WorldWideScience

Sample records for super heated drop

  1. Equivalent isentropic expansion efficiency of real fluid subject to concurrent pressure drop and heat transfer

    Science.gov (United States)

    Knudsen, P.; Ganni, V.

    2017-12-01

    Concurrent pressure drop and cooling of a super-critical or sub-cooled liquid stream can have the same effect as adiabatic expansion even though there is no work extraction. A practical implementation is as straight forward as counter-flow heat exchange with a colder fluid. The concurrent pressure drop need not be continuous with respect to the heat exchange, but may occur in a step-wise manner, in between heat exchange. Two aspects of this effect of pressure drop with heat transfer are examined; a thermodynamic and a practical process equivalent isentropic expansion efficiency. This real fluid phenomenon is useful to understand in applications where work extraction is either not practical or has not been developed. A super-critical helium supply, often around 3 bar and 4.5 K, being ultimately used as a superfluid (usually around 1.8 to 2.1 K) to cool a Niobium superconducting radio frequency cavity or a superconducting magnet is one such particular application. This paper examines the thermodynamic nature of this phenomenon.

  2. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressure drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.

  3. Advanced heat pumps and their economic aspects. The case for super heat pump

    International Nuclear Information System (INIS)

    Yabe, Akira; Akiya, Takaji

    1996-01-01

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  4. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  5. Intermediate heat exchanger project for Super Phenix

    International Nuclear Information System (INIS)

    Roumailhac, J.; Desir, D.

    1975-01-01

    The Super Phenix (1200 MWe) intermediate heat exchangers are derived directly from those of Phenix (250 MWe). The intermediate exchangers are housed in the reactor vessel annulus: as this annulus must be of the smallest volume possible, these IHX are required to work at a high specific rating. The exchange surface is calculated for nominal conditions. A range is then defined, consistent with the above requirements and throughout which the ratio between bundle thickness and bundle length remains acceptable. Experimental technics and calculations were used to determine the number of tube constraint systems required to keep the vibration amplitude within permissible limits. From a knowledge of this number, the pressure drop produced by the primary flow can be calculated. The bundle geometry is determined together with the design of the corresponding tube plates and the way in which these plates should be joined to the body of the IHX. The experience (technical and financial) acquired in the construction of Phenix is then used to optimize the design of the Super Phenix project. An approximate definition of the structure of the IHX is obtained by assuming a simplified load distribution in the calculations. More sophisticated calculations (e.g. finite element method) are then used to determine the behaviour of the different points of the IHX, under nominal and transient conditions

  6. Super high field ohmically heated tokamak operation

    International Nuclear Information System (INIS)

    Cohn, D.R.; Bromberg, L.; Leclaire, R.J.; Potok, R.E.; Jassby, D.L.

    1986-01-01

    The authors discuss a super high field mode of tokamak operation that uses ohmic heating or near ohmic heating to ignition. The super high field mode of operation uses very high values of Β/sup 2/α, where Β is the magnetic field and a is the minor radius (Β/sup 2/α > 100 T/sup 2/m). We analyze copper magnet devices with major radii from 1.7 to 3.0 meters. Minimizing or eliminating the need for auxiliary heating has the potential advantages of reducing uncertainty in extrapolating the energy confinement time of current tokamak devices, and reducing engineering problems associated with large auxiliary heating requirements. It may be possible to heat relatively short pulse, inertially cooled tokamaks to ignition with ohmic power alone. However, there may be advantages in using a very small amount of auxiliary power (less than the ohmic heating power) to boost the ohmic heating and provide a faster start-up, expecially in relatively compact devices

  7. Thermal performance and pressure drop of spiral-tube ground heat exchangers for ground-source heat pump

    International Nuclear Information System (INIS)

    Jalaluddin; Miyara, Akio

    2015-01-01

    Thermal performance and pressure drop of the spiral-tube GHE were evaluated in this present work. A numerical simulation tool was used to carry out this research. The heat exchange rates per meter borehole depth of the spiral-tube GHE with various pitches and their pressure drops were compared with that of the U-tube GHE. Furthermore, a comparative analysis between a spiral pipe and straight pipe was performed. In comparison with the straight pipe, using the spiral pipe in the borehole increased the heat exchange rate to the ground per meter borehole depth. However, the pressure drop of water flow also increased due to increasing the length of pipe per meter borehole depth and its spiral geometry. The accuracy of the numerical model was verified for its pressure drop with some pressure drop correlations. The heat exchange rate and pressure drop of the GHEs are presented. As an example, the heat exchange rate per meter borehole depth of spiral pipe with 0.05 m pitch in the turbulent flow increased of 1.5 times. Its pressure drop also increased of 6 times. However, from the view point of energy efficiency, using the spiral pipe in the ground-source heat pump system gives a better performance than using the straight pipe. The heat exchange rate and pressure drop are important parameter in design of the ground-source heat pump (GSHP) system. - Highlights: • Thermal performance and pressure drop of spiral-tube GHE are presented. • Effects of spiral pitch on thermal performance and pressure drop are analyzed. • Using a spiral pipe increases heat exchange rate per meter borehole depth of GHE. • Pressure drop per meter borehole depth also increases in the spiral pipe.

  8. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  9. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  10. Interim report on research and development of super heat pump energy accumulation system by the evaluation working group; Super heat pump energy shuseki system hyoka work group chukan hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The evaluation working group of the Large-scale Energy-saving Technology Research and Development Promotion Council has made an interim evaluation of the results obtained so far by the R and D project for the super heat pump energy accumulation systems. The working group evaluates the bench plant operation test results comprehensively, covering technical, economic and social aspects, and R and D promotion methodology. The working group has concluded that a significant technological break-through is made for the super high performance compression heat pumps, and the technological groundwork is now established for the future pilot system. For the chemical heat storage technologies, it is concluded that system feasibility is demonstrated, and the technological groundwork for the future development is established. The super heat pump is evaluated to potentially realize significant economic superiority over the conventional devices both in the domestic and industrial areas, and to be highly rated potentially in the areas of energy-saving, power load leveling and environmental preservation. (NEDO)

  11. Research and development on super heat pump energy accumulation system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    This is the final report on research and development of super heat pump energy accumulation system, which has been carried out from FY 1985 to 1992. It describes outline of the research and development program, R and D results, final evaluation methodology, evaluation of the R and D, proposals for the commercialization, and so on. The super high performance compression heat pumps are technically evaluated for highly efficient type (for heating, and cooling and heating), high temperature type (utilizing high temperature heat source, and low temperature heat source), working fluids (alcohol-based and nonalcohol-based), stainless steel plate fin type heat exchanger, EHD heat exchanger, and so on. The other techniques evaluated include those for chemical heat storage, combined systems, plant simulation, and systemization. The evaluation works are also directed to the economic and environmental aspects. Finally, the R and D themes are proposed to leap over various hurdles, e.g., reliability and economic viability, for the eventual commercialization of the energy accumulation system. (NEDO)

  12. A numerical analysis on the heat transfer and pressure drop characteristics of welding type plate heat exchangers

    International Nuclear Information System (INIS)

    Jeong, Jong Yun; Kang, Yong Tae; Nam, Sang Chul

    2008-01-01

    Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is H 2 O/LiBr solution with the LiBr concentration of 50∼60% in mass. The numerical simulation show reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems

  13. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  14. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  15. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  16. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    Directory of Open Access Journals (Sweden)

    Ponomarev Konstantin

    2016-01-01

    Full Text Available This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass. A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  17. SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger

    International Nuclear Information System (INIS)

    Kattchee, N.; Reynolds, W.C.

    1975-01-01

    1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46

  18. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    Science.gov (United States)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  19. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    International Nuclear Information System (INIS)

    Garcia-Hernando, N.; Almendros-Ibanez, J.A.; Ruiz, G.; Vega, M. de

    2011-01-01

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H 2 O and NH 3 -H 2 O solutions is studied. For the NH 3 -H 2 O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H 2 O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed.

  20. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling

  1. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  2. Super-Planckian far-field radiative heat transfer

    Science.gov (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  3. Heat transfer and pressure drop of a gasket-sealed plate heat exchanger depending on operating conditions across hot and cold sides

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Hyouck Ju [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-05-15

    In a gas engine based cogeneration system, heat may be recovered from two parts: Jacket water and exhaust gas. The heat from the jacket water is often recovered using a plate-type heat exchanger, and is used for room heating and/or hot water supply applications. Depending on the operating conditions of an engine and heat recovery system, there may be an imbalance in the flow rate and supply pressure between the engine side and the heat-recovery side of the heat exchanger. This imbalance causes deformation of the plate, which affects heat transfer and pressure drop characteristics. In the present study, the heat transfer and pressure drop inside a heat exchanger were investigated under varying hot-side and cold-side operating conditions. Thermal efficiency of the plate heat exchanger decreases up to 30% with an operating engine load of 50%. A correction factor for the pressure drop correlation is proposed to account for the deformation caused by an imbalance between the two sides of a heat exchanger.

  4. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 1. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the super high performance heat pumps and elementary equipment and working fluids, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to development of new working fluids, high-performance heat exchangers, closed motors and so on for the highly efficient type (for heating only); to researches on mixed coolants, high-efficiency screw compressors and so on for the highly efficient type (for cooling and heating); to development of tooth shape of the screw compression section, surveys on thermal stability of the working fluids for heating and so on for the high temperature type (utilizing low temperature heat source); and to R and D of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, researches are conducted on evaporators for mixed working fluids, condensers utilizing the EHD effect, stainless steel plate fin type heat exchangers, heat exchangers for the chemical heat accumulation unit, and so on. The R and D efforts are also directed to the working fluids (alcohol-based and nonalcohol-based). (NEDO)

  5. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  6. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  7. FY 1986 report on research and development of super heat pump energy accumulation system. R and D of total systems (Surveys on heat sources and heat-utilization systems); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. Total system no kenkyu (netsugen netsu riyokei no chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The heat source systems and heat utilization systems are surveyed and studied for the super heat pump energy accumulation systems, in order to clarify effective application and application types of these systems in the domestic and industrial energy areas. These works include surveys on literature, both domestic and foreign, surveys on actual situations of the related facilities and plants and on-the-spot hearing, and numerical simulation to establish the basic data for some items. The FY 1986 program includes the literature surveys on heat source and heat utilization systems and on-the-spot hearing for the domestic energy areas, reviews of heat demand variation patterns, and studies on methodology for applying the data to the areas not investigated so far. For the industrial areas to which super heat pumps are potentially applicable, the chemical, refining, food manufacturing and plastic manufacturing/processing industries are selected, to study problems related to system structures and conditions of the heat pump systems in these areas. (NEDO)

  8. Comparison of boiling heat transfer coefficient and pressure drop correlations for evaporators

    International Nuclear Information System (INIS)

    Eskin, N.; Arslan, G.

    2009-01-01

    Evaporator design is an important aspect for the HVAC industry. As the demand for more efficient and compact heat exchangers increase, researches on estimation of two-phase flow heat transfer and pressure drop gain importance. Due to complexity of the hydrodynamic and heat transfer of the two-phase flow, there are many experimental studies available for refrigerants int he literature. In this study, a model for boiling heat transfer in a horizontal tube has been developed and the simulation results are compared with experimental ones published in the literature. In these comparisons, heat transfer coefficient is calculated by using Kattan-Thome-Favrat (1998), Shah (1982), Kandilikar (1990), Chaddock and Brunemann (1967) correlations under different operational conditions such as saturation pressure, mass flux, the type of refrigerant and two phase flow pattern. Besides that flow pattern has also been considered in the simulation by using Thome and El Hajal (2002) model. For pressure drop Lockhart-Martinelli (1949), Mueller-Steinhagen-Hack (1986) and Groennerund (1979) correlations are used in simulations. Local vapor quality change at each experimental condition through the model is determined. Roughness is an important parameter for frictional pressure drop. Friction coefficient is determined by using Churchill (1977) model. (author)

  9. FY 1988 Report on research and development of super heat pump energy accumulation system. Part 1; 1988 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    Summarized in detail herein are the 1988 R and D results of the super high performance compression heat pumps and elementary equipment/media, for R and D of the super heat pump energy accumulation system. For R and D of the heat pumps, the R and D efforts are directed to manufacture, on a trial basis, and installation of the bench plant, and preparation of the basic plan for the pilot system for the highly efficient type (for heating only); to researches on the screw compressor, bench plant operation, heat exchanger, and so on for the highly efficient type (for cooling and heating); to development of the compressor with which a screw type expander is integrated at the low-temperature side, evaporator and so on, test runs of the bench plant, researches on the control methods, and so on for the high temperature type (utilization low temperature heat source); and to manufacture, on a trial basis, of the high-speed reciprocating compressor and steam supercharger, and tests for demonstrating their performance for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, the R and D efforts are directed to the evaporator and EHD condenser for the mixed working fluids, heat exchanger, working fluids (alcohol-based and nonalcohol-based), and so on. (NEDO)

  10. Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Boris Kidric, Heat Transfer Department, Vinca, Beograd (Serbia and Montenegro)

    1964-10-15

    Heat transfer and pressure drop of a reactor fuel element model with polyzonal spiral finning have been investigated. The St-number distribution over length and perimeter of he finning are given. The mean and minimum St{sub k}-number are plotted against the Re-number. The influence of the gap between two fuel elements upon heat transfer and pressure drop, in dependence on the Re-number, and the influence of the length of the fuel element on pressure drop across the gap are shown. The influence of the relative position of the splitters of two neighboring fuel elements on pressure drop and heat transfer is shown. The investigations were performed in the Re-number range 15,000 to 100,000 (author)

  11. Effects of heat-treatment on plasma rich in growth factors-derived autologous eye drop.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; De la Fuente, M; Merayo-Lloves, J; Orive, G

    2014-02-01

    We have developed and characterized a new type of plasma rich in growth factors (PRGF) derived eye-drop therapy for patients suffering from autoimmune diseases. To determine the concentration of several growth factors, proteins, immunoglobulins and complement activity of the heat-inactivated eye-drop and to study its biological effects on cell proliferation and migration of different ocular surface cells, blood from healthy donors was collected, centrifuged and PRGF was prepared avoiding the buffy coat. The half volume of the obtained plasma supernatant from each donor was heat-inactivated at 56 °C for 1 h (heat-inactivated PRGF). The concentration of several proteins involved on corneal wound healing, immunoglubolins G, M and E and functional integrity of the complement system assayed by CH50 test were determined. The proliferative and migratory potential of inactivated and non-inactivated PRGF eye drops were assayed on corneal epithelial cells (HCE), keratocytes (HK) and conjunctival fibroblasts (HConF). Heat-inactivated PRGF preserves the content of most of the proteins and morphogens involved in its wound healing effects while reduces drastically the content of IgE and complement activity. Heat-inactivated PRGF eye drops increased proliferation and migration potential of ocular surface cells with regard to PRGF showing significant differences on proliferation and migration rate of HCE and HConF respectively. In summary, heat-inactivation of PRGF eye drops completely reduced complement activity and deceased significantly the presence of IgE, maintaining the biological activity of PRGF on ocular surface cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  13. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  14. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  15. The Evaporation of Liquid Micro-Drops on the Heated Substrate

    Directory of Open Access Journals (Sweden)

    Semenov Andrey

    2017-01-01

    Full Text Available Evaporation of a heated sessile water micro-drop was studied experimentally at the substrate temperature and surrounding atmosphere from 30 to 50 °C. The studies were performed on the float glass substrate with aluminum nanocoating of optical quality. The research has shown that the specific rate of evaporation (mass loss per unit of the drop surface area increases with the decrease in droplet volume and at the last stage several times exceeds the initial value.

  16. A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    P. Shahmohammadi

    2016-01-01

    Full Text Available The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were defined using the user define function. The results revealed that heat transfer and pressure drop were increased with mass flow rate as well as baffle numbers. Adding nanoparticles to the based fluid did not have a significant effect on pressure drop in the shell side. The best heat transfer performance of heat exchangers was for γ-Al2O3-water 1 vol.% and higher nanoparticles concentration was not suitable. The suitable baffle spacing was 43.4% of the shell diameter, showing a good agreement with Bell-Delaware method.

  17. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    Directory of Open Access Journals (Sweden)

    Okbaz Abdulkerim

    2017-01-01

    Full Text Available In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  18. Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sungchan [Korea Nat’l. Univ. of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

  19. Study on drop pressure and flow distribution of double-tube heat exchanger

    International Nuclear Information System (INIS)

    Liu Junqiang; Chen Minghui; Hu Yumin; Li Rizhu; Kong Dechun; Zhang Weijie

    2007-01-01

    The parallel connection channel pressure drop characters of the double-tube bundle heat exchange were experimentally investigated in this paper in order to find out how the flow of the heat exchanger is distributed and then to optimize the structure of heat exchanger according to the flow distribution. A double-tube bundle heat exchanger was built according to the similarity criteria. The experiment system was also built to test the optimization of the heat exchanger. The experiment results reveal that the calculating model is reliable and decreasing pipe space to optimize the heat exchanger is reasonable. (authors)

  20. Experimental Heat Transfer, pressure drop, and Flow Visualization of R-134a in Vertical Mini/Micro Tubes

    OpenAIRE

    Owhaib, Wahib

    2007-01-01

    For the application of minichannel heat exchangers, it is necessary to have accurate design tools for predicting heat transfer and pressure drop. Until recently, this type of heat exchangers was not well studied, and in the scientific literature there were large discrepancies between results reported by different investigators. The present thesis aims to add to the knowledge of the fundamentals of single- and two-phase flow heat transfer and pressure drop in narrow channels, thereby aiding in...

  1. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink

    International Nuclear Information System (INIS)

    Megahed, Ayman; Hassan, Ibrahim

    2009-01-01

    The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m 2 s and heat fluxes from 60.4 to 130.6 kW/m 2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.

  2. A study on the effect of solution heat treatment on the corrosion resistance of super duplex stainless steels

    International Nuclear Information System (INIS)

    Park, Jee Yong; Park, Yong Soo; Kim, Soon Tae

    2001-01-01

    High temperature solution heat treatment(typically higher than 1100 .deg. C) is known generally to reduces the resistance to localized corrosion on super duplex stainless. This is attributed to the formation of zone depleted of alloying elements. In this study, the corrosion properties were investigated on super duplex stainless steels with various solution heat treatments. The corrosion resistance of these steels was evaluated in terms of critical pitting temperature and cyclic potentiodynamic polarization test. Chemical composition of the austenite and ferrite phases were analyzed by SEM-EDS. The following results were obtained. (1) By conducting furnace cooling, critical pitting temperature and repassivation potential increased. (2) By omitting furnace cooling, solution heat treatment produced Cr and Mo depleted zone in the phase boundary. (3) During furnace cooling, Cr and Mo rediffused through the phase boundary. This increased the corrosion resistance of super duplex stainless steels

  3. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    Science.gov (United States)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  4. Effect of Heat treatment on Hardness and Corrosion Resistance of Super Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roun; Kim, Young Sik [Andong National University, Andong (Korea, Republic of)

    2014-07-15

    In fossil-fuel-fired power plants, a variety of pollutants are produced from the combustion of conventional fuels such as coal, oil and gas. Major component of such pollution are ash and corrosive chemicals, which also destroy pumps and piping; by causing erosion/corrosion, pitting, and wear. In order to over come such damage, materials with high hardness and high corrosion resistance are needed. In this work, we melted super-cast-iron with excellent corrosion resistance and high hardness. To elucidate the effect of heat treatment, microstructural analysis, hardness measurement, and corrosion tests were performed. Test results revealed that the super-cast-iron had several tens better corrosion resistance than 316 L stainless steel, and it also had a high surface hardness (> HRC45). High hardness, in spite of its low carbon content (0.74%C), could resulted from a hardening heat treatment to precipitate sufficient Cr{sub 7}C{sub 3} and Cr{sub 2}3C{sub 6}. Also, it was concluded that the excellent corrosion resistance of the super-cast-iron was due to the increase of the relative chromium content by minimizing the carbon content, and by the enhancement of passive film by the addition of Cr, Mo, Cu, and W.

  5. Reassembling and testing of a high-precision heat capacity drop calorimeter. Heat capacity of some polyphenyls at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.pt [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Rocha, Marisa A.A.; Rodrigues, Ana S.M.C. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Stejfa, Vojtech; Fulem, Michal [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, CZ-166 28 Prague 6 (Czech Republic); Bastos, Margarida [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2011-12-15

    Graphical abstract: Highlights: > We present the reassembling, improvement and testing of a high-precision C{sub p} drop calorimeter. > The apparatus was tested, using benzoic acid and hexafluorobenzene. > The high sensitivity of the apparatus is comparable to the one obtained in adiabatic calorimetry. > Heat capacities at T = 298.15 K of some polyphenyls were measured. > Subtle heat capacity differences among position isomers (ortho, meta, para) were detected. - Abstract: The description of the reassembling and testing of a twin heat conduction, high-precision, drop microcalorimeter for the measurement of heat capacities of small samples are presented. The apparatus, originally developed and used at the Thermochemistry Laboratory, Lund, Sweden, has now been reassembled and modernized, with changes being made as regarding temperature sensors, electronics and data acquisition system. The apparatus was thereafter thoroughly tested, using benzoic acid and hexafluorobenzene as test substances. The accuracy of the C{sub p,m}{sup 0} (298.15 K) data obtained with this apparatus is comparable to that achieved by high-precision adiabatic calorimetry. Here we also present the results of heat capacity measurements on of some polyphenyls (1,2,3-triphenylbenzene, 1,3,5-triphenylbenzene, p-terphenyl, m-terphenyl, o-terphenyl, p-quaterphenyl) at T = 298.15 K, measured with the renewed high precision heat capacity drop calorimeter system. The high resolution and accuracy of the obtained heat capacity data enabled differentiation among the ortho-, meta-, and para-phenyl isomers.

  6. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  7. Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins

    Directory of Open Access Journals (Sweden)

    Fengming Wang

    2012-12-01

    Full Text Available The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated. Several differently shaped pin fins (i.e., circular, elliptical, and drop-shaped with the same cross-sectional areas were compared in a staggered arrangement. The Reynolds number based on the obstructed section hydraulic diameter (defined as the ratio of the total wetted surface area to the open duct volume available for flow was varied from 4800 to 8200. The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them, which decreased the aerodynamic penalty compared to circular pin fins. The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins. In terms of specific performance parameters, drop-shaped pin fins are a promising alternative configuration to circular pin fins.

  8. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  9. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2005-01-01

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl - ). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  10. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  11. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    Science.gov (United States)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  12. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Bisht, G.S.; Gupta, S.K.; Prabhu, S.V.

    2013-01-01

    Highlights: ► Measured subcooled boiling pressure drop and local heat transfer coefficient in horizontal tubes. ► Infra-red thermal imaging is used for wall temperature measurement. ► Developed correlations for pressure drop and local heat transfer coefficient. -- Abstract: Horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels of pressurized heavy water reactors (PHWR). Study of horizontal flow under low pressure and low flow (LPLF) conditions is important in understanding the nuclear core behavior during situations like LOCA (loss of coolant accidents). In the present work, local heat transfer coefficient and pressure drop are measured in a horizontal tube under LPLF conditions of subcooled boiling. Geometrical parameters covered in this study are diameter (5.5 mm, 7.5 mm and 9.5 mm) and length (550 mm, 750 mm and 1000 mm). The operating parameters varied are mass flux (450–935 kg/m 2 s) and inlet subcooling (29 °C, 50 °C and 70 °C). Infra-red thermography is used for the measurement of local wall temperature to estimate the heat transfer coefficient in single phase and two phase flows with water as the working medium at atmospheric pressure. Correlation for single phase diabatic pressure drop ratio (diabatic to adiabatic) as a function of viscosity ratio (wall temperature to fluid temperature) is presented. Correlation for pressure drop under subcooled boiling conditions as a function of Boiling number (Bo) and Jakob number (Ja) is obtained. Correlation for single phase heat transfer coefficient in the thermal developing region is presented as a function of Reynolds number (Re), Prandtl number (Pr) and z/d (ratio of axial length of the test section to diameter). Correlation for two phase heat transfer coefficient under subcooled boiling condition is developed as a function of boiling number (Bo), Jakob number (Ja) and Prandtl number (Pr)

  13. Description of the heating and expansion process of a water drop enclosed in a hot melt

    International Nuclear Information System (INIS)

    Froehlich, G.; Berg, E. von.

    1985-11-01

    In the present study a simple model for the description of the heating- and expansion-process of a water drop enclosed in hot melt is developed. The model is valid between the first contact of melt and water up to the beginning of evaporation. A possible superheating by retardation of ebullition is disregarded. The balance equations for energy, mass and momentum as well as the equation of state are integrated over the radial space coordinate in both media using appropriate profiles of temperature, pressure and velocity. Thereby a system of coupled ordinary differential equations is formed for the variables of the model which are now time dependent only. The equations are solved numerically by means of a FORTRAN-program. The influence of parameters (melt-temperature, heat-transfer-coefficient between melt and water as well as drop radius) are studied. It is shown that always very rapidly a vapor-layer forms around the water drop, while the inner part of the drop did not yet 'notice' anything of the heating process. An approximation formula for the time-transfer-coefficients between melt and water. Due to this approximation, the time up to incipience of evaporation grows proportional to the drop radius, which means that in the frame of the present model even small droplets won't evaporate as a whole instantaneously. (orig.) [de

  14. FY 1986 Report on research and development of super heat pump energy accumulation system. System construction and operational study results (Systemization studies); 1986 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    The studies on combinations of high-performance compression heat pump and chemical heat accumulation systems are conducted to construct the optimum systems for air conditioning/hot water supply for large-sized buildings and local districts, and also for industrial processes. For partial optimization of super heat pump (SPH) accumulation system, the SPH operational mode is changed to find the optimum conditions. As a result, it is found that system efficiency is the highest, and hence the power cost is the lowest, when the system is continuously operated night and day, followed by 2-night/1-day mode and night alone mode, in this order, for office building air conditioning, district air conditioning, and hot water supply. The effects of combination of SHP and chemical heat accumulation systems incorporated in an industrial process for heating are estimated. The results indicate that power load leveling effect is not 100% but 92%, even when the heat required for the daytime operation is totally supplied from the chemical accumulation system. The skeleton of the super heat pump accumulation system simulator is finalized, and the elementary system modules are developed, to allow simulation of general flows. (NEDO)

  15. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries

    International Nuclear Information System (INIS)

    Kim, Nae Hyun

    2015-01-01

    R-410A evaporation heat transfer and pressure drop data are provided for three 7.0 mm O.D. microfin tubes. The microfin tubes had different helix angle, fin height and fin apex angle. Tests were conducted for a range of quality (0.2 ∼ 0.8), mass flux (216 ∼ 390 kg/m 2 s), heat flux (9 ∼ 17 kW/m 2 ) and saturation temperature (8 ∼ 12 .deg. C). It was found that three microfin tubes yielded approximately the same heat transfer coefficients. Microfin tube with larger inter-fin spacing or smaller helix angle yielded lager pressure drop. Both heat transfer coefficient and pressure drop increased as mass flux or quality increased. However, they decreased as saturation temperature increased. The range of heat transfer enhancement factor (1.37 ∼ 1.97) was comparable with that of pressure drop penalty factor (1.22 ∼ 1.77). Data are compared with available heat transfer and pressure drop correlations

  16. Estimation and optimization of heat transfer and overall presure drop for a shell and tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Bala Bhaskara [Dept. of Mechanical Engineering, SISTAM College, JNTU, Kakinada (India); Raju, V. Ramachandra [Dept. of Mechanical Engineering, JNTU, Kakinada (India); Deepak, B. B V. L. [Dept. of Industrial Design, National Institute of Technology, Rourkela (India)

    2017-01-15

    Most thermal/chemical industries are equipped with heat exchangers to enhance thermal efficiency. The performance of heat exchangers highly depends on design modifications in the tube side, such as the cross-sectional area, orientation, and baffle cut of the tube. However, these parameters do not exhibit a specific relation to determining the optimum design condition for shell and tube heat exchangers with a maximum heat transfer rate and reduced pressure drops. Accordingly, experimental and numerical simulations are performed for a heat exchanger with varying tube geometries. The heat exchanger considered in this investigation is a single-shell, multiple-pass device. A Generalized regression neural network (GRNN) is applied to generate a relation among the input and output process parameters for the experimental data sets. Then, an Artificial immune system (AIS) is used with GRNN to obtain optimized input parameters. Lastly, results are presented for the developed hybrid GRNN-AIS approach.

  17. On dryout heat flux and pressure drop of a submerged inductively heated bed flow from below

    International Nuclear Information System (INIS)

    Tsai, F.F.; Catton, I.

    1983-01-01

    An experimental investigation of dryout heat flux in a saturated porous medal with forced flow from below has been conducted using methanol as a coolant. The mass flux varied from 0 to 0.557 kg/m 2 sec. Particle sizes were 590-790 μm, 1.6 mm, 3.2 mm, and 4.8 mm. The dryout heat flux increases as the mass flux increases, and asymptotically goes to the total evaporation energy of the inlet flow. The pressure drop across the bed changed very rapidly near the dryout point due to the formation of dry zone

  18. Experimental pressure drop and heat transfer in square array rod bundle for fusion-fission hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, J.A.; Bhowmik, P.K. [Seoul National Univ., Gwanak Gu, Seoul (Korea, Republic of); Suh, K.Y., E-mail: kysuh@snu.ac.kr [Seoul National Univ., Gwanak Gu, Seoul (Korea, Republic of); PhiloSophia Inc., Gwanak Gu, Seoul (Korea, Republic of)

    2014-07-01

    The effects of grid spacer flow restriction on pressure drop are evaluated experimentally for a wide range of flow rates. The results are compared against predictions by using most well known correlations. The convective heat transfer coefficients are evaluated using ANSYS 12.1 for a 3x3 rod bundle for pure water and alumina nanofluid. It is observed that the experimental pressure drop falls within 10%~20% of the predictions. Heat transfer of the 4% alumina nanofluid increases about 18% over pure water under the same inlet flow condition. (author)

  19. Experimental pressure drop and heat transfer in square array rod bundle for fusion-fission hybrid system

    International Nuclear Information System (INIS)

    Shamim, J.A.; Bhowmik, P.K.; Suh, K.Y.

    2014-01-01

    The effects of grid spacer flow restriction on pressure drop are evaluated experimentally for a wide range of flow rates. The results are compared against predictions by using most well known correlations. The convective heat transfer coefficients are evaluated using ANSYS 12.1 for a 3x3 rod bundle for pure water and alumina nanofluid. It is observed that the experimental pressure drop falls within 10%~20% of the predictions. Heat transfer of the 4% alumina nanofluid increases about 18% over pure water under the same inlet flow condition. (author)

  20. Studies on MHD pressure drop and heat transfer of helium-lithium annular-mist flow in a transverse magnetic field

    International Nuclear Information System (INIS)

    Inoue, Akira; Aritomi, Masanori; Takahashi, Minoru; Matsuzaki, Mitsuo; Narita, Yoshihito; Yano, Toshikazu.

    1987-01-01

    Pressure drop and heat transfer coefficient of helium-lithium annular-mist flow in a rectangular duct were investigated experimentally under a transverse magnetic field at system pressure of 0.2 MPa. A ratio of MHD pressure drop to that of non-magnetic field increases with magnetic flux density and a mass flow rate ratio of lithium to helium in low helium velocity region. However, as increasing the helium velocity, the increment of MHD pressure drop with the magnetic flux density is much reduced and then becomes almost zero. At this condition, the MHD pressure drop of the annular-mist flow becomes much smaller than that of lithium single phase flow with the same lithium mass flow at the high magnetic flux density. Heat transfer coefficient ratio of the helium-lithium annular-mist flow to helium single phase in the non-magnetic field is well correlated by a ratio of the mass flow rate of lithium to helium. The heat transfer coefficient in the magnetic field increases with the magnetic flux density and then terminates at a certain value depending on the mass flow rate ratio and the helium velocity. These characteristics of the MHD pressure drop and the heat transfer in the magnetic field suggest that the helium-lithium annular-mist flow is effectively applicable to cooling of the high heat flux wall in a strong magnetic field like a first wall of a magnetic confinement fusion reactors. (author)

  1. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    Science.gov (United States)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  2. Experimental study of heat transfer and pressure drops for ammonia flowing inside a long tube

    International Nuclear Information System (INIS)

    Malek, A.; Colin, R.

    1985-01-01

    This report presents the results of the experimental study of heat transfer coefficients and pressure drops for boiling ammonia in a long tube. The scope of the tests discussed here corresponds to temperatures ranging from 30 to 70 0 C. This touches on various forthcoming applications, including binary cycles of nuclear power plants, as well as miscellaneous energy recovery cycles (heat pumps, geothermal energy, etc.). The results reported here of ammonia evaporators in the temperature range mentionned for two heat exchanger configurations: vertical and horizontal tubes. The correlations expressing the heat transfer coefficients cover the experimental results with a scatter of about +- 0.15% for the three parameters investigated: mass flow rate, heat load, and saturation pressure. As for pressure drops in two-phase flow, an equation expressing the weight of a column of liquid/vapour mixture is satisfactorily compared with the experimental results obtained here. The calculation of this weight is highly important for heat exchanger design, because it helps to predict the recirculation rate in the case of natural circulation. For some cases of evaporators, the calculation of this weight serves to predict the boiling lag in the lower part of the evaporator, which could give rise to low heat transfer coefficient [fr

  3. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Royen Van, E.

    2011-11-01

    The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures T sat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m 2 s and heat fluxes from 15 to 70 kW/m 2 , typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then

  4. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 1. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaiahtsu 1981 nendo seika hokokusho. 1. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the super high performance heat pumps and elementary equipment, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to tests and evaluation of the pilot plant for the highly efficient type (for heating only), which produce the results of COP exceeding the target of 8; to tests of the anti-corrosion measures for the aluminum heat exchangers for the highly efficient type (for cooling and heating), by which the effective inhibitors are selected. The hybrid systems of the super high performance compression heat pumps and chemical heat storage are also studied in detail. The R and D efforts are directed to construction and operation of the hybrid heat pump system to collect underground heat for the high temperature type (utilizing low temperature heat source), which produce the results of confirming possibility of efficient heat collection for extended periods; and to improvement, construction on a trial basis and operation of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment, tests and evaluation are conducted for the EHD heat exchangers which use R123 as the new working fluid. (NEDO)

  5. Assessment of capability of models for prediction of pressure drop and dryout heat flux in a heat generating particulate debris bed

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Rashid, M.; Kulenovic, R.

    2009-01-01

    During a severe accident in a light water reactor, the core can melt and be relocated to the lower plenum of the reactor pressure vessel. There it can form a particulate debris bed due to the possible presence of water. This bed, if not quenched in time, can lead to the failure of the pressure vessel because of the insufficient heat removal of decay heat in the debris bed. Therefore, addressing the issue of coolability behaviour of heat generating particulate debris bed is of prime importance in the framework of severe accident management strategies, particularly in case of above mentioned late phase scenario of an accident. In order to investigate the coolability behaviour of particulate debris bed, experiments were carried out at IKE test facility 'DEBRIS' on particle beds of irregularly shaped particles mixed with spheres under top- and bottom-flooding condition. The pressure drop and dryout heat flux (DHF) were measured for top- and bottom-flooding conditions. For top-flooding conditions, it was found that the pressure gradients are all smaller than the hydrostatic pressure gradient of water, indicating an important role of the counter-current interfacial shear stress of the two-phase flow. For bottom-flooding with a relatively high liquid inflow velocity, the pressure gradient increases consistently with the vapour velocity and the fluid-particle drags become important. Also, with additional forced liquid inflow from the bottom, the DHF increases dramatically. In all the cases, it was found that the DHF is significantly larger with bottom-flooding condition compared to top-flooding condition. Different models such as Lipinski, Reed, Tung and Dhir, Hu and Theophanous, and Schulenberg and Mueller have been used to predict the pressure drop characteristics and the DHF of heat generating particulate debris beds. Comparison is made among above mentioned models and experimental results for DHF and pressure drop characteristics. Considering the overall trend in

  6. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Agostini, F.

    2008-07-01

    The complexity of the two-phase flow in a tube bundle presents important problems in the design and understanding of the physical phenomena taking place. The working conditions of an evaporator depend largely on the dynamics of the two-phase flow that in turn influence the heat exchange and the pressure drop of the system. A characterization of the flow dynamics, and possibly the identification of the flow pattern in the tube bundle, is thus expected to lead to a better understanding of the phenomena and to reveal on the mechanisms governing the tube bundle. Therefore, the present study aims at providing further insights into two-phase bundle flow through a new visualization system able to provide for the first time a view of the flow in the core of a tube bundle. In addition, the measurement of the light attenuation of a laser beam through the two-phase flow and measurement of the high frequency pressure fluctuations with a piezo-electric pressure transducer are used to characterize the flow. The design and the validation of this new instrumentation also provided a method for the detection of dry-out in tube bundles. This was achieved by a laser attenuation technique, flow visualization, and estimation of the power spectrum of the pressure fluctuation. The current investigation includes results for two different refrigerants, R134a and R236fa, three saturations temperatures T sat = 5, 10 and 15 °C, mass velocities ranging from 4 to 40 kg/sm² in adiabatic and diabatic conditions (several heat fluxes). Measurement of the local heat transfer coefficient and two-phase frictional pressure drop were obtained and utilized to improve the current prediction methods. The heat transfer and pressure drop data were supported by extensive characterization of the two-phase flow, which was to improve the understanding of the two-phase flow occurring in tube bundles. (author)

  7. Two-phase pressure drop and heat transfer of sodium at forced convection

    International Nuclear Information System (INIS)

    Grieb, G.

    1989-04-01

    Experiments with sodium for the two-phase pressure drop in vertical tubes with upward flow (internal diameters 6 and 9 mm) performed at the Joint Research Centre (JRC) of the European Communities in Ispra, Italy, and at the Nuclear Research Centre in Karlsruhe (KfK) were evaluated and analysed. Furthermore, experiments for the single-phase and two-phase heat transfer in the grid spaced twelve-rod bundle (p d /d =1.3, rod diameter 8 mm) with flow in axial direction performed at the JRC were evaluated and analysed. The pressure drop measurements were carried out at moderate to high mass flow rates (30 to 4500 kg/(m 2 s)) and at moderate pressures (50 to 300 kPa, density ratio ρ f /ρ g = 950 to 5400). The measurements for the single-phase heat transfer at high heat fluxes (0.16 to 1.6 MW/m 2 ) were carried out in the Reynolds number region (3100 2 s)) and at high heat fluxes (0.46 to 1.6 MW/m 2 ) within the temperature range from 870 to 970 0 C. For the subsequent calculation of the experiments relating to the two-phase pressure drop a computer program was developed, which is based on the so-called slip model. It requires a friction pressure loss correlation and a slip correlation. The tested correlations were not suitable for describing the experimental measurements. Accordingly, simplified equations of momentum were used to develop a new slip correlation for the case of annular flow together with the annular-mist flow, the most important two-phase flow regimes for sodium in the measurement range. After the inception of the entrainment - transition from the annular flow to the annular-mist flow - an even larger fraction of liquid enters the vapour core in the form of droplets, as the vapour quality increases. An equation was formulated for the slip in this region and adapted to the experiments via coefficients. (orig./GL) [de

  8. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Aly, Wael I.A.

    2014-01-01

    Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for

  9. Modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications

    International Nuclear Information System (INIS)

    Missirlis, D.; Yakinthos, K.; Storm, P.; Goulas, A.

    2007-01-01

    In the present work further numerical predictions for the flow field through a specific type of a heat exchanger, which is planned to be used in the exhaust nozzle of aircraft engines. In order to model the flow field through the heat exchanger, a porous medium model is used based on a simple quadratic relation, which connects the pressure drop with the inlet air velocity in the external part of the heat exchanger. The aim of this work is to check the applicability of the quadratic law in a variety of velocity inlet conditions configured by different angles of attack. The check is performed with CFD and the results are compared with new available experimental data for these inlet conditions. A detailed qualitative analysis shows that although the quadratic law has been derived for a zero angle of attack, it performs very well for alternative non-zero angles. These observations are very helpful since this simple pressure drop law can be used for advanced computations where the whole system of the exhaust nozzle together with the heat exchangers can be modeled within a holistic approach

  10. FY 1991 Report on research and development of super heat pump energy accumulation system. Construction and operation of the prototype system (Researches on systematization); 1981 nendo super heat pump energy shuseki system kenkyu kaihatsu seika hokokusho. System shisaku unten kenkyu (system ka kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This research and development program includes the conceptual designs of and simulation studies on the super heat pump energy accumulation systems, to realize 30,000 kW-class commercial-scale plant. The district air conditioning and hot water supply by the plant of the above size are studied for the domestic area, including houses, office buildings, commercial facilities, and accommodations. The results indicate that the system has both merits and demerits, and should be further investigated for improvement. The merits include reduced power consumption by the heat pump, because of its high efficiency, reduction in the running cost, and increased ratio of late-night power, and the demerits include increased power consumption by the pumps for the heat source, increased initial costs of the facilities, and increased space-related cost. The industrial plants studied for application of the super heat pump energy accumulation system are those for production of corn starch, distilled sake and diary products. The other items studied include analysis/evaluation of economic distance for carrying heat source water, and improvement of simulator functions. (NEDO)

  11. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  12. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    Science.gov (United States)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  13. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  14. Multidimensional simulations of fuel rod appendage effects on pressure drop and heat transfer in an annulus flow

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Leung, J.C.H.; Bromley, B.P.

    1992-10-01

    The general purpose computational fluid dynamics code, Harwell-FLOW3D, has been used to simulate the effects of fuel rod obstructions on pressure drop and heat transfer in single phase turbulent flows in a concentric annular channel. The results of two and three dimensional simulations are reported for obstructions approximating the geometry of bearing pads used in 37 element CANDU fuel bundles. Pressure drop penalty and augmentation of heat transfer have been quantified and correlated with the obstruction geometrical parameters and the dimensionless numbers representing operating conditions. The predicted effects on pressure drop have been compared with several experimental correlations, yielding good agreement. The methodology presented offers results that can be used directly as input into thermalhydraulic analyses in subchannel and system codes. (Author) (23 figs., 15 refs.)

  15. Numerical analysis on the condensation heat transfer and pressure drop characteristics of the horizontal tubes of modular shell and tube-bundle heat exchanger

    International Nuclear Information System (INIS)

    Ko, Seung Hwan; Park, Hyung Gyu; Kim, Charn Jung; Park, Byung Kyu

    2001-01-01

    A numerical analysis of the heat and mass transfer and pressure drop characteristics in modular shell and tube bundle heat exchanger was carried out. Finite concept method based on FVM and κ-ε turbulent model were used for this analysis. Condensation heat transfer enhanced total heat transfer rate 4∼8% higher than that of dry heat exchanger. With increasing humid air inlet velocity, temperature and relative humidity, and with decreasing heat exchanger aspect ratio and cooling water velocity, total heat and mass transfer rate could be increased. Cooling water inlet velocity had little effect on total heat transfer

  16. Heat transfer test in a vertical tube using CO2 at supercritical pressures

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Kim, Hyungrae; Song, Jin Ho; Cho, Bong Hyun; Bae, Yoon Yeong

    2007-01-01

    Heat transfer test facility, SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt Generation), was constructed at KAERI (Korea Atomic Energy Research Institute) for an investigation of the thermal-hydraulic behaviors of supercritical CO 2 at the various geometries of the test section. The test data will be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). As a working fluid, CO 2 was selected to make use of the low critical pressure and temperature of CO 2 compared with water. An experimental study was carried out in the SPHINX to investigate the characteristics of heat transfer and pressure drop at a vertical single tube with an inside diameter of 4.4 mm in case of an upward flow of supercritical CO 2 . The heat and mass fluxes were varied at a given pressure. The mass flux was in the range of 400-1,200 kg/m 2 s and the heat flux was chosen up to 150 kW/m 2 . The selected pressures were 7.75, 8.12, and 8.85 MPa. A heat transfer deterioration occurred at the lower mass fluxes. The experimental heat transfer coefficients were compared with the ones predicted by several existing correlations. The standard deviation was about 20% for each correlation and an apparent discrepancy was not found among the correlations. The major components of the pressure drop were a gravitational pressure drop and a frictional pressure drop. The frictional pressure drop increases as the mass flux and heat flux increase. (author)

  17. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    International Nuclear Information System (INIS)

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-01-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO 2 ) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO 2 Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO 2 Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO 2 flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  18. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  19. Multiscale modification of the conductive PEDOT:PSS polymer for the analysis of biological mixtures in a super-hydrophobic drop

    KAUST Repository

    Coppedè, Nicola

    2016-03-18

    Conducting polymers are materials displaying high electrical conductivity, easy of fabrication, flexibility and biocompatibility, for this, they are routinely employed in organic electronics, printed electronics, and bioelectronics. Organic electrochemical transistors (OECTs) are a second generation of organic thin transistors, in which the insulator layer is an electrolyte medium and the conductive polymer is electrochemically active. OECT devices have been demonstrated in chemical and biological sensing: while accurate in determining the size of individual ions in solution, similar devices break down if challenged with complex mixtures. Here, we combine a conductive PEODOT:PSS polymer with a super-hydrophobic scheme to obtain a family of advanced devices, in which the ability to manipulate a biological solution couples to a precise texture of the substrate (which incorporates five micro-electrodes in a line, and each is a site specific measurement point), and this permits to realize time and space resolved analysis of a solution. While the competition between convection and diffusion in a super-hydrophobic drop operates the separation of different species based on their size and charge, the described device delivers the ability to register a similar difference. In the following, we demonstrate the device in the sensing of a solution in which CTAB and adrenaline are separated with good sensitivity, selectivity and reliability.

  20. Multiscale modification of the conductive PEDOT:PSS polymer for the analysis of biological mixtures in a super-hydrophobic drop

    KAUST Repository

    Coppedè , Nicola; Ferrara, Lorenzo; Bifulco, Paolo; Villani, Marco; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    Conducting polymers are materials displaying high electrical conductivity, easy of fabrication, flexibility and biocompatibility, for this, they are routinely employed in organic electronics, printed electronics, and bioelectronics. Organic electrochemical transistors (OECTs) are a second generation of organic thin transistors, in which the insulator layer is an electrolyte medium and the conductive polymer is electrochemically active. OECT devices have been demonstrated in chemical and biological sensing: while accurate in determining the size of individual ions in solution, similar devices break down if challenged with complex mixtures. Here, we combine a conductive PEODOT:PSS polymer with a super-hydrophobic scheme to obtain a family of advanced devices, in which the ability to manipulate a biological solution couples to a precise texture of the substrate (which incorporates five micro-electrodes in a line, and each is a site specific measurement point), and this permits to realize time and space resolved analysis of a solution. While the competition between convection and diffusion in a super-hydrophobic drop operates the separation of different species based on their size and charge, the described device delivers the ability to register a similar difference. In the following, we demonstrate the device in the sensing of a solution in which CTAB and adrenaline are separated with good sensitivity, selectivity and reliability.

  1. Pressure drop and heat transfer characteristics for single-phase developing flow of water in rectangular microchannels

    International Nuclear Information System (INIS)

    Mirmanto; Kenning, D B R; Lewis, J S; Karayiannis, T G

    2012-01-01

    Experiments were conducted to investigate the pressure drop and heat transfer characteristics of single-phase flow of de-ionized water in single copper microchannels of hydraulic diameters 0.438 mm, 0.561 mm and 0.635 mm. The channel length was 62 mm. The experimental conditions covered a range of mass flux from 500 to 5000 kg/m 2 s in the laminar, transitional and low Reynolds number turbulent regimes. Pressure drop was measured for adiabatic flows with fluid inlet temperatures of 30°C, 60°C and 90°C. In the heat transfer tests, the heat flux ranged from 256 kW/m 2 to 519 kW/m 2 . Friction factors and Nusselt numbers determined from the measurements were higher than for fully-developed conditions, but in reasonable agreement with predictions made using published solutions for hydrodynamically and thermally developing flow. When entrance effects, experimental uncertainties, heat losses, inlet and exit losses, thermal boundary conditions and departure from laminar flow were considered, the results indicate that equations developed for flow and heat transfer in conventional size channels are applicable for water flows in microchannels of these sizes.

  2. Fatigue crack propagation behavior and acoustic emission characteristics of the heat affected zone of super duplex stainless steel

    International Nuclear Information System (INIS)

    Do, Jae Yoon; Kim, Jin Hwan; Ahn, Seok Hwan; Park, In Duck; Kang, Chang Yong; Nam, Ki Woo

    2002-01-01

    Because duplex stainless steel shows the good strength and corrosion resistance properties, the necessity of duplex stainless steel, which has long life in severe environments, has been increased with industrial development. The fatigue crack propagation behavior of Heat Affected Zone(HAZ) has been investigated in super duplex stainless steel. The fatigue crack propagation rate of HAZ of super duplex stainless steel was faster than that of base metal of super duplex stainless steel. We also analysed acoustic emission signals during the fatigue test with time-frequency analysis method. According to the results of time-frequency analysis, the frequency ranges of 200-400 kHz were obtained by striation and the frequency range of 500 kHz was obtained due to dimple and separate of inclusion

  3. Heat transfer and pressure drop during flow boiling of R407C; Waermeuebergang und Druckverlust beim Stroemungssieden von R407C

    Energy Technology Data Exchange (ETDEWEB)

    Rollmann, Philipp; Spindler, Klaus [Stuttgart Univ. (DE). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2011-10-15

    The heat transfer and pressure drop during flow boiling of R407C in a horizontal microfin tube have been investigated. The measured heat transfer coefficient is compared with the correlations of Liu and Winterton as well as Cavallini et al. The measured pressure drop is compared with the correlations of Kuo and Wang as well as Mueller-Steinhagen and Heck. (orig.)

  4. A new method to calculate pressure drop and shell-side heat transfer coefficient in a shell-and-tube heat exchanger

    International Nuclear Information System (INIS)

    Baptista Filho, B.D.; Konuk, A.A.

    1981-01-01

    A new method to calculate pressure drop (Δp) and shell-side heat transfer coefficient (h sub(c)) in a shell-and-tube heat exchanger with segmental baffles is presented. The method is based on the solution of the equations of conservation of mass and momentum between two baffles. The calculated distributions of pressure and velocities given respectively, Δp and h sub(c). The values of Δp and h sub(c) are correlated for a given geometry whit the shell side fluid properties and flow rate. The calculated and experimental results agree very well for a U-Tube heat exchanger. (Author) [pt

  5. Effects of microscale inertia on heat or mass transfer from a drop

    Science.gov (United States)

    Krishnamurthy, Deepak; Subramanian, Ganesh

    2012-11-01

    Heat or mass transport from suspensions of solid particles or drops is ubiquitous in many industrial processes. In the zero inertia limit the transport is diffusion limited owing to the presence of closed streamlines around each particle. A small but finite amount of inertia though, results in a vastly different picture, greatly enhancing transport by destroying the closed streamline configuration. We develop a theoretical formulation to study the effects of weak inertia on transport from a density-matched drop in a 2D linear flow. It is shown that, unlike a solid particle, the near-surface streamlines are closed only when the viscosity ratio (λ) exceeds a critical value λc = 2 α / (1- α) , where α is the linear flow parameter measuring relative magnitudes of extension and vorticity. The velocity field on the drop surface can be characterized using a complex-valued analogue of the (C, τ) coordinate system used to describe Jeffrey orbits of an axisymmetric particle. In the open-streamline case (λ λ c) , similar to the solid particle, inertia plays a crucial role, and the Nusselt number must scale as G(α, λ)Re1/2Pe1/2. A methodology is developed to analyze the convection along spiraling streamlines using a physically motivated choice of coordinate system on the drop surface.

  6. Heat transfer and pressure drop characteristics of a plate heat exchanger using water based Al2O3 nanofluid for 30° and 60° chevron angles

    Science.gov (United States)

    Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.

    2018-04-01

    Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.

  7. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo

    1996-01-01

    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  8. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    Science.gov (United States)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  9. Flow instability research on steam generator with straight double-walled heat transfer tube for FBR. Pressure drop under high pressure condition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Yoshida, Hiroyuki; Takase, Kazuyuki; Hayafune, Hiroki; Futagami, Satoshi; Kisohara, Naoyuki

    2008-01-01

    For the Steam Generator (SG) with straight double-walled heat transfer tube that used in sodium cooled Faster Breeder Reactor, flow instability is one of the most important items need researching. As the first step of the research, thermal hydraulics experiments were performed under high pressure condition in JAEA with using a straight tube. Pressure drop, heat transfer coefficients and void fraction data were derived. This paper evaluates the pressure drop data with TRAC-BF1 code. The Pffan's correlation for single phase flow and the Martinelli-Nelson's two-phase flow multiplier are found can be well predicted the present pressure drop data under high pressure condition. (author)

  10. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  11. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  12. Heat transfer and pressure drop for air-water mixtures in an isoflux vertical annulus

    International Nuclear Information System (INIS)

    Khattab, M.; El-Sallak, M.; Morcos, S.M.; Salama, A.

    1996-01-01

    Heat transfer and pressure drop in flows of air-water mixtures have been investigated experimentally in an isoflux vertical annulus. The superficial liquid Reynolds number, as a reference parameter, varied from 4500 to 30 000, at different values of gas-to-liquid superficial velocity ratios up to 20 and surface heat fluxes from 50 to 240 kW/m 2 . Enhancement of the two-phase heat transfer coefficient is pronounced particularly at low liquid superficial velocities. The results are correlated and compared with some models of two-phase, two-component flows for air-water mixtures within their range of validity. Satisfactory agreement is obtained from the trend of the experimental data. (orig.) [de

  13. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    Science.gov (United States)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  14. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected...... as the working fluids. The heat transfer coefficients and pressure drops of the three working fluids were measured with varying saturation temperatures, mass fluxes, heat fluxes and outlet vapour qualities, which range from 60°C to 80°C, 86 kg/m2 s to 137 kg/m2 s, 9.8 kW/m2 to 36.8 kW/m2 and 0.5 to 1...... developed that are more suitable for evaporation in organic Rankine cycles. The experimental results indicate that heat transfer coefficients are strongly dependent upon the heat flux and saturation temperature. Moreover, the results suggest better thermal-hydraulic performance for R1234yf than the other...

  15. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition

    Science.gov (United States)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki

    2017-11-01

    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  16. Enthalpy measurement of lithium meta-titanate by drop calorimetry and its derived heat capacity

    International Nuclear Information System (INIS)

    Ishioka, Rika; Mukai, Keisuke; Terai, Takayuki; Suzuki, Akihiro

    2013-01-01

    Highlights: • Li 2 TiO 3 was synthesized by a neutralizing method. • Enthalpy of Li 2 TiO 3 was measured by a drop calorimeter. • Heat capacity of Li 2 TiO 3 was derived as a function of temperature. -- Abstract: Enthalpy of Li 2 TiO 3 , which was synthesized by a neutralizing method and its Li/Ti ratio was determined to be Li/Ti ratio (mol/mol) = 1.97, was measured by a drop calorimeter, and its heat capacity was derived as a function of temperature. XRD (X-ray diffraction) analysis of the sample before and after the enthalpy measurement indicated no phase change during the measurement and a single phase of Li 2 TiO 3 was observed. The enthalpy data were expressed as H(T) − H(323.17) (J/g) = 2.2 × 10 −5 ·T 2 + 1.4·T + 2.7 × 10 4 /T − 5.6 × 10 2 (373–1273 K), where T is temperature in K. The heat capacity was calculated as C p (J/g K) = 2.2 × 2 × 10 −5 ·T + 1.4–2.7 × 10 4 /T 2 by differentiating the equation by temperature. These equations have accuracy of 3%

  17. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  18. An experimental study of heat transfer and pressure drop of two-phas flow in an inclined annular channel

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mariy, A.H.; Hilal, M.M.; El-Morshdy, S.E.

    1999-01-01

    The phenomena of two-phase flow through horizontal, vertical and inclined tubes has many engineering applications in heat exchangers, boilers, nuclear reactors, steam generators and refrigerators..etc. In the present investigation, two-phase flow heat transfer and pressure drop have been experimentally studied at different orientations of an annular channel test section subjected to uniform heat flux. The annular test section was internally heated by a DC power supply. The experimental investigation has been classified onto three steady state groups of (heat flux, mass flux, and inlet temperature). The first group was at 522.41 kw/m 2 , 310 kg/m 2 s and 89.4 degree C; the second was at 779.72 kw/m 2 , 507 Hg/m 2 s and 94.3 degree C and the third was at 1019.97 kw/m 2 s 701 kg/m 2 100 degree C. The effect of inclination on the two-phase heat transfer coefficient and pressure drop are presented and discussed. The present experimental results are compared with some existing correlations for two phase flow boiling heat transfer in horizontal and vertical tubes at their range of validity. The comparison shows a good agreement. The behavior of the two-phase mean heat transfer coefficient shows a small enhancement due to inclination from horizontal to vertical orientation. The enhancement factor relating the two-phase heat transfer coefficient with the inclination angle is predicted

  19. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method.

    Science.gov (United States)

    Kim, Kwan-Woo; Lee, Hye-Min; An, Jeong-Hun; Chung, Dong-Chul; An, Kay-Hyeok; Kim, Byung-Joo

    2017-12-01

    In order to manufacture high quality recycled carbon fibers (R-CFs), carbon fiber-reinforced composite wastes were pyrolysed with super-heated steam at 550 °C in a fixed bed reactor for varying reaction times. The mechanical and surface properties of the R-CFs were characterized with a single fiber tensile test, interface shear strength (IFSS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The surface analysis showed that there was no matrix char residue on the fiber surfaces. The tensile strength and IFSS values of the R-CFs were 90% and 115% compared to those of virgin carbon fibers (V-CFs), respectively. The recycling efficiency of the R-CFs from the composites were strongly dependent on the pyrolysis temperature, reaction time, and super-heated steam feeding rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modification of heating system on HeaTiNG-02 test section of beta test loop

    International Nuclear Information System (INIS)

    Sagino; Dedy Haryanto; Riswan Djambiar; Edy Sumarno

    2013-01-01

    Modifications have been carried out on the heating test section heating-02 on the integration strand Beta Test (UUB). The activities carried out to overcome the obstacles that arise in the test section when used. Constraint that often arises is the fall of the heating source super chantal when it reaches a certain temperature. To mitigate the super chantal is initially converted into a horizontal vertical position. Change from vertical to horizontal position on super chantal aims to stabilize the position of super chantal, so it needs to be modified in the heating system. Modification activities include manufacturing, installation and testing of super chantal and refractory stone as super chantal support. Manufacturing refractory stone formation and assembly into the heater in accordance with design modifications that have been done in electromechanical workshop obtained using some machine tools. Testing results of fabrication has been done by providing voltage 110 volts until it reaches operating temperature 400°C. Test results obtained super chantal stable position when it reaches operating temperature, and heater of heating-02 test section feasible to be used for experiments. (author)

  1. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    Science.gov (United States)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  2. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  3. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 2. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 2. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the chemical heat storage techniques and plant simulation, for R and D of the super heat pump energy accumulation system. For R and D of the chemical heat storage techniques, the R and D efforts are directed to the researches on the fundamental reactions and continuous exothermic reactions involved for the high temperature heat storage type (utilizing the metathesis reactions); researches on the physical properties, heat storage systems, solid-phase reactions, liquid-phase reactors, corrosion of the materials, and so on for the high temperature heat storage type (utilizing ammonia complex); collection of the data related to media and structural materials, tests of the elementary equipment for the absorption and hydration reactions, and so on for the high temperature heat storage type (chemical heat storage utilizing hydration); researches on the media properties and system performance, tests of equipment, and so on for the high temperature heat storage type (heat storage/heating utilizing solvation); researches on the heat storage media, heat storage techniques, corrosion of the materials, systems, and so on for the low temperature heat storage type (utilizing the hydration reactions by mixing solutes); and researches on the media, corrosion and elementary equipment, optimization of the system, and so on for the low temperature heat storage type (clathrate low temperature heat storage systems). (NEDO)

  4. Heat transfer and pressure drop in a tube bank inclined with respect to the flow

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Moreno, A.A.

    1985-01-01

    This research is intended to lend understanding and to quantify the heat-transfer and fluid-flow characteristics for yawed tube banks in both staggered and in-line arrays. The investigated range of yaw angle was from 90 (crossflow) to 45/sup 0/, while the freestream Reynolds number (based on the tube diameter) ranged between 7000 and 45,000. The transverse and longitudinal center-to-center distances between the tubes were S/sub T//D = S/sub L//D = 2, respectively. The heat-transfer experiments were carried out on a row-by-row basis. Pressure drop measurements were made not only upstream and downstream of the tube bank but also within it. The patterns of fluid flow adjacent to the tubes were visualized using the oil-lampblack technique. A detailed study was carried out to determine the heat-transfer characteristics of a yawed single cylinder. The yaw angle range was between 90 and 30/sup 0/, and flow visualization was also performed. The pressure measurements showed that the overall dimensionless pressure drop for the staggered array is higher than that for the in-line array for a given Reynolds number or yaw. The flow-visualization patterns showed that the boundary layer separation depends on the yaw angle. For the single cylinder, the Nusselt number varied with the yaw angle in an undulating manner and did not correlate with the Independence Principle.

  5. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005)

    OpenAIRE

    Xu, Hongxiong

    2015-01-01

    Three to four tropical cyclones (TCs) by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC) version of the Hurricane WRF (HWRF) model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the ...

  6. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution.

    Science.gov (United States)

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Shen, Zexiang; Zheludev, Nikolay I

    2014-03-24

    Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

  7. The effect of surface roughness on the heat exchange and pressure-drop coefficients

    International Nuclear Information System (INIS)

    Malherbe, J.M.

    1963-02-01

    The effect of various types of roughness on the wall of an axial tube in an annular space of 15-25 mm cooled by an air-flow has been studied in the case of steady turbulence. Roughness of the type 'disrupter of the boundary layer' was set up using triangular threads of 0.2 to 0.4 mm thickness machined in the tube itself, or brass or glass wire wound on a smooth tube. Tests were also carried out using the roughness provided by regularly spaced pyramids 0.4 mm high. The results obtained showed that the heat exchange increased because of the presence of this roughness. A maximum in the heat exchange and pressure-drop coefficients was observed when the pitch equals about eight times the height of the thread. An analytical method has been developed and experiments have been carried out in which the two walls of the annular space were heated in such a way as to transmit unequal heat flows. The region considered is limited to Reynolds's numbers of between 5 X 10 3 and 5 x 10 4 and wall temperatures of under 250 deg C. (author) [fr

  8. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  9. Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid

    International Nuclear Information System (INIS)

    Mirabdolah Lavasani, Arash; Bayat, Hamidreza

    2016-01-01

    Highlights: • Flow around non-circular and circular shaped tube bank is studied. • Effect of using Al_2O_3-water nanofluid on flow and heat transfer is discussed. • Tubes are with in-line and staggered arrangement. • Pressure drop of non-circular tube is noticeably lower that circular tube. - Abstract: Flow and heat transfer of nanofluid inside circular and cam-shaped tube bank is studied numerically. Reynolds number for cam-shaped tube bank is defined based on equivalent diameter of circular tube and varies in range of 100 ⩽ Re_D ⩽ 400. Nanofluid is made by adding Al_2O_3 nanoparticle with volume fraction of 1–7% to pure water. Results show using nanofluid results in higher heat transfer rate for both circular tube bank and cam-shaped tube bank. Also, staggered arrangement has higher heat transfer for both circular and cam-shaped tube bank. Pressure drop from cam-shaped tube bank is substantially lower than circular tube bank for all range of Reynolds number and volume fraction.

  10. Steam generator development in France for the Super Phenix project; Generateurs de vapeur developpes en France pour Super Phenix

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M G

    1975-07-01

    'Steam Generator Development for Super Phenix Project'. The development program of steam generators studied by Fives-Cail Babcock and Stein Industrie Companies, jointly with CEA end EDF, for the Super Phenix 1200 MWe Fast Breeder Power Plant, is presented. The main characteristics of both sodium heated steam generators are emphasized and experimental studies related to their key features are reported. (author)

  11. Investigation of the pressure drop inside a rectangular channel with a built-in U-shaped tube bundle heat exchanger

    Directory of Open Access Journals (Sweden)

    Xi-yue Liu

    2017-01-01

    Full Text Available A simplified approach which utilizes an isotropic porous medium model has been widely adopted for modeling the flow through a compact heat exchanger. With respect to situations where the compact heat exchangers are partially installed inside a channel, such as the application of recuperators in an intercooled recuperative engine, the use of an isotropic porous medium model needs to be carefully assessed because the flow passing through the heat exchanger is very complicated. For this purpose, in this study the isotropic porous medium model is assessed together with specific pressure–velocity relationships for flow field modeling inside a rectangular channel with a built-in double-U-shaped tube bundle heat exchanger. Firstly, experiments were conducted using models to investigate the relationship between the pressure drop and the inlet velocity for a specific heat exchanger with different installation angles inside a rectangular channel. Secondly, a series of numerical computations were carried out using the isotropic porous medium model and the pressure–velocity relationship was then modified by introducing correction coefficients empirically. Finally, a three-dimensional (3-D direct computation was made using a computational fluid dynamics (CFD method for the comparison of detailed flow fields. The results suggest that the isotropic porous medium model is capable of making precise pressure drop predictions given the reasonable pressure–velocity relationship but is unable to precisely simulate the detailed flow features.

  12. Results of studying of turbulent heat transfer deterioration and their application for development of engineering methods of calculation of heat transfer and pressure drop in supercritical-pressure coolant flow

    International Nuclear Information System (INIS)

    Vladimir A Kurganov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: Using of the supercritical-pressure (SCP) water as a working medium is an apparent way to increase specific capacity and economic efficiency of nuclear power installations. Nevertheless, to provide safe operation of SCP nuclear power units, it is necessary to considerably improve reliability and accuracy of calculations of pressure drop and heat transfer in the SCP working media and coolants flows and the methods of forecasting such a dangerous phenomenon as deterioration of the turbulent heat transfer at a certain level of heat flux density. A value of the latter changes within a very large range depending on the specific conditions of the process under consideration. In the paper, the main results of the experimental study of heat transfer, pressure drop, and velocity and temperature fields in both upward and downward flows of the SCP CO 2 in tubes are considered. This study was conducted at OIVT RAN under conditions of heat input and embraced the regimes of normal and deteriorated heat transfer as well. On the basis of this data, the concept regarding to physical mechanism of incipience of the regimes of deteriorated heat transfer was developed. Classification of different modes of heat transfer deterioration in vertical channels is proposed. A degree of a danger of certain regimes is assessed. It is shown that the above phenomenon is caused by transformation of the structure of nonisothermal flow of SCP fluid due to changes in proportions between the forces acting upon a flow, specifically, because of an increase in the inertia forces due to thermal acceleration of a flow and/or in Archimedes' (buoyancy) forces up to the level comparable or higher than that of friction forces. The efficiency of the most thorough correlations for calculating normal and deteriorated heat transfer in flows of SCP water and CO 2 is analyzed. Reliability of existed recommendations to determine boundaries of normal heat transfer regimes is considered

  13. Efficacy of bi-component cocrystals and simple binary eutectics screening using heat of mixing estimated under super cooled conditions.

    Science.gov (United States)

    Cysewski, Piotr

    2016-07-01

    The values of excess heat characterizing sets of 493 simple binary eutectic mixtures and 965 cocrystals were estimated under super cooled liquid condition. The application of a confusion matrix as a predictive analytical tool was applied for distinguishing between the two subsets. Among seven considered levels of computations the BP-TZVPD-FINE approach was found to be the most precise in terms of the lowest percentage of misclassified positive cases. Also much less computationally demanding AM1 and PM7 semiempirical quantum chemistry methods are likewise worth considering for estimation of the heat of mixing values. Despite intrinsic limitations of the approach of modeling miscibility in the solid state, based on components affinities in liquids under super cooled conditions, it is possible to define adequate criterions for classification of coformers pairs as simple binary eutectics or cocrystals. The predicted precision has been found as 12.8% what is quite accepted, bearing in mind simplicity of the approach. However, tuning theoretical screening to such precision implies the exclusion of many positive cases and this wastage exceeds 31% of cocrystals classified as false negatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    Science.gov (United States)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  15. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  16. FY 1991 Report on research and development of super heat pump energy accumulation system. Material for explanation (Construction and operation of the prototype system - researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. Setsumei shiryo (system shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the super heat pump energy accumulation system, obtained from FY 1985 to 1991. For R and D of the super high performance compression heat pumps, the R and D results of the elementary techniques and bench and pilot plant operation are summarized for the highly efficient type (for heating) and highly efficient type (for cooling and heating), and high temperature type (utilizing high temperature heat source) and high temperature type (utilizing low temperature heat source). Described are patent application list, designated know-hows, and conclusions. For the elementary equipment and working fluids, the R and D results are summarized for the evaporators for mixed solvents, EHD condensers, and working fluids (alcohol-based fluids and application characteristics of new fluids) and working fluids (nonalcohol-based fluids and basic properties of new fluids). For the chemical heat storage techniques, the R and D results are summarized for the high temperature heat storage type (utilizing metathesis reactions, ammonia complexes and hydration reactions), and low temperature heat storage type (utilizing clathrates, hydration by solute mixing and solvation). (NEDO)

  17. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  18. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  19. Sigma phase morphologies in cast and aged super duplex stainless steel

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2009-01-01

    Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material's impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 deg. C and 980 deg. C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 deg. C and block-shaped when heat treated at 980 deg. C.

  20. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    Science.gov (United States)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  1. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  2. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  3. Development of a Super-Pressure Balloon with an Improved Design

    Science.gov (United States)

    Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya

    A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.

  4. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  5. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  6. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    International Nuclear Information System (INIS)

    Kim, Man Bae; Park, Chang Yong

    2017-01-01

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f F 1 /3 ) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f F 1 /3 ), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  7. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  8. The dynamics of Leidenfrost drops

    OpenAIRE

    van Limbeek, Michiel Antonius Jacobus

    2017-01-01

    Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent heat of evaporation. In the context of spray cooling, liquid drops are impacting a hot plate to ensure a rapid cooling. At some temperature however, no contact occurs between the liquid and the plate, and the heat transfer rate ...

  9. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  10. A novel approach to the island of stability of super-heavy elements search

    Directory of Open Access Journals (Sweden)

    Wieloch A.

    2016-01-01

    Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.

  11. Steam generator development in France for the Super Phenix project

    International Nuclear Information System (INIS)

    Robin, M.G.

    1975-01-01

    'Steam Generator Development for Super Phenix Project'. The development program of steam generators studied by Fives-Cail Babcock and Stein Industrie Companies, jointly with CEA end EDF, for the Super Phenix 1200 MWe Fast Breeder Power Plant, is presented. The main characteristics of both sodium heated steam generators are emphasized and experimental studies related to their key features are reported. (author)

  12. Verification of SuperMC with ITER C-Lite neutronic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shu [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Yu, Shengpeng [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); He, Peng, E-mail: peng.he@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-12-15

    Highlights: • Verification of the SuperMC Monte Carlo transport code with ITER C-Lite model. • The modeling of the ITER C-Lite model using the latest SuperMC/MCAM. • All the calculated quantities are consistent with MCNP well. • Efficient variance reduction methods are adopted to accelerate the calculation. - Abstract: In pursit of accurate and high fidelity simulation, the reference model of ITER is becoming more and more detailed and complicated. Due to the complexity in geometry and the thick shielding of the reference model, the accurate modeling and precise simulaion of fusion neutronics are very challenging. Facing these difficulties, SuperMC, the Monte Carlo simulation software system developed by the FDS Team, has optimized its CAD interface for the automatic converting of more complicated models and increased its calculation efficiency with advanced variance reduction methods To demonstrate its capabilites of automatic modeling, neutron/photon coupled simulation and visual analysis for the ITER facility, numerical benchmarks using the ITER C-Lite neutronic model were performed. The nuclear heating in divertor and inboard toroidal field (TF) coils and a global neutron flux map were evaluated. All the calculated nuclear heating is compared with the results of the MCNP code and good consistencies between the two codes is shown. Using the global variance reduction methods in SuperMC, the average speed-up is 292 times for the calculation of inboard TF coils nuclear heating, and 91 times for the calculation of global flux map, compared with the analog run. These tests have shown that SuperMC is suitable for the design and analysis of ITER facility.

  13. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    Science.gov (United States)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  14. Super-Gaussian transport theory and the field-generating thermal instability in laser–plasmas

    International Nuclear Information System (INIS)

    Bissell, J J; Ridgers, C P; Kingham, R J

    2013-01-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser–plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density n e , which we associate with a novel heat-flow q n ∝∇n e . Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇T e × ∇n e field generation mechanism by ∼30% (where T e is the electron temperature), and the diffusive and Righi–Leduc heat-flows by ∼80 and ∼90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux q n are checked against kinetic simulation using the Vlasov–Fokker–Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields. (paper)

  15. Super-Gaussian transport theory and the field-generating thermal instability in laser-plasmas

    Science.gov (United States)

    Bissell, J. J.; Ridgers, C. P.; Kingham, R. J.

    2013-02-01

    Inverse bremsstrahlung (IB) heating is known to distort the electron distribution function in laser-plasmas from a Gaussian towards a super-Gaussian, thereby modifying the equations of classical transport theory (Ridgers et al 2008 Phys. Plasmas 15 092311). Here we explore these modified equations, demonstrating that super-Gaussian effects both suppress traditional transport processes, while simultaneously introducing new effects, such as isothermal (anomalous Nernst) magnetic field advection up gradients in the electron number density ne, which we associate with a novel heat-flow qn∝∇ne. Suppression of classical phenomena is shown to be most pronounced in the limit of low Hall-parameter χ, in which case the Nernst effect is reduced by a factor of five, the ∇Te × ∇ne field generation mechanism by ˜30% (where Te is the electron temperature), and the diffusive and Righi-Leduc heat-flows by ˜80 and ˜90% respectively. The new isothermal field advection phenomenon and associated density-gradient driven heat-flux qn are checked against kinetic simulation using the Vlasov-Fokker-Planck code impact, and interpreted in relation to the underlying super-Gaussian distribution through simplified kinetic analysis. Given such strong inhibition of transport at low χ, we consider the impact of IB on the seeding and evolution of magnetic fields (in otherwise un-magnetized conditions) by examining the well-known field-generating thermal instability in the light of super-Gaussian transport theory (Tidman and Shanny 1974 Phys. Fluids 12 1207). Estimates based on conditions in an inertial confinement fusion (ICF) hohlraum suggest that super-Gaussian effects can reduce the growth-rate of the instability by ≳80%. This result may be important for ICF experiments, since by increasing the strength of IB heating it would appear possible to inhibit the spontaneous generation of large magnetic fields.

  16. Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning; Prelaz toplote i pad pritiska reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem

    Energy Technology Data Exchange (ETDEWEB)

    Oka, S; Becirspahic, S [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1964-06-15

    Heat transfer and pressure drop of the reactor fuel element with polyzonal spiral finning were investigated. Longitudinal and circumferential distributions of Sr-number of finnings in the fuel element are given. Dependences of St{sub kmin} and St{sub ksr} on the Re number are derived. The influence of gap between two fuel elements on the heat transfer, pressure drop is presented dependent on the Re number. The influence of mutual position of flow separators of two neighbouring fuel elements on the pressure drop and heat transfer is shown as well. Investigations were performed in the range of Re numbers from 15000 to 100000. Ispitivan je prelaz toplote i pad pritiska modela reaktorskog gorivnog elementa sa polizonalno-spiralnim orebrenjem. Dat je uzduznu i obimni raspored Sr-broja na orebrenju gorivnog elementa. Izvedene su zavisnosti St{sub kmin} i St{sub ksr} u funkciji od Re-broja. Pokazan je uticaj prekida izmedju dva gorivna elementa na prelaz toplote i pad pritiska u zavisnosti od Re-broja. Pokazan je uticaj medjusobnog polozaja razdeljivaca struje dva susedna gorivna elementa na pad pritiska i prelaz toplote. Ispitivanja su vrsena u oblasti Re-brojeva od 15000 do 100000 (author)

  17. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    International Nuclear Information System (INIS)

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  18. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  19. Carbon Dioxide Absorption Heat Pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  20. Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows

    International Nuclear Information System (INIS)

    Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.

    1983-01-01

    The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase

  1. Studies of the Super VELO

    CERN Document Server

    AUTHOR|(CDS)2156302

    2016-01-01

    The Super VELO is the Run 5 upgrade of the VeloPix detector of the LHCb experiment. Its most challenging task is to cope with a luminosity increase of the factor 10. This study examines the potential physics performance of a detector based on the VeloPix design at high luminosity conditions. It is found that an unmodified VeloPix detector shows poor performance when exposed to 10x design luminosity, most gravely high ghost rates of 40 %. When applying basic assumptions about material changes such as cutting the silicon thickness by half and removing the RF foil, the ghost rate drops by 20 %. When using thin silicon and re-optimizing the tracking algorithm, the ghost rate can even be reduced by 60 %. Applying the additional modification of a pixel area size four times smaller, the ghost rate drops by 88 % and the IP resolution improves. Finally, in a dream scenario with thin silicon, smaller pixels and no RF foil, big gains in resolution and a ghost rate of less than 4 % can be achieved.

  2. Comparison of wet and dry heat transfer and pressure drop tests of smooth and rough corrugated PVC packing in cooling towers

    International Nuclear Information System (INIS)

    Goshayeshi, H.R.; Missenden, J.F.

    1998-01-01

    This paper presents the results of an experimental investigation of the performance of a cooling tower with PVC packing. The following were examined; the effect of surface roughness, the effect of the angle of roughness and the effect of packing spacing. The investigation was divided into two parts: comparison of film heat transfer with air pressure drop, without water circulation and comparison of enthalpy change and pressure drop in the model cooling tower, with circulation of water. Seven commercial packing were investigated, covering a size range of 1.1< P/D<1.70 and 1≤p/e≤5 and a discussion of the dimensionless correlation resulting is given

  3. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  4. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  5. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  6. Comparative study of heat transfer and pressure drop during flow boiling and flow condensation in minichannels

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2014-09-01

    Full Text Available In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.

  7. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  8. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...

  9. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    Science.gov (United States)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  10. Transfer laws between water and freon 113 for average volumetric steam quality, pressure drop, and critical heat flux

    International Nuclear Information System (INIS)

    Nabizadeh, H.

    1977-01-01

    Simulation of the thermohydraulic processes of the steady-state reactor operation with boiling water and typical fuel element geometries leads to considerable increase of the heat rates to be tranferred and thus to an increase of the experimental cost which can hardly be justified. By proper choice of a model fluid with low heat of evaporation the system parameters like pressure, temperature, and heat rate, while retaining the original geometry, may be reduced to a fraction of those of the original fluid water. This permits not only a decrease in experimental cost but also a modification of the existing calculation data under more favorable experimental conditions. Starting from these considerations the cooling medium R113 was used as model fluid in carrying out the experiments. The necessary knowledge of the thermodynamical laws of simularity, however, have to be determined first of all in simple geometries and the scaling factors are then derived from them. In this connection the following experimental studies have been carried out with R113: a) average volumetric steam quality; b) two-phase pressure drop; c) critical heat flux. (orig.) [de

  11. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel

    International Nuclear Information System (INIS)

    Sadeghian, M.; Shamanian, M.; Shafyei, A.

    2014-01-01

    Highlights: • The microstructure of weld metal consists of austenite and ferrite. • The HAZ of the API X-65 shows different transformation. • Impact strength of sample with low heat input was lower than base metals. • The heat input at 0.506 kJ/mm is not the suitable for dissimilar joining between UNS S32750/API X-65. - Abstract: In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals

  12. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  13. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  14. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  15. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  16. New Method Developed to Measure Contact Angles of a Sessile Drop

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  17. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  18. Investigation of heat transfer and pressure drop of CO(2) two-phase flow in a horizontal minichannel

    CERN Document Server

    Wu, J; Haug, F; Franke, C; Bremer, J; Eisel, T; Koettig, T

    2011-01-01

    An innovative cooling system based on evaporative CO(2) two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m(2) s, the heat flux from 7.5 to 29.8 kW/m(2) and the saturation temperature from -40 to 0 degrees C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m(2) K and 28 kW/m(2) K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed...

  19. Development of local heat transfer and pressure drop models for pebble bed high temperature gas-cooled reactor cores - HTR2008-58296

    International Nuclear Information System (INIS)

    McLaughlin, B.; Worsley, M.; Stainsby, R.; Grief, A.; Dennier, A.; Macintosh, S.; Van Heerden, E.

    2008-01-01

    This paper describes pressure drop and heat transfer coefficient predictions for a typical coolant flow within the core of a pebble bed reactor (PBR) by examining a representative group of pebbles remote from the reflector region. The three- dimensional steady state flow and heat transfer predictions utilized in this work are obtained from a computational fluid dynamics (CFD) model created in the commercial software ANSYS FLUENT TM . This work utilizes three RANS turbulence models and the Chilton-Colburn analogy for heat transfer. A methodology is included in this paper for creating a quality unstructured mesh with prismatic surface layers on a random arrangement of touching pebbles. The results of the model are validated by comparing them with the correlations of the German KTA rules for a PBR. (authors)

  20. Surface wettability and triple line behavior controlled by nano-coatings: effects on the sessile drop evaporation

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerôme

    2010-11-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop posed on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (SiOx, SiOc and CF), the wettability and the triple line dynamic of a sessile drop under natural phase change. The experiment consists in analyzing simultaneously the kinetics of evaporation, internal thermal motion and heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamic of the evaporative heat flux appears clearly different for a drop evaporating in pinned mode than in receding mode. Moreover, the kinetics of evaporation, the internal flow structure and the evaporative heat flux are drastically influenced by the wettability the substrate.

  1. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  2. Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system

    International Nuclear Information System (INIS)

    Janković, Zvonimir; Sieres Atienza, Jaime; Martínez Suárez, José Antonio

    2015-01-01

    In this paper we present two different analyses of R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigeration system. The first analysis is based on equal evaporation and condensation temperatures before and after the refrigerant replacement. The second analysis is carried out for equal cooling medium conditions in the condenser, so that the transport properties and the heat transfer features in the condenser are considered for the three refrigerants. In order to perform the analyses, a simulation model was developed, that takes into account specific data, characteristics and dimensions of the main components of a small power refrigeration system. The model was validated with experimental data for R134a and later used to predict the behavior with R1234yf and R1234ze(E). Results show that different conclusions may be drawn if the drop-in analysis is carried out for equal condensation temperatures or for equal temperatures of the cooling medium in the condenser, as well as that these results are affected by the condenser design. In general, R1234yf seems as an adequate drop-in refrigerant for R134a, but R1234ze(E) may perform better when an overridden compressor can be used to match the refrigerating system cooling power. - Highlights: • Low GWP refrigerants R1234yf and R1234ze(E) are potential replacements for R134a. • Refrigerating system mathematical model to predict drop-in performance. • Drop-in analysis for the same evaporation and condensation temperatures. • Drop-in analysis for the same cooling medium temperatures. • Refrigerant heat transfer features have a great impact on the drop-in performance

  3. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure

    International Nuclear Information System (INIS)

    Si-Xing, Tao; Tie-Cheng, Xia

    2010-01-01

    Based on the constructed Lie superalgebra, the super-classical-Boussinesq hierarchy is obtained. Then, its super-Hamiltonian structure is obtained by making use of super-trace identity. Furthermore, the super-classical-Boussinesq hierarchy is also integrable in the sense of Liouville. (general)

  4. Improved inter-assembly heat transfer modeling under low flow conditions for the Super System Code (SSC)

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.

    1984-01-01

    The Super System Code (SSC) was developed at the Brookhaven National Laboratory (BNL) for the thermal hydraulic analysis of natural circulation transients, operational transients, and other system wide transients in nuclear power plants. SSC is a generic, best estimate code that models the in-vessel components, heat transport loops, plant protection systems and plant control systems. SSC also simulates the balance of plant when interfaced with the MINET code. SSC has been validated against both numerical and experimental data bases and is now used by several outside users. An important area of interest in LMFBR transient analysis is the prediction of the response of the reactor core under low flow conditions, such as experienced during a natural circulation event. Under these circumstances there are many physical phenomena which must be modeled to provide an adequate representation by a computer code simulation. The present version of SSC contains numerous models which account for most of the major phenomena. However, one area where the present model in SSC is being improved is in the representation of heat transfer and buoyancy effects under low flow operation. To properly improve the present version, the addition of models to represent certain inter-assembly effects is required

  5. Super-iron Nanoparticles with Facile Cathodic Charge Transfer

    Energy Technology Data Exchange (ETDEWEB)

    M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht

    2011-12-31

    Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.

  6. Deterioration Criterion for Heat Transfer to a Vertically Upward Flowing Supercritical CO{sub 2} in a Circular Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    The Super Critical Water cooled Reactor (SCWR) concept for Generation IV has generated considerable interest recently and fair amount of research activities are being performed in several countries. A heat transfer at a supercritical pressure has been identified as one of the major research areas for the development of the SCWR. In relation to this, a heat transfer to carbon dioxide, a surrogate fluid for water, is being investigated experimentally in the test loop SPHINX at KAERI. In heat transfer processes at a supercritical pressure, two regsimes are distinguished for the flow of a medium. The first one is called 'normal heat transfer regime,' where the heat transfer coefficient varies continuously. The other one is 'deteriorated heat transfer regime,' where the heat transfer coefficient drops well below the expected value. Since the deterioration increases the fuel cladding wall temperature and may damage the fuel integrity, the knowledge of a function for describing the boundary between these two regimes is essentially required for the safety of fuel and reactor core. An experiment has been performed to examine the conditions for deterioration boundaries in a circular tube, and the criterion for the onset of deterioration is presented.

  7. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  8. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental study on the heat transfer characteristics in corrugated and flat plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hun; Jeong, Yong Ki; Jeon, Chung Hwan; Chang, Young June [Busan National Univ., Busan (Korea, Republic of); Lim, Hyeok [DHT, Busan (Korea, Republic of)

    2003-07-01

    An experiment was performed to study heat transfer characteristics between corrugated heat exchanger and flat plate type one. While heat capacity(13.86kW) was provided constantly and the flow speed was varied from 2.8 to 17.9m/s, the temperature and the pressure drop were measured. Furthermore, heat transfer coefficient, Colburn factor and Nusselt number were calculated using them. With increase of the flow speed for both exchangers, the coefficient and the pressure drop increased, but Colburn factor decreased. The coefficient, pressure drop and Colburn factor of the corrugated type were all higher than those of the flat one, which is due to the flow interruption with recirculation and reattachment of the corrugated type. The empirical correlations of Nusselt number were suggested for the tested two heat exchangers.

  10. The Formation of Super-Earths by Tidally Forced Turbulence

    Science.gov (United States)

    Yu, Cong

    2017-12-01

    The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.

  11. Welding of duplex and super-duplex stainless steels

    International Nuclear Information System (INIS)

    Van Nassau, L.; Meelker, H.; Hilkes, J.

    1994-01-01

    After a recall of the commercial designation of duplex or super-duplex steels (22-27% Cr, 4-8% Ni, 0.1-0.3% N with or without Mo (1.5-4%)) and of some metallurgical properties (phase diagrams, microstructure, ferrite determination, heat treatment and aging), welding technologies are synthetically presented (advantages-disadvantages of each process, metals filler, parameters of the welding processes, heat treatments after welding, cleaning, passivation, properties (mechanical, corrosion resistance) of the welded pieces). (A.B.). 28 refs. 5 figs., 15 tabs., 1 annexe

  12. A Numerical Procedure for Flow Distribution and Pressure Drops for U and Z Type Configurations Plate Heat Exchangers with Variable Coefficients

    International Nuclear Information System (INIS)

    López, R; Lecuona, A; Ventas, R; Vereda, C

    2012-01-01

    In Plate Heat Exchangers it is important to determine the flow distribution and pressure drops, because they affect directly the performance of a heat exchanger. This work proposes an incompressible, one-dimensional, steady state, discrete model allowing for variable overall momentum coefficients to determine these magnitudes. The model consists on a modified version of the Bajura and Jones model for dividing and combining flow manifolds. The numerical procedure is based on the finite differences approximation approach proposed by Datta and Majumdar. A linear overall momentum coefficient distribution is used in the dividing manifold, but the model is not limited to linear distributions. Comparisons are made with experimental, numerical and analytical data, yielding good results.

  13. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  14. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  15. Super-Planckian Thermophotovoltaics Without Vacuum Gaps

    Science.gov (United States)

    Mirmoosa, M. S.; Biehs, S.-A.; Simovski, C. R.

    2017-11-01

    We introduce the concept of a thermophotovoltaic system whose emitter is separated from the photovoltaic cell by an intermediate thick slab of gallium arsenide. Owing to the engineered structure of the emitter (a multilayer structure of negative- and positive-ɛ layers) together with a high refractiveindex and transparency of the intermediate slab, we achieve a super-Planckian and frequency-selective spectrum of radiative heat transfer which is desirable for the efficient performance of thermophotovoltaic systems.

  16. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  17. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  18. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  19. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  20. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  1. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    OpenAIRE

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of lo...

  2. Liquid-metal pin-fin pressure drop by correlation in cross flow

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Assoufid, L.

    1994-01-01

    The pin-fin configuration is widely used as a heat transfer enhancement method in high-heat-flux applications. Recently, the pin-fin design with liquid-metal coolant was also applied to synchrotron-radiation beamline devices. This paper investigates the pressure drop in a pin-post design beamline mirror with liquid gallium as the coolant. Because the pin-post configuration is a relatively new concept, information in literature about pin-post mirrors or crystals is rare, and information about the pressure drop in pin-post mirrors with liquid metal as the coolant is even more sparse. Due to this the authors considered the cross flow in cylinder-array geometry, which is very similar to that of the pin-post, to examine the pressure drop correlation with liquid metals over pin fins. The cross flow of fluid with various fluid characteristics or properties through a tube bank was studied so that the results can be scaled to the pin-fin geometry with liquid metal as the coolant. Study lead to two major variables to influence the pressure drop: fluid properties, viscosity and density, and the relative length of the posts. Correlation of the pressure drop between long and short posts and the prediction of the pressure drop of liquid metal in the pin-post mirror and comparison with an existing experiment are addressed

  3. Measurements of convective heat transfer to vertical upward flows of CO{sub 2} in circular tubes at near-critical and supercritical pressures

    Energy Technology Data Exchange (ETDEWEB)

    Zahlan, H., E-mail: hussamzahlan@gmail.com [Canadian Nuclear Laboratories, Chalk River, K0J 1J0 (Canada); Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); Groeneveld, D. [Canadian Nuclear Laboratories, Chalk River, K0J 1J0 (Canada); Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada); Tavoularis, S. [Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2015-08-15

    Highlights: • We present and discuss results of thermal–hydraulic measurements in CO{sub 2} for the near critical and supercritical pressure region. • We report the full heat transfer and pressure drop database. - Abstract: An extensive experimental program of heat transfer measurements has been completed recently at the University of Ottawa's supercritical pressure test facility (SCUOL). Thermal–hydraulics tests were performed for vertical upflow of carbon dioxide in directly heated tubes with inner diameters of 8 and 22 mm, at high subcritical, near-critical and supercritical pressures. The test conditions, when converted to water-equivalent values, correspond to conditions of interest to current Super-Critical Water-Cooled Reactor designs, and include many measurements under conditions for which few data are available in the literature. These data significantly complement the existing experimental database and are being used for the derivation and validation of a new heat transfer prediction method in progress at the University of Ottawa. The same data are also suitable for the assessment of the accuracy of other heat transfer prediction methods and fluid-to-fluid scaling laws for near-critical and supercritical pressures. In addition, they permit further examination of previously suggested relationships describing the critical heat flux and post-dryout heat transfer coefficient at high subcritical pressures and the boundaries of the deteriorated/enhanced heat transfer regions for near-critical and supercritical pressures. The measurements reported in this paper cover several subcritical heat transfer modes, including single phase liquid heat transfer, nucleate boiling, critical heat flux, post-dryout heat transfer and superheated vapor heat transfer; they also cover several supercritical heat transfer modes, including heat transfer to liquid-like supercritical fluid and heat transfer to vapor-like supercritical fluid, which occurred in the

  4. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  5. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...

  6. Research on combustion of black-liquor drops

    International Nuclear Information System (INIS)

    Macek, A.

    1999-01-01

    Black liquor, the major by-product of the kraft process for production of pulp, is one of the most important industrial fuels. It is burned in recovery boilers in the form of large spray drops (mm), with the objective of simultaneous recovery of heat and chemicals (sodium and sulfur). Even though black-liquor combustion in boilers has been practised for over half a century, research efforts toward improvement of combustion efficiency and abatement of environmental emissions are much more recent. The present paper addresses a specific aspect of that research, namely, elucidation of processes which occur during combustion of black-liquor drops in boiler-gas streams. The paper (a) gives a brief description of the kraft process, (b) reviews the experimental and theoretical (modeling) research advances on combustion of kraft-liquor drops during the 1980s and 1990s, (c) re-examines the results of an earlier combustion study in which black-liquor drops were observed in free flight at temperatures near those in recovery boilers, and (d) recommends input for the modeling of in-flight combustion of kraft-liquor drops in recovery boilers. (author)

  7. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  8. Numerical studies of the heat-up-phase of Super-Sara 'severe fuel damage'. Boildown tests

    International Nuclear Information System (INIS)

    Eifler, W.; Shepherd, I.M.

    1983-01-01

    Calculations to investigate the heat-up phase of the Super-Sara 'severe fuel damage' test matrix have been performed using a simple computer code which models a typical pin. In particular the effect of the exothermic zirconium water reaction on the transient is considered. It is shown that it is possible to achieve the desired objectives of all the tests by a test procedure involving a constant power level a simple flow history. This flow history consists of an initial inlet flow, that has the water saturated at outlet. It is then linearly decreased in a time of the order of 200 seconds to a steady lower value. The clad temperature ramp rate is defined by the power and the peak clad temperature by the ratio of the power of the final steady inlet flow rate. If the final inlet flow rate for a particular power is below a certain critical value then the clad will reach melting temperature. The sensitivity of the results are discussed and a sample calculation is made for each test in the matrix

  9. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  10. Physics at SuperLEAR: Workshop summary

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-11-01

    The major themes of the physics program to be explored at the proposed SuperLEAR facility are summarized. These include the study of charmonium spectroscopy, searches for CP violation in hyperon decays, exploration of hadron spectroscopy and gluon dynamics, particularly of non-Q bar Q systems, and bar p-nucleus annihilation as a means of probing the mechanisms of charm and strangeness production as well as the dynamics of heated nuclear matter. 40 refs., 3 tabs

  11. Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping

    International Nuclear Information System (INIS)

    Ghosh, Pijush K.

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A N+1 -type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigenspectrum and the associated eigenfunctions, both in supersymmetry-preserving as well as supersymmetry-breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2 vertical bar 2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC N+1 -type super-CMS model in some detail to understand the subtleties involved in this method

  12. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  13. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  14. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  15. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  16. Grassmann, super-Kac-Moody and super-derivation algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  17. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 2. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. 2. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the chemical heat storage systems, plant simulation techniques and combined systems, and international technical exchanges, for R and D of the super heat pump energy accumulation system. For the high temperature heat storage type (utilizing ammonia complexes), the initial research targets are almost attained, as a result of the designs of a chemical heat storage unit having heat storage capacity of 1,000 kWh. For the high temperature heat storage type (utilizing hydration reactions), a 25 Mcal-scale pilot partial test unit is operated, to study applicability of the practical materials and other operation-related themes. For the low temperature heat storage type (utilizing hydration reactions by solute mixing), a pilot system is operated, to attain heat recovery of 75% or more, heat storage density of 30 kcal/kg or more, and output temperature of 7 degrees C. For the low temperature heat storage type (utilizing clathrates), the evaluation tests by a pilot plant produce heat recovery of 93.2% and heat storage density of 32.0 kcal/kg. In addition, the R and D efforts are directed to, e.g., researches on plant simulation techniques and combined systems. (NEDO)

  18. Analysis of the effect of tube arrangement and inclination on pressure drop in an intermediate heat exchanger of liquid metal reactor

    Energy Technology Data Exchange (ETDEWEB)

    ChoiI, Seok Ki; Choi, Il Kon; Nam, Ho Yun; Choi, Jong Hyeun [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    An experimental study on the effect of tube arrangement and inclination on the pressure drop in the intermediate heat exchanger is performed. Measurements are made for pressure drop in the triangular and rotated triangular tue arrays whose inclined angles are 30, 45, 60, 75 and 90 degrees. The pitch to tube diameter ratio is 1.6 and the range of Reynolds number based on the free stream velocity and tube diameter is 870-64,000. The experimental results show that the magnitude of dimensionless pressure drop increases with the inclined angle and decreases significantly when the inclined angle is less than 45 degree. The previous correlations are evaluated using the experimental data. The ESDU correlation agrees well with the present data for the triangular arrays. But some discrepancies are observed for the rotated triangular arrays when the inclined angles are 45 and 30 degrees. The Idel'chik correlation generally agrees well with the measured data for the rotated triangular arrays except for inclined angle of 30 degree. The Idel'chik correlation needs modification for the triangular arrays. The modified Idel'chik correlation agrees well with the measure data within 10%. 32 refs., 59 figs., 11 tabs. (Author)

  19. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  20. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  1. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  2. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  3. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  4. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  5. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger

    Science.gov (United States)

    Akyürek, Eda Feyza; Geliş, Kadir; Şahin, Bayram; Manay, Eyüphan

    2018-06-01

    Nanofluids are a novel class of heat transfer suspensions of metallic or nonmetallic nanopowders with a size of less than 100 nm in base fluids and they can increase heat transfer potential of the base fluids in various applications. In the last decade, nanofluids have become an intensive research topic because of their improved thermal properties and possible heat transfer applications. For comparison, an experiment using water as the working fluid in the heat exchanger without wire coils was also performed. Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3-water nanofluids in a concentric tube heat exchanger with and without wire coil turbulators were experimentally investigated in this research. Experiments effected particle volume concentrations of 0.4-0.8 to 1.2-1.6 vol% in the Reynolds number range from 4000 to 20,000. Two turbulators with the pitches of 25 mm and 39 mm were used. The average Nusselt number increased with increasing the Reynolds number and particle concentrations. Moreover, the pressure drop of the Al2O3-water nanofluid showed nearly equal to that of pure water at the same Reynolds number range. As a result, nanofluids with lower particle concentrations did not show an important influence on pressure drop change. Nonetheless, when the wire coils used in the heat exchanger, it increased pressure drop as well as the heat transfer coefficient.

  6. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  7. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Sin, S.J.

    1991-11-01

    We show that the Manin-Radul super KP hierarchy is invariant under super W ∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  8. Super Energy Savings Performance Contracts: Federal Energy Management Program (FEMP) Program Overview (revision)

    International Nuclear Information System (INIS)

    Pitchford, P.

    2001-01-01

    This four-page publication describes the U.S. Department of Energy's (DOE's) streamlined energy savings performance contracting, or ''Super ESPC,'' process, which is managed by DOE's Federal Energy Management Program (FEMP). Under a Super ESPC, a qualifying energy service company (ESCO) from the private sector pays for energy efficiency improvements or advanced renewable energy technologies (e.g., photovoltaic systems, wind turbines, or geothermal heat pumps, among others) for a facility of a government agency. The ESCO is then repaid over time from the agency's resulting energy cost savings. Delivery orders under these contracts specify the level of performance (energy savings) and the repayment schedule; the contract term can be up to 25 years, although many Super ESPCs are for about 10 years or less

  9. The analytical investigation of the super-Gaussian pump source on ...

    Indian Academy of Sciences (India)

    In this paper, we assumed that the fiber core and first clad are exposed to a pump source with a super-Gaussian profile of order four. The effects of this non-uniform heat deposition on thermal, stress and thermo-optics properties such as temperature-dependent change of refractive index and thermally induced stress have ...

  10. Studies of super-critical CO2 gas turbine power generation fast reactor (Contract research, translated document)

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Kotake, Shoji; Sakamoto, Toshihiko

    2008-08-01

    The following studies have been executed for a super-critical CO 2 turbine system of an SFR. (1) Preliminary design of a SFR adopting a super-critical CO 2 cycle turbine. Preliminary system design of an SFR that adopts a super-critical CO 2 cycle turbine has been made. This SFR system eliminates secondary sodium circuits because of no sodium/water reaction. The power generation efficiency of the SFR has been estimated to be approximately 42%. Compared to a conventional SFR that adopts a steam Rankine cycle with secondary sodium circuits, the volume of the reactor building of the SC-CO 2 SFR has been reduced by 20%. (2) Thermal-hydraulic experiment of a super-critical CO 2 cycle loop. A test loop that simulates a super-critical CO 2 whole cycle was fabricated. An electrical heater was used for a heat source of the test loop. The high efficiency of the compressor has been experimentally confirmed near the super-critical region. The temperature efficiencies of PCHE recuperators have been approximately 98-99% (hot leg), and the recuperators have exhibited high heat transfer performance. No significant flow instability has been observed in the test loop operation. (3) Liquid sodium/CO 2 reaction test. Reaction tests have been executed by contacting a small amount of liquid sodium and CO 2 gas. Continuous sodium/CO 2 reactions with flame have occurred at the temperature higher than 570-580degC. Main reaction products have been Na 2 CO 3 and CO gas. The reaction heat has been also measured to be 50-75kJ/Na-mol. (4) Computer code safety analysis for tube failure of sodium/CO 2 heat exchanger. Safety calculation has been done for one double ended guillotine tube failure (1 DEG) of a helical coil type sodium/CO 2 heat exchanger. The analysis has showed that the maximum pressure in the primary sodium circuit is 0.28MPa due to a gas leak. It has been, however, below the allowed level of the primary circuit structural integrity. The void reactivity of the reactor core has

  11. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    NARCIS (Netherlands)

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower

  12. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  13. Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces

    International Nuclear Information System (INIS)

    Mendoza, A.; Restuccia, A.; Martin, I.

    1990-05-01

    Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs

  14. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  15. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  16. Phase Curve Analysis of Super-Earth 55 Cancri e

    Science.gov (United States)

    Angelo, Isabel; Hu, Renyu

    2018-01-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus, or a bare-rock surface that may come with a tenuous atmosphere like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase curve photometric data around secondary eclipse has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a previously developed semi-analytical framework to fit a physical model to infrared photometric data of host star 55 Cancri from the Spitzer telescope IRAC 2 band at 4.5 μm. The model uses various parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., the ratio between the radiative timescale and advective timescale of the photosphere), and atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hot spot located on the planet surface. We determine the heat redistribution efficiency to be ≈1.47, which implies that the advective timescale is on the same order as the radiative timescale. This requirement from the phase curve cannot be met by the bare-rock planet scenario, because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to a photosphere pressure of ~1.4 bar. The Spitzer IRAC 2 band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  17. Influence of Superheated Steam Temperature Regulation Quality on Service Life of Boiler Steam Super-Heater Metal

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2009-01-01

    Full Text Available The paper investigates influence of change in quality of superheated steam temperature regulations on service life of super-heater metal. А dependence between metal service life and dispersion value for different steel grades has been determined in the paper. Numerical values pertaining to increase of super-heater metal service life in case of transferring from manual regulation to standard system of automatic regulation (SAR have been determined and in case of transferring from standard SAR to improved SAR. The analysis of tabular data and plotted dependencies makes it possible to conclude that any change in conditions of convection super-heater metal work due to better quality of the regulation leads to essential increase of time period which is left till the completion of the service life of a super-heater heating surface.

  18. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  19. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  20. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  1. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    Science.gov (United States)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  2. Apollo II - Thermal use of chicken droppings - Phase II

    International Nuclear Information System (INIS)

    Salerno, B.; Hersener, J.L.; Dinkel, F.

    2001-01-01

    This report made for the Swiss Federal Office of Energy (SFOE) discusses the conception, planning and construction of an easy-to-operate pilot heating plant that uses chicken litter as its fuel. The plant, which is installed at a chicken farm in Boesingen, Switzerland, produces 250 - 350 kW and not only supplies heat for two chicken sheds and two households, but also provides energy for a drying plant in summer. The results of measurements made on emissions are discussed and, within the framework of an eco-balance analysis, comparisons are made between the direct use of the droppings as manure or as a fuel. The cost-effectiveness of the plant is examined and the influence of plant size and other factors discussed. Further, legal questions concerning the use of chicken litter as a fuel for heating installations are discussed; the use of the droppings as a fuel is not foreseen in the legislation concerning water protection and airborne emissions of pollutants. Although normally this type of plant is built at the same location as the chicken farms, questions on logistics are also looked at

  3. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  4. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...... approach in COMSOL Multiphysics is described in this paper and results for optimized two-dimensional heat sinks are presented. Furthermore, parameter studies regarding the effect of the prescribed pressure drop of the system on Reynolds number and realized heat sink temperature are presented and discussed....

  5. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.

    Science.gov (United States)

    Bottiglione, F; Carbone, G

    2015-01-14

    The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.

  6. Improving the understanding of thermal-hydraulics and heat transfer for super critical water cooled reactors

    International Nuclear Information System (INIS)

    Bilbao y Leon, S.; Aksan, N.

    2010-01-01

    Ensuring the exchange of information and fostering the collaboration among Member States on the development of technology advances for future nuclear power plants are among the key roles of the IAEA. There is high interest internationally in both developing and industrialized countries in the design of innovative super-critical water-cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by for this concept, utilizing and building on the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). Following the advice of the IAEA Nuclear Energy Dept.'s Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA is working on a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The second Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna (Austria)) in August 2009. This paper summarizes the current status of the CRP, as well as the major achievements to date. (authors)

  7. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  8. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  9. Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators

    Directory of Open Access Journals (Sweden)

    Shengqiang Bai

    2014-11-01

    Full Text Available Ideal heat exchangers recover as much heat as possible from an engine exhaust at the cost of an acceptable pressure drop. They provide primary heat for a thermoelectric generator (TEG, and their capacity and efficiency is dependent on the material, shape, and type of the heat exchanger. Six different exhaust heat exchangers were designed within the same shell, and their computational fluid dynamics (CFD models were developed to compare heat transfer and pressure drop in typical driving cycles for a vehicle with a 1.2 L gasoline engine. The result showed that the serial plate structure enhanced heat transfer by 7 baffles and transferred the maximum heat of 1737 W. It also produced a maximum pressure drop of 9.7 kPa in a suburban driving cycle. The numerical results for the pipe structure and an empty cavity were verified by experiments. Under the maximum power output condition, only the inclined plate and empty cavity structure undergoes a pressure drop less than 80 kPa, and the largest pressure drop exceeds 190 kPa. In this case, a mechanism with a differential pressure switch is essential to bypass part of the exhaust.

  10. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  11. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  12. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  13. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  14. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.

    2017-04-18

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  15. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.; Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  16. Preliminary study on high temperature heat exchanger for nuclear steel making

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Y [Tokyo Inst. of Tech. (Japan); Ikegami, H

    1975-03-01

    In the high temperature heat exchanger as well as the steam reformer, several technical problems should be solved before realizing a nuclear plant complex for iron and steel making. Research has been carried out on heat exchanger between helium and steam, hydrogen permeation through super alloys, hydrogen removal using a titanium sponge, and creep and carburization performance of super alloys. The primary coolant used is helium having a pressure of approximately 12 kg/cm/sup 2/G and a temperature of approximately 1100/sup 0/C measured at the inlet of the high temperature heat exchanger, i.e., the test section. Steam, hydrogen and carbon monoxide are used as secondary coolants.

  17. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  18. Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel

    International Nuclear Information System (INIS)

    Martins, Marcelo; Forti, Leonardo Rodrigues Nogueira

    2008-01-01

    Super duplex stainless steels in the solution annealed condition are thermodynamically metastable systems which, when exposed to heat, present a strong tendency to 'seek' the most favorable thermodynamic condition. The main purpose of this study was to characterize the microstructure of a super duplex stainless steel in the as cast and solution annealed conditions, and to determine the influence of aging heat treatments on its impact strength, based on Charpy impact tests applied to V-notched test specimens. The sigma phase was found to begin precipitating at heat treatment temperatures above 760 deg. C and to dissolve completely only above 1040 deg. C, with the highest peak concentration of this phase appearing at close to 850 deg. C. Heat treatments conducted at temperatures of 580 deg. C to 740 deg. C led to a reduction of the energy absorbed in the Charpy impact test in response to the precipitation of a particulate phase with particle sizes ranging from 0.5 μm to 1.0 μm, with a chromium and iron-rich chemical composition

  19. A Case for an Atmosphere on Super-Earth 55 Cancri e

    Science.gov (United States)

    Angelo, Isabel; Hu, Renyu

    2017-12-01

    One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (I.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor. The phase curve of 55 Cancri e is dominated by thermal emission with an eastward-shifted hotspot. We determine the heat redistribution efficiency to be {1.47}-0.25+0.30, which implies that the advective timescale is on the same order as the radiative timescale. This requirement cannot be met by the bare-rock planet scenario because heat transport by currents of molten lava would be too slow. The phase curve thus favors the scenario with a substantial atmosphere. Our constraints on the heat redistribution efficiency translate to an atmospheric pressure of ˜1.4 bar. The Spitzer 4.5 μm band is thus a window into the deep atmosphere of the planet 55 Cancri e.

  20. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  1. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    Science.gov (United States)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  2. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  3. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  4. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  5. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  6. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  7. Experimental Investigation of Pressure Drop and Pressure Distribution Along a Heated Channel in Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Aharon, Y.; Hochbaum, I.; Shai, I.

    2002-01-01

    The state of knowledge relating to pressure drop in subcooled boiling region is very unsatisfactory. That pressure drop is an important factor in considering the design of nuclear reactors because of the possibility of flow excursion during a two phase flow in the channels. In operational systems with multiple flow channels, an increase in pressure drop in one flow channel, can cause the flow to be diverted to other channels. A burnout can occur in the unstable channel

  8. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    Science.gov (United States)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  9. Design heating test section HeaTiNG-02

    International Nuclear Information System (INIS)

    Riswan Djambiar; Sagino; Dedy Haryanto; Joko Prasetio Witoko

    2013-01-01

    HeaTiNG-02 is a component test loop BETA which serves as a heater in conducting experimental heat transfer processes in two-phase flow in narrow slit-shaped plate, considering this phenomenon is one of the conditions postulated accident scenarios a NPP type PWR. To produce heat for the heating component takes the AC power the source voltage can be set from 0 Volts to 220 Volts with no more than a maximum power of 25 KVA. To obtain the thermal conditions on HeaTiNG-02 heating wire dimensions need to be determined and the corresponding voltage so that it will an expected power. Determination of the dimensions of the heater wire through calculations using electricity formulations. Retrieved draft heater test BETA (UUB) HeaTiNG-02 use material super kanthal (FeCuAl) in diameter (Ø) = 2 mm and wire length 3770 mm. Voltage regulators with a maximum power of 25 kVA with a minimum voltage of 0 volts and a maximum of 220 volts. Heater is used as the base to form refractory stone trench. (author)

  10. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  11. LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Laher, Russ; Surace, Jason, E-mail: rex@astro.ncu.edu.tw [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2016-12-01

    In order to look for large super-fast rotators, in late 2014 and early 2015, five dedicated surveys covering ∼188 deg{sup 2} in the ecliptic plane have been carried out in the R -band, with ∼10 minute cadence using the intermediate Palomar Transient Factory. Among 1029 reliable rotation periods obtained from the surveys, we discovered 1 new large super-fast rotator, (40511) 1999 RE88, and 18 other candidates. (40511) 1999 RE88 is an S-type inner main-belt asteroid with a diameter of D  = 1.9 ± 0.3 km, a rotation period of P  = 1.96 ± 0.01 hr, and a light curve amplitude of Δ m  ∼ 1.0 mag. To maintain such fast rotation, an internal cohesive strength of ∼780 Pa is required. Combining all known large super-fast rotators, their cohesive strengths all fall in the range of 100–1000 Pa of lunar regolith. However, the number of large super-fast rotators seems to be far less than the whole asteroid population. This might indicate a peculiar asteroid group for them. Although the detection efficiency for a long rotation period is greatly reduced due to our two-day observation time span, the spin-rate distributions of this work show consistent results with Chang et al. (2015), after considering the possible observational bias in our surveys. It shows a number decrease with an increase of spin rate for asteroids with a diameter of 3 ⩽  D  ⩽ 15 km, and a number drop at a spin rate of f  = 5 rev day{sup −1} for asteroids with D  ⩽ 3 km.

  12. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    International Nuclear Information System (INIS)

    Kim, Hae Hyun

    2015-01-01

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m 2 s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m 2 s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m 2 s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m"2. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m 2 s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations

  13. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    Science.gov (United States)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check

  14. Super periodic potential

    Science.gov (United States)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  15. Frequency-dependent heat capacity

    DEFF Research Database (Denmark)

    Behrens, Claus Flensted

    The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...

  16. Deformed potential energy of $^{263}Db$ in a generalized liquid drop model

    CERN Document Server

    Chen Bao Qiu; Zhao Yao Lin; 10.1088/0256-307X/20/11/009

    2003-01-01

    The macroscopic deformed potential energy for super-heavy nuclei /sup 263/Db, which governs the entrance and alpha decay channels, is determined within a generalized liquid drop model (GLDM). A quasi- molecular shape is assumed in the GLDM, which includes volume-, surface-, and Coulomb-energies, proximity effects, mass asymmetry, and an accurate nuclear radius. The microscopic single particle energies derived from a shell model in an axially deformed Woods- Saxon potential with a quasi-molecular shape. The shell correction is calculated by the Strutinsky method. The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the deformed potential energy of the experiment /sup 22/Ne+/sup 241/Am to /sup 263/Db* to /sup 259/Db+4 n, which was performed on the Heavy Ion Accelerator in Lanzhou. It is found that the neck in the quasi-molecular shape is responsible for t...

  17. Heat transfer and pressure drop characteristics of mini-fin structures

    International Nuclear Information System (INIS)

    Jiang Peixue; Xu Ruina

    2007-01-01

    Forced convection heat transfer of air and water in bronze and pure copper mini-fin structures and mini-channel structures was investigated experimentally. The mini-fin dimensions were 0.7 mm x 0.2 mm and 0.8 mm x 0.4 mm. The tests included both staggered diamond-shaped and in-line square mini-fin arrangements. The tests investigated the effects of structures, mini-fin dimensions and arrangement, test section materials, and fluid properties on the convection heat transfer and heat transfer enhancement. For the tested conditions, the convection heat transfer coefficient was increased 9-21 fold for water and 12-38 fold for air in the mini-fin structures compared with an empty plate channel. The friction factor and flow resistance in the mini-channel structures and the in-line square mini-fin arrangement were much less than in the staggered diamond-shaped mini-fin arrangement. For the small channel width, W c = 0.2 mm, the convection heat transfer with the in-line square array structure was more intense than with the staggered diamond-shaped structure, the mini-channel structure or the porous media. For the larger channel width, W c = 0.4 mm, the convection heat transfer in the staggered diamond-shaped array structure was more intense than in the others systems while the in-line square structure had the best overall thermal-hydraulic performance

  18. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  19. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...

  20. Frames in super Hilbert modules

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2018-01-01

    Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

  1. Evaluation of mechanical design fire brick at test section on the HeaTiNG-02

    International Nuclear Information System (INIS)

    Dedy Haryanto; Riswan Djambiar; Sagino; Edy Sumarno

    2013-01-01

    The activity was carried out due to the modification of the heating in the HeaTiNG-02 test section. Modification of the heater needs to be done to overcome the obstacles that arise as part of the test section is used. Constraint that often arises is the fall of the heating source with super khantal material when it reaches a certain temperature. To mitigate the super khantal position is initially converted into a vertical position horizontal. The change from vertical to horizontal position on super khantal cause any deformities in refractory fire brick which serves as a support super khantal. Manufacture of refractory design fire brick formation and mechanical strength evaluation performed using CATIA V5 R20 software. Evaluation of fireproof rock mechanics to be based on the mechanical properties of alumina as a refractory material of fire brick. The results of the analysis have a fire brick design stress greater than the bend strength alumina materials, so that the necessary checks before and after the experiment as well as the replacement of refractory fire brick if something is broken. Translational greatest displacement 0.453 mm at a temperature of 1575 K did not give any meaningful form. Thus the refractory fire brick design can be used as heating source support in the HeaTiNG-02 test section with checks before and after the operation. (author)

  2. First international workshop on fundamental aspects of post-dryout heat transfer: proceedings

    International Nuclear Information System (INIS)

    Lee, R.

    1984-12-01

    The purpose of the First International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer was to review recent developments and the state of art in the field of post-dryout heat transfer. The workshop centered on interchanging ideas, reviewing current research results, and defining future research needs. The following five sessions dealing with the fundamental aspects of post-dryout heat transfer were held. A Computer Code Modeling and Flow Phenomena session was held dealing with flow rgimes, drop size, drop formation and behavior, interfacial area, interfacial drag, and computer modeling. A Quenching Phenomena session was held dealing with nature of rewetting, maximum wetting temperature, Leidenfrost phenomenon and heat transfer in the vicinity of quench front. A Low-Void Heat Transfer session was held dealing with inverted annular-flow heat transfer, inverted slug-flow heat transfer thermal non-equilibrium and computer modeling. A Dispersed-Flow Heat Transfer session was held dealing with drop interfacial heat transfer, vapor convection, thermal non-equilibrium and correlations and models

  3. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  4. Numerical Analysis for Heat Transfer Characteristics of Elliptic Fin-Tube Heat Exchanger with Various Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)

    2013-04-15

    In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.

  5. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    Science.gov (United States)

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  6. ASSERT validation against the Stern Laboratories' single-phase pressure drop tests

    International Nuclear Information System (INIS)

    Waddington, G.M.; Kiteley, J.C.; Carver, M.B.

    1995-01-01

    This paper describes the preliminary validation of ASSERT-IV against the single-phase pressure drop tests from the 37-element CHF (critical heat flux) experiments conducted at Stern Laboratories, and shows how this study fits into the overall ASSERT validation plan. The effects on the pressure drop of several friction and form loss models are evaluated, including the geometry-based K-factor model. The choice of friction factor has a small effect on the predicted channel pressure drop, compared to the form loss model choice. Using the uniform K-factors of Hameed, the computed pressure drops are in excellent agreement with the experimental results from the nominal pressure tube tests. For future ASSERT applications, either Hameed's uniform K-factors or the geometry-based model using Idelchik's thick-edged orifice equation are recommended, as are the friction factor correlations of Colebrook-White, Selander, and Aly and Groeneveld. More analysis of the geometry-based K-factor model is required. (author). 23 refs., 4 tabs., 9 figs

  7. Time dependent start-up thermal analysis of a Super Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto,, E-mail: sutanto@fuji.waseda.jp; Oka, Yoshiaki

    2013-10-15

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising.

  8. Time dependent start-up thermal analysis of a Super Fast Reactor

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2013-01-01

    Highlights: • Time dependent startup thermal analysis of a Super Fast Reactor is performed. • A recirculation system is used for pressurization and for generating supercritical steam. • MCST satisfies the criterion both during subcritical pressure and during power-raising. • MCST is not sensitive to the change of inlet temperature, gap volume and flow rate because of high flow to power ratio. • CHF is not limiting the MCST during subcritical pressure due to large margin of heat flux. -- Abstract: The startup system of a supercritical pressure light water cooled fast reactor (Super FR) is studied by time dependent thermal-hydraulic analysis. The plant analysis code is developed based on an innovative upward flow pattern in all the assemblies of the Super FR. A recirculation system consisting of a steam drum, a circulation pump, and a heat exchanger is used for the startup. Detailed procedures are performed and the maximum cladding surface temperature (MCST) at rated power, 640 °C, is used as the criterion. Firstly a small constant nuclear power is used for rising the core feed water temperature to be 280 °C through the recirculation system. Secondly, pressurization is done in the recirculation system from atmospheric to operating pressure, 25 MPa, by raising the power. Thirdly, line-switching from recirculation mode to once-through direct-cycle is performed while turbines are started by supercritical steam at supercritical pressure. Finally the power is raised to be 100% of power followed by raising the flow rate. During pressurization the heat flux margin is large due to low power used for pressurization and the MCST is much lower than the criterion. The MCST is not sensitive to the inlet temperature, the flow rate, and the gap volume of the core because of high flow to power ratio. Smaller dimension of steam drum can be used for pressurization stably. The MCST satisfies the criterion both during subcritical pressure and during power-raising

  9. Evaporation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Hyun [Div. of Mechanical System Engineering, Incheon National University, Incheon (Korea, Republic of)

    2015-09-15

    Microfin tubes having an outside diameter (O.D.) of 7.0 mm are widely used in residential air conditioning systems and heat pumps. It is known that the mass fluxes for air conditioners and heat pumps under partial load conditions are several tens of kg/m{sup 2}s. However, literature surveys reveal that previous investigations were limited to mass flux over 100 kg/m{sup 2}s. In this study, we conduct R-410A evaporation heat-transfer tests at low mass fluxes (50-250 kg/m{sup 2}s) using a 7.0 mm O.D. microfin tube. During the test, the saturation temperature was maintained at 8 degrees celsius, and the heat flux was maintained at 4.kW/m{sup 2}. For comparison purposes, we also test a smooth tube with a 7.0 mm O.D. The results showed that the heat-transfer enhancement factor of the microfin tube increased as the mass flux decreased up to 150 kg/m{sup 2}s, which decreased as the mass flux further decreased. The reason for this was attributed to the change of the flow pattern from an annular flow to a stratified flow. Within the test range, the frictional pressure drops of the microfin tube were approximately the same as those of the smooth tube. We then compare experimental data obtained with the predictions obtained for the existing correlations.

  10. (Super Variable Costing-Throughput Costing)

    OpenAIRE

    Çakıcı, Cemal

    2006-01-01

    (Super Variable Costing-Throughput Costing) The aim of this study is to explain the super-variable costing method which is a new subject in cost and management accounting and to show it’s working practicly.Shortly, super-variable costing can be defined as a costing method which is use only direct material costs in calculate of product costs and treats all costs except these (direct labor and overhead) as periad costs or operating costs.By using super-variable costing method, product costs ar...

  11. Measurement of the heat transfer parameters in infiltrated binary beryllium beds. Comparison between the results with PEHTRA and SUPER-PEHTRA

    International Nuclear Information System (INIS)

    Donne, M. dalle; Piazza, G.; Scaffidi-Argentina, F.

    2000-01-01

    For the next generation fusion reactors with a ceramic breeder blanket the use, as a neutron multiplier, of either a binary bed of large (∼ 2 mm) and small (∼ 0.1-0.2 mm) beryllium pebbles or a single size bed made of 1 mm or 2 mm pebbles is foreseen. The heat transfer parameters of such a binary pebble bed, namely the thermal conductivity and the heat transfer coefficient to the containing wall, have been investigated previously in the experimental device PEHTRA available at FZK. The experiments allowed to measure the effect of the bed temperature and of constraint exerted by the containing walls. The constraint is defined by the bed interference, i.e. the difference in the radial expansion between bed and the constraining walls related to the bed thickness (Δl/l). However, with the PEHTRA experiments, it was only possible to achieve a Δl/l value of 0.1%. A new experimental rig (SUPER-PEHTRA) has been constructed at FZK, which allows to achieve Δl/l values of 0.3% and to measure the pressure of the expanding bed on the containing walls. First experiments with a binary bed have been performed. The present paper reports on further experiments with binary beds and the establishing of equations correlating the data obtained for the present binary beds and for the binary bed experiments described. (orig.)

  12. From drop impact physics to spray cooling models: a critical review

    Science.gov (United States)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  13. Applications of super elasticity in vibrational control

    International Nuclear Information System (INIS)

    Soul, H

    2005-01-01

    In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work

  14. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  15. High-heat-flux testing of helium-cooled heat exchangers for fusion applications

    International Nuclear Information System (INIS)

    Youchison, D.L.; Izenson, M.G.; Baxi, C.B.; Rosenfeld, J.H.

    1996-01-01

    High-heat-flux experiments on three types of helium-cooled divertor mock-ups were performed on the 30-kW electron beam test system and its associated helium flow loop at Sandia National Laboratories. A dispersion-strengthened copper alloy (DSCu) was used in the manufacture of all the mock-ups. The first heat exchanger provides for enhanced heat transfer at relatively low flow rates and much reduced pumping requirements. The Creare sample was tested to a maximum absorbed heat flux of 5.8 MW/m 2 . The second used low pressure drops and high mass flow rates to achieve good heat removal. The GA specimen was tested to a maximum absorbed heat flux of 9 MW/m 2 while maintaining a surface temperature below 400 degree C. A second experiment resulted in a maximum absorbed heat flux of 34 MW/m 2 and surface temperatures near 533 degree C. The third specimen was a DSCu, axial flow, helium-cooled divertor mock-up filled with a porous metal wick which effectively increases the available heat transfer area. Low mass flow and high pressure drop operation at 4.0 MPa were characteristic of this divertor module. It survived a maximum absorbed heat flux of 16 MW/m 2 and reached a surface temperature of 740 degree C. Thermacore also manufactured a follow-on, dual channel porous metal-type heat exchanger, which survived a maximum absorbed heat flux of 14 MW/m 2 and reached a maximum surface temperature of 690 degree C. 11refs., 20 figs., 3 tabs

  16. Electrically tuned super-capacitors

    OpenAIRE

    Chowdhury, Tazima S.; Grebel, Haim

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helm...

  17. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  18. An experimental study of burnout and pressure drop in 19-rod clusters

    International Nuclear Information System (INIS)

    Edwards, P.A.

    1976-03-01

    This report presents experimental burnout and pressure drop data obtained from three 19-rod clusters, both wire wrapped and grid supported, and with both non-uniform and uniform radial heat flux. The clusters all had uniform axial heating, a heated length of 4 feet, and 5/8 in. diameters rods, though the rod spacings were somewhat different and only 18 rods were heated in the grid supported cluster. Tests were carried out in high temperature water/steam at 1000 psi flowing vertically upwards with a mass velocity of 0.5 x 10 6 to 2.5 x 10 6 lbs/ft 2 hr. (U.K.)

  19. Advanced microchannel heat exchanger with S-shaped fins

    International Nuclear Information System (INIS)

    Tsuzuki, Nobuyoshi; Ishizuka, Takao; Kato, Yasuyoshi; Nikitin, Konstantin

    2009-01-01

    Fin shape effects on thermal-hydraulic characteristics were studied for a Microchannel Heat Exchanger (MCHE) with S-shaped fins using 3D-CFD and changing the fin parameters: fin angle, overlapping length, fin width, fin length, and edge roundness. The fin angle effect on the pressure drop is consistent with the equation obtained experimentally by Weisbach for a circular bent tube: the pressure drop in the S-shaped fin configuration results from bent flow. The overlap of fins with those located immediately downstream at the offset position provides a guide wing effect that reduces the pressure drop remarkably. The overlap was changed by changing the fin radial position and arc length. The pressure drop was minimized when the downstream fins are placed in the middle of the bent flow channels formed by the fins upstream, which differs from Ito's configuration obtained from experiments with a single bent duct. Regarding arc length, the pressure drop is minimized at the standard overlapping length, which was formed to have the longest arc without a change in channel width. Shorter arc lengths from the optimum value by 30 and 50%, respectively, give 2.4 and 4.6% decreases in the heat transfer rate and 17 and 13% increases in the pressure drop. Thinner fins show better thermal-hydraulic performance for fin widths of 0.2-0.8 mm. However, the pressure drop reduced by the longer fin and heat transfer rate was also reduced. Rounded fins with 0.1 mm radius increased the pressure drop by about 30% compared with that of the fin designed with no roundness. (author)

  20. Study of Fast Transient Pressure Drop in VVER-1000 Nuclear Reactor Using Acoustic Phenomenon

    Directory of Open Access Journals (Sweden)

    Soroush Heidari Sangestani

    2018-01-01

    Full Text Available This article aims to simulate the sudden and fast pressure drop of VVER-1000 reactor core coolant, regarding acoustic phenomenon. It is used to acquire a more accurate method in order to simulate the various accidents of reactor core. Neutronic equations should be solved concurrently by means of DRAGON 4 and DONJON 4 coupling codes. The results of the developed package are compared with WIMS/CITATION and final safety analysis report of Bushehr VVER-1000 reactor (FSAR. Afterwards, time dependent thermal-hydraulic equations are answered by employing Single Heated Channel by Sectionalized Compressible Fluid method. Then, the obtained results were validated by the same transient simulation in a pressurized water reactor core. Then, thermal-hydraulic and neutronic modules are coupled concurrently by use of producing group constants regarding the thermal feedback effect. Results were compared to the mentioned transient simulation in RELAP5 computer code, which show that mass flux drop is sensed at the end of channel in several milliseconds which causes heat flux drop too. The thermal feedback resulted in production of some perturbations in the changes of these parameters. The achieved results for this very fast pressure drop represent accurate calculations of thermoneutronic parameters fast changes.

  1. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  2. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    Science.gov (United States)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  3. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  4. Microscale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  5. SuperMAG: Present and Future Capabilities

    Science.gov (United States)

    Hsieh, S. W.; Gjerloev, J. W.; Barnes, R. J.

    2009-12-01

    SuperMAG is a global collaboration that provides ground magnetic field perturbations from a long list of stations in the same coordinate system, identical time resolution and with a common baseline removal approach. This unique high quality dataset provides a continuous and nearly global monitoring of the ground magnetic field perturbation. Currently, only archived data are available on the website and hence it targets basic research without any operational capabilities. The existing SuperMAG software can be easily adapted to ingest real-time or near real-time data and provide a now-casting capability. The SuperDARN program has a long history of providing near real-time maps of the northern hemisphere electrostatic potential and as both SuperMAG and SuperDARN share common software it is relatively easy to adapt these maps for global magnetic perturbations. Magnetometer measurements would be assimilated by the SuperMAG server using a variety of techniques, either by downloading data at regular intervals from remote servers or by real-time streaming connections. The existing SuperMAG analysis software would then process these measurements to provide the final calibrated data set using the SuperMAG coordinate system. The existing plotting software would then be used to produce regularly updated global plots. The talk will focus on current SuperMAG capabilities illustrating the potential for now-casting and eventually forecasting.

  6. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  7. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  8. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  9. Super Energy Efficient Design (S.E.E.D.) Home Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Weitzel, E. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-12-01

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the “Super Energy Efficient Design” (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  10. A Framework for the Generation and Dissemination of Drop Size Distribution (DSD) Characteristics Using Multiple Platforms

    Science.gov (United States)

    Wolf, David B.; Tokay, Ali; Petersen, Walt; Williams, Christopher; Gatlin, Patrick; Wingo, Mathew

    2010-01-01

    Proper characterization of the precipitation drop size distribution (DSD) is integral to providing realistic and accurate space- and ground-based precipitation retrievals. Current technology allows for the development of DSD products from a variety of platforms, including disdrometers, vertical profilers and dual-polarization radars. Up to now, however, the dissemination or availability of such products has been limited to individual sites and/or field campaigns, in a variety of formats, often using inconsistent algorithms for computing the integral DSD parameters, such as the median- and mass-weighted drop diameter, total number concentration, liquid water content, rain rate, etc. We propose to develop a framework for the generation and dissemination of DSD characteristic products using a unified structure, capable of handling the myriad collection of disdrometers, profilers, and dual-polarization radar data currently available and to be collected during several upcoming GPM Ground Validation field campaigns. This DSD super-structure paradigm is an adaptation of the radar super-structure developed for NASA s Radar Software Library (RSL) and RSL_in_IDL. The goal is to provide the DSD products in a well-documented format, most likely NetCDF, along with tools to ingest and analyze the products. In so doing, we can develop a robust archive of DSD products from multiple sites and platforms, which should greatly benefit the development and validation of precipitation retrieval algorithms for GPM and other precipitation missions. An outline of this proposed framework will be provided as well as a discussion of the algorithms used to calculate the DSD parameters.

  11. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  12. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  13. Derivation of guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Mancini, Roberta; Zühlsdorf, Benjamin

    2017-01-01

    integration in a spray drying facility. A numerical model of the evaporator is combined with cycle calculations, for estimating the impact of heat transfer area and pressure drop on the coefficient of performance and costs. Common trends are obtained as optimal configurations for the four considered fluids...... minimization of area and pressure drop is found by assessing the relative impact on costs of the heat exchanger area and pressure losses of both working fluid and heat source. The result shows that it is not always convenient to minimize the heat transfer area, since the mixture pressure drop negatively...

  14. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  15. Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks

    International Nuclear Information System (INIS)

    Zhai, Yuling; Li, Zhouhang; Wang, Hua; Xu, Jianxin

    2017-01-01

    Highlights: • A novel geometry with rectangular and complex channels in each layer is presented. • It shows lower pressure drop and more uniform temperature distribution. • The essence of enhanced heat transfer is analyzed from thermodynamics. - Abstract: Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility.

  16. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  17. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    International Nuclear Information System (INIS)

    Baudouy, B.

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  18. Study of pressure drop in a mock-up of fuel element cluster

    International Nuclear Information System (INIS)

    Barros Filho, J.A.

    1987-01-01

    Results of single-phase tests performed in a 3 x 3 rod bundle arranged in square array are presented and analysed. The tests were performed in adiabatic conditions and with heat transfer, covering the following range of parameters: Reynolds no.: 1,5 to 20 x 10 4 ; inlet temperature [ 0 C]: 30 to 150; pressure [bar]: 1 to 15; heat flux (kW/cm 2 ]: 0 to 1000. Correlations were determined for the friction factor, isothermal and under conditions of heat transfer, spacer grids pressure drop coefficient and average heat transfer coefficient. The experimental data were compared with published data obtained by other researchers and with some theoretical models selected in the literature. (Author) [pt

  19. Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis

    Directory of Open Access Journals (Sweden)

    Basma Abbas Abdulmajeed

    2015-01-01

    Full Text Available This study concerns a new type of heat exchangers, which is that of shell-and-double concentric tube heat exchangers. The case studies include both design calculations and performance calculations. The new heat exchanger design was conducted according to Kern method. The volumetric flow rates were 3.6 m3/h and 7.63 m3/h for the hot oil and water respectively. The experimental parameters studied were: temperature, flow rate of hot oil, flow rate of cold water and pressure drop. A comparison was made for the theoretical and experimental results and it was found that the percentage error for the hot oil outlet temperature was (- 1.6%. The percentage errors for the pressure drop in the shell and in the concentric tubes were (17.2% and (- 39% respectively. For cold water outlet temperature, the percentage error was (- 3.3%, while it was (18% considering the pressure drop in the annulus formed. The percentage error for the total power consumed was (-10.8% A theoretical comparison was made between the new design and the conventional heat exchanger from the point of view of, length, mass, pressure drop and total power consumed.

  20. Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures

    Science.gov (United States)

    Lee, Kyungjun; Lyu, Sungnam; Lee, Sangmin; Kim, Youn Sang; Hwang, Woonbong

    2010-09-01

    Transparent super-hydrophobic films were fabricated using the PDMS method and silane process, based on anodization in phosphoric acid. Contact angle tests were performed to determine the contact angle of each film according to the anodizing time. Transmittance tests also were performed to obtain the transparency of each TPT (trimethylolpropane propoxylate triacrylate) replica film according to the anodizing time. The contact angle was determined by studying the drop shape, and the transmittance was measured using a UV-spectrometer. The contact angle increases with increasing anodizing time, because increasing pillar length can trap more air between the TPT replica film and a drop of water. The transmittance falls with increasing anodizing time because the increasing pillar length causes a scattering effect. This study shows that the pillar length and transparency are inversely proportional. The TPT replica film having nanofibers array structures was better than other films in aspect of self-cleaning by doing quantitative experimentation.

  1. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation

    KAUST Repository

    Moretti, Manola; Allione, Marco; Marini, Monica; Giugni, Andrea; Torre, Bruno; Das, Gobind; Di Fabrizio, Enzo M.

    2018-01-01

    Super-hydrophobic micro-patterned surfaces are ideal substrates for the controlled self-assembly and substrate-free characterization of biological molecules. In this device, the tailored surface supports a micro-volume drop containing the molecules of interest. While the quasi-spherical drop is evaporating under controlled conditions, its de-wetting direction is guided by the pillared microstructure on top of the device, leading to the formation of threads between the neighboring pillars. This effect has been exploited here to elucidate the mechanism triggering the formation of amyloid fibers and oligomers in tau related neurodegenerative diseases. By using Raman spectroscopy, we demonstrate that the fiber bridging the pillars contains β-sheets, a characteristic feature of amyloid aggregation. We propose that the combination of laminar flow, shear stress and molecular crowding taking place while the drop is evaporating on the SHMS, induces the reorganization of the tau protein secondary structure and we suggest that this effect could in fact closely mimic the actual mechanism occurring in the human brain environment. Such a straightforward technique opens up new possibilities in the field of self-assembly of biomolecules and their characterization by different methods (SEM, AFM, Raman spectroscopy, TEM), in a single device.

  2. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation

    KAUST Repository

    Moretti, Manola

    2018-02-01

    Super-hydrophobic micro-patterned surfaces are ideal substrates for the controlled self-assembly and substrate-free characterization of biological molecules. In this device, the tailored surface supports a micro-volume drop containing the molecules of interest. While the quasi-spherical drop is evaporating under controlled conditions, its de-wetting direction is guided by the pillared microstructure on top of the device, leading to the formation of threads between the neighboring pillars. This effect has been exploited here to elucidate the mechanism triggering the formation of amyloid fibers and oligomers in tau related neurodegenerative diseases. By using Raman spectroscopy, we demonstrate that the fiber bridging the pillars contains β-sheets, a characteristic feature of amyloid aggregation. We propose that the combination of laminar flow, shear stress and molecular crowding taking place while the drop is evaporating on the SHMS, induces the reorganization of the tau protein secondary structure and we suggest that this effect could in fact closely mimic the actual mechanism occurring in the human brain environment. Such a straightforward technique opens up new possibilities in the field of self-assembly of biomolecules and their characterization by different methods (SEM, AFM, Raman spectroscopy, TEM), in a single device.

  3. Heat Transfer and Pressure Drop with Rough Surfaces, a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1964-05-15

    This literature survey deals with changes in heat transfer coefficient and friction factor with varying nature and degree of roughness. Experimental data cover mainly the turbulent flow region for both air and water as flow mediums. Semiempirical analysis about changes in heat transfer coefficient due to roughness has been included. An example of how to use these data to design a heat exchanger surface is also cited. The extreme case of large fins has not been considered. Available literature between 1933 - 1963 has been covered.

  4. SuperAGILE Services at ASDC

    International Nuclear Information System (INIS)

    Preger, B.; Verrecchia, F.; Pittori, C.; Antonelli, L. A.; Giommi, P.; Lazzarotto, F.; Evangelista, Y.

    2008-01-01

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE

  5. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Namba, T.; Obayashi, Y.; Okada, A.; Oketa, M.; Okumura, K.; Oyabu, T.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Toshito, T.; Totsuka, Y.; Yamada, S.; Desai, S.; Earl, M.; Hong, J.T.; Kearns, E.; Masuzawa, M.; Messier, M.D.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Wang, W.; Scholberg, K.; Barszczak, T.; Casper, D.; Liu, D.W.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Mine, S.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Hayato, Y.; Ishii, T.; Ichikawa, A.; Kanzaki, J.; Kobayashi, T.; Maruyama, T.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Iwashita, T.; Kohama, M.; Suzuki, A.T.; Hasegawa, M.; Inagaki, T.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Yamamoto, S.; Haines, T.J.; Kim, B.K.; Sanford, R.; Svoboda, R.; Blaufuss, E.; Chen, M.L.; Conner, Z.; Goodman, J.A.; Guillian, E.; Sullivan, G.W.; Turcan, D.; Habig, A.; Ackerman, M.; Goebel, F.; Hill, J.; Jung, C.K.; Kato, T.; Kerr, D.; Malek, M.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Inaba, S.; Ito, K.; Kirisawa, M.; Kitaguchi, M.; Mitsuda, C.; Miyano, K.; Saji, C.; Takahata, M.; Takahashi, M.; Higuchi, K.; Kajiyama, Y.; Kusano, A.; Nagashima, Y.; Nitta, K.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, H.I.; Kim, S.B.; Yoo, J.; Okazawa, H.; Etoh, M.; Fujita, K.; Gando, Y.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Koga, M.; Nishiyama, I.; Ogawa, H.; Shirai, J.; Suzuki, A.; Takayama, T.; Tsushima, F.; Koshiba, M.; Ichikawa, Y.; Hashimoto, T.; Hatakeyama, Y.; Koike, M.; Horiuchi, T.; Nemoto, M.; Nishijima, K.; Takeda, H.; Fujiyasu, H.; Futagami, T.; Ishino, H.; Kanaya, Y.; Morii, M.; Nishihama, H.; Nishimura, H.; Suzuki, T.; Watanabe, Y.; Kielczewska, D.; Golebiewska, U.; Berns, H.G.; Boyd, S.B.; Doyle, R.A.; George, J.S.; Stachyra, A.L.; Wai, L.L.; Wilkes, R.J.; Young, K.K.; Kobayashi, H.

    2003-01-01

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  6. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  7. Further results on super graceful labeling of graphs

    Directory of Open Access Journals (Sweden)

    Gee-Choon Lau

    2016-08-01

    Full Text Available Let G=(V(G,E(G be a simple, finite and undirected graph of order p and size q. A bijection f:V(G∪E(G→{k,k+1,k+2,…,k+p+q−1} such that f(uv=|f(u−f(v| for every edge uv∈E(G is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k=1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1,1,n, and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful.

  8. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies

    International Nuclear Information System (INIS)

    Chang-Le, Shen; Wen-Jun, Xie; Bing-Bo, Wei

    2010-01-01

    A category of non-axisymmetric oscillations of acoustically levitated water drops was observed. These oscillations can be qualitatively described by superposing a sectorial oscillating term upon the initial oblate shape resulting from the effect of acoustic radiation pressure. The oscillation frequencies are around 25 Hz for the 2-lobed mode and exactly 50 Hz for the 3- and 4-lobed modes. These oscillations were excited by the disturbance from the power supply. For the same water drop, higher mode oscillations were observed with more oblate initial shape, indicating that the eigenfrequencies of these non-axisymmetric oscillations decrease with increasing initial distortion. The maximum velocity and acceleration within the oscillating drop can attain 0.3m·s −1 and 98.7m·s −2 respectively, resulting in strong fluid convection and enhanced heat and mass transfer. (condensed matter: structure, mechanical and thermal properties)

  9. Pressure drop in two-phase He I natural circulation loop at low vapour quality

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    2003-01-01

    Steady state pressure drop in a two-phase He I natural circulation loop has been measured at atmospheric pressure. Results are obtained up to 0.2 exit vapor quality for a 14-mm diameter copper tube heated over a length of 1.2 m. Pressure drop assessment, done with the momentum balance equation including subcooling, reveals that the homogeneous model and Friedel's friction multiplier associated with Huq and Loth's void fraction correlations predict data within 15%. (author)

  10. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems

    Directory of Open Access Journals (Sweden)

    Stefano De Antonellis

    2014-11-01

    Full Text Available Air to air heat exchangers play a crucial role in mechanical ventilation equipment, due to the potential primary energy savings both in case of refurbishment of existing buildings or in case of new ones. In particular, interest in heat wheels is increasing due to their low pressure drop and high effectiveness. In this paper a detailed optimization of design parameters of heat wheels is performed in order to maximize sensible effectiveness and to minimize pressure drop. The analysis is carried out through a one dimensional lumped parameters heat wheel model, which solves heat and mass transfer equations, and through appropriate correlations to estimate pressure drop. Simulation results have been compared with experimental data of a heat wheel tested in specific facilities, and good agreement is attained. The device optimization is performed through the variation of main design parameters, such as heat wheel length, channel base, height and thickness and for different operating conditions, namely the air face velocity and the revolution speed. It is shown that the best configurations are achieved with small channel thickness and, depending on the required sensible effectiveness, with appropriate values of wheel length and channel base and height.

  11. Super Energy Efficiency Design (S.E.E.D.) Home Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Backman, C.; Weitzel, E.; Springer, D.

    2012-12-01

    This report describes the results of evaluation by the Alliance for Residential Building Innovation (ARBI) Building America team of the 'Super Energy Efficient Design' (S.E.E.D) home, a 1,935 sq. ft., single-story spec home located in Tucson, AZ. This prototype design was developed with the goal of providing an exceptionally energy efficient yet affordable home and includes numerous aggressive energy features intended to significantly reduce heating and cooling loads such as structural insulated panel (SIP) walls and roof, high performance windows, an ERV, an air-to-water heat pump with mixed-mode radiant and forced air delivery, solar water heating, and rooftop PV. Source energy savings are estimated at 45% over the Building America B10 Benchmark. System commissioning, short term testing, long term monitoring and detailed analysis of results was conducted to identify the performance attributes and cost effectiveness of the whole house measure package.

  12. Fatigue crack propagation of super duplex stainless steel and time-frequency analysis of acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Kee; Nam, Ki Woo; Kang, Chang Yong; Do, Jae Yoon

    2000-01-01

    On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at 1200 deg. C had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was 200∼300 kHz having no correlation with heat treatment and crack length, and 500 kHz was obtained by dimple and separate of inclusion

  13. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    Science.gov (United States)

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Superstring field theories on super-flag manifolds: superdiff S1/S1 and superdiff S1/super S1

    International Nuclear Information System (INIS)

    Zhao Zhiyong; Wu, Ke; Saito, Takesi

    1987-01-01

    We generalize the geometric approach of Bowick and Rajeev [BR] to superstring field theories. The anomaly is identified with nonvanishing of the Ricci curvature of the super-flag manifold. We explicitly calculate the curvatures of superdiff S 1 /S 1 and superdiff S 1 /superS 1 using super-Toeplitz operator techniques. No regularization is needed in this formalism. The critical dimension D=10 is rediscovered as a result of vanishing curvature of the product bundle over the super-flag manifold. (orig.)

  15. Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact

    Science.gov (United States)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2017-11-01

    Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (µCT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a µCT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface.

  16. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  17. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  18. Thermodynamic analysis of chemical heat pumps

    International Nuclear Information System (INIS)

    Obermeier, Jonas; Müller, Karsten; Arlt, Wolfgang

    2015-01-01

    Thermal energy storages and heat pump units represent an important part of high efficient renewable energy systems. By using thermally driven, reversible chemical reactions a combination of thermal energy storage and heat pump can be realized. The influences of thermophysical properties of the involved components on the efficiency of a heat pump cycle is analysed and the relevance of the thermodynamic driving force is worked out. In general, the behaviour of energetic and exergetic efficiency is contrary. In a real cycle, higher enthalpies of reaction decrease the energetic efficiency but increase the exergetic efficiency. Higher enthalpies of reaction allow for lower offsets from equilibrium state for a default thermodynamic driving force of the reaction. - Highlights: • A comprehensive efficiency analysis of gas-solid heat pumps is proposed. • Link between thermodynamic driving force and equilibrium drop is shown. • Calculation of the equilibrium drop based on thermochemical properties. • Reaction equilibria of the decomposition reaction of salt hydrates. • Contrary behavior of energetic and exergetic efficiency

  19. Auxiliary Heat Exchanger Flow Distribution Test

    International Nuclear Information System (INIS)

    Kaufman, J.S.; Bressler, M.M.

    1983-01-01

    The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop

  20. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  1. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  2. Experimental studies on the evaporative heat transfer and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward in smooth and micro-fin tubes with outer diameter of 5 mm for an inclination angle of 45

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Min; Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea); Kim, Yong Jin [School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2010-08-15

    Heat transfer characteristics show different tendency according to the tube orientations such as horizontal, vertical, and inclined positions. In this study, evaporative heat transfer characteristics and pressure drop of CO{sub 2} and CO{sub 2}/propane mixtures flowing upward are investigated in inclined smooth and micro-fin tubes. Smooth and micro-fin tubes with outer diameter of 5 mm and length of 1.44 m with inclination angle of 45 were chosen as test tubes. Average inner diameters of test tubes are 4.0 mm (smooth tube) and 4.13 mm (micro-fin tube). The tests were conducted at mass fluxes from 212 to 656 kg/m{sup 2} s, saturation temperatures from -10 to 30 C and heat fluxes from 15 to 60 kW/m{sup 2} for CO{sub 2}. In addition, for CO{sub 2}/propane mixtures, the test was carried out at inlet temperatures from -10 to 30 C for several compositions (75/25, 50/50, 25/75 wt%) with the same mass fluxes, heat fluxes applied for CO{sub 2}. Heat transfer coefficients in inclined tube are approximately 1.8-3 times higher than those in horizontal tube and the average pressure drop of inclined tube exists between that of horizontal and vertical tubes. (author)

  3. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  4. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    The increasing global urbanisation creates a great demand for new buildings. In the aim to honour this, a new structural system, offering flexibility and variation at no extra cost appears beneficial. Super-Light Structures constitute such a system. This PhD thesis examines Super-Light Structures...... with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...

  5. Heat capacities of several Co{sub 2}YZ Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip; Chen, Song

    2013-12-20

    Highlights: • Heat contents from 600 K to 1500 K of selected Co{sub 2}YZ were measured by drop calorimeters. • Heat capacities were obtained by taking derivatives of heats contents which were fitted with second order polynomial with respect to temperature. • Melting points determined by DSC were consistent with literature data. • Heats of fusion determined by DSC were comparable with those obtained by extrapolation of heat contents. - Abstract: Heat contents of several Co{sub 2}-based Heusler compounds Co{sub 2}YZ (Y = Fe, Mn, Ti; Z = Al, Ga, Si, Ge, Sn) were measured from 500 K to 1500 K using a Setaram MTHC 96 drop calorimeter. Second order polynomials were adopted to fit the data and heat capacities were obtained by taking the derivatives with respect to temperature. Melting points were determined by differential scanning calorimetry (DSC) and measured heats of fusion were compared with those obtained from extrapolation of heat contents.

  6. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model

    International Nuclear Information System (INIS)

    Kim, Dong Eok; Kim, Moo Hwan; Cha, Jae Eun; Kim, Seong O.

    2008-01-01

    Three-dimensional numerical analysis was performed to investigate heat transfer and pressure drop characteristics of supercritical CO 2 flow in new Printed Circuit Heat Exchanger (PCHE) model using commercial CFD code, Fluent 6.3. First, numerical analysis for conventional zigzag channel PCHE model was performed and compared with previous experimental data. Maximum deviation of in-outlet temperature difference and pressure drop from experimental data is about 10%. A new PCHE model has been designed to optimize thermal-hydraulic performance of PCHE. The new PCHE model has several airfoil shape fins (NACA 0020 model), which are designed to streamlined shape. Simulation results showed that in the airfoil shape fin PCHE, total heat transfer rate per unit volume was almost same with zigzag channel PCHE and the pressure drop was reduced to one-twentieth of that in zigzag channel PCHE. In airfoil shape fin PCHE model, the enhancement of heat transfer area and the uniform flow configuration contributed to obtain the same heat transfer performance with zigzag channel PCHE model. And the reduction of pressure drop in airfoil shape fin PCHE model was caused by suppressing generation of separated flow owing to streamlined shape of airfoil fins

  7. Study of the pressure drop in a rob bundle arranged in square array

    International Nuclear Information System (INIS)

    Barros Filho, J.A.

    1987-01-01

    Results of single-phase tests performed in a 3 x 3 rod bundle arranged in square array are presented and analysed. The tests were performed in adiabatic conditions and with heat transfer, covering the following range of parameters: Reynolds no.: 1,5 to 20 x 10 4 ; inlet temperature [ 0 C]: 30 to 150; pressure [bar]: 1 to 15; heat flux [kW/cm 2 ]: 0 to 1000. Correlations were determined for the friction factor, isothermal under conditions of heat transfer, spacer grids pressure drop coefficient and average heat transfer coefficient. The experimental data were compared with published data obtained by other researchers and with some theoretical models selected in the literature. (Autor) [pt

  8. Gaseous phase heat capacity of benzoic acid

    NARCIS (Netherlands)

    Santos, L.M.N.B.F.; Alves da Rocha, M.A.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.

    2010-01-01

    The gaseous phase heat capacity of benzoic acid (BA) was proven using the experimental technique called the "in vacuum sublimation/vaporization Calvet microcalorimetry drop method". To overcome known experimental shortfalls, the gaseous phase heat capacity of BA monomer was estimated by ab initio

  9. Detecting Water on Super-Earths Using JAVST

    Science.gov (United States)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  10. Supergrassmannians, super τ-functions and strings

    International Nuclear Information System (INIS)

    Dolgikh, S.N.; Schwarz, A.S.

    1989-03-01

    Recently, infinite-dimensional grassmannians and their supergeneralizations were used to study conformal two-dimensional fields and strings. In particular, the super Mumford form (holomorphic square root from the superstring measure on moduli space) was expressed through super analog of Sato τ-function. In this paper we present results of supergrassmannians and super τ-functions. 8 refs

  11. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  12. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  13. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    Science.gov (United States)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  14. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  15. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  16. A modified detector concept for SuperCDMS: The HiZIP and its charge performance

    Energy Technology Data Exchange (ETDEWEB)

    Page, Kedar Mohan [Queen' s U.

    2013-01-01

    SuperCDMS (Super Cryogenic Dark Matter Search) is a leading direct dark mat-ter search experiment which uses solid state detectors (Ge crystals) at milliKelvintemperatures to look for nuclear recoils caused by dark matter interactions in the de-tector. `Weakly Interacting Massive Particles' (WIMPs) are the most favoured darkmatter candidate particles. SuperCDMS, like many other direct dark matter searchexperiments, primarily looks for WIMPs. The measurement of both the ionizationand the lattice vibration (phonon) signals from an interaction in the detector allow itto discriminate against electron recoils which are the main source of background forWIMP detection.SuperCDMS currently operates about 9 kg of Ge detectors at the Soudan under-ground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB plansto use 100-200 kg of target mass (Ge) which would allow it to probe more of theinteresting and and as of yet unexplored parameter space for WIMPs predicted bytheoretical models. The SuperCDMS Queen's Test Facility is a detector test facilitywhich is intended to serve as detector testing and detector research and developmentpurposes for the SuperCDMS experiment.A modifed detector called the HiZIP (Half-iZIP), which is reduced in complex-ity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector designalso serves to discriminate against background from multiple scatter events occurringclose to the surfaces in a single detector. Studies carried out to compare the surfaceevent leakage in the HiZIP detector using limited information from iZIP data takenat SuperCDMS test facility at UC Berkley produce a highly conservative upper limitof 5 out of 10,000 events at 90% condence level. This upper limit is the best amongmany different HiZIP congurations that were investigated and is comparable to theupper limit calculated for an HiZIP detector in the same way

  17. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  18. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  19. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-01-01

    This research work articulated the effect of SiO 2 flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO 2 flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels

  20. Quantification of exploitable shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems

    International Nuclear Information System (INIS)

    Hein, Philipp; Zhu, Ke; Bucher, Anke; Kolditz, Olaf; Pang, Zhonghe; Shao, Haibing

    2016-01-01

    Highlights: • The amount of technically exploitable shallow geothermal energy was quantified. • Therefore, a comprehensive numerical borehole heat exchanger model was employed. • The concept of equivalent temperature drop is introduced. • For one BHE, an equivalent temperature drop of 1.8–2.8 °C over 30 years is realistic • The average extractable energy amount evaluates to be 3.5–5.4 kW h m"−"2 a"−"1. - Abstract: In previous studies, the amount of exploitable shallow geothermal energy was estimated by assuming a uniform temperature drop of 2–6 °C in the aquifer. In this work, a more comprehensive numerical model has been employed to evaluate the available amount of shallow geothermal energy by using Borehole Heat Exchanger coupled Ground Source Heat Pump systems. Numerical experiments have been performed by simulating the long-term evolution of the subsurface temperature field, which is subject to the operation of borehole heat exchangers and varying parameters like subsurface thermal conductivity and groundwater flow velocity. The concept of equivalent temperature drop is proposed as an auxiliary quantity for the subsurface. With the help of this parameter, a procedure has been established to quantify the amount of shallow geothermal potential. Following this approach, a realistic equivalent temperature reduction is found to be from −1.8 to −4.4 °C in the subsurface over a period of 30 years. This can be translated to an annual extractable geothermal energy value in a unit surface area, and it ranges from 3.5 to 8.6 kW h m"−"2 a"−"1. The exact value is site specific and heavily depends on the soil thermal conductivity, groundwater velocity, and borehole arrangement.

  1. Study on the simulation of heat pump heating and cooling systems to hospital building

    International Nuclear Information System (INIS)

    Choi, Young Don; Han, Seong Ho; Cho, Sung Hwan; Kim, Du Sung; Um, Chul Jun

    2008-01-01

    In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller and heater

  2. Studies of heat transport to forced-flow He II

    International Nuclear Information System (INIS)

    Dresner, L.; Kashani, A.; Van Sciver, S.W.

    1985-01-01

    Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations

  3. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  4. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    International Nuclear Information System (INIS)

    Grabenstein, V; Kabelac, S

    2012-01-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the 'Temperature Oscillation InfraRed Thermography' (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  5. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    International Nuclear Information System (INIS)

    Escobar, Juan V.; Garza, Cristina; Alonso, Juan Carlos; Castillo, Rolando

    2013-01-01

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  6. Super-mercuryphobic and hydrophobic diamond surfaces with hierarchical structures: Vanishment of the contact angle hysteresis with mercury

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Juan V., E-mail: escobar@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Garza, Cristina, E-mail: cgarza@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico); Alonso, Juan Carlos, E-mail: alonso@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, PO Box 70-360, DF, México, 04510 (Mexico); Castillo, Rolando, E-mail: rolandoc@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, PO Box 20-364, DF, México, 01000 (Mexico)

    2013-05-15

    Increased roughness is known to enhance the natural wetting properties of surfaces, making them either more hydrophobic or more hydrophilic. In this work we study the wetting properties of water and mercury drops in contact with boron doped diamond films with progressively increased surface roughnesses. We show how thermal oxidation of a microcrystalline film creates pyramids decorated with sub-micron protrusions that turn its naturally mercuryphobic surface into super-mercuryphobic. With this liquid, we observe the vanishment of the contact angle hysteresis that is expected for rough surfaces as the contact angle approaches 180, making small drops of mercury roll along out of the surface at an apparent zero tilt-angle. In contrast, the incorporation of nano-globules on the oxidized surface through a silanization process is necessary to increase the hydrophobic properties of the film for which the contact angle with water reaches 138°. The wetting states that dominate in each case are discussed.

  7. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  8. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  9. Learning from errors in super-resolution.

    Science.gov (United States)

    Tang, Yi; Yuan, Yuan

    2014-11-01

    A novel framework of learning-based super-resolution is proposed by employing the process of learning from the estimation errors. The estimation errors generated by different learning-based super-resolution algorithms are statistically shown to be sparse and uncertain. The sparsity of the estimation errors means most of estimation errors are small enough. The uncertainty of the estimation errors means the location of the pixel with larger estimation error is random. Noticing the prior information about the estimation errors, a nonlinear boosting process of learning from these estimation errors is introduced into the general framework of the learning-based super-resolution. Within the novel framework of super-resolution, a low-rank decomposition technique is used to share the information of different super-resolution estimations and to remove the sparse estimation errors from different learning algorithms or training samples. The experimental results show the effectiveness and the efficiency of the proposed framework in enhancing the performance of different learning-based algorithms.

  10. Dry Sliding Wear Behavior of Super Duplex Stainless Steel AISI 2507: a Statistical Approach

    Directory of Open Access Journals (Sweden)

    Davanageri M.

    2016-12-01

    Full Text Available The dry sliding wear behavior of heat-treated super duplex stainless steel AISI 2507 was examined by taking pin-on-disc type of wear-test rig. Independent parameters, namely applied load, sliding distance, and sliding speed, influence mainly the wear rate of super duplex stainless steel. The said material was heat treated to a temperature of 850°C for 1 hour followed by water quenching. The heat treatment was carried out to precipitate the secondary sigma phase formation. Experiments were conducted to study the influence of independent parameters set at three factor levels using the L27 orthogonal array of the Taguchi experimental design on the wear rate. Statistical significance of both individual and combined factor effects was determined for specific wear rate. Surface plots were drawn to explain the behavior of independent variables on the measured wear rate. Statistically, the models were validated using the analysis of variance test. Multiple non-linear regression equations were derived for wear rate expressed as non-linear functions of independent variables. Further, the prediction accuracy of the developed regression equation was tested with the actual experiments. The independent parameters responsible for the desired minimum wear rate were determined by using the desirability function approach. The worn-out surface characteristics obtained for the minimum wear rate was examined using the scanning electron microscope. The desired smooth surface was obtained for the determined optimal condition by desirability function approach.

  11. Development of ecological and economical super-insulations for various applications. Subproject 1: scientific development of ecological super-insulations for industrial application. Subproject 2: experimental synthesis and development of a pilot plant for continuously production and realisation of multilayer-insulation materials. Final report; Entwicklung oekologischer und wirtschaftlicher Super-Isolationen fuer vielfaeltige Anwendungen. Teilvorhaben 1: Wissenschaftliche Entwicklung oekologischer Super-Isolationen fuer industrielle Anwendungen. Teilvorhaben 2: Experimentelle Struktursynthese und Entwicklung einer Technikumsanlage zur kontinuierlichen Herstellung von Mehrschicht-Daemmstoffen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, P.; Freudenberg, C.; Schenk, A.; Doerfel, A.; Hoffmann, G.; Roedel, H.; Schierz, C.; Hopf, W.

    2002-07-01

    Heat insulation materials are used in many applications with special tasks. Insulating materials like mineral wool, hard foams are used in civil engineering and for industrial insulation. Insulating materials from natural fibres are used in civil engineering on a small scale, too. In the clothing area are applied knitted fleece particularly for out-door-clothing in addition to non-woven made of synthetic polymers or wool. The aim of the project consists in the development of an insulating material with a very low heat conductivity and density as well as a multitude of degree of freedom to the structure and material parameters. A mathematical model has been developed for the determination of an optimised structure regarding to heat conductivity and density. The development was done by using the electrostatic flocking technology. After the material selection practical investigations have been done about the mode of function of the selected materials regarding their thermal insulation behaviour. A pilot plant for continuous production of the flocked material has been installed and tested. The result of this project is a very variable structure of insulating materials with excellent properties. The developed material is called Super-Insulation-Flock-Material (SIFM). Using defined structural parameters and skillfully selected materials it would be possible to get a heat conductivity between 0,027 W/mK and 0,30 W/mK. The density of these structures is between 10 kg/m{sup 3} and 20 kg/m{sup 3}. Structures with a density of only 7 kg/m{sup 3} are able to attend for applications without high mechanical demands. The Super-Insulation-Fock-Material is used in the clothing area and the technical sector. Sample products, e.g. a cold protective jacket, a jacket for fire fighters, insulation of airplanes as well as heat protective plates for the automotive industry, are found out. New fields for further applications of the Super-Insulation-Flock-Material result from the

  12. Superparticle on the 'super' Poincare upper half plane

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, S; Yasui, Yukinora

    1988-03-17

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace.

  13. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  14. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  15. The Solution Construction of Heterotic Super-Liouville Model

    Science.gov (United States)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  16. Pressure drop and friction factor correlations of supercritical flow

    International Nuclear Information System (INIS)

    Fang Xiande; Xu Yu; Su Xianghui; Shi Rongrong

    2012-01-01

    Highlights: ► Survey and evaluation of friction factor models for supercritical flow. ► Survey of experimental study of supercritical flow. ► New correlation of friction factor for supercritical flow. - Abstract: The determination of the in-tube friction pressure drop under supercritical conditions is important to the design, analysis and simulation of transcritical cycles of air conditioning and heat pump systems, nuclear reactor cooling systems and some other systems. A number of correlations for supercritical friction factors have been proposed. Their accuracy and applicability should be examined. This paper provides a comprehensive survey of experimental investigations into the pressure drop of supercritical flow in the past decade and a comparative study of supercritical friction factor correlations. Our analysis shows that none of the existing correlations is completely satisfactory, that there are contradictions between the existing experimental results and thus more elaborate experiments are needed, and that the tube roughness should be considered. A new friction factor correlation for supercritical tube flow is proposed based on 390 experimental data from the available literature, including 263 data of supercritical R410A cooling, 45 data of supercritical R404A cooling, 64 data of supercritical carbon dioxide (CO 2 ) cooling and 18 data of supercritical R22 heating. Compared with the best existing model, the new correlation increases the accuracy by more than 10%.

  17. Super-radiance in Nuclear Physics

    International Nuclear Information System (INIS)

    Auerbach, N

    2015-01-01

    The theory of the super-radiant mechanism as applied to various phenomena in nuclear physics is presented. The connection between super-radiance and the notion of doorway is presented. The statistics of resonance widths in a many-body Fermi system with open channels is discussed. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states via the common decay channels. In the limit of very strong coupling this leads to super-radiance. (paper)

  18. Development of the Monju core safety analysis numerical models by super-COPD code

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Minami, Masaki

    2010-12-01

    Japan Atomic Energy Agency constructed a computational model for safety analysis of Monju reactor core to be built into a modularized plant dynamics analysis code Super-COPD code, for the purpose of heat removal capability evaluation at the in total 21 defined transients in the annex to the construction permit application. The applicability of this model to core heat removal capability evaluation has been estimated by back to back result comparisons of the constituent models with conventionally applied codes and by application of the unified model. The numerical model for core safety analysis has been built based on the best estimate model validated by the actually measured plant behavior up to 40% rated power conditions, taking over safety analysis models of conventionally applied COPD and HARHO-IN codes, to be capable of overall calculations of the entire plant with the safety protection and control systems. Among the constituents of the analytical model, neutronic-thermal model, heat transfer and hydraulic models of PHTS, SHTS, and water/steam system are individually verified by comparisons with the conventional calculations. Comparisons are also made with the actually measured plant behavior up to 40% rated power conditions to confirm the calculation adequacy and conservativeness of the input data. The unified analytical model was applied to analyses of in total 8 anomaly events; reactivity insertion, abnormal power distribution, decrease and increase of coolant flow rate in PHTS, SHTS and water/steam systems. The resulting maximum values and temporal variations of the key parameters in safety evaluation; temperatures of fuel, cladding, in core sodium coolant and RV inlet and outlet coolant have negligible discrepancies against the existing analysis result in the annex to the construction permit application, verifying the unified analytical model. These works have enabled analytical evaluation of Monju core heat removal capability by Super-COPD utilizing the

  19. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  20. Fragmentation of molten copper drop caused by entrapment of liquid sodium

    International Nuclear Information System (INIS)

    Abe, N.; Sugiyama, K.; Nishimura, S.; Kinoshita, I.

    2001-01-01

    In core meltdown accidents, it is possible to occur thermal interactions between molten fuel and coolant. Analysis of the steam explosion, which is one of the most severe phenomena in such thermal interactions, is important for the safety evaluation. The steam explosion is a phenomenon that intensive pressure waves are caused by the explosive thermal interaction between high and low temperature liquids, and is considered to be one of the phenomena that can cause a serious failure of the nuclear reactor structures. In a large-scale steam explosion, the fragmentation of hot molten material causes a rapid increase of heat transfer area, and it is achieved to transmit instantaneously a large amount of heat to coolant. Two ideas are chiefly considered as the mechanism of the fragmentation. The one is the hypothesis that hydrodynamic effect causes fragmentation of hot liquid. According to this hypothesis, the high temperature drops flake off from the surface. The other is that fragmentation is caused by the interface instability accompanied by collapse of the steam bubble formed around a hot liquid. In this research, the possibility of the internal fragmentation caused by the coolant jet is focused in. Experiments were conducted on the condition that the surface of melt drops solidify at the moment drops contact the coolant. The possibility of the fragmentation of hot liquid from its surface was eliminated in this condition. To satisfy this condition, molten copper was chosen as hot liquid, and liquid sodium was used as coolant to verify the effect of the driving force of the sodium jet. (author)

  1. Precipitation phases at different processes and heat treat ments as well as their effects on the mechanical properties of super-austenitic stainless steel

    Science.gov (United States)

    Sun, Hunying; Zhou, Zhangjian; Wang, Man; Li, Shaofu; Zhang, Liwei; Zou, Lei

    2013-03-01

    A new type lCr30Ni30Mo2TiZr super-austenitic stainless steel has been developed. The microstructures, precipitation phases and mechanical properties of the steel under different deformation processes and heat treatment (solution, stabilized treatment) were investigated using X-ray Diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) as well as mechanical tests. The results indicate that coarse carbides such as Cr-rich M23C6, sigma (σ), and little chi (χ) phases were formed in the steel, and large α' -Cr phases were also detected at three joint grain boundaries, and they were promoted by large strain. The precipitate phases were dissolved or transformed to intermetallic phase even at higher elevated temperature, and influenced the mechanical property obviously. These intermetallic compounds seriously reduced elongation of the rolled steel at room temperature and 700 °C, but increased the forged one at 700 °C. Impact absorbed energies of the stabilized specimens were lower than half of that solution status.

  2. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  4. Forced convection heat transfer in He II

    International Nuclear Information System (INIS)

    Kashani, A.

    1986-01-01

    An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid

  5. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    International Nuclear Information System (INIS)

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-01

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M + rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M p ), independent of the initial temperature gap at the CMB (ΔT CMB ), but beyond the critical value M c,p (∼O(1) M + ) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M c,p as a function of ΔT CMB and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M p >M p,c sensitively depends on ΔT CMB , which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  6. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Topology optimization of a pseudo 3D thermofluid heat sink model

    DEFF Research Database (Denmark)

    Haertel, Jan H. K.; Engelbrecht, Kurt; Lazarov, Boyan S.

    2018-01-01

    sink and a fixed heat production rate in the base plate. Optimized designs are presented and the resulting fin geometry is discussed from a thermal engineering point of view and compared to fin shapes resulting from a pressure drop minimization objective. Parametric studies are conducted to analyze......This paper investigates the application of density-based topology optimization to the design of air-cooled forced convection heat sinks. To reduce the computational burden that is associated with a full 3D optimization, a pseudo 3D optimization model comprising a 2D modeled conducting metal base...... layer and a thermally coupled 2D modeled thermofluid design layer is used. Symmetry conditions perpendicular to the flow direction are applied to generate periodic heat sink designs. The optimization objective is to minimize the heat sink heat transfer resistance for a fixed pressure drop over the heat...

  8. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  9. Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy

    Directory of Open Access Journals (Sweden)

    Swetha Chowdary V

    2018-03-01

    Full Text Available In the present study, AZ91 Mg alloy was heat treated at 410 °C for 6, 12 and 24 h to investigate the influence of heat treatment on machinability and corrosion behavior. The effect of soaking time on the amount and distribution of Mg17Al12 (β – phase was analyzed under the optical microscope. Microhardness measurements demonstrated the increased hardness with increased heat treatment soaking time, which can be attributed to the solid solution strengthening. The influence of super saturated α-grains on reducing the cutting force (Fz with respect to increased cutting speed was observed as prominent. The corrosion behavior of the heat treated specimens was studied by conducting electrochemical tests. Surprisingly, corrosion rate of heat treated samples was observed as increased compared with the base material. From the results, it is evident that the machinability of AZ91 Mg alloy can be improved by producing super saturated α-grains through heat treatment but at the cost of losing corrosion resistance. Keywords: AZ91 Mg alloy, Solid solution, Turning, Corrosion, Machinability

  10. Numerical Analysis of Heat transfer Enhancement in a double pipe heat exchanger with a holed twisted tape

    Directory of Open Access Journals (Sweden)

    Kumar Akarsh

    2018-01-01

    Full Text Available In the present study numerical analysis of enhancement in heat transfer characteristics in a double pipe heat exchanger is studied using a holed twisted tape.The twisted tape with a constant twist ratio is inserted in a double pipe heat exchanger. Holes of diameter 1mm, 3 mm and 5 mm were drilled at regular pitch throughout the length of the tape. Numerical modeling of a double pipe heat exchanger with the holed twisted tape was constructed considering hot fluid flowing in the inner pipe and cold fluid through the annulus.Simulation was done for varied mass flow rates of hot fluid in the turbulent condition keeping the mass flow rate of cold fluid being constant. Thermal properties like Outlet temperatures, Nusselt number, overall heat transfer coefficient, heat transfer rate and pressure drop were determined for all the cases. Results indicated that normaltwisted tape without holes performed better than the bare tube. In the tested range of mass flow rates the average Nusselt number and heat transfer rate were increased by 85% and 34% respectively. Performance of Twisted tape with holes was slightly reduced than the normal twisted tape and it deteriorated further for higher values hole diameter. Pressure drop was found to be higher for the holed twisted tape than the normal tape.

  11. SuperKEKB Vacuum System

    CERN Document Server

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0× 10$^{35}$ cm$^{-2}s^{-1}$, which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced ...

  12. Super-Hamiltonian Structures and Conservation Laws of a New Six-Component Super-Ablowitz-Kaup-Newell-Segur Hierarchy

    Directory of Open Access Journals (Sweden)

    Fucai You

    2014-01-01

    Full Text Available A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS hierarchy is proposed by the zero curvature equation associated with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations in the hierarchy by utilizing spectral parameter expansions. PACS: 02.30.Ik; 02.30.Jr; 02.20.Sv.

  13. Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kamel Hooman

    2017-10-01

    Full Text Available This paper focuses on the optimization of a Solar-Enhanced Natural-Draft Dry-Cooling Tower (SENDDCT, originally designed by the Queensland Geothermal Energy Centre of Excellence (QGECE, as the air-cooled condenser of a geothermal power plant. The conventional method of heat transfer augmentation through fin-assisted area extension is compared with a metal foam-wrapped tube bundle. Both lead to heat-transfer enhancement, albeit at the expense of a higher pressure drop when compared to the bare tube bundle as our reference case. An optimal design is obtained through the use of a simplified analytical model and existing correlations by maximizing the heat transfer rate with a minimum pressure drop goal as the constraint. Sensitivity analysis was conducted to investigate the effect of sunroof diameter, as well as tube bundle layouts and tube spacing, on the overall performance of the system. Aiming to minimize the flow and thermal resistances for a SENDDCT, an optimum design is presented for an existing tower to be equipped with solar panels to afterheat the air leaving the heat exchanger bundles, which are arranged vertically around the tower skirt. Finally, correlations are proposed to predict the total pressure drop and heat transfer of the extended surfaces considered here.

  14. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  15. Quantization of super Teichmueller spaces

    International Nuclear Information System (INIS)

    Aghaei, Nezhla

    2016-08-01

    The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U q (sl(2)). In our research we observed that the role of U q (sl(2)) is taken by quantum superalgebra U q (osp(1 vertical stroke 2)). A Borel half of U q (osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L 2 (R) x C 1 vertical stroke 1 and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.

  16. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations

    Energy Technology Data Exchange (ETDEWEB)

    Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)

    2007-01-15

    For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism

    2003-05-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  18. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)

    2003-07-01

    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  19. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  20. Super-Lagrangians

    International Nuclear Information System (INIS)

    Beyl, L.M.

    1979-01-01

    It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian

  1. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  2. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  3. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  4. Determination of deuterium concentration by falling drop method

    International Nuclear Information System (INIS)

    Kawai, Hiroshi; Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Fujii, Takashi.

    1976-01-01

    Falling drop method for determination of deuterium concentration in water sample was studied. The principle is the same as that developed by Kirshenbaum, I. in 1932. One drop of water sample falls down through a column filled with o-fluorotoluene at temperature of nearly 25 0 C. The falling time is, instead of using a stop-watch, measured with two light pulses led to a photomultiplier with mirrors, which make two pulse marks on moving chart paper. Distance between the two pulse marks is proportional to falling time. Instead of water filled double chambers of constant temperature equipped with heaters, thermostats and propellers for stirring, the column is dipped in circulating water supplied from a ''Thermoelectric'' made by ''Sharp'' company, which can circulate constant temperature water cooled or heated with thermoelements. Variation of the temperature is about 0.01 0 C. The range of deuterium concentration in our case was 20 -- 60D%. Sensitivity increased as the medium temperature decreased and as deuterium concentration of water sample increased. (auth.)

  5. A modified detector concept for SuperCDMS: The HiZIP and its charge performance

    Science.gov (United States)

    Page, Kedar Mohan

    SuperCDMS is a leading direct dark matter search experiment which uses solid state detectors (Ge crystals) at milliKelvin temperatures to look for nuclear recoils caused by dark matter interactions in the detector. 'Weakly Interacting Massive Particles' (WIMPs) are the most favoured dark matter candidate particles. SuperCDMS, like many other direct dark matter search experiments, primarily looks for WIMPs. The measurement of both the ionization and the lattice vibration (phonon) signals from an interaction in the detector allow it to discriminate against electron recoils which are the main source of background for WIMP detection. SuperCDMS currently operates about 9 kgs worth of germanium detectors at the Soudan underground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB, it plans to use 100-200 kg of target mass (Ge) which would allow it to probe more of the interesting and unexplored parameter space for WIMPs predicted by theoretical models. The SuperCDMS Queen's Test Facility is a detector testing facility which is intended to serve detector testing and detector research and development purposes for the SuperCDMS experiment. A modified detector called the 'HiZIP' (Half-iZIP), which is reduced in complexity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector design also serves to discriminate against background from multiple scatter events occurring close to the surfaces in a single detector. Studies carried out to compare the surface event leakage in the HiZIP detector using limited information from iZIP data taken at SuperCDMS test facility at UC Berkley produce a highly conservative upper limit of 5 out of 10,000 events at 90% confidence level. This upper limit is the best among many different HiZIP configurations that were investigated and is comparable to the upper limit calculated for an iZIP detector in the same way using the same data. A

  6. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  7. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  8. Failure investigation of super heater tubes of coal fired power plant

    Directory of Open Access Journals (Sweden)

    A.K. Pramanick

    2017-10-01

    Full Text Available Cause of failure of two adjacent super heater tubes made of Cr-Mo steel of a coal based 60 MW thermal power plant has been portrayed in present investigation. Oxide deposits were found on internal surface of tubes. Deposits created significant resistance to heat transfer and resulted in undesirable rise in component temperature. This situation, in turn, aggravated the condition of gas side that was exposed to high temperature. Localized heating coarsened carbides as well as propelled precipitation of new brittle phases along grain boundary resulting in embrittlement of tube material. Continuous exposure to high temperature softened the tube material and tube wall was thinned down with bulging toward outside. Creep void formation along grain boundary was observed and steered intergranular cracking. All these effects contributed synergistically and tubes were failed ultimately due to overload under high Hoop stress.

  9. Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion

    International Nuclear Information System (INIS)

    Mueller, Kyle T.; Waters, Oliver; Bubnovich, Valeri; Orlovskaya, Nina; Chen, Ruey-Hung

    2013-01-01

    The combustion of ultra-lean fuel/air mixtures provides an efficient way to convert the chemical energy of hydrocarbons and low-calorific fuels into useful power. Matrix-stabilized porous medium combustion is an advanced technique in which a solid porous medium within the combustion chamber conducts heat from the hot gaseous products in the upstream direction to preheat incoming reactants. This heat recirculation extends the standard flammability limits, allowing the burning of ultra-lean and low-calorific fuel mixtures and resulting a combustion temperature higher than the thermodynamic equilibrium temperature of the mixture (i.e., super-adiabatic combustion). The heat generated by this combustion process can be converted into electricity with thermoelectric generators, which is the goal of this study. The design of a porous media burner coupled with a thermoelectric generator and its testing are presented. The combustion zone media was a highly-porous alumina matrix interposed between upstream and downstream honeycomb structures with pore sizes smaller than the flame quenching distance, preventing the flame from propagating outside of the central section. Experimental results include temperature distributions inside the combustion chamber and across a thermoelectric generator; along with associated current, voltage and power output values. Measurements were obtained for a catalytically inert Al 2 O 3 medium and a SiC coated medium, which was tested for the ability to catalyze the super-adiabatic combustion. The combustion efficiency was obtained for stoichiometric and ultra-lean (near the lean flammability limit) mixtures of CH 4 and air. - Highlights: • Design of a porous burner coupled with a thermoelectric module. • Super-adiabatic combustion in a highly-porous ceramic matrix was investigated. • Both alumina and silicon carbide ceramic surfaces were used as porous media. • Catalytic properties of Al 2 O 3 and SiC ceramic surfaces were studied

  10. Single phase flow pressure drop and heat transfer in rectangular metallic microchannels

    International Nuclear Information System (INIS)

    Sahar, Amirah M.; Özdemir, Mehmed R.; Fayyadh, Ekhlas M.; Wissink, Jan; Mahmoud, Mohamed M.; Karayiannis, Tassos G.

    2016-01-01

    Numerical simulations were performed using Fluent 14.5 to investigate single phase flow and conjugate heat transfer in copper rectangular microchannels. Two different configurations were simulated: (1) single channel with hydraulic diameter of 0.561 mm and (2) multichannel configuration consisting of inlet and outlet manifolds and 25 channels with hydraulic diameter of 0.409 mm. In the single channel configuration, four numerical models were investigated namely, 2D thin-wall, 3D thin-wall (heated from the bottom), 3D thin-wall (three side heated) and 3D full conjugate models. In the multichannel configuration, only 3D full conjugate model was used. The simulation results of the single channel configuration were validated using experimental data of water as a test fluid while the results of the multichannel configuration were validated using experimental data of R134a refrigerant. In the multichannel configuration, flow distribution among the channels was also investigated. The 3D thin-wall model simulation was conducted at thermal boundary conditions similar to those assumed in the experimental data reduction (uniform heat flux) and showed excellent agreement with the experimental data. However, the results of the 3D full conjugate model demonstrated that there is a significant conjugate effect and the heat flux is not uniformly distributed along the channel resulting in significant deviation compared to the experimental data (more than 50%). Also, the results demonstrated that there is a significant difference between the 3D thin-wall and full conjugate models. The simulation of the multichannel configuration with an inlet manifold having gradual decrease in cross sectional area achieved very reasonable uniform flow distribution among the channels which will provide uniform heat transfer rates across the base of the microchannels.

  11. Creep life prediction of super heater coils used in coal based thermal power plants subjected to fly ash erosion and oxide scale formation

    Science.gov (United States)

    Srinivasan, P.; Kushwaha, Shashank

    2018-04-01

    Super heater coils of the coal based thermal power plants and subjected to severe operating conditions from both steam side and gas side. Formation of oxide scale due to prolonged service lead to temperature raise of the tube and erosion due to fly ash present in the combusted gases leads to tube thinning. Both these factors lead to creep rupture of the coils much before the designed service life. Failure of super heater coils during service of the boiler leads to power loss and huge monitory loss to the power plants. An attempt is made to model the creep damage caused to the super heater coils using heat transfer analysis tube thinning due to erosive wear of the tubes. Combined effects of these parameters are taken into consideration to predict the life of the super heater coils. This model may be used to estimate the life of the coils operating under the severe operating conditions to prevent the unexpected failure of the coils.

  12. Comparison of Two Phase Pressure Drop Models in 1-D Top Flooded Debris Bed

    International Nuclear Information System (INIS)

    Lee, Moon Eon; Park, Jin Ho; Kim, Eun ho; Park, Hyun Sun

    2016-01-01

    The dry out of coolant inside debris bed can be considered as the limitation of cooling in the conservative point of view and the heat flux through whole bed at the situation is named as Dryout Heat Flux (DHF). The modeling of DHF for debris bed started from early 1980s by several researchers. It is known that DHF mainly occurs by hydrodynamic limitation inside porous media. Therefore, there have been following attempts to capture flow resistance in porous media, precisely. Up to date, although there are about seven pressure drop models available in literatures, it is hard to find comparison of those models with a wide range of DHF experimental data. The one attempt[9] was conducted in 2013, but due to lack of consideration of the capillary pressure in his work, the DHF values that he calculated seem to be underestimated, especially in the range of the small particle diameter cases. In this research, the importance of capillary pressure in the comparison of pressure drop model with experimental data was checked and model selection among pressure drop models for the DHF calculation was also conducted. The model comparison with 108 experimental data from various conditions has been conducted and the Schmidt model shows the best agreement to the experimental data although Reed, Rahman model also show similar results.

  13. Comparison of Two Phase Pressure Drop Models in 1-D Top Flooded Debris Bed

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Eon; Park, Jin Ho; Kim, Eun ho; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2016-05-15

    The dry out of coolant inside debris bed can be considered as the limitation of cooling in the conservative point of view and the heat flux through whole bed at the situation is named as Dryout Heat Flux (DHF). The modeling of DHF for debris bed started from early 1980s by several researchers. It is known that DHF mainly occurs by hydrodynamic limitation inside porous media. Therefore, there have been following attempts to capture flow resistance in porous media, precisely. Up to date, although there are about seven pressure drop models available in literatures, it is hard to find comparison of those models with a wide range of DHF experimental data. The one attempt[9] was conducted in 2013, but due to lack of consideration of the capillary pressure in his work, the DHF values that he calculated seem to be underestimated, especially in the range of the small particle diameter cases. In this research, the importance of capillary pressure in the comparison of pressure drop model with experimental data was checked and model selection among pressure drop models for the DHF calculation was also conducted. The model comparison with 108 experimental data from various conditions has been conducted and the Schmidt model shows the best agreement to the experimental data although Reed, Rahman model also show similar results.

  14. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  15. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  16. sl(1|2) Super-Toda Fields

    Science.gov (United States)

    Yang, Zhan-Ying; Xue, Pan-Pan; Zhao, Liu; Shi, Kang-Jie

    2008-11-01

    Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1.

  17. sl(1|2) Super-Toda Fields

    International Nuclear Information System (INIS)

    Yang Zhanying; Xue Panpan; Zhao Liu; Shi Kangjie

    2008-01-01

    Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov-Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld-Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov-Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1

  18. Updated heat transfer correlations for supercritical water-cooled reactor applications

    International Nuclear Information System (INIS)

    Mokry, S.J.; Pioro, I.L.; Farah, A.; King, K.

    2011-01-01

    In support of the development of SuperCritical Water-cooled Reactors (SCWRs), research is currently being conducted for heat-transfer at supercritical conditions. Currently, there are no experimental datasets for heat transfer from power reactor fuel bundles to the fuel coolant (Water) available in open literature. Therefore, for preliminary calculations, heat-transfer correlations obtained with bare tube data can be used as a conservative approach. A large set of experimental data, for supercritical water was analyzed and an updated heat-transfer correlation for forced-convective heat-transfer, in the normal heat transfer regime, was developed. This experimental dataset was obtained within conditions similar to those for proposed SCWR concepts. Thus, this new correlation can be used for preliminary heat-transfer calculations in SCWR fuel channels. It has demonstrated a good fit for the analyzed dataset. Experiments with SuperCritical Water (SCW) are very expensive. Therefore, a number of experiments are performed in modeling fluids, such as carbon dioxide and refrigerants. However, there is no common opinion if SC modeling fluids' correlations can be applied to SCW and vice versa. Therefore, a correlation for supercritical carbon dioxide heat transfer was developed as a less expensive alternative to using supercritical water. The conducted analysis also meets the objective of improving our fundamental knowledge of the transport processes and handling of supercritical fluids. These correlations can be used for supercritical water heat exchangers linked to indirect-cycle concepts and the cogeneration of hydrogen, for future comparisons with other independent datasets, with bundle data, for the verification of computer codes for SCWR core thermalhydraulics and for the verification of scaling parameters between water and modeling fluids. (author)

  19. Evaporation of a liquid drop on a hot liquid surface, (1)

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1980-01-01

    As for the phenomena occurring when two kinds of liquid at different temperature come in contact, the clarification of the basic, general matters of the phenomena has not been made yet. Such situation has been caused by the facts that the detailed observation of the aspect in liquid-liquid contact becomes impossible as the disturbance on the interface becomes violent, and it is difficult to obtain the quantitative data and to change temperature difference largely in practice. In this study, liquid drops were dropped on the free surface of another liquid at the temperature higher than the saturation temperature of the dropping liquid, and it was attempted to obtain the basic knowledge concerning the general behavior at the time of liquid-liquid contact by determining the aspect of evaporation and its change and evaporation time. For this experiment, the silicone oil with four different kinematic viscosity was used as the high temperature liquid, and n-pentane and dichloromethane soluble in the mother liquid, and acetone and methyl alcohol insoluble in the mother liquid were used as the liquid drops. The experimental apparatuses and method and the results are reported. The evaporation time curves presented lying S-shape basically, similarly to the evaporation on solid surfaces. The point of maximum evaporation time and the point of maximum heat transfer rate existed. (J.P.N.)

  20. UJI VIABILITAS DAN PERKEMBANGAN SERBUK SARI BUAH NAGA PUTIH (HYLOCEREUS UNDATUS (HAW. BRITTON & ROSE, MERAH (HYLOCEREUS POLYRHIZUS (WEB. BRITTON & ROSE DAN SUPER MERAH (HYLOCEREUS COSTARICENSIS (WEB. BRITTON & ROSE SETELAH PENYIMPANAN

    Directory of Open Access Journals (Sweden)

    NI KADEK YUNITA SARI

    2010-12-01

    Full Text Available The aim of the research was to determine pollen viability, pollen tube length and pollen development of white, red and super red dragon fruit after storage at different temperatures and times. The method used to test pollen viability was hanging drop technique and to observe the development of pollen used acetolysis techniques. The results showed viability and pollen tube length of white, red and super red dragon fruit after storage at temperature of 10° C and -20° C for 1, 2 and 3 weeks decreased (66% and 25%, tended to increase (2% after 4 weeks. Viability and pollen tube length decreased (100% after storage at 30° C for 4 weeks. Pollen development of white, red and super red dragon fruit after storage at 30°C, 10°C and -20°C for 1 to 4 weeks showed the majority of pollen consists of uninucleat and binucleat.

  1. A superparticle on the 'super' Poincare upper half plane

    International Nuclear Information System (INIS)

    Uehara, S.; Yasui, Yukinora

    1988-01-01

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace. (orig.)

  2. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  3. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  4. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  5. A heat transfer study for vertical straight-tube steam generators heated by liquid metal

    International Nuclear Information System (INIS)

    Valette, M.

    1984-04-01

    A single-tube mockup of a vertical straight-tube steam generator heated by sodium-potassium alloy NaK was submitted to thermal and hydraulic testing in conditions representative of fast breeder reactor operation. The mockup consisted of a 10mm I.D. ferritic steel heat exchange tube centered inside a cylindrical stainless steel shell. The complete assembly was 20.9 meters long. Water flowed upward inside the exchange tube, and NaK flowed downward in the annular gap between the tube and the shell. The steam outlet pressure ranged from 90 to 195 bars, while the liquid metal temperature at the mockup inlet was between 480 and 580 0 C. The water flowrate in the tube ranged from 153 to 2460 kg.m -2 .s -1 . During the tests the fluid inlet and outlet temperatures, flowrate and pressures were measured, as was the NaK temperature profile over the full length of the device. The test results were subsequently compared with heat exchange and pressure drop values calculated using the standard formulas for straight-tube heat exchangers. The heat exchange coefficients predicted by these correlations in the boiling zone were found to be largely overestimated, while the calculated pressure drop values proved satisfactory. A set of modified correlations is proposed to account for the observed phenomena, and for use in designing commercial units, provided the sodium flow in the tube bundle is adequately distributed

  6. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  7. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  8. Heat transfer and pressure drop in microchannels with random roughness

    NARCIS (Netherlands)

    Pelevic, N.; van der Meer, Theodorus H.

    2016-01-01

    The effect of surface roughness on heat transfer and fluid flow phenomena within a microchannel has been investigated by using the lattice Boltzmann method. The surface roughness has been generated by using Gaussian function. Gaussian function is an efficient and convenient method to create surface

  9. SuperHILAC

    International Nuclear Information System (INIS)

    Nemetz, R.; Selph, F.; Barnes, A.C.

    1976-01-01

    A brief discussion is given of improvements, operations, and research programs at the SuperHILAC. Improvements were made in beam injection, ion sources, and computer control systems. The research efficiency ranged between 70 and 90 percent during most of the year

  10. Prediction of pressure drop and CCFL breakdown in countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Ostrogorsky, A.G.; Gay, R.R.; Lahey, R.T. Jr.

    1983-01-01

    A steady-state analytical has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow surface dependent and allow for the existence of either smooth or way liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly

  11. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.S.; Monde, Masanori [Saga Univ. (Japan); Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10{sup 5}, p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m{sup 2} generated at target plates in a high-intensity proton accelerator system. (author). 54 refs.

  12. Experimental study on heat transfer augmentation for high heat flux removal in rib-roughened narrow channels

    International Nuclear Information System (INIS)

    Islam, M.S.; Monde, Masanori; Hino, Ryutaro; Haga, Katsuhiro; Sudo, Yukio.

    1997-07-01

    Frictional pressure drop and heat transfer performance in a very narrow rectangular channel having one-sided constant heat flux and repeated-ribs for turbulent flow have been investigated experimentally, and their experimental correlations were obtained using the least square method. The rib pitch-to-height ratios(p/k) were 10 and 20 while holding the rib height constant at 0.2mm, the Reynolds number(Re) from 2,414 to 98,458 under different channel heights of 1.2mm, 2.97mm, and 3.24mm, the rib height-to-channel equivalent diameter(k/De) of 0.03, 0.04, and 0.09 respectively. The results show that the rib-roughened surface augments heat transfer 2-3 times higher than that of the smooth surface with the expense of 2.8-4 times higher frictional pressure drop under Re=5000-10 5 , p/k=10, and H=1.2mm. Experimental results obtained by channel height, H=1.2mm shows a little bit higher heat transfer and friction factor performance than the higher channel height, H=3.24mm. The effect of fin and consequently higher turbulence intensity are responsible for producing higher heat transfer rates. The obtained correlations could be used to design the cooling passages between the target plates to remove high heat flux up to 12MW/m 2 generated at target plates in a high-intensity proton accelerator system. (author). 54 refs

  13. Deriving guidelines for the design of plate evaporators in heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Mancini, Roberta; Zühlsdorf, Benjamin; Jensen, Jonas Kjær

    2018-01-01

    This paper presents a derivation of design guidelines for plate heat exchangers used for evaporation of zeotropic mixtures in heat pumps. A mapping of combined heat exchanger and cycle calculations for different combinations of geometrical parameters and working fluids allowed estimating the trade....... It was found that the pressure drop limit leading to infeasible designs was dependent on the working fluid, thereby making it impossible to define a guideline based on maximum allowable pressure drops. It was found that economically feasible designs could be obtained by correlating the vapour Reynolds number...

  14. Two-reduction of the super-KP hierarchy

    International Nuclear Information System (INIS)

    McArthur, I.N.

    1994-01-01

    Recursion relations are established for the residues of fractional powers of a two-reduced super-KP operator making use of the Baker-Akhiezer function. These show the integrability of the two-reduced even (or bosonic) flows of the super-KP hierarchy. Similar recursion relations are also proven for the residues of operators associated with the odd (or fermionic) flows of the Mulase-Rabin super-KP hierarchy. Due to the presence of a spectral parameter and itts fermionic partner in the Baker-Akhiezer function, these recursion relations should be relevant to any attempt to prove or disprove a recent proposal that the integrable hierarchy underlying two-dimensional quantum supergravity is the Mulase-Rabin super-KP hierarchy. (orig.)

  15. Super-resolution imaging applied to moving object tracking

    Science.gov (United States)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  16. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  17. Super-leadership and work enjoyment: direct and moderated influences.

    Science.gov (United States)

    Müller, Günter F; Georgianna, Sibylle; Schermelleh-Engel, Karin; Roth, Anne C; Schreiber, Walter A; Sauerland, Martin; Muessigmann, Michael J; Jilg, Franziska

    2013-12-01

    Super-leadership is part of an approach called 'empowering leadership.' Within this approach, super-leadership is assumed to enable subordinates to lead themselves. The current study examined correlates of super-leadership. A questionnaire measuring two dimensions of super-leadership was used to analyze relationships between super-leadership and subordinates' work enjoyment, i.e., job satisfaction, subjective well-being, and emotional organizational commitment. In addition, moderating effects of the organizational context, i.e., organizational decentralization, on the relationships between super-leadership and work enjoyment were explored. 198 German employees from different occupations participated in the study. Latent moderator structural equation analysis revealed that the two factors of super-leadership, "coaching and communicative support" and "facilitation of personal autonomy and responsibility," had direct positive effects on subordinates' work enjoyment. Organizational decentralization moderated the effect of "coaching and communicative support" on work enjoyment but not the relations involving "facilitation of personal autonomy and responsibility." Conclusions for further research and practical applications were discussed.

  18. Effect of Liquid/Vapour Maldistribution on the Performance of Plate Heat Exchanger Evaporators

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Kærn, Martin Ryhl; Ommen, Torben Schmidt

    2015-01-01

    Plate heat exchangers are often applied as evaporators in industrial refrigeration and heat pump systems. In the design and modelling of such heat exchangers the flow and liquid/vapour distribution is often assumed to be ideal. However, maldistribution may occur and will cause each channel...... to behave differently due to the variation of the mass flux and vapour quality. To evaluate the effect of maldistribution on the performance of plate heat exchangers, a numerical model is developed in which the mass, momentum and energy balances are applied individually to each channel, including suitable...... correlations for heat transfer and pressure drop. The flow distribution on both the refrigerant and secondary side is determined based on equal pressure drop while the liquid/vapour distribution is imposed to the model. Results show that maldistribution may cause up to a 25 % reduction of the overall heat...

  19. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation.

    Science.gov (United States)

    Fukatani, Yuki; Orejon, Daniel; Kita, Yutaku; Takata, Yasuyuki; Kim, Jungho; Sefiane, Khellil

    2016-04-01

    Understanding drop evaporation mechanisms is important for many industrial, biological, and other applications. Drops of organic solvents undergoing evaporation have been found to display distinct thermal patterns, which in turn depend on the physical properties of the liquid, the substrate, and ambient conditions. These patterns have been reported previously to be bulk patterns from the solid-liquid to the liquid-gas drop interface. In the present work the effect of ambient temperature and humidity during the first stage of evaporation, i.e., pinned contact line, is studied paying special attention to the thermal information retrieved at the liquid-gas interface through IR thermography. This is coupled with drop profile monitoring to experimentally investigate the effect of ambient temperature and relative humidity on the drop interfacial thermal patterns and the evaporation rate. Results indicate that self-generated thermal patterns are enhanced by an increase in ambient temperature and/or a decrease in humidity. The more active thermal patterns observed at high ambient temperatures are explained in light of a greater temperature difference generated between the apex and the edge of the drop due to greater evaporative cooling. On the other hand, the presence of water humidity in the atmosphere is found to decrease the temperature difference along the drop interface due to the heat of adsorption, absorption and/or that of condensation of water onto the ethanol drops. The control, i.e., enhancement or suppression, of these thermal patterns at the drop interface by means of ambient temperature and relative humidity is quantified and reported.

  20. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  1. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=heat transfer coefficient was enhanced by a factor up to 3.2 times for applied voltage of 8kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube. (author)

  2. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  3. Behavior under irradiation of super-mirror for neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-10-01

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  4. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  5. Enhanced two phase flow in heat transfer systems

    Science.gov (United States)

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  6. Numerical modeling of historical change of volcanic heat sources: Numerical modeling of heat and mass transport up to 1000 degree C; Kazansei netsugen no keiji henka no shumyureshon kaiseki: 1000 degree C madeno netsu{center{underscore}dot}ryutai shumyureshon kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Hanano, Mineyuki [JMC Geothermal Engineering Corp., Iwate (Japan)

    1998-12-01

    Temperature structure and its historical change around volcanos has been of interest for volcanology, geothermal development, etc. Magmatic intrusives have temperatures ranging from 700 to 850 degree C. Thus, there exists super-critical fluid around them. Numerical modeling of temperature changes around young volcanos and their heat sources thus requires treatment of the super-critical fluid. We describe one method for effective treatment of the super-critical fluid in the numerical modeling of porous media for the purpose of solving large-scale high-temperature problems of such phenomena. (author)

  7. Effects of Different Water and Super Plasticizer Amount, Pre-Setting and Curing Regimes on the Behavior of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    M. A. Dashti Rahmatabadi

    2014-12-01

    Full Text Available Reactive Powder Concrete (RPC is an ultra high performance concrete which has superior mechanical and physical properties. The RPC is composed of cement and very fine powders such as crushed quartz (100–600 μm and silica fume with very low water/binder ratio (W/B (less than 0.20 and Super Plasticizer (SP. The RPC has a very high compressive and tensile strength with better durability properties than current high performance concretes. Application of very low water/binder ratio with a high dosage of super plasticizer, different heat curing processes and pre-setting pressure improve mechanical and physical properties of RPC. In this study, the RPC is composed of available materials in Iran. Two different mixing proportions, different water/binder ratios for preparation of samples, different super plasticizer dosages, five different (0, 25, 50, 100 and 150 MPa pre-setting pressure and 7 different curing regimes were used in samples preparation and experiments. Results showed that appropriate water/binder ratio and super plasticizer dosage, higher temperature and pre-setting pressure increase the workability, density and compressive strength of compositions.

  8. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  9. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  10. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  11. Pressure drop and heat transfer in viscoelastic duct flow - A new look

    International Nuclear Information System (INIS)

    Kostic, M.; Hartnett, J.P.

    1987-01-01

    Asymptotic friction factors and heat transfer j-factors for turbulent duct flow of viscoelastic fluids are viewed from a new reference - the extended laminar flow results which exhibit the lowest possible friction and heat transfer. This analysis suggests that the presence of elasticity laminarizes the flow. A simple model which takes account of the reinforced fluid structure resulting from the presence of macromolecular polymer chains is introduced to explain the decrease in the turbulence level associated with viscoelastic fluids. A major feature of the proposed model is that a viscoelastic fluid has a nonuniform and nonisotropic viscosity, which in a duct flow produced non-homogeneous turbulent fluctuations. The observed decrease in friction factor and heat transfer, as well as the large increases in critical Reynolds number and hydrodynamic and thermal entrance lengths are consistent with the model

  12. Eddy current techniques for super duplex stainless steel characterization

    Science.gov (United States)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  13. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  14. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    Science.gov (United States)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  15. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Charm Physics at SuperB

    International Nuclear Information System (INIS)

    Meadows, Brian; Bevan, Adrian

    2010-01-01

    The study of Charm Decays at SuperB provide unique opportunities to understand the Standard Model and constrain new physics, both at the Y(4S), and at charm threshold. We discuss the physics potential of such measurements from the proposed SuperB experiment with 75 ab -1 of data at the Y(4S) and a subsequent run dedicated to exploiting quantum correlations at the charm threshold. (author)

  17. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  18. 3-D NUMERICAL STUDY AND COMPARISON OF ECCENTRIC AND CONCENTRIC ANNULAR-FINNED TUBE HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    FAROUK TAHROUR

    2015-11-01

    Full Text Available The use of 3-D computational fluid dynamics (CFD is proposed to simulate the conjugate conduction-convection of heat transfer problems in eccentric annularfinned tube heat exchangers. The numerical simulation results allow us to evaluate the heat transfer coefficient over fin surfaces, the fin efficiency and the pressure drop. The aim of the present paper is to determine the optimum tube position in the circular fin that maximizes heat dissipation and minimizes pressure drop. In addition, this study analyzes the effects of fin spacing and fin tube diameter on heat transfer and flow characteristics for a range of Reynolds numbers, 4500≤Re≤22500. A satisfactory qualitative and quantitative agreement was obtained between the numerical predictions and the results published in the literature. For small fin spacings, the eccentric annular finned tube is more efficient than the concentric one. Among the cases examined, the average heat transfer coefficient of the eccentric annular-finned tube, for a tube shift St =12 mm and a Reynolds number Re = 9923, was 7.61% greater than that of the concentric one. This gain is associated with a 43.09% reduction in pressure drop.

  19. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  20. The SuperB Project: Status and the Physics Reach

    International Nuclear Information System (INIS)

    Neri, Nicola

    2012-01-01

    The SuperB experiment is a next generation Super Flavour Factory expected to accumulate 75 ab −1 of data at the Υ(4S) in five years of nominal running, and will be built at the recently established Cabibbo Laboratory on the outskirts of Rome. In addition to running data at the Υ(4S), SuperB will be able to accumulate data from the ψ(3770) up to the Υ(6S). A polarized electron beam enables unique physics opportunities at SuperB. The large samples of B, D and τ decays that will be recorded at SuperB can be used to provide both stringent constraints on new physics scenarios, and over-constraints on the Standard Model. We present the status of the project as well as the physics potential of SuperB.

  1. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  2. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  3. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  4. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  5. Refrigeration waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    UK Super A Stores was built in 1972 and is part of a small indoor shopping complex linked together by a heated mall. The store has a public floor area of approximately 1,232 m{sup 2} (13,261 ft.{sup 2}) and sells the usual variety of food produce including a large selection of frozen foods. There are five lengths of refrigerated display cabinets with a total area of approximately 78 m{sup 2}. There are also some frozen food storage rooms at the back of the store. This report provides a description of a waste heat recovery system within a medium sized food store. It details how the waste heat that is produced by the conventional frozen food display cabinets, can be reused by the store's space heating system. Recommended uses for this waste heat include: diverting to the loading bays which would make the reheat coil unnecessary, diverting to the front of the shop, and heating the adjacent shopping mall. The CREDA (Conservation and Renewable Energy Demonstration Assistance) program contributed $17,444 towards the total project cost of $30,444. The project was initiated by the store owner, who is now realizing a lower annual fuel consumption, with the resulting financial savings. 11 figs., 1 tab.

  6. Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel

    International Nuclear Information System (INIS)

    Goharkhah, Mohammad; Ashjaee, Mehdi

    2014-01-01

    Forced convective heat transfer of water based Fe 3 O 4 nanofluid (ferrofluid) in the presence of an alternating non-uniform magnetic field is investigated numerically. The geometry is a two-dimensional channel which is subjected to a uniform heat flux at the top and bottom surfaces. Nonuniform magnetic field produced by eight line source dipoles is imposed on several parts of the channel. Also, a rectangular wave function is applied to the dipoles in order to turn them on and off alternatingly. The effects of the alternating magnetic field strength and frequency on the convective heat transfer are investigated for four different Reynolds numbers (Re=100, 600, 1200 and 2000) in the laminar flow regime. Comparing the results with zero magnetic field case, show that the heat transfer enhancement increases with the Reynolds number and reaches a maximum of 13.9% at Re=2000 and f=20 Hz. Moreover, at a constant Reynolds number, it increases with the magnetic field intensity while an optimum value exists for the frequency. Also, the optimum frequency increases with the Reynolds number. On the other hand, the heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. A maximum pressure drop increase of 6% is observed at Re=2000 and f=5 Hz which shows that the pressure drop increase is not as significant as the heat transfer enhancement. - Highlights: • An alternating magnetic field is imposed on ferrofluid flow in a heated channel. • Heat transfer is enhanced noticeably compared to the case with no magnetic field. • Heat transfer depends on Reynolds number, magnetic field intensity and frequency. • Optimum frequency is independent of intensity but increases with Reynolds number. • Pressure drop increase is not as significant as the heat transfer enhancement

  7. GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang-Fei [Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 (United States); Hori, Yasunori; Lin, D. N. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Asphaug, Erik, E-mail: sliu26@ucsc.edu, E-mail: yahori@ucsc.edu, E-mail: lin@ucolick.org, E-mail: easphaug@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-10-20

    Mini-Neptunes and volatile-poor super-Earths coexist on adjacent orbits in proximity to host stars such as Kepler-36 and Kepler-11. Several post-formation processes have been proposed for explaining the origin of the compositional diversity between neighboring planets: mass loss via stellar XUV irradiation, degassing of accreted material, and in situ accumulation of the disk gas. Close-in planets are also likely to experience giant impacts during the advanced stage of planet formation. This study examines the possibility of transforming volatile-rich super-Earths/mini-Neptunes into volatile-depleted super-Earths through giant impacts. We present the results of three-dimensional hydrodynamic simulations of giant impacts in the accretionary and disruptive regimes. Target planets are modeled with a three-layered structure composed of an iron core, silicate mantle, and hydrogen/helium envelope. In the disruptive case, the giant impact can remove most of the H/He atmosphere immediately and homogenize the refractory material in the planetary interior. In the accretionary case, the planet is able to retain more than half of the original gaseous envelope, while a compositional gradient suppresses efficient heat transfer as the planetary interior undergoes double-diffusive convection. After the giant impact, a hot and inflated planet cools and contracts slowly. The extended atmosphere enhances the mass loss via both a Parker wind induced by thermal pressure and hydrodynamic escape driven by the stellar XUV irradiation. As a result, the entire gaseous envelope is expected to be lost due to the combination of those processes in both cases. Based on our results, we propose that Kepler-36b may have been significantly devolatilized by giant impacts, while a substantial fraction of Kepler-36c’s atmosphere may remain intact. Furthermore, the stochastic nature of giant impacts may account for the observed large dispersion in the mass–radius relationship of close-in super

  8. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  9. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  10. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    Science.gov (United States)

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Study on frictional pressure drop of steam-water two phase flow in optimized four-head internal-ribbed tube

    International Nuclear Information System (INIS)

    Wang Weishu; Zhu Xiaojing; Bi Qincheng; Wu Gang; Yu Shuiqing

    2012-01-01

    The optimized internal-ribbed tube is different from the normal internal-ribbed tube on the frictional pressure drop characteristics. The frictional pressure drop characteristics of steam-water two phase flow in horizontal four-head optimized internal-ribbed were studied under adiabatic condition. According to the experimental and calculation results, the two-phase multiplier is greatly affected by the steam quality and pressure. The two-phase multiplier increases with increasing quality, and decreases with increasing pressure. In the near-critical pressure region, the two-phase multiplier is close to 1. The frictional pressure drop of two phase flow in optimized tube is less than that in the normal tube under the same work condition. The good hydrodynamic condition could be achieved when the optimized internal-ribbed tube is used in the heat transfer equipment because the self-compensating characteristics exist due to the reduction of frictional pressure drop. (authors)

  12. Experimental investigation of a super performance dew point air cooler

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Zhao, Xudong; Fancey, Kevin

    2017-01-01

    Highlights: •The cooler had a complex heat & mass exchanger with an advanced wet material layer. •Intermittent water supply scheme was implemented. •The cooler achieved 100–160% higher COP compared to the existing dew point coolers. •Electricity use of the cooler was reduced by 50–70% compared to existing dew coolers. •This optimal working air ratio was 0.364 that enabled maximised cooling effectiveness. -- Abstract: This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

  13. Evaluation of thermal-hydraulic performance of hydrocarbon refrigerants during flow boiling in a microchannels array heat sink

    International Nuclear Information System (INIS)

    Chávez, Cristian A.; Leão, Hugo L.S.L.; Ribatski, Gherhardt

    2017-01-01

    Highlights: • Evaluation of refrigerants R600a, R290 and R1270 during flow boiling in a microchannels array. • Comparison of data for hydrocarbons with previous data for R134a. • Parametric analysis of heat transfer coefficient, pressure drop, ONB and exergy behaviors. • Comparison of the experimental data and prediction methods from literature. • In general, refrigerant R290 presents the best performance. - Abstract: The present study concerns an experimental evaluation of the performance of hydrocarbon refrigerants during flow boiling in a microchannels array heat sink. The heat sink is composed of fifty channels with cross sectional areas of 123 × 494 μm"2 and length of 15 mm manufactured in a copper block. Heat transfer coefficient and pressure drop data were obtained for refrigerants R600a, R290 and R1270, mass velocities from 165 to 823 kg/m"2 s, heat fluxes up to 400 kW/m"2, liquid subcooling at the inlet of the test section of 5, 10 and 15 °C and saturation temperature of 25 °C. The data were compared with experimental results obtained in a previous study for R134a and predictions by methods from literature. In general, R290 presented the best performance, providing the highest average heat transfer coefficient and a pressure drop only slightly higher than R1270 that was the fluid presenting the lowest pressure drop. An exergy analysis also revealed the refrigerant R290 as the one presenting the best performance. However, R290 needed the highest excess of superheating to trigger the boiling process (ONB). The methods from literature evaluated in the present study poorly predicted the experimental data for two-phase pressure drop. On the other hand, the method of Kanizawa et al. (2016) was quite accurate in predicting the heat transfer results.

  14. Quantitative model of super-Arrhenian behavior in glass forming materials

    Science.gov (United States)

    Caruthers, J. M.; Medvedev, G. A.

    2018-05-01

    The key feature of glass forming liquids is the super-Arrhenian temperature dependence of the mobility, where the mobility can increase by ten orders of magnitude or more as the temperature is decreased if crystallization does not intervene. A fundamental description of the super-Arrhenian behavior has been developed; specifically, the logarithm of the relaxation time is a linear function of 1 /U¯x , where U¯x is the independently determined excess molar internal energy and B is a material constant. This one-parameter mobility model quantitatively describes data for 21 glass forming materials, which are all the materials where there are sufficient experimental data for analysis. The effect of pressure on the loga mobility is also described using the same U¯x(T ,p ) function determined from the difference between the liquid and crystalline internal energies. It is also shown that B is well correlated with the heat of fusion. The prediction of the B /U¯x model is compared to the Adam and Gibbs 1 /T S¯x model, where the B /U¯x model is significantly better in unifying the full complement of mobility data. The implications of the B /U¯x model for the development of a fundamental description of glass are discussed.

  15. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  16. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  17. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  18. Pressure drop and stability of flow in Archimedean spiral tube with transverse corrugations

    Directory of Open Access Journals (Sweden)

    Đorđević Milan

    2016-01-01

    Full Text Available Isothermal pressure drop experiments were carried out for the steady Newtonian fluid flow in Archimedean spiral tube with transverse corrugations. Pressure drop correlations and stability criteria for distinguishing the flow regimes have been obtained in a continuous Reynolds number range from 150 to 15 000. The characterizing geometrical groups which take into account all the geometrical parameters of Archimedean spiral and corrugated pipe has been acquired. Before performing experiments over the Archimedean spiral, the corrugated straight pipe having high relative roughness e/d = 0.129 of approximately sinusoidal type was tested in order to obtain correlations for the Darcy friction factor. Insight into the magnitude of pressure loss in the proposed geometry of spiral solar receiver for different flow rates is important because of its effect upon the efficiency of the receiver. Although flow in spiral and corrugated geometries has the advantages of compactness and high heat transfer rates, the disadvantage of greater pressure drops makes hydrodynamic studies relevant. [Projekat Ministarstva nauke Republike Srbije, br. III 42006 i br. TR 33015

  19. Experimental and numerical study of the pressure drop for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Min-Su; Kim, Sawoong; Jung, Hun-Chea; Shim, Hee-Jin; Ahn, Hee-Jae

    2016-11-01

    Highlights: • The results of the experiment and the numerical analysis are compared. • The numerical analysis results are lower than the experimental results. • The margin of the pressure drop is suggested. - Abstract: The blanket shield block (SB) is located inside the ITER vacuum chamber, and the main function is to provide the thermal and nuclear shielding to the vacuum vessel and external components. The SB is foreseen to undergo a significant heat load which is a body load throughout the whole thickness of the SB under normal operation conditions. Therefore, the cooling configuration in SB should be designed very carefully based on the various experiences. The pressure drop in the cooling design is one of the most important factors to balance a water distribution of overall blanket cooling system. In order to verify the pressure drop characteristic and validate the design methodology of SB, experiment and numerical analysis are performed and compared their results. These results would be a benchmarking of the numerical results with experimental results to assess the gap between calculations and experiments.

  20. Super-resolution thermographic imaging using blind structured illumination

    Science.gov (United States)

    Burgholzer, Peter; Berer, Thomas; Gruber, Jürgen; Mayr, Günther

    2017-07-01

    Using an infrared camera for thermographic imaging allows the contactless temperature measurement of many surface pixels simultaneously. From the measured surface data, the structure below the surface, embedded inside a sample or tissue, can be reconstructed and imaged, if heated by an excitation light pulse. The main drawback in active thermographic imaging is the degradation of the spatial resolution with the imaging depth, which results in blurred images for deeper lying structures. We circumvent this degradation by using blind structured illumination combined with a non-linear joint sparsity reconstruction algorithm. We demonstrate imaging of a line pattern and a star-shaped structure through a 3 mm thick steel sheet with a resolution four times better than the width of the thermal point-spread-function. The structured illumination is realized by parallel slits cut in an aluminum foil, where the excitation coming from a flashlight can penetrate. This realization of super-resolution thermographic imaging demonstrates that blind structured illumination allows thermographic imaging without high degradation of the spatial resolution for deeper lying structures. The groundbreaking concept of super-resolution can be transferred from optics to diffusive imaging by defining a thermal point-spread-function, which gives the principle resolution limit for a certain signal-to-noise ratio, similar to the Abbe limit for a certain optical wavelength. In future work, the unknown illumination pattern could be the speckle pattern generated by a short laser pulse inside a light scattering sample or tissue.

  1. Super-cool Dark Matter arXiv

    CERN Document Server

    Hambye, Thomas; Teresi, Daniele

    In dimension-less theories of dynamical generation of the weak scale, the Universe can undergo a period of low-scale inflation during which all particles are massless and super-cool. This leads to a new mechanism of generation of the cosmological Dark Matter (DM) relic density: super-cooling can easily suppress the amount of DM to the desired level. This is achieved for TeV-scale DM, if super-cooling ends when quark condensates form at the QCD phase transition. Along this scenario, the baryon asymmetry can be generated either at the phase transition or through leptogenesis. We show that the above mechanism takes place in old and new dimension-less models.

  2. A note on the super AKNS equations

    International Nuclear Information System (INIS)

    Li Yishen; Zhang Lining.

    1986-10-01

    We find some relationships between the usual AKNS scheme with the super one, when its elements take value from the Grassmann algebra on a two-dimensional vector space. The solutions of these super AKNS equations are discussed. (author)

  3. Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hao; Ding, Guoliang; Jiang, Weiting; Hu, Haitao [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Gao, Yifeng [International Copper Association Shanghai Office, 381 Huaihaizhong Road, Shanghai 200020 (China)

    2009-11-15

    The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m{sup -2} s{sup -1}, heat fluxes from 3.08 to 6.16 kW m{sup -2}, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of {+-}15%. (author)

  4. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  5. N=2 super - W3(2) algebra in superfields

    International Nuclear Information System (INIS)

    Krivonos, S.; Sorin, A.

    1995-05-01

    It is presented a manifestly N=2 supersymmetric formulation of N=2 super-W 3 (2) algebra (its classical version) in terms of the spin 1 unconstrained generating a N=2 superconformal subalgebra and the spins 1/2, 2 fermionic constrained supercurrents. It is considered a superfield reduction of N=2 super-W 3 (2) to N=2 super-W 3 and construct a family of evolution equations for which N=2 super-W 3 (2) provides the second Hamiltonian structure

  6. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    Science.gov (United States)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  7. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  8. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  9. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  10. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    International Nuclear Information System (INIS)

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  11. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  12. Device for starting a steam generator by heating sodium in a reactor

    International Nuclear Information System (INIS)

    Nakano, Hisao.

    1975-01-01

    Object: To enhance cooperation between ventilation and steam conditions of turbine and ventilation condition relative to a superheater at the time of starting a plant using a fast breeder, and to enhance safety with respect to failure of heat transmission tubes at the time of start. Structure: In a device in which steam generated in an evaporator is fed to a high pressure turbine through a super-heater and an outlet steam of high pressure turbine is reheated by means of a re-heater and fed into a turbine on the side of low pressure to drive the turbine for power generation, opening and closing valves are mounted on outlet and inlet pipes, respectively, of the heat transmission pipe in the super heater, said outlet and inlet pipes being connected by a bypass pipe. Upstream side of the opening and closing valve on the inlet pipe and the downstream side of the opening and closing valve on the outlet pipe and connected by a bypass pipe in the re-heater and said bypass pipe in the re-heater is provided with a steam heat exchanger to be heated by steam in the outlet of the superheater, and a steam line in an auxiliary boiler is connected to the side of re-heater from the opening and closing valve on the heat transmission pipe in the re-heater. (Hanada, M.)

  13. Remote sensing the susceptibility of cloud albedo to changes in drop concentration

    International Nuclear Information System (INIS)

    Platnick, S.E.

    1991-01-01

    The role of clouds in reflecting solar radiation to space and thereby reducing surface heating is of critical importance to climate. Combustion processes that produce greenhouse gases also increase cloud condensation nuclei (CCN) concentrations which in turn increase cloud drop concentrations and thereby cloud albedo. A calculation of cloud susceptibility, defined in this work as the increase in albedo resulting from the addition of one cloud drop per cubic centimeter (as cloud liquid water content remains constant), is made through satellite remote sensing of cloud drop radius and optical thickness. The remote technique uses spectral channels of the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA polar orbiting satellites. Radiative transfer calculations of reflectance and effective surface and cloud emissivities are made for applicable sun and satellite viewing angles, including azimuth, at various radii and optical thicknesses for each AVHRR channel. Emission in channel 3 (at 3.75 microns) is removed to give the reflected solar component. These calculations are used to infer the radius and optical thickness giving the best match to the satellite measurements. The effect of the atmosphere on the signal received by the satellite is included in the analysis

  14. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    KAUST Repository

    Gentile, Francesco

    2016-01-12

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  15. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    KAUST Repository

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo M.; Coppedè , Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  16. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  17. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  18. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  19. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  20. The elastic buckling of super-graphene and super-square carbon nanotube networks

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2010-01-01

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  1. Influence of sub-solvus solution heat treatment on γ′ morphological instability in a new Ni–Cr–Co-based powder metallurgy superalloy

    International Nuclear Information System (INIS)

    Yang, W.P.; Liu, G.Q.; Wu, K.; Hu, B.F.

    2014-01-01

    Highlights: • A special γ′ morphological instability in a new Ni–Cr–Co-based P/M superalloy was studied. • Three heat treatments were applied to the alloy and microstructures were observed. • Microstructure of the alloy was homogenized by sub-solvus solution heat treatment. • Sub-solvus solution heat treatment influences morphology of γ′ fan-type structures. • Sub-solvus solution heat treatment makes γ′ fan-type structures regular and stable. -- Abstract: The influence of the sub-solvus solution heat treatment on the microstructure, especially the γ′ morphology (γ′ fan-type structure), and microhardness of a new Ni–Cr–Co-based powder metallurgy superalloy was studied by means of field emission scanning electron microscopy (FESEM) and microhardness testing. The results show that sub-solvus solution heat treatment changes the microstructure of an as-forged alloy. It makes large primary γ′ phases at grain boundaries smaller and the distribution of secondary γ′ phases in the interior of the grains more homogeneous. Moreover, the grain boundaries widen because of the supplementary precipitate. The sub-solvus solution heat treatment before the super-solvus solution heat treatment does not change nucleation sites of the γ′ fan-type structures which precipitate during the super-solvus solution heat treatment. However, it influences the morphology of γ′ fan-type structures. Length distribution of the secondary γ′ dendrites in fan-type structures changes from a bimodal to a unimodal distribution, which means the lengths of the secondary γ′ dendrites become more uniform. Applying a sub-solvus solution heat treatment after the super-solvus solution heat treatment causes the secondary γ′ dendrites to be broken off in the fan-type structures and a refinement of the γ′ phases, and this improves stability of the γ′ phases

  2. One-dimensional super Calabi-Yau manifolds and their mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Noja, S. [Dipartimento di Matematica, Università degli Studi di Milano,Via Saldini 50, I-20133 Milano (Italy); Cacciatori, S.L. [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Piazza, F. Dalla [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Marrani, A. [Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Re, R. [Dipartimento di Matematica e Informatica, Università degli Studi di Catania,Viale Andrea Doria 6, 95125 Catania (Italy)

    2017-04-18

    We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY’s having reduced manifold equal to ℙ{sup 1}, namely the projective super space ℙ{sup 1|2} and the weighted projective super space Wℙ{sub (2)}{sup 1|1}. Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces ℙ{sup n|m}. We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of ℙ{sup 1|2}, whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of ℙ{sup 1|m}, discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that ℙ{sup 1|2} is self-mirror, whereas Wℙ{sub (2)}{sup 1|1} has a zero dimensional mirror. Also, the mirror map for ℙ{sup 1|2} naturally endows it with a structure of N=2 super Riemann surface.

  3. 75 FR 77670 - SuperMedia, LLC, Formerly Known as Idearc Media, LLC, a Subsidiary of SuperMedia Information...

    Science.gov (United States)

    2010-12-13

    ... Known as Idearc Media, LLC, a Subsidiary of SuperMedia Information Services, LLC Publishing Group, Troy... Subsidiary of SuperMedia Information Services, LLC, Troy, New York, to apply for Trade Adjustment Assistance..., Publishing Group, Troy, New York, who became totally or partially separated from employment on or after...

  4. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  5. Analysing 'super-participation' in online third spaces

    NARCIS (Netherlands)

    Graham, Todd; Wright, Scott; Cantijoch, Marta; Gibson, Rachel; Ward, Stephen

    2014-01-01

    This chapter focuses on our attempts to overcome the methodological challenges of 'super-participation' in online discussion forums, focusing on the participatory patterns and discursive activity of what we call 'super-participants'. Our principal contribution in this area (Graham and Wright 2013)

  6. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  7. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  8. Aging under irradiation of super-mirrors used in neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-01-01

    The aim of this work is to study the aging of NiC x /Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  9. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman [Institute of Planetology, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Breuer, Doris, E-mail: Vlada.Stamenkovic@dlr.de, E-mail: Lena.Noack@dlr.de, E-mail: Doris.Breuer@dlr.de, E-mail: Tilman.Spohn@dlr.de [Institute of Planetary Research, German Aerospace Center DLR, Rutherfordstrasse 2, 12489 Berlin (Germany)

    2012-03-20

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  10. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    International Nuclear Information System (INIS)

    Stamenković, Vlada; Noack, Lena; Spohn, Tilman; Breuer, Doris

    2012-01-01

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths—resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution—the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  11. Quantisation of super Teichmueller theory

    International Nuclear Information System (INIS)

    Aghaei, Nezhla; Hamburg Univ.; Pawelkiewicz, Michal; Techner, Joerg

    2015-12-01

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  12. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  13. A novel TFS-IGBT with a super junction floating layer

    International Nuclear Information System (INIS)

    Ye Jun; Fu Daping; Luo Bo; Zhao Yuanyuan; Qiao Ming; Zhang Bo

    2010-01-01

    A novel trench field stop (TFS) IGBT with a super junction (SJ) floating layer (SJ TFS-IGBT) is proposed. This IGBT presents a high blocking voltage (> 1200 V), low on-state voltage drop and fast turn-off capability. A SJ floating layer with a high doping concentration introduces a new electric field peak at the anode side and optimizes carrier distribution, which will improve the breakdown voltage in the off-state and decrease the energy loss in the on-state/switching state for the SJ TFS-IGBT. A low on-state voltage (V F ) and a high breakdown voltage (BV) can be achieved by increasing the thickness of the SJ floating layer under the condition of exact charge balance. A low turn-off loss can be achieved by decreasing the concentration of the P-anode. Simulation results show that the BV is enhanced by 100 V, V F is decreased by 0.33 V(at 100 A/cm 2 ) and the turn-off time is shortened by 60%, compared with conventional TFS-IGBTs.

  14. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    Vasilyak, L. M.; Vasiliev, A. I.; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-01-01

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  15. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  16. Super-entropic black holes and the Kerr-CFT correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Sinamuli, Musema [Department of Physics and Astronomy, University of Waterloo,200 University Ave., Waterloo, Ontario N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics,31 Caroline St., Waterloo, Ontario, N2L 2Y5 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo,200 University Ave., Waterloo, Ontario N2L 3G1 (Canada)

    2016-08-24

    We demonstrate that Kerr-CFT duality can be extended to super-entropic black holes, which have non-compact horizons with finite area. We demonstrate that this duality is robust insofar as the ultra-spinning limit of a Kerr-AdS black hole (which yields the super-entropic class) commutes with the near-horizon limit (which yields the Kerr-CFT duality). Consequently the Bekenstein-Hawking and the CFT entropies are equivalent. We show that the duality holds for both singly-spinning super-entropic black holes in 4 dimensions and for doubly-spinning super-entropic black holes of gauged supergravity in 5 dimensions. In both cases we obtain not only the expected left/right temperatures, but also temperatures associated with electric charge and with a new thermodynamic parameter specific to super-entropic black holes.

  17. Super-entropic black holes and the Kerr-CFT correspondence

    International Nuclear Information System (INIS)

    Sinamuli, Musema; Mann, Robert B.

    2016-01-01

    We demonstrate that Kerr-CFT duality can be extended to super-entropic black holes, which have non-compact horizons with finite area. We demonstrate that this duality is robust insofar as the ultra-spinning limit of a Kerr-AdS black hole (which yields the super-entropic class) commutes with the near-horizon limit (which yields the Kerr-CFT duality). Consequently the Bekenstein-Hawking and the CFT entropies are equivalent. We show that the duality holds for both singly-spinning super-entropic black holes in 4 dimensions and for doubly-spinning super-entropic black holes of gauged supergravity in 5 dimensions. In both cases we obtain not only the expected left/right temperatures, but also temperatures associated with electric charge and with a new thermodynamic parameter specific to super-entropic black holes.

  18. An experimental investigation of turbulent flow heat transfer through ...

    African Journals Online (AJOL)

    An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...

  19. Introduction of a super speed network in JNC

    International Nuclear Information System (INIS)

    Nosaki, Nobuhisa; Aoki, Kazuhisa; Narita, Nobuiku

    2002-01-01

    The construction of a super speed and broadband network with high cost performance is now possible through the resent remarkable development of information-communication technologies. Under such circumstances, the modification of LAN and WAN to the super speed network was required in accordance with the recent network demand in JNC. The trend of the information-communication technologies and the needs of information-communication infrastructure were reviewed as the first step. A modification of WAN to the super speed network with high cost performance was established in fiscal year 2000. This paper introduces the work procedures and the modification of the WAN in order to acquire a reduction in the running cost and the super speed network in the fiscal year. (author)

  20. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola

    2017-05-19

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.