key component for renal function. Previously, the subtlest elements of the filtration barrier have only been visualized using electron microscopy. However, electron microscopy is mostly restricted to ultrathin two-dimensional samples, and the possibility to simultaneously visualize multiple different proteins is limited. Therefore, we sought to implement a super-resolution immunofluorescence microscopy protocol for the study of the filtration barrier in the kidney. Recently, several optical clearing methods have been developed making it possible to image through large volumes of tissue and even whole organs using light microscopy. Here we found that hydrogel-based optical clearing is a beneficial tool to study intact renal tissue at the nanometer scale. When imaging samples using super-resolution STED microscopy, the staining quality was critical in order to assess correct nanoscale information. The signal-to-noise ratio and immunosignal homogeneity were both improved in optically cleared tissue. Thus, STED of slit diaphragms in fluorescently labeled, optically cleared, intact kidney samples is a new tool for studying the glomerular filtration barrier in health and disease.

  5. DMD-based LED-illumination Super-resolution and optical sectioning microscopy

    Science.gov (United States)

    Dan, Dan; Lei, Ming; Yao, Baoli; Wang, Wen; Winterhalder, Martin; Zumbusch, Andreas; Qi, Yujiao; Xia, Liang; Yan, Shaohui; Yang, Yanlong; Gao, Peng; Ye, Tong; Zhao, Wei

    2013-01-01

    Super-resolution three-dimensional (3D) optical microscopy has incomparable advantages over other high-resolution microscopic technologies, such as electron microscopy and atomic force microscopy, in the study of biological molecules, pathways and events in live cells and tissues. We present a novel approach of structured illumination microscopy (SIM) by using a digital micromirror device (DMD) for fringe projection and a low-coherence LED light for illumination. The lateral resolution of 90 nm and the optical sectioning depth of 120 μm were achieved. The maximum acquisition speed for 3D imaging in the optical sectioning mode was 1.6×107 pixels/second, which was mainly limited by the sensitivity and speed of the CCD camera. In contrast to other SIM techniques, the DMD-based LED-illumination SIM is cost-effective, ease of multi-wavelength switchable and speckle-noise-free. The 2D super-resolution and 3D optical sectioning modalities can be easily switched and applied to either fluorescent or non-fluorescent specimens.

  6. Super-resolution imaging in optical scanning holography using structured illumination

    Science.gov (United States)

    Ren, Zhenbo; Lam, Edmund Y.

    2016-10-01

    As a specific digital holographic microscopy system, optical scanning holography (OSH) is an appealing technique that makes use of the advantages of holography in the application of optical microscopy. In OSH system, a three-dimensional object is scanned with a Fresnel zone plate in a raster fashion, and the electrical signals are demodulated into a complex hologram by heterodyne detection. Then the recorded light wavefront information contained in the hologram allows one to digitally reconstruct the specimen for multiple purposes such as optical sectioning, extended focused imaging as well as three-dimensional imaging. According to Abbe criterion, however, akin to those conventional microscopic imaging systems, OSH suffers from limited resolving power due to the finite sizes of the objective lens and the aperture, i.e., low numerical aperture. To bypass the diffraction barrier in light microscopy, various super-resolution imaging techniques have been proposed. Among those methods, structured illumination is an ensemble imaging concept that modulates the spatial frequency by projecting additional well-defined patterns with different orientation and phase shift onto the specimen. Computational algorithms are then applied to remove the effect of the structure and to reconstruct a super-resolved image beyond the diffraction-limit. In this paper, we introduce this technique in OSH system to scale down the spatial resolution beyond the diffraction limit. The performance of the proposed method is validated by simulation and experimental results.

  7. Correlative super-resolution fluorescence microscopy combined with optical coherence microscopy

    Science.gov (United States)

    Kim, Sungho; Kim, Gyeong Tae; Jang, Soohyun; Shim, Sang-Hee; Bae, Sung Chul

    2015-03-01

    Recent development of super-resolution fluorescence imaging technique such as stochastic optical reconstruction microscopy (STORM) and photoactived localization microscope (PALM) has brought us beyond the diffraction limits. It allows numerous opportunities in biology because vast amount of formerly obscured molecular structures, due to lack of spatial resolution, now can be directly observed. A drawback of fluorescence imaging, however, is that it lacks complete structural information. For this reason, we have developed a super-resolution multimodal imaging system based on STORM and full-field optical coherence microscopy (FF-OCM). FF-OCM is a type of interferometry systems based on a broadband light source and a bulk Michelson interferometer, which provides label-free and non-invasive visualization of biological samples. The integration between the two systems is simple because both systems use a wide-field illumination scheme and a conventional microscope. This combined imaging system gives us both functional information at a molecular level (~20nm) and structural information at the sub-cellular level (~1μm). For thick samples such as tissue slices, while FF-OCM is readily capable of imaging the 3D architecture, STORM suffer from aberrations and high background fluorescence that substantially degrade the resolution. In order to correct the aberrations in thick tissues, we employed an adaptive optics system in the detection path of the STORM microscope. We used our multimodal system to obtain images on brain tissue samples with structural and functional information.

  8. Development of a super-resolution optical microscope for directional dark matter search experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, A., E-mail: andrey.alexandrov@na.infn.it [INFN - Napoli, I-80125 Napoli (Italy); LPI - Lebedev Physical Institute of the Russian Academy of Sciences, RUS-119991 Moscow (Russian Federation); Asada, T. [Nagoya University, J-464-8602 Nagoya (Japan); Consiglio, L.; D' Ambrosio, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); De Lellis, G. [INFN - Napoli, I-80125 Napoli (Italy); University of Naples, I-80125 Napoli (Italy); Di Crescenzo, A. [INFN - Napoli, I-80125 Napoli (Italy); Di Marco, N. [INFN - Laboratori Nazionali del Gran Sasso, I-67010 Assergi (AQ) (Italy); Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T. [Nagoya University, J-464-8602 Nagoya (Japan); Pupilli, F. [INFN - Laboratori Nazionali di Frascati, I-00044 Frascati (RM) (Italy); Sirignano, C. [University of Padova and INFN, Padova (PD), 35131 Italy (Italy); Tawara, Y. [Nagoya University, J-464-8602 Nagoya (Japan); Tioukov, V. [INFN - Napoli, I-80125 Napoli (Italy); Umemoto, A.; Yoshimoto, M. [Nagoya University, J-464-8602 Nagoya (Japan)

    2016-07-11

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  9. Introducing Students to Darwin via the Voyage of HMS "Beagle"

    Science.gov (United States)

    Swab, Janice C.

    2010-01-01

    I use the diary that Darwin wrote during the voyage of HMS Beagle and recent images of a few of the places he visited to illustrate some comparisons between Darwin's world and ours. For today's students, increasingly committed to environmental issues, this may be an especially promising way to introduce Darwin.

  10. Introducing Students to Darwin via the Voyage of HMS "Beagle"

    Science.gov (United States)

    Swab, Janice C.

    2010-01-01

    I use the diary that Darwin wrote during the voyage of HMS Beagle and recent images of a few of the places he visited to illustrate some comparisons between Darwin's world and ours. For today's students, increasingly committed to environmental issues, this may be an especially promising way to introduce Darwin.

  11. Optics measurements and corrections at the early commissioning of SuperKEKB

    CERN Document Server

    Ohnishi, Y; Morita, A; Koiso, H; Oide, K; Ohmi, K; Zhou, D; Funakoshi, Y; Carmignani, N; Liuzzo, S M; Biagini, M E; Boscolo, M; Guiducci, S

    2017-01-01

    We present experimental results of measurements and corrections for the optics at the early Phase-1 commissioning of SuperKEKB. The aim of SuperKEKB is a positron-electron collider built to achieve the target luminosity of 8x10^35 cm^−2s^−1. We have three stages; Phase-1 is the commissioning of the machine without the final focus magnets and detector solenoid(no collision); the collision with the final focus system and the Belle II detector will be performed at Phase-2 and Phase-3. The strategy for the luminosity upgrade is a novel "nano-beam” scheme found elsewhere[1]. In order to achieve the target luminosity, the vertical emittance has to be reduced by corrections of machine error measured with an orbit response. The vertical emittance should be achieved to be less than 10pm(∼0.2% coupling) during Phase-1 by fully utilizing correction tools of skew quadrupole-likecoils wound on sextupole magnets and power supplies for each correction coil in quadrupole magnets.

  12. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

    Science.gov (United States)

    Vermeulen, P; Zhan, H; Orieux, F; Olivo-Marin, J-C; Lenkei, Z; Loriette, V; Fragola, A

    2015-09-01

    We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three-dimensional (3D) samples that allows the use of two-dimensional (2D) data processing. Indeed, obtaining super-resolution images of thick samples is a difficult task if low spatial frequencies are present in the in-focus section of the sample, as these frequencies have to be distinguished from the out-of-focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high-resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out-of-focus content from the raw images. After this cleaning step, we can obtain super-resolution images of optical sections in thick samples using a two-beam harmonic illumination pattern and a limited number of raw images. This two-step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two-dimensional.

  13. Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques.

    Science.gov (United States)

    Pinotsi, Dorothea; Kaminski Schierle, Gabriele S; Kaminski, Clemens F

    2016-01-01

    Super-resolution microscopy has emerged as a powerful and non-invasive tool for the study of molecular processes both in vitro and in live cells. In particular, super-resolution microscopy has proven valuable for research studies in protein aggregation. In this chapter we present details of recent advances in this method and the specific techniques, enabling the study of amyloid beta aggregation optically, both in vitro and in cells. First, we show that variants of optical super-resolution microscopy provide a capability to visualize oligomeric and fibrillar structures directly, providing detailed information on species morphology in vitro and even in situ, in the cellular environment. We focus on direct Stochastic Optical Reconstruction Microscopy, dSTORM, which provides morphological detail on spatial scales below 20 nm, and provide detailed protocols for its implementation in the context of amyloid beta research. Secondly, we present a range of optical techniques that offer super-resolution indirectly, which we call multi-parametric microscopy. The latter offers molecular scale information on self-assembly reactions via changes in protein or fluorophore spectral signatures. These techniques are empowered by our recent discovery that disease related amyloid proteins adopt intrinsic energy states upon fibrilisation. We show that fluorescence lifetime imaging provides a particularly sensitive readout to report on the aggregation state, which is robustly quantifiable for experiments performed either in vitro or in vivo.

  14. Temperature Effect on the Optical Emission Intensity in Laser Induced Breakdown Spectroscopy of Super Alloys

    Science.gov (United States)

    Darbani, S. M. R.; Ghezelbash, M.; Majd, A. E.; Soltanolkotabi, M.; Saghafifar, H.

    2014-12-01

    In this paper, the influence of heating and cooling samples on the optical emission spectra and plasma parameters of laser-induced breakdown spectroscopy for Titanium 64, Inconel 718 super alloys, and Aluminum 6061 alloy is investigated. Samples are uniformly heated up to approximately 200°C and cooled down to -78°C by an external heater and liquid nitrogen, respectively. Variations of plasma parameters like electron temperature and electron density with sample temperature are determined by using Boltzmann plot and Stark broadening methods, respectively. Heating the samples improves LIBS signal strength and broadens the width of the spectrum. On the other hand, cooling alloys causes fluctuations in the LIBS signal and decrease it to some extent, and some of the spectral peaks diminish. In addition, our results show that electron temperature and electron density depend on the sample temperature variations.

  15. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.

    Science.gov (United States)

    Winter, Peter W; Chandris, Panagiotis; Fischer, Robert S; Wu, Yicong; Waterman, Clare M; Shroff, Hari

    2015-02-23

    Three-dimensional super-resolution imaging in thick, semi-transparent biological specimens is hindered by light scattering, which increases background and degrades both contrast and optical sectioning. We describe a simple method that mitigates these issues, improving image quality in our recently developed two-photon instant structured illumination microscope without requiring any hardware modifications to the instrument. By exciting the specimen with three laterally-structured, phase-shifted illumination patterns and post-processing the resulting images, we digitally remove both scattered and out-of-focus emissions that would otherwise contaminate our raw data. We demonstrate the improved performance of our approach in biological samples, including pollen grains, primary mouse aortic endothelial cells cultured in a three-dimensional collagen matrix and live tumor-like cell spheroids.

  16. Membrane distribution of the glycine receptor α3 studied by optical super-resolution microscopy.

    Science.gov (United States)

    Notelaers, Kristof; Rocha, Susana; Paesen, Rik; Swinnen, Nina; Vangindertael, Jeroen; Meier, Jochen C; Rigo, Jean-Michel; Ameloot, Marcel; Hofkens, Johan

    2014-07-01

    In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm(-2), respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.

  17. Spatiotemporal Super-Resolution Reconstruction Based on Robust Optical Flow and Zernike Moment for Video Sequences

    Directory of Open Access Journals (Sweden)

    Meiyu Liang

    2013-01-01

    Full Text Available In order to improve the spatiotemporal resolution of the video sequences, a novel spatiotemporal super-resolution reconstruction model (STSR based on robust optical flow and Zernike moment is proposed in this paper, which integrates the spatial resolution reconstruction and temporal resolution reconstruction into a unified framework. The model does not rely on accurate estimation of subpixel motion and is robust to noise and rotation. Moreover, it can effectively overcome the problems of hole and block artifacts. First we propose an efficient robust optical flow motion estimation model based on motion details preserving, then we introduce the biweighted fusion strategy to implement the spatiotemporal motion compensation. Next, combining the self-adaptive region correlation judgment strategy, we construct a fast fuzzy registration scheme based on Zernike moment for better STSR with higher efficiency, and then the final video sequences with high spatiotemporal resolution can be obtained by fusion of the complementary and redundant information with nonlocal self-similarity between the adjacent video frames. Experimental results demonstrate that the proposed method outperforms the existing methods in terms of both subjective visual and objective quantitative evaluations.

  18. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Science.gov (United States)

    Palayret, Matthieu; Armes, Helen; Basu, Srinjan; Watson, Adam T; Herbert, Alex; Lando, David; Etheridge, Thomas J; Endesfelder, Ulrike; Heilemann, Mike; Laue, Ernest; Carr, Antony M; Klenerman, David; Lee, Steven F

    2015-01-01

    Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  19. Virtual-'light-sheet' single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Matthieu Palayret

    Full Text Available Single-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in to quickly analyse a calibration sample to define and use such a virtual light-sheet. In addition, the plug-in is easily usable on almost any existing 2D super-resolution instrumentation. This optical sectioning of super-resolution images is achieved by applying well-characterised width and amplitude thresholds to diffraction-limited spots that can be used to tune the thickness of the virtual light-sheet. This allows qualitative and quantitative imaging improvements: by rejecting out-of-focus fluorophores, the super-resolution image gains contrast and local features may be revealed; by retaining only fluorophores close to the focal plane, virtual-'light-sheet' single-molecule localisation microscopy improves the probability that all emitting fluorophores will be detected, fitted and quantitatively evaluated.

  20. Hydrogen Mixing Studies (HMS), user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Lam, K.L.; Wilson, T.L.; Travis, J.R.

    1994-12-01

    Hydrogen Mixing Studies (HMS) is a best-estimate analysis tool for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It can model geometrically complex facilities having multiple compartments and internal structures. The code can simulate the effects of steam condensation, heat transfer to walls and internal structures, chemical kinetics, and fluid turbulence. The gas mixture may consist of components included in a built-in library of 20 species. HMS is a finite-volume computer code that solves the time-dependent, three-dimensional (3D) compressible Navier Stokes equations. Both Cartesian and cylindrical coordinate systems are available. Transport equations for the fluid internal energy and for gas species densities are also solved. HMS was originally developed to run on Cray-type supercomputers with vector-processing units that greatly improve the computational speed, especially for large, complex problems. Recently the code has been converted to run on Sun workstations. Both the Cray and Sun versions have the same built-in graphics capabilities that allow 1D, 2D, 3D, and time-history plots of all solution variables. Other code features include a restart capability and flexible definitions of initial and time-dependent boundary conditions. This manual describes how to use the code. It explains how to set up the model geometry, define walls and obstacles, and specify gas species and material properties. Definitions of initial and boundary conditions are also described. The manual also describes various physical model and numerical procedure options, as well as how to turn them on. The reader also learns how to specify different outputs, especially graphical display of solution variables. Finally sample problems are included to illustrate some applications of the code. An input deck that illustrates the minimum required data to run HMS is given at the end of this manual.

  1. Improvement of Continuous Hydrologic Models and HMS SMA Parameters Reduction

    Science.gov (United States)

    Rezaeian Zadeh, Mehdi; Zia Hosseinipour, E.; Abghari, Hirad; Nikian, Ashkan; Shaeri Karimi, Sara; Moradzadeh Azar, Foad

    2010-05-01

    Hydrological models can help us to predict stream flows and associated runoff volumes of rainfall events within a watershed. There are many different reasons why we need to model the rainfall-runoff processes of for a watershed. However, the main reason is the limitation of hydrological measurement techniques and the costs of data collection at a fine scale. Generally, we are not able to measure all that we would like to know about a given hydrological systems. This is very particularly the case for ungauged catchments. Since the ultimate aim of prediction using models is to improve decision-making about a hydrological problem, therefore, having a robust and efficient modeling tool becomes an important factor. Among several hydrologic modeling approaches, continuous simulation has the best predictions because it can model dry and wet conditions during a long-term period. Continuous hydrologic models, unlike event based models, account for a watershed's soil moisture balance over a long-term period and are suitable for simulating daily, monthly, and seasonal streamflows. In this paper, we describe a soil moisture accounting (SMA) algorithm added to the hydrologic modeling system (HEC-HMS) computer program. As is well known in the hydrologic modeling community one of the ways for improving a model utility is the reduction of input parameters. The enhanced model developed in this study is applied to Khosrow Shirin Watershed, located in the north-west part of Fars Province in Iran, a data limited watershed. The HMS SMA algorithm divides the potential path of rainfall onto a watershed into five zones. The results showed that the output of HMS SMA is insensitive with the variation of many parameters such as soil storage and soil percolation rate. The study's objective is to remove insensitive parameters from the model input using Multi-objective sensitivity analysis. Keywords: Continuous Hydrologic Modeling, HMS SMA, Multi-objective sensitivity analysis, SMA Parameters

  2. HMS: UM SISTEMA ABERTO PARA AUTOMAÇÃO RESIDENCIAL

    Directory of Open Access Journals (Sweden)

    Paulo C.A. Feitosa Jr

    2010-12-01

    Full Text Available HMS (House Management System is a system for home automation, developed in JAVA platform, that permits you to control electronic devices using a local control unit or a remote control unit, that must be connected by Internet or wireless network. One of the main characteristics of this system is the easily insertion of diverse kind electronics devices without having to make changes in the structure of the system.

  3. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  4. Structural analysis of herpes simplex virus by optical super-resolution imaging.

    Science.gov (United States)

    Laine, Romain F; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J; Crump, Colin M; Kaminski, Clemens F

    2015-01-22

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  5. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging.

    Science.gov (United States)

    Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia L; Sandoz, Patrick A; Huss, Anja; Jensen, Nickels A; Jakobs, Stefan; Enderlein, Jörg; Gisou van der Goot, F; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2014-12-18

    Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 × 65 × 3.5 μm(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang.

  6. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  7. Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes

    Institute of Scientific and Technical Information of China (English)

    Chang Jinlong; Tan Manqing

    2011-01-01

    Double-pass forward and double-pass backward erbium-doped super-fluorescent fiber sources (EDSFSs) were combined in one configuration.A 980 nm laser diode pumped the same erbium-doped fiber from both directions using a coupler as a power splitter.The double-pass configuration was achieved by coating the fiber end face.Firstly,an optimal fiber length was found to obtain a high stability of output light wavelength with pump power,and then 1530/1550 nm wavelength division multiplexing was used for spectrum planarization,which expanded the bandwidth to more than 22 nm.The final step was a test of temperature stability.The results show that the rate of the central wavelength change kept to below 3.5 pprn/℃ in the range of-40 to 60 ℃ and 1-2 ppm/℃ in the range of 20-30 ℃.Considering all the three factors of the fiber optic gyro applications,we selected 80 mA as the pump current,in which case the central wavelength temperature instability was calculated as 2.70 ppm/℃,3 dB bandwidth 22.85 nm,spectral flatness 0.2 dB,output power 5.17 mW and power efficiency up to 9.92%.This experimental result has a significant reference value to the selection of devices and proper design of ED-SFSs for the application of high-precision fiber optic gyroscopes.

  8. A new small-package super-continuum light source for optical coherence tomography

    Science.gov (United States)

    Meissner, Sven; Cimalla, Peter; Fischer, Björn; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter; Koch, Edmund

    2013-03-01

    Broadband light sources provide a significant benefit for optical coherence tomography (OCT) imaging concerning the axial resolution. Light sources with bandwidths over 200 nm result in an axial resolution up to 2 microns. Such broad band OCT imaging can be achieved utilizing super continuum (SC) light sources. The main important disadvantage of commercial SC light sources is the overall size and the high costs. Therefore, the use of SC light sources in small OCT setups and applications is limited. We present a new small housing and costeffective light source, which is suitable for OCT imaging. The used light source has dimensions of 110 x 160 x 60 mm and covers a wavelength range from 390 nm up to 2500 nm. The light source was coupled in a dual band OCT system. The light is guided into the interferometer and split in reference and sample beam. The superimposed signal is guided to the spectrometer unit, which consists of two spectrometers. This spectrometer system separates the light. One band centered at 800 nm with a full bandwidth of 176 nm and a second band centered at 1250 nm with a full spectral width of 300 nm was extracted. The 800 nm interference signal is detected by a silicon line scan camera and the 1250 nm signal by an indium gallium arsenide linear image sensor. In this test measurement a plastic foil was used as a sample, which is composed of several plastic film layers. Three dimensional images were acquired simultaneous with the dual band OCT setup. The images were acquired at an A-scan rate of 1 kHz. The 1 kHz A-line rate was chosen because so far the optical power of the light source is not optimal for high speed OCT imaging. The source provides 2 mW in the range of 390 nm to 800 nm and 25 mW in the range from 390 nm to 1650 nm. Furthermore, we coupled the light source by a 50:50 optical fiber coupler, which also reduces the overall optical power of the light source within the OCT setup. Nevertheless, we demonstrated that this new small

  9. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  10. Super-large optical gyroscopes for applications in geodesy and seismology: state-of-the-art and development prospects

    Energy Technology Data Exchange (ETDEWEB)

    Velikoseltsev, A A; Luk' yanov, D P [St. Petersburg Electrotechnical University ' ' LETI' ' , St. Petersburg (Russian Federation); Vinogradov, V I [OJSC Tambov factory Elektropribor (Russian Federation); Shreiber, K U [Forschungseinrichtung Satellitengeodaesie, Technosche Universitaet Muenchen, Geodaetisches Observatorium Wettzell, Sackenrieder str. 25, 93444 Bad Koetzting (Germany)

    2014-12-31

    A brief survey of the history of the invention and development of super-large laser gyroscopes (SLLGs) is presented. The basic results achieved using SLLGs in geodesy, seismology, fundamental physics and other fields are summarised. The concept of SLLG design, specific features of construction and implementation are considered, as well as the prospects of applying the present-day optical technologies to laser gyroscope engineering. The possibilities of using fibre-optical gyroscopes in seismologic studies are analysed and the results of preliminary experimental studies are presented. (laser gyroscopes)

  11. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    Science.gov (United States)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  12. HmsC Controls Yersinia pestis Biofilm Formation in Response to Redox Environment

    Directory of Open Access Journals (Sweden)

    Gai-Xian Ren

    2017-08-01

    Full Text Available Yersinia pestis biofilm formation, controlled by intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP, is important for blockage-dependent plague transmission from fleas to mammals. HmsCDE is a tripartite signaling system that modulates intracellular c-di-GMP levels to regulate biofilm formation in Y. pestis. Previously, we found that Y. pestis biofilm formation is stimulated in reducing environments in an hmsCDE-dependent manner. However, the mechanism by which HmsCDE senses the redox state remains elusive. Using a dsbA mutant and the addition of Cu2+ to simulate reducing and oxidizing periplasmic environments, we found that HmsC protein levels are decreased and the HmsC-HmsD protein-protein interaction is weakened in a reducing environment. In addition, we revealed that intraprotein disulphide bonds are critical for HmsC since breakage lowers protein stability and diminishes the interaction with HmsD. Our results suggest that HmsC might play a major role in sensing the environmental changes.

  13. Influence of standing wave phase error on super-resolution optical inspection for periodic microstructures

    Science.gov (United States)

    Kudo, R.; Usuki, S.; Takahashi, S.; Takamasu, K.

    2012-05-01

    The miniaturization of microfabricated structures such as patterned semiconductor wafers continues to advance, thereby increasing the demand for a high-speed, nondestructive and high-resolution measurement technique. We propose a novel optical inspecting method for a microfabricated structure using the standing wave illumination (SWI) shift as such a measurement technique. This method is based on a super-resolution algorithm in which the inspection system's resolution exceeds the diffraction limit by shifting the SWI. Resolution beyond the diffraction limit has previously been studied theoretically and realized experimentally. The influence of various experimental error factors needs to be investigated and calibration needs to be performed accordingly when actual applications that utilize the proposed method are constructed. These error factors include errors related to the phase, pitch and shift step size of the standing wave. Identifying the phase accurately is extremely difficult and greatly influences the resolution result. Hence, the SWI phase was focused upon as an experimental error factor. The effect of the phase difference between the actual experimental standing wave and the computationally set standing wave was investigated using a computer simulation. The periodic structure characteristic of a microfabricated structure was analyzed. The following findings were obtained as a result. The influence of an error is divided into three modes depending on the pitch of the periodic structure: (1) if the pitch is comparatively small, the influence of the error is cancelled, allowing the structure of a sample to be resolved correctly; (2) if the pitch of the structure is from 150 to 350 nm, the reconstructed solution shifts in a transverse direction corresponding to a phase gap of SWI; and (3) if it is a comparatively large pitch, then it is difficult to reconstruct the right pitch. Verification was experimentally attempted for mode (2), and the same result as

  14. Visualizing and Calculating Tip-Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging.

    Science.gov (United States)

    Sundaresan, Vignesh; Marchuk, Kyle; Yu, Yun; Titus, Eric J; Wilson, Andrew J; Armstrong, Chadd M; Zhang, Bo; Willets, Katherine A

    2017-01-03

    We report a strategy for the optical determination of tip-substrate distance in nanoscale scanning electrochemical microscopy (SECM) using three-dimensional super-resolution fluorescence imaging. A phase mask is placed in the emission path of our dual SECM/optical microscope, generating a double helix point spread function at the image plane, which allows us to measure the height of emitting objects relative to the focus of the microscope. By exciting both a fluorogenic reaction at the nanoscale electrode tip as well as fluorescent nanoparticles at the substrate, we are able to calculate the tip-substrate distance as the tip approaches the surface with precision better than 25 nm. Attachment of a fluorescent particle to the insulating sheath of the SECM tip extends this technique to nonfluorogenic electrochemical reactions. Correlated electrochemical and optical determination of tip-substrate distance yielded excellent agreement between the two techniques. Not only does super-resolution imaging offer a secondary feedback mechanism for measuring the tip-sample gap during SECM experiments, it also enables facile tip alignment and a strategy for accounting for electrode tilt relative to the substrate.

  15. FLIR, NVG and HMS/D systems for helicopter operation: Review

    Science.gov (United States)

    Boehm, H. D. V.

    1985-12-01

    In the last decade, electro-optical systems have been used successfully in military and civil applications. They extend the scope of operation of ground vehicles, helicopters and fixed wing aircraft from daytime into nighttime, with a 24 hour readiness covering even bad weather conditions. The visual aids fall into two physical categories: the image intensifiers, which amplify reflected residual light in the near infrared and the thermal imager, which detect the thermal radiation of all bodies mainly in the 8 to 12 micrometer atmospheric window for bodies with T approx. 20 C. During the last five years, the investigator has carried out helicopter flight trials at night using examples of all these visionic aids (FLIR, LLLTV, NVG, HMS/D and Direct View Optics) for piloting and observation tasks. The detection, recognition and identification range of nine different FLIR were tested in ground and laboratory tests. The evaluation of an optical sensor platform location in the helicopter nose-, roof- and mast-mounted versions, the comparison of thermal and intensifier images and the NVG compatible cockpit were topics of the tests. The optical sensors are described with their limitations and some results of the trials are given, with regard to the pilot's stress situation and eye safety.

  16. Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yaoju [Department of Physics, Wenzhou Normal College, Wenzhou 325027 (China); Xiao Huaceng [Department of Biology, Wenzhou Normal College, Wenzhou 325027 (China); Zheng Chongwei [Department of Physics, Wenzhou Normal College, Wenzhou 325027 (China)

    2004-07-01

    The intensity distribution in near-field optical data storage with a solid immersion lens (SIL) and a binary phase-only diffractive super-resolution element (DSE) is expressed in a single definite integral by using angular spectrum theory. The super-resolution of binary two-zone phase DSEs for SIL systems is numerically studied for low and high numerical aperture (NA) systems. The results for the low-NA systems show that optimizing the zone boundary and phase of binary two-zone phase DSEs can decrease the spot size. The Strehl ratio, sidelobe intensity and axial characteristic length are also discussed. In addition, a binary two-zone phase filter can change the position of focus that shifts from the SIL-air interface to air, but the spot size increases. For the high-NA systems, the y- and z-polarized components of the transmitted field increase as the boundary and depth of phase of the DSE increase. When the phase boundary is smaller and the depth of phase depth is close to {pi}, super-resolving effect of DSE is more obvious but the intensity of sidelobes is larger for the high-NA system. In this way, it may be possible to improve both the resolution and focal depth of the SIL with high-NA systems.

  17. Theoretical study on optical storage of the transmitted-aperture type super-RENS

    Science.gov (United States)

    Shen, Quanhong; Xu, Duanyi; Ma, Jianshe; Liu, Rong; Qi, Guosheng

    2005-09-01

    In this paper, theoretical work on the transmitted-aperture (TA) type super-RENS was introduced. Firstly, the forming of transmitted-aperture in the mask layer was studied based on laser-induced thermal model with Gauss assumption. A numerical simulation was carried out by FEMLAB. The simulation results showed that transmitted aperture would not be formed until the exposure power exceeded a threshold within a certain pulse time and vice versa. Secondly, a calculation model of electromagnetic field of TA type super-RENS disk was presented based on the three-dimensional finite-difference time-domain method (3D-FDTD) together with a vector method of Gaussian beam. Lorenz dispersive model was employed for mask layer and reflective layer. The distributions of electric field for TA type super-RENS were theoretically analyzed. Lastly, the static writing experiment for TA type Super-RENS was carried out with different power and pulse time, as well as for conventional CD-R/W. The experiment results well satisfied the simulation.

  18. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  19. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yaoyu; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  20. Direct optical sensing of single unlabeled small proteins and super-resolution microscopy of their binding sites

    CERN Document Server

    Piliarik, Marek

    2013-01-01

    More than twenty years ago, scientists succeeded in pushing the limits of optical detection to single molecules using fluorescence. This breakthrough has revolutionized biophysical measurements, but restrictions in photophysics and labeling protocols have motivated many efforts to achieve fluorescence-free single-molecule sensitivity in biological studies. Although several interesting mechanisms using vibrational spectroscopy, photothermal detection, plasmonics or microcavities have been proposed for biosensing at the single-protein level, no method has succeeded in direct label-free detection of single proteins. Here, we present the first results using interferometric detection of scattering (iSCAT) from single proteins without the need for any label, optical nanostructure or microcavity. Furthermore, we demonstrate super-resolution imaging of protein binding with nanometer localization precision. The ease of iSCAT instrumentation promises a breakthrough for industrial usage as well as fundamental laboratory...

  1. Preparation and Hydrothermal Stability of Hydrophobic HMS Molecular Sieve%疏水性 HMS 分子筛的制备及水热稳定性

    Institute of Scientific and Technical Information of China (English)

    王广建; 韩亚飞; 褚衍佩; 冯庆吉; 王芳

    2015-01-01

    以三甲基氯硅烷和六甲基二硅氮烷为硅烷化试剂,分别采用气相和液相硅烷化法对 HMS 分子筛进行表面改性制备疏水性 HMS 分子筛。考察了改性方法、硅烷试剂与分子筛摩尔比、反应温度和时间对硅烷化效果的影响,研究了改性前后HMS 的骨架特征、微观结构和疏水性、水热稳定性。结果表明:气相硅烷化法较液相法优势明显,硅烷化程度和效率均较高;在双硅烷化试剂、反应温度90℃、硅烷试剂与分子筛摩尔之比0.8、反应时间8 h 等条件下,改性前后 HMS 的静态水吸附量分别为45.46%和1.38%,疏水性得到明显提高。HMS 经硅烷化改性后保持介孔骨架结构和蠕虫状孔道,同时水热稳定性得到有效改善,800℃水蒸气处理6 h 后介孔结构仍然存在。%The hydrophobic HMS molecular sieve was prepared with trimethylchlorosilane and hexamethyldisilazane as silane agents by a vapor silylation method and a liquid silylation method. The effects of modification modes, reaction temperature and time, molar ratio of silane agents to HMS on the silylation were investigated. The framework character, microstructures and hydrophobic property, hydrothermal stability of HMS before and after modification were also analyzed. The results indicate that the gas phase method has some advantages such as its high efficiency and degree of silanization. The static water adsorption capacity of HMS before and after silanization are 45.38% and 1.38%, respectively, and the hydrophobic of HMS is enhanced under the optimal conditions (i.e., use of mixed silane agents, reaction temperature of 90 , reaction time of 8 h, and molar ratio of silane agents to HMS of 0.8). The℃hydrophobic HMS maintains the mesoporous structure and typical vermicular channel of HMS molecular sieve. Also, the hydrothermal stability of HMS is improved efficiently after modification, and the mesoporous structure is retained even after

  2. Super-resolution mbPAINT for optical localization of single-stranded DNA.

    Science.gov (United States)

    Chen, Jixin; Bremauntz, Alberto; Kisley, Lydia; Shuang, Bo; Landes, Christy F

    2013-10-09

    We demonstrate the application of superlocalization microscopy to identify sequence-specific portions of single-stranded DNA (ssDNA) with sequence resolution of 50 nucleotides, corresponding to a spatial resolution of 30 nm. Super-resolution imaging was achieved using a variation of a single-molecule localization method, termed as "motion blur" point accumulation for imaging in nanoscale topography (mbPAINT). The target ssDNA molecules were immobilized on the substrate. Short, dye-labeled, and complementary ssDNA molecules stochastically bound to the target ssDNA, with repeated binding events allowing super-resolution. Sequence specificity was demonstrated via the use of a control, noncomplementary probe. The results support the possibility of employing relatively inexpensive short ssDNAs to identify gene sequence specificity with improved resolution in comparison to the existing methods.

  3. Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review

    Science.gov (United States)

    Sednev, Maksim V.; Belov, Vladimir N.; Hell, Stefan W.

    2015-12-01

    The review deals with commercially available organic dyes possessing large Stokes shifts and their applications as fluorescent labels in optical microscopy based on stimulated emission depletion (STED). STED microscopy breaks Abbe’s diffraction barrier and provides optical resolution beyond the diffraction limit. STED microscopy is non-invasive and requires photostable fluorescent markers attached to biomolecules or other objects of interest. Up to now, in most biology-related STED experiments, bright and photoresistant dyes with small Stokes shifts of 20-40 nm were used. The rapid progress in STED microscopy showed that organic fluorophores possessing large Stokes shifts are indispensable in multi-color super-resolution techniques. The ultimate result of the imaging relies on the optimal combination of a dye, the bio-conjugation procedure and the performance of the optical microscope. Modern bioconjugation methods, basics of STED microscopy, as well as structures and spectral properties of the presently available fluorescent markers are reviewed and discussed. In particular, the spectral properties of the commercial dyes are tabulated and correlated with the available depletion wavelengths found in STED microscopes produced by LEICA Microsytems, Abberior Instruments and Picoquant GmbH.

  4. A scheme of optical interconnection for super high speed parallel computer

    Institute of Scientific and Technical Information of China (English)

    Youju Mao(毛幼菊); Yi L(u)(吕翊); Jiang Liu(刘江); Mingrui Dang(党明瑞)

    2004-01-01

    An optical cross connection network which adopts coarse wavelength division multiplexing (CWDM) and data packet is introduced. It can be used to realize communication between multi-CPU and multi-MEM in parallel computing system. It provides an effective way to upgrade the capability of parallel computer by combining optical wavelength division multiplexing (WDM) and data packet switching technology. CWDM used in network construction, optical cross connection (OXC) based on optical switch arrays, and data packet format used in network construction were analyzed. We have also done the optimizing analysis of the number of optical switches needed in different scales of network in this paper. The architecture of the optical interconnection for 8 wavelength channels and 128 bits parallel transmission has been researched. Finally, a parallel transmission system with 4 nodes, 8 channels per node, has been designed.

  5. Effects of a Novel Glucokinase Activator, HMS5552, on Glucose Metabolism in a Rat Model of Type 2 Diabetes Mellitus

    Science.gov (United States)

    Liu, Huili

    2017-01-01

    Glucokinase (GK) plays a critical role in the control of whole-body glucose homeostasis. We investigated the possible effects of a novel glucokinase activator (GKA), HMS5552, to the GK in rats with type 2 diabetes mellitus (T2DM). Male Sprague-Dawley (SD) rats were divided into four groups: control group, diabetic group, low-dose (10 mg/kg) HMS5552-treated diabetic group (HMS-L), and high-dose (30 mg/kg) HMS5552-treated diabetic group (HMS-H). HMS5552 was administered intragastrically to the T2DM rats for one month. The levels of total cholesterol, triglyceride, fasting plasma insulin (FINS), and glucagon (FG) were determined, and an oral glucose tolerance test was performed. The expression patterns of proteins and genes associated with insulin resistance and GK activity were assayed. Compared with diabetic rats, the FINS level was significantly decreased in the HMS5552-treated diabetic rats. HMS5552 treatment significantly lowered the blood glucose levels and improved GK activity and insulin resistance. The immunohistochemistry, western blot, and semiquantitative RT-PCR results further demonstrated the effects of HMS5552 on the liver and pancreas. Our data suggest that the novel GKA, HMS5552, exerts antidiabetic effects on the liver and pancreas by improving GK activity and insulin resistance, which holds promise as a novel drug for the treatment of T2DM patients. PMID:28191470

  6. An Optical Wake Vortex Detection System for Super-Density Airport Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Feasibility study including analysis and experiment performed in Phase I indicated that several singled-ended optical scintillometer and retro-reflector pairs...

  7. An Optical Wake Vortex Detection System for Super-Density Airport Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OSI proposes to develop a wake vortex detection system including a group of double-ended and single-ended optical scintillometers properly deployed in the airfield...

  8. Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniquess.

    Science.gov (United States)

    Jayasinghe, Isuru D; Clowsley, Alexander H; Munro, Michelle; Hou, Yufeng; Crossman, David J; Soeller, Christian

    2015-01-07

    The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM), has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM) techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  9. Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques

    Directory of Open Access Journals (Sweden)

    Isuru D. Jayasinghe

    2014-12-01

    Full Text Available The t-tubular system plays a central role in the synchronisation of calcium signalling and excitation-contraction coupling in most striated muscle cells. Light microscopy has been used for imaging t-tubules for well over 100 years and together with electron microscopy (EM, has revealed the three-dimensional complexities of the t-system topology within cardiomyocytes and skeletal muscle fibres from a range of species. The emerging super-resolution single molecule localisation microscopy (SMLM techniques are offering a near 10-fold improvement over the resolution of conventional fluorescence light microscopy methods, with the ability to spectrally resolve nanometre scale distributions of multiple molecular targets. In conjunction with the next generation of electron microscopy, SMLM has allowed the visualisation and quantification of intricate t-tubule morphologies within large areas of muscle cells at an unprecedented level of detail. In this paper, we review recent advancements in the t-tubule structural biology with the utility of various microscopy techniques. We outline the technical considerations in adapting SMLM to study t-tubules and its potential to further our understanding of the molecular processes that underlie the sub-micron scale structural alterations observed in a range of muscle pathologies.

  10. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  11. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  12. An optical--near-IR study of a triplet of super star clusters in the starburst core of M82

    CERN Document Server

    Westmoquette, M S; Smith, L J; Seth, A C; Gallagher, J S; O'Connell, R W; Ryon, J E; Silich, S; Mayya, Y D; Munoz-Tunon, C; Gonzalez, D Rosa

    2014-01-01

    We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy, and archival HST imaging of the triplet of super star clusters (A1, A2 and A3) in the core of the M82 starburst. Using model fits to the STIS spectra, and the weakness of red supergiant CO absorption features (appearing at ~6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are $4.5\\pm1.0$~Myr. A1 has strong CO bands, consistent with our previously determined age of $6.4\\pm0.5$~Myr. The photometric masses of the three clusters are 4--$7\\times10^5$~\\Msol, and their sizes are $R_{\\rm eff}=159$, 104, 59~mas ($\\sim$2.8, 1.8, 1.0~pc) for A1,2 and 3. The STIS spectra yielded radial velocities of $320\\pm2$, $330\\pm6$, and $336\\pm5$~\\kms\\ for A1,2, and 3, placing them at the eastern end of the $x_2$ orbits of M82's bar. Clusters A2 and A3 are in high density (800--1000~\\cmt) environments, and like A1, are surrounded by compact H\\two\\ regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We ...

  13. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    Science.gov (United States)

    Heilman, A. L.; Gordon, M. J.

    2016-06-01

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective" pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.

  14. Ground-based aerosol optical depth inter-comparison campaigns at European EUSAAR super-sites

    Science.gov (United States)

    Nyeki, S.; Gröbner, J.; Wehrli, C.

    2013-05-01

    This work summarizes eight aerosol optical depth (AOD) inter-comparison campaigns conducted during the 2008-2011 period. A PFR (precision filter radiometer) travelling standard from the GAW-PFR network (based at PMOD/WRC, Switzerland) was run alongside existing CIMEL sun-photometers from the PHOTONS/AERONET network located at European stations. Basic statistical analysis of coincident measurements at λ = 500 and 862 nm illustrated good agreement. However, when WMO criteria for traceability were applied only one wavelength at three stations was traceable. Other stations were close to being traceable but had slight issues with window cleanliness and calibration.

  15. Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve

    Science.gov (United States)

    Li, Xuefeng; Zhang, Like; Gao, Huanxin; Chen, Qingling

    2016-08-01

    Various Ta-HMS (hexagonal mesoporous silica) samples with different Ta content were hydrothermally prepared and characterized by XRD, N2-adsorption, ICP-AES, FTIR, and UV-Vis spectroscopy. The catalytic performance of the samples was also evaluated in the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. The regularity of mesoporous structure decreases while more extraframe Ta ions are formed with increasing the Ta content. Ta-HMS with Ta/Si ratio of 0.015 shows the highest conversion and selectivity in the studied epoxidation reaction. The catalyst can be used for three times without significant activity loss.

  16. Ptychographic reconstruction algorithm for frequency resolved optical gating: super-resolution and supreme robustness

    CERN Document Server

    Sidorenko, Pavel; Avnat, Zohar; Cohen, Oren

    2016-01-01

    Frequency-resolved optical gating (FROG) is probably the most popular technique for complete characterization of ultrashort laser pulses. In FROG, a reconstruction algorithm retrieves the pulse from a measured spectrogram, yet current FROG reconstruction algorithms require and exhibit several restricting features that weaken FROG performances. For example, the delay step must correspond to the spectral bandwidth measured with large enough SNR a condition that limits the temporal resolution of the reconstructed pulse, obscures measurements of weak broadband pulses, and makes measurement of broadband mid-IR pulses hard and slow because the spectrograms become huge. We develop a new approach for FROG reconstruction, based on ptychography (a scanning coherent diffraction imaging technique), that removes many of the algorithmic restrictions. The ptychographic reconstruction algorithm is significantly faster and more robust to noise than current FROG algorithms, which are based on generalized projections (GP). We d...

  17. Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media.

    Science.gov (United States)

    Zhang, Na; Li, Gang; Cheng, Zhuhong; Zuo, Xiujin

    2012-08-30

    A simple, effective method has been demonstrated to immobilize Rhodamine B (RhB) probes on mesoporous silica (Au-HMS). The prepared chemosensor (Au-HMS-Probe) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis spectrum and Fourier transform infrared spectroscopy (FT-IR). Further application of Au-HMS-Probe in sensing Hg(2+) was confirmed by fluorescence titration experiment. Au-HMS-Probe afforded "turn-on" fluorescence enhancement and displayed high brightness in water, and it also showed excellent selectivity for Hg(2+) over alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)) and other heavy metal ions (Ag(+), Cd(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Fe(2+)). Importantly, Au-HMS-Probe could be regenerated by treatment with tetrapropylammonium hydroxide solution.

  18. Structured Illumination-Based Super-Resolution Optical Microscopy for Hemato- and Cyto-Pathology Applications

    Directory of Open Access Journals (Sweden)

    Tieqiao Zhang

    2013-01-01

    Full Text Available Structured illumination fluorescence microscopy utilizes interfering light and the moiré effect to enhance spatial resolution to about a half of that of conventional light microscopy, i.e. approximately 90 nm. In addition to the enhancement in the x and y directions, it also allows enhancement of resolution in the z- direction by the same factor of two (to approximately 220 nm, making it a powerful tool for 3-D morphology studies of fluorescently labeled cells or thin tissue sections. In this report, we applied this technique to several types of blood cells that are commonly seen in hematopathology. Compared with standard brightfield and ordinary fluorescence microscopy images, the 3-D morphology results clearly reveal the morphological features of different types of normal blood cells. We have also used this technique to evaluate morphologies of abnormal erythrocytes and compare them with those recorded on normal cells. The results give a very intuitive presentation of morphological structures of erythrocytes with great details. This research illustrates the potential of this technique to be used in hematology and cyto-pathology studies aimed at identifying nanometer-sized features that cannot be distinguished otherwise with conventional optical microscopy.

  19. Structured illumination-based super-resolution optical microscopy for hemato- and cyto-pathology applications.

    Science.gov (United States)

    Zhang, Tieqiao; Osborn, Samantha; Brandow, Chloe; Dwyre, Denis; Green, Ralph; Lane, Stephen; Wachsmann-Hogiu, Sebastian

    2013-01-01

    Structured illumination fluorescence microscopy utilizes interfering light and the moiré effect to enhance spatial resolution to about a half of that of conventional light microscopy, i.e. approximately 90 nm. In addition to the enhancement in the x and y directions, it also allows enhancement of resolution in the z- direction by the same factor of two (to approximately 220 nm), making it a powerful tool for 3-D morphology studies of fluorescently labeled cells or thin tissue sections. In this report, we applied this technique to several types of blood cells that are commonly seen in hematopathology. Compared with standard brightfield and ordinary fluorescence microscopy images, the 3-D morphology results clearly reveal the morphological features of different types of normal blood cells. We have also used this technique to evaluate morphologies of abnormal erythrocytes and compare them with those recorded on normal cells. The results give a very intuitive presentation of morphological structures of erythrocytes with great details. This research illustrates the potential of this technique to be used in hematology and cyto-pathology studies aimed at identifying nanometer-sized features that cannot be distinguished otherwise with conventional optical microscopy.

  20. Optical IFU observations of gas pillars surrounding the super star cluster NGC 3603

    CERN Document Server

    Westmoquette, M S; Ercolano, B; Smith, L J

    2013-01-01

    We present optical integral field unit (IFU) observations of two gas pillars surrounding the Galactic young massive star cluster NGC 3603. The high S/N and spectral resolution of these data have allowed us to accurately quantify the H-alpha, [NII] and [SII] emission line shapes, and we find a mixture of broad (FWHM~70-100 km/s) and narrow (10000 cm-3. In one pillar we found that these high densities are only found in the narrow component, implying it must originate from deeper within the pillar than the broad component. From this, together with our kinematical data, we conclude that the narrow component traces a photoevaporation flow, and that the TML forms at the interface with the hot wind. On the pillar surfaces we find a consistent offset in radial velocity between the narrow (brighter) components of H-alpha and [NII] of ~5-8 km/s, for which we were unable to find a satisfactory explanation. We urge the theoretical community to simulate mechanical and radiative cloud interactions in more detail to address...

  1. Spectral estimation optical coherence tomography for axial super-resolution (Conference Presentation)

    Science.gov (United States)

    Liu, Xinyu; Yu, Xiaojun; Wang, Nanshuo; Bo, En; Luo, Yuemei; Chen, Si; Cui, Dongyao; Liu, Linbo

    2016-03-01

    The sample depth reflectivity profile of Fourier domain optical coherence tomography (FD-OCT) is estimated from the inverse Fourier transform of the spectral interference signals (interferograms). As a result, the axial resolution is fundamentally limited by the coherence length of the light source. We demonstrate an axial resolution improvement method by using the autoregressive spectral estimation technique to instead of the inverse Fourier transform to analyze the spectral interferograms, which is named as spectral estimation OCT (SE-OCT). SE-OCT improves the axial resolution by a factor of up to 4.7 compared with the corresponding FD-OCT. Furthermore, SE-OCT provides a complete sidelobe suppression in the point-spread function. Using phantoms such as an air wedge and micro particles, we prove the ability of resolution improvement. To test SE-OCT for real biological tissue, we image the rat cornea and demonstrate that SE-OCT enables clear identification of corneal endothelium anatomical details ex vivo. We also find that the performance of SE-OCT is depended on SNR of the feature object. To evaluate the potential usage and define the application scope of SE-OCT, we further investigate the property of SNR dependence and the artifacts that may be caused. We find SE-OCT may be uniquely suited for viewing high SNR layer structures, such as the epithelium and endothelium in cornea, retina and aorta. Given that SE-OCT can be implemented in the FD-OCT devices easily, the new capabilities provided by SE-OCT are likely to offer immediate improvements to the diagnosis and management of diseases based on OCT imaging.

  2. An optical-near-IR study of a triplet of super star clusters in the starburst core of M82

    Energy Technology Data Exchange (ETDEWEB)

    Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Bastian, N. [Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching bei München (Germany); Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seth, A. C. [University of Utah, Salt Lake City, UT 84112 (United States); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison, WI 53706 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Silich, S.; Mayya, Y. D.; González, D. Rosa [Instituto Nacional de Astrofísica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, C.P. 72840, Puebla (Mexico); Muñoz-Tuñón, C., E-mail: westmoquette@gmail.com [Instituto de Astrofísica de Canarias, C/vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-07-10

    We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy and archival Hubble Space Telescope (HST) imaging of the triplet of super star clusters (A1, A2, and A3) in the core of the M82 starburst. Using model fits to the Space Telescope Imaging Spectrograph (STIS) spectra and the weakness of red supergiant CO absorption features (appearing at ∼6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are 4.5 ± 1.0 Myr. A1 has strong CO bands, consistent with our previously determined age of 6.4 ± 0.5 Myr. The photometric masses of the three clusters are 4-7 × 10{sup 5} M{sub ☉}, and their sizes are R{sub eff} = 159, 104, 59 mas (∼2.8, 1.8, 1.0 pc) for A1, A2, and A3. The STIS spectra yielded radial velocities of 320 ± 2, 330 ± 6, and 336 ± 5 km s{sup –1} for A1, A2, and A3, placing them at the eastern end of the x{sub 2} orbits of M82's bar. Clusters A2 and A3 are in high-density (800-1000 cm{sup –3}) environments, and like A1, are surrounded by compact H II regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We propose that the three clusters were formed in situ on the outer x{sub 2} orbits in regions of dense molecular gas subsequently ionized by the rapidly evolving starburst. The similar radial velocities of the three clusters and their small projected separation of ∼25 pc suggest that they may merge in the near future unless this is prevented by velocity shearing.

  3. A robotic, compact, and extremely high resolution optical spectrograph for a close-in super-Earth survey

    Science.gov (United States)

    Ge, Jian; Powell, Scott; Zhao, Bo; Varosi, Frank; Ma, Bo; Sithajan, Sirinrat; Liu, Jian; Li, Rui; Grieves, Nolan; Schofield, Sidney; Avner, Louis; Jakeman, Hali; Yoder, William A.; Gittelmacher, Jakob A.; Singer, Michael A.; Muterspaugh, Matthew; Williamson, Michael; Maxwell, J. E.

    2014-08-01

    One of the most astonishing results from the HARPS and Kepler planet surveys is the recent discovery of close-in super-Earths orbiting more than half of FGKM dwarfs. This new population of exoplanets represents the most dominant class of planetary systems known to date, is totally unpredicted by the classical core-accretion disk planet formation model. High cadence and high precision Doppler spectroscopy is the key to characterize properties of this new population and constrain planet formation models. A new robotic, compact high resolution optical spectrograph, called TOU (formerly called EXPERT-III), was commissioned at the Automatic Spectroscopic Telescope (AST) at Fairborn Observatory in Arizona in July 2013 and has produced a spectral resolution of about 100,000 and simultaneous wavelength coverage of 0.38-0.9 μm with a 4kx4k back-illuminated Fairchild CCD detector. The instrument holds a very high vacuum of 1 micro torr and about 2 mK temperature stability over a month. The early on-sky RV measurements show that this instrument is approaching a Doppler precision of 1 m/s (rms) for bright reference stars (such as Tau Ceti) with 5 min exposures and better than 3 m/s (P-V, RMS~1 m/s) daily RV stability before calibration exposures are applied. A pilot survey of 20 Vsuper-Earth systems and known RV stable stars, is being launched and every star will be observed ~100 times over ~300 days time window between this summer and next spring, following up with a full survey of ~150 V< 10 FGKM dwarfs in 2015-2017.

  4. Quantitative super-resolution microscopy

    NARCIS (Netherlands)

    Harkes, Rolf

    2016-01-01

    Super-Resolution Microscopy is an optical fluorescence technique. In this thesis we focus on single molecule super-resolution, where the position of single molecules is determined. Typically these molecules can be localized with a 10 to 30nm precision. This technique is applied in four different s

  5. Evaluation and Source Apportionment of Heavy Metals (HMs in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Baoling Duan

    2015-12-01

    Full Text Available Heavy metals (HMs in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  6. Amnesic H.M.'s performance on the language competence test: parallel deficits in memory and sentence production.

    Science.gov (United States)

    MacKay, Donald G; James, Lori E; Hadley, Christopher B

    2008-04-01

    To test conflicting hypotheses regarding amnesic H.M.'s language abilities, this study examined H.M.'s sentence production on the Language Competence Test (Wiig & Secord, 1988). The task for H.M. and 8 education-, age-, and IQ-matched controls was to describe pictures using a single grammatical sentence containing prespecified target words. The results indicated selective deficits in H.M.'s picture descriptions: H.M. produced fewer single grammatical sentences, included fewer target words, and described the pictures less completely and accurately than did the controls. However, H.M.'s deficits diminished with repeated processing of unfamiliar stimuli and disappeared for familiar stimuli-effects that help explain why other researchers have concluded that H.M.'s language production is intact. Besides resolving the conflicting hypotheses, present results replicated other well-controlled sentence production results and indicated that H.M.'s language and memory exhibit parallel deficits and sparing. Present results comport in detail with binding theory but pose problems for current systems theories of H.M.'s condition.

  7. Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations

    Science.gov (United States)

    Mönkemöller, Viola; Øie, Cristina; Hübner, Wolfgang; Huser, Thomas; McCourt, Peter

    2015-11-01

    Liver sinusoidal endothelial cells (LSECs) act as a filter between blood and the hepatocytes. LSECs are highly fenestrated cells; they contain transcellular pores with diameters between 50 to 200 nm. The small sizes of the fenestrae have so far prohibited any functional analysis with standard and advanced light microscopy techniques. Only the advent of super-resolution optical fluorescence microscopy now permits the recording of such small cellular structures. Here, we demonstrate the complementary use of two different super-resolution optical microscopy modalities, 3D structured illumination microscopy (3D-SIM) and single molecule localization microscopy in a common optical platform to obtain new insights into the association between the cytoskeleton and the plasma membrane that supports the formation of fenestrations. We applied 3D-SIM to multi-color stained LSECs to acquire highly resolved overviews of large sample areas. We then further increased the spatial resolution for imaging fenestrations by single molecule localization microscopy applied to select small locations of interest in the same sample on the same microscope setup. We optimized the use of fluorescent membrane stains for these imaging conditions. The combination of these techniques offers a unique opportunity to significantly improve studies of subcellular ultrastructures such as LSEC fenestrations.

  8. The analytical investigation of the super-Gaussian pump source on the thermal, stress and thermo-optics properties of double-clad Yb:glass fiber lasers

    Indian Academy of Sciences (India)

    H Nadgaran; P Elahi

    2005-07-01

    Fiber lasers have attracted considerable attention when their power can realistically be scaled to kilowatt level and beyond. In this paper, we assumed that the fiber core and first clad are exposed to a pump source with a super-Gaussian profile of order four. The effects of this non-uniform heat deposition on thermal, stress and thermo-optics properties such as temperature-dependent change of refractive index and thermally induced stress have been comprehensively studied and their equations analytically derived.

  9. The use of PCR in the diagnosis of hyper-reactive malarial splenomegaly (HMS).

    Science.gov (United States)

    Puente, S; Rubio, J M; Subirats, M; Lago, M; Gonzalez-Lahoz, J; Benito, A

    2000-09-01

    Between August 1997 and September 1998, 14 cases of hyper-reactive malarial splenomegaly (HMS) were diagnosed in the Instituto de Salud Carlos III in Madrid, Spain. These cases, from Equatorial Guinea and Cameroon, were identified using the diagnostic criteria established by Y. M. Fakunle in 1981: gross splenomegaly; high levels of anti-malarial antibodies; IgM in serum at least two standard deviations above the local mean; and clinical and immunological response to antimalarial treatment. Although malarial parasites were only detected in the Giemsa-stained blood films of four of the cases, these four and four others were found to have the DNA of such parasites in their blood when tested using a method based on a semi-nested, multiplex PCR. These result indicate that malarial parasitaemias may be more prevalent in HMS than is usually recognized.

  10. Joint Tactical Radio System Handheld, Manpack, and Small Form Fit Radios (JTRS HMS)

    Science.gov (United States)

    2013-12-01

    Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network Econ - Economic Eng - Engineering Est - Estimating FMS...2004 Milestone C Decision: HMS MAY 2011 MAY 2011 MAY 2011 MAY 2011 IOT &E: AN/PRC-154 Rifleman Radio NOV 2011 NOV 2011 MAY 2012 NOV 2011 MOT&E: AN/PRC-155...Test and Evaluation FRP - Full Rate Production IOT &E - Initial Operational Test and Evaluation IPR - In-Process Review MOT&E - Multi-Service

  11. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    Science.gov (United States)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  12. Study of the shape of an optical window in a super-resolution state by electromagnetic-thermal coupled simulation: Effects of melting of an active layer in an optical disc

    Science.gov (United States)

    Sano, Haruyuki; Shima, Takayuki; Kuwahara, Masashi; Fujita, Yoshiya; Uchiyama, Munehisa; Aono, Yoshiyuki

    2014-04-01

    We performed a multi-physics simulation for the propagation of electromagnetic waves and heat conduction in a super-resolution optical disc that includes an active layer of InSb. Because the change in the optical constant of InSb due to the phase transition is taken into account, the melting of the active layer can be realistically simulated in our calculation. It was found that in the case of an incident light power (P) of 2 mW, a profile of the electric field intensity transmitted through the InSb layer has an asymmetric shape with a narrow peak. This beam-narrowing was suggested to be an essential mechanism of the super-resolution, because a narrower light beam allows the detection of a smaller pit structure than the optical diffraction limit. This beam-narrowing was found to be originating from a small molten region produced in the InSb layer, which works as a mask for light exposure.

  13. Super Special Codes using Super Matrices

    CERN Document Server

    Kandasamy, W B Vasantha; Ilanthenral, K

    2010-01-01

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  14. First gathering of Native Chiefs aboard H.M.S. 'Nelson', Port Moresby, November 5th

    OpenAIRE

    ? Angerer, C, fl 1884, photographer

    2004-01-01

    285 x 230 mm. The Reverend James Chalmers was sent out to persuade local chiefs to come on board H.M.S. 'Nelson', and here Commodore Erskine explains the meaning of the protectorate to them. He is here seen shaking hands with Boe Vagi, as he presents him with his ebony stick of authority ('rather a nice idea' Romilly remarks). The other chiefs sit on the deck, while the ship's company is gathered behind. Various national flags have been draped above the deck as awnings. Behind Erskine, i...

  15. Characterization of silylated Ti-grafted HMS catalyst and its excellent epoxidation performance

    Institute of Scientific and Technical Information of China (English)

    Xue Feng Li; Huan Xin Gao; Guo Jie Jin; Lin Ding; Lu Chen; Hong Yun Yang; Xin He; Qing Ling Chen

    2007-01-01

    Silylated Ti-grafted hexagonal mesoporous silica (HMS) catalyst was prepared by the chemical vapor deposition (CVD) using TiCl4 as titanium source and hexamethyldisilazane (HMDSZ) as silylating agent. The samples were characterized by XRD, N2-adsorption, FTIR, 29Si NMR, DR UV-vis, and evaluated by epoxidation of styrene, propylene, cyclohexene, and 1-hexene with cumene hydroperoxide (CHP) as oxidant, respectively. It is revealed that the catalyst possesses typical mesoporous structure, high hydrophobicity and highly dispersed tetracoordinated titanium sites and hence exhibits excellent performance in epoxidation of olefins.

  16. Synthesis of Cu-HMS Molecular Sieve and Aromatic Hydrocarbon Oxidation Using Cu-HMS%Cu-HMS分子筛的合成及对芳烃氧化反应的催化

    Institute of Scientific and Technical Information of China (English)

    张美英; 王乐夫; 季山; 黄仲涛; 罗维

    2004-01-01

    采用中性模板法于室温下合成了含铜的分子筛Cu-HMS,并以该分子筛为多相催化剂,对温和条件下异丙苯的氧化进行了研究.结果表明,以硝酸铜为铜源的Cu-HMS-3催化剂具有很高的催化活性,异丙苯转化率和过氧化氢异丙苯选择性都很高,分别达39.6%和98.5%.催化剂可以回收使用.另外,以Cu-HMS-3为催化剂对甲苯和乙苯的氧化进行了研究,发现在本实验条件下,甲苯未发生反应,3种芳烃的活性顺序为甲苯乙苯<异丙苯.%A copper-containing molecular sieve Cu-HMS was synthesized using the neutral templating pathway at room temperature. Then the product was used as heterogeneous catalyst for the oxidation of cumene under mild conditions. The results show that Cu-HMS-3 with copper nitrate as copper source has excellent catalytic activity, high cumene conversion and cumene hydroperoxide selectivity, that is, 39.6% and 98.5%. The catalyst can be recycled. Furthermore, the oxidations of toluene and ethylbenzene were investigated with Cu-HMS-3 as catalyst. It is found that there is no oxidation reaction observed for toluene. The activities of the three aromatic hydrocarbons follow the order of tolueneethylbenzene

  17. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    Science.gov (United States)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  18. Rainfall-runoff model HEC-HMS in a small inhomogeneous basin

    Science.gov (United States)

    Ponížilová, Iva; Unucka, Jan; Říhová, Veronika

    2014-05-01

    The contribution focuses on the applicability of the hydrologic rainfall-runoff model HEC-HMS to verify the effect of inhomogeneities of the basin surface. The simulation of an extreme rainfall-runoff episode using the HEC-HMS model should prove the influence of basin inhomogeneity on the speed and volume of runoff and the potential of watersheds on runoff mitigation. The area of interest is situated in North Bohemia, Czech Republic. Inhomogeneity of the Robecsky stream basin is caused by different physical-geographic conditions in the basin of the main reaches of the Robecsky stream and its major left tributary which is the Bobri stream. Before their confluence, both streams have a comparable catchment area of about 130 km2. Significant differences are manifested in average altitude of the basin, basin shape, basin slope, time of concentration and the proportion of forest areas. The Bobri stream shows more extreme runoff characteristics in combination with a smaller area of forestation. Another important factor affecting runoff from the basin is the proportion of watersheds that accumulate water in the landscape and cause runoff mitigation and slowdown. To illustrate the influence of watersheds Machovo Lake on the Robecsky stream and Holansky pond on the Bobri stream were selected. Machovo Lake is the third largest watershed in the territory of the Czech Republic. Holansky pond is the largest of the system of Holansky ponds. The Robecsky stream has the lowest runoff coefficient from the entire Ploucnice basin. The lakes surface-drainage area ratio is approximately 1.7% of the total catchment area of the Robecsky stream. The rainfall-runoff model HEC-HMS was utilized for the analysis and to determine the volume of runoff the method of CN curves was used that depends on hydrological properties of soils. For schematisation of extreme runoff conditions of the basin the precipitation period from 6th to 8th August 2010 was selected. Extremeness of peak flows of the

  19. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  20. Characteristics of paraxial propagation of a super Lorentz-Gauss SLG01 mode in uniaxial crystal orthogonal to the optical axis

    Institute of Scientific and Technical Information of China (English)

    Zhou Guo-Quan

    2012-01-01

    Analytical propagation expression of a super Lorentz-Gauss(SLG)01 mode in uniaxial crystal orthogonal to the optical axis is derived.The SLG01 mode propagating in umiaxial crystal orthogonal to the optical axis mainly depends on the ratio of the extraordinary refractive index to the ordinary refractive index.The SLG01 mode propagating in uniaxial crystals becomes an astigmatic beam.The beam spot of the SLGo1 mode in the uniaxial crystal is elongated in the x-or y-direction,which is determined by the ratio of the extraordinary refractive index to the ordinary refractive index.With the increase of the deviation of the ratio of the extraordinary refractive index to the ordinary refractive index from unity,the elongation of the beam spot also augments.In different observation planes,the phase distribution of an SLGo1 mode in the uniaxial crystal takes on different shapes.With the variation of the ratio of the extraordinary refractive index to the ordinary refractive index,the phase distribution is elongated in one transversal direction and is contracted in the other perpendicular direction.This research is beneficial to the practical applications of an SLG mode.

  1. HMS: UMA ARQUITETURA PARA AUTOMAÇÃO RESIDENCIAL ABERTA INDEPENDENTE DE TECNOLOGIA DE REDE

    Directory of Open Access Journals (Sweden)

    Kleber Manrique Trevisani

    2013-07-01

    Full Text Available House Management System (HMS is an architecture designed for home automation, which aims to structure the integration of computer programs to control electronic devices through the Internet from mobile devices. Feitosa Jr. et al. (2010 developed an implementation of this architecture using the Java platform, but concluded that the control of electronic devices from different manufacturers and the communication with devices using networks computer technologies distinct require a large implementation effort, if followed the guidelines of the architecture. In this context, this paper describes adaptations in this architecture that allow a bigger openness to facilitate the integration between eletronic devices and distinct network technologies. It also presents implementation details to prove the viability of these adjustments.

  2. Comparison of the Hazard Mapping System (HMS) fire product to ground-based fire records in Georgia, USA

    Science.gov (United States)

    Hu, Xuefei; Yu, Chao; Tian, Di; Ruminski, Mark; Robertson, Kevin; Waller, Lance A.; Liu, Yang

    2016-03-01

    Biomass burning has a significant and adverse impact on air quality, climate change, and various ecosystems. The Hazard Mapping System (HMS) detects fires using data from multiple satellite sensors in order to maximize its fire detection rate. However, to date, the detection rate of the HMS fire product for small fires has not been well studied, especially using ground-based fire records. This paper utilizes the 2011 fire information compiled from ground observations and burn authorizations in Georgia to assess the comprehensiveness of the HMS active fire product. The results show that detection rates of the hybrid HMS increase substantially by integrating multiple satellite instruments. The detection rate increases dramatically from 3% to 80% with an increase in fire size from less than 0.02 km2 to larger than 2 km2, resulting in detection of approximately 12% of all recorded fires which represent approximately 57% of the total area burned. The spatial pattern of detection rates reveals that grid cells with high detection rates are generally located in areas where large fires occur frequently. The seasonal analysis shows that overall detection rates in winter and spring (12% and 13%, respectively) are higher than those in summer and fall (3% and 6%, respectively), mainly because of higher percentages of large fires (>0.19 km2) that occurred in winter and spring. The land cover analysis shows that detection rates are 2-7 percentage points higher in land cover types that are prone to large fires such as forestland and shrub land.

  3. Catalytic performance of PdCl2/Cu-HMS: Influence of hydrophobicity and structure of molecular sieves

    Science.gov (United States)

    Zhang, Pingbo; Zhou, Yan; Fan, Mingming; Jiang, Pingping

    2014-03-01

    Surface hydrophobically modified PdCl2/Si-Cu-HMS-m materials were successfully synthesized via a simple silylation process using methyltrichlorosilane and phenyltrichlorosilane respectively. They were characterized by a series of techniques including FT-IR, powder XRD, nitrogen adsorption-desorption, and the contact angle measurement of the water droplet. It was demonstrated that the mesoporous structure of Cu-HMS was retained after modification and that hydrophobicity was enhanced. However, silylation agents had a significant influence on catalytic performance. The experimental results indicated that PdCl2/Si-Cu-HMS-CH3 showed a high catalytic activity for the gas phase oxidative carbonylation of ethanol to diethyl carbonate (DEC) and a small steric hindrance but a weak hydrophobicity in comparison with PdCl2/Si-Cu-HMS-Ben catalyst, demonstrating that catalytic performance was relative to both by-product water and structure of molecular sieves catalyst, but the latter was a main factor in the catalytic system. In addition, a probable mechanism has been proposed to explain this result that structure of molecular sieves was the main factor of influencing catalytic performance.

  4. Cohort profile: the Health and Memory Study (HMS): a dementia cohort linked to the HUNT study in Norway.

    Science.gov (United States)

    Bergh, Sverre; Holmen, Jostein; Gabin, Jessica; Stordal, Eystein; Fikseaunet, Arvid; Selbæk, Geir; Saltvedt, Ingvild; Langballe, Ellen M; Tambs, Kristian

    2014-12-01

    The aim of the Health and Memory Study (HMS) of Nord-Trøndelag, Norway, was primarily to establish a database suitable as basis for a large number of studies on dementia. Data from the HMS study were collected via questionnaires and examinations during the period from 1995 to 2011. The dementia panel consists of 620 participants residing in nursing homes and 920 participants referred to memory clinics of Nord-Trøndelag. Data from this dementia panel may be linked to the Nord-Trøndelag Health Study (the HUNT study), three large population based health surveys that took place in 1984-86 (HUNT1), 1995-97 (HUNT2) and 2006-08 (HUNT3). Data collection is complete and the participation rate in the HUNT1 for patients diagnosed with dementia was 86%. The sub-studies in the HMS are focused on examining risk factors, caregiver burden, healthcare consumption and economic consequences of treating and having dementia. Researchers interested in the HMS study are invited to contact HUNT at hunt@medisin.ntnu.no. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  5. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  6. OISTER Optical and Near-Infrared Observations of the Super-Chandrasekhar Supernova Candidate SN 2012dn: Dust Emission from the Circumstellar Shell

    CERN Document Server

    Yamanaka, Masayuki; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-01-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from $-11$ to $+140$ days after the date of its $B$-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO program. The NIR light curves and color evolutions up to 35 days after the $B$-band maximum provided an excellent match with those of another SC SN 2009dc, providing a further support to the nature of SN 2012dn as a SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from $30$ days after the $B$-band maximum. The $H$ and $K_{s}$-band light curves exhibited much later maximum dates at $40$ and $70$ days after the $B$-band maximum, respectively, compared with those of normal SNe Ia. The $H$ and $K_{s}$-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating a NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to be $4.8 - 6.4\\times10^{-2}$ pc. No ...

  7. OISTER optical and near-infrared observations of the super-Chandrasekhar supernova candidate SN 2012dn: Dust emission from the circumstellar shell

    Science.gov (United States)

    Yamanaka, Masayuki; Maeda, Keiichi; Tanaka, Masaomi; Tominaga, Nozomu; Kawabata, Koji S.; Takaki, Katsutoshi; Kawabata, Miho; Nakaoka, Tatsuya; Ueno, Issei; Akitaya, Hiroshi; Nagayama, Takahiro; Takahashi, Jun; Honda, Satoshi; Omodaka, Toshihiro; Miyanoshita, Ryo; Nagao, Takashi; Watanabe, Makoto; Isogai, Mizuki; Arai, Akira; Itoh, Ryosuke; Ui, Takahiro; Uemura, Makoto; Yoshida, Michitoshi; Hanayama, Hidekazu; Kuroda, Daisuke; Ukita, Nobuharu; Yanagisawa, Kenshi; Izumiura, Hideyuki; Saito, Yoshihiko; Masumoto, Kazunari; Ono, Rikako; Noguchi, Ryo; Matsumoto, Katsura; Nogami, Daisaku; Morokuma, Tomoki; Oasa, Yumiko; Sekiguchi, Kazuhiro

    2016-10-01

    We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from -11 to +140 d after the date of its B-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTER ToO (Optical and Infrared Synergetic Telescopes for Education and Research Target of Opportunity) program. The NIR light curves and color evolutions up to 35 days after the B-band maximum provided an excellent match with those of another SC SN 2009dc, providing further support to the nature of SN 2012dn as an SC SN. We found that SN 2012dn exhibited strong excesses in the NIR wavelengths from 30 d after the B-band maximum. The H- and Ks-band light curves exhibited much later maximum dates at 40 and 70 d after the B-band maximum, respectively, compared with those of normal SNe Ia. The H- and Ks-band light curves subtracted by those of SN 2009dc displayed plateaued evolutions, indicating an NIR echo from the surrounding dust. The distance to the inner boundary of the dust shell is limited to 4.8-6.4 × 10-2 pc. No emission lines were found in its early phase spectra, suggesting that the ejecta-circumstellar material interaction could not occur. On the other hand, we found no signature that strongly supports the scenario of dust formation. The mass-loss rate of the pre-explosion system is estimated to be 10-6-10-5 M⊙ yr-1, assuming that the wind velocity of the system is 10-100 km s-1, which suggests that the progenitor of SN 2012dn could be a recurrent nova system. We conclude that the progenitor of this SC SN could be explained by the single-degenerate scenario.

  8. 基于HMS30C7202的嵌入式系统硬件设计%Design of an Embedded Motherboard Based on HMS30C7202

    Institute of Scientific and Technical Information of China (English)

    万永波; 张根宝; 田泽; 杨峰

    2006-01-01

    介绍了32位嵌入式系统硬件组成的基本结构和特点.从存储系统、系统通信、人机界面和电源分配4个方面讲述了以HMS30C7202为核心的嵌入式系统硬件设计过程、总体结构和设计方法.

  9. A Unique Report: Development of Super Anti-Human IgG Monoclone with Optical Density Over Than 3

    Directory of Open Access Journals (Sweden)

    Leili Aghebati Maleki

    2013-08-01

    Full Text Available Purpose: Monoclonal antibodies and related conjugates are key reagents used in biomedical researches as well as, in treatment, purification and diagnosis of infectious and non- infectious diseases. Methods: Balb/c mice were immunized with purified human IgG. Spleen cells of the most immune mouse were fused with SP2/0 in the presence of Poly Ethylene Glycol (PEG. Supernatant of hybridoma cells was screened for detection of antibody by ELISA. Then, the sample was assessed for cross-reactivity with IgM & IgA by ELISA and confirmed by immunoblotting. The subclasses of the selected mAbs were determined. The best clone was injected intraperitoneally to some pristane-injected mice. Anti-IgG mAb was purified from the animals' ascitic fluid by Ion exchange chromatography and then, mAb was conjugated with HRP. Results: In the present study, over than 50 clones were obtained that 1 clone had optical density over than 3. We named this clone as supermonoclone which was selected for limiting dilution. The result of the immunoblotting, showed sharp band in IgG position and did not show any band in IgM&IgA position. Conclusion: Based on the findings of this study, the conjugated monoclonal antibody could have application in diagnosis of infectious diseases like Toxoplasmosis, Rubella and IgG class of other infectious and non- infectious diseases.

  10. Limit of detection of a fiber optics gyroscope using a super luminescent radiation source; Limite de deteccion de un giroscopio de fibra optica usando una fuente de radiacion superluminiscente

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval R, G.E. [Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, 04510 Mexico D.F. (Mexico); Nikolaev, V.A. [Departamento de Optica y Radiofisica Cuantica, Universidad Estatal de Telecomunicaciones de San Petersburgo, M.A. Bonch-Bruyevich, Kanal Moika 61, Saint Petersburg 191186, (Russian Federation)

    2003-07-01

    The main objective of this work is to establish the dependence of characteristics of the fiber optics gyroscope (FOG) with respect to the parameters of the super luminescent emission source based on doped optical fiber with rare earth elements (Super luminescent Fiber Source, SFS), argument the pumping rate election of the SFS to obtain characteristics limits of the FOG sensibility. By using this type of emission source in the FOG is recommend to use the rate when the direction of the pumping signal coincide with the super luminescent signal. The most results are the proposition and argumentation of the SFS election as emission source to be use in the FOG of the phase type. Such a decision allow to increase the characteristics of the FOG sensibility in comparison with the use of luminescent source of semiconductors emission which are extensively used in the present time. The use of emission source of the SFS type allow to come closer to the threshold of the obtained sensibility limit (detection limit) which is determined with the shot noise. (Author)

  11. Raman spectroscopic analysis of archaeological specimens from the wreck of HMS Swift, 1770

    Science.gov (United States)

    Edwards, Howell G. M.; Elkin, Dolores; Maier, Marta S.

    2016-12-01

    Specimens from underwater archaeological excavations have rarely been analysed by Raman spectroscopy probably due to the problems associated with the presence of water and the use of alternative techniques. The discovery of the remains of the Royal Navy warship HMS Swift off the coast of Patagonia, South America, which was wrecked in 1770 while undertaking a survey from its base in the Falkland/Malvinas Islands, has afforded the opportunity for a first-pass Raman spectroscopic study of the contents of several glass jars from a wooden chest, some of which had suffered deterioration of their contents owing to leakage through their stoppers. From the Raman spectroscopic data, it was possible to identify organic compounds such as anthraquinone and copal resin, which were empirically used as materia medica in the eighteenth century to treat shipboard diseases; it seems very likely, therefore, that the wooden chest belonged to the barber-surgeon on the ship. Spectra were obtained from the wet and desiccated samples, but several samples from containers that had leaked were found to contain only minerals, such as aragonite and sediment. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  12. The Robotic Super-LOTIS Telescope: Results & Future Plans

    OpenAIRE

    Williams, G. G.; Milne, P. A.; Park, H.S.; Barthelmy, S. D.; Hartmann, D. H.; Updike, A.; Hurley, K.

    2008-01-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates ...

  13. The fossil mammals collected byCharles Darwin in South America during his travels on board the HMS Beagle

    OpenAIRE

    2009-01-01

    Duringthe first two years of his voyage aboard HMS Beagle, Charles Darwin collected aconsiderable number of fossil mammals from various localities in Argentina andUruguay. Among these remains are those of large mammals that Darwin informallyassigned to Megatherium and Mastodon, the only large taxa thenknown for South America, and of small and mediumsized mammals that Darwinrecognized as representing at least two rodents and a horse. The study ofDarwin's collection was entrusted to Richard Owe...

  14. Oceanographic temperature profiles from the HMS CHALLENGER in the Antarctic, North Atlantic and other locations from 1873-02-15 to 1876-05-06 (NODC Accession 0126754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1872 to 1876, the HMS Challenger sailed around the world studying ocean features such as ocean temperature and chemistry, wildlife, and sounding the ocean,...

  15. Compensating for Language Deficits in Amnesia II: H.M.'s Spared versus Impaired Encoding Categories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W; Hadley, Chris

    2013-03-27

    Although amnesic H.M. typically could not recall where or when he met someone, he could recall their topics of conversation after long interference-filled delays, suggesting impaired encoding for some categories of novel events but not others. Similarly, H.M. successfully encoded into internal representations (sentence plans) some novel linguistic structures but not others in the present language production studies. For example, on the Test of Language Competence (TLC), H.M. produced uncorrected errors when encoding a wide range of novel linguistic structures, e.g., violating reliably more gender constraints than memory-normal controls when encoding referent-noun, pronoun-antecedent, and referent-pronoun anaphora, as when he erroneously and without correction used the gender-inappropriate pronoun "her" to refer to a man. In contrast, H.M. never violated corresponding referent-gender constraints for proper names, suggesting that his mechanisms for encoding proper name gender-agreement were intact. However, H.M. produced no more dysfluencies, off-topic comments, false starts, neologisms, or word and phonological sequencing errors than controls on the TLC. Present results suggest that: (a) frontal mechanisms for retrieving and sequencing word, phrase, and phonological categories are intact in H.M., unlike in category-specific aphasia; (b) encoding mechanisms in the hippocampal region are category-specific rather than item-specific, applying to, e.g., proper names rather than words; (c) H.M.'s category-specific mechanisms for encoding referents into words, phrases, and propositions are impaired, with the exception of referent gender, person, and number for encoding proper names; and (d) H.M. overuses his intact proper name encoding mechanisms to compensate for his impaired mechanisms for encoding other functionally equivalent linguistic information.

  16. Rainfall Runoff Modelling for Cedar Creek using HEC-HMS model

    Science.gov (United States)

    Pathak, P.; Kalra, A.

    2015-12-01

    Rainfall-runoff modelling studies are carried out for the purpose of basin and river management. Different models have been effectively used to examine relationships between rainfall and runoff. Cedar Creek Watershed Basin, the largest tributary of St. Josephs River, located in northeastern Indiana, was selected as a study area. The HEC-HMS model developed by US Army Corps of Engineers was used for the hydrological modelling. The national elevation and national hydrography data was obtained from United States Geological Survey National Map Viewer and the SSURGO soil data was obtained from United States Department of Agriculture. The watershed received hypothetical uniform rainfall for a duration of 13 hours. The Soil Conservation Service Curve Number and Unit Hydrograph methods were used for simulating surface runoff. The simulation provided hydrological details about the quantity and variability of runoff in the watershed. The runoff for different curve numbers was computed for the same basin and rainfall, and it was found that outflow peaked at an earlier time with a higher value for higher curve numbers than for smaller curve numbers. It was also noticed that the impact on outflow values nearly doubled with an increase of curve number of 10 for each subbasin in the watershed. The results from the current analysis may aid water managers in effectively managing the water resources within the basin. 1 Graduate Student, Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, 62901-6603 2 Development Review Division, Clark County Public Works, 500 S. Grand Central Parkway, Las Vegas, NV 89155, USA

  17. Axial Super-resolution Evanescent Wave Tomography

    CERN Document Server

    Pendharker, Sarang; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-01-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axi...

  18. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  19. Transfer function characteristics of super resolving systems

    Science.gov (United States)

    Milster, Tom D.; Curtis, Craig H.

    1992-01-01

    Signal quality in an optical storage device greatly depends on the optical system transfer function used to write and read data patterns. The problem is similar to analysis of scanning optical microscopes. Hopkins and Braat have analyzed write-once-read-many (WORM) optical data storage devices. Herein, transfer function analysis of magnetooptic (MO) data storage devices is discussed with respect to improving transfer-function characteristics. Several authors have described improving the transfer function as super resolution. However, none have thoroughly analyzed the MO optical system and effects of the medium. Both the optical system transfer function and effects of the medium of this development are discussed.

  20. (Super)alkali atoms interacting with the σ electron cloud: a novel interaction mode triggers large nonlinear optical response of M@P₄ and M@C₃H₆ (M=Li, Na, K and Li₃O).

    Science.gov (United States)

    Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min

    2013-12-01

    Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.

  1. Assessing resolution in super-resolution imaging.

    Science.gov (United States)

    Demmerle, Justin; Wegel, Eva; Schermelleh, Lothar; Dobbie, Ian M

    2015-10-15

    Resolution is a central concept in all imaging fields, and particularly in optical microscopy, but it can be easily misinterpreted. The mathematical definition of optical resolution was codified by Abbe, and practically defined by the Rayleigh Criterion in the late 19th century. The limit of conventional resolution was also achieved in this period, and it was thought that fundamental constraints of physics prevented further increases in resolution. With the recent development of a range of super-resolution techniques, it is necessary to revisit the concept of optical resolution. Fundamental differences in super-resolution modalities mean that resolution is not a directly transferrable metric between techniques. This article considers the issues in resolution raised by these new technologies, and presents approaches for comparing resolution between different super-resolution methods.

  2. Axial super-resolution evanescent wave tomography.

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a three-dimensional (3D) nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography method that enables the use of regular evanescent wave microscopes like the total internal reflection fluorescence microscope beyond surface imaging and achieve a tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of 3D fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by one-dimensional (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of ∼130  nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like stochastic optical reconstruction microscopy and can also be adapted for THz and microwave near-field tomography.

  3. Holography based super resolution

    Science.gov (United States)

    Hussain, Anwar; Mudassar, Asloob A.

    2012-05-01

    This paper describes the simulation of a simple technique of superresolution based on holographic imaging in spectral domain. The input beam assembly containing 25 optical fibers with different orientations and positions is placed to illuminate the object in the 4f optical system. The position and orientation of each fiber is calculated with respect to the central fiber in the array. The positions and orientations of the fibers are related to the shift of object spectrum at aperture plane. During the imaging process each fiber is operated once in the whole procedure to illuminate the input object transparency which gives shift to the object spectrum in the spectral domain. This shift of the spectrum is equal to the integral multiple of the pass band aperture width. During the operation of single fiber (ON-state) all other fibers are in OFF-state at that time. The hologram recorded by each fiber at the CCD plane is stored in computer memory. At the end of illumination process total 25 holograms are recorded by the whole fiber array and by applying some post processing and specific algorithm single super resolved image is obtained. The superresolved image is five times better than the band-limited image. The work is demonstrated using computer simulation only.

  4. Performance Testing and Validation Plan for HMS4 Quantitative Gamma Measurements, K-25/K-27 D&D Project, East Tennessee Technology Park, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Thiesing, J. W.; Donohoue, Tom; McCague, Jim; Martin, Ray; Royce, Ralph; Thomas, Troy

    2008-04-14

    The Holdup Measurement System 4 (HMS4) is a portable thallium activated sodium iodide (NaI[Tl]) gamma ray energy spectrometer that, when properly calibrated, is able to make quantifiable assessment of U-235 holdup in the presence of other uranium isotopes and prevailing background radiation. The use and calibration of the HMS4 is based upon the methodologies defined by Russo in La-14206, (Russo 2005), where detection efficiency determination protocols are defined (called Generalized Geometry Holdup [GGH]). The GGH methodology together with attenuation correction algorithms and other modeling parameters are combined in the HMS4 software package to provide a comprehensive tool for conducting in situ gamma-ray measurements. The fundamental principles of these capabilities are discussed.

  5. Preparation,characterization,and catalytic performance of a novel methyl-rich Ti-HMS mesoporous molecular sieve with high hydrophobicity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel methyl-rich Ti-containing hexagonal mesoporous silica (Ti-HMS) molecular sieve with high hydrophobicity has been prepared by a two-step method involving co-condensation followed by vapor-phase methyl grafting.The sample was characterized by XRD,N2 adsorption,FTIR,UV-visible and 29Si NMR spectroscopies,TG,ICP-AES,and hydrophilicity measurements,and its catalytic performance was evaluated using the epoxidation of cyclohexene as a probe reaction.The Ti-HMS material retains a typical mesoporous structure and compared with a co-condensed Ti-HMS prepared in a one-step method possesses more methyl groups and higher hydrophobicity,and also exhibits better catalytic activity and selectivity.

  6. 超长焦距红外双视场光学系统设计%Design of infrared optical system with super-long focal length and dual field-of-view

    Institute of Scientific and Technical Information of China (English)

    白玉琢; 木锐; 马琳; 贾钰超; 普群雁; 薛经纬

    2014-01-01

    设计了一种超长焦距中波红外双视场光学系统,该系统采用二次成像结构,通过透镜轴向移动实现变焦功能。设计结果表明,该系统可以实现超长焦距600~150 mm的变焦功能,且中心视场在探测器特征频率20 lp/mm处的光学传递函数值高于0.5,接近衍射极限,能够很好地满足军事侦察对远距离目标同时搜索和瞄准的要求。%A mid-wavelength infrared optical system with super-long focal length and dual field-of-view is de-signed in this paper .Based on the re-image configuration , this system can realize the zoom by axial motion of a lens along the optical axis .The design results show that this system realizes the zoom with a super-long focal length of 600-1 500 mm, and the MTF of the central view is more than 0.5 at the characteristic frequency of 20 lp/mm of detector , which shows its optical performance approximates to the diffraction limit .This system can meet the requirement of military investigation for seeking and aiming at target in a long distance .

  7. Axial super-resolution evanescent wave tomography

    Science.gov (United States)

    Pendharker, Sarang; Shende, Swapnali; Newman, Ward; Ogg, Stephen; Nazemifard, Neda; Jacob, Zubin

    2016-12-01

    Optical tomographic reconstruction of a 3D nanoscale specimen is hindered by the axial diffraction limit, which is 2-3 times worse than the focal plane resolution. We propose and experimentally demonstrate an axial super-resolution evanescent wave tomography (AxSET) method that enables the use of regular evanescent wave microscopes like Total Internal Reflection Fluorescence Microscope (TIRF) beyond surface imaging, and achieve tomographic reconstruction with axial super-resolution. Our proposed method based on Fourier reconstruction achieves axial super-resolution by extracting information from multiple sets of three-dimensional fluorescence images when the sample is illuminated by an evanescent wave. We propose a procedure to extract super-resolution features from the incremental penetration of an evanescent wave and support our theory by 1D (along the optical axis) and 3D simulations. We validate our claims by experimentally demonstrating tomographic reconstruction of microtubules in HeLa cells with an axial resolution of $\\sim$130 nm. Our method does not require any additional optical components or sample preparation. The proposed method can be combined with focal plane super-resolution techniques like STORM and can also be adapted for THz and microwave near-field tomography.

  8. Video super-resolution using simultaneous motion and intensity calculations

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    for the joint estimation of a super-resolution sequence and its flow field. Via the calculus of variations, this leads to a coupled system of partial differential equations for image sequence and motion estimation. We solve a simplified form of this system and as a by-product we indeed provide a motion field...... for super-resolved sequences. Computing super-resolved flows has to our knowledge not been done before. Most advanced super-resolution (SR) methods found in literature cannot be applied to general video with arbitrary scene content and/or arbitrary optical flows, as it is possible with our simultaneous VSR...

  9. The Development of HMS125p 4-axis Linkage High-accuracy Horizontal Machining Center%HMS125p型四轴联动精密卧式加工中心的研制

    Institute of Scientific and Technical Information of China (English)

    张凯; 刘春时; 李焱; 谢志坤; 王跃武

    2011-01-01

    HMS125p型四轴联动精密卧式加工中心是某公司在现有产品的基础上自主研发的一款大型四轴联动精密卧式加工中心机床.该机床具有高精度、高速度、高刚性、大扭矩等特点,是箱体、壳体等零部件高精、高效加工的理想设备,广泛适用于国防军工、汽车、造船、模具、通用机械等行业.介绍了该机床的主要机械结构特点和技术性能,并对机床整机进行了有限元分析,找出影响机床整机性能的薄弱环节,提出结构设计修改方向,从而使机床具有更好的性能.%HMS125p 4-axis linkage high-accuracy horizontal machining center is designed based on the existing products of some company. This machine which hss" the charaeteristics of high accuracy, high speed, high rigidity and high torque, is a ideal facility for high accuracy and high efficiency machining for box-shaped and shell-shaped parts, and is applied widely in national defence, war industry, automobile, shipment, die and universal mechanical industry etc. The main mechanical characteristics and technical data of the machine were introduced. The FEM analysis to the whale machine was made. The weakest parts that impacted the characteris-tics of the total machine were found. The direction for modification of the structure was presented to make the machine have better characteristics.

  10. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  11. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  12. The Substitution of a Super Black Fixed Micro-Object for an Optical Microcavity in a Delayed Choice Experiment to Send Information Immediately Between 2 Paired Particles: Simplifying the Experiment

    Science.gov (United States)

    Snyder, Douglas

    2015-04-01

    An experiment has been described that relies on a delayed choice for an idler photon that immediately affects the signal photon with which it is at least initially entangled and for which the idler photon provides which-way information. The delayed choice concerns whether to maintain or eliminate the entanglement before any measurements are made. In one option of the delayed choice, the entanglement can be eliminated because the relevant state of the idler photon related to its entanglement is eliminated when the idler photon enters an optical microcavity filled with photons with the same mode as the incoming idler photon. The microcavity is located at the crossroads of two possible idler photon paths. The relevant state of the idler photon characterizes the particular path taken by the photon and this information is eliminated when the particle enters the cavity. Over a number of runs with this choice, the distribution of the paired signal photons shows interference. If the entanglement is maintained, the distribution of the paired signal photons shows which-way information. This experiment can be simplified by using a super black material (e.g., Vantablack) affixed to a fixed micro-object located at the crossroads of the two possible idler photon paths instead of the optical microcavity. The photon would be absorbed by the material and there would be no way to detect from which direction it came. Objects such as fixed mirrors in a Mach Zehnder interferometer do not provide ww information. The super black fixed micro-object should not either.

  13. "My appointment received the sanction of the Admiralty": why Charles Darwin really was the naturalist on HMS Beagle.

    Science.gov (United States)

    van Wyhe, John

    2013-09-01

    For decades historians of science and science writers in general have maintained that Charles Darwin was not the 'naturalist' or 'official naturalist' during the 1831-1836 surveying voyage of HMS Beagle but instead Captain Robert FitzRoy's 'companion', 'gentleman companion' or 'dining companion'. That is, Darwin was primarily the captain's social companion and only secondarily and unofficially naturalist. Instead, it is usually maintained, the ship's surgeon Robert McCormick was the official naturalist because this was the default or official practice at the time. Although these views have been repeated in countless accounts of Darwin's life, this essay aims to show that they are incorrect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. HEC-HMS and HEC-RAS models used to analyze dam failure for the Lago El Guineo Dam, Orocovis, Puerto Rico

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and Hydrologic Engineering Center’s River Analysis System (HEC-RAS) computer programs,...

  15. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide catalysed via Mn (II) 2, 2-bipyridine complexes immobilized over the mesoporous hexagonal molecular sieves (HMS)

    Indian Academy of Sciences (India)

    Vahid Mahdavi; Mahdieh Mardani

    2012-09-01

    A series ofMn(II)bipy complexes with different loading of Mn2+ supported on HMS was prepared. These samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Thermogravimetric and Differential Scanning Calorimetry (TG-DSC), Ultraviolet and Visible spectra (UV-Vis) and Fourier transforms Infrared (FT-IR). The catalytic activity of the supportedMn(II)bipy complexes, [Mn(bipy)2]2+/HMS was evaluated in the oxidation of benzyl alcohol in the liquid phase using tert-butylhydroperoxide (TBHP) as an oxidant. The effects of Mn2+ loading and various solvents on the conversion and selectivity were studied. A second order function for the variation in catalytic activity with respect to the loading of Mn2+ ions in different catalyst samples was observed. The activity of the [Mn(bipy)2]2+/HMS catalyst differs with the type of the solvent and in this case, acetonitrile gives the best conversion results. The kinetic of benzyl alcohol oxidation was investigated at temperatures of 27, 46, 60, 75 and 90°C using [Mn(bipy)2]2+/HMS and excess TBHP. The order of reaction with respect to benzyl alcohol was determined to be pseudo-first order. The value of the apparent activation energy was also determined.

  16. Super Tomboy Style

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sparked by Super Girl, the androgynous look is in among Chinese youth On September 8, this year's top six contestants on the Super Girl television show, a singing contest for young women, stepped into the spotlight. Nearly none of them had long black hair or wore evening gowns, traditionally associated with beauty in China. Rather, they

  17. Multimodal super-resolution optical microscopy using a transition metal-based probe provides unprecedented capabilities for imaging both nucle-ar chromatin and mitochondria.

    Science.gov (United States)

    Sreedharan, Sreejesh; Gill, Martin; Garcia, Esther; Saeed, Hiwa K; Robinson, Darren; Byrne, Aisling; Cadby, Ashley James; Keyes, Tia E; Smythe, Carl G W; Pellett, Patrina; Bernardino de la Serna, Jorge; Thomas, Jim Antony

    2017-10-04

    Detailed studies on the live cell uptake properties of a dinuclear membrane permeable permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ~20 μM the complex images nuclear DNA. Since the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two col-our, 2C-SIM; and STED and 3D-STED both in fixed and live cell. In particular, due to its vastly improved photostability compared to conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.

  18. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  19. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  20. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  1. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current......Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...... the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super...

  2. Super-Kamiokande

    Science.gov (United States)

    Magro, Lluís Martí

    2016-06-01

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  3. The Super Girl Effect

    Institute of Scientific and Technical Information of China (English)

    WANG PEI

    2006-01-01

    @@ In recent years, Changsha,the capital city of Hunan Province, has become famous across China for its innovative TV channel, in particular the cultural phenomenon of the Super Girl talent show. And as far as culture goes, Hunan TV is merely a reflection of a renaissance happening in the city. Animation, music halls, drama festivals and a famous book market are just some of the city's cultural sectors that are benefiting from the fame and notoriety of the Super Girl show.

  4. Requirements of an HMS/D for a night-flying helicopter

    Science.gov (United States)

    Boehm, Hans-Dieter V.; Schranner, R.

    1990-10-01

    Helicopter pilots prefer for the night-flying tasks a combination of electro-optical sensors with different physical principles in the Infra-Red (IR) and in the near IR spectrum: Thermal Imager (TI or FLIR), Night Vision Goggles (NVG) or Low Light Level Television (LLLTV) . The limits of these three sensors are in extreme darkness with less than 1 mLux illumination or in heavy rain, fog or snow with temperature differences below 0.1 K or with cross-over effects respectively. The development goal for the near future should be an integrated, lightweight helmet h a binocular display on the visor providing two or three sensor images. The paper describes operational requirements, human engineering aspects and the requirements of an integrated light-weight helmet with two NVG-tubes and two CRTs to display superimposed NVG and TI images with flight symbologies.

  5. The formation of super-rings

    CERN Document Server

    Tenorio-Tagle, G

    1980-01-01

    The author has calculated the collision of a small neutral cloud (surface density approximately 10/sup 19/ cm/sup -2/) with a constant density galactic disk. Through the collision, a large amount of energy is deposited in a small volume of the galaxy, resulting in a supersonic expansion of very hot (10/sup 6/-10/sup 7/K) gas into the Galaxy and out of the galactic disk. The expansion generates a large cavity (a super-ring) with physical characteristics (diameter, velocity of expansion, etc.) in agreement with the observations, and a large volume of hot low-density gas with properties similar to those of the observed coronal gas. (31 refs).

  6. Nonlinear Super Integrable Couplings of Super Dirac Hierarchy and Its Super Hamiltonian Structures

    Institute of Scientific and Technical Information of China (English)

    尤福财

    2012-01-01

    We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra. Then its super Hamiltonian structure is furnished by super trace identity. As its reduction, we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.

  7. The fossil mammals collected byCharles Darwin in South America during his travels on board the HMS Beagle

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fernicola

    2009-04-01

    Full Text Available Duringthe first two years of his voyage aboard HMS Beagle, Charles Darwin collected aconsiderable number of fossil mammals from various localities in Argentina andUruguay. Among these remains are those of large mammals that Darwin informallyassigned to Megatherium and Mastodon, the only large taxa thenknown for South America, and of small and mediumsized mammals that Darwinrecognized as representing at least two rodents and a horse. The study ofDarwin's collection was entrusted to Richard Owen, who described eleven taxabetween 1837 and 1845, including the six following ones: Toxodon platensis,Macrauchenia patachonica, Equus curvidens, Scelidotherium leptocephalum,Mylodon darwini and Glossotherium sp. This contribution provides asynthesis of Darwin's preliminary assignments and evaluates the reasons thatled him to recognize only megatheres and mastodonts for the large fossilremains. Also, it discusses the current taxonomic status of the taxa describedor erected by Owen between 1837 and 1845 and the influence that Owen'staxonomic and phylogenetic conclusions had on the development of Darwin's ideason evolution.

  8. Deforming super Riemann surfaces with gravitinos and super Schottky groups

    Energy Technology Data Exchange (ETDEWEB)

    Playle, Sam [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy)

    2016-12-12

    The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.

  9. Application of HEC-HMS in a Cold Region Watershed and Use of RADARSAT-2 Soil Moisture in Initializing the Model

    OpenAIRE

    Hassan A. K. M. Bhuiyan; Heather McNairn; Jarrett Powers; Amine Merzouki

    2017-01-01

    This paper presents an assessment of the applicability of using RADARSAT-2-derived soil moisture data in the Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for flood forecasting with a case study in the Sturgeon Creek watershed in Manitoba, Canada. Spring flooding in Manitoba is generally influenced by both winter precipitation and soil moisture conditions in the fall of the previous year. As a result, the soil moisture accounting (SMA) and the temperatur...

  10. Super-resolution microscopy: a comparative treatment.

    Science.gov (United States)

    Kasuboski, James M; Sigal, Yury J; Joens, Matthew S; Lillemeier, Bjorn F; Fitzpatrick, James A J

    2012-10-01

    One of the fundamental limitations of optical microscopy is that of diffraction, or in essence, how small a beam of light can be focused by using an optical lens system. This constraint, or barrier if you will, was theoretically described by Ernst Abbe in 1873 and is roughly equal to half the wavelength of light used to probe the system. Many structures, particularly those within cells, are much smaller than this limit and thus are difficult to visualize. Over the last two decades, a new field of super-resolution imaging has been created and been developed into a broad range of techniques that allow routine imaging beyond the far-field diffraction limit of light. In this unit we outline the basic principles of the various super-resolution imaging modalities, paying particular attention to the technical considerations for biological imaging. Furthermore, we discuss their various applications in the imaging of both fixed and live biological samples.

  11. Sectioning and super-resolution using unknown random patterns

    Science.gov (United States)

    Hoffman, Zachary R.; DiMarzio, Charles A.

    2016-03-01

    Random structured illumination patterns are used to demonstrate effective sectioning as well as super-resolution images in conjunction with an incoherent light source. By projecting patterns of varied spatial frequencies and using blind deconvolution of an unknown point spread function, super-resolution is achieved. Random patterns produce more consistent sectioning and super-resolution given an unknown optical transfer function. Further, using a randomly distributed pattern provides a low cost solution to obtaining information similar to that produced in confocal microscopy and other methods of structured illumination, without the requirement of precise projection patterns, coherent light sources, or fluorescence.

  12. Super-Resolution Imaging on Microfluidic Super-Resolution Near-Field Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Pei; TANG Lin; ZHANG Dou-Guo; LU Yong-Hua; JIAO Xiao-Jin; XIE Jian-Ping; MING Hai

    2005-01-01

    @@ We present a new concept of the microfluidic super-resolution near-field structure (MSRENS) based on a microfluidic structure and a super-resolution near-field structure. The near-field distance control, "nano-probe"and scanning can be realized simultaneously using the MSRENS, which is similar to a near-field scanning optical microscope. The design and simulation results are presented. Numerical simulation has demonstrated that the MSRENS with spatial resolution beyond the diffraction limit could be applicable in chemistry, biologics, and many other fields.

  13. Performance improvement by a broadband super-luminescent diode light source in 1.7-μm spectroscopic spectral-domain optical coherence tomography for lipid distribution imaging in a coronary artery

    Science.gov (United States)

    Tanaka, M.; Okuno, T.; Obi, H.; Hattori, I.; Hirano, M.; Ueno, T.; Tonosaki, S.; Murashima, K.; Yamaguchi, R.; Hasegawa, T.

    2014-03-01

    We develop a 1.7-μm optical coherence tomography (OCT) system using a broadband light source based on superluminescent diodes (SLDs) and investigated the possibility of plaque detection by a spectroscopic OCT (S-OCT) method. The SLD-based light source realizes an output power about 20mW and a 3-dB bandwidth over 120nm for optimization of driving current in each SLD. Regarding performance of the 1.7-μm spectral-domain OCT system with the light source, the system sensitivity is 104dB in maximum at the A-scan rate of 47kHz, which is fifty times as high as that in the previous study with a super-continuum light source. Moreover, we perform visualization of lipid distribution at the A-scan frame of 47kHz by an in-vitro artery model which is made of a piece of porcine coronary artery and a lardfilled nylon tube as a plaque phantom. We confirm that the sensitivity and specificity between artery and plaque area in optimal condition for lipid detection at a specific frame image is over 90% and there are high lipid scores at the inside of plaque phantom in other frame images at the same condition. It indicates the possibility of plaque detection in intravascular OCT.

  14. THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Jacob L.; Desert, Jean-Michel; Stalder, Brian; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kabath, Petr [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago (Chile); Seager, Sara [Department of Earth, Atmospheric, and Planetary Sciences and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Miller-Ricci Kempton, Eliza [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Homeier, Derek [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Universite de Lyon, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69364 Lyon Cedex 07 (France); Walsh, Shane [Australian Astronomical Observatory and Curtin Institute of Radio Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Seifahrt, Andreas, E-mail: jbean@cfa.harvard.edu [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States)

    2011-12-10

    We present an investigation of the transmission spectrum of the 6.5 M{sub Circled-Plus} planet GJ 1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT + FORS and Magellan + MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planet's transmission spectrum from 0.61 to 0.85 {mu}m, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 {mu}m with the VLT + HAWKI. We combined these data with results from a reanalysis of previously published FORS data from 0.78 to 1.00 {mu}m using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 {mu}m. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1{sigma}. The planet's atmosphere must either have at least 70% H{sub 2}O by mass or optically thick high-altitude clouds or haze to be consistent with the data.

  15. Using operational HMS smoke observations to gain insights on North American smoke transport and implications for air quality

    Science.gov (United States)

    Brey, Steven J.

    Wildfires represent a major challenge for air quality managers, as they are large sources of particulate matter (PM) and ozone (O3) precursors, and they are highly dynamic and transient events. Smoke can be transported thousands of kilometers to deteriorate air quality over large regions. Under a warming climate, fire severity and frequency are likely to increase, exacerbating an existing problem. Using the National Environmental Satellite, Data and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for the U.S. and Canada for the period 2007 to 2014, I examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a National Weather Service smoke forecast. The locations of these fires combined with Hybrid Single Particle Lagragian Integrated Trajectory Model (HYSPLIT) forward trajectories, satellite detected smoke plume data, and detailed land-cover data are used to develop a climatology of the land-cover, location, and seasonality of the smoke that impacts the atmospheric column above 10 U.S. regions. I examine the relative contribution of local versus long-range transport to the presence of smoke in different regions as well as the prevalence of smoke generated by agricultural burning versus wildfires. This work also investigates the influence of smoke on O3 abundances over the contiguous U.S. Using co-located observations of particulate matter and the NESDIS HMS smoke data, I identify summertime days between 2005 and 2014 that Environmental Protection Agency Air Quality System O3 monitors are influenced by smoke. I compare O3 mixing ratio distributions for smoke-free and smoke-impacted days for each monitor, while accounting for temperature. This analysis shows that (i) the mean O3 abundance measured on smoke-impacted days is higher than on smoke-free days at 20% of monitoring locations, and (ii) the magnitude of the difference between smoke-impacted and smoke-free mixing ratios varies by location

  16. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  17. SuperQuant

    DEFF Research Database (Denmark)

    Gorshkov, Vladimir; Verano-Braga, Thiago; Kjeldsen, Frank

    2015-01-01

    SuperQuant is a quantitative proteomics data processing approach that uses complementary fragment ions to identify multiple co-isolated peptides in tandem mass spectra allowing for their quantification. This approach can be applied to any shotgun proteomics data set acquired with high mass accura...... of the same proteins were close to the values typical for other precursor ion-based quantification methods. The raw data is deposited to ProteomeXchange (PXD001907). The developed node is available for testing at https://github.com/caetera/SuperQuantNode....

  18. Laser ablation cleaning of an underwater archaeological bronze spectacle plate from the H.M.S. DeBraak shipwreck

    Science.gov (United States)

    Dajnowski, Bartosz A.

    2013-05-01

    Laser ablation was successfully used to sequentially remove layers of concretion and corrosion from the surface of a copper alloy spectacle plate from the shipwreck of His Majesty's Sloop of War DeBraak. The H.M.S. DeBraak was a single-masted cutter that was originally a Dutch ship until it was taken by the British, refitted, and repurposed as a Royal Navy ship in 1796. The ship sank along the Delaware coast in 1798 and artifacts were recovered from the wreck site in 1984. This spectacle plate is an important part of the ships rudder and it is part of the collection of the Delaware Division of Historical and Cultural Affairs. The object was brought the Winterthur/University of Delaware Program in Art Conservation for treatment. The object was examined with cross section microscopy, Raman spectroscopy, X-ray fluorescence spectroscopy (XRF), and Energy Dispersive Spectroscopy (EDS) as well as Back Scattered Electron (BSE) analysis with a Scanning Electron Microscopy (SEM). Interestingly, layers of both copper and iron corrosion products were identified within the concretion. A 1064nm Long Q-Switch (LQS) laser with 100ns pulses was tested along with a Short Free Running (SFR) with 60 - 130 microseconds pulses, at various fluences and frequencies, to determine optimal cleaning parameters for removing the concretion. Laser cleaning also revealed fragments of wood from the original rudder, which were previously trapped within the concretion. After laser cleaning, the spectacle plate was treated with 3% Benzotriazole in ethanol and then given a protective microcrystalline wax coating.

  19. "Super Roman Pots"

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that will be installed in each downstream arm of intersection I-8. Detectors for a coming physics experiment, placed inside these "Super Roman Pots", can be moved very close to the circulating ISR beams.

  20. A Super Roman Pot

    CERN Multimedia

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that were installed in each downstream arm of the ISR intersection I-8. Detectors placed inside these Super Roman Pots could be moved very close to the circulating ISR beams. (See Annual Report 1974 p. 110.)

  1. Multimodal combinational holographic and fluorescence fluctuation microscopy to obtain spatial super-resolution

    Science.gov (United States)

    Dudenkova, V. V.; Zakharov, Yu N.

    2016-08-01

    Ways of combination of holographic and super-resolution fluorescent techniques in the same optical scheme are described. The key parameters influencing achievement of maximum possible resolution are considered. The possibility to choose different fluorescence technic for different types of fluorophores without any optical scheme changes is presented. As a result in case of visualization of the samples, which transparent in optical band, three-dimensional super resolution is received that significantly expands possibilities of the noninvasive analysis of biological samples.

  2. Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid-liquid transition or super-Arrhenius relaxation.

    Science.gov (United States)

    Turton, David A; Martin, David F; Wynne, Klaas

    2010-04-28

    The evidence that a molecular liquid in its thermodynamically-stable state can undergo a liquid-liquid transition (LLT) is still uncertain. Therefore, trans-1,2-dichloroethene is of interest due to reports of a LLT above the melting point [S. Kawanishi, T. Sasuga and M. Takehisa, J. Phys. Soc. Jpn., 1982, 51, 1579-1583; S. Rzoska, J. Ziolo, A. Drozd-Rzoska, J. L. Tamarit and N. Veglio, J. Phys.: Condens. Matter, 2008, 20, 244124; K. Merkel, A. Kocot, R. Wrzalik and J. Ziolo, J. Chem. Phys., 2008, 129, 074503-074508]. Ultrafast optical Kerr-effect (OKE) spectroscopy enables accurate measurement of the low-frequency modes arising from interactions in liquids and therefore should be sensitive to the change in liquid structure inherent in such a transition. In the OKE data presented here, no sharp transitions are discernible, nor are there any in calorimetry data. However, the same data do reveal that neither trans- nor cis-1,2-dichloroethene is a simple liquid: in each case, a non-Arrhenius temperature dependence (with a Debye lineshape) is observed for the alpha relaxation. This dependence can be fitted by the Vogel-Fulcher-Tammann (VFT) law over the measurable temperature range suggesting that at low temperature, cooperative relaxation, due to the formation of clusters or structure, is present. Accurate analysis of the OKE spectrum in the terahertz region is generally limited by approximations inherent in the models. Here the diffusional modes are convoluted with librational modes to give a more physically meaningful approximation to the inertial response.

  3. Super resolution imaging of HER2 gene amplification

    Science.gov (United States)

    Okada, Masaya; Kubo, Takuya; Masumoto, Kanako; Iwanaga, Shigeki

    2016-02-01

    HER2 positive breast cancer is currently examined by counting HER2 genes using fluorescence in situ hybridization (FISH)-stained breast carcinoma samples. In this research, two-dimensional super resolution fluorescence microscopy based on stochastic optical reconstruction microscopy (STORM), with a spatial resolution of approximately 20 nm in the lateral direction, was used to more precisely distinguish and count HER2 genes in a FISH-stained tissue section. Furthermore, by introducing double-helix point spread function (DH-PSF), an optical phase modulation technique, to super resolution microscopy, three-dimensional images were obtained of HER2 in a breast carcinoma sample approximately 4 μm thick.

  4. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  5. The Robotic Super-LOTIS Telescope: Results & Future Plans

    CERN Document Server

    Williams, G G; Park, H S; Barthelmy, S D; Hartmann, D H; Updike, A; Hurley, K

    2008-01-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates every clear night. The telescope is instrumented with an optical CCD camera and a four position filter wheel. It is capable of observing Swift Burst Alert Telescope (BAT) error boxes as early or earlier than the Swift UV/Optical Telescope (UVOT). Super-LOTIS complements the UVOT observations by providing early R- and I-band imaging. We also use the suite of Steward Observatory telescopes including the 1.6-m Kuiper, the 2.3-m Bok, the 6.5-m MMT, and the 8.4-m Large Binocular Telescope to perform follow-up optical and near ...

  6. NASA Super Pressure Balloon

    Science.gov (United States)

    Fairbrother, Debbie

    2017-01-01

    NASA is in the process of qualifying the mid-size Super Pressure Balloon (SPB) to provide constant density altitude flight for science investigations at polar and mid-latitudes. The status of the development of the 18.8 million cubic foot SPB capable of carrying one-tone of science to 110,000 feet, will be given. In addition, the operating considerations such as launch sites, flight safety considerations, and recovery will be discussed.

  7. Super-diversité

    NARCIS (Netherlands)

    Crul, M.R.J.; Schneider, J.; Lelie, F.

    2013-01-01

    Le concept de super-diversité, en cernant les conditions d'un scénario 'avenir optimiste, offre un nouvel éclairage au débat sur l'intégration. Nous sommes à la croisée des chemins. Cette étude comparative internationale montre qu'un avenir souriant se profile dans les villes qui donnent des chances

  8. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator...

  9. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    provides the performer extensive virtuoso capabilities in terms of instrumental range, harmony, timbre, or spatial, textural, acoustic, technical, or technological qualities. The discussion will be illustrated by a composition case study involving augmented musical instrument electromagnetic resonator......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...

  10. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  11. Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    CERN Document Server

    Kandasamy, W B Vasantha; Amal, K

    2008-01-01

    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.

  12. Super-quantum curves from super-eigenvalue models

    CERN Document Server

    Ciosmak, Paweł; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce $\\beta$-deformed version of those models, and derive differential equations for associated $\\alpha/\\beta$-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  13. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  14. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Glycolytic pathway (GP), kreb's cycle (KC), and hexose monophosphate shunt (HMS) activity in myocardial subcellular fractions exposed to cannabinoids

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.T.; Manno, B.R.; King, J.W.; Fowler, M.R.; Dempsey, C.A.; Manno, J.E.

    1986-03-05

    Delta-9-tetrahydrocannabinol (..delta../sup 9/-THC), the primary psychoactive component of marihuana, and its active metabolite 11-hydroxy-..delta../sup 9/-tetrahydrocannabinol (11-OH-..delta../sup 9/-THC) have been reported to produce a direct cardiac depressant effect. Studies in isolated perfused rat hearts have indicated a decreased force of contraction (inotropic response) when ..delta../sup 9/-THC or 11-OH-..delta../sup 9/-THC was administered in microgram amounts. The mechanism and site of action have not been explained or correlated with associated metabolic pathways. The purpose of this study was to investigate the effects of cannabinoids on major myocardial energy producing pathways, GP and KC, and a non-energy producing pathway, HMS. Cardiac ventricular tissue from male Sprague-Dawley rats (250-300 g) was excised and homogenized for subcellular fractionation. KC, GP and HMS activity was assayed in the appropriate fractions by measuring /sup 14/CO/sub 2/ generation from /sup 14/C-2-pyruvate, /sup 14/C-6-glucose and /sup 14/C-1-glucose respectively. Duplicate assays (n=8) were performed on tissue exposed to saline (control), empty liposomes (vehicle) and four doses each of ..delta../sup 9/-THC and 11-OH-..delta../sup 9/-THC. Changes in metabolic activity and decreases in cardiac contractile performance may be associated.

  17. Effects of Land Use Changes on the Runoff in the Landscape Based on Hydrological Simulation in HEC-HMS and HEC-RAS Using Different Elevation Data

    Directory of Open Access Journals (Sweden)

    Josef Divín

    2016-01-01

    Full Text Available The aim of this paper is to determine the effects of land use changes on the runoff in the landscape by means of hydrological modelling. Our partial aim is also to determine the effect of different elevation data and define optimal data sources for this modelling. The research was conducted on the Starozuberský stream experimental watershed. For comparing elevation models, three scenarios were developed with different input data. Based on a comparison of these models an optimal data source for hydrological modelling was selected. To simulate the change in land use, we have created two scenarios based either upon the current land use and historical data from the fifties of the twentieth century. Comparison was carried out using the HEC-HMS software interface for rainfall-runoff simulation and HEC-RAS for the flooding simulation. Data for the simulation were prepared using the ESRI ArcGIS extensions, namely HEC- GeoHMS and HEC-GeoRAS.

  18. Application of HEC-HMS in a Cold Region Watershed and Use of RADARSAT-2 Soil Moisture in Initializing the Model

    Directory of Open Access Journals (Sweden)

    Hassan A. K. M. Bhuiyan

    2017-02-01

    Full Text Available This paper presents an assessment of the applicability of using RADARSAT-2-derived soil moisture data in the Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS for flood forecasting with a case study in the Sturgeon Creek watershed in Manitoba, Canada. Spring flooding in Manitoba is generally influenced by both winter precipitation and soil moisture conditions in the fall of the previous year. As a result, the soil moisture accounting (SMA and the temperature index algorithms are employed in the simulation. Results from event and continuous simulations of HEC-HMS show that the model is suitable for flood forecasting in Manitoba. Soil moisture data from the Manitoba Agriculture field survey and RADARSAT-2 satellite were used to set the initial soil moisture for the event simulations. The results confirm the benefit of using satellite data in capturing peak flows in a snowmelt event. A sensitivity analysis of SMA parameters, such as soil storage, maximum infiltration, soil percolation, maximum canopy storage and tension storage, was performed and ranked to determine which parameters have a significant impact on the performance of the model. The results show that the soil moisture storage was the most sensitive parameter. The sensitivity analysis of initial soil moisture in a snowmelt event shows that cumulative flow and peak flow are highly influenced by the initial soil moisture setting of the model. Therefore, there is a potential to utilize RADARSAT-2-derived soil moisture for hydrological modelling in other snow-dominated Manitoba watersheds.

  19. Photon Counting and Super Homodyne Detection of Weak QPSK Signals for Quantum Key Distribution

    CERN Document Server

    XU, Q; Agnolini, S; Gallion, P; Mendieta, F J

    2006-01-01

    We compare the principles and experimental results of two different QPSK signal detection configurations, photon counting and super homodyning, for applications in fiber-optic Quantum Key Distribution (QKD) systems operating at telecom wavelength, using the BB84 protocol.

  20. Super-Resolution Recording by an Organic Photochromic Mask Layer

    Institute of Scientific and Technical Information of China (English)

    SHI Ming; ZHAO Sheng-Min; YI Jia-Xiang; ZHAO Fu-Qun; NIU Li-Hong; LI Zhong-Yu; ZHANG Fu-Shi

    2007-01-01

    By using the super-resolution near-field structure(super-RENS)method,the super-resolution recording marks are obtained practically by an organic photochromic diarylethene mask layer,under much lower recording laser Dower of 0.45mW.The size of recording marks is decreased by 60% (from 1.6μm to 0.7μm) for a diarylethene (photo-mode)recording layer by the optical detection method(limited by optical diffraction),or decreased by 97%(from 1600nm to 50nm)for a heptaoxyl copper phthalocyanine(thermo-optical)recording layer,the latter is much smaller than the limitation of optical diffraction.In order to obtain a desirable result,a proper extent or Dhotochemistry reaction in the mask layer is needed.Thus,the super-resolution recording marks can be obtained by adjusting the concentration of diarylethene in the mask layer,the recording laser power,and the moving speed of the sample disc.

  1. Calibration beams at the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Autin, A.; Edwards, H. (Superconducting Super Collider Lab., Dallas, TX (USA)); Bensinger, J.R. (Superconducting Super Collider Lab., Dallas, TX (USA) Brandeis Univ., Waltham, MA (USA)); Baller, B.; Browning, F.; Coleman, R.; Cooper, J.; Cossairt, D.; Kula, L.; Malensek, A.; Stefanski, R.; Stutte, L. (Fermi National Accelerator Lab., Batavia, IL (USA))

    1989-04-30

    This paper discusses the following topics on the Superconducting Super Collider: beam specification at calibration halls; high energy booster options with tunnels to surface; switchyard; six beams with high and low power options; switchyard optics for both high and low energy transport; secondary beams; wide band beams; radiation shielding; tagging system; and test and calibration halls.

  2. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  3. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...

  4. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment...... of the glass and a heat-treatment of the aerogel increases the visible quality and the solar energy transmittance. A low-conductive rim seal solution with the required vacuum barrier properties has been developed along with a reliable assembly and evacuation process. The prototypes have a centre heat loss...

  5. Super-heptazethrene

    KAUST Repository

    Zeng, Wangdong

    2016-05-30

    The challenging synthesis of a laterally extended heptazethrene molecule, the super-heptazethrene derivative SHZ-CF3, is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ-CF3 exhibits an open-shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo-terrylene SHZ-2H was also obtained during the synthesis. This study provides a new synthetic method to access large-size quinoidal polycyclic hydrocarbons with unique physical properties.

  6. Nanostructured Super-Black Optical Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA faces difficulties in imaging and characterizing faint astrophysical objects within the glare of brighter stellar sources. Achieving a very low background...

  7. Nanostructured Super-Black Optical Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Need: NASA faces challenges in imaging and characterizing faint astrophysical objects within the glare of brighter stellar sources. Achieving a very low background...

  8. Dates of publication of the Zoology parts of the Report of the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76.

    Science.gov (United States)

    Low, Martyn E Y; Evenhuis, Neal L

    2013-01-01

    The dates of publication and exact titles of the 83 parts of the Zoology of the Report of the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873-76 are presented. Exact dates of publication for 71 of these parts have been determined using notices of their publication in contemporary publications. The dates of publication of the two Narrative volumes of the voyage of the H.M.S. Challenger (which contain available indications of new names) are also determined.

  9. Photostable and photoswitching fluorescent dyes for super-resolution imaging.

    Science.gov (United States)

    Minoshima, Masafumi; Kikuchi, Kazuya

    2017-01-12

    Super-resolution fluorescence microscopy is a recently developed imaging tool for biological researches. Several methods have been developed for detection of fluorescence signals from molecules in a subdiffraction-limited area, breaking the diffraction limit of the conventional optical microscopies and allowing visualization of detailed macromolecular structures in cells. As objectives are exposed to intense laser in the optical systems, fluorophores for super-resolution microscopy must be tolerated even under severe light irradiation conditions. The fluorophores must also be photoactivatable and photoswitchable for single-molecule localization-based super-resolution microscopy, because the number of active fluorophores must be controlled by light irradiation. This has led to growing interest in these properties in the development of fluorophores. In this mini-review, we focus on the development of photostable and photoswitching fluorescent dyes for super-resolution microscopy. We introduce recent efforts, including improvement of fluorophore photostability and control of photoswitching behaviors of fluorophores based on photochemical and photophysical processes. Understanding and manipulation of chemical reactions in excited fluorophores can develop highly photostable and efficiently photoswitchable fluorophores that are suitable for super-resolution imaging applications.

  10. Simulation Technology Research on HMS Based OpenGL%基于图像的头盔瞄准系统虚拟仿真技术研究

    Institute of Scientific and Technical Information of China (English)

    闫龙

    2011-01-01

    Helmet targeting technology has been used more and more in fighter aircraft and helicopters on the ground training and actual combat flight simulation. Under more and more observations, experiment and product prototype cost much money. An in - depth investigation into the mechanism of helmet - mounted sight(HMS) based on monotone photogrammetry techniques is reported, the aiming model with 4 points is analyzed in detail. Combing virtual reality with simulation technology, the platform is constructed to carry on the simulation of the HMS system,loading 3D model with OpenGL in VC development environment. The imaging process is simulated by setting project model parameters in accord with camera. The model is evaluated with experiments for practical use in aiming accurately. This article may provide help for understanding, designing and improving the HMS system in some extent.%研究飞行员头盔控制问题,头盔瞄准技术越来越多地应用于战斗机和直升机地面飞行模拟训练和实际作战.为了使目标瞄准线转为控制信号,实现目标识别的准确性,提出通过对单目视觉测量方法和四点定位模型采用图像式头盔瞄准具的系统结构及工作机理,实现定位模型方程.结合当今虚拟现实与仿真技术,设计并开发了头盔瞄准系统仿真平台.在VC开发环境中导入三维模型,调用OpenGL函数设置投影模型参数与相机标定参数一致,实现了摄像机成像的仿真过程,完成了图像式头盔瞄准系统工作过程的仿真,实验结果证明模型能够完成目标的精确定位,开发平台可为系统设计和系统综合设计提供参考依据.

  11. Experimental demonstration of light capsule embracing super-sized darkness inside via super-anti-resolution

    CERN Document Server

    Wan, Chao; Han, Tiancheng; Leong, Eunice; Ding, Weiqiang; Yeo, Tat-Soon; Yu, Xia; Teng, Jinghua; Lei, Dang Yuan; Maier, Stefan A; Lukyanchuk, Boris; Zhang, Shuang; Qiu, Cheng-Wei

    2013-01-01

    Ijon Tichy lamp allows to focus the macroscopic perfect 3D darkness surrounded by all light in the shined room. The object staying in the darkness is similar to staying in an empty light capsule because light just bypasses it. Its functionality of bending light macroscopically is fascinating, similar in some sense to the transformation-based cloaking effect. Here, we theoretically and experimentally demonstrate a binary-optical system exhibiting super-anti-resolution (SAR), in which electromagnetic energy flux avoids and bends smoothly around a nearly perfect darkness region. SAR remains an unexplored topic hitherto, in contrast to the super-resolution for realizing high spatial resolution. This novel scheme replies on smearing out the PSF perfectly and thus poses less stringent limitations upon the object size and position since the created nearly-perfect dark (zero-field) area reach 10 orders of magnitude larger than square of wavelength in size. Conceptually, it represents a novel implementation of Ijon Ti...

  12. Color-Coded Super-Resolution Small-Molecule Imaging.

    Science.gov (United States)

    Beuzer, Paolo; La Clair, James J; Cang, Hu

    2016-06-02

    Although the development of super-resolution microscopy dates back to 1994, its applications have been primarily focused on visualizing cellular structures and targets, including proteins, DNA and sugars. We now report on a system that allows both monitoring of the localization of exogenous small molecules in live cells at low resolution and subsequent super-resolution imaging by using stochastic optical reconstruction microscopy (STORM) on fixed cells. This represents a powerful new tool to understand the dynamics of subcellular trafficking associated with the mode and mechanism of action of exogenous small molecules.

  13. Super-resolution fluorescence imaging of chromosomal DNA.

    Science.gov (United States)

    Zessin, Patrick J M; Finan, Kieran; Heilemann, Mike

    2012-02-01

    Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.

  14. Super-Resonant Intracavity Coherent Absorption

    Science.gov (United States)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  15. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  16. Broadband super-collimation with low-symmetric photonic crystal

    Science.gov (United States)

    Giden, Ibrahim H.; Turduev, Mirbek; Kurt, Hamza

    2013-05-01

    We investigate dispersive properties of two dimensional photonic crystal (PC) called star-shaped PC (STAR-PC) in order to succeed super-collimation over a broad bandwidth. Both time- and frequency-domain numerical methods are conducted. Due to introduced low-symmetry in the primitive cell, flat contours are observed at the fifth band for transverse magnetic mode. The proposed structure supports a super-collimation effect over a broad wavelength range between 1443 nm and 1701 nm with a bandwidth of Δω = 16.42%. The intrinsic characteristic of STAR-PC provides in-plane beam propagation with a limited diffraction length of 120a, where a is the lattice constant. By means of STAR-PC, one may realize super-collimation based single-mode optical devices with a low insertion loss, reduced dispersion and wide bandwidth.

  17. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted.

  18. Super-Resolution for Traditional and Omnidirectional Image Sequences

    Directory of Open Access Journals (Sweden)

    Attila Nagy

    2009-03-01

    Full Text Available This article presents a simple method on how to implement a super-resolutionbased video enhancement technique in .NET using the functions of the OpenCV library.First, we outline the goal of this project and after that, a short review of the steps of superresolutiontechnique is given. As a part of the discussion about the implementation itself,the general design aspects are detailed in short. Then, the different optical flow algorithmsare analyzed and the super-resolution calculation of omnidirectional image sequences isdiscussed. After all that, the achieved results can be seen and finally, a short generalconclusion can be read. This paper is a revision of our previous work [1]. In this edition,we focus on the super-resolution of omnidirectional image sequences rather than thetechnological issues that were discussed in our previous article. Further information aboutthe implementation and wrapper development can be found in [1 and 12].

  19. Xinjiang Girl World Super Model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Leading Chinese model Yue Mei won thetitle of World Super Model at the ’98 WorldSuper Model Competition held in FranceSeptember 6 - 17. Yue, a university studentfrom the Xinjiang Uygur AutonomousRegion, had won the top title at ’98 ChinaSuper Model Competition held in Beijingone month earier.After that, she underwentone month’s professional modeling trainingwith the New Silk Road ModelingManagement Company before setting off forthe world competition. In France, Yueimpressed the judges with her strikingfeatures, and display of oriental elegance and

  20. Optical Design of Spaceborne Low-distortion and Super-wide-angle Aerosol Imager%星载超广角气溶胶探测仪均匀像面性光学设计

    Institute of Scientific and Technical Information of China (English)

    薛庆生

    2012-01-01

    为满足空间遥感的迫切需求,设计了星载低畸变超广角气溶胶探测仪系统.系统中多光谱成像仪的光谱范围为0.860~0.965 μm,全视场角为94°,相对孔径为1∶4,采用反远距结构,系统后工作距离为42 mm.根据反远距结构的像差特点,提出了合理选用易于加工的二次曲面校正畸变,并利用光阑像差产生的有效像差渐晕改善像面照度分布设计方法.运用光学设计软件CODE V和ZEMAX对气溶胶探测仪光学系统进行了光线追迹和优化并对设计结果进行了分析.结果表明,最大畸变为-1.6%,像面上边缘视场的照度大于中心视场照度的46%,光学系统在奈奎斯特频率38.5 lp/mm处的光学传递函数均达到0.59以上,完全满足设计指标要求;体积小,适合空间遥感应用;同时证明了设计方法是可行的.%In order to meet the urgent requirements of space remote sensing, a spaceborne low-distortion and super-wide-angle aerosol imager system is designed. The system is a multi-spectral imager with the working wavelength band from 0. 860 μm to 0. 965 μm, and its full field of view is 94° and the relative aperture is 1 : 4. By using a retrofocus structure, its back working is 42 mm in the optical system. Based on the aberration characteristics of retrofocus structure, methods for correcting distortion and improving the illuminance distribution are proposed. Its distortion is corrected by choosing suitable quadric surface, and the illuminance distribution on image plane is improved by using effective aberration vignetting resulted from stop aberration. Ray tracing, optimization and analysis are performed by CODE V and ZEMAX software. The analysis results demonstrate that the maximum distortion is less than -1. 6% , and the illuminance at edge field of view is higher than that of 46. 9% of central field of view and the MTF is higher than 0. 59 at Nyquist frequency 38. 5 lp/mm, which satisfies the requirement. Its

  1. Nobel Prize in Chemistry: Celebrating optical nanoscopy

    Science.gov (United States)

    Orrit, Michel

    2014-12-01

    The award of this year's Nobel Prize in Chemistry to the pioneers of various optical schemes capable of achieving super-resolution and single-molecule detection is recognition of a revolution in optical imaging.

  2. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  3. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  4. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.

  5. What's So Super about Superfoods?

    Science.gov (United States)

    ... with meals. The Skinny on Common Super Foods Salmon is a fatty fish that’s low in saturated ... soy nuts are high in polyunsaturated fat, fiber, vitamins and minerals but low in saturated fat. They ...

  6. Super Ministries,Better Administration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Chinese lawmakers on March 15th endorsed a State Counci l proposal for institutional overhaul of the tentral government,which involves the establishment of"super ministries"concerning energy,transport,industry and environmental protection.

  7. In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles.

    Science.gov (United States)

    Christensen-Jeffries, Kirsten; Browning, Richard J; Tang, Meng-Xing; Dunsby, Christopher; Eckersley, Robert J

    2015-02-01

    The structure of microvasculature cannot be resolved using standard clinical ultrasound (US) imaging frequencies due to the fundamental diffraction limit of US waves. In this work, we use a standard clinical US system to perform in vivo sub-diffraction imaging on a CD1, female mouse aged eight weeks by localizing isolated US signals from microbubbles flowing within the ear microvasculature, and compare our results to optical microscopy. Furthermore, we develop a new technique to map blood velocity at super-resolution by tracking individual bubbles through the vasculature. Resolution is improved from a measured lateral and axial resolution of 112 μm and 94 μ m respectively in original US data, to super-resolved images of microvasculature where vessel features as fine as 19 μm are clearly visualized. Velocity maps clearly distinguish opposing flow direction and separated speed distributions in adjacent vessels, thereby enabling further differentiation between vessels otherwise not spatially separated in the image. This technique overcomes the diffraction limit to provide a noninvasive means of imaging the microvasculature at super-resolution, to depths of many centimeters. In the future, this method could noninvasively image pathological or therapeutic changes in the microvasculature at centimeter depths in vivo.

  8. What are super-enhancers?

    Science.gov (United States)

    Pott, Sebastian; Lieb, Jason D

    2015-01-01

    The term 'super-enhancer' has been used to describe groups of putative enhancers in close genomic proximity with unusually high levels of Mediator binding, as measured by chromatin immunoprecipitation and sequencing (ChIP-seq). Here we review the identification and composition of super-enhancers, describe links between super-enhancers, gene regulation and disease, and discuss the functional significance of enhancer clustering. We also provide our perspective regarding the proposition that super-enhancers are a regulatory entity conceptually distinct from what was known before the introduction of the term. Our opinion is that there is not yet strong evidence that super-enhancers are a novel paradigm in gene regulation and that use of the term in this context is not currently justified. However, the term likely identifies strong enhancers that exhibit behaviors consistent with previous models and concepts of transcriptional regulation. In this respect, the super-enhancer definition is useful in identifying regulatory elements likely to control genes important for cell type specification.

  9. Correcting chromatic offset in multicolor super-resolution localization microscopy.

    Science.gov (United States)

    Erdelyi, Miklos; Rees, Eric; Metcalf, Daniel; Schierle, Gabriele S Kaminski; Dudas, Laszlo; Sinko, Jozsef; Knight, Alex E; Kaminski, Clemens F

    2013-05-06

    Localization based super-resolution microscopy techniques require precise drift correction methods because the achieved spatial resolution is close to both the mechanical and optical performance limits of modern light microscopes. Multi-color imaging methods require corrections in addition to those dealing with drift due to the static, but spatially-dependent, chromatic offset between images. We present computer simulations to quantify this effect, which is primarily caused by the high-NA objectives used in super-resolution microscopy. Although the chromatic offset in well corrected systems is only a fraction of an optical wavelength in magnitude (super-resolution methods is impossible without appropriate image correction. The simulated data are in excellent agreement with experiments using fluorescent beads excited and localized at multiple wavelengths. Finally we present a rigorous and practical calibration protocol to correct for chromatic optical offset, and demonstrate its efficacy for the imaging of transferrin receptor protein colocalization in HeLa cells using two-color direct stochastic optical reconstruction microscopy (dSTORM).

  10. Mid-IR super-continuum generation

    Science.gov (United States)

    Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.

    2009-02-01

    A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.

  11. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  12. Super-resolution for scanning light stimulation systems

    Science.gov (United States)

    Bitzer, L. A.; Neumann, K.; Benson, N.; Schmechel, R.

    2016-09-01

    Super-resolution (SR) is a technique used in digital image processing to overcome the resolution limitation of imaging systems. In this process, a single high resolution image is reconstructed from multiple low resolution images. SR is commonly used for CCD and CMOS (Complementary Metal-Oxide-Semiconductor) sensor images, as well as for medical applications, e.g., magnetic resonance imaging. Here, we demonstrate that super-resolution can be applied with scanning light stimulation (LS) systems, which are common to obtain space-resolved electro-optical parameters of a sample. For our purposes, the Projection Onto Convex Sets (POCS) was chosen and modified to suit the needs of LS systems. To demonstrate the SR adaption, an Optical Beam Induced Current (OBIC) LS system was used. The POCS algorithm was optimized by means of OBIC short circuit current measurements on a multicrystalline solar cell, resulting in a mean square error reduction of up to 61% and improved image quality.

  13. Super-resolution by pupil plane phase filtering

    Indian Academy of Sciences (India)

    L N Hazra; N Reza

    2010-11-01

    Resolution capability of any optical imaging system is limited by residual aberrations as well as diffraction effects. Overcoming this fundamental limit is called super-resolution. Several new paradigms for super-resolution in optical systems use ‘a posteriori’ digital image processing. In these ventures the three-dimensional point spread function (PSF) of the lens plays a key role in image acquisition. A straightforward tailoring of the PSF can be performed by appropriate pupil plane filtering. With a brief review of the state-of-art in this research area, this paper dwells upon the inverse problem of global optimization of the pupil function by phase filtering in accordance with the desired PSF.

  14. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation.

    Science.gov (United States)

    Lukeš, Tomáš; Křížek, Pavel; Švindrych, Zdeněk; Benda, Jakub; Ovesný, Martin; Fliegel, Karel; Klíma, Miloš; Hagen, Guy M

    2014-12-01

    We introduce and demonstrate a new high performance image reconstruction method for super-resolution structured illumination microscopy based on maximum a posteriori probability estimation (MAP-SIM). Imaging performance is demonstrated on a variety of fluorescent samples of different thickness, labeling density and noise levels. The method provides good suppression of out of focus light, improves spatial resolution, and allows reconstruction of both 2D and 3D images of cells even in the case of weak signals. The method can be used to process both optical sectioning and super-resolution structured illumination microscopy data to create high quality super-resolution images.

  15. Optical Digital Image Storage System

    Science.gov (United States)

    1991-03-18

    This could be accomplished even if the files were artificially determined. " Super files," composed of a number of files, could be artificially created...in order to expedite transfer through the scanning process. These " super files" could later be broken down into their actual component files. Another...hesitant about implementing an optical disk system. While Sandra Napier believed it "looks promising," she felt an optical disk replacement of microfilm

  16. Super Unit Cells in Aperture-Based Metamaterials

    OpenAIRE

    Dragan Tanasković; Zoran Jakšić; Marko Obradov; Olga Jakšić

    2015-01-01

    An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses). Thus obtained “super unit cell” shows far richer behavior than the subobjects that compris...

  17. The Principles of Super-Resolution Fluorescence Microscopy (Review)

    OpenAIRE

    N.V. Klementieva; E.V. Zagaynova; К.А. Lukyanov; A.S. Mishin

    2016-01-01

    Diffraction limit of optical microscopy impedes imaging of biological objects much smaller than the wavelength of light. Conventional fluorescence microscopy does not enable to study fine structure and processes in a living cell at the macromolecular level. Super-resolution fluorescence microscopy techniques that overcome the diffraction barrier have opened up new opportunities for biological and biomedical research. These methods combine the resolution power comparable to electron microscopy...

  18. Electrically tuned super-capacitors

    CERN Document Server

    Chowdhury, Tazima S

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helmholtz double layer). Making the electrodes porous increases their effective surface area [6-8]. A separating layer between the anode and the cathode electrodes is used to minimize unintentional electrical discharge (Figure 1). Here we show how to increase the capacitance of super-capacitors by more than 45 percent when modifying the otherwise passive separator layer into an active diode-like structure. Active control of super-capacitors may increase their efficiency during charge and discharge cycles. Controlling ion flow...

  19. Quantization of super Teichmueller spaces

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Nezhla

    2016-08-15

    The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U{sub q}(sl(2)). In our research we observed that the role of U{sub q}(sl(2)) is taken by quantum superalgebra U{sub q}(osp(1 vertical stroke 2)). A Borel half of U{sub q}(osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L{sup 2}(R) x C{sup 1} {sup vertical} {sup stroke} {sup 1} and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.

  20. Super-Resonant Intracavity Coherent Absorption

    CERN Document Server

    Malara, P; Giorgini, A; Avino, S; De Natale, P; Gagliardi, G

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption. We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot-ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy...

  1. SuperDARN scalar radar equations

    CERN Document Server

    Berngardt, O I; Potekhin, A P

    2016-01-01

    The quadratic scalar radar equations are obtained for SuperDARN radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to the obtaining radar equations for the monostatic and bistatic sounding with use of hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with signific...

  2. Subsurface Super-resolution Imaging of Unstained Polymer Nanostructures

    Science.gov (United States)

    Urban, Ben E.; Dong, Biqin; Nguyen, The-Quyen; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-06-01

    Optical imaging has offered unique advantages in material researches, such as spectroscopy and lifetime measurements of deeply embedded materials, which cannot be matched using electron or scanning-probe microscopy. Unfortunately, conventional optical imaging cannot provide the spatial resolutions necessary for many nanoscopic studies. Despite recent rapid progress, super-resolution optical imaging has yet to be widely applied to non-biological materials. Herein we describe a method for nanoscopic optical imaging of buried polymer nanostructures without the need for extrinsic staining. We observed intrinsic stochastic fluorescence emission or blinking from unstained polymers and performed spatial-temporal spectral analysis to investigate its origin. We further applied photon localization super-resolution imaging reconstruction to the detected stochastic blinking, and achieved a spatial resolution of at least 100 nm, which corresponds to a six-fold increase over the optical diffraction limit. This work demonstrates the potential for studying the static heterogeneities of intrinsic polymer molecular-specific properties at sub-diffraction-limited optical resolutions.

  3. Generation and transmission of 512-Gb/s quad-carrier digital super-Nyquist spectral shaped signal.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2013-12-16

    A novel digital super-Nyquist signal generation scheme is proposed to further suppress the Nyquist signal bandwidth and reduce the channel crosstalk without using optical pre-filtering. The spectrum of the generated super-Nyquist 9-QAM signal is much more compact compared with regular Nyquist QPSK signal. Therefore, only optical couplers are needed for super-Nyquist WDM channel multiplexing. By using the 64-GSa/s high speed DAC, 32-GBaud super-Nyquist 9-QAM signal is generated within 25-GHz grid for quad-carrier 400G channels. We successfully generate and transmit 4 channels quad-carrier 512-Gb/s super-Nyquist 9-QAM-like signal within 100-GHz grid over 2975-km at a net SE of 4b/s/Hz (after excluding the 20% soft-decision FEC overhead).

  4. Super-Virasoro anomaly, super-Weyl anomaly and the super-Liouville action for 2D supergravity

    CERN Document Server

    Fujiwara, T; Suzuki, T; Fujiwara, Takanori; Igarashi, Hiroshi; Suzuki, Tadao

    1996-01-01

    The relation between super-Virasoro anomaly and super-Weyl anomaly in N=1 NSR superstring coupled with 2D supergravity is investigated from canonical theoretical view point. The WZW action canceling the super-Virasoro anomaly is explicitly constructed. It is super-Weyl invariant but nonlocal functional of 2D supergravity. The nonlocality can be remedied by the super-Liouvlle action, which in turn recovers the super-Weyl anomaly. The final gravitational effective action turns out to be local but noncovariant super-Liouville action, describing the dynamical behavior of the super-Liouville fields. The BRST invariance of this approach is examined in the superconformal gauge and in the light-cone gauge.

  5. A New Technique to Detect Super-thin Clouds

    Science.gov (United States)

    Sun, Wenbo

    2016-04-01

    Super-thin clouds with optical depth smaller than ~0.3 exist globally and have significant effect on satellite remote sensing of surface temperature and atmospheric compositions, but are extremely difficult to be detected by satellite instruments. In this presentation, we report a novel method for detecting cloud particles in the atmosphere with measuring the polarized sunlight from the Earth-atmosphere system (Sun et al., 2014; Sun et al., 2015). We examined solar radiation backscattered from clouds with both satellite data and a radiative-transfer model. A distinct feature was found in the angle of linear polarization of solar radiation that is scattered from clouds at near-backscattering angles. The dominant electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface at these scattering angles. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Our modeling results suggest that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only ~0.06 and super-thin liquid water clouds having an optical depth of only ~0.01. Such clouds are too thin to be sensed using any current passive satellite instruments. This method could improve the detection of super-thin clouds and tremendously impact the remote sensing of clouds, aerosols, sea surface temperature, and atmospheric composition gases, and climate modeling. It also has potential to become an innovative satellite mission to advance Earth observation from space and improve scientific understanding of all clouds and cloud-aerosol interactions. Reference Wenbo Sun, Gorden Videen, and Michael I. Mishchenko, "Detecting super-thin clouds with polarized sunlight," Geophy. Res. Lett. 41, doi: 10.1002/2013GL058840 (2014). Wenbo Sun, Rosemary R. Baize, Gorden Videen, Yongxiang Hu, and Qiang Fu, "A method to retrieve super-thin cloud optical depth over ocean background with polarized

  6. Super-resolution and nonlinear absorption with metallodielectric stacks

    Science.gov (United States)

    Katte, Nkorni

    We investigate sub-wavelength imaging, i.e. super-resolution, in metal-dielectric film systems, which are simply referred to as metallodielectrics. Our simulations incorporate experimentally derived material dielectric dispersion properties across the visible region. For demonstration purposes we designed metallodielectric stacks for super-resolution containing GaP and TiO2, dielectric films, and either Ag or Au as the metallic materials. Using the known optical properties of the constituent materials found designs that could be good candidates for super-resolution. We did not have the resources to fabricate these samples; however, based on our computer simulations we are confident that the designed samples would produce super-resolution approaching one-twentieth of a wavelength in air. We examined for the first time the broad bandwidth of the super-resolution phenomenon in metallodielectrics. We validate the results using the finite element method (FEM) and the transfer matrix method (TMM). We also show that the measurement of super-resolution is highly dependent on the distance of the probe from the exit surface; high resolution at the exit plane can quickly decay with a few tens of nanometers when high resolution is sought. Secondly we numerically studied the nonlinear optical transmission of an optical beam through heterogeneous metallodielectric stacks under the action of nonlinear absorption. One film layer is a metal and the other layer is a dielectric; the heterogeneous material is called a metallodielectric stack (MDS). In these studies we also used applied FEM with two-dimensional transverse effects and TMM simulation techniques. Our samples consisted of Ag/ZnS, Ag/SiO 2 and Cu/ZnS. We numerically simulate using two transverse dimensions in our FEM codes, Z-scan experiments for two different MDS designs and draw general observations from these cases. We experimentally examined the nonlinear absorption effect in samples of Ag/SiO2 when irradiated by a

  7. The Super-Kamiokande Experiment

    CERN Document Server

    Walter, C W

    2008-01-01

    Super-Kamiokande is a 50 kiloton water Cherenkov detector located at the Kamioka Observatory of the Institute for Cosmic Ray Research, University of Tokyo. It was designed to study neutrino oscillations and carry out searches for the decay of the nucleon. The Super-Kamiokande experiment began in 1996 and in the ensuing decade of running has produced extremely important results in the fields of atmospheric and solar neutrino oscillations, along with setting stringent limits on the decay of the nucleon and the existence of dark matter and astrophysical sources of neutrinos. Perhaps most crucially, Super-Kamiokande for the first time definitively showed that neutrinos have mass and undergo flavor oscillations. This chapter will summarize the published scientific output of the experiment with a particular emphasis on the atmospheric neutrino results.

  8. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  9. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2013-07-01

    Full Text Available In this paper, we use the Hydrologic Modeling System (HEC-HMS to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW, which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  10. Catalytic Oxidation of Cumene over Cu-HMS Molecular Sieve%异丙苯在Cu-HMS分子筛上的催化氧化

    Institute of Scientific and Technical Information of China (English)

    张美英; 王乐夫; 黄仲涛; 李雪辉

    2002-01-01

    以含Cu的中孔分子筛(Cu-HMS)为催化剂,研究异丙苯的催化氧化.研究发现,Cu-HMS催化剂的加入使异丙苯氧化的诱导期显著缩短.在75 ℃下,以Cu-HMS为催化剂,O2为氧化剂的纯异丙苯氧化反应,苯乙酮为主要副产物,反应的选择性和转化率都很高.当催化剂用量为1.5×10-4 mol/ml时,反应8 h后,异丙苯转化率为32.7%,目的产物的累积浓度(质量分数)为37.7%,选择性为99%;反应12 h后,异丙苯转化率为42.4%,目的产物的累积浓度为46.3%,选择性为95.6%.

  11. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  12. Interactive Super Mario Bros Evolution

    DEFF Research Database (Denmark)

    Sørensen, Patrikk D.; Olsen, Jeppeh M.; Risi, Sebastian

    2016-01-01

    to encourage the evolution of desired behaviors. In this paper, we show how casual users can create controllers for \\emph{Super Mario Bros} through an interactive evolutionary computation (IEC) approach, without prior domain or programming knowledge. By iteratively selecting Super Mario behaviors from a set...... of candidates, users are able to guide evolution towards a variety of different behaviors, which would be difficult with an automated approach. Additionally, the user-evolved controllers perform similarly well as controllers evolved with a traditional fitness-based approach when comparing distance traveled...

  13. Quantisation of super Teichmueller theory

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Nezhla [DESY Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). Dept. of Mathematics; Pawelkiewicz, Michal; Techner, Joerg [DESY Hamburg (Germany). Theory Group

    2015-12-15

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  14. Quantisation of super Teichmueller theory

    CERN Document Server

    Aghaei, Nezhla; Teschner, Joerg

    2015-01-01

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  15. The construction of orthodox super rpp semigroups

    Institute of Scientific and Technical Information of China (English)

    HE Yong; GUO Yuqi; Kar Ping Shum

    2004-01-01

    We define orthodox super rpp semigroups and study their semilattice decompositions. Standard representation theorem of orthodox super rpp semigroups whose subband of idempotents is in the varieties of bands described by an identity with at most three variables are obtained.

  16. Super-resolution photoacoustic imaging of single gold nanoparticles

    Science.gov (United States)

    Lee, Seunghyun; Kwon, Owoong; Jeon, Mansik; Song, Jaejung; Jo, Minguk; Kim, Sungjee; Son, Junwoo; Kim, Yunseok; Kim, Chulhong

    2016-03-01

    Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that can provide a strong optical absorption contrast using the photoacoustic (PA) effect, and breaks through the fundamental imaging depth limit of existing optical microscopy such as optical coherence tomography (OCT), confocal or two-photon microscopy. In PAI, a short-pulsed laser is illuminated to the tissue, and the PA waves are generated by thermoelastic expansion. Despite the high lateral resolution of optical-resolution photoacoustic microscopy (OR-PAM) thanks to the tight optical focus, the lateral resolution of OR-PAM is limited to the optical diffraction limit, which is approximately a half of the excitation wavelength. Here, we demonstrate a new super-resolution photoacoustic microscopy (SR-PAM) system by breaking the optical diffraction limit. The conventional microscopes with nanoscale resolutions such as a scanning electron microscope (SEM) and transmission electron microscope (TEM) are typically used to image the structures of nanomaterials, but these systems should work in a high vacuum environment and cannot provide the optical properties of the materials. Our newly developed SR-PAM system provides the optical properties with a nanoscale resolution in a normal atmosphere. We have photoacoustically imaged single gold nanoparticles with an average size of 80 nm in diameter and shown their PA expansion properties individually. The lateral resolution of this system was approximately 20 nm. Therefore, this tool will provide an unprecedented optical absorption property with an accurate nanoscale resolution and greatly impact on materials science and nanotechnology field.

  17. Static recording characteristics of new type super-resolution near-field structure

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang(张锋); Wendong Xu(徐文东); Yang Wang(王阳); Jinsong Wei(魏劲松); Fei Zhou(周飞); Xiumin Gao(高秀敏); Fuxi Gan(干福熹)

    2004-01-01

    A novel super-resolution near-field optical structure (super-RENS) with bismuth (Bi) mask layer is proposed in this paper. Static optical recording tests with and without super-RENS are carried out using a 650-nm semiconductor laser at recording powers of 14 and 7 mW with pulse duration of 100 ns. The recording marks are observed by high-resolution optical microscopy with a charge-coupled device (CCD)camera. The results show that the Bi mask layer can also concentrate energy into the center of a laser beam at low laser power similar to the traditional Sb mask layer. The results above are further confirmed by another Ar+ laser system. The third-order nonlinear response induced by the plasma oscillation at the Bi/SiN interface during laser irradiation can be used to explain the phenomenon. The calculation results are basically consistent with our experimental results.

  18. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  19. Super Rice Breeding in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@I. Demand for super high yield rice in China   Rice is one of the main staple food in China. The performance of rice sector in production and yield had been very impressive in the last four decades. However, rice production and yield has stagnated since 1990.

  20. Super Girls Still Center Stage

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The TV singing contest continues to draw a devoted audience, but will its impact on Chinese culture fall away like a shooting star? Ask any teenage girl in China to name the finalists of last year's Super Girl show and chances are she will instantly come up with the three big names.She'll probable

  1. Analysis of Forensic Super Timelines

    Science.gov (United States)

    2012-06-14

    BIB .1  vii List of Figures Figure Page...Hacker disconnects from User’s system  User clicks off Screen Saver  User closes Solitaire program  User logs off system BIB .1...analysis- tapestry_33836. BIB .2 Guðjónsson, K. (2010). Mastering the super timeline with log2timeline. SANS Gold Paper accepted June 29,2010

  2. Super-ASTROD: Probing primordial gravitational waves and mapping the outer solar system

    CERN Document Server

    Ni, Wei-Tou

    2008-01-01

    Super-ASTROD (Super Astrodynamical Space Test of Relativity using Optical Devices or ASTROD III) is a mission concept with 3-5 spacecraft in 5 AU orbits together with an Earth-Sun L1/L2 spacecraft ranging optically with one another to probe primordial gravitational-waves with frequencies 0.1 microHz - 1 mHz, to test fundamental laws of spacetime and to map the outer solar system. In this paper we address to its scientific goals, orbit and payload selection, and sensitivity to gravitational waves.

  3. Estudio bioarqueológico del esqueleto recuperado en la corbeta británica del siglo XVIII HMS-Swift

    Directory of Open Access Journals (Sweden)

    Barrientos, Gustavo

    2007-01-01

    Full Text Available Durante las recientes excavaciones efectuadas en los restos de la corbeta británica HMS Swift, naufragada en 1770 en Puerto Deseado (Provincia de Santa Cruz, se encontró un esqueleto humano completo. La documentación histórica oficial señala que durante el naufragio desaparecieron dos infantes de marina, de 21 y 23 años de edad, cuyos nombres y lugar de procedencia son conocidos. Para determinar si el esqueleto corresponde a uno de estos dos individuos, se están desarrollando investigaciones centradas en obtener información relevante mediante el estudio del sexo, edad, estatura, patologías, patrones de actividad, dieta (isótopos estables del C y N y características genéticas (rasgos no métricos, ADNmt. Los resultados de las estimaciones de sexo, edad y estatura indican que se trataría de un individuo masculino, adulto joven, de alrededor de 25 años al momento de morir (rango de edad calculada entre 17 y 34 años y de alrededor de 1,67 m de estatura. La evidencia obtenida hasta el presente indica que, con una alta probabilidad, el esqueleto corresponde a uno de los dos tripulantes desaparecidos, aunque aún no puede asignarse a uno de ellos en particular, por lo que se espera que la información genética pueda aportar a su potencial identificación.

  4. Super-translations and super-rotations at the horizon

    CERN Document Server

    Donnay, Laura; Gonzalez, Hernan A; Pino, Miguel

    2015-01-01

    We show that the asymptotic symmetries close to non-extremal black hole horizons are generated by an extension of super-translations. This group is generated by a semi-direct sum of Virasoro and abelian currents. The charges associated to the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of the stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  5. Influence of Initial Chirp on Propagation of Super-Gaussian Pulse inside Fiber

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the condition of combined effects of group-velocity dispersion and self-phase modulation, the step Fourier method is used to simulate the propagation of initial chirped super-Gaussian pulses inside fiber. The initial chirp influences the shapes of super-Gaussian pulses in propagation process, and positive and negative chirps have different effects. For the existing of initial chirp, the splits of pulses and the spreading speed move ahead and increase. When the amplitude of super-Gaussian pulses increases by 1.4 times, in the range of |C|<1.5, pulses can keep good shapes along their propagation distance. Even if |C| increases to 3.5, their shapes are also good. Most energy of pulse is still at the middle parts. These results show that, for the initial chirped super-Gaussian pulses, the influence of initial chirp will be decreased by increasing the intensity of pulses. This will be of benefit to optical communication.

  6. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    Science.gov (United States)

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-12-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.

  7. Super-Resolution Molecular and Functional imaging of Nanoscale Architectures in Life and Materials Science

    Directory of Open Access Journals (Sweden)

    Satoshi eHabuchi

    2014-06-01

    Full Text Available Super-resolution fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various super-resolution fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the super-resolution microscopy. I discuss the applications of super-resolution microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-nanotechnology.

  8. Super-resolution spectroscopic microscopy via photon localization

    Science.gov (United States)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-07-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm--a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra.

  9. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Science.gov (United States)

    Cremer, Christoph; Birk, Udo

    2016-04-01

    The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM) methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light), which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  10. Perspectives in Super-resolved Fluorescence Microscopy: What comes next?

    Directory of Open Access Journals (Sweden)

    Christoph eCremer

    2016-04-01

    Full Text Available The Nobel Prize in Chemistry 2014 has been awarded to three scientists involved in the development of STED and PALM super-resolution fluorescence microscopy (SRM methods. They have proven that it is possible to overcome the hundred year old theoretical limit for the resolution potential of light microscopy (of about 200 nm for visible light, which for decades has precluded a direct glimpse of the molecular machinery of life. None of the present-day super-resolution techniques have invalidated the Abbe limit for light optical detection; however, they have found clever ways around it. In this report, we discuss some of the challenges still to be resolved before arising SRM approaches will be fit to bring about the revolution in Biology and Medicine envisaged. Some of the challenges discussed are the applicability to image live and/or large samples, the further enhancement of resolution, future developments of labels, and multi-spectral approaches.

  11. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  12. 伦敦SuperDesign展

    Institute of Scientific and Technical Information of China (English)

    柚子

    2011-01-01

    近日,英国伦敦Super Design展在伦敦Wakefield大街的The Dairy展厅如期举行。本次展览展出了来自包括知名设计师和新兴设计师的特别定制的工作室作品:到如今已经是第五个年头的伦敦Super Deslgn展,力图强发展,展出形式别出心裁、独树一帜,从一个崭新.活跃的角度集展示当代艺术。

  13. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  14. Super-Kamiokande atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi Mozumi, Hida city, Gifu prefecture (Japan)

    2005-08-15

    Results on atmospheric neutrino analysis at Super-Kamiokande I is presented. The whole data set of atmospheric neutrino sample in Super-Kamiokande I is consistently explained with an assumption of pure {nu}{sub {mu}}-{nu}{sub {tau}} oscillations. The allowed range of parameters is 1.5x10{sup -3}<{delta}m{sup 2}<3.4x10{sup -3} eV{sup 2} and sin{sup 2}2{theta}>0.92 at 90% C.L. In the oscillation analysis, we improved the treatment of systematic errors so that they can be considered as independent. This makes possible to find which systematic errors have larger effect on the analysis results. Some sensitivity studies under several assumptions of improvements in systematic errors are presented.

  15. Toward Super-Resolution Imaging at Green Wavelengths Employing Stratified Metal-Insulator Metamaterials

    Directory of Open Access Journals (Sweden)

    Masanobu Iwanaga

    2015-05-01

    Full Text Available Metamaterials (MMs are subwavelength-structured materials that have been rapidly developed in this century and have various potentials to realize novel phenomena, such as negative refraction, cloaking and super-resolution. Theoretical proposals for super-resolution image transfer using metallic thin films were experimentally demonstrated at ultraviolet and violet wavelengths from 365 to 405 nm. However, the most preferred wavelengths of optical imaging are green wavelengths around 500 nm, because optical microscopy is most extensively exploited in the area of biotechnology. In order to make the super-resolution techniques using MMs more practical, we propose the design of a stratified metal-insulator MM that has super-resolution image transfer modes at green wavelengths, which we here call hyper modes. The design assumed only Ag and SiO2 as constituent materials and was found employing Bloch-state analysis, which is based on a rigorous transfer-matrix method for the metal-insulator MMs. It is numerically substantiated that the designed stratified metal-insulator metamaterial (SMIM is capable of forming super-resolution images at the green wavelengths, and optical loss reduction is also studied. We discuss the results derived by the Bloch-state analysis and by effective medium models usually used for the metal-insulator MMs and show that the Bloch-state analysis is more suitable to reproduce the experimental data.

  16. The Era of Super Capitalism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The world has entered the "super capitalism" era when one third of its economic activities are controlled by less than 3 percent of global financial capital. This year,a global economic recession,triggered by the U.S. subprime mortgage crisis,seems unavoidable. To tackle international financial problems,Tao Dong,Chief Economist for Asia at Credit Suisse First Boston in Hong Kong,shared his insights with China Business Journal. Excerpts follow.

  17. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  18. Super-Eccentric Migrating Jupiters

    CERN Document Server

    Socrates, Aristotle; Dong, Subo; Tremaine, Scott

    2011-01-01

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e=0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e>0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is \\dot a \\propto a^0.5 and consequently the number distribution satisfies dN/dlog a\\propto a^0.5. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  19. SUPER-ECCENTRIC MIGRATING JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Socrates, Aristotle; Katz, Boaz; Dong Subo; Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2012-05-10

    An important class of formation theories for hot Jupiters involves the excitation of extreme orbital eccentricity (e = 0.99 or even larger) followed by tidal dissipation at periastron passage that eventually circularizes the planetary orbit at a period less than 10 days. In a steady state, this mechanism requires the existence of a significant population of super-eccentric (e > 0.9) migrating Jupiters with long orbital periods and periastron distances of only a few stellar radii. For these super-eccentric planets, the periastron is fixed due to conservation of orbital angular momentum and the energy dissipated per orbit is constant, implying that the rate of change in semi-major axis a is a-dot {proportional_to}a{sup 1/2} and consequently the number distribution satisfies dN/d log a{proportional_to}a{sup 1/2}. If this formation process produces most hot Jupiters, Kepler should detect several super-eccentric migrating progenitors of hot Jupiters, allowing for a test of high-eccentricity migration scenarios.

  20. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory StudiesSeries in development with the Amsterdam School for Heritage and Memory StudiesThis ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate th

  1. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory StudiesSeries in development with the Amsterdam School for Heritage and Memory StudiesThis ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate

  2. Heritage and Memory Studies (HMS)

    NARCIS (Netherlands)

    Laarse, van der R.; Saloul, I.A.M.

    Heritage and Memory Studies Series in development with the Amsterdam School for Heritage and Memory Studies This ground-breaking series examines the dynamics of heritage and memory from a transnational, interdisciplinary and integrated approaches. Monographs or edited volumes critically interrogate

  3. Near-field focusing of dielectric microspheres: Super-resolution and field-invariant parameter scaling

    CERN Document Server

    Wang, Zengbo

    2013-01-01

    Optical near-fields of small dielectric particles are of particular importance and interests for nanoscale optical engineering such as field localization, fabrication, characterization, sensing and imaging. This paper represents a systematic investigation on the focusing characteristics (focal length, field enhancement, spot size) for a given refractive-index microsphere (n=1.6) with a varying size parameter pisuper-resolution foci were analysised in details. Particularly strong super-resolution foci with spot size falling at least 50% below the diffraction limit were identified and possible new applications were suggested. To understand how the super-resolution conditions could be scaled to other refractive-index particles or background medium, principles of field-invariant parameters scaling (size, wavelength, and refractive index) were revealed and demonstrated with example cases. It offers the new freedom to choose particles and background medium to gai...

  4. Performance improvement of super-resolving pupil filters via combination with nonlinear saturable absorption films

    Science.gov (United States)

    Zha, Yikun; Wei, Jingsong; Gan, Fuxi

    2013-04-01

    With the continuous development of the field of information technology, there has been a demand for recording mark size of optical data storage, optical imaging resolving power, and characteristic linewidth of photolithography to reach nanoscale. However, it is very difficult to realize the goal due to the optical diffraction limit restrictions. Much interest has focused on the study of optical far-field super-resolution spot by using pupil filters. However, common concerns have continued to plague super-resolving pupil filters based on either scalar diffraction theory or vector diffraction theory. These concerns include the fact that the side lobe becomes non-negligible when the central lobe is squeezed to a certain extent. Moreover, it is difficult to reduce the super-resolving spot to nanoscale. In this work, we proposed a novel method to combine the super-resolving pupil filters with nonlinear saturable absorption thin films to reduce the central spot size to nanoscale, lower the intensity ratio of side lobe to central lobe, and elongate the depth of focus or tunable tolerance distance between the super-resolving spot and sample. The simulated results indicate that by using the three-zone annular binary phase filter as the super-resolving pupil filter and Sb2Te3 as the nonlinear saturable absorption thin films, the central spot size can be reduced to nanoscale, the side lobe intensity is squeezed to about 10% of the central lobe intensity, and the tunable tolerance distance between the super-resolving spot and the sample is about two times that of the depth of focus of the diffraction limited spot at the incident laser wavelength of 405 nm and the numerical aperture of focusing lens of 0.95. The combination of the super-resolving pupil filters with the nonlinear saturable absorption thin films is very useful for nano-optical data storage, maskless nanolithography, and nano-optical imaging. It is also easy to use in actual applications because of the operation

  5. An Optical Crystallography Instructional Package on Videocassettes.

    Science.gov (United States)

    Birnie, Richard W.

    1980-01-01

    Describes a self-teaching instructional package on color videocassettes, supplemented with audio descriptions, prepared from original super-8mm cinephotomicrographs for use in optical crystallography courses. Production techniques are also reviewed. (Author/JN)

  6. Watching the Birth of Super Star Clusters

    CERN Document Server

    Turner, J L; Turner, Jean L.; Beck, Sara C.

    2003-01-01

    Subarcsecond infrared and radio observations yield important information about the formation of super star clusters from their surrounding gas. We discuss the general properties of ionized and molecular gas near young, forming SSCs, as illustrated by the prototypical young forming super star cluster nebula in the dwarf galaxy, NGC 5253. This super star cluster appears to have a gravitationally bound nebula. The lack of molecular gas suggests a very high star formation efficiency, consistent with the formation of a large, bound star cluster.

  7. HMS介孔分子筛催化剂上苯酚氧化羰基化合成碳酸二苯酯%Oxidative Carbonylation of Phenol to Diphenyl Carbonate over Mesoporous HMS Molecular Sieve Supported Catalyst

    Institute of Scientific and Technical Information of China (English)

    程庆彦; 李超毅; 王延吉; 赵新强

    2011-01-01

    HMS mesoporous molecular sieves was synthesized with octadecylamine as the template and a novel HMS supported Pd ( Salen) complex catalyst was prepared by microwave-assisted solvothermal impregnation. The complex and the catalyst were characterized by means of FTIR, 1H NMR, XRD and N2 adsorption-desorption. The complex structure was confirmed and the characterization results showed that the Pd(Salen) complex was supported on HMS molecular sieves. The catalytic performance of the supported schiff base complex catalyst Pd( Salen)/HMS in oxidative carbonylation of phenol to diphenyl carbonate ( DPC) was investigated. The effects of reaction temperature, reaction pressure and reaction time on the DPC yield in the oxidative carbonylation were studied. The DPC yield was 18. 8% under the appropriate reaction conditions of reaction temperature 373 K, pressure 4.0 Mpa(n(CO) : n(O2) 7 : 1 )and reaction time 8 h.%以正十八胺为模板剂合成了介孔HMS分子筛,采用微波辅助分步浸渍溶剂热法在HMS分子筛上合成了结构新颖的Pd(Salen)配合物催化剂;采用FTIR和1H NMR等手段确定了Pd( Salen)配合物的结构,XRD和N2吸附-脱附表征结果显示Pd( Salen)固载于HMS分子筛上.将该负载型Pd(Salen)/HMS催化剂用于苯酚氧化羰基化合成碳酸二苯酯的反应中,该催化剂对此反应具有较好的催化性能,考察了反应温度、反应压力、反应时间等条件对碳酸二苯酯收率的影响,并对工艺条件进行了优化.实验结果表明,当反应温度为373 K、反应压力为4.0 MPa(n(CO)∶n(O2) =7∶1)、反应时间为8h时,碳酸二苯酯收率可达18.8%.

  8. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  9. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  10. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  11. Movable thin films with embedded high-index microspheres for super-resolution microscopy

    CERN Document Server

    Allen, Kenneth W; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Liberman, Vladimir; Astratov, Vasily N

    2015-01-01

    Microsphere-assisted imaging emerged as a surprisingly simple way of achieving optical super-resolution imaging. In this work, we use movable PDMS thin films with embedded high-index barium titanate glass microspheres a sample scanning capability was developed, thus removing the main limitation of this technology based on its small field-of-view.

  12. Direct measurement of the near-field super resolved focused spot in InSb

    NARCIS (Netherlands)

    Assafrao, A.C.; Wachters, A.J.H.; Verheijen, M.; Nugrowati, A.M.; Pereira, S.F.; Urbach, H.P.; Armand, M.F.; Olivier, S.

    2012-01-01

    Under appropriate laser exposure, a thin film of InSb exhibits a sub-wavelength thermally modified area that can be used to focus light beyond the diffraction limit. This technique, called Super-Resolution Near-Field Structure, is a potential candidate for ultrahigh density optical data storage and

  13. Technical report on the design, construction, commissioning and operation of the super-FRS of FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.; Winkler, M.; Weick, H. [and others

    2005-04-01

    In this report the construction of the super-FRS is described. Especially described are the ion-optical lay-out, the production targets, the magnets, the beam dumps, the degrader systems and the ion catcher, detectors and data-acquisition systems, as well as the safety aspects. (HSI)

  14. Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Äystö, J. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Behr, K.-H. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Benlliure, J. [Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bracco, A. [Dipartimento di Fisica, Università di Milano, 20133 Milano (Italy); Egelhof, P. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Fomichev, A. [Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna (Russian Federation); Galès, S. [Institut de Physique Nucléaire Orsay, 91406 Orsay (France); Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O. Box MG6, Bucharest (Romania); Geissel, H. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Justus-Liebig-Universität, 35392 Gießen (Germany); Grahn, T. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla (Finland); Grigorenko, L.V. [Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna (Russian Federation); Harakeh, M.N. [KVI Center for Advanced Radiation Technology, University of Groningen, 9700 Groningen (Netherlands); Hayano, R. [Department of Physics, University of Tokyo, 113-0033 Tokyo (Japan); Heinz, S. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Itahashi, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Jokinen, A. [Helsinki Institute of Physics, P.O. Box 64, 00014 Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla (Finland); and others

    2016-06-01

    The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and hadron physics are suggested with the Super-FRS as a stand-alone device, in particular searches for new isotopes, studies of hypernuclei, delta-resonances in exotic nuclei and spectroscopy of atoms characterized by bound mesons. Rare decay modes like multiple-proton or neutron emission and the nuclear tensor force observed in high-momentum regime can be also addressed. The in-flight radioactivity measurements as well as fusion, transfer and deep-inelastic reaction mechanisms with the slowed-down and energy-bunched fragment beams are proposed for the high-resolution and energy buncher modes at the Super-FRS.

  15. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    Science.gov (United States)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  16. 3D super-resolution imaging by localization microscopy.

    Science.gov (United States)

    Magenau, Astrid; Gaus, Katharina

    2015-01-01

    Fluorescence microscopy is an important tool in all fields of biology to visualize structures and monitor dynamic processes and distributions. Contrary to conventional microscopy techniques such as confocal microscopy, which are limited by their spatial resolution, super-resolution techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) have made it possible to observe and quantify structure and processes on the single molecule level. Here, we describe a method to image and quantify the molecular distribution of membrane-associated proteins in two and three dimensions with nanometer resolution.

  17. Super-resolution photoacoustic fluctuation imaging with multiple speckle illumination

    CERN Document Server

    Chaigne, Thomas; Allain, Marc; Katz, Ori; Gigan, Sylvain; Sentenac, Anne; Bossy, Emmanuel

    2015-01-01

    In deep tissue photoacoustic imaging, the spatial resolution is inherently limited by acoustic diffraction. Moreover, as the ultrasound attenuation increases with frequency, resolution is often traded-off for penetration depth. Here we report on super-resolution photoacoustic imaging by use of multiple speckle illumination. Specifically, we show that the analysis of second-order fluctuations of the photoacoustic images combined with image deconvolution enables resolving optically absorbing structures beyond the acoustic diffraction limit. A resolution increase of almost a factor 2 is demonstrated experimentally. Our method introduces a new framework that could potentially lead to deep tissue photoacoustic imaging with sub-acoustic resolution.

  18. New Low Emittance Lattice for the Super-B Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; /SLAC; Bettoni, S.; /CERN; Paoloni, E.; /Pisa U. /INFN, Pisa; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF

    2011-10-21

    New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.

  19. Highlights from Super-Kamiokande

    Science.gov (United States)

    Okumura, Kimihiro

    2016-11-01

    Recent results from Super-Kamiokande experiment are reviewed in this paper; Neutrino mass hierarchy and CP violation in the lepton sector are investigated via νμ → νe oscillation of the atmospheric neutrinos. The event rate, correlation with solar activity, energy spectrum of the solar neutrinos are measured via electron elastic scattering interactions. Neutrino emission from the WIMP annihilation at the center of the Sun are searched in the GeV energy regions. New project, SK-Gd project, to enhance anti-neutrino identification capability, has been approved inside the collaboration group.

  20. Highlights from Super-Kamiokande

    Directory of Open Access Journals (Sweden)

    Okumura Kimihiro

    2016-01-01

    Full Text Available Recent results from Super-Kamiokande experiment are reviewed in this paper; Neutrino mass hierarchy and CP violation in the lepton sector are investigated via νμ → νe oscillation of the atmospheric neutrinos. The event rate, correlation with solar activity, energy spectrum of the solar neutrinos are measured via electron elastic scattering interactions. Neutrino emission from the WIMP annihilation at the center of the Sun are searched in the GeV energy regions. New project, SK-Gd project, to enhance anti-neutrino identification capability, has been approved inside the collaboration group.

  1. Super-luminous supernovae from PESSTO

    CERN Document Server

    Nicholl, M; Jerkstrand, A; Inserra, C; Chen, T -W; Kotak, R; Valenti, S; Howell, D A; McCrum, M; Margheim, S; Rest, A; Benetti, S; Fraser, M; Gal-Yam, A; Smith, K W; Sullivan, M; Young, D R; Baltay, C; Hadjiyska, E; McKinnon, R; Rabinowitz, D; Walker, E S; Feindt, U; Nugent, P; Lawrence, A; Mead, A; Anderson, J P; Sollerman, J; Taddia, F; Leloudas, G; Mattila, S; Elias-Rosa, N

    2014-01-01

    We present optical spectra and light curves for three hydrogen-poor super-luminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a few days after maximum light to 100 days later shows them to be fairly typical of this class, with spectra dominated by Ca II, Mg II, Fe II and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, \\Ni decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 days after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models p...

  2. Simulating super earth atmospheres in the laboratory

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  3. Calibration of the Super-Kamiokande Detector

    CERN Document Server

    Abe, K; Iida, T; Iyogi, K; Kameda, J; Kishimoto, Y; Koshio, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Tanaka, H; Tomura, T; Ueno, K; Wendell, R A; Yokozawa, T; Irvine, T J; Kaji, H; Kajita, T; Kaneyuki, K; Lee, K P; Nishimura, Y; Okumura, K; McLachlan, T; Labarga, L; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tanaka, H A; Tobayama, S; Goldhaber, M; Bays, K; Carminati, G; Kropp, W R; Mine, S; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Hong, N; Akiri, T; Albert, J B; Himmel, A; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Huang, K; Ieki, K; Ikeda, M; Kikawa, T; Kubo, H; Minamino, A; Murakami, A; Nakaya, T; Otani, M; Suzuki, K; Takahashi, S; Fukuda, Y; Choi, K; Itow, Y; Mitsuka, G; Miyake, M; Mijakowski, P; Tacik, R; Hignight, J; Imber, J; Jung, C K; Taylor, I; Yanagisawa, C; Idehara, Y; Ishino, H; Kibayashi, A; Mori, T; Sakuda, M; Yamaguchi, R; Yano, T; Kuno, Y; Kim, S B; Yang, B S; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Martens, K; Vagins, M R; Martin, J F; de Perio, P; Konaka, A; Wilking, M J; Chen, S; Heng, Y; Sui, H; Yang, Z; Zhang, H; Zhenwei, Y; Connolly, K; Dziomba, M; Wilkes, R J

    2013-01-01

    Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics have been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT). In this context, we developed an in-situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a detector. The second part describes the modeling of the detector in our Monte Carlo simulation, including in particular the optical properties of its water target and their variability over time. Detailed studies on the water quality are also presented. As a re...

  4. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Johnny Tam

    Full Text Available Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  5. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection.

    Science.gov (United States)

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2015-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches-including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy-have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact-free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina.

  6. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  7. Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014)

    CERN Document Server

    Page, K L; Kuin, N P M; Henze, M; Walter, F M; Beardmore, A P; Bode, M F; Darnley, M J; Delgado, L; Drake, J J; Hernanz, M; Mukai, K; Nelson, T; Ness, J -U; Schwarz, G J; Shore, S N; Starrfield, S; Woodward, C E

    2015-01-01

    V745 Sco is a recurrent nova, with the most recent eruption occurring in February 2014. V745 Sco was first observed by Swift a mere 3.7 hr after the announcement of the optical discovery, with the super-soft X-ray emission being detected around four days later and lasting for only ~two days, making it both the fastest follow-up of a nova by Swift and the earliest switch-on of super-soft emission yet detected. Such an early switch-on time suggests a combination of a very high velocity outflow and low ejected mass and, together with the high effective temperature reached by the super-soft emission, a high mass white dwarf (>1.3 M_sun). The X-ray spectral evolution was followed from an early epoch where shocked emission was evident, through the entirety of the super-soft phase, showing evolving column density, emission lines, absorption edges and thermal continuum temperature. UV grism data were also obtained throughout the super-soft interval, with the spectra showing mainly emission lines from lower ionization...

  8. Tetrahedral Units: For Dodecahedral Super-Structures

    CERN Document Server

    Ortiz, Y; Liebman, J F

    2016-01-01

    Different novel organic-chemical possibilities for tetrahedral building units are considered, with attention to their utility in constructing different super-structures. As a representative construction we consider the use of sets of 20 such identical tetrahedral units to form a super-dodecahedron.

  9. dbSUPER: a database of super-enhancers in mouse and human genome.

    Science.gov (United States)

    Khan, Aziz; Zhang, Xuegong

    2016-01-04

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities.

  10. 硅烷化含钛介孔分子筛催化环己烯环氧化动力学%Kinetics of Epoxidation of Cyclohexene over Silylated Ti/HMS Catalyst

    Institute of Scientific and Technical Information of China (English)

    李学峰; 张洪浩; 高焕新; 陈庆龄

    2009-01-01

    研究了气相沉积法制备的硅烷化含钛介孔分子筛(Ti/HMS)催化环己烯与异丙苯过氧化氢(CHP)的环氧化反应的宏观动力学.结果表明:环己烯与CHP的环氧化反应对催化剂的量表现为1级;对于环己烯和氧化剂CHP,随着浓度的增加,反应随之由1级向0级过渡,根据实验结果和反应机理,运用Rideal-Eley方法,提出了硅烷化Ti/HMS催化环己烯与CHP环氧化反应的动力学方程.%The reaction kinetics of epoxidation of cyclohexene with cumene hydroperoxide (CHP) over silylated Ti/HMS mesoporous molecular sieve catalyst prepared by chemical vapor deposition method was investigated. The results showed that the order number of epoxidation of cyclohexene for catalysts dosages was 1, and the reaction order number of epoxidation of cyclohexene transformed from 1 to 0 with the increase of concentration of cyclohexene and CHP. On the basis of experiment results and reaction mechanism, the reaction kinetics equation of epoxidation of cyclohexene and CHP was obtained according to Rideal-Eley model.

  11. Ending Aging in Super Glassy Polymer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  12. 远场超分辨随机光重建显微镜(STORM)研究进展%Progress in far-field super-resolution stochastic optical reconstruction microscopy(STORM)

    Institute of Scientific and Technical Information of China (English)

    王成; 马俊领; 魏勋斌

    2011-01-01

    Understanding intracellular molecule-scale characteristic of dynamics and structures is urgently demanded to solve issues in today's life science. In order to solve this problem, a far field optical imaging obtained nanometer or sub-nanometer scale 3D resolution will be demanded. The far-field fluorescence microscopy, which broken diffraction barrier, Stochastic Optical Restructure Microscopy (STORM) is introduced. The STORM can be achieved resolution of 20 nm laterally and 50 nm axially. In theory, the STORM can be achieved single molecule location precision. Imaging foundational principle, progress of 3D and multi-color imaging, recently faced challenge as well as the direction of development about the STORM is talked in detailed.%了解细胞内分子尺度的动态和结构的特征是生命科学迫切需要解决的问题,要求远场光学成像要求纳米或亚纳米量级的空间分辨率.介绍了一种实现打破衍射极限的远场荧光显微成像技术--随机光重建显微术(STORM),其分辨率可以达到横向分辨率20 nm,轴向分辨率50 nm,理论上这种方法的空间分辨率可以达到单分子定位的精度.具体介绍了其成像的基本原理,在三维、多色成像方面的进展,和目前面临的问题及今后的发展方向.

  13. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography.

    Science.gov (United States)

    Paturzo, Melania; Ferraro, Pietro

    2009-12-01

    Synthetic aperture enlargement is obtained, in lensless digital holography, by introducing a diffraction grating between the object and the CCD camera with the aim of getting super-resolution. We demonstrate here that the spatial frequencies are naturally self-assembled in the reconstructed image plane when the NA is increased synthetically at its maximum extent of three times. By this approach it possible to avoid the use of the grating transmission formula in the numerical reconstruction process, thus reducing significantly the noise in the final super-resolved image. Demonstrations are reported in 1D and 2D with an optical target and a biological sample, respectively.

  14. Adaptive-optics Optical Coherence Tomography Processing Using a Graphics Processing Unit*

    Science.gov (United States)

    Shafer, Brandon A.; Kriske, Jeffery E.; Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T.

    2015-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838

  15. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    Science.gov (United States)

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  16. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  17. Phase measurements exhibiting super sensitivity and super resolution features

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Jezek, Miroslav; Gehring, Tobias

    2016-01-01

    By using an optical squeezed state and a post-processed homodyne detection scheme we show that phase measurements can overcome Rayleigh's resolution criterion and beat the quantum shot noise limit simultaneously......By using an optical squeezed state and a post-processed homodyne detection scheme we show that phase measurements can overcome Rayleigh's resolution criterion and beat the quantum shot noise limit simultaneously...

  18. Simple expressions for performance parameters of complex filters, with applications to super-Gaussian phase filters.

    Science.gov (United States)

    Ledesma, Silvia; Campos, Juan; Escalera, Juan Carlos; Yzuel, María J

    2004-05-01

    To study the three-dimensional (3-D) behavior produced by complex filters, we have extended the expressions for the axial and the transverse gain to the case in which the best image plane is not near the paraxial focus. Super-Gaussian phase filters are proposed to control the 3-D image response of an optical system. Super-Gaussian phase filters depend on several parameters that modify the shape of the phase filter, producing tunable control of the 3-D response of the optical system. The filters are capable of producing a wide range of optical effects: transverse superresolution with high depth of focus, 3-D superresolution, and transverse apodization with different axial responses.

  19. Super-resolution and super-localization microscopy: A novel tool for imaging chemical and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    Optical microscopy imaging of single molecules and single particles is an essential method for studying fundamental biological and chemical processes at the molecular and nanometer scale. The best spatial resolution (~ λ/2) achievable in traditional optical microscopy is governed by the diffraction of light. However, single molecule-based super-localization and super-resolution microscopy imaging techniques have emerged in the past decade. Individual molecules can be localized with nanometer scale accuracy and precision for studying of biological and chemical processes.This work uncovered the heterogeneous properties of the pore structures. In this dissertation, the coupling of molecular transport and catalytic reaction at the single molecule and single particle level in multilayer mesoporous nanocatalysts was elucidated. Most previous studies dealt with these two important phenomena separately. A fluorogenic oxidation reaction of non-fluorescent amplex red to highly fluorescent resorufin was tested. The diffusion behavior of single resorufin molecules in aligned nanopores was studied using total internal reflection fluorescence microscopy (TIRFM).

  20. Accessing the third dimension in localization-based super-resolution microscopy.

    Science.gov (United States)

    Hajj, Bassam; El Beheiry, Mohamed; Izeddin, Ignacio; Darzacq, Xavier; Dahan, Maxime

    2014-08-21

    Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.

  1. Away from resolution, assessing the information content of super-resolution images

    CERN Document Server

    Pengo, Thomas; Manley, Suliana

    2015-01-01

    Super-resolution microscopy has revolutionized optical fluorescence imaging by improving 3D resolution by 1-2 orders of magnitude. While different methods can successfully increase the resolution, all methods share significant differences with standard imaging methods, making the usual measures of resolution inapplicable. In particular image quality and information content are spatially heterogeneous with variabilities that can be comparable to their mean values, limiting the use of the average resolution as a predictor for local information. A common use of super-resolution data is to test or establish structural models, and in these cases it would be valuable to assess the capacity of the data to validate a model. We focus here on single-molecule localization methods and present a new way of assessing the quality and reliability of super-resolution data.

  2. Super-Critical Growth of Massive Black Holes from Stellar-Mass Seeds

    CERN Document Server

    Madau, Piero; Dotti, Massimo

    2014-01-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass holes from light seeds at early times. We use the radiatively-inefficient "slim disk" solution -- advective, optically thick flows that generalize the standard geometrically thin disk model -- to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the Universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early Universe are briefly discussed.

  3. Multi-pulse pumping for far-field super-resolution imaging

    Science.gov (United States)

    Requena, Sebastian; Raut, Sangram; Doan, Hung; Kimball, Joe; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Strzhemechny, Yuri; Gryczynski, Zygmunt

    2016-02-01

    Recently, far-field optical imaging with a resolution significantly beyond diffraction limit has attracted tremendous attention allowing for high resolution imaging in living objects. Various methods have been proposed that are divided in to two basic approaches; deterministic super-resolution like STED or RESOLFT and stochastic super-resolution like PALM or STORM. We propose to achieve super-resolution in far-field fluorescence imaging by the use of controllable (on-demand) bursts of pulses that can change the fluorescence signal of long-lived component over one order of magnitude. We demonstrate that two beads, one labeled with a long-lived dye and another with a short-lived dye, separated by a distance lower than 100 nm can be easily resolved in a single experiment. The proposed method can be used to separate two biological structures in a cell by targeting them with two antibodies labeled with long-lived and short-lived fluorophores.

  4. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  5. The superB silicon vertex tracker

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.i [INFN-Pisa and Universita di Pisa (Italy); Avanzini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Calderini, G.; Ceccanti, M.; Cenci, R.; Cervelli, A.; Crescioli, F.; Dell' Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.A. [INFN-Pisa and Universita di Pisa (Italy); Lusiani, A. [Scuola Normale Superiore and INFN-Pisa (Italy); Gregucci, S.; Mammini, P.; Marchiori, G.; Massa, M.; Morsani, F. [INFN-Pisa and Universita di Pisa (Italy)

    2010-05-21

    The SuperB asymmetric e{sup +}-e{sup -} collider has been designed to deliver a luminosity greater than 10{sup 36}cm{sup -2}s{sup -1} with moderate beam currents. Comparing to current B-Factories, the reduced center of mass boost of the SuperB machine requires improved vertex resolution to allow precision measurements sensitive to New Physics. We present the conceptual design of the silicon vertex tracker (SVT) for the SuperB detector with the present status of the R and D on the different options under study for its innermost Layer0.

  6. N=2 Super - $W_{3}$ Algebra and N=2 Super Boussinesq Equations

    CERN Document Server

    Ivanov, E; Malik, R P

    1995-01-01

    We study classical $N=2$ super-$W_3$ algebra and its interplay with $N=2$ supersymmetric extensions of the Boussinesq equation in the framework of the nonlinear realization method and the inverse Higgs - covariant reduction approach. These techniques have been previously applied by us in the bosonic $W_3$ case to give a new geometric interpretation of the Boussinesq hierarchy. Here we deduce the most general $N=2$ super Boussinesq equation and two kinds of the modified $N=2$ super Boussinesq equations, as well as the super Miura maps relating these systems to each other, by applying the covariant reduction to certain coset manifolds of linear $N=2$ super-$W_3^{\\infty}$ symmetry associated with $N=2$ super-$W_3$. We discuss the integrability properties of the equations obtained and their correspondence with the formulation based on the notion of the second hamiltonian structure.

  7. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    Science.gov (United States)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  8. Repeat-PPM Super-Symbol Synchronization

    Science.gov (United States)

    Connelly, J.

    2016-11-01

    To attain a wider range of data rates in pulse position modulation (PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol multiple times, forming a super-symbol. In addition to the slot and symbol synchronization typically required for PPM, the receiver must also properly align the noisy super-symbols. We present a low-complexity approximation of the maximum-likelihood method for performing super-symbol synchronization without use of synchronization sequences. We provide simulation results demonstrating performance advantage when PPM symbols are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally, the results suggest that this super-symbol synchronization technique requires signal levels below those required for reliable communication. This validates that the PPM spreading approach proposed to CCSDS can work properly as part of the overall scheme.

  9. Mirror-enhanced super-resolution microscopy

    OpenAIRE

    2016-01-01

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~ 100 nm from the cell a...

  10. SuperHILAC Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B.; Brown, I.G.

    1986-06-01

    A high current MEtal Vapor Vacuum Arc (MEVVA) ion source is to be installed in the third injector (Abel) at the SuperHILAC, representing the first accelerator use of this novel ion source. The MEVVA source has produced over 1 A of uranium in all charge states, with typically more than 100 electrical mA (emA) of U/sup 5 +/. A substantial fraction of this high current, heavy ion beam must be successfully transported to the entrance of the Wideroe linac to approach the 10 emA space-charge output limit of the Wideroe. Calculations show that up to 50 emA of U/sup 5 +/ can be transported through the present high voltage column. A bouncer will be added to the Cockcroft-Walton supply to handle the increased beam current. The Low Energy Beam Transport line vacuum will be improved to reduce charge exchange, and the phase matching between the 23 MHz Wideroe and the 70 MHz Alvarez linacs will be improved by the addition of two 70 HMz bunchers. The installation of the MEVVA source along with the modifications described above are expected to result in a five-fold increase in beam delivered to Bevatron experiments, increasing the extracted uranium beam to 5 x 10/sup 7/ ions/pulse.

  11. Super-B Project Overview

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Donald, M.; Nosochkov, Y.; Novokhatski, A.; Seeman, J.; Sullivan, M.; Yocky, G.; Wienands, U.; Wittmer, W.; /SLAC; Koop, I.; Levichev, E.; Nikitin, S.; /Novosibirsk, IYF /KEK, Tsukuba /Pisa U. /CERN

    2010-08-26

    The SuperB project aims at the construction of an asymmetric very high luminosity B-Factory on the Frascati/Tor Vergata (Italy) area, providing a uniquely sensitive probe of New Physics in the flavour sector of the Standard Model. The luminosity goal of 10{sup 36} cm{sup -2} s{sup -1} can be reached with a new collision scheme with 'large Piwinski angle' (LPA) and the use of 'crab waist sextupoles' (CW). A LPA&CW Interaction Region (IR) has been successfully tested at the DA{Phi}NE {Phi}-Factory at LNF-Frascati in 2008. The LPA&CW scheme, together with very low {beta}*, will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring (HER), two spin rotators will bring longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires the final doublet quadrupoles to be very close to the IP and very compact. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010.

  12. SUPER-B LATTICE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF; Nosochkov, Y.; Wittmer, W.; /SLAC

    2010-08-25

    The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.

  13. Studies of the Super VELO

    CERN Document Server

    AUTHOR|(CDS)2156302

    2016-01-01

    The Super VELO is the Run 5 upgrade of the VeloPix detector of the LHCb experiment. Its most challenging task is to cope with a luminosity increase of the factor 10. This study examines the potential physics performance of a detector based on the VeloPix design at high luminosity conditions. It is found that an unmodified VeloPix detector shows poor performance when exposed to 10x design luminosity, most gravely high ghost rates of 40 %. When applying basic assumptions about material changes such as cutting the silicon thickness by half and removing the RF foil, the ghost rate drops by 20 %. When using thin silicon and re-optimizing the tracking algorithm, the ghost rate can even be reduced by 60 %. Applying the additional modification of a pixel area size four times smaller, the ghost rate drops by 88 % and the IP resolution improves. Finally, in a dream scenario with thin silicon, smaller pixels and no RF foil, big gains in resolution and a ghost rate of less than 4 % can be achieved.

  14. Two-photon super bunching of thermal light via multiple two-photon-path interference

    CERN Document Server

    Hong, Peilong; Zhang, Guoquan

    2012-01-01

    We propose a novel scheme to achieve two-photon super bunching of thermal light through multiple two-photon-path interference, in which two mutually first-order incoherent optical channels are introduced by inserting a modified Michelson interferometer into a traditional two-photon HBT interferometer, and the bunching peak-to-background ratio can reach 3 theoretically. Experimentally, the super bunching peak-to-background ratio was measured to be 2.4, much larger than the ratio 1.7 measured with the same thermal source in a traditional HBT interferometer. The peak-to-background ratio of two-photon super bunching of thermal light can be increased up to $2\\times1.5^n$ by inserting cascadingly $n$ pairs of mutually first-order incoherent optical channels into the traditional two-photon HBT interferometer. The two-photon super bunching of thermal light should be of great significance in improving the visibility of classical ghost imaging.

  15. 高熔体强度聚丙烯水发泡性能及影响因素%Foaming Properties and Effective Factors of Water Foaming Agent for HMS-PP

    Institute of Scientific and Technical Information of China (English)

    胡安朋; 赵良知

    2011-01-01

    High melt strength polypropylene ( HMS-PP) was extruded and foamed by using water as physical foaming agent. In experiments, by changing pressure and pressure drop rate to investigate the structure and distribution of bubble hole. Influence of pressure and pressure drop rate on the structure and properties of foam were analyzed. The results showed that when the pressure was 1. 5 Mpa, pressure drop rate is 77. 8 Mpa/s, PP products with uniform bubbles, large cell density and small apparent density could be got. The average diameter of bubble holes was about 0. 48 mm and the foaming rate was about 12.%以水蒸气作为物理发泡剂,对高熔体强度聚丙烯(HMS-PP)进行挤出发泡.在实验中,通过改变水蒸气压力以及卸压速率研究泡孔的结构和分布,分析压力、卸压速率对发泡体结构和性能的影响.实验结果表明:当水蒸气压力为1.5 MPa,卸压速率为77.8 MPa/s时,可以获得发泡均匀、泡孔密度大、表观密度小的PP发泡制品.得到的泡孔平均直径为0.48 mm,发泡倍率约为12.

  16. Optical fiber-based devices and applications

    Institute of Scientific and Technical Information of China (English)

    Perry Ping SHUM; Jonathan C. KNIGHT; Jesper LAEGSGAARD; Dora Juan Juan HU

    2010-01-01

    @@ Optical fiber technology has undergone tremendous growth and development over the last 40 years. Optical fibers constitute an information super highway and are vital in enabling the proliferating use of the Internet. Optical fiber is also an enabling technology which can find applications in sensing, imaging, biomedical, machining, etc. There have been a few milestones in the advancement of optical fiber technology. Firstly, the invention and development of the laser some 50 years ago made optical communications possible. Secondly, the fabrication of low-loss optical fibers has been a key element to the success of optical communication.

  17. An active metallic nanomatryushka with two similar super-resonances

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D. J., E-mail: hyman.wdj@163.com [School of Physics and Technology, Nanjing Normal University, Nanjing 210023 (China); School of Physics, Nanjing University, Nanjing 210093 (China); Cheng, Y.; Wu, X. W.; Liu, X. J., E-mail: liuxiaojun@nju.edu.cn [School of Physics, Nanjing University, Nanjing 210093 (China)

    2014-07-07

    The optical properties of a simple metallic nanomatryushka (nanosphere-in-a-nanoshell) with gain have been investigated theoretically. The spaser (surface plasmon amplification by stimulated emission of radiation) phenomena can be observed at two critical wavelengths in the active metallic nanomatryushkas. With increasing the gain coefficient of the middle layer, a similar super surface plasmon (SP) resonance is first found at the ω₋⁺|₁ mode of the active nanoparticles and then breaks down. With further increasing the gain coefficient, another similar super-resonance occurs at the ω₋⁻|₁ mode. The near-field enhancements in the active nanomatryushkas also have been greatly amplified at the critical wavelengths for ω₋⁺|₊ and ω₋⁻|₁ modes. It is further found that the amplifications of SPs in the active Ag–SiO₂–Au nanoshell are strongest in four kinds of nanoshells and hence the largest near fields. The giant near-field enhancement can greatly enhance the Raman excitation and emission.

  18. Super-Coulombic atom-atom interactions in hyperbolic media

    CERN Document Server

    Cortes, Cristian L

    2016-01-01

    Dipole-dipole interactions which govern phenomena like cooperative Lamb shifts, superradiant decay rates, Van der Waals forces, as well as resonance energy transfer rates are conventionally limited to the Coulombic near-field. Here, we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic (QED) interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a Super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media and propose practical implementations with phonon-polaritonic hexagonal boron nitride in the infrared spectral range and plasmonic super-lattice structures in the visible range. Our work paves the way for the control of cold atoms in hyperbolic media and the study of many-body atomic states where optical phonons mediate qua...

  19. Spatial covariance reconstructive (SCORE) super-resolution fluorescence microscopy.

    Science.gov (United States)

    Deng, Yi; Sun, Mingzhai; Lin, Pei-Hui; Ma, Jianjie; Shaevitz, Joshua W

    2014-01-01

    Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM) and photoactivation localization microscopy (PALM) are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF). In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  20. Spatial covariance reconstructive (SCORE super-resolution fluorescence microscopy.

    Directory of Open Access Journals (Sweden)

    Yi Deng

    Full Text Available Super-resolution fluorescence microscopy has become a powerful tool to resolve structural information that is not accessible to traditional diffraction-limited imaging techniques such as confocal microscopy. Stochastic optical reconstruction microscopy (STORM and photoactivation localization microscopy (PALM are promising super-resolution techniques due to their relative ease of implementation and instrumentation on standard microscopes. However, the application of STORM is critically limited by its long sampling time. Several recent works have been focused on improving the STORM imaging speed by making use of the information from emitters with overlapping point spread functions (PSF. In this work, we present a fast and efficient algorithm that takes into account the blinking statistics of independent fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging. Our method is insensitive to background and can be applied to different types of fluorescence sources, including but not limited to the organic dyes and quantum dots that we demonstrate in this work.

  1. Super sub-wavelength patterns in photon coincidence detection

    Science.gov (United States)

    Liu, Ruifeng; Zhang, Pei; Zhou, Yu; Gao, Hong; Li, Fuli

    2014-02-01

    High-precision measurements implemented with light are desired in all fields of science. However, light acts as a wave, and the Rayleigh criterion in classical optics yields a diffraction limit that prevents obtaining a resolution smaller than the wavelength. Sub-wavelength interference has potential application in lithography because it beats the classical Rayleigh resolution limit. Here, we carefully study second-order correlation theory to establish the physics behind sub-wavelength interference in photon coincidence detection. A Young's double slit experiment with pseudo-thermal light is performed to test the second-order correlation pattern. The results show that when two point detectors are scanned in different ways, super sub-wavelength interference patterns can be obtained. We then provide a theoretical explanation for this surprising result, and demonstrate that this explanation is also suitable for the results found for entangled light. Furthermore, we discuss the limitations of these types of super sub-wavelength interference patterns in quantum lithography.

  2. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  3. Quantum Optics in Diamond Nanophotonic Chips

    Science.gov (United States)

    2014-07-01

    techniques [12]. Using a CCD camera, this “deterministic emitter switch microscopy ” (DESM) technique enables super - resolution imaging with localization down...selective optical transitions allow individual NV electron spins to be easily observed using standard confocal microscopy . The NV has two unpaired...record-precision magnetometry with diamond nanocrystals [11]. 1.3 Wide-Field Multispectral Super - Resolution Imaging Using Spin- Dependent Fluorescence in

  4. High contrast imaging of exoplanets on ELTs using a super-Nyquist wavefront control scheme

    CERN Document Server

    Gerard, Benjamin L

    2016-01-01

    One of the key science goals for extremely large telescopes (ELTs) is the detailed characterization of already known directly imaged exoplanets. The typical adaptive optics (AO) Nyquist control region for ELTs is ~0.4 arcseconds, placing many already known directly imaged planets outside the DM control region and not allowing any standard wavefront control scheme to remove speckles that would allow higher SNR images/spectra to be acquired. This can be fixed with super-Nyquist wavefront control (SNWFC), using a sine wave phase plate to allow for wavefront control outside the central DM Nyquist region. We demonstrate that SNWFC is feasible through a simple, deterministic, non-coronagraphic, super-Nyquist speckle nulling technique in the adaptive optics laboratory at the National Research Council of Canada. We also present results in simulation of how SNWFC using the self coherent camera (SCC) can be used for high contrast imaging. This technique could be implemented on future high contrast imaging instruments t...

  5. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  6. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  7. Laboratory measurements of super-resolving Toraldo pupils for radio astronomical applications

    CERN Document Server

    Olmi, Luca; Cresci, Luca; D'Agostino, Francesco; Migliozzi, Massimo; Mugnai, Daniela; Natale, Enzo; Nesti, Renzo; Panella, Dario; Stefani, Lorenzo

    2016-01-01

    The concept of super-resolution refers to various methods for improving the angular resolution of an optical imaging system beyond the classical diffraction limit. Although several techniques to narrow the central lobe of the illumination Point Spread Function have been developed in optical microscopy, most of these methods cannot be implemented on astronomical telescopes. A possible exception is represented by the variable transmittance filters, also known as "Toraldo Pupils" (TPs) since they were introduced for the first time by G. Toraldo di Francia in 1952. In the microwave range, the first successful laboratory test of TPs was performed in 2003. These first results suggested that TPs could represent a viable approach to achieve super-resolution in Radio Astronomy. We have therefore started a project devoted to a more exhaustive analysis of TPs and how they could be implemented on a radio telescope. In the present work we report on the results of extensive microwave measurements, using TPs with different ...

  8. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  9. National Institute of Informatics completes international expansion of Japan's first 10 Gbps academic research network "SuperSINET"

    CERN Multimedia

    2003-01-01

    "SuperSINET is Japan's first 10 Gbps Optical high-speed research network built to drive the academic research activities in Japan by establishing the strong cooperation between major high-tech research institutes, universities or other academic organizations across the world" (1/2 page).

  10. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    OpenAIRE

    Hansson, Tobias; Wabnitz, Stefan

    2015-01-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  11. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons

    Science.gov (United States)

    Hansson, Tobias; Wabnitz, Stefan

    2015-07-01

    The generation of optical frequency combs in microresonators is considered without resorting to the mean-field approximation. New dynamical regimes are found to appear for high intracavity power that cannot be modeled using the Lugiato-Lefever equation. Using the Ikeda map we show the existence of multi-valued stationary states and analyse their stability. Period doubled patterns are considered and a novel type of super cavity soliton associated with the multi-stable states is predicted.

  12. All-passive pixel super-resolution of time-stretch imaging

    OpenAIRE

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; Hayden K. H. So; Lam, Edmund Y.; Tsia, Kevin K.

    2016-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the- art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate --- hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image fr...

  13. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins

    DEFF Research Database (Denmark)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present...... the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins....... Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5...

  14. The Coordinate Detector for SuperBigBite

    Science.gov (United States)

    Monaghan, Peter; Batourine, Vitaly; Jones, Mark; Khandaker, Mahbub; Pentchev, Lubomir; Sarty, Adam; Shahinyan, Albert; Sutera, Concetta; Tortorici, Francesco; Wojtsekhowski, Bogdan

    2017-01-01

    The Coordinate Detector (CDet) is a 2352-channel two-layer scintillator hodoscope, being constructed for use with the SuperBigbite Spectrometer (SBS) in the nucleon form factor experiments at the Thomas Jefferson National Accelerator Facility (JLab). Each layer of the detector consists of thin, scintillator paddles, each with a wavelength-shifting optical fiber through the middle, which is read out via a multi-anode photomultiplier tube. The CDet will provide charged particle coordinate resolution of 2 mm, which is important for elastic event identification at the projected very large luminosity of 1039 Hz/cm2. An overview of the detector parameters and the current progress in construction, testing and commissioning is presented.

  15. Super-resonant radiation stimulated by high-harmonics

    CERN Document Server

    Loures, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio

    2016-01-01

    Solitons propagating in media with higher order dispersion will shed radiation known as dispersive wave or resonant radiation, with applications in frequency broadening, deep UV sources for spectroscopy or simply fundamental studies of soliton physics. Starting from a recently proposed equation that models the behaviour of ultrashort optical pulses in nonlinear materials using the analytic signal, we find that the resonant radiation associated with the third-harmonic generation term of the equation is parametrically stimulated with an unprecedented gain. Resonant radiation levels, typically only a small fraction of the soliton, are now as intense as the soliton itself. The mechanism is quite universal and works also in normal dispersion and with harmonics higher than the third. We report experimental hints of this super-resonant radiation stimulated by the fifth harmonic in diamond.

  16. Super Star Cluster Nebula in the Starburst Galaxy NGC 660

    Science.gov (United States)

    Naiman, J. P.; Turner, J. L.; Tsai, C.-W.; Beck, S. C.; Ho, P. T. P.

    2004-12-01

    We have mapped the starburst galaxy NGC 660 at 100mas resolution at K band (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at a distance of 13 Mpc, NGC 660 contains concentrated central star formation of power ˜ 2 x 1010 Lsun. Our 1.3 cm continuum image reveals a bright, compact source of less than 10 pc extent with a rising spectral index. We infer that this is optically thick free-free emission from a super star cluster nebula. The nebula is less than 10 pc in size, comparable in luminosity to the ``supernebula" in the dwarf galaxy, NGC 5253. We estimate that there are a few thousand O stars contained in this single young cluster. There are a number of other weaker continuum sources, either slightly smaller or more evolved clusters of similar size within the central 300 parsecs of the galaxy. This work is supported in part by the National Science Foundation.

  17. The Birth of a Super Star Cluster: NGC 5253

    CERN Document Server

    Turner, J L; Turner, Jean L.; Beck, Sara C.

    2004-01-01

    We present images of the 7mm free-free emission from the radio "supernebula" in NGC 5253 made with the Very Large Array and the Pie Town link. The images reveal structure in the nebula, which has a <~ 1 pc (~50 mas radius) core requiring the excitation of 1200 O7 stars. The nebula is elongated, with an arc of emission curving to the northeast and to the south. The total ionizing flux within the central 1.2" (~20 pc) is 7 x 10^52 s^-1, corresponding to 7000 O7 stars. We propose that the radio source is coincident with a small, very red near-infrared cluster and apparently linked to a larger, optical source some 10 pc away on the sky. We speculate on the causes of this structure and what it might tell us about the birth of the embedded young super star cluster.

  18. COMPENSATION OF DETECTOR SOLENOID IN SUPER-B

    Energy Technology Data Exchange (ETDEWEB)

    Nosochkov, Yuri; Bertsche, Kirk; Sullivan, Michael; /SLAC

    2011-06-02

    The SUPER-B detector solenoid has a strong 1.5 T field in the Interaction Region (IR) area, and its tails extend over the range of several meters. The main effect of the solenoid field is coupling of the horizontal and vertical betatron motion which must be corrected in order to preserve the small design beam size at the Interaction Point. The additional effects are orbit and dispersion caused by the angle between the solenoid and beam trajectories. The proposed correction system provides local compensation of the solenoid effects independently for each side of the IR. It includes 'bucking' solenoids to remove the solenoid field tails and a set of skew quadrupoles, dipole correctors and anti-solenoids to cancel linear perturbations to the optics. Details of the correction system are presented.

  19. First Super-Earth Atmosphere Analysed

    Science.gov (United States)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  20. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    Science.gov (United States)

    Ilgen, Peter; Stoldt, Stefan; Conradi, Lena-Christin; Wurm, Christian Andreas; Rüschoff, Josef; Ghadimi, B Michael; Liersch, Torsten; Jakobs, Stefan

    2014-01-01

    Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  1. STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue.

    Directory of Open Access Journals (Sweden)

    Peter Ilgen

    Full Text Available Formalin fixed and paraffin-embedded human tissue resected during cancer surgery is indispensable for diagnostic and therapeutic purposes and represents a vast and largely unexploited resource for research. Optical microscopy of such specimen is curtailed by the diffraction-limited resolution of conventional optical microscopy. To overcome this limitation, we used STED super-resolution microscopy enabling optical resolution well below the diffraction barrier. We visualized nanoscale protein distributions in sections of well-annotated paraffin-embedded human rectal cancer tissue stored in a clinical repository. Using antisera against several mitochondrial proteins, STED microscopy revealed distinct sub-mitochondrial protein distributions, suggesting a high level of structural preservation. Analysis of human tissues stored for up to 17 years demonstrated that these samples were still amenable for super-resolution microscopy. STED microscopy of sections of HER2 positive rectal adenocarcinoma revealed details in the surface and intracellular HER2 distribution that were blurred in the corresponding conventional images, demonstrating the potential of super-resolution microscopy to explore the thus far largely untapped nanoscale regime in tissues stored in biorepositories.

  2. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples.

    Science.gov (United States)

    Winter, Peter W; York, Andrew G; Nogare, Damian Dalle; Ingaramo, Maria; Christensen, Ryan; Chitnis, Ajay; Patterson, George H; Shroff, Hari

    2014-09-20

    Fluorescence imaging methods that achieve spatial resolution beyond the diffraction limit (super-resolution) are of great interest in biology. We describe a super-resolution method that combines two-photon excitation with structured illumination microscopy (SIM), enabling three-dimensional interrogation of live organisms with ~150 nm lateral and ~400 nm axial resolution, at frame rates of ~1 Hz. By performing optical rather than digital processing operations to improve resolution, our microscope permits super-resolution imaging with no additional cost in acquisition time or phototoxicity relative to the point-scanning two-photon microscope upon which it is based. Our method provides better depth penetration and inherent optical sectioning than all previously reported super-resolution SIM implementations, enabling super-resolution imaging at depths exceeding 100 μm from the coverslip surface. The capability of our system for interrogating thick live specimens at high resolution is demonstrated by imaging whole nematode embryos and larvae, and tissues and organs inside zebrafish embryos.

  3. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...... to be subjects of examination for this thesis. The research results show that architectural engineering has a significant impact on a design process. The projects illustrate that simple explanations, underpinned by visualisations of the challenges between shape versus structure, often creates a shared...

  4. Breeding Super-Earths and Birthing Super-Puffs in Transitional Disks

    CERN Document Server

    Lee, Eve J

    2015-01-01

    The riddle posed by super-Earths (1-4$R_\\oplus$, 2-20$M_\\oplus$) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (up to 9) orders of magnitude, and super-Earths can still robustly emerge after $\\sim$0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The picture --- that close-in super-Earths form in a gas-poor (but not ga...

  5. KML Super Overlay to WMS Translator

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This translator is a server-based application that automatically generates KML super overlay configuration files required by Google Earth for map data access via the Open Geospatial Consortium WMS (Web Map Service) standard. The translator uses a set of URL parameters that mirror the WMS parameters as much as possible, and it also can generate a super overlay subdivision of any given area that is only loaded when needed, enabling very large areas of coverage at very high resolutions. It can make almost any dataset available as a WMS service visible and usable in any KML application, without the need to reformat the data.

  6. Super resolution of images and video

    CERN Document Server

    Katsaggelos, Aggelos K

    2007-01-01

    This book focuses on the super resolution of images and video. The authors' use of the term super resolution (SR) is used to describe the process of obtaining a high resolution (HR) image, or a sequence of HR images, from a set of low resolution (LR) observations. This process has also been referred to in the literature as resolution enhancement (RE). SR has been applied primarily to spatial and temporal RE, but also to hyperspectral image enhancement. This book concentrates on motion based spatial RE, although the authors also describe motion free and hyperspectral image SR problems. Also exa

  7. Super-Laplacians and their symmetries

    Science.gov (United States)

    Howe, P. S.; Lindström, U.

    2017-05-01

    A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.

  8. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times...

  9. New method for making super-plastic glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ It was a long-cherished dream for materials scientists to find a nearly ideal metallic alloy with high strength and super-plasticity concurrently as a super-material both extremely strong and exceptionally hard for human use.

  10. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  11. An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation

    Science.gov (United States)

    Yu, Jing; Ma, Wen-Xiu; Han, Jingwei; Chen, Shouting

    2017-02-01

    Based on a Lie super-algebra B(0, 1), an integrable generalization of the super AKNS iso-spectral problem is introduced and its corresponding generalized super AKNS hierarchy is generated. By making use of the super-trace identity (or the super variational identity), the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. A generalized super AKNS soliton hierarchy with self-consistent sources is also presented.

  12. Carboxylated Photoswitchable Diarylethenes for Biolabeling and Super-Resolution RESOLFT Microscopy.

    Science.gov (United States)

    Roubinet, Benoît; Bossi, Mariano L; Alt, Philipp; Leutenegger, Marcel; Shojaei, Heydar; Schnorrenberg, Sebastian; Nizamov, Shamil; Irie, Masahiro; Belov, Vladimir N; Hell, Stefan W

    2016-12-05

    Reversibly photoswitchable 1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes (EBT) having fluorescent "closed" forms were decorated with four or eight carboxylic groups and attached to antibodies. Low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and good photophysical properties were demonstrated. Alternating light pulses of UV and blue light induce numerous reversible photochemical transformations between two stables states with distinct structures. Using relatively low light intensities, EBTs were applied in biology-related super-resolution microscopy based on the reversible saturable (switchable) optical linear fluorescence transitions (RESOLFT) and demonstrated optical resolution of 75 nm.

  13. Explosive Super-eruptions: Problems and Prejudices

    Science.gov (United States)

    Self, S.

    2010-12-01

    A super-eruption is defined as one with a magma yield > 10^15 kg (magnitude (M) 8). The term has mainly been applied to large-scale, caldera and ignimbrite-forming explosive eruptions, but it can be applied to all eruptions that released > 10^15 kg of magma. For effusive volcanism, evidence suggests that individual eruptions of this size ( > ~ 370 km^3 of typical basalt or > 450 km^3 of rhyolite flood lava) arise only during periods of LIP formation. The super-eruption concept raises interesting questions about genesis and storage of magmas that feed these vast events. Deposits of major explosive eruptions are Plinian fallout, ignimbrite sheets, and co-ignimbrite ash fall. Based on earlier suggestions and evidence, widespread outflow ignimbrite (O), co-ignimbrite ash (A), and inter-caldera ignimbrite (I) are all major components of the total super-eruption deposit and may tend towards being subequal. In super-eruption deposits, the reported volume of vent-derived Plinian eruption column fallout is often a minor component of the total volume, yet in several cases (Oruanui, Taupo, 26 ka ago, M 8.1; Bishop Tuff, 760 ka, M 8.2; Bandelier (Otowi) Tuff, 1.6 Ma, M8) it is now recognized that vent-derived columns persisted for most of the eruption. Thus, distally, the ash-fall derived from co-ignimbrite ash clouds may be mixed with contemporaneous fallout from a vertical column. Some major ignimbrites have no reported associated Plinian deposit; the huge Young Toba Tuff (YTT, 74 ka, M 8.8) is a significant example. However, the very widespread Toba ash-fall deposit constitutes ~ 40 % of the total mass of magma erupted and is presumed to be co-ignimbrite. Timing of the onset of column collapse probably controls whether a recognizable Plinian deposit is laid down. All super-eruptions probably produce extensive fallout deposits, and this is generally of vent-derived and pyroclastic-flow-derived origin. Establishing the relationships between large-scale ignimbrites and their

  14. On super edge-graceful trees of diameter four

    CERN Document Server

    Krop, E; Raridan, C

    2011-01-01

    In "On the super edge graceful trees of even orders," Chung, Lee, Gao, and Schaffer posed the following problem: Characterize trees of diameter 4 which are super edge-graceful. In this paper, we provide super edge-graceful labelings for all caterpillars and even size lobsters of diameter 4 which permit such labelings. We also provide super edge-graceful labelings for several families of odd size lobsters of diameter 4.

  15. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-02-17

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  16. Super-resolution imaging strategies for cell biologists using a spinning disk microscope.

    Science.gov (United States)

    Hosny, Neveen A; Song, Mingying; Connelly, John T; Ameer-Beg, Simon; Knight, Martin M; Wheeler, Ann P

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.

  17. Super-resolution imaging strategies for cell biologists using a spinning disk microscope.

    Directory of Open Access Journals (Sweden)

    Neveen A Hosny

    Full Text Available In this study we use a spinning disk confocal microscope (SD to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM/Stochastic Optical Reconstruction Microscopy (STORM methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging.

  18. Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope

    Science.gov (United States)

    Hosny, Neveen A.; Song, Mingying; Connelly, John T.; Ameer-Beg, Simon; Knight, Martin M.; Wheeler, Ann P.

    2013-01-01

    In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging. PMID:24130668

  19. Observation of slant column NO2 using the super-zoom mode of AURA-OMI

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-09-01

    Full Text Available We retrieve slant column NO2 from the super-zoom mode of the Ozone Monitoring Instrument (OMI to explore its utility for understanding NOx emissions and variability. Slant column NO2 is operationally retrieved from OMI (Boersma et al., 2007; Bucsela et al., 2006 with a nadir footprint of 13 × 24 km2, the result of averaging eight detector elements on board the instrument. For 85 orbits in late 2004, OMI reported observations from individual "super-zoom" detector elements (spaced at 13 × 3 km2 at nadir. We assess the spatial response of these individual detector elements in-flight and determine an upper-bound on spatial resolution of 9 km, in good agreement with on-ground calibration (7 km FWHM. We determine the precision of the super-zoom mode to be 2.1 × 1015 molecules cm−2, approximately a factor of √8 lower than an identical retrieval at operational scale as expected if random noise dominates the uncertainty. We retrieve slant column NO2 over the Satpura power plant in India; Seoul, South Korea; Dubai, United Arab Emirates; and a set of large point sources on the Rihand Reservoir in India using differential optical absorption spectroscopy (DOAS. Over these sources, the super-zoom mode of OMI observes variation in slant column NO2 of up to 30 × the instrumental precision within one operational footprint.

  20. Synthesis and Characterization of Aminopropyl-HMS Silica by a Neutral Amine Assembly Route%氨丙基官能化HMS介孔分子筛的合成及表征

    Institute of Scientific and Technical Information of China (English)

    王奂玲; 赵睿; 闫亮; 丁勇; 索继栓

    2006-01-01

    沿S0I0路径,以十六胺为模板剂,以3-氨丙基三乙氧基硅烷为有机硅源,通过与TEOS共水解沉淀合成了氨丙基官能化HMS介孔分子筛.采用粉末X-射线衍射分析、N2吸/脱附、扫描电镜分析、高分辨透射电镜分析、傅立叶变换红外分析以及元素分析等表征手段,对所合成的材料进行表征.氨丙基官能化HMS介孔分子筛具有worm-like孔道结构,且较为均一的孔径分布.研究了前体硅源中3-氨丙基三乙氧基硅烷含量的变化对氨丙基官能化HMS介孔分子筛的相结构及织构性能的影响.傅立叶变换红外分析表明,NH2-CH2-CH2-CH2有机基团分布在杂化HMS介孔孔道中.%Aminopropyl-incorporated HMS silica materials were synthesized by a" one-pot" co-condensa-tion from tetraethylorthosilicate (TEOS) and aminopropyltriethoxysilane (APTES) using hexadecylamineas the structure-directing species via the" S0I0" route. The synthesized materials were characterized bymeans of X-ray diffraction, N2 adsorption, SEM, HRTEM, FT-IR, and element analysis. Mesoporousphases with worm-like channels as well as uniform pores can be prepared via the" S0I0" route. The vari-ations of the phase structure and texture properties with the content of APTES were studied. FT-IR analy-sis revealed that the aminopropyl group remains intact in the channels of the hybrid HMS silicas.

  1. Highlights of the optical highlighter fluorescent proteins.

    Science.gov (United States)

    Patterson, G H

    2011-07-01

    The development of super-resolution microscopy techniques using molecular localization, such as photoactivated localization microscopy, fluorescence photoactivated localization microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy with independent running acquisition and many others, has heightened interest in molecules that will be grouped here into a category referred to as 'optical highlighter' fluorescent proteins. This review will survey many of the advances in development of fluorescent proteins for optically highlighting sub-populations of fluorescently labelled molecules.

  2. Arrayed Waveguide Gratings and Their Application Using Super-High-Δ Silica-Based Planar Lightwave Circuit Technology

    Science.gov (United States)

    Maru, Koichi; Uetsuka, Hisato

    This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.

  3. The structure of the super-W∞(λ) algebra

    NARCIS (Netherlands)

    Bergshoeff, E.; Wit, B. de; Vasiliev, M.

    1991-01-01

    We give a comprehensive treatment of the super-W∞(λ) algebra, an extension of the super-Virasoro algebra that contains generators of spin s ≥ ½. The parameter λ defines the embedding of the Virasoro subalgebra. We describe how to obtain the super-W∞(λ) algebra from the associative algebra of

  4. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

    Science.gov (United States)

    Moerner, W E William E

    2015-07-06

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

  5. Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy*

    Science.gov (United States)

    Moerner, W. E. William E.

    2015-10-01

    The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 1990s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room-temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts as a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and selected current developments are summarized.

  6. Super ready: how a regional approach to Super Bowl EMS paid off.

    Science.gov (United States)

    Clancy, Terry; Cortacans, Henry P

    2014-07-01

    The Super Bowl and its associated activities represent one of the largest special events in the world. Super Bowl XLVIII was geographically unique because the NFL's and Super Bowl Host Committee's activities, venues and events encompassed two states and fell across numerous jurisdictions within six counties (Bergen, Hudson, Morris, Essex, Middlesex, and Manhattan).This Super Bowl was the first to do this. EMS was one of the largest operational components during this event. Last and most important, it is the people and relationships that make any planning initiative and event a success. Sit down and have a cup a coffee with your colleagues, partners and neighbors in and out of state to discuss your planning initiatives. Do it early-it will make your efforts less painful should an event of this magnitude come to a city near you!

  7. Acoustic Design of Super-light Structures

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas

    aggregate (leca) along with a newly developed technology called pearl-chain reinforcement, which is a system for post-tensioning. Here, it is shown how to combine these technologies within a precast super-light slab element, while honoring the requirements of a holistic design. Acoustic experiments...

  8. Folded shapes with Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    2012-01-01

    The use of folded shapes in structures has become more common, but it still costs problems because of construction issues and bending moments. The present paper deals with how the newly patented structural concept Super-Light structures (SLS) can be used to create folded shapes. SLS gives lighter...

  9. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms. Limita

  10. Conformal anomaly of super Wilson loop

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2012-09-11

    Classically supersymmetric Wilson loop on a null polygonal contour possesses all symmetries required to match it onto non-MHV amplitudes in maximally supersymmetric Yang-Mills theory. However, to define it quantum mechanically, one is forced to regularize it since perturbative loop diagrams are not well defined due to presence of ultraviolet divergences stemming from integration in the vicinity of the cusps. A regularization that is adopted by practitioners by allowing one to use spinor helicity formalism, on the one hand, and systematically go to higher orders of perturbation theory is based on a version of dimensional regularization, known as Four-Dimensional Helicity scheme. Recently it was demonstrated that its use for the super Wilson loop at one loop breaks both conformal symmetry and Poincare supersymmetry. Presently, we exhibit the origin for these effects and demonstrate how one can undo this breaking. The phenomenon is alike the one emerging in renormalization group mixing of conformal operators in conformal theories when one uses dimensional regularization. The rotation matrix to the diagonal basis is found by means of computing the anomaly in the Ward identity for the conformal boost. Presently, we apply this ideology to the super Wilson loop. We compute the one-loop conformal anomaly for the super Wilson loop and find that the anomaly depends on its Grassmann coordinates. By subtracting this anomalous contribution from the super Wilson loop we restore its interpretation as a dual description for reduced non-MHV amplitudes which are expressed in terms of superconformal invariants.

  11. Super-Kamiokande worth full restoration

    CERN Multimedia

    Mishima, I

    2002-01-01

    While prospects are good that the SuperKamiokande facility will be partially repaired after an accident last November, the government has yet to confirm whether it will spend the estimated 2.5 billion yen needed for a full-scale restoration (1 page).

  12. Structural optimization of super-repellent surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    Micro-patterning is an effective way to achieve surfaces with extreme liquid repellency. This technique does not rely on chemical coatings and is therefore a promising concept for application in food processing and bio-compatibile coatings. This super-repellent behaviour is obtained by suspending...

  13. Facile preparation of super durable superhydrophobic materials.

    Science.gov (United States)

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Pavement behaviour under the super single tyre

    CSIR Research Space (South Africa)

    Viljoen, AW

    1982-06-01

    Full Text Available Pavement behaviour under the super single tyre (SST) was investigated and compared with that under a conventional dual tyre (CDT). Contact areas and contact pressures over a range of loading conditions were measured and compared. Two approaches were...

  15. Typhoon effects on super-tall buildings

    Science.gov (United States)

    Li, Q. S.; Xiao, Y. Q.; Wu, J. R.; Fu, J. Y.; Li, Z. N.

    2008-06-01

    Full-scale measurement is considered to be the most reliable method for evaluating wind effects on buildings and structures. This paper presents selected results of wind characteristics and structural responses measured from four super-tall buildings, The Center (350 m high, 79 floors) in Hong Kong, Di Wang Tower (384 m high, 78 floors) in Shenzhen, CITIC Plaza Tower (391 m high, 80 floors) in Guangzhou and Jin Mao Building (421 m high, 88 floors) in Shanghai, during the passages of three typhoons. The field data such as wind speed, wind direction and acceleration responses, etc., were continuously measured from the super-tall buildings during the typhoons. Detailed analysis of the field data was conducted to investigate the characteristics of typhoon-generated wind and wind-induced vibrations of these super-tall buildings under typhoon conditions. The dynamic characteristics of the tall buildings were determined from the field measurements and comparisons with those calculated from the finite element (FE) models of the structures were made. Furthermore, the full-scale measurements were compared with wind tunnel results to evaluate the accuracy of the model test results and the adequacy of the techniques used in the wind tunnel tests. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing super-tall buildings.

  16. Searching for Frozen Super Earth via Microlensing

    Science.gov (United States)

    Batista, V.; Beaulieu, J. P.; Cassan, A.; Coutures, C.; Donatowicz, J.; Fouqué, P.; Kubas, D.; Marquette, J. B.

    2009-04-01

    Microlensing planet hunt is a unique method to probe efficiently for frozen Super Earth orbiting the most common stars of our galaxy. It is nicely complementing the parameter space probed by very high accuracy radial velocity measurements and future space based detections of low mass transiting planets. In order to maximize the planet catch, the microlensing community is engaged in a total cooperation among the different groups (OGLE, MicroFUN, MOA, PLANET/RoboNET) by making the real time data available, and mutual informing/reporting about modeling efforts. Eight planets have been published so far by combinations of the different groups, 4 Jovian analogues, one Neptune and two Super Earth. Given the microlensing detection efficiency, it suggests that these Neptunes/Super Earths may be quite common. Using networks of dedicated 1-2m class telescopes, the microlensing community has entered a new phase of planet discoveries, and will be able to provide constraints on the abundance of frozen Super-Earths in the near future. Statistics about Mars to Earth mass planets, extending to the habitable zone will be achieved with space based wide field imagers (EUCLID) at the horizon 2017.

  17. Folded shapes with Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas; Hertz, Kristian Dahl

    2012-01-01

    The use of folded shapes in structures has become more common, but it still costs problems because of construction issues and bending moments. The present paper deals with how the newly patented structural concept Super-Light structures (SLS) can be used to create folded shapes. SLS gives lighter...

  18. Advantages of super-light structures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2009-01-01

    Super-light structures with pearl-chain reinforcement is a new revolutionary technology that opens possibilities of building load-bearing structures much cheaper and with several other advantages compared to traditional constructions of concrete and steel. Some benefits are: 1 Half price or less. 2...

  19. Super-resolution near field imaging device

    DEFF Research Database (Denmark)

    2014-01-01

    Super-resolution imaging device comprising at least a first and a second elongated coupling element, each having a first transverse dimension at a first end and a second transverse dimension at a second end and being adapted for guiding light between their respective first and second ends, each...

  20. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  1. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  2. Properties of Super-Poisson Processes and Super-Random Walks with Spatially Dependent Branching Rates

    Institute of Scientific and Technical Information of China (English)

    Yan Xia REN

    2008-01-01

    The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.

  3. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  4. A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure

    Science.gov (United States)

    Han, Jingwei; Yu, Jing

    2017-03-01

    Starting from a 3 × 3 matrix-valued spectral problem associated with a Lie superalgebra sl(2|1), a generalized super Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy is derived. The resulting super AKNS hierarchy has a super bi-Hamiltonian structure by the supertrace identity.

  5. Super SI燃烧方式试验研究%Super SI Combustion Mode

    Institute of Scientific and Technical Information of China (English)

    沈义涛; 吕世亮; 尹琪; 杨嘉林; 高卫民

    2011-01-01

    The super spark ignition (Super SI) combustion mode, which was the ignition combustion of lean mixture at the temperature of close spontaneous combustion, was researched and its combustion characteristic and feasibility were analyzed.The results indicate that the increase of intake temperature can reduce the cyclic variation of Pmi obviously, shorten the combustion duration and extend the lean limit of SI combustion under the condition of lean mixture. Accordingly, Super SI combustion has the advantages of high thermal efficiency and controllable combustion process.%研究了Super Spark Ignition(Super SI)燃烧方式,即稀薄混合气在近自燃温度状态下点燃燃烧,分析了这种燃烧方式的可行性和燃烧特性.研究结果表明,混合气稀薄时提高发动机的进气温度可显著降低平均指示压力(pmi)的循环波动,缩短燃烧持续期,拓展点燃燃烧的稀薄极限;Super SI燃烧方式具有热效率高、燃烧过程可控的优点.

  6. The Solution Construction of Heterotic Super-Liouville Model

    Institute of Scientific and Technical Information of China (English)

    YANG Zhan-Ying; ZHEN Yi

    2001-01-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liou ville model, we obtain the conserved current and conserved charge which possessed the BR ST properties.

  7. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W.; Farahi, Navid; Astratov, Vasily N. [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, NC, 28223-0001 (United States); Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH (United States); Li, Yangcheng [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, NC, 28223-0001 (United States); Limberopoulos, Nicholaos I.; Walker, Dennis E. Jr. [Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH (United States); Urbas, Augustine M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright Patterson AFB, OH (United States); Liberman, Vladimir [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-08-15

    Microsphere-assisted imaging has emerged as an extraordinary simple technique of obtaining optical super-resolution. This work addresses two central problems in developing this technology: (i) methodology of the resolution measurements and (ii) limited field-of-view provided by each sphere. It is suggested that a standard method of resolution analysis in far-field microscopy based on convolution with the point-spread function can be extended into the super-resolution area. This allows developing a unified approach to resolution measurements, which can be used for comparing results obtained by different techniques. To develop the surface scanning functionality, the high-index (n ∝ 2) barium titanate glass microspheres were embedded in polydimethylsiloxane (PDMS) thin-films. It is shown that such films adhere to the surface of nanoplasmonic structures so that the tips of embedded spheres experience the objects' optical near-fields. Based on rigorous criteria, the resolution ∝λ/6-λ/7 (where λ is the illumination wavelength) is demonstrated for arrays of Au dimers and bowties. Such films can be translated along the surface of investigated samples after liquid lubrication. It is shown that just after lubrication the resolution is diffraction limited, however the super-resolution gradually recovers as the lubricant evaporates. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  9. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  10. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    CERN Document Server

    Vaisanen, P; Escala, A; Kankare, E; Kniazev, A; Kotilainen, J K; Mattila, S; Ramphul, R; Ryder, S; Tekola, A

    2014-01-01

    We present recent results from an adaptive optics imaging survey of 40 Luminous IR Galaxies (LIRGs) searching for obscured core collapse supernovae and studying the galaxies themselves. Here, in particular, we discuss the Super Star Clusters (SSC) populations in the LIRGs. We have constructed the first statistically significant samples of Luminosity Functions (LF) of SSCs in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates (SFR) of the hosts. The relation is similar, though somewhat steeper than that found in the optical and at lower SFR levels, suggesting systematic extinction and/or age effects. We find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. In p...

  11. Super-Acceleration in the Flaring Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, Marco, E-mail: marco.tavani@inaf.it

    2013-10-15

    The Crab Nebula continues to surprise us. The Crab system (energized by a very powerful pulsar at the center of the Supernova Remnant SN1054) is known to be a very efficient particle “accelerator” which can reach PeV energies. Today, new surprising data concerning the gamma-ray flares produced by the Crab Nebula challenge models of particle acceleration. The total energy flux from the Crab has been considered for many decades substantially stable at X-ray and gamma-ray energies. However, this paradigm was shattered by the AGILE discovery and Fermi confirmation in September 2010 of transient gamma-ray emission from the Crab. Indeed, we can state that four major flaring gamma-ray episodes have been detected by AGILE and Fermi during the period mid-2007/2012. During these events, transient particle acceleration occurs in a regime which apparently violates the MHD conditions and synchrotron cooling constraints. This fact justifies calling “super-acceleration” the mechanism which produces the “flaring Crab phenomenon”. Radiation between 50 MeV and a few GeV is emitted with a quite hard spectrum within a short timescale (hours-days), with no obvious relation with simultaneous optical and X-ray emissions in the inner Nebula. “Super-acceleration” implies overcoming synchrotron cooling by strong (and “parallel”) electric fields most likely produced by magnetic field reconnection within the pulsar wind outflow. This acceleration appears to be very efficient and, remarkably, limited by radiation reaction. It is not clear at the moment where in the Nebula this phenomenon occurs. An intense observational program is now focused on the Crab Nebula to resolve its most challenging mystery.

  12. Analytical SuperSTEM for extraterrestrial materials research

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J P; Dai, Z R

    2009-09-08

    Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

  13. The SuperCOSMOS all-sky galaxy catalogue

    Science.gov (United States)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  14. Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems

    CERN Document Server

    Auerbach, Naftali

    2011-01-01

    The phenomenon of super-radiance (Dicke effect, coherent spontaneous radiation by a gas of atoms coupled through the common radiation field) is well known in quantum optics. The review discusses similar physics that emerges in open and marginally stable quantum many-body systems. In the presence of open decay channels, the intrinsic states are coupled through the continuum. At sufficiently strong continuum coupling, the spectrum of resonances undergoes the restructuring with segregation of very broad super-radiant states and trapping of remaining long-lived compound states. The appropriate formalism describing this phenomenon is based on the Feshbach projection method and effective non-Hermitian Hamiltonian. A broader generalization is related to the idea of doorway states connecting quantum states of different structure. The method is explained in detail and the examples of applications are given to nuclear, atomic and particle physics. The interrelation of the collective dynamics through continuum and possi...

  15. Simultaneous multicolor detection of RNA and proteins using super-resolution microscopy.

    Science.gov (United States)

    Mito, Mari; Kawaguchi, Tetsuya; Hirose, Tetsuro; Nakagawa, Shinichi

    2016-04-01

    A number of non-membranous cellular bodies have been identified in higher eukaryotes, and these bodies contain a specific set of proteins and RNAs that are used to fulfill their functions. The size of these RNA-containing cellular bodies is usually on a submicron scale, making it difficult to observe fine structures using optical microscopy due to the diffraction limitation of visible light. Recently, microscope companies have released super-resolution microscopes that were developed using different principles, enabling the observation of sub-micron structures not resolvable in conventional fluorescent microscopy. Here, we describe multi-color fluorescent in situ hybridization techniques optimized for the simultaneous detection of RNA and proteins using super-resolution microscopy, namely structured illumination microscopy (SIM).

  16. From single-molecule spectroscopy to super-resolution imaging of the neuron: a review

    Science.gov (United States)

    Laine, Romain F.; Kaminski Schierle, Gabriele S.; van de Linde, Sebastian; Kaminski, Clemens F.

    2016-06-01

    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.

  17. Super-resolution Analysis of TCR-Dependent Signaling: Single-Molecule Localization Microscopy.

    Science.gov (United States)

    Barr, Valarie A; Yi, Jason; Samelson, Lawrence E

    2017-01-01

    Single-molecule localization microscopy (SMLM) comprises methods that produce super-resolution images from molecular locations of single molecules. These techniques mathematically determine the center of a diffraction-limited spot produced by a fluorescent molecule, which represents the most likely location of the molecule. Only a small cohort of well-separated molecules is visualized in a single image, and then many images are obtained from a single sample. The localizations from all the images are combined to produce a super-resolution picture of the sample. Here we describe the application of two methods, photoactivation localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM), to the study of signaling microclusters in T cells.

  18. Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions

    CERN Document Server

    Deschout, Hendrik; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenging task for super-resolution microscopy. We have addressed this important issue by combining photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed cell focal adhesion images, we investigated the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework was used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualized the dynamics of focal adhesions, and revealed local mean velocities around 190 nm per minute. The complementarity of PALM and SOFI was assessed in detail with a methodology that integrates a quantitative resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of m...

  19. Fourier ring correlation as a resolution criterion for super-resolution microscopy.

    Science.gov (United States)

    Banterle, Niccolò; Bui, Khanh Huy; Lemke, Edward A; Beck, Martin

    2013-09-01

    Optical nanoscopy techniques using localization based image reconstruction, also termed super-resolution microscopy (SRM), have become a standard tool to bypass the diffraction limit in fluorescence light microscopy. The localization precision measured for the detected fluorophores is commonly used to describe the maximal attainable resolution. However, this measure takes not all experimental factors, which impact onto the finally achieved resolution, into account. Several other methods to measure the resolution of super-resolved images were previously suggested, typically relying on intrinsic standards, such as molecular rulers, or on a priori knowledge about the specimen, e.g. its spatial frequency content. Here we show that Fourier ring correlation provides an easy-to-use, laboratory consistent standard for measuring the resolution of SRM images. We provide a freely available software tool that combines resolution measurement with image reconstruction.

  20. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    Science.gov (United States)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  1. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    Science.gov (United States)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  2. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  3. A large-scale lithography-free metasurface with spectrally tunable super absorption.

    Science.gov (United States)

    Liu, Kai; Zeng, Xie; Jiang, Suhua; Ji, Dengxin; Song, Haomin; Zhang, Nan; Gan, Qiaoqiang

    2014-06-07

    Recently, periodically patterned metasurfaces have been employed to realize on-chip super/near-perfect optical absorption. However, most reported meta-absorbers rely on top-down micro/nano-lithography, which imposed a serious cost barrier on the development of practical applications, especially in the visible-infrared (IR) domain and at very large scales. Here we report a simple method to manufacture super absorptive metasurfaces using direct sputtering deposition. By controlling the deposition and post thermal treatment conditions, random metallic nanoparticles (NPs) can be formed easily on rigid and flexible substrates to function as the nanoantennas of spectrally tunable meta-absorbers. This low-cost and highly scalable approach would release the manufacturing barrier for previously reported meta-absorbers and therefore enable the development of affordable and large-scale thin-film metamaterial structures and devices.

  4. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.

    Science.gov (United States)

    Tian, Xueli; Guo, Hong; Bhatt, Ketan H; Zhao, Song Q; Wang, Yi; Guo, Junpeng

    2015-10-01

    We experimentally demonstrate a surface plasmon resonance spectrometer sensor by using an e-beam-patterned super-period gold nanodisc grating on a glass substrate. The super-period gold nanodisc grating has a small subwavelength period and a large diffraction grating period. The small subwavelength period enhances localized surface plasmon resonance, and the large diffraction grating period diffracts surface plasmon resonance radiation into different directions corresponding to different wavelengths. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD) in addition to the traditional way of measurement using an external optical spectrometer in the zeroth order transmission. A surface plasmon resonance sensor for the bovine serum albumin protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  5. Sub- and super-luminal light propagation using a Rydberg state

    CERN Document Server

    Bharti, Vineet

    2016-01-01

    We present a theoretical study to investigate sub- and super-luminal light propagation in a rubidium atomic system consisting of a Rydberg state by using density matrix formalism. The analysis is performed in a 4-level vee+ladder system interacting with a weak probe, and strong control and switching fields. The dispersion and absorption profiles are shown for stationary atoms as well as for moving atoms by carrying out Doppler averaging at room temperature. We also present the group index variation with control Rabi frequency and observe that a transparent medium can be switched from sub- to super-luminal propagation in the presence of switching field. Finally, the transient response of the medium is discussed, which shows that the considered 4-level scheme has potential applications in absorptive optical switching.

  6. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations.

    Science.gov (United States)

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M; Pereira, Pedro Matos; Henriques, Ricardo

    2016-08-12

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours.

  7. Formation of super-resolution spot through nonlinear Fabry-Perot cavity structures: theory and simulation.

    Science.gov (United States)

    Wei, Jingsong; Wang, Rui; Yan, Hui; Fan, Yongtao

    2014-04-07

    This study explores how interference manipulation breaks through the diffraction limit and induces super-resolution nano-optical hot spots through the nonlinear Fabry-Perot cavity structure. The theoretical analytical model is established, and the numerical simulation results show that when the thickness of the nonlinear thin film inside the nonlinear Fabry-Perot cavity structure is adjusted to centain value, the constructive interference effect can be formed in the central point of the spot, which causes the nanoscale optical hot spot in the central region to be produced. The simulation results also tell us that the hot spot size is sensitive to nonlinear thin film thickness, and the accuracy is required to be up to nanometer or even subnanometer scale, which is very large challenging for thin film deposition technique, however, slightly changing the incident laser power can compensate for drawbacks of low thickness accuracy of nonlinear thin films. Taking As(2)S(3) as the nonlinear thin film, the central hot spot with a size of 40nm is obtained at suitable nonlinear thin film thickness and incident laser power. The central hot spot size is only about λ/16, which is very useful in super-high density optical recording, nanolithography, and high-resolving optical surface imaging.

  8. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  9. SuperTools Test and Evaluation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mannos, Tom J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mixed Signal ASIC Design

    2017-01-01

    Superconducting electronics (SCE) represents a potential path to efficient exascale computing for HPC and data center applications, but SCE-based circuit design lags far behind its CMOS equivalent. IARPA’s ongoing C3 program and its developing SuperTools program aim to jumpstart SCE R&D with the near-term goal of producing a high-speed, low-energy, 64-bit RISC processor using Josephson Junction based logic cells. SuperTools performers will develop software tools for efficient SCE design and accurate simulation and characterization of JJ-based circuits, which include the RSFQ, RQL, and AQFP logic families. T&E teams from NIST, MIT Lincoln Lab, Berkeley Lab, and Sandia National Labs will evaluate the tools and fabricate test circuits to compare with simulated results. The five-year, three-phase program includes 48 performer deliverables, three annual technical exchange meetings, and annual site visits.

  10. Italian super-eruption larger than thought

    Science.gov (United States)

    Schultz, Colin

    2012-07-01

    Recent research suggested that the super-eruption of the Campi Flegrei caldera volcano in southern Italy about 40,000 years ago may have played a part in wiping out, or forcing the migration of, the Neanderthal and modern human populations in the eastern Mediterranean regions that were covered in ash. Now a new modeling study by Costa et al. suggests that this eruption may have been even larger than previously thought. This Campi Flegrei eruption produced a widespread ash layer known as Campanian Ignimbrite (CI). Using ash thickness measurements collected at 115 sites and a three-dimensional ash dispersal model, the researchers found that the CI super-eruption would have spread 250-300 cubic kilometers of ash across a 3.7-million-square kilometer region—2 to 3 times previous ash volume estimates.

  11. (Super-)renormalizably dressed black holes

    CERN Document Server

    Ayón-Beato, Eloy; Méndez-Zavaleta, Julio A

    2015-01-01

    Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (super-)renormalizable contributions starting from known conformal seeds. We explicitly construct several new examples of these solutions in dimensions $D=3$ and $D=4$, including not only stationary configurations but also time-dependent ones.

  12. Super/subradiant second harmonic generation

    Science.gov (United States)

    Koganov, Gennady A.; Shuker, Reuben

    2017-04-01

    A scheme for active second harmonics generation is suggested. The system comprises N three-level atoms in ladder configuration, situated into a resonant cavity. The system generates the field whose frequency is twice the frequency of the pumping laser, and the field phase is locked to the phase of the pumping field. It is found that the system can lase in either superradiant or subradiant regime, depending on the number of atoms N. When N passes some critical value the transition from the super to subradiance occurs in a phase-transition-like manner. Stability study of the steady state supports this conclusion. For experimental realization of the super/subradiant second harmonics generation we propose semiconductor quantum well structures, superconducting quantum circuits, and evanescently coupled waveguides in which equally spaced levels relevant to this study exist.

  13. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  14. Robust super-resolution without regularization

    Energy Technology Data Exchange (ETDEWEB)

    Pham, T Q [Canon Information Systems Research Australia, 1 Thomas Holt drive, North Ryde, NSW 2113 (Australia); Vliet, L J v [Quantitative Imaging Group, Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Schutte, K [Electro-Optics Group, TNO Defence, Security and Safety, PO Box 96864, 2509 JG The Hague (Netherlands)

    2008-07-15

    Super-resolution restoration is the problem of restoring a high-resolution scene from multiple degraded low-resolution images under motion. Due to imaging blur and noise, this problem is ill-posed. Additional constraints such as smoothness of the solution (i.e. regularization) is often required to obtain a stable solution. While regularizing the cost function is a standard practice in image restoration, we propose a restoration algorithm that does not require this extra regularization term. The robustness of the algorithm is achieved by a robust error norm that does not response to intensity outliers. With the outliers suppressed, our solution behaves similarly to a maximum-likelihood solution under the presence of Gaussian noise. The effectiveness of our algorithm is demonstrated with super-resolution restoration of real infrared image sequences under severe aliasing and intensity outliers.

  15. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  16. Temporal super resolution using variational methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    and intensities are calculated simultaneously in a multiresolution setting. A frame doubling version of our algorithm is implemented and in testing it, we focus on making the motion of high contrast edges to seem smooth and thus reestablish the illusion of motion pictures.......Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...... conversion (where also lower frame rates than recorded is sometimes required). We discuss and detail the requirements imposed by the human visual system (HVS) on TSR algorithms, of which the need for (apparent) fluid motion, also known as the phi-effect, is the principal one. This problem is typically...

  17. Super-pharm的生意经

    Institute of Scientific and Technical Information of China (English)

    韦少雯

    2006-01-01

    Super-pharm,这家可直译为“超级药店”的以色列最大的药品、化妆品及个人护理品零售企业,是由全球排名前几十位的亿万富翁、犹太人Murray Koffler创立的家族企业。

  18. Super Resolution Imaging Applied to Scientific Images

    Science.gov (United States)

    2007-05-01

    investigator, (3) development of Papoulis -Gerchberg method to implement the analytic continuation of spectral details, (4) exploration of contourlet and...off with noise present in the observation. In [30] we make use of Papoulis -Gerchberg algorithm of signal extrapolation to perform Image super...we have used a training database consisting of high resolution images. For Papoulis -Gerchberg method number of iterations and the filter used both

  19. The SuperNova Early Warning System

    OpenAIRE

    Scholberg, K.

    2008-01-01

    A core collapse in the Milky Way will produce an enormous burst of neutrinos in detectors world-wide. Such a burst has the potential to provide an early warning of a supernova's appearance. I will describe the nature of the signal, the sensitivity of current detectors, and SNEWS, the SuperNova Early Warning System, a network designed to alert astronomers as soon as possible after the detected neutrino signal.

  20. (Super-)renormalizably dressed black holes

    OpenAIRE

    Ayón-Beato, Eloy; Hassaïne, Mokhtar; Méndez-Zavaleta, Julio A.

    2015-01-01

    Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (su...

  1. Dating With Super Junior-M

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    担心情人节没人陪?还在幻想能与谁约会?2009年2月14日,梦想照进现实,SJ-M将在上海举办“情人Superman-Super Junior-M 2009上海歌会”,化身你的甜蜜情人,与你一起共度浪漫情人节。

  2. Super-Kamiokande - Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-chou, Hida-city, Gifu 506-1205 (Japan)

    2004-12-15

    We summarize the latest results on the atmospheric and solar neutrinos from Super-Kamiokande. The atmospheric neutrino oscillation analyses with two flavors and with three flavor are discussed and the new results based on the L/E analysis are shown. New solar neutrino results based on the un-binned method is discussed. The current status of SK-II and the future prospects for SK neutrino oscillation experiment are summarized.

  3. The (Super)String Theories' Problems

    CERN Document Server

    Naboulsi, R

    2003-01-01

    (Super)String theories are theoretical ideas that go beyond the standard model of particle and high energy physics and show promise for unifying all forces in nature including the gravitational one. In this unification a prominent role is played by the duality symmetries which relate different theories. I present a review of these developements and discuss their problems and possible impact in low-energy physics. We explain and discuss some ideas concerning string field theories from noncommutative geometry.

  4. T-Duality from super Lie n-algebra cocycles for super p-branes

    CERN Document Server

    Fiorenza, Domenico; Schreiber, Urs

    2016-01-01

    We compute the $L_\\infty$-theoretic dimensional reduction of the F1/D$p$-brane super $L_\\infty$-cocycles with coefficients in rationalized twisted K-theory from the 10d type IIA and type IIB super Lie algebras down to 9d. We show that the two resulting coefficient $L_\\infty$-algebras are naturally related by an $L_\\infty$-isomorphism which we find to act on the super $p$-brane cocycles by the infinitesimal version of the rules of topological T-duality and inducing an isomorphism between $K^0$ and $K^1$, rationally. Moreover, we show that these $L_\\infty$-algebras are the homotopy quotients of the RR-charge coefficients by the "T-duality Lie 2-algebra". We find that the induced $L_\\infty$-extension is a gerby extension of a 9+(1+1) dimensional (i.e. "doubled") T-duality correspondence super-spacetime, which serves as a local model for T-folds. We observe that this still extends, via the D0-brane cocycle of its type IIA factor, to a 10+(1+1)-dimensional super Lie algebra. Finally we observe that this satisfies ...

  5. SuperB Progress Reports - Physics

    CERN Document Server

    O'Leary, B.; Ramon, M.; Pous, E.; De Fazio, F.; Palano, A.; Eigen, G.; Asgeirsson, D.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; Heinemeyer, S.; McElrath, B.; Andreassen, R.; Meadows, B.; Sokoloff, M.; Blanke, M.; Lesiak, T.; Shindou, T.; Ronga, F.; Baldini, W.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Rama, M.; Bossi, F.; Guido, E.; Patrignani, C.; Tosi, S.; Davies, C.; Lunghi, E.; Haisch, U.; Hurth, T.; Westhoff, S.; Crivellin, A.; Hofer, L.; Goto, T.; Brown, David Nathan; Branco, G.C.; Zupan, J.; Herrero, M.; Rodriguez-Sanchez, A.; Simi, G.; Tackmann, F.J.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Lindemann, D.M.; Robertson, S.H.; Duling, B.; Gemmler, K.; Gorbahn, M.; Jager, S.; Paradisi, P.; Straub, D.M.; Bigi, I.; Asner, D.M.; Fast, J.E.; Kouzes, R.T.; Morandin, M.; Rotondo, M.; Ben-Haim, E.; Arnaud, N.; Burmistrov, L.; Kou, E.; Perez, A.; Stocchi, A.; Viaud, B.; Domingo, F.; Piccinini, F.; Manoni, E.; Batignani, G.; Cervelli, A.; Forti, F.; Giorgi, M.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Neri, N.; Walsh, J.; Bevan, A.; Bona, M.; Walker, C.; Weiland, C.; Lenz, A.; Gonzalez-Sprinberg, G.; Faccini, R.; Renga, F.; Polosa, A.; Silvestrini, L.; Virto, J.; Ciuchini, M.; Lubicz, V.; Tarantino, C.; Wilson, F.F.; Carpinelli, M.; Huber, T.; Mannel, T.; Graham, M.; Ratcliff, B.N.; Santoro, V.; Sekula, S.; Shougaev, K.; Soffer, A.; Shimizu, Y.; Gambino, P.; Mussa, R.; Nardecchia, M.; Stal, O.; Bernabeu, J.; Botella, F.; Jung, M.; Lopez March, N.; Martinez Vidal, F.; Oyanguren, A.; Pich, A.; Lozano, M.A.Sanchis; Vidal, J.; Vives, O.; Banerjee, S.; Roney, J.M.; Petrov, A.A.; Flood, K.

    2010-01-01

    SuperB is a high luminosity e+e- collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measure...

  6. Super Marx Generator for Thermonuclear Ignition

    CERN Document Server

    Winterberg, Friedwardt

    2008-01-01

    In ongoing electric pulse power driven inertial confinement fusion experiments, Marx generators are connected in parallel with the target in the center of a ring of the Marx generators. There the currents, not the voltages add up. Instead of connecting a bank of Marx generator in parallel, one may connect them in series, adding up their voltages, not the currents. If, for example, fifty 20 MV Marx generators are connected in series, they would add up to a gigavolt. But to prevent breakdown, the adding up of the voltages in such a super-Marx generator must be fast. For this reason, it is proposed that each of the Marx generators charges up a fast discharge capacitor, with the thusly charged fast capacitors becoming the elements of a second stage super Marx generator. In a super Marx generator, the Marx generators also assume the role of the resistors in the original Marx circuit. With a voltage of 10^9 Volt and a discharge current of 10^7 Ampere, the generation of a 10^16 Watt GeV proton beam becomes possible,...

  7. The SuperNEMO tracking detector

    CERN Document Server

    Cascella, M

    2015-01-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory on the French-Italian border. This decay mode, if observed, would be proof that the neutrino is its own antiparticle, would constitute evidence for total lepton number violation, and could allow a measurement of the absolute neutrino mass. The SuperNEMO experiment is designed to reach a half-life sensitivity of $10^{26}$ years corresponding to an effective Majorana neutrino mass of $50-100~$meV. The SuperNEMO detector design allows complete topological reconstruction of the double beta decay event enabling excellent levels of background rejection. In the event of a discovery, such topological measurements will be vital in determining the nature of the lepton number violating process. This reconstruction will be performed by a gaseous tracking detector, consisting of 2034 drift cells per module operated in Geiger mode. The tracker of the Demonstrator Module is currently under construction in the UK. This ...

  8. SuperB Technical Design Report

    CERN Document Server

    Baszczyk, M; Kolodziej, J; Kucewicz, W; Sapor, M; Jeremie, A; Pous, E Grauges; Bruno, G E; De Robertis, G; Diacono, D; Donvito, G; Fusco, P; Gargano, F; Giordano, F; Loddo, F; Loparco, F; Maggi, G P; Manzari, V; Mazziotta, M N; Nappi, E; Palano, A; Santeramo, B; Sgura, I; Silvestris, L; Spinoso, V; Eigen, G; Zalieckas, J; Zhuo, Z; Jenkovszky, L; Balbi, G; Boldini, M; Bonacorsi, D; Cafaro, V; D'Antone, I; Dallavalle, G M; Di Sipio, R; Fabbri, F; Fabbri, L; Gabrielli, A; Galli, D; Giacomelli, P; Giordano, V; Giorgi, F M; Grandi, C; Lax, I; Meo, S Lo; Marconi, U; Montanari, A; Pellegrini, G; Piccinini, M; Rovelli, T; Cesari, N Semprini; Torromeo, G; Tosi, N; Travaglini, R; Vagnoni, V M; Valentinetti, S; Villa, M; Zoccoli, A; Caron, J -F; Hearty, C; Lu, P F -T; Mattison, T S; McKenna, J A; So, R Y -C; Barnyakov, M Yu; Blinov, V E; Botov, A A; Druzhinin, V P; Golubev, V B; Kononov, S A; Kravchenko, E A; Levichev, E B; Onuchin, A P; Serednyakov, S I; Shtol, D A; Skovpen, Y I; Solodov, E P; Cardini, A; Carpinelli, M; Chao, D S -T; Cheng, C H; Doll, D A; Echenard, B; Flood, K; Hanson, J; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Zhu, R Y; Randazzo, N; Burelo, E De La Cruz; Zheng, Y; Campos, P; De Silva, M; Kathirgamaraju, A; Meadows, B; Pushpawela, B; Shi, Y; Sokoloff, M; Castro, G Lopez; Ciaschini, V; Franchini, P; Giacomini, F; Paolini, A; Polania, G A Calderon; Laczek, S; Romanowicz, P; Szybinski, B; Czuchry, M; Flis, L; Harezlak, D; Kocot, J; Radecki, M; Sterzel, M; Szepieniec, T; Szymocha, T; Wójcik, P; Andreotti, M; Baldini, W; Calabrese, R; Carassiti, V; Cibinetto, G; Ramusino, A Cotta; Evangelisti, F; Gianoli, A; Luppi, E; Malaguti, R; Manzali, M; Melchiorri, M; Munerato, M; Padoan, C; Santoro, V; Tomassetti, L; Beretta, M M; Biagini, M; Boscolo, M; Capitolo, E; de Sangro, R; Esposito, M; Felici, G; Finocchiaro, G; Gatta, M; Gatti, C; Guiducci, S; Lauciani, S; Patteri, P; Peruzzi, I; Piccolo, M; Raimondi, P; Rama, M; Sanelli, C; Tomassini, S; Fabbricatore, P; Delepine, D; Santos, M A Reyes; Chrzaszcz, M; Grzymkowski, R; Knap, P; Kotula, J; Lesiak, T; Ludwin, J; Michalowski, J; Pawlik, B; Rachwal, B; Stodulski, M; Wiechczynski, J; Witek, M; Zawiejski, L; Zdybal, M; Aushev, V Y; Ustynov, A; Arnaud, N; Bambade, P; Beigbeder, C; Bogard, F; Borsato, M; Breton, D; Brossard, J; Burmistrov, L; Charlet, D; Chaumat, V; Dadoun, O; Berni, M El; Maalmi, J; Puill, V; Rimbault, C; Stocchi, A; Tocut, V; Variola, A; Wallon, S; Wormser, G; Grancagnolo, F; Ben-Haim, E; Sitt, S; Baylac, M; Bourrion, O; Deconto, J -M; Martinez, Y Gomez; Monseu, N; Muraz, J -F; Real, J -S; Vescovi, C; Cenci, R; Jawahery, A; Roberts, D; Twedt, E W; Cheaib, R; Lindemann, D; Nderitu, S; Patel, P; Robertson, S H; Swersky, D; Warburton, A; Flores, E Cuautle; Sanchez, G Toledo; Biassoni, P; Bombelli, L; Citterio, M; Coelli, S; Fiorini, C; Liberali, V; Monti, M; Nasri, B; Neri, N; Palombo, F; Sabatini, F; Stabile, A; Berra, A; Giachero, A; Gotti, C; Lietti, D; Maino, M; Pessina, G; Prest, M; Martin, J -P; Simard, M; Starinski, N; Taras, P; Drutskoy, A; Makarychev, S; Nefediev, A V; Aloisio, A; Cavaliere, S; De Nardo, G; Della Pietra, M; Doria, A; Giordano, R; Ordine, A; Pardi, S; Russo, G; Sciacca, C; Bigi, I I; Jessop, C P; Wang, W; Bellato, M; Benettoni, M; Corvo, M; Crescente, A; Corso, F Dal; Dosselli, U; Fanin, C; Gianelle, A; Longo, S; Michelotto, M; Montecassiano, F; Morandin, M; Pengo, R; Posocco, M; Rotondo, M; Simi, G; Stroili, R; Gaioni, L; Manazza, A; Manghisoni, M; Ratti, L; Re, V; Traversi, G; Zucca, S; Bizzaglia, S; Bizzarri, M; Cecchi, C; Germani, S; Lebeau, M; Lubrano, P; Manoni, E; Papi, A; Rossi, A; Scolieri, G; Batignani, G; Bettarini, S; Casarosa, G; Cervelli, A; Fella, A; Forti, F; Giorgi, M; Lilli, L; Lusiani, A; Oberhof, B; Paladino, A; Pantaleo, F; Paoloni, E; Perez, A L Perez; Rizzo, G; Walsh, J; Téllez, A Fernández; Beck, G; Berman, M; Bevan, A; Gannaway, F; Inguglia, G; Martin, A J; Morris, J; Bocci, V; Capodiferro, M; Chiodi, G; Dafinei, I; Drenska, N V; Faccini, R; Ferroni, F; Gargiulo, C; Gauzzi, P; Luci, C; Lunadei, R; Martellotti, G; Pellegrino, F; Pettinacci, V; Pinci, D; Recchia, L; Ruggeri, D; Zullo, A; Camarri, P; Cardarelli, R; De Santis, C; Di Ciaccio, A; Di Felice, V; Di Palma, F; Di Simone, A; Marcelli, L; Messi, R; Moricciani, D; Sparvoli, R; Tammaro, S; Branchini, P; Budano, A; Bussino, S; Ciuchini, M; Nguyen, F; Passeri, A; Ruggieri, F; Spiriti, E; Wilson, F; Monzon, I Leon; Millan-Almaraz, J R; Podesta-Lerma, P L M; Aston, D; Dey, B; Fisher, A; Jackson, P D; Leith, D W G S; Luitz, S; MacFarlane, D; McCulloch, M; Metcalfe, S; Novokhatski, A; Osier, S; Prepost, R; Ratcliff, B; Seeman, J; Sullivan, M; Va'vra, J; Wienands, U; Wisniewski, W; Altschul, B D; Purohit, M V; Baudot, J; Ripp-Baudot, I; Cirrone, G A P; Cuttone, G; Bezshyyko, O; Dolinska, G; Soffer, A; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Marcello, S; Bomben, M; Bosisio, L; Cristaudo, P; Lanceri, L; Liberti, B; Rashevskaya, I; Stella, C; Vallazza, E S; Vitale, L; Auriemma, G; Satriano, C; Vidal, F Martinez; de Cos, J Mazorra; Oyanguren, A; Valls, P Ruiz; Beaulieu, A; Dejong, S; Franta, J; Lewczuk, M J; Roney, M; Sobie, R

    2013-01-01

    In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic ...

  9. Predicting the occurrence of super-storms

    Directory of Open Access Journals (Sweden)

    N. Srivastava

    2005-11-01

    Full Text Available A comparative study of five super-storms (Dst<-300 nT of the current solar cycle after the launch of SoHO, to identify solar and interplanetary variables that influence the magnitude of resulting geomagnetic storms, is described. Amongst solar variables, the initial speed of a CME is considered the most reliable predictor of the strength of the associated geomagnetic storm because fast mass ejections are responsible for building up the ram pressure at the Earth's magnetosphere. However, although most of the super-storms studied were associated with high speed CMEs, the Dst index of the resulting geomagnetic storms varied between -300 to -472 nT. The most intense storm of 20 November 2003, (Dst ~ -472 nT had its source in a comparatively smaller active region and was associated with a relatively weaker, M-class flare while all other super-storms had their origins in large active regions and were associated with strong X-class flares. However, this superstorm did not show any associated extraordinary solar and interplanetary characteristics. The study also reveals the challenge in the reliable prediction of the magnitude of a geomagnetic storm from solar and interplanetary variables.

  10. Super-Resolution Imaging at Mid-Infrared Waveband in Graphene-nanocavity formed on meta-surface

    Science.gov (United States)

    Yang, Jingzhong; Wang, Taisheng; Chen, Zuolong; Hu, Bingliang; Yu, Weixing

    2016-11-01

    Plasmonic structured illumination microscopy (PSIM) is one of the promising wide filed optical imaging methods, which takes advantage of the surface plasmons to break the optical diffraction limit and thus to achieve a super-resolution optical image. To further improve the imaging resolution of PSIM, we propose in this work a so called graphene nanocavity on meta-surface structure (GNMS) to excite graphene surface plasmons with a deep sub-wavelength at mid-infrared waveband. It is found that surface plasmonic interference pattern with a period of around 52 nm can be achieved in graphene nanocavity formed on structured meta-surface for a 7 μm wavelength incident light. Moreover, the periodic plasmonic interference pattern can be tuned by simply changing the nanostructures fabricated on meta-surface for different application purposes. At last, the proposed GNMS structure is applied for super-resolution imaging in PSIM and it is found that an imaging resolution of 26 nm can be achieved, which is nearly 100 folds higher than that can be achieved by conventional epi-fluorescence microscopy. In comparison with visible waveband, mid-infrared is more gently and safe to biological cells and thus this work opens the new possibility for optical super-resolution imaging at mid-infrared waveband for biological research field.

  11. Optical nanoscopy with excited state saturation at liquid helium temperatures

    Science.gov (United States)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  12. SuperB: An opportunity to study baryons with beauty and bottom super-nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Feliciello, A., E-mail: Alessandro.Feliciello@to.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy)

    2012-05-01

    SuperB is an INFN flagship project for a new high-luminosity heavy-flavor factory. Along with its companion detector, it is dedicated to the search for CP violation effects in the B meson sector with the aim of looking for direct and indirect signals of new physics, beyond the Standard Model. However it could offer as well the opportunity for a systematic, high-statistics study of b baryon properties and for a search for bottom super-nuclei, that is bound nuclear systems with an explicit content of beauty.

  13. RESEARCH NOTES On the support of super-Brownian motion with super-Brownian immigration

    Institute of Scientific and Technical Information of China (English)

    洪文明; 钟惠芳

    2001-01-01

    The support properties of the super Brownian motion with random immigration Xρ1 are considered,where the immigration rate is governed by the trajectory of another super-Brownian motion ρ. When both the initial state Xρo of the process and the immigration rate process ρo are of finite measure and with compact supports, the probability of the support of the process Xρi dominated by a ball is given by the solutions of a singular elliptic boundary value problem.

  14. Super-hybrid composites - An emerging structural material

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Specimens of super-hybrids and advanced fiber composites were subjected to extensive tests to determine their mechanical properties, including impact and thermal fatigue. The super-hybrids were fabricated by a procedure similar to that reported by Chamis et al., (1975). Super-hybrids subjected to 1000 cycles of thermal fatigue from -100 to 300 F retained over 90% of their longitudinal flexural strength and over 75% of their transverse flexural strength; their transverse flexural strength may be as high as 8 times that of a commercially supplied boron/1100-Al composite. The thin specimen Izod longitudinal impact resistance of the super-hybrids was twice that of the boron/110-Al material. Super-hybrids subjected to transverse tensile loads exhibited nonlinear stress-strain relationships. The experimentally determined initial membrane (in-plane) and bending elastic properties of super-hybrids were predicted adequately by linear laminate analysis.

  15. Super long viewing distance light homogeneous emitting three-dimensional display

    Science.gov (United States)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  16. On Super Edge-Antimagicness of Subdivided Stars

    Directory of Open Access Journals (Sweden)

    Raheem A.

    2015-11-01

    Full Text Available Enomoto, Llado, Nakamigawa and Ringel (1998 defined the concept of a super (a, 0-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d-edge-antimagic total labeling of subdivided stars for d ∈ {0, 1, 2, 3}.

  17. Ultrafast Modulation of Optical Metamaterials

    Science.gov (United States)

    2009-09-28

    interferometer arrangement for absolute phase measurement. A 20-MHz super-continuum fiber laser providing 5ps pulses with wavelength covering from 450 to...t̂ ) and reflection ( r̂ ) coefficients. A Michelson -type interferometer is implemented for absolute phase measurement. The near-infrared tunable...behavior of optical modulation in a metamaterial with the “fishnet” structure [7]. Using femtosecond pump-probe spectroscopy with an interferometer

  18. Current limitations in super-resolution fluorescence microscopy for biological specimens: How deep can we go from the cover glass?

    Science.gov (United States)

    Okada, Yasushi

    2017-04-01

    Diffraction limit of resolution has been one of the biggest limitations in the optical microscopy. Super-resolution fluorescence microscopy has enabled us to break this limit. However, for the observations of real biological specimens, especially for the imaging of tissues or whole body, the target structures of interest are often embedded deep inside the specimen. Here, we would present our results to extend the target of the super-resolution microscopy deeper into the cells. Confocal microscope optics work effectively to minimize the effect by the aberrations by the cellular components, but at the expense of the signal intensities. Spherical aberrations by the refractive index mismatch between the cellular environment and the immersion liquid can be much larger, but can be reduced by adjusting the correction collar at the objective lens.

  19. Super-resolution Localization and Defocused Fluorescence Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids.

    Science.gov (United States)

    Su, Liang; Yuan, Haifeng; Lu, Gang; Rocha, Susana; Orrit, Michel; Hofkens, Johan; Uji-i, Hiroshi

    2016-02-23

    Optical antennas made of metallic nanostructures dramatically enhance single-molecule fluorescence to boost the detection sensitivity. Moreover, emission properties detected at the optical far field are dictated by the antenna. Here we study the emission from molecule-antenna hybrids by means of super-resolution localization and defocused imaging. Whereas gold nanorods make single-crystal violet molecules in the tip's vicinity visible in fluorescence, super-resolution localization on the enhanced molecular fluorescence reveals geometrical centers of the nanorod antenna instead. Furthermore, emission angular distributions of dyes linked to the nanorod surface resemble that of nanorods in defocused imaging. The experimental observations are consistent with numerical calculations using the finite-difference time-domain method.

  20. Spin groups of super metrics and a theorem of Rogers

    Science.gov (United States)

    Fulp, Ronald

    2017-01-01

    We derive the canonical forms of super Riemannian metrics and the local isometry groups of such metrics. For certain super metrics we also compute the simply connected covering groups of the local isometry groups and interpret these as local spin groups of the super metric. Super metrics define reductions OSg of the relevant frame bundle. When principal bundles S˜g exist with structure group the simply connected covering group G ˜ of the structure group of OSg , representations of G ˜ define vector bundles associated to S˜g whose sections are "spinor fields" associated with the super metric g . Using a generalization of a Theorem of Rogers, which is itself one of the main results of this paper, we show that for super metrics we call body reducible, each such simply connected covering group G ˜ is a super Lie group with a conventional super Lie algebra as its corresponding super Lie algebra. Some of our results were known to DeWitt (1984) using formal Grassmann series and others were known by Rogers using finitely many Grassmann generators and passing to a direct limit. We work exclusively in the category of G∞ supermanifolds with G∞ mappings. Our supernumbers are infinite series of products of Grassmann generators subject to convergence in the ℓ1 norm introduced by Rogers (1980, 2007).

  1. New Results from Super-K and K2K

    CERN Document Server

    Wilkes, R J

    2002-01-01

    This paper summarizes recent (as of SSI-02, in some cases updated in November, 2002) results from the Super-Kamiokande and K2K experiments. The interpretation of Super-Kamiokande results on atmospheric and solar neutrinos provides strong evidence for neutrino oscillations, hence non-zero neutrino mass. While statistics are still limited, K2K data are consistent with Super-Kamiokande results on neutrino oscillations. The effort to reconstruct Super-Kamiokande following a cascade of phototube implosions in November, 2001 is described. Plans for the future are also discussed.

  2. Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Stubbs, C; Becker, A C; Miknaitis, G A; Miceli, A; Covarrubias, R; Hawley, S L; Smith, C; Suntzeff, N B; Olsen, K; Prieto, J; Hiriart, R; Welch, D L; Cook, K; Nikolaev, S; Proctor, G; Clocchiatti, A; Minniti, D; Garg, A; Challis, P; Keller, S C; Scmidt, B P

    2004-05-27

    Characterizing the nature and spatial distribution of the lensing objects that produce the observed microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. They present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey pointed toward the LMC, to discriminate between various proposed lensing populations. they consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing of LMC stars. The optical depth for ''screen-lensing'' is essentially constant across the face of the LMC; whereas, the optical depth for self-lensing shows a strong spatial dependence. they have carried out extensive simulations, based upon actual data obtained during the first year of the project, to assess the SuperMACHO survey's ability to discriminate between these two scenarios. In the simulations they predict the expected number of observed microlensing events for each of their fields by adding artificial stars to the images and estimating the spatial and temporal efficiency of detecting microlensing events using Monte-Carlo methods. They find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function shape and other parameters, limiting the conclusions which can be drawn from the absolute rate. By instead determining the differential event rate across the LMC, they can decrease the impact of these systematic uncertainties rendering the conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations and provide important constraints on the nature of the lensing objects.

  3. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    Science.gov (United States)

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  4. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  5. Super-Hamiltonian Structures and Conservation Laws of a New Six-Component Super-Ablowitz-Kaup-Newell-Segur Hierarchy

    Directory of Open Access Journals (Sweden)

    Fucai You

    2014-01-01

    Full Text Available A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS hierarchy is proposed by the zero curvature equation associated with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations in the hierarchy by utilizing spectral parameter expansions. PACS: 02.30.Ik; 02.30.Jr; 02.20.Sv.

  6. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy.

    Science.gov (United States)

    Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine

    2015-07-27

    Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

  7. Fundamental limits of super-resolution microscopy by dielectric microspheres and microfibers

    Science.gov (United States)

    Astratov, V. N.; Maslov, A. V.; Allen, K. W.; Farahi, N.; Li, Y.; Brettin, A.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.; Liberman, V.; Rothschild, M.

    2016-03-01

    In recent years, optical super-resolution by microspheres and microfibers emerged as a new paradigm in nanoscale label-free and fluorescence imaging. However, the mechanisms of such imaging are still not completely understood and the resolution values are debated. In this work, the fundamental limits of super-resolution imaging by high-index barium-titanate microspheres and silica microfibers are studied using nanoplasmonic arrays made from Au and Al. A rigorous resolution analysis is developed based on the object's convolution with the point-spread function that has width well below the conventional (~λ/2) diffraction limit, where λ is the illumination wavelength. A resolution of ~λ/6-λ/7 is demonstrated for imaging nanoplasmonic arrays by microspheres. Similar resolution was demonstrated for microfibers in the direction perpendicular to the fiber axis with hundreds of times larger field-of-view in comparison to microspheres. Using numerical solution of Maxwell's equations, it is shown that extraordinary close point objects can be resolved in the far field, if they oscillate out of phase. Possible super-resolution using resonant excitation of whispering gallery modes is also studied.

  8. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing.

    Directory of Open Access Journals (Sweden)

    Melike Lakadamyali

    Full Text Available The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D, multicolor super-resolution imaging method, stochastic optical reconstruction microscopy (STORM, for tracing neural connectivity using cultured hippocampal neurons obtained from wild-type neonatal rat embryos as a model system. Using a membrane specific labeling approach that improves labeling density compared to cytoplasmic labeling, we imaged neural processes at 44 nm 2D and 116 nm 3D resolution as determined by considering both the localization precision of the fluorescent probes and the Nyquist criterion based on label density. Comparison with confocal images showed that, with the currently achieved resolution, we could distinguish and trace substantially more neuronal processes in the super-resolution images. The accuracy of tracing was further improved by using multicolor super-resolution imaging. The resolution obtained here was largely limited by the label density and not by the localization precision of the fluorescent probes. Therefore, higher image resolution, and thus higher tracing accuracy, can in principle be achieved by further improving the label density.

  9. Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent

    Directory of Open Access Journals (Sweden)

    Meng-Tsen Ke

    2016-03-01

    Full Text Available Super-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we report an optimized optical clearing agent for high-resolution fluorescence imaging (SeeDB2. SeeDB2 matches the refractive indices of fixed tissues to that of immersion oil (1.518, thus minimizing both light scattering and spherical aberrations. During the clearing process, fine morphology and fluorescent proteins were highly preserved. SeeDB2 enabled super-resolution microscopy of various tissue samples up to a depth of >100 μm, an order of magnitude deeper than previously possible under standard mounting conditions. Using this approach, we demonstrate accumulation of inhibitory synapses on spine heads in NMDA-receptor-deficient neurons. In the fly medulla, we found unexpected heterogeneity in axon bouton orientations among Mi1 neurons, a part of the motion detection circuitry. Thus, volumetric super-resolution microscopy of cleared tissues is a powerful strategy in connectomic studies at synaptic levels.

  10. Photo-stability of Super-hydrogenated PAHs Determined by Action Spectroscopy Experiments

    Science.gov (United States)

    Wolf, M.; Kiefer, H. V.; Langeland, J.; Andersen, L. H.; Zettergren, H.; Schmidt, H. T.; Cederquist, H.; Stockett, M. H.

    2016-11-01

    We have investigated the photo-stability of pristine and super-hydrogenated pyrene cations ({{{C}}}16{{{H}}}10+m+,m=0,6,{{}} {{or}} {{}}16) by means of gas-phase action spectroscopy. Optical absorption spectra and photo-induced dissociation mass spectra are presented. By measuring the yield of mass-selected photo-fragment ions as a function of laser pulse intensity, the number of photons (and hence the energy) needed for fragmentation of the carbon backbone was determined. Backbone fragmentation of pristine pyrene ions ({{{C}}}16{{{H}}}10+) requires absorption of three photons of energy just below 3 eV, whereas super-hydrogenated hexahydropyrene (C16H{}16+) must absorb two such photons and fully hydrogenated hexadecahydropyrene (C16H{}26+) only a single photon. These results are consistent with previously reported dissociation energies for these ions. Our experiments clearly demonstrate that the increased heat capacity from the additional hydrogen atoms does not compensate for the weakening of the carbon backbone when pyrene is hydrogenated. In photodissociation regions, super-hydrogenated Polycyclic Aromatic Hydrocarbons (PAHs) have been proposed to serve as catalysts for H2 formation. Our results indicate that carbon backbone fragmentation may be a serious competitor to H2 formation at least for small hydrogenated PAHs like pyrene.

  11. Young Super Star Clusters in the Starburst of M82: The Catalogue

    CERN Document Server

    Melo, V P; Maíz-Appelániz, J; Tenorio-Tagle, G

    2004-01-01

    Recent results from Hubble Space Telescope (HST) have resolved starbursts as collections of compact young stellar clusters. Here we present a photometric catalogue of the young stellar clusters in the nuclear starburst of M82, observed with the HST WFPC2 in Halpha (F656N) and in four optical broad-band filters. We identify 197 young super stellar clusters. The compactness and high density of the sources led us to develop specific techniques to measure their sizes. Strong extinction lanes divide the starburst into five different zones and we provide a catalogue of young super star clusters for each of these. In the catalogue we include relative coordinates, radii, fluxes, luminosities, masses, equivalent widths, extinctions, and other parameters. Extinction values have been derived from the broad-band images. The radii range between 3 and 9 pc, with a mean value of 5.7 +/- 1.4pc, and a stellar mass between 10e4 and 10e6 Mo. The inferred masses and mean separation, comparable to the size of super star clusters,...

  12. Young Super Star Clusters in the Starburst of M82: The Catalog

    Science.gov (United States)

    Melo, V. P.; Muñoz-Tuñón, C.; Maíz-Apellániz, J.; Tenorio-Tagle, G.

    2005-01-01

    Recent results from the Hubble Space Telescope (HST) have resolved starbursts as collections of compact young stellar clusters. Here we present a photometric catalog of the young stellar clusters in the nuclear starburst of M82, observed with the HST WFPC2 in Hα (F656N) and in four optical broadband filters. We identify 197 young super stellar clusters. The compactness and high density of the sources led us to develop specific techniques to measure their sizes. Strong extinction lanes divide the starburst into five different zones, and we provide a catalog of young super star clusters for each of these. In the catalog we include relative coordinates, radii, fluxes, luminosities, masses, equivalent widths, extinctions, and other parameters. Extinction values have been derived from the broadband images. The radii range between 3 and 9 pc, with a mean value of 5.7+/-1.4 pc, and a stellar mass between 104 and 106 Msolar. The inferred masses and mean separation, comparable to the size of the super star clusters, together with their high volume density, provide strong evidence for the key ingredients postulated by Tenorio-Tagle and coworkers as required for the development of a supergalactic wind. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. Super-Resolution Imaging by Arrays of High-Index Spheres Embedded in Transparent Matrices

    CERN Document Server

    Allen, Kenneth W; Li, Yangcheng; Limberopoulos, Nicholaos I; Walker, Dennis E; Urbas, Augustine M; Astratov, Vasily N

    2014-01-01

    We fabricated thin-films made from polydimethylsiloxane (PDMS) with embedded high-index (n~1.9-2.2) microspheres for super-resolution imaging applications. To control the position of microspheres, such films can be translated along the surface of the nanoplasmonic structure to be imaged. Microsphere-assisted imaging, through these matrices, provided lateral resolution of ~{\\lambda}/7 in nanoplasmonic dimer arrays with an illuminating wavelength {\\lambda}=405 nm. Such thin films can be used as contact optical components to boost the resolution capability of conventional microscopes.

  14. STED microscopy--super-resolution bio-imaging utilizing a stimulated emission depletion.

    Science.gov (United States)

    Otomo, Kohei; Hibi, Terumasa; Kozawa, Yuichi; Nemoto, Tomomi

    2015-08-01

    One of the most popular super-resolution microscopies that breaks the diffraction barrier is stimulated emission depletion (STED) microscopy. As the optical set-up of STED microscopy is based on a laser scanning microscopy (LSM) system, it potentially has several merits of LSM like confocal or two-photon excitation LSM. In this article, we first describe the principles of STED microscopy and then describe the features of our newly developed two-photon excitation STED microscopy. On the basis of our recent results and those of other researchers, we conclude by discussing future research and new technologies in this field.

  15. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  16. Design of the annular binary filters with super-resolution based on the genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Qi-lei; LE Zi-chun; ZHU Hong-ying

    2006-01-01

    To improve the density of information storage,this paper introduces a kind of annular binary filters with super-resolution,Several of these filters have been designed based on the genetic algorithm,the simulations demonstrate that the transverse gain of the filters can reach the value of 1.37.Thus they can remarkably decrease the recording spot size,which is helpful to improve the density of information storage and to make the depth of focus longer,and therefore they can avoid the mistake caused by the small undulation of the optical disk in the process of recording/reading the information.

  17. Super-hydrophobic and oleophobic transparent surfaces using micro-nano-structuring techniques

    OpenAIRE

    Von Rudno, Markus

    2015-01-01

    Treball fet en col·laboració amb Universitat Autònoma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ciències Fotòniques (ICFO) In this thesis we describe the successful design and fabrication of three distinct high-order hierarchical structures based on silica to invoke super-hydrophobicity and oleophobicity on optically transparent surfaces, which may find application in display screens, solar cell panels and smart windows. These include directly synthesized and highly ...

  18. Super-Liouville - Double Liouville correspondence

    CERN Document Server

    Hadasz, Leszek

    2014-01-01

    The AGT motivated relation between the tensor product of the N=1 super-Liouville field theory with the imaginary free fermion (SL) and a certain projected tensor products of the real and the imaginary Liouville field theories (LL) is analyzed. Using conformal field theory techniques we give a complete proof of the equivalence in the NS sector. It is shown that SL-LL correspondence is based on the equivalence of chiral objects including suitably chosen chiral structure constants of all three Liouville theories involved.

  19. A Trio of Super-Earths

    Science.gov (United States)

    2008-06-01

    Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they have found a triple system of super-Earths around the star HD 40307. Moreover, looking at their entire sample studied with HARPS, the astronomers count a total of 45 candidate planets with a mass below 30 Earth masses and an orbital period shorter than 50 days. This implies that one solar-like star out of three harbours such planets. A trio of Super-Earths ESO PR Photo 19a/08 A trio of Super-Earths "Does every single star harbour planets and, if yes, how many?" wonders planet hunter Michel Mayor from Geneva Observatory. "We may not yet know the answer but we are making huge progress towards it." Since the discovery in 1995 of a planet around the star 51 Pegasi by Mayor and Didier Queloz, more than 270 exoplanets have been found, mostly around solar-like stars. Most of these planets are giants, such as Jupiter or Saturn, and current statistics show that about 1 out of 14 stars harbours this kind of planet. "With the advent of much more precise instruments such as the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, we can now discover smaller planets, with masses between 2 and 10 times the Earth's mass," says Stéphane Udry, one of Mayor's colleagues. Such planets are called super-Earths, as they are more massive than the Earth but less massive than Uranus and Neptune (about 15 Earth masses). The group of astronomers have now discovered a system of three super-Earths around a rather normal star, which is slightly less massive than our Sun, and is located 42 light-years away towards the southern Doradus and Pictor constellations. "We have made very precise measurements of the velocity of the star HD 40307 over the last five years, which clearly reveal the presence of three planets," says Mayor. The planets, having 4.2, 6.7, and 9.4 times the mass of the

  20. SuperLU users' guide

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James W.; Gilbert, John R.; Li, Xiaoye S.

    1999-11-01

    This document describes a collection of three related ANSI C subroutine libraries for solving sparse linear systems of equations AX = B: Here A is a square, nonsingular, n x n sparse matrix, and X and B are dense n x nrhs matrices, where nrhs is the number of right-hand sides and solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is particularly appropriate for matrices with very unsymmetric structure. All three libraries use variations of Gaussian elimination optimized to take advantage both of sparsity and the computer architecture, in particular memory hierarchies (caches) and parallelism.

  1. Production of super-smooth articles

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V.

    1981-05-29

    Super-smooth rounded or formed articles made of thermoplastic materials including various poly(methyl methacrylate) or acrylonitrile-butadiene-styrene copolymers are produced by immersing the articles into a bath, the composition of which is slowly changed with time. The starting composition of the bath is made up of at least one solvent for the polymer and a diluent made up of at least one nonsolvent for the polymer and optional materials which are soluble in the bath. The resulting extremely smooth articles are useful as mandrels for laser fusion and should be useful for a wide variety of other purposes, for example lenses.

  2. Emergent Super-Virasoro on Magnetic Branes

    CERN Document Server

    D'Hoker, Eric

    2016-01-01

    The low energy limit of the stress tensor, gauge current, and supercurrent two-point correlators are calculated in the background of the supersymmetric magnetic brane solution to gauged five-dimensional supergravity constructed by Almuhairi and Polchinski. The resulting correlators provide evidence for the emergence of an N=2 super-Virasoro algebra of right-movers, in addition to a bosonic Virasoro algebra and a $U(1) \\oplus U(1)$-current algebra of left-movers (or the parity transform of left- and right-movers depending on the sign of the magnetic field), in the holographically dual strongly interacting two-dimensional effective field theory of the lowest Landau level.

  3. Super-utilizers get red carpet treatment.

    Science.gov (United States)

    2014-01-01

    MetroHealth Medical Center in Cleveland has partnered with two health plans to provide intensive care coordination for high-cost patients with multiple medical problems and, often, behavioral health issues. Nurse practitioners at two primary care sites provide one-on-one care coordination for super-utilizers. They assess the patients' needs, help coordinate community resources, and prepare a treatment plan that is flagged when patients visit the emergency department. The nurse practitioners meet with health plan representatives monthly and brainstorm on ways to meet patients' needs.

  4. The Super-B Project Accelerator Status

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Alesini, D.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Marcellini, F.; Mazzitelli, G.; Preger, M.; Raimondi, P.; Sanelli, C.; Serio, M.; Stecchi, A.; Stella, A.; Tomassini, S.; Zobov, M.; /Frascati; Bertsche, K.; Brachmann, A.; Cai, Y.; /SLAC /Novosibirsk, IYF /Annecy, LAPP /LPSC, Grenoble /Orsay, LAL /Saclay /Pisa U. /CERN

    2011-08-17

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e{sup +}e{sup -} (10{sup 36} cm{sup -2} sec{sup -1}) asymmetric collider at the Y(4S) energy in the CM. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of 'crab waist' sextupoles already successfully tested at the DA{Phi}NE {Phi}-Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper. The SuperB collider can reach a peak luminosity of 10{sup 36} cm{sup -2} sec{sup -1} with beam currents and bunch lengths similar to those of the past and present e{sup +}e{sup -} Factories, through the use of smaller emittances and new scheme of crossing angle collision. The beams are stored in two rings at 6.7 GeV (HER) and 4.2 GeV (LER). Unique features of the project are the polarization of the electron beam in the LER and the possibility to decrease the energies for running at the {tau}/charm threshold. The option to reuse the PEP-II B-Factory (SLAC) hardware will allow reducing costs. The SuperB facility will require a big complex of civil infrastructure. The main construction, which will house the final part of the LINAC, the injection lines, the damping rings, and the storage rings, will be mainly underground. Two sites have been considered: the campus of Tor Vergata University near Frascati, and the INFN Frascati Laboratory. No decision has been made yet. A footprint of the possible SuperB layout on the LNF area is shown in Fig. 1.

  5. Super computer made with Linux cluster

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Oh, Yeong Eun; Kim, Jeong Seok

    2002-01-15

    This book consists of twelve chapters, which introduce super computer made with Linux cluster. The contents of this book are Linux cluster, the principle of cluster, design of Linux cluster, general things for Linux, building up terminal server and client, Bear wolf cluster by Debian GNU/Linux, cluster system with red hat, Monitoring system, application programming-MPI, on set-up and install application programming-PVM, with PVM programming and XPVM application programming-open PBS with composition and install and set-up and GRID with GRID system, GSI, GRAM, MDS, its install and using of tool kit.

  6. Medical care at the Super Bowl.

    Science.gov (United States)

    Ellis, J M

    2000-06-01

    Although coordinating medical care at the Super Bowl is something that we look forward to and have a lot of fun doing, we take it very seriously and understand the importance of delivering medical care at what many people consider to be the greatest sporting event in the world. It is certainly one of the most watched and recognized events in the world and because of this, we attempt to set up a system that will allow for the best medical care available and standardization of this medical care through our experience within Medical Sports Group.

  7. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

    Science.gov (United States)

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-08-12

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.

  8. Efficiency of Super-Eddington Magnetically-Arrested Accretion

    CERN Document Server

    McKinney, Jonathan C; Avara, Mark

    2015-01-01

    The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin $a/M=0.8$) accreting at $\\sim 50$ times Eddington shows a total efficiency $\\sim 50\\%$ when time-averaged and total efficiency $\\gtrsim 100\\%$ in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disk, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency $\\sim 40\\%$ on the horizon and BZ efficiency $\\sim 5\\%$ by $r\\sim 400r_g$ (gravitational radii) via absorption by the wind. Importantly, radiation escapes at $r\\sim 400r_g$ with efficiency $\\eta\\approx 15\\%$ (lumi...

  9. The SuperCOSMOS all-sky galaxy catalogue

    CERN Document Server

    Peacock, J A; Bilicki, M; MacGillivray, H T; Miller, L; Read, M A; Tritton, S B

    2016-01-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UKST and POSS2 surveys. The photographic photometry is calibrated using SDSS data, with results that are linear to 2% or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero points that are uniform to 0.03 mag. or better. The typical AB depths achieved are B_J<21, R_F<19.5 and I_N<18.5, with little difference between hemispheres. In practice, the I_N plates are shallower than the B_J & R_F plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90% complete with 5% stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the s...

  10. Super-resolution for imagery from integrated microgrid polarimeters.

    Science.gov (United States)

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  11. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  12. Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source.

    Science.gov (United States)

    Pfeifle, Joerg; Vujicic, Vidak; Watts, Regan T; Schindler, Philipp C; Weimann, Claudius; Zhou, Rui; Freude, Wolfgang; Barry, Liam P; Koos, Christian

    2015-01-26

    Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7% or 20% for forward- error correction depending on the individual sub-channel quality after fiber transmission.

  13. 超分辨近场结构的研究进展及其应用%Development and applications of super-resolution near-field structures

    Institute of Scientific and Technical Information of China (English)

    刘前; 曹四海; 郭传飞

    2009-01-01

    Super-resolution near-field structures have promising applications in nanostorage, nanofabrica-tion and biosensors, due to their very high resolution beyond the optical diffraction limit. A brief review will be presented of their history, operation mechanism, recent new developments, as well as their applications in super-high density optical storage and super-resolution near-field lithography.%超分辨近场结构(super-resolution near-field structure,super-RENS)由于突破了传统远场光学衍射极限的限制,在纳米光储存、微纳米加工、基于局域表面等离子体增强的生物传感器方面展现出良好的应用前景,因此吸引了众多研究者的目光.文章简要介绍了超分辨近场结构的发展历程、相应的工作机理、最新研究动态及其在超高密度光存储、近场光刻中的应用状况,并对未来的工作重点做出展望.

  14. Super-Resolution Genome Mapping in Silicon Nanochannels.

    Science.gov (United States)

    Jeffet, Jonathan; Kobo, Asaf; Su, Tianxiang; Grunwald, Assaf; Green, Ori; Nilsson, Adam N; Eisenberg, Eli; Ambjörnsson, Tobias; Westerlund, Fredrik; Weinhold, Elmar; Shabat, Doron; Purohit, Prashant K; Ebenstein, Yuval

    2016-11-22

    Optical genome mapping in nanochannels is a powerful genetic analysis method, complementary to deoxyribonucleic acid (DNA) sequencing. The method is based on detecting a pattern of fluorescent labels attached along individual DNA molecules. When such molecules are extended in nanochannels, the labels create a fluorescent genetic barcode that is used for mapping the DNA molecule to its genomic locus and identifying large-scale variation from the genome reference. Mapping resolution is currently limited by two main factors: the optical diffraction limit and the thermal fluctuations of DNA molecules suspended in the nanochannels. Here, we utilize single-molecule tracking and super-resolution localization in order to improve the mapping accuracy and resolving power of this genome mapping technique and achieve a 15-fold increase in resolving power compared to currently practiced methods. We took advantage of a naturally occurring genetic repeat array and labeled each repeat with custom-designed Trolox conjugated fluorophores for enhanced photostability. This model system allowed us to acquire extremely long image sequences of the equally spaced fluorescent markers along DNA molecules, enabling detailed characterization of nanoconfined DNA dynamics and quantitative comparison to the Odijk theory for confined polymer chains. We present a simple method to overcome the thermal fluctuations in the nanochannels and exploit single-step photobleaching to resolve subdiffraction spaced fluorescent markers along fluctuating DNA molecules with ∼100 bp resolution. In addition, we show how time-averaging over just ∼50 frames of 40 ms enhances mapping accuracy, improves mapping P-value scores by 3 orders of magnitude compared to nonaveraged alignment, and provides a significant advantage for analyzing structural variations between DNA molecules with similar sequence composition.

  15. Surgical endodontic therapy: retrofilling of apex with amalgam and SuperSeal. Retrospective study.

    Science.gov (United States)

    Pljevljak, N; Minasi, R; Brauner, E; Galli, M

    2011-06-01

    The aim of this study was to make a retrospective analysis on teeth with apicectomized roots, closed off by retrograde with amalgam and SuperSeal-Ogna® (cement oxide of zinc and eugenol modified by acidity ethoxy-benzoic acid), in order to achieve clinical evaluation and radiographic evidence of treated dental elements and surrounding tissue SuperSeal (Ogna®). The study was conducted on 420 teeth, single and multi rooted, pertaining to 366 patients (189 women and 177 men) endodontically treated, in between 1998 and 2007. The teeth were treated with endodontic technique step-back and closed off with gutta-percha. Following the roots were apicectomyzed and then was prepared a retrograde cavity using retrotip steel mounted on the ultrasonic device. After carrying out the retrograde cavity all the samples were divided into two groups . The retrograde filling in Group A was made in Superseal, group B with amalgama. Both groups were divided in those teeths who was treated with use of optical microscope and in groups of teeths preformed without microscope. Nevertheless amalgam against the SuperSeal offers almost the same quality of the seal and the same prognosis. However SuperSeal as a material of choice, proved excellent, for carrying out the retrograde fillings free of some side effects, such as dimensional instability, mercury poisoning and pigmentation of tissues (tattoos from amalgam). In any case, whatever the type of material is, the operative microscope significantly affects the occurrence of failure. This demonstrates the importance of the microscope in order to obtain greater visibility and accuracy of the apex seal, more than minor sacrifice of healthy tissue.

  16. Pelagic Dealer Commercial Landings Monitoring (HMS Dealers)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains summarized pounds of select pelagic fish species bought by selected federally permitted seafood dealers in the SE Region of the US mainland....

  17. Review of Super Crunchers by Ian Ayers

    Directory of Open Access Journals (Sweden)

    Eric Gaze

    2009-07-01

    Full Text Available Ayers, I. Super Crunchers: Why Thinking-by-Numbers Is the New Way to be Smart. (Bantam Dell Publishing Group, 2007. 272 pp. Hard cover $25 ISBN 978-0-553-80540-6.Super Crunchers tells the story of how analyzing data is changing the ways in which decisions are made. We in the National Numeracy Network make a case for the importance of quantitative literacy by referring to how much quantitative information is now available to each of us: “a world awash in numbers.” Ian Ayres zeroes in on the people who are making a living crunching all of these data. From the seemingly innocuous (how wines are rated, and the scouting of baseball players to the life impacting (diagnosis of disease, and parole of inmates, this book paints a vivid portrayal of how data analysis is impacting decision making at every level in our society. The use of simple regression models and randomized trials is calling into question who the “experts” of the twenty-first century will be, and why thinking-by-numbers really is the new way to be smart.

  18. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  19. Super Sensitive Mass Detection in Nonlinear Regime

    Science.gov (United States)

    Azizi, Saber; Ahmadian, Iman; Cetinkaya, Cetin; Rezazadeh, Ghader

    2015-11-01

    Nonlinear dynamics of a clamped-clamped micro-beam exposed to a two sided electrostatic actuation is investigated to determine super sensitive regions for mass detection. The objective is to investigate the sensitivity of the frequency spectrum of various regions in the phase space to the added mass and force the system to operate in its super sensitive regions by applying an appropriate pulse to its control electrodes. The electrostatic actuation in the top electrode is a combination of a DC, AC and a pulse voltage, the excitation on the lower electrode is only a DC and a pulse voltage. The governing equation of the motion, derived using the Hamiltonian principle, is discretized to an equivalent single-degree of freedom system using the Galerkin method. Depending on the applied electrostatic voltage to the micro-beam, it is demonstrated that the number and types of equilibrium points of the system can be modified. In this study, the level of the DC electrostatic voltage is chosen such a way that the system has three equilibrium points including two centers and a saddle node where the homoclinic orbit originates. According to the reported results, the mass sensing sensitivity depends on the operating orbit; some orbits exhibit considerably higher mass detection sensitivity to the added mass compared to that of a typical quartz crystal micro balance instrument.

  20. SuperAGILE data processing services

    CERN Document Server

    Lazzarotto, F; Del Monte, E; Donnarumma, I; Evangelista, Y; Feroci, M; Lapshov, I; Pacciani, L; Soffitta, P

    2009-01-01

    The SuperAGILE (SA) instrument is a X-ray detector for As- trophysics measurements, part of the Italian AGILE satellite for X-Ray and Gamma-Ray Astronomy launched at 23/04/2007 from India. SuperAGILE is now studying the sky in the 18 - 60 KeV energy band. It is detecting sources with advanced imaging and timing detection and good spectral detection capabilities. Several astrophysical sources has been detected and localized, including Crab, Vela and GX 301-2. The instrument has the skill to resolve correctly sources in a field of view of [-40, +40] degrees interval, with the angular resolution of 6 arcmin, and a spectral analysis with the resolution of 8 keV. Transient events are regularly detected by SA with the aid of its temporal resolution (2 microsec- onds) and using signal coincidence on different portions of the instrument, with confirmation from other observatories. The SA data processing scientic software performing at the AGILE Ground Segment is divided in modules, grouped in a processing pipeline na...