WorldWideScience

Sample records for sunspot luminosity modulation

  1. Sunspots

    International Nuclear Information System (INIS)

    Moore, R.; Rabin, D.

    1985-01-01

    It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies. 145 references

  2. Sunspots

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The existence of sunspots has been known since ancient times, but it was only at the beginning of this century that they were found to be the sites of very strong magnetic fields, and it was realised that they represent the places where huge magnetic flux tubes burst through the solar surface. A theoretical understanding of sunspots has had to await the development of magnetohydrodynamics; however, even now, there is some controversy about answers to fundamental questions, such as: why is a sunspot cool, what is its equilibrium structure and how is it formed. Other topics that are discussed in the present chapter include magnetoconvection and the process of magnetic buoyancy whereby a flux tube deep within the Sun tends to rise towards the surface because it is lighter than its surroundings. Outside active regions the magnetic flux is not spread out uniformly to a weak field of a few Gauss, but instead it is mainly concentrated at supergranulation boundaries into intense flux tubes, whose properties are discussed. (Auth.)

  3. Long-term Modulation of Cosmic Ray Intensity in relation to Sunspot ...

    Indian Academy of Sciences (India)

    it should be more closely connected with cosmic ray modulation than with other solar characteristics (sunspot numbers or coronal emission intensity). The intensity of galactic cosmic rays varies inversely with sunspot numbers, having their maximum intensity at the minimum of the 11-year sunspot cycle (Forbush 1954, 1958) ...

  4. On sunspots

    CERN Document Server

    Galilei, Galileo; Reeves, Eileen; Helden, Albert van

    2010-01-01

    Galileo's telescopic discoveries, and especially his observation of sunspots, caused great debate in an age when the heavens were thought to be perfect and unchanging. Christoph Scheiner, a Jesuit mathematician, argued that sunspots were planets or moons crossing in front of the Sun. Galileo, on the other hand, countered that the spots were on or near the surface of the Sun itself, and he supported his position with a series of meticulous observations and mathematical demonstrations that eventually convinced even his rival.  On Sunspots collects the correspondenc

  5. New Technique for Luminosity Measurement Using 3D Pixel Modules in the ATLAS IBL Detector

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2017-01-01

    The Insertable b-Layer ( IBL ) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D modules at two extremities. We use the cluster length distributions in 3D sensor modules of the IBL to determine the number of primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting ( PCC ) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  6. The sunspot cycle revisited

    International Nuclear Information System (INIS)

    Lomb, Nick

    2013-01-01

    The set of sunspot numbers observed since the invention of the telescope is one of the most studied time series in astronomy and yet it is also one of the most complex. Fourteen frequencies are found in the yearly mean sunspot numbers from 1700 to 2011using the Lomb-Scargle periodogram and prewhitening. All of the frequencies corresponding to shorter term periods can be matched with simple algebraic combinations of the frequency of the main 11-year period and the frequencies of the longer term periods in the periodogram. This is exactly what can be expected from amplitude and phase modulation of an 11.12-year periodicity by longer term variations. Similar, though not identical, results are obtained after correcting the sunspot number series as proposed by Svalgaard. On looking separately at the amplitude and phase modulation a clear relationship is found between the two modulations although this relationship has broken down for the last four solar cycles. The phase modulation implies that there is a definite underlying period for the solar cycle. Such a clock mechanism does seem to be a possibility in models of the solar dynamo incorporating a conveyor-belt-like meridional circulation between high polar latitudes and the equator.

  7. Development of prototype luminosity detector modules for future experiments on linear colliders

    CERN Document Server

    AUTHOR|(CDS)2081248; Idzik, Marek

    The main objective of this dissertation is to develop and validate the prototype module of the LumiCal luminosity detector. The dissertation presents the works executed from the first detector concept, through all subsequent R&D stages, ending with the test beam results obtained using the complete detector module. Firstly, the linear electron positron colliders and planned experiments are introduced, together with their role in our understanding of the basis of matter and sensing for the New Physics. The signal extraction from radiation sensors and further signal processing techniques are discussed in chapter 2. Besides the commonly accepted techniques of amplitude and time measurements, a novel readout implementation, utilizing digital signal processing and deconvolution principle, is proposed, and its properties are analyzed in details. The architecture, design, and measurements of the LumiCal readout chain components are presented in chapter 3. A dedicated test setups prepared for their parameterizatio...

  8. On the insignificance of Herschel's sunspot correlation

    Science.gov (United States)

    Love, Jeffrey J.

    2013-08-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  9. Coordination failure caused by sunspots

    DEFF Research Database (Denmark)

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose

    2012-01-01

    on the efficient equilibrium, we consider sunspots as a potential reason for coordination failure. We conduct an experiment with a three player 2x2x2 game in which coordination on the efficient equilibrium is easy and should normally occur. In the control session, we find almost perfect coordination on the payoff......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  10. Radioactivation of silicon tracker modules in high-luminosity hadron collider radiation environments

    CERN Document Server

    Dawson, I; Buttar, C; Cindro, V; Mandic, I

    2003-01-01

    One of the consequences of operating detector systems in harsh radiation environments will be radioactivation of the components. This will certainly be true in experiments such as ATLAS and CMS, which are currently being built to exploit the physics potential at CERN's Large Hadron Collider. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. This paper presents predictions for the radioactivation of ATLAS's Semi- Conductor Tracker (SCT) barrel system, based on both calculations and measurements. It is shown that both neutron capture and high-energy hadron reactions must be taken into account. The predictions also show that the SCT barrel-module should not pose any serious radiological problems after operation in high radiation environments.

  11. Luminosity monitor

    International Nuclear Information System (INIS)

    Underwood, D. G.

    1998-01-01

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10 -3 raw asymmetry in an experiment, an error of 10 -4 in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, - and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come

  12. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Todome, K., E-mail: todome@hep.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Jinnouchi, O. [Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8551 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M. [DPNC, University of Geneva, CH-1211 Geneva 4 (Switzerland); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y. [Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Takashima, R. [Department of Science Education, Kyoto University of Education, Kyoto 612-8522 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Tojo, J. [Department of Physics, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); Kono, T. [Ochadai Academic Production, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Solid State Div., Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu-shi, Shizuoka 435-8558 (Japan); and others

    2016-09-21

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the “super-module” in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  13. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  14. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  15. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    Science.gov (United States)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  16. Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle

    Science.gov (United States)

    Hathaway, D. H.

    2014-12-01

    While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.

  17. HELIOSEISMOLOGY OF A REALISTIC MAGNETOCONVECTIVE SUNSPOT SIMULATION

    International Nuclear Information System (INIS)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L. Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  18. The sunspot databases of the Debrecen Observatory

    Science.gov (United States)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  19. Self-affinity and nonextensivity of sunspots

    International Nuclear Information System (INIS)

    Moret, M.A.

    2014-01-01

    In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.

  20. Luminosity monitor at PEP

    International Nuclear Information System (INIS)

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed

  1. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  2. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  3. LHC Luminosity Performance

    CERN Document Server

    AUTHOR|(CDS)2091107; Fuchsberger, Kajetan; Papotti, Giulia

    This thesis adresses several approaches with the common goal of assessing, understanding and improving the luminosity of the Large Hadron Collider (LHC). To better exploit existing margins for maximum luminosity while fulfilling the requirements of the LHC experiments, new techniques for luminosity levelling are studied and developed to an operational state, such as changing the crossing angle or $\\beta^*$ (beam size) at the interaction points with the beams in collisions. In 2017 LHC operation, the crossing angle reduction in collisions improved the integrated luminosity by $\\mathrm{\\sim} 2\\,\\mathrm{fb^{-1}}$ ($\\mathrm{\\sim} 4\\,\\mathrm{\\%}$ of the yearly production). For additional diagnostics, a new method for measuring beam sizes and orbits for each circulating bunch using the luminosity measurement during beam separation scans is shown. The results of these Emittance Scans improved the understanding of the LHC luminosity reach and of the orbit offsets introduced by beam-beam long-range effects.

  4. The Strongest Magnetic Field in Sunspots

    Science.gov (United States)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  5. Sunspot drawings handwritten character recognition method based on deep learning

    Science.gov (United States)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  6. Planetary tides during the Maunder sunspot minimum

    International Nuclear Information System (INIS)

    Smythe, C.M.; Eddy, J.A.

    1977-01-01

    Sun-centered planetary conjunctions and tidal potentials are here constructed for the AD1645 to 1715 period of sunspot absence, referred to as the 'Maunder Minimum'. These are found to be effectively indistinguishable from patterns of conjunctions and power spectra of tidal potential in the present era of a well established 11 year sunspot cycle. This places a new and difficult restraint on any tidal theory of sunspot formation. Problems arise in any direct gravitational theory due to the apparently insufficient forces and tidal heights involved. Proponents of the tidal hypothesis usually revert to trigger mechanisms, which are difficult to criticise or test by observation. Any tidal theory rests on the evidence of continued sunspot periodicity and the substantiation of a prolonged period of solar anomaly in the historical past. The 'Maunder Minimum' was the most drastic change in the behaviour of solar activity in the last 300 years; sunspots virtually disappeared for a 70 year period and the 11 year cycle was probably absent. During that time, however, the nine planets were all in their orbits, and planetary conjunctions and tidal potentials were indistinguishable from those of the present era, in which the 11 year cycle is well established. This provides good evidence against the tidal theory. The pattern of planetary tidal forces during the Maunder Minimum was reconstructed to investigate the possibility that the multiple planet forces somehow fortuitously cancelled at the time, that is that the positions of the slower moving planets in the 17th and early 18th centuries were such that conjunctions and tidal potentials were at the time reduced in number and force. There was no striking dissimilarity between the time of the Maunder Minimum and any period investigated. The failure of planetary conjunction patterns to reflect the drastic drop in sunspots during the Maunder Minimum casts doubt on the tidal theory of solar activity, but a more quantitative test

  7. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    Science.gov (United States)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  8. On the structure of small sunspots

    International Nuclear Information System (INIS)

    Ringnes, T.S.

    1984-01-01

    The smallest and most short-lived sunspots are decribed differently at the observatories in Zuerich and Greenwich. These differences which seem to originate both from the observing procedure and from the definitions of penumbra and umbra adopted, are further discussed

  9. Nature's third cycle a story of sunspots

    CERN Document Server

    Choudhuri, Arnab Rai

    2015-01-01

    The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last ...

  10. Sunspot Positions and Areas from Observations by Galileo Galilei

    Science.gov (United States)

    Vokhmyanin, M. V.; Zolotova, N. V.

    2018-02-01

    Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei's letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3 - 11 May, 2 June - 8 July, and 19 - 21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner's butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei's drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.

  11. Luminosity measurement at AMY

    International Nuclear Information System (INIS)

    Kurihara, Y.

    1995-01-01

    A precise measurement of a luminosity is required by experiments with high statistics. The largest sources of a systematic error of a luminosity measurement are an alignment of the tube chambers which measure a polar angle of Bhabha events and a higher order correction for the Bhabha cross section calculation. We describe a resent study for these uncertainties and how to reduce the systematic errors from these sources. The total systematic error of the luminosity measurement of 1.8% can be reduced to 1.0% by this study. (author)

  12. Sunspot splitting triggering an eruptive flare

    Science.gov (United States)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  13. On two populations of sunspot groups

    International Nuclear Information System (INIS)

    Kuklin, G.V.

    1980-01-01

    The principal component method was applied studying the sunspot groups distribution in respect to the maximum area for the individual 11-year cycles 12 to 19 (Lopez Arroyo and Lahulla, 1974) and for the years 1900 to 1964 (Mandrykina, 1974). The existence of two populations of sunspot groups is confirmed. The variations of the importance parameter q, which determines the population shares, in the 80-, 22- and 11-year cycles are considered. The obtained maximal area distributions for populations I and II are approximated by linear combination of logarithmic-normal distributions, the subpopulations Ia, Ib, Ic by the most probable maximum areas of 22, 298 and 90 mvh, respectively, and the subpopulations IIa, IIb, IIc by the most probable maximal areas of 6, 142 and 754 mvh, respectively. The characteristic distinction between populations I and II is apparently the magnetic structure of the groups belonging to them (bipolar and unipolar ones). (author)

  14. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  15. Probing sunspots with two-skip time-distance helioseismology

    Science.gov (United States)

    Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent

    2018-06-01

    Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.

  16. Sunspots During the Maunder Minimum from Machina Coelestis by Hevelius

    Science.gov (United States)

    Carrasco, V. M. S.; Álvarez, J. Villalba; Vaquero, J. M.

    2015-10-01

    We revisited the sunspot observations published by Johannes Hevelius in his book Machina Coelestis (1679) corresponding to the period of 1653 - 1675 (just in the middle of the Maunder Minimum). We show detailed translations of the original Latin texts describing the sunspot records and provide the general context of these sunspot observations. From this source, we present an estimate of the annual values of the group sunspot number based only on the records that explicitly inform us of the presence or absence of sunspots. Although we obtain very low values of the group sunspot number, in accordance with a grand minimum of solar activity, these values are significantly higher in general than the values provided by Hoyt and Schatten ( Solar Phys. 179, 189, 1998) for the same period.

  17. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  18. Luminosity measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The measurement of the luminosity delivered by the LHC is pivotal for several key physics analyses. During the first three years of running, tremendous steps forwards have been made in the comprehension of the subtleties related to luminosity monitoring and calibration, which led to an unprecedented accuracy at a hadron collider. The detectors and corresponding algorithms employed to estimate online and offline the luminosity in CMS are described. Details are given concerning the procedure based on the Van der Meer scan technique that allowed a very precise calibration of the luminometers from the determination of the LHC beams parameters. What is being prepared in terms of detector and online software upgrades for the next LHC run is also summarized.

  19. Photoelectric observations of propagating sunspot oscillations

    International Nuclear Information System (INIS)

    Lites, B.W.; White, O.R.; Packman, D.

    1982-01-01

    The Sacramento Park Observatory Vacuum Tower Telescope and diode array were used to make repeated intensity and velocity images of a large, isolated sunspot in both a chromospheric (lambda8542 Ca II) and a photospheric (lambda5576 Fe I) line. The movie of the digital data for the chromospheric line shows clearly a relationship between the propagating umbral disturbances and the running penumbral waves. The velocities for transverse propagating of the umbral and penumbral disturbances are 60--70 km s -1 and 20--35 km s -1 , respectively. Power spectra of the oscillations show a sharp peak at a period of about 170 s in both the velocity and intensity signals. The rms velocity fluctuation of this power peak is 0.26 km s -1 . The oscillations at any given point in the sunspot are very regular, and the phase relationship between the velocity and intensity of the chromospheric oscillations is radically different than that for the quiet Sun. Our preliminary interpretation of the phase relationship involves acoustic waves with wave vector directed downwards along the magnetic field lines; however, this interpretation relies on assumptions involved in the data reduction scheme. The mechanical energy flux carried by the observed umbral disturbances does not appear to be a significant contributor to the overall energy budget of the sunspot or the surrounding active region

  20. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  1. Luminosity enhancements at SLAC

    International Nuclear Information System (INIS)

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point

  2. An Anthropology of Luminosity

    DEFF Research Database (Denmark)

    Bille, Mikkel; Sørensen, Tim Flohr

    2007-01-01

    of luminosity in the practice of day-to-day activities. The article surveys an array of past conceptions of light within philosophy, natural science and more recent approaches to light in the fields of anthropology and material culture studies. A number of implications are discussed, and by way of three case...

  3. High luminosity particle colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  4. Luminosity measurement at CMS

    CERN Document Server

    Karacheban, Olena

    2017-01-01

    Luminosity is a key quantity of any collider, since it allows for the determinationof the absolute cross sections from the observed rates in a detector. Since theHiggs boson discovery in 2012, the highest priority at the Large Hadron Collider(LHC) has been given to an accurate understanding of the electroweak scale anda search for new physics. Precise luminosity measurements in such conditions areof crucial importance, as they determine the precision of any physics cross sectionmeasurement.To increase the production of particles of interest, usually of low cross section,the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 × 1034 cm−2 s−1was reached with 1011 protons per bunch and a bunch spacing of 25 ns. In suchconditions radiation hard detectors with extremely fast response time are required,especially for instrumentation near the beam.The Compact Muon Solenoid experiment is equipped with three online luminomet...

  5. Tracking the Magnetic Flux in and Around Sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Sheeley, N. R. Jr.; Stauffer, J. R.; Thomassie, J. C.; Warren, H. P., E-mail: solsheeley@verizon.net, E-mail: harry.warren@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States)

    2017-02-10

    We have developed a procedure for tracking sunspots observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory and for making curvature-corrected space/time maps of the associated line-of-sight magnetic field and continuum intensity. We apply this procedure to 36 sunspots, each observed continuously for nine days around its central meridian passage time, and find that the proper motions separate into two distinct components depending on their speeds. Fast (∼3–5 km s{sup −1}) motions, comparable to Evershed flows, are produced by weak vertical fluctuations of the horizontal canopy field and recur on a timescale of 12–20 min. Slow (∼0.3–0.5 km s{sup −1}) motions diverge from a sunspot-centered ring whose location depends on the size of the sunspot, occurring in the mid-penumbra for large sunspots and at the outer edge of the penumbra for small sunspots. The slow ingoing features are contracting spokes of a quasi-vertical field of umbral polarity. These inflows disappear when the sunspot loses its penumbra, and may be related to inward-moving penumbral grain. The slow outgoing features may have either polarity depending on whether they originate from quasi-vertical fields of umbral polarity or from the outer edge of the canopy. When a sunspot decays, the penumbra and canopy disappear, and the moat becomes filled with slow outflows of umbral polarity. We apply our procedure to decaying sunspots, to long-lived sunspots, and to numerical simulations of a long-lived sunspot by Rempel.

  6. Luminosity measurement at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Karacheban, Olena

    2017-10-15

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10{sup 34} cm{sup -2} s{sup -1} was reached with 10{sup 11} protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using

  7. Luminosity measurement at CMS

    International Nuclear Information System (INIS)

    Karacheban, Olena

    2017-10-01

    Luminosity is a key quantity of any collider, since it allows for the determination of the absolute cross sections from the observed rates in a detector. Since the Higgs boson discovery in 2012, the highest priority at the Large Hadron Collider (LHC) has been given to an accurate understanding of the electroweak scale and a search for new physics. Precise luminosity measurements in such conditions are of crucial importance, as they determine the precision of any physics cross section measurement. To increase the production of particles of interest, usually of low cross section, the LHC is running at the highest possible luminosity. After the first Long Shutdown (LS1) the original performance goal for the luminosity of 1 x 10 34 cm -2 s -1 was reached with 10 11 protons per bunch and a bunch spacing of 25 ns. In such conditions radiation hard detectors with extremely fast response time are required, especially for instrumentation near the beam. The Compact Muon Solenoid experiment is equipped with three online luminometers, which fulfill the listed requirements: the Fast Beam Conditions Monitor (BCM1F), the Pixel Luminosity Telescope (PLT) and the Forward Hadron calorimeter (HF). The BCM1F was upgraded during LS1 from 8 to 24 diamond sensors and is read out by a dedicated fast ASIC. The back-end comprises a deadtime-less histogramming unit, with 6.25 ns bin width and analog-to-digital converters with 2 ns sampling time in the VME standard. A microTCA system with better time resolution is in development. Particles originating from collisions and machine induced background arrive with 12 ns time difference. Because of its excellent time resolution BCM1F measures separately both luminosity and machine induced background particles. The performance of the detector in the first running period and radiation damage monitoring of the sensors and electronics chain form the first part of this thesis. Calibration of the luminometers at the LHC is done using van der Meer (Vd

  8. OLYMPUS luminosity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Ozgur [Hampton University, Hampton, Virginia (United States); Collaboration: OLYMPUS-Collaboration

    2013-07-01

    The OLYMPUS experiment at DESY has been measuring the ratio of positron-proton and electron-proton elastic scattering cross sections to quantify the effect of two-photon exchange, which is widely considered to be responsible for the discrepancy between measurements of the proton electric to magnetic form factor ratio with the Rosenbluth and polarization transfer methods. In order to control the systematic uncertainties to the percent level, the luminosities are monitored redundantly with high precision by measuring the rates for symmetric Moller and Bhabha scattering, and by measuring the ep-elastic count rates at forward angles and low momentum transfer with tracking telescopes based on GEM (Gas Electron Multiplier) and MWPC (Multi Wire Proportional Chamber) technology. During two data taking periods, performances of GEM and MWPC luminosity monitors are presented.

  9. Towards the automatic detection and analysis of sunspot rotation

    Science.gov (United States)

    Brown, Daniel S.; Walker, Andrew P.

    2016-10-01

    Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.

  10. The EUV Spectrum of Sunspot Plumes Observed by SUMER on ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. We present results from sunspot observations obtained by. SUMER on SOHO. In sunspot plumes the EUV spectrum differs from the quiet Sun; continua are observed with different slopes and intensities; emission lines from molecular hydrogen and many unidentified species indicate unique plasma conditions ...

  11. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  12. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  13. An essay on sunspots and solar flares

    International Nuclear Information System (INIS)

    Akasofu, S.-I.

    1984-01-01

    The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy. In this paper, attention is paid to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh. A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these large-scale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the large-scale fields. This dynamo process generates also some of the familiar ''force-free'' fields or the ''sheared'' magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that ''low temperature flares'' are directly driven by the photospheric dynamo process. (author)

  14. Solar rotation and meridional motions derived from sunspot groups

    International Nuclear Information System (INIS)

    Tuominen, J.; Tuominen, I.; Kyroelaeinen, J.

    1982-01-01

    Latitudinal and longitudinal motions of sunspot groups have been studied using the positions of recurrent sunspot groups of 103 years published by Greenwich observatory. In order to avoid any limb effects, only positions close to the central meridian have been used. The data were divided into two parts: those belonging to the years around sunspot maxima and those belonging to the years around sunspot minima. Using several different criteria it was ascertained that sunspot groups show meridional motions and that their drift curves as a function of latitude are different around maxima and around minima. In addition, also the angular velocity, as a function of latitude, was found to be different around maxima and minima. (Auth.)

  15. Iwahashi Zenbei's Sunspot Drawings in 1793 in Japan

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Toriumi, Shin; Shibata, Kazunari

    2018-01-01

    Three Japanese sunspot drawings associated with Iwahashi Zenbei (1756 - 1811) are shown here from contemporary manuscripts and woodprint documents with the relevant texts. We reveal the observational date of one of the drawings to be 26 August 1793, and the overall observations lasted for over a year. Moreover, we identify the observational site for the dated drawing as Fushimi in Japan. We then compare Zenbei's observations with the group sunspot number and the raw group count from the Sunspot Index and Long-term Solar Observations (SILSO) to reveal the context of the data, and we conclude that these drawings fill gaps in our understanding that are due to the fragmental sunspot observations around 1793. These drawings are important as a clue to evaluate astronomical knowledge of contemporary Japan in the late eighteenth century and are valuable as a non-European observation, considering that most sunspot observations up to the middle of the nineteenth century are from Europe.

  16. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  17. Photometric measurements of solar irradiance variations due to sunspots

    International Nuclear Information System (INIS)

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs

  18. Association of Plages with Sunspots: A Multi-Wavelength Study Using Kodaikanal Ca ii K and Greenwich Sunspot Area Data

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-02-01

    Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare them with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.

  19. Sunspot Light Walls Suppressed by Nearby Brightenings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun; Li, Xiaohong [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yan, Limei, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2017-07-01

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, and 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.

  20. Flare colours and luminosities

    International Nuclear Information System (INIS)

    Cristaldi, S.; Rodono, M.

    1975-01-01

    Flare colours determined from simultaneous UBV observations made at Catania Observatory and from sequential UBV observations made at McDonald Observatory are presented. They fit fairly well with the theoretical colours computed according to the Gurzadian's (1970) non-thermal model. Only part of the observed flare colours are consistent with the solar type models by Gershberg (1967) and Kunkel (1970). From a B-band patrol of UV Cet-type stars carried out from 1967 to 1972, some quantitative estimates of flare frequencies and luminosities and their average contributions to the stellar radiation are given. The corresponding parameters for the Sun, which were estimated from 'white light' flare activity, are also given for comparison. The Sun and V 1216 Sgr can be regarded as low-activity flare stars of the type found by Kunkel (1973). (Auth.)

  1. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  2. Sunspots Resource--From Ancient Cultures to Modern Research

    Science.gov (United States)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  3. Latitudinal migration of sunspots based on the ESAI database

    Science.gov (United States)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  4. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  5. Interactions between nested sunspots. 1: The formation and breakup of a delta-type sunspot

    Science.gov (United States)

    Gaizauskas, V.; Harvey, K. L.; Proulx, M.

    1994-01-01

    We investigate a nest of sunspots in which three ordinary bipolar pairs of sunspots are aligned collinearly. The usual spreading action of the growing regions brings two spots of leading polarity together (p-p collision) and forces the leading and trailing spots of the two interior regions to overlap inot a single penumbra (p-f collision), thus forming a delta-spot. We examine digitally processed images from the Ottawa River Solar Observatory of two related events inside the delta-spot 5 days after the p-f collision begins: the violent disruption of the f-umbra, and the formation in less than a day of an hydrogen-alpha filament. The evolutionary changes in shape, area, relative motions, and brightness that we measure for each spot in the elongated nest are more compatible with Parker's (1979a) hypothesis of a sunspot as a cluster of flux tubes held together by downdrafts than with the notion of a sunspot as a monolithic plug of magnetic flux. From chromospheric developments over the delta-spot, we show that a shearing motion along a polarity inversion is more effective than convergence for creating a chromospheric filament. We invoke the release of an instability, triggered by a sequence of processes lasting 1 day or more, to explain the disruption of the f-umbra in this delta-spot. We show that the sequence is initiated when the colliding p-f umbrae reach a critical separation around 3200 +/- 200 km. We present a descriptive model in which the reconnected magnetic fields block vertical transport of convective heat flux just beneath the photosphere. We observe the formation of an unusual type of penumbra adjacent to the f-polarity portion of this delta-spot just before its disruption. A tangential penumbral band grows out of disordered matter connected to the f-umbra. We present this as evidence for the extrusion of umbral magnetic flux by thermal plumes rising through a loosely bound umbra.

  6. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    International Nuclear Information System (INIS)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-01-01

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to the thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.

  7. Umbral oscillations as a probe of sunspot

    International Nuclear Information System (INIS)

    Abdelatif, T.E.H.

    1985-01-01

    The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects

  8. Luminosity class of neutron reflectometers

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru

    2016-10-21

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  9. Observational Evidence of a Flux Rope within a Sunspot Umbra

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmino, Salvo L.; Zuccarello, Francesca [Dipartimento di Fisica e Astronomia—Sezione Astrofisica, Università di Catania, Via S. Sofia 78, I-95125 Catania (Italy); Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95125 Catania (Italy)

    2017-09-10

    We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entire feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.

  10. Is sunspot activity a factor in influenza pandemics?

    Science.gov (United States)

    Qu, Jiangwen

    2016-09-01

    The 2009 AH1N1 pandemic became a global health concern, although fortunately, its worst anticipated effects were not realised. While the origins of such outbreaks remain poorly understood, it is very important to identify the precipitating factors in their emergence so that future pandemics can be detected as quickly as possible. Methords: Descriptive epidemiology was used to analyse the association between influenza pandemics and possible pandemics and relative number of sunspots. Non-conditional logistic regression was performed to analyse the statistical association between sunspot extremes and influenza pandemics to within plus or minus 1 year. Almost all recorded influenza/possible pandemics have occurred in time frames corresponding to sunspot extremes, or +/- 1 year within such extremes. These periods were identified as important risk factors in both possible and confirmed influenza pandemics (odds ratio: 3.87; 95% confidence interval: 1.08 to 13.85). Extremes of sunspot activity to within plus or minus 1 year may precipitate influenza pandemics. Mechanisms of epidemic initiation and early spread are discussed including primary causation by externally derived viral variants (from space via cometary dust). Efforts to construct a comprehensive early warning system for potential influenza and other viral pandemics that include analysis of sunspot activity and stratospheric sampling for viral variants should be supported. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Long-term periodicities in the sunspot record

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1984-07-01

    Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided

  12. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  13. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  14. High Luminosity LHC Project Description

    CERN Document Server

    Apollinari, Giorgio; Rossi, Lucio

    2014-01-01

    The High Luminosity LHC (HL-LHC) is a novel configuration of the Large Hadron Collider, aiming at increasing the luminosity by a factor five or more above the nominal LHC design, to allow increasing the integrated luminosity, in the high luminosity experiments ATLAS and CMS, from the 300 fb-1 of the LHC original design up to 3000 fb-1 or more. This paper contains a short description of the main machine parameters and of the main equipment that need to be developed and installed. The preliminary cost evaluation and the time plan are presented, too. Finally, the international collaboration that is supporting the project, the governance and the project structure are discussed, too.

  15. STOCHASTIC DESCRIPTION OF THE HIGH-FREQUENCY CONTENT OF DAILY SUNSPOTS AND EVIDENCE FOR REGIME CHANGES

    International Nuclear Information System (INIS)

    Shapoval, A.; Le Mouël, J.-L.; Courtillot, V.; Shnirman, M.

    2015-01-01

    The irregularity index λ is applied to the high-frequency content of daily sunspot numbers ISSN. This λ is a modification of the standard maximal Lyapunov exponent. It is computed here as a function of embedding dimension m, within four-year time windows centered at the maxima of Schwabe cycles. The λ(m) curves form separate clusters (pre-1923 and post-1933). This supports a regime transition and narrows its occurrence to cycle 16, preceding the growth of activity leading to the Modern Maximum. The two regimes are reproduced by a simple autoregressive process AR(1), with the mean of Poisson noise undergoing 11 yr modulation. The autocorrelation a of the process (linked to sunspot lifetime) is a ≈ 0.8 for 1850-1923 and ≈0.95 for 1933-2013. The AR(1) model suggests that groups of spots appear with a Poisson rate and disappear at a constant rate. We further applied the irregularity index to the daily sunspot group number series for the northern and southern hemispheres, provided by the Greenwich Royal Observatory (RGO), in order to study a possible desynchronization. Correlations between the north and south λ(m) curves vary quite strongly with time and indeed show desynchronization. This may reflect a slow change in the dimension of an underlying dynamical system. The ISSN and RGO series of group numbers do not imply an identical mechanism, but both uncover a regime change at a similar time. Computation of the irregularity index near the maximum of cycle 24 will help in checking whether yet another regime change is under way

  16. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  17. Sunspot Oscillations From The Chromosphere To The Corona

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  18. The High Luminosity LHC Project

    Science.gov (United States)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  19. The Flares Associated with the Dynamics of the Sunspots K. M. ...

    Indian Academy of Sciences (India)

    tional theory of magnetic reconnection is briefly discussed. ... between changes in the sunspots' dynamics, emerging flux region, twisting of the field ... the eventual triggering of the flares is due to proper motion of the sunspots. Using .... rotation rates obtained from the daily motion of sunspot groups with respect to their life.

  20. The magnetic nature of umbra-penumbra boundary in sunspots

    Science.gov (United States)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  1. A new look at sunspot formation using theory and observations

    Science.gov (United States)

    Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2017-10-01

    Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.

  2. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    Science.gov (United States)

    Yau, K.

    2001-12-01

    spell, dated to {ca} 700 by Dansgaard [{Nature} {255}, 1974, 24]. Using records of advances and retreats of glaciers, previous researchers have linked it to a cold spell in the previous two centuries instead, thus requiring an offset in timescales. Our literature search has yielded more records of sunspot sightings, and established the fifth century as a minimum of solar activity, ending in a maximum at {ca} 500. These features and the minimum at 700 match contemporary deviations of atmospheric C 14 from a secular trend, due primarily to long-term changes in the strength of the Earth's magnetic moment [Stuiver, {Radiocarbon} {35}, 215]. Pang has shown that the climate of Eurasia was cold in the 5th century, due partly to volcanic cooling [{Eos} {80}, #46, 1999, F220]. Reduced solar luminosity may have contributed to that too. The cold apparently forced massive southward migrations of Teutonic and Asian barbarians into the Roman Empire, ending it in 476. Europe was plunged into the Dark Age, from which it did not recover until the climate warmed up again toward the end of the millennium. Finally, climate changes can also be produced by greenhouse warming, reorganization of ocean current systems "Dansgaard-Oeschger events," the Earth's orbital variations "Milankovitch effects," {etc}. Continued analysis of historical records, in conjunction with other proxy data, can help shed light on the nature of the Earth's interactions with the Sun, and the causes of past climate changes.

  3. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

    Directory of Open Access Journals (Sweden)

    Y. Brugnara

    2013-07-01

    Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

  4. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, T. [Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife (Spain); Braun, D. C.; Crouch, A. D. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Birch, A. C., E-mail: tobias@iac.es [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  5. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    International Nuclear Information System (INIS)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  6. Are climatological correlations with the Hale double sunspot cycle meaningful

    International Nuclear Information System (INIS)

    Goldberg, R.A.; Herman, J.R.

    1975-09-01

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A.D. is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepency can be resolved by suitable observations during the upcoming half decade

  7. Automated Sunspot Detection and Classification Using SOHO/MDI Imagery

    Science.gov (United States)

    2015-03-01

    to the geocentric North). 3. Focus and size of the solar disk is adjusted to fit an 18 cm diameter circle on the worksheet. 4. Analyst hand draws the...General Nature of the Sunspot,” The Astrophysical Journal 230, 905–913 (1979). 14. Wheatland, M. S., “A Bayesian Approach to Solar Flare Prediction,” The

  8. 3-color photometry of a sunspot using speckle masking techniques

    NARCIS (Netherlands)

    Wiehr, E.; Sütterlin, P.

    1998-01-01

    A three-colour photometry is used to deduce the temperature of sunspot fine-structures. Using the Speckle-Masking method for image restoration, the resulting images (one per colour and burst) have a spatial resolution only limited by the telescope's aperture, i.e. 95km (blue), 145 km (red) and

  9. SUNSPOT CYCLES IMPACTS ON TOURISM AND QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Tadeja Jere Jakulin

    2017-09-01

    Full Text Available We live under the influence of natural cycles caused by the rotation of our planet and its revolution around the sun. The nature of our nearest star is also subject to cyclical change. This article presents a study of a correlation between sunspot cycles and foreign tourists arrivals in Slovenia, based on historical data between sunspot cycles and sea salt production in Slovenia's Municipality of Piran during the Maunder Minimum period (1645-1715. The production of salt by the solar evaporation of brine in salt pans and tourist industry are seasonal economic activities that are affected by changes to the weather. The paper looks at sea salt production in Piran during a particular period in the past. The repetition of the sea salt production in the past is not possible. For this reason, the study uses mathematical tools and an additional case study, which analyses arrivals of foreign tourists to Slovenia over the past 65 years (1948-2012. The study has two purposes: to identify a linear correlation coefficient, which provides evidence of a correlation between arrivals of foreign tourists to Slovenia and sunspot cycles and to develop a causal loop diagram (CLD or so called qualitative model of a complex tourism system, which shows the interdependency of sunspot cycles, tourism system, and quality of life.

  10. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    Science.gov (United States)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  11. LUCID: The ATLAS Luminosity Detector

    CERN Document Server

    Cabras, Grazia; The ATLAS collaboration

    2018-01-01

    After the long shut-down, the LHC Run2 has started with new running conditions with respect to Run1: in particular the centre of mass energy has reached 13 TeV and the bunch-spacing is now 25 ns. In order to cope with these changes, the ATLAS luminosity monitor LUCID and its electronics have been completely rebuilt. This note describes the new detector and electronics, the new luminosity algorithms and the new calibration systems, with a brief review of the first results about the stability of the measurement and evaluation of systematic uncertainties for the 2015 data-taking.

  12. LUCID: the ATLAS Luminosity Detector

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2018-01-01

    A precise measurement of luminosity is a key component of the ATLAS program: its uncertainty is a systematics for all cross-section measurements, from Standard Model processes to new discoveries, and for some precise measurements it can be dominant. To be predictive a precision compatible with PDF uncertainty ( 1-2%) is desired. LUCID (LUminosity Cherenkov Integrating Detector) is sensitive to charged particles generated by the pp collisions. It is the only ATLAS dedicated detector for this purpose and the referred one during the second run of LHC data taking.

  13. Precision luminosity measurements at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-12-05

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at $\\sqrt{s}$ = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determin...

  14. Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time

    Science.gov (United States)

    Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.

    1994-06-01

    The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.

  15. Identification of possible intense historical geomagnetic storms using combined sunspot and auroral observations from East Asia

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    2005-03-01

    Full Text Available Comprehensive catalogues of ancient sunspot and auroral observations from East Asia are used to identify possible intense historical geomagnetic storms in the interval 210 BC-AD 1918. There are about 270 entries in the sunspot catalogue and about 1150 entries in the auroral catalogue. Special databases have been constructed in which the scientific information in these two catalogues is placed in specified fields. For the purposes of this study, an historical geomagnetic storm is defined in terms of an auroral observation that is apparently associated with a particular sunspot observation, in the sense that the auroral observation occurred within several days of the sunspot observation. More precisely, a selection criterion is formulated for the automatic identification of such geomagnetic storms, using the oriental records stored in the sunspot and auroral databases. The selection criterion is based on specific assumptions about the duration of sunspot visibility with the unaided eye, the likely range of heliographic longitudes of an energetic solar feature, and the likely range of transit times for ejected solar plasma to travel from the Sun to the Earth. This selection criterion results in the identification of nineteen putative historical geomagnetic storms, although two of these storms are spurious in the sense that there are two examples of a single sunspot observation being associated with two different auroral observations separated by more than half a (synodic solar rotation period. The literary and scientific reliabilities of the East Asian sunspot and auroral records that define the nineteen historical geomagnetic storms are discussed in detail in a set of appendices. A possible time sequence of events is presented for each geomagnetic storm, including possible dates for both the central meridian passage of the sunspot and the occurrence of the energetic solar feature, as well as likely transit times for the ejected solar plasma

  16. On the correlation of longitudinal and latitudinal motions of sunspots

    International Nuclear Information System (INIS)

    Gilman, P.A.

    1984-01-01

    Using new measurements of positions of individual sunspots and sunspot groups obtained from 62 years of the Mt. Wilson white-light plate collection, we have recomputed the correlation between longitude and latitude motion. Our results for groups are similar to those of Ward (1965a) computed from the Greenwich record, but for individual spots the covariance is reduced by a factor of about 3 from the Ward values, though still of the same sign and still statistically significant. We conclude that there is a real correlation between longitude and latitude movement of individual spots, implying angular momentum transport toward the equator as inferred by Ward. The two thirds reduction in the covariance for individual spots as opposed to groups is probably due to certain properties of spot groups, as first pointed out in an unpublished manuscript by Leighton. (orig.)

  17. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    Science.gov (United States)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  18. Aurorae, sunspots and weather, mainly since A.D. 1200

    International Nuclear Information System (INIS)

    Schove, D.J.

    1981-01-01

    Auroral records recieved for the Spectrum of Time project were used in 1955 to estimate sunspot activity and the dates maxima and minima back to 649 B.C. An additional set of rules has been developed and has made possible further improvements utilizing the separate auroral maxima associated with flares and coronal holes on the sun. A further set can now be given. 1) The time between sunspot maxima depends especially on the ratio of the amplitudes: the time between minima is high if the next cycle is very weak and low when the two consecutive cycles are both strong. 2) The time of rise is usually dependent on the strength of the next maxima, and the time of fall is low when a moderate cycle is followed by a strong one. (orig./WL)

  19. Studies of kinematic elements in two multicenter sunspot groups

    International Nuclear Information System (INIS)

    Korobova, Z.B.

    1983-01-01

    Some features of kinematic elements (KE) in two multicenter sunspot groups were studied using Tashkent full-disc white light heliograms. KE and morphological elements do not reveal any relationship. A KE coincides with a unipolar or multipolar spot or with part of a spot. It may also contain an extended stream including several spots. Relation of KE to large-scale photospheric magnetic fields is less clear. The line of polarity reversal is, in most cases, the deviding line between two adjacent KE. At the same time, a KE can contain spots of both polarities. Sunspot trajectories in the leading polarity regions show the best similarity. Interactions of KE are greatly influenced by the meridional drift. (author)

  20. Application of the Markov chain approximation to the sunspot observations

    International Nuclear Information System (INIS)

    Onal, M.

    1988-01-01

    The positions of the 13,588 sunspot groups observed during the cycle of 1950-1960 at the Istanbul University Observatory have been corrected for the effect of differential rotation. The evolution probability of a sunspot group to the other one in the same region have been determined. By using the Markov chain approximation, the types of these groups and their transition probabilities during the following activity cycle (1950-1960), and the concentration of active regions during 1950-1960 have been estimated. The transition probabilities from the observations of the activity cycle 1960-1970 have been compared with the predicted transition probabilities and a good correlation has been noted. 5 refs.; 2 tabs

  1. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States); Ulrich, Roger K., E-mail: jli@igpp.ucla.edu [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1567 (United States)

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  2. Visual Circular Analysis of 266 Years of Sunspot Counts.

    Science.gov (United States)

    Buelens, Bart

    2016-06-01

    Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.

  3. The luminosity function of quasars

    Science.gov (United States)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  4. The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Michal; Rezaei, R.

    2017-01-01

    Roč. 292, č. 12 (2017), 188/1-188/12 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA14-04338S; GA MŠk(CZ) 7E13003 EU Projects: European Commission(XE) 312495 - SOLARNET Institutional support: RVO:67985815 Keywords : sunspots * magnetic fields * comparison Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  5. SPECTROPOLARIMETRICALLY ACCURATE MAGNETOHYDROSTATIC SUNSPOT MODEL FOR FORWARD MODELING IN HELIOSEISMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Przybylski, D.; Shelyag, S.; Cally, P. S. [Monash Center for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria 3800 (Australia)

    2015-07-01

    We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave.

  6. SPECTROPOLARIMETRICALLY ACCURATE MAGNETOHYDROSTATIC SUNSPOT MODEL FOR FORWARD MODELING IN HELIOSEISMOLOGY

    International Nuclear Information System (INIS)

    Przybylski, D.; Shelyag, S.; Cally, P. S.

    2015-01-01

    We present a technique to construct a spectropolarimetrically accurate magnetohydrostatic model of a large-scale solar magnetic field concentration, mimicking a sunspot. Using the constructed model we perform a simulation of acoustic wave propagation, conversion, and absorption in the solar interior and photosphere with the sunspot embedded into it. With the 6173 Å magnetically sensitive photospheric absorption line of neutral iron, we calculate observable quantities such as continuum intensities, Doppler velocities, as well as the full Stokes vector for the simulation at various positions at the solar disk, and analyze the influence of non-locality of radiative transport in the solar photosphere on helioseismic measurements. Bisector shapes were used to perform multi-height observations. The differences in acoustic power at different heights within the line formation region at different positions at the solar disk were simulated and characterized. An increase in acoustic power in the simulated observations of the sunspot umbra away from the solar disk center was confirmed as the slow magnetoacoustic wave

  7. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  8. Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    Science.gov (United States)

    Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie

    2018-02-01

    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.

  9. MODELING THE CHROMOSPHERE OF A SUNSPOT AND THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Avrett, E.; Tian, H. [Smithsonian Astrophysical Observatory, Cambridge, MA 02138 (United States); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Curdt, W. [Max Planck Institut für Sonnensystemfoschung, Goettingen (Germany); Wülser, J.-P. [Lockheed Martin Advanced Techonology Center (United States)

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  10. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  11. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    Science.gov (United States)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  12. Wings of the butterfly: Sunspot groups for 1826-2015

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  13. Sunspot number recalibration: The ~1840–1920 anomaly in the observer normalization factors of the group sunspot number

    Directory of Open Access Journals (Sweden)

    Cliver Edward W.

    2017-01-01

    Full Text Available We analyze the normalization factors (k′-factors used to scale secondary observers to the Royal Greenwich Observatory (RGO reference series of the Hoyt & Schatten (1998a, 1998b group sunspot number (GSN. A time series of these k′-factors exhibits an anomaly from 1841 to 1920, viz., the average k′-factor for all observers who began reporting groups from 1841 to 1883 is 1.075 vs. 1.431 for those who began from 1884 to 1920, with a progressive rise, on average, during the latter period. The 1883–1884 break between the two subintervals occurs precisely at the point where Hoyt and Schatten began to use a complex daisy-chaining method to scale observers to RGO. The 1841–1920 anomaly implies, implausibly, that the average sunspot observer who began from 1841 to 1883 was nearly as proficient at counting groups as mid-20th century RGO (for which k′ = 1.0 by definition while observers beginning during the 1884–1920 period regressed in group counting capability relative to those from the earlier interval. Instead, as shown elsewhere and substantiated here, RGO group counts increased relative to those of other long-term observers from 1874 to ~1915. This apparent inhomogeneity in the RGO group count series is primarily responsible for the increase in k′-factors from 1884 to 1920 and the suppression, by 44% on average, of the Hoyt and Schatten GSN relative to the original Wolf sunspot number (WSN before ~1885. Correcting for the early “learning curve” in the RGO reference series and minimizing the use of daisy-chaining rectifies the anomalous behavior of the k′-factor series. The resultant GSN time series (designated GSN* is in reasonable agreement with the revised WSN (SN*; Clette & Lefèvre 2016 and the backbone-based group sunspot number (RGS; Svalgaard & Schatten 2016 but significantly higher than other recent reconstructions (Friedli, personal communication, 2016; Lockwood et al. 2014a, 2014b; Usoskin et al. 2016a. This result

  14. The low-luminosity stellar mass function

    International Nuclear Information System (INIS)

    Kroupa, Pavel; Tout, C.A.; Gilmore, Gerard

    1990-01-01

    The stellar mass function for low-mass stars is constrained using the stellar luminosity function and the slope of the mass-luminosity relation. We investigate the range of mass functions for stars with absolute visual magnitude fainter than M V ≅ +5 which are consistent with both the local luminosity function and the rather poorly determined mass-absolute visual magnitude relation. Points of inflexion in the mass-luminosity relation exist because of the effects of H - , H 2 and of other molecules on the opacity and equation of state. The first two of these correspond to absolute magnitudes M V ≅ +7 and M V ≅ +12, respectively, at which structure is evident in the stellar luminosity function (a flattening and a maximum, respectively). Combining the mass-luminosity relation which shows these inflexion points with a peaked luminosity function, we test smooth mass functions in the mass range 0.9-0.1 the solar mass. (author)

  15. To High Luminosity and beyond!

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    This week marks a major milestone for the High Luminosity LHC (HL-LHC - see here) project, as it moves from the design study to the machine construction phase. HL-LHC will extend the LHC’s discovery potential, increasing luminosity by a factor of 10 beyond the original design value and allowing the scientific community to study new phenomena.    Composer Domenico Vicinanza (left) directs the musical performance of sonified LHC data during a special Hi-Lumi event (see box). The green light was given during the 5th Joint HiLumi LHC-LARP annual meeting that took place at CERN from 26 to 30 October 2015. The meeting saw the participation of more than 230 experts from all over the world to discuss the results and achievements of the HiLumi LHC Design Study. During the week, these experts approved the first version of the HL-LHC Technical Design Report – the document that, following the Preliminary Design Report issued in 2014, describes in detail how the LHC upgrade progra...

  16. Relation between radio luminosity and rotation for late-type stars

    International Nuclear Information System (INIS)

    Stewart, R.T.; Innis, J.L.; Slee, O.B.; Nelson, G.J.; Wright, A.E.

    1988-01-01

    A relation is found between peak radio luminosities measured at 8 GHz and the rotational velocity of 51 late-type F, G, and K stars (including the sun). The sample includes both single stars and active components of close binary systems, with equatorial surface velocities ranging from 1 to 100 km/s. A gyrosynchrotron source model originally developed to explain solar microwave bursts could explain the relation. The main parameter depending on rotation rate is the filling factor, i.e., the fraction of the stellar surface and corona occupied by intense magnetic fields. As the rotation speed increases, the scale size of the coronal structures emitting microwave gyrosynchrotron radiation increases, and there is a corresponding increase in the area of the surface covered by intense starspot magnetic fields. However, the peak magnetic field of the starspots probably does not increase significantly above observed sunspot values. 47 references

  17. A Standard Law for the Equatorward Drift of the Sunspot Zones

    Science.gov (United States)

    Hathaway, David H.

    2012-01-01

    The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.

  18. Distribution of electric currents in sunspots from photosphere to corona

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  19. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    Science.gov (United States)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  20. Observations of the birth and fine structure of sunspot penumbrae

    International Nuclear Information System (INIS)

    Collados, M.; Garcia de la Rosa, J.I.; Moreno-Insertis, F.; Vazquez, M.

    1985-01-01

    High resolution white-light pictures of sunspot penumbrae are presented. These include pictures showing details of their filamentary structure and some instances of birth of a penumbra. The observations are discussed in the framework of current penumbra theories. A series of pictures have been presented, which give additional evidence of the existence of dark penumbral filaments as individual structures. With respect to the birth of the penumbra some new observational aspects can be seen. The existence of the filamentary penumbra even in the first moments, its non uniformity and its short length are the major aspects derived from the pictures

  1. Integral luminosities of radio pulsars

    Science.gov (United States)

    Malov, I.; Malov, O.

    The integral radio luminosities L for 311 normal pulsars and for 27 ones with the rotation period Pfalls for fast ones. The mean values of K are -3.73 and -4.85 for normal and fast pulsars, respectively. There are no changes of L with the kinematic age T = z/V, where z is the pulsar height over the Galactic plane and V = 300 km/s is its mean velocity. The correlation between L and the rate of the rotation energy losses E is detected for both pulsar groups under consideration. It is shown that L= A E^(1/3) for the whole sample. The total number of pulsars in the Galaxy and their birth rate are in agreement with data on the rate of supernova explosions.

  2. The visibility function and its effect on the observed characteristics of sunspot groups. 1

    International Nuclear Information System (INIS)

    Kopecky, M.; Kuklin, G.V.; Starkova, I.P.

    1985-01-01

    The paper is an introductory study to a series dealing with the visibility function, the function of foreshortening of sunspot group areas, and with the effect of these functions on the results of the statistical processing of observations, which has to be taken into account in interpreting the results. A ''diagram of observational conditions'' is described, which enables a number of statistical problems of sunspot groups on the rotating Sun to be solved by computer modelling or by graphical methods. Examples are given of the use of this diagram in studying the distribution of the observed lifetime of sunspot groups with a given actual lifetime, of the decrease in the number of sunspot groups towards the limb of the solar disc, of the east-west asymmetry of sunspot group appearance and disappearance. (author)

  3. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    Science.gov (United States)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  4. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  5. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  6. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  7. Luminosity monitoring and measurement at CDF

    International Nuclear Information System (INIS)

    Cronin-Hennessy, D.; Beretvas, A.; Derwent, P.F.

    2000-01-01

    Using two telescopes of beam-beam counters, CDF (Collider Detector at Fermilab) has measured the luminosity to an accuracy of 4.1% (3.6%) in run Ib (Ia). For run Ib (Ia) the average luminosity was 9.1(3.3)x10 30 cm -2 s -1 . For a typical data set the integrated luminosity was 86.47 (19.65) pb -1 in run Ib (Ia) resulting in a total integrated luminosity of 106.1±4.1 pb -1 . This paper shows how we have determined the accuracy of our results

  8. SUNSPOT AND STARSPOT LIFETIMES IN A TURBULENT EROSION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-01-10

    Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D : an inverse power-law dependence D ∝ B {sup −ν} and a step-function dependence of D on the magnetic field magnitude B . Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “super fast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.

  9. Response of Solar Irradiance to Sunspot-area Variations

    Science.gov (United States)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  10. Extreme Value Theory Applied to the Millennial Sunspot Number Series

    Science.gov (United States)

    Acero, F. J.; Gallego, M. C.; García, J. A.; Usoskin, I. G.; Vaquero, J. M.

    2018-01-01

    In this work, we use two decadal sunspot number series reconstructed from cosmogenic radionuclide data (14C in tree trunks, SN 14C, and 10Be in polar ice, SN 10Be) and the extreme value theory to study variability of solar activity during the last nine millennia. The peaks-over-threshold technique was used to compute, in particular, the shape parameter of the generalized Pareto distribution for different thresholds. Its negative value implies an upper bound of the extreme SN 10Be and SN 14C timeseries. The return level for 1000 and 10,000 years were estimated leading to values lower than the maximum observed values, expected for the 1000 year, but not for the 10,000 year return levels, for both series. A comparison of these results with those obtained using the observed sunspot numbers from telescopic observations during the last four centuries suggests that the main characteristics of solar activity have already been recorded in the telescopic period (from 1610 to nowadays) which covers the full range of solar variability from a Grand minimum to a Grand maximum.

  11. Depressed emission between magnetic arcades near a sunspot

    Science.gov (United States)

    Ryabov, B. I.; Shibasaki, K.

    The locations of the depressed emission in microwaves, EUV and soft X-rays are compared with each other and with the location of the plasma outflow in the active region (AR) 8535 on the Sun. We found that two open-field regions overlap the regions of depressed emission near the AR's sunspot. These two open-field regions are simulated with the potential-field source-surface (PFSS) model under radial distances of RSS = 1.8 R⊙ and RSS = 2.5 R⊙. Each open-field region is located between the arcades of the loops of the same magnetic polarity. The former open-field region covers the region of the plasma outflow, which is thus useful for the tests on connection to the heliosphere. The utmost microwave depression of the intensity in the ordinary mode (the Very Large Array 15 GHz observations) also overlaps the region of the plasma outflow and thus indicates this outflow. The lasting for eight days depression in soft X-rays and the SOHO EIT 2.84× 10-8 m images are attributed to the evacuation of as hot coronal plasma as T≥ 2× 106 K from the extended in height (``open") magnetic structures. We conclude that the AR 8535 presents the sunspot atmosphere affected by the large-scale magnetic fields.

  12. Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico

    Science.gov (United States)

    Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel

    2017-06-01

    Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.

  13. Evolution of solar ultraviolet luminosity

    International Nuclear Information System (INIS)

    Zahnle, K.J.; Walker, J.C.G.

    1982-01-01

    In view of the major role of the sun in defining the properties of planetary atmospheres, their evolution cannot be fully understood outside the context of an evolving sun. The ultraviolet radiation is especially interesting because of its strong interaction with planetary atmospheres. We use astronomical observation of stars that are analogous to the sun in order to reconstruct a tentative account of the evolution of solar UV luminosity. A wealth of evidence indicates that the young sun was a much more powerful source of energetic particles and radiation than it is today. While on the main sequence, solar activity has declined as an inverse power law of age (between t -5 and t/sup -1.2/) as a consequence of angular momentum loss to the solar wind. Recent IUE satellite observations of premain sequence stars suggest that before the sun reached the main sequence (at an age of about 50 m.y.), it may have emitted as much as 10 4 times as much ultraviolet radiation (γ<2000 A) than it does today. These results could impact our understanding of the photochemistry and escape of constituents of primordial planetary atmospheres

  14. Missing mass from low-luminosity stars

    International Nuclear Information System (INIS)

    Hawkins, M.R.S.

    1986-01-01

    Results from a deep photometric survey for low-luminosity stars show a turnup to the luminosity function at faint magnitudes, and reopen the possibility that the missing mass in the solar neighbourhood is made up of stars after all. (author)

  15. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-01-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators

  16. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, B. H. [University of Southern Queensland, Toowoomba, 4350 (Australia); Norton, A. A. [HEPL, Stanford University, Palo Alto, CA 94305 (United States); Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  17. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  18. On the chromospheric network structure around deVeloped groups of sunspots

    International Nuclear Information System (INIS)

    Kartashova, L.G.

    1980-01-01

    The chromospheric network structure around several developed groups of sunspots were studied on the basis of the observations in the Hsub(α) line. The resolution on the filtergrams was of 2. The following was found: 1) in the neighbourhood of the groups of sunspots 70% (from 870) of network cells stretch along fibrils direction (with accuracy 30 deg), and 15% of cells stretch approximately across that (at angles 70-90 deg); 2) out of the boundary of the main radial fibrils structure the groups of sunspots is often rounded by the system of network cells stretched approximately perpendicular to radial direction

  19. Long-term variations in the geomagnetic activity level Part II: Ascending phases of sunspot cycles

    Directory of Open Access Journals (Sweden)

    V. Mussino

    1994-08-01

    Full Text Available Monthly averages of the Helsinki Ak-values have been reduced to the equivalent aa-indices to extend the aa-data set back to 1844. A periodicity of about five cycles was found for the correlation coefficient (r between geomagnetic indices and sunspot numbers for the ascending phases of sunspot cycles 9 to 22, confirming previous findings based on a minor number of sunspot cycles. The result is useful to researchers in topics related to solar-terrestrial physics, particularly for the interpretation of long-term trends in geomagnetic activity during the past, and to forecast geomagnetic activity levels in the future.

  20. Sunspot Equilibria in a Production Economy: Do Rational Animal Spirits Cause Overproduction?

    OpenAIRE

    Kajii, Atsushi

    2008-01-01

    We study a standard two period economy with one nominal bond and one firm. The input of the firm is done in the first period and financed with the nominal bond, and its profits are distributed to the shareholders in the second period. We show that a sunspot equilibrium exists around each efficient equilibrium. The interest rate is lower than optimal and there is over production in sunspot equilibria, under some conditions. But a sunspot equilibrium does not exist if the profit share can be tr...

  1. Proceeding Paper for HSTD11 Conference about Luminosity Measurement by Pixel-Cluster-Counting

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2018-01-01

    The Insertable B-Layer (IBL) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D pixel modules at two extremities. We use the longitudinal cluster size distributions in 3D modules of the IBL to determine the number of pixel clusters produced by primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting (PCC) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider (LHC) and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  2. Luminosity performance reach after LS1

    International Nuclear Information System (INIS)

    Herr, W.

    2012-01-01

    Based on past experience (2010/2011), in particular expected limitations from beam-beam effects, and taking into account the expected beam quality from the LHC injectors, the peak and integrated luminosity at top energy is discussed for different scenarios (e.g. bunch spacing, beta*). In particular it will be shown which are the key parameters to reach the nominal luminosity and it is also shown that peak luminosities two times larger than nominal (or higher) are possible. Possible test in 2012 are discussed

  3. Luminosity Measurements at LHCb for Run II

    CERN Multimedia

    Coombs, George

    2018-01-01

    A precise measurement of the luminosity is a necessary component of many physics analyses, especially cross-section measurements. At LHCb two different direct measurement methods are used to determine the luminosity: the “van der Meer scan” (VDM) and the “Beam Gas Imaging” (BGI) methods. A combined result from these two methods gave a precision of less than 2% for Run I and efforts are ongoing to provide a similar result for Run II. Fixed target luminosity is determined with an indirect method based on the single electron scattering cross-section.

  4. The performance of the CDF luminosity monitor

    CERN Document Server

    Acosta, D; Konigsberg, J; Korytov, A; Mitselmakher, G; Necula, V; Nomerotski, A; Pronko, A; Sukhanov, A; Safonov, A; Tsybychev, D; Wang, S M; Wong, M

    2002-01-01

    We describe the initial performance of the detector used for the luminosity measurement in the CDF experiment in Run II at the Tevatron. The detector consists of low-mass gaseous Cherenkov counters with high light yield (approx 100 photoelectrons) and monitors the process of inelastic pp-bar scattering. It allows for several methods of precise luminosity measurements at peak instantaneous luminosities of 2x10 sup 3 sup 2 cm sup - sup 2 s sup - sup 1 , corresponding to an average of six pp-bar interactions per bunch crossing.

  5. The photospheric vector magnetic field of a sunspot and its vertical gradient

    Science.gov (United States)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  6. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    CERN Document Server

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  7. Historical evidence concerning the Sun: interpretation of sunspot records during the telescopic and pretelescopic eras

    International Nuclear Information System (INIS)

    Stephenson, F.R.

    1990-01-01

    The value of sunspot observations in investigating solar activity trends - mainly on the centennial to millennial timescale - is considered in some detail. It is shown that although observations made since the mid-eighteenth century are in general very reliable indicators of solar activity, older data are of dubious quality and utility. The sunspot record in both the pretelescopic and early telescopic periods appears to be confused by serious data artefacts. (author)

  8. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yurchyshyn, V.; Abramenko, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kilcik, A. [Department of Space Science and Technologies, Akdeniz University, 07058 Antalya (Turkey)

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  9. SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ravindra, B. [Indian Institute of Astrophysics, Koramangala, Bangalore-560034 (India); Cheng, X., E-mail: vemareddy@iiap.res.in [School of Astronomy and Space Science, Nanjing University, Nanjing-210023 (China)

    2016-09-20

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  10. Online luminosity measurement at BES III

    International Nuclear Information System (INIS)

    Song Wenbo; Fu Chengdong; Mo Xiaohu; He Kanglin; Zhu Kejun; Li Fei; Zhao Shujun

    2010-01-01

    As a crucial parameter of both accelerator and detector, the realization of online luminosity measurement is of great importance. Several methods of luminosity measurement are recapitulated and the emphasis is laid on the algorithm of using e + e - and γγ final states. Taking into account the status at the beginning of the joint commissioning of detector and accelerator, the information from end cap electromagnetic calorimeter is used to select the good event. With the help of online Event filter, the luminosity is calculated and the monitoring of online cross section of hadron is realized. The preliminary results indicate that the online luminosity measurement is stable and its role for machine tuning and monitoring of the overall running status is indispensable. (authors)

  11. Evolution of the Sunspot Number and Solar Wind B Time Series

    Science.gov (United States)

    Cliver, Edward W.; Herbst, Konstantin

    2018-03-01

    The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

  12. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    Science.gov (United States)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  13. Reverberation Mapping of High-Luminosity Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Shai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Brandt, William N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Department of Physics, Pennsylvania State University, University Park, PA (United States); Maoz, Dan; Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv (Israel); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA (United States); Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA (United States); Shemmer, Ohad, E-mail: shai@wise.tau.ac.il [Department of Physics, University of North Texas, Denton, TX (United States)

    2017-10-30

    Over the past three decades reverberation mapping (RM) has been applied to about 100 AGNs. Their broad line region (BLR) sizes were measured and yielded mass estimates of the black holes in their center. However, very few attempts were carried out for high-luminosity quasars, at luminosities higher than 10{sup 46} erg/sec in the optical. Most of these attempts failed since RM of such quasars is difficult due to a number of reasons, mostly due to the long time needed to monitor these objects. During the past two decades we carried out a RM campaign on six high-luminosity quasars. This contribution presents some of the final light curves of that RM campaign in which we measured the BLR size in C iv of three of the objects (S5 0836+71, SBS 1116+603, and SBS 1425+606). We present the C iv BLR size and luminosity relation over eight orders of magnitude in luminosity, pushing the luminosity limit to its highest point so far.

  14. Luminosity Optimization Feedback in the SLC

    International Nuclear Information System (INIS)

    1999-01-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported

  15. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run 2

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into "telescopes", each consisting of three planes. It was installed during LS1 at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to identify events where a hit is registered in all three sensors in a telescope corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. In this talk, we will present results from 2016 running and preliminary 2017 results, including commissioning and operational history, luminosity calibration using Va...

  16. Performance of the Pixel Luminosity Telescope for Luminosity Measurement at CMS during Run2

    CERN Document Server

    Lujan, Paul Joseph

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors arranged into telescopes, each consisting of three sensor planes. It was installed in CMS at the beginning of 2015 and has been providing online and offline luminosity measurements throughout Run 2 of the LHC. The online bunch-by-bunch luminosity measurement employs the fast-or capability of the pixel readout chip to identify events where a hit is registered in all three sensors in a telescope, corresponding primarily to tracks originating from the interaction point. In addition, the full pixel information is read out at a lower rate, allowing for the calculation of corrections to the online luminosity from effects such as the miscounting of tracks not originating from the interaction point and detector efficiency. This paper presents results from the 2016 running of the PLT, including commissioning and operational history, luminosity calibration using Van der Meer scans, and...

  17. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  18. Occurrences of flares with type II and IV radio events in interacting sunspot groups in the course of revolutions

    International Nuclear Information System (INIS)

    Klimes, J.; Krivsky, L.

    1984-01-01

    Using data from 11-year solar cycle No. 20, it was found that flares with type II radio bursts are more than twice as frequent and flares with type IV bursts nearly twice as frequent in sunspot groups which developed close to each other or which merged in the course of revolutions than in isolated sunspot groups. With both types the occurrence of these flares is concentrated in the revolution of the so-called sunspot group interaction (their approximation, merging). (author)

  19. Operational results from the LHC luminosity monitors

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  20. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  1. Detector development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  2. The topside ionosphere above Arecibo at equinox during sunspot maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.

    1980-01-01

    The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)

  3. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Science.gov (United States)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  4. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-12-20

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.

  5. Observations of Running Penumbral Waves Emerging in a Sunspot

    Science.gov (United States)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  6. On the Theory of Sunspots Proposed by Signor Kirchoff

    Directory of Open Access Journals (Sweden)

    Secchi A.

    2011-07-01

    Full Text Available Eileen Reeves (Department of Comparative Literature, Princeton University, Princeton, New Jersey, 08544 and Mary Posani (Department of French and Italian, The Ohio State University, Columbus, Ohio, 43221 provide a translation of Father Pietro Angelo Secchi’s classic work “ Secchi A. Sulla Teoria Delle Macchie Solari: Proposta dal sig. Kirchoff” as it appeared in Bullettino Meteorologico dell’ Osservatorio del Collegio Romano , 31 January 1864, v.3(4, 1–4. This was the first treatise to propose a partic- ulate photosphere floating on the gaseous body of the Sun. The idea would dominate astrophysical thought for the next 50 years. Secchi appears to have drafted the article, as a response to Gustav Kirchhoff’s proposal, echoing early Galilean ideas, that sunspots represented clouds which floated above the photosphere. Other than presenting a new solar model, noteworthy aspects of this work include Secchi’s appropriate insistence that materials do not emit the same light at the same temperature and his gentle rebuke of Kirchhoff relative to commenting on questions of astronomy.

  7. MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Bergmann, Benedikt; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel [IEAP CTU in Prague (Czech Republic); Ashba, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Bekhouche, Khaled [Biskra University (Algeria); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Lipniacka, Anna [Bergen University (Norway)

    2016-07-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s) =8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX luminosity measurements are below 0.3% for one minute intervals.

  8. The period-luminosity relation for Cepheids

    International Nuclear Information System (INIS)

    Brodie, J.P.

    1980-01-01

    Numerical simulations of the empirical determination of the period-luminosity-colour relation for classical Cepheids are presented. In this study the quantitative effects of random errors, reddening, sample size and the presence of both colour and period cut-offs (imposed by the finite extent of the instability strip) on the observational redetermination of the original relation are evaluated. Both random errors in the photometry and correlated errors in the reddening corrections are shown to have systematic effects. Especially sensitive to these errors is the colour coefficient in the period-luminosity-colour relation, where the ratio of the error to the width of the instability strip is the determining factor. With present observations only broad confidence limits can be placed on present knowledge of the intrinsic period-luminosity-colour relation and/or its variations from galaxy to galaxy. (author)

  9. Correlation function of the luminosity distances

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-09-01

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation function of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.

  10. The BRAN luminosity detectors for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.; Placidi, M.; Ratti, A.; Turner, W.C. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bravin, E. [CERN, 1211 Geneva 23 (Switzerland); Miyamoto, R. [European Spallation Source, ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden)

    2017-03-11

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×10{sup 34} cm{sup −2} s{sup −1} with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  11. Powering the High-Luminosity Triplets

    Science.gov (United States)

    Ballarino, A.; Burnet, J. P.

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  12. Calculating luminosity for a coupled Tevatron lattice

    International Nuclear Information System (INIS)

    Holt, J.A.; Martens, M.A.; Michelotti, L.; Goderre, G.

    1995-05-01

    The traditional formula for calculating luminosity assumes an uncoupled lattice and makes use of one-degree-of-freedom lattice functions, β H and β v , for relating transverse beam widths to emittances. Strong coupling requires changing this approach. It is simplest to employ directly the linear normal form coordinates of the one turn map. An equilibrium distribution in phase space is expressed as a function of the Jacobian's eigenvectors and beam size parameters or emittances. Using the equilibrium distributions an expression for the luminosity was derived and applied to the Tevatron lattice, which was coupled due to a quadrupole roll

  13. Luminosity Targets for FCC-hh

    CERN Document Server

    Zimmermann, F.; Buffat, X.; Schulte, D.

    2016-01-01

    We discuss the choice of target values for the peak and integrated luminosity of a future high-energy frontier circular hadron collider (FCC-hh). We review the arguments on the physics reach of a hadron collider. Next we show that accelerator constraints will limit the beam current and the turnaround time. Taking these limits into account, we derive an expression for the ultimate integrated luminosity per year, depending on a possible pile-up limit imposed by the physics experiments. We finally benchmark our result against the planned two phases of FCC-hh [1, 2, 3

  14. Sunspot activity and influenza pandemics: a statistical assessment of the purported association.

    Science.gov (United States)

    Towers, S

    2017-10-01

    Since 1978, a series of papers in the literature have claimed to find a significant association between sunspot activity and the timing of influenza pandemics. This paper examines these analyses, and attempts to recreate the three most recent statistical analyses by Ertel (1994), Tapping et al. (2001), and Yeung (2006), which all have purported to find a significant relationship between sunspot numbers and pandemic influenza. As will be discussed, each analysis had errors in the data. In addition, in each analysis arbitrary selections or assumptions were also made, and the authors did not assess the robustness of their analyses to changes in those arbitrary assumptions. Varying the arbitrary assumptions to other, equally valid, assumptions negates the claims of significance. Indeed, an arbitrary selection made in one of the analyses appears to have resulted in almost maximal apparent significance; changing it only slightly yields a null result. This analysis applies statistically rigorous methodology to examine the purported sunspot/pandemic link, using more statistically powerful un-binned analysis methods, rather than relying on arbitrarily binned data. The analyses are repeated using both the Wolf and Group sunspot numbers. In all cases, no statistically significant evidence of any association was found. However, while the focus in this particular analysis was on the purported relationship of influenza pandemics to sunspot activity, the faults found in the past analyses are common pitfalls; inattention to analysis reproducibility and robustness assessment are common problems in the sciences, that are unfortunately not noted often enough in review.

  15. The use of solar faculae in studies of the sunspot cycle

    International Nuclear Information System (INIS)

    Brown, G.M.; Evans, R.

    1980-01-01

    Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle. This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 +- 22. The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results. (orig.)

  16. The luminosity of galactic components and morphological segregation

    International Nuclear Information System (INIS)

    Solanes, J. M.; Salvador-Sole, E.; Sanroma, M.

    1989-01-01

    The luminosities of the bulge and disk components of disk galaxies are analyzed, and the possible correlation of these luminosities with morphological type and local density is explored. Galaxies of different types are found to be located in distinct bands in the bulge-to-disk luminosity ratio vs total luminosity diagram, allowing the determination of the typical bulge luminosity function of disk galaxies of different types from their respective total luminosity functions, along with a better characterization of morphological segregation among disk galaxies. No evidence for any bulge luminosity segregation is found, and disks appear to be less luminous with increasing local density. 33 refs

  17. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Donguk; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Yurchyshyn, Vasyl [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States); Lim, Eun-Kyung; Cho, Kyung-Suk, E-mail: dusong@astro.snu.ac.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca ii 8542 Å and H α intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s{sup −1} two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  18. KEKB B-Factory, the luminosity frontier

    International Nuclear Information System (INIS)

    Oide, Katsunobu

    2009-01-01

    The experiment at the KEKB B-Factory, as well as PEP-II, brought the final blow on the 2008 Nobel Prize in Physics for the Kobayashi-Maskawa theory. A few key issues will be described on the design and performance of KEKB to make the world's highest luminosity possible. (author)

  19. Luminosity Measurement at the Compact Linear Collider

    CERN Document Server

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm−2s−1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10−2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  20. RHIC Proton Luminosity and Polarization Improvement

    International Nuclear Information System (INIS)

    Zhang, S. Y.

    2014-01-01

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  1. Academic Training - LHC luminosity upgrade: detector challenges

    CERN Multimedia

    Françoise Benz

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 13, 14, 15, March, from 11:00 to 12:00 - 16 March from 10:00 to 12:00 Main Auditorium, bldg. 500 on 14, 15 March, Council Room on 13, 16 March LHC luminosity upgrade: detector challenges A. De Roeck / CERN-PH, D. Bortoletto / Purdue Univ. USA, R. Wigmans / Texas, Tech Univ. USA, W. Riegler / CERN-PH, W. Smith / Wisconsin Univ. USA The upgrade of the LHC machine towards higher luminosity (1035 cm-2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector ...

  2. Recent improvements in luminosity at PEP

    International Nuclear Information System (INIS)

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program

  3. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  4. MPX Detectors as LHC Luminosity Monitor

    CERN Document Server

    Sopczak, Andre; Asbah, Nedaa; Bergmann, Benedikt; Bekhouche, Khaled; Caforio, Davide; Campbell, Michael; Heijne, Erik; Leroy, Claude; Lipniacka, Anna; Nessi, Marzio; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Soueid, Paul; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek

    2015-01-01

    A network of 16 Medipix-2 (MPX) silicon pixel devices was installed in the ATLAS detector cavern at CERN. It was designed to measure the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. This study demonstrates that the MPX network can also be used as a self-sufficient luminosity monitoring system. The MPX detectors collect data independently of the ATLAS data-recording chain, and thus they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors located close enough to the primary interaction point are used to perform van der Meer calibration scans with high precision. Results from the luminosity monitoring are presented for 2012 data taken at sqrt(s) = 8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction rate are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The systematic variations observed in the MPX lum...

  5. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    International Nuclear Information System (INIS)

    Zhao, Hui; Chou, Dean-Yi

    2016-01-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  6. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.

  7. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    Science.gov (United States)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  8. On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2

    International Nuclear Information System (INIS)

    Balthasar, H.

    1983-01-01

    Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)

  9. Relationship between geomagnetic classes’ activity phases and their occurrence during the sunspot cycle

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2009-06-01

    Full Text Available Four well known geomagnetic classes of activity such as quiet days activity, fluctuating activity, recurrent activity
    and shock activity time occurrences have been determined not only by using time profile of sunspot number
    Rz but also by using aa index values.
    We show that recurrent wind stream activity and fluctuating activity occur in opposite phase and slow solar wind
    activity during minimum phase and shock activity at the maximum phase.
    It emerges from this study that fluctuating activity precedes the sunspot cycle by π/2 and the latter also precedes
    recurrent activity by π/2. Thus in the majority the activities do not happen at random; the sunspot cycle starts
    with quiet days activity, continues with fluctuating activity and during its maximum phase arrives shock activity.
    The descending phase is characterized by the manifestation of recurrent wind stream activity.

  10. Luminosity Variations in Post-AGB Stars

    Science.gov (United States)

    Mesler, Robert; Henson, G.

    2007-12-01

    Although much is known about AGB stars and planetary nebulae, relatively little is known about the phase of a star's life in which it transitions between those two states. We have measured the variations in luminosity of a sample of known Post-AGB stars (as well as several candidates) relative to nearby, non-variable stars in order to compare them with theoretical models. The typical behavior of the observed variations is described and an attempt is made to discern whether any periodicity might be present. Luminosity variations were found to be on the order of a few hundredths to a few tenths of a magnitude for the stars that were surveyed, with occasional fluctuations of up to a magnitude. This agrees with current models of Post-AGB stars. Each star fell into one of three categories, which were termed groups 1, 2, and 3. Group 1 stars showed long term, non-periodic luminosity variations on the scale of weeks or longer and were most likely to display some sort of short term, coherent luminosity oscillation (each of which lasted for only a few cycles). Group 2 stars showed erratic, short-term magnitude variations occurring on scales of several days. Group 3 stars showed little or no variation in magnitude. Of the 27 Post-AGB stars that were sampled, five fell into group 1, fifteen fell into group 2, and seven fell into group 3. The luminosity variations tended to be color-independent, and occurred on timescales ranging nearly continuously from a few days to more than a year. No clear periodic behavior was found in any star in our sample. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  11. Possibility to explain the temperature distribution in sunspots by an anisotropic heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Eschrich, K O; Krause, F [Akademie der Wissenschaften der DDR, Potsdam. Zentralinstitut fuer Astrophysik

    1977-01-01

    Numerical solutions of a heat conduction problem in an anisotropic medium are used for a discussion of the possibility to explain the temperature distribution in sunspots and their environment. The anisotropy is assumed being due to the strong magnetic field in sunspots and the region below. This magnetic field forces the convection to take an anisotropic structure (two-dimensional turbulence) and thus the region gets anisotropic conduction properties, on the average. The discussion shows that the observed temperature profiles can be explained in the case the depth of the region of anisotropy is about as large as the diameter of the spot or larger.

  12. Outflow of chromospheric emission features from the rim of a sunspot

    Science.gov (United States)

    Liu, S.-Y.

    1973-01-01

    In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.

  13. Empirical mode decomposition and long-range correlation analysis of sunspot time series

    International Nuclear Information System (INIS)

    Zhou, Yu; Leung, Yee

    2010-01-01

    Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the

  14. Robust Tracking at the High Luminosity LHC

    CERN Document Server

    Woods, Natasha Lee; The ATLAS collaboration

    2018-01-01

    The High Luminosity LHC (HL-LHC) aims to increase the LHC data-set by an order of magnitude in order to increase its potential for discoveries. Starting from the middle of 2026, the HL-LHC is expected to reach the peak instantaneous luminosity of 7.5×10^34cm^-2s^-1 which corresponds to about 200 inelastic proton-proton collisions per beam crossing. To cope with the large radiation doses and high pileup, the current ATLAS Inner Detector will be replaced with a new all-silicon Inner Tracker. In this talk the expected performance of tracking and vertexing with the HL-LHC tracker is presented. Comparison is made to the performance with the Run2 detector. Ongoing developments of the track reconstruction for the HL-LHC are also discussed.

  15. Recent luminosity improvements at the SLC

    International Nuclear Information System (INIS)

    Raimondi, P.; Usher, T.; Akre, R.

    1998-07-01

    The luminosity of the SLAC Linear Collider (SLC) has been increased by more than a factor of three during the 1997--98 run. Improved alignment and emittance tuning techniques throughout the accelerator resulted in minimal emittance growth from the damping rings to the final focus. In particular, a revised strategy for wakefield cancellation using precision beam size measurements at the entrance of the final focus proved effective for optimizing emittance. The final focus lattice was modified to provide stronger demagnification near the interaction point and to remove residual higher-order aberrations. Beam sizes as small as 1.5 by 0.65 microns were achieved at full beam intensity of 4 10 10 particles per pulse. With these parameters, the mutual focusing of the beams in collision becomes significant, resulting in a further increase in the luminosity. Recorded SLD event rates confirmed the theoretical calculations of the disruption enhancement which was typically 50 to 100%

  16. High luminosity muon scattering at FNAL

    International Nuclear Information System (INIS)

    Bazizi, K.; Conrad, J.; Fang, G.; Erdmann, M.; Geesaman, D.; Jackson, H.; Guyot, C.; Virchaux, M.; Holmgren, H.; Malensek, A.; Melanson, H.; Morfin, J.; Schellman, H.; Nickerson, R.

    1990-02-01

    The charge of this group was to evaluate the physics that can be done with a high luminosity μ scattering experiment at FNAL using the upgraded Tevatron muon beam, and consider the apparatus required. In this report, the physics that can be accomplished with a high luminosity μ scattering experiment is evaluated. The CERN and FNAL μ beams are compared in the context of such an experiment. The expected muon flux with the upgraded machine is estimated. Two possible detectors are compared: the air-core toroid experiment proposed by Guyot et al., and an upgraded version of the E665 double-diode apparatus now in place at FNAL. The relative costs of the detectors are considered. A list of detailed questions that need to be answered regarding the double-diode experiment has be compiled. 2 refs., 10 figs., 2 tabs

  17. Wet drift chambers for precise luminosity

    International Nuclear Information System (INIS)

    Anderson, B.E.; Kennedy, B.W.; Ahmet, K.; Attree, D.J.; Barraclough, G.A.; Cresswell, M.J.; Hayes, D.A.; Miller, D.J.; Selby, C.; Sherwood, P.

    1994-01-01

    A set of high-precision compact drift chambers has been a vital component of the OPAL luminosity monitor since the start of data-taking at LEP. They were augmented in 1992 by the addition of Small Angle Reference Chambers with a very similar design to the original chamber. The performance of the chambers is reviewed, highlighting both the importance of using polyalkylene glycol (Breox) to maintain a uniform and parallel electric field and the construction techniques used to sustain the required field strength. We describe some of the operating problems, with their solutions, and show how the chambers have been used in achieving a systematic error of 0.41% on the luminosity measurement. ((orig.))

  18. Luminosity with more bunches in PEP

    International Nuclear Information System (INIS)

    Corbett, W.J.

    1990-12-01

    The near term accelerator physics program for PEP includes experiments in a collider mode with up to 9 bunches in each beam. In this memo, luminosity data from the 3 x 3 configuration is first used to calculate vertical beam size, emittance and tune shift as a function of current. The data is then used to extrapolate to the case with either 6 x 6 or 9 x 9 bunches colliding in PEP. Vertical emittance growth from the separated bunch optics and dispersion at the IP are included in the calculations. The conclusion is that given a 90 mA current drive limitation in PEP, operating with 6 x 6 bunches yields the maximum luminosity. 9 refs., 6 figs

  19. Classical Cepheid luminosities from binary companions

    International Nuclear Information System (INIS)

    Evans, N.R.

    1991-01-01

    Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone. 58 refs

  20. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    CERN Document Server

    Franz, S

    2009-01-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restric...

  1. A Level 1 Tracking Trigger for the CMS Experiment at the LHC Phase 2 Luminosity Upgrade

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The second decade of Large Hadron Collider operations, from about 2020 onwards, envisages a remarkable increase in collider instantaneous luminosity, one order of magnitude above the project one. This luminosity increase presents several challenges to the LHC experiments. The present tracker of the Compact Muon Solenoid experiment must be replaced with a system providing excellent tracking quality at higher luminosities, as well as Tracking Trigger inputs to the existing “Level 0” CMS trigger system at the full 40 MHz bunch-crossing rate. The minimal requirements for a Tracking Trigger would be the capability to confirm the presence of high-pT tracks associated with Calorimeter and/or Muon Level 0 triggers. The ability to provide eective isolation criteria may also be required, and would in any case substantially improve the Trigger performance. Maintaining the data rates generated by Tracking Trigger inputs within a manageable bandwidth requires sensor modules able to locally sparsify the data. Measuring...

  2. High Luminosity LHC Studies with ATLAS

    CERN Document Server

    Duncan, Anna Kathryn; The ATLAS collaboration

    2017-01-01

    The High-Luminosity LHC aims to provide a total integrated luminosity of 3000fb$^{-1}$ from proton-proton collisions at $\\sqrt{s}$ = 14 TeV over the course of $\\sim$ 10 years, reaching instantaneous luminosities of up to L = 7.5 $\\times$ 1034cm$^{-2}s$^{-1}$, corresponding to an average of 200 inelastic p-p collisions per bunch crossing ($\\mu$ = 200). Fast simulation studies have been carried out to evaluate the prospects of various benchmark physics analyses to be performed using the upgraded ATLAS detector with the full HL-LHC dataset. The performance of the upgrade has been estimated in full simulation studies, assuming expected HL-LHC conditions. This talk will focus on the results of physics prospects studies for benchmark analyses involving in particular boosted hadronic objects (e.g. ttbar resonances, HH resonances), and on results of Jet/EtMiss studies of jet performance and pileup mitigation techniques that will be critical in HL-LHC analyses.

  3. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  4. K0 finding efficiencies in increasing luminosities

    International Nuclear Information System (INIS)

    Hassard, J.F.; Margetides S.

    1993-01-01

    In early LHC running it is anticipated that experiments will obtain luminosities of 10 32 cm -2 sec -1 , during which typically only one interaction per event will be obtained. But at higher luminosities, necessary for any Higgs and myriad other searches, experiments will have to deal with up to 50 distinct primary processes. Most will be minimum bias, and easily distinguished in terms of trigger. They can still, of course, confuse analysis of high P T events. When it comes to B events, the confusion even from minimum bias events becomes more acute, since B events are not open-quotes high P T close quotes in this environment. The need for vertex discrimination, particularly in z, is well understood; however, a collateral effect - the increasing difficulty in finding tracks at all - has received little attention. The authors show the distribution of the K 0 in the Pythia process B → J/ψK 0 in the space γ vs. η. Confusion in reconstructing the K 0 is acute for many reasons, not the least of which is the way their pions are boosted forward, and even out of acceptance. Extra luminosity merely increases the problems in finding K 0 's, so it must not be assumed that 10 33 cm -2 sec -1 is ten times better than 10 32 cm -2 sec -1

  5. CHROMOSPHERIC SUNSPOTS IN THE MILLIMETER RANGE AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Kazumasa [National Institute of Information and Communications Technology, Koganei 184-8795, Tokyo (Japan); Koshiishi, Hideki [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Tsukuba 305-8505 (Japan); Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Nozawa, Satoshi; Miyawaki, Shun; Yoneya, Takuro, E-mail: kazumasa.iwai@nict.go.jp [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan)

    2016-01-10

    We investigate the upper chromosphere and the transition region of the sunspot umbra using the radio brightness temperature at 34 GHz (corresponding to 8.8 mm observations) as observed by the Nobeyama Radioheliograph (NoRH). Radio free–free emission in the longer millimeter range is generated around the transition region, and its brightness temperature yields the region's temperature and density distribution. We use the NoRH data at 34 GHz by applying the Steer-CLEAN image synthesis. These data and the analysis method enable us to investigate the chromospheric structures in the longer millimeter range with high spatial resolution and sufficient visibilities. We also perform simultaneous observations of one sunspot using the NoRH and the Nobeyama 45 m telescope operating at 115 GHz. We determine that 115 GHz emission mainly originates from the lower chromosphere while 34 GHz emission mainly originates from the upper chromosphere and transition region. These observational results are consistent with the radio emission characteristics estimated from current atmospheric models of the chromosphere. On the other hand, the observed brightness temperature of the umbral region is almost the same as that of the quiet region. This result is inconsistent with current sunspot models, which predict a considerably higher brightness temperature of the sunspot umbra at 34 GHz. This inconsistency suggests that the temperature of the region at which the 34 GHz radio emission becomes optically thick should be lower than that predicted by the models.

  6. On the evolution of magnetic and velocity fields of an originating sunspot group

    International Nuclear Information System (INIS)

    Bachmann, G.

    1978-01-01

    Magnetographic measurements were made to derive longitudinal magnetic field strengths, line-of-sight velocities and the brightness distribution in an originating sunspot group. These results and photographs of the group are used to compare the evaluation of a relatively simple active region with our present ideas about the evolution of active regions in general. We found that the total magnetic flux increased from about 4 to 20x10 20 Mx over three days. The downward flow of gas in regions with stronger magnetic fields is formed only after the magnetic field has already been bipolar for two days. The maximum velocity always occurred in the main spots of the preceding and the subsequent parts of the sunspot group. Transformation into a flow pattern, which looks like Evershed motion, is observed in the main preceding sunspot after the formation of the penumbra. The generation of new active regions by concentration and amplification of magnetic fields, under the action of supergranulation flow in photospheric layers, cannot play an important role. On the contrary, the behaviour of the active region is in agreement with the conception of rising flux tubes, out of which the gas flows down. Our observations confirm that a magnetic field strength, leading to the generation of sunspots, is attained earlier in the preceding part of the originating active region than in its subsequent part. A series of subflares occurred in the active region, when short-lived small magnetic structure elements emerged in the larger bipolar magnetic field. (author)

  7. Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396

    Czech Academy of Sciences Publication Activity Database

    Verma, M.; Denker, C.; Boehm, F.; Balthasar, H.; Fischer, C.E.; Kuckein, C.; Gonzalez, N.B.; Berkefeld, T.; Collados Vera, M.; Diercke, A.; Feller, A.; Gonzalez Manrique, S. J.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pator Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, Michal; Solanki, S.K.; Soltau, D.; Staude, J.; Strassmeier, K.G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.A.

    2016-01-01

    Roč. 337, č. 10 (2016), s. 1090-1098 ISSN 0004-6337. [Dynamic Sun - Exploring the Many Facets of Solar Eruptive Events. Potsdam, 26.10. 2015 -29.10. 2015 ] Institutional support: RVO:67985815 Keywords : Sun * magnetic fields * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  8. Corona magnetic field over sunspots estimated by m-wave observation

    International Nuclear Information System (INIS)

    Kurihara, Masahiro

    1974-01-01

    The shape of the magnetic field in corona was estimated from the observation of the type I storm occurred in the last decade of August, 1971. It was found from the observation with a 160 MHz interferometer at Mt. Nobeyama that at most three storm sources, which are called radio wave source, were produced. The radio wave sources were fixed above sunspots. The height of the radio wave sources was estimated to be 0.45 R from the photosphere. The sunspots under the radio wave sources can be classified to four sub-groups. Weakening of the magnetic field on the photosphere was found from the reduction of the area of some sub-group. The relation between the activity of type I storm and the intensity of the magnetic field of sunspots is qualitatively suggested. It is considered that the radio wave sources and the sunspots were connected by common magnetic force lines. The probable magnetic field in corona was presumed and is shown in a figure. An interesting point is that the direction of magnetic force lines inclined by about 30 0 outward to the vertical line to the photosphere surface. (Kato, T.)

  9. Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation

    Science.gov (United States)

    Yadav, Rahul; Mathew, Shibu K.

    2018-04-01

    Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.

  10. Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...

    Indian Academy of Sciences (India)

    Key words. Sunspot number—precursor prediction technique—geo- magnetic activity index aa. 1. Introduction. Predictions of solar and geomagnetic activities are important for various purposes, including the operation of low-earth orbiting satellites, operation of power grids on. Earth, and satellite communication systems.

  11. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China); Li, B., E-mail: wooden@escience.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209 (China)

    2016-01-15

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaotic attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.

  12. Fine structure in sunspots. IV. Penumbral grains in speckle reconstucted images

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Michal; Suetterlin, P.

    2001-01-01

    Roč. 380, č. 2 (2001), s. 714-718 ISSN 0004-6361 R&D Projects: GA AV ČR KSK2043105; GA AV ČR IAA3003903 Institutional research plan: CEZ:AV0Z1003909 Keywords : sun * sunspots Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.790, year: 2000

  13. Preliminary results from the orbiting solar observatory 8: Transition-zone dynamics over a sunspot

    International Nuclear Information System (INIS)

    Bruner, E.C. Jr.; Chipman, E.G.; Lites, B.W.; Rottman, G.J.; Shine, R.A.; Athay, R.G.; White, O.R.

    1976-01-01

    The University of Colorado experiment aboard OSO-8 observed the C IV 1548 A line in the bright plume over a sunspot. Transient redshifts at 5 minute intervals were studied, but the expected phenomena associated with simple Alfven wave effects were not observed

  14. Temperature mapping of sunspots and pores from speckle reconstructed three colour photometry

    NARCIS (Netherlands)

    Sütterlin, P.; Wiehr, E.

    1998-01-01

    The two-dimensional temperature distribution in a highly structured sunspot and in two small umbrae is determined from a three-colour photometry in narrow spectral continua. Disturbing influences from the earth’s atmosphere are removed by speckle masking techniques, yielding a spatial resolution

  15. Towards a first detailed reconstruction of sunspot information over the last 150 years

    Science.gov (United States)

    Lefevre, Laure; Clette, Frédéric

    2013-04-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. For such a quantitative use, this unique time-series must be closely monitored for any possible biases and drifts. This is the main objective of the Sunspot Workshops organized jointly by the National Solar Observatory (NSO) and the Royal Observatory of Belgium (ROB) since 2010. Here, we will report about some recent outcomes of past workshops, like diagnostics of scaling errors and their proposed corrections, or the recent disagreement between the sunspot sumber and other solar indices like the 10.7cm radio flux. Our most recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the SOTERIA, TOSCA and SOLID projects, we produced a survey of all existing catalogs providing detailed sunspot information and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs (COMESEP project). These are first steps towards the construction of a multi-parametric time series of multiple sunspot group properties over at least the last 150 years, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The catalog now extends over the last 3 cycles (Lefevre & Clette 2011

  16. IRAS bright galaxy sample. II. The sample and luminosity function

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Neugebauer, G.; Madore, B.F.; Danielson, G.E.; David Dunlap Observatory, Richmond Hill, Canada; Palomar Observatory; California Institute of Technology, Pasadena)

    1987-01-01

    A statistically complete sample of 324 of the brightest infrared galaxies discovered at 60 microns in the IRAS all-sky survey is described. The results show that far-infrared emission is a significant luminosity component in the local universe, representing 25 percent of the luminosity emitted by stars in the same volume. Above 10 to the 11th solar luminosities, the infrared luminous galaxies are the dominant population of objects in the universe, being as numerous as the Seyfert galaxies and more numerous than quasars at higher luminosities. The infrared luminosity appears to be independent of the optical luminosity of galaxies. Most infrared bright galaxies appear to require much of the interstellar matter to be contributing to the observed infrared luminosity. Approximately 60-80 percent of the far-infrared luminosity of the local universe can be attributed, directly or indirectly, to recent or ongoing star formation. 67 references

  17. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  18. On the distinction between density and luminosity evolution

    International Nuclear Information System (INIS)

    Bahcall, J.N.

    1977-01-01

    It is shown that the assumptions of pure density evolution and pure luminosity evolution lead to observable differences in the distribution of sources for all convergent luminosity functions. The proof given is valid for sources with an arbitrary number of intrinisic luminosities (e.g., optical, infrared, and radio) and also holds in the special cases of mixed evolution that are considered. (author)

  19. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-01-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec -2 . Light profiles were initially fitted with a Sersic's R 1/n model, but we found that 205 (∼48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n ∼ 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M R = -23.8 ± 0.6 mag for single profile BCGs and M R = -24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a single = 3.29 ± 0.06 and a double = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (α double = 0.65 ± 0.12) than in single profile BCGs (α single = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at μ ∼ 24 mag arcsec -2 ) is higher in double profile BCGs (e double = 0.30 ± 0.10) than in single profile BCGs (e single = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs. From a

  20. CORNELL: Bunch trains provide higher luminosity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10 32 cm -2 s -1 . In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in

  1. CORNELL: Bunch trains provide higher luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    The new colliding beam technique - ''bunch trains'' - at Cornell's electron-positron Storage Ring (CESR) has led to a new world record for colliding beam luminosity - 3.3 x 10{sup 32} cm{sup -2}s{sup -1}. In the bid to increase reaction rate for any particular process, this luminosity is pushed as high as possible. Once all other luminosityincreasing cards have been played, the only practical way of making a large gain in luminosity is to increase the frequency of bunch-bunch collisions by increasing the number of bunches stored in the ring. However this is not without its own problems: • If the two beams travel the same orbit, the n bunches in one beam collide with the n bunches of the other at 2n points around the ring, and the resulting cumulative nonlinear beam-beam effect (tune shift) severely limits the luminosity attainable at any interaction point. • The destabilizing wakefield effects of bunches on each other increase as the number of bunches increases and the spacing between them decreases. • The synchrotron radiation emitted by the beams becomes a severe problem as the total beam current is raised: to overcome these effects means supplying radiofrequency power to maintain the beam energy, carrying away heat from the vacuum chamber walls, pumping out desorbed gases, and controlling Xray backgrounds in the experiment. In 1979, CESR was designed to run with a single bunch of electrons and a single bunch of positrons circulating on the same orbit and colliding head-on at two diametrically opposite points in the ring, where the CLEO and CUSB experiments were then located. Ideally one could store multiple bunches and solve the multiple collision point problem by using separate rings for the two beams, as in the CERN ISR proton-proton collider and in the original DORIS two-ring configuration at DESY, Hamburg, making the two beams intersect only at the experiments. A less expensive version of this two-ring scheme was accomplished at CESR in 1983, using

  2. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  3. Far-infrared luminosities of Markarian starburst galaxies

    International Nuclear Information System (INIS)

    Deutsch, L.K.; Willner, S.P.

    1986-01-01

    Total far-infrared luminosities have been calculated from measured IRAS fluxes for a sample of optically selected galaxies and for a comparison sample of spiral galaxies. The starburst galaxies are notably more luminous in the far-infrared and have higher dust color temperatures than the comparison galaxies. The far-infrared light dominates the total luminosity of the starburst galaxies, and a significant amount of dust must be present. The far-infrared emission correlates well with total blue luminosity, nuclear blue luminosity, and nuclear H-alpha luminosity. The dust that produces the far-infrared light is probably heated predominantly by B rather than by O stars. 30 references

  4. Luminosity function of the brightest galaxies in the IRAS survey

    International Nuclear Information System (INIS)

    Soifer, B.T.; Sanders, D.B.; Madore, B.F.; Neugebauer, G.; Persson, C.J.; Persson, S.E.; Rice, W.L.

    1987-01-01

    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

  5. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    CERN Document Server

    Gonella, Laura; Desch, Klaus

    2013-11-11

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are dis...

  6. Operation of the ATLAS end-cap calorimeters at sLHC luminosities, an experimental study

    CERN Document Server

    Ferencei, J; The ATLAS collaboration

    2009-01-01

    The expected increase of luminosity at sLHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters (EMEC, HEC, FCAL) in the endcap, respectively forward region. Small modules of each type of calorimeter have been built. The layout and the components used are very close to the ones used in the construction of the ATLAS calorimeter. The goal is to simulate in the high intensity proton beam at IHEP /Protvino the particle impact as expected for ATLAS in sLHC. Depending on the position in pseudorapidity |η|, each forward calorimeter has to cope with a different particle and energy flux. Placing absorber elements in-between the various small calorimeter modules, the particle and energy flux as expected in ATLAS later - given the variation due to |η| and longitudinal position - can be simulated very well.

  7. Selected issues for the LHC luminosity upgrade

    International Nuclear Information System (INIS)

    Laface, E.

    2008-12-01

    The Large Hadron Collider started its operations on September 10. 2008. In a realistic forecast it is supposed to demonstrate (or confute) the existence of the Higgs boson for the year 2014. After this date the physics of rare events will be explored more in details and an upgrade of the luminosity can make an important difference in the program of experiments at CERN. This thesis proposes several ideas to increase the luminosity of ATLAS and CMS experiments and the acceptance of TOTEM experiment. The main object of study is the Interaction Region, that consists in the set of magnets in charge to provide the final beam focalization for the collisions. The Interaction Region is studied with the methods of beam optics and beam dynamics to design new layouts for the upgrade. These layouts are also explored from the point of view of integrability in the existing experiments developing the analysis of energy deposition and misalignment tolerances. This study was performed with the use of analytical methods for the general considerations and numerical methods for the parameters optimization. (author)

  8. LHC Report: a break from luminosity production

    CERN Multimedia

    Jan Uythoven for the LHC team

    2016-01-01

    The LHC has been in great shape over the last few months, delivering over 20 fb-1 of integrated luminosity before the ICHEP conference in Chicago at the beginning of August. This is not much below the 25 fb-1 target for the whole of 2016. With this success in mind, a break in luminosity production was taken for six days, starting on 26 July 2016, for a machine development period.   This year, 20 days of the LHC schedule are devoted to machine development with the aim of carrying out detailed studies of the accelerator. The 20 days are divided over five different periods, called MD blocks. They can be seen as an investment in the future, so the machine can produce collisions more efficiently in the months and years to come. A detailed programme is worked out for each MD block, whereby different specialist teams are assigned periods of four to twelve hours, depending on the topic, to perform their previously approved tests. The MD program continues 24 hours per day, as in normal physics operation. One...

  9. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  10. High Luminosity LHC: challenges and plans

    Science.gov (United States)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  11. High luminosity polarized proton collisions at RHIC

    International Nuclear Information System (INIS)

    Roser, T.

    2001-01-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) provides the unique opportunity to collide polarized proton beams at a center-of-mass energy of up to 500 GeV and luminosities of up to 2 x 10 32 cm -2 s -1 . Such high luminosity and high energy polarized proton collisions will open up the possibility of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. After successful operation of RHIC with gold beams polarized protons from the AGS have been successfully injected into RHIC and accelerated using a full Siberian snakes built from four superconducting helical dipoles. A new high energy proton polarimeter was also successfully commissioned. Operation with two snakes per RHIC ring is planned for next year

  12. High Luminosity LHC: Challenges and plans

    International Nuclear Information System (INIS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.

    2016-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3 Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  13. LHC Report: A new luminosity record

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    After about one month of operation, the LHC has already accumulated an integrated luminosity of 28 pb-1, which corresponds to over 50% of the total delivered to the experiments in 2010. This impressive start to the LHC run in 2011 bodes well for the rest of year.   Following careful collimator set-up and validation, the first phase of beam commissioning 2011 has come to an end. The first stable beams were declared on Sunday 13 March with a moderate 3 bunches per beam and an initial luminosity of 1.6 × 1030 cm-2s-1. Machine protection tests continued during the following week as the commissioning team made absolutely sure that all critical systems (beam dumps, beam interlock system, etc.) were functioning properly. When these tests had finished, the way was opened to increased intensity and the LHC quickly moved through the first part of its planned, staged intensity increase. Fills with increasing numbers of bunches were delivered to the experiments, culminating in a fill with 200...

  14. The Sunspot Number and beyond : reconstructing detailed solar information over centuries

    Science.gov (United States)

    Lefevre, L.

    2014-12-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. Because of its importance, this unique time-series must be closely monitored for any possible biases and drifts. Here, we report about recent disagreements between solar indices, for example the sunspot sumber and the 10.7cm radio flux. Recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the TOSCA (www.cost-tosca.eu/) and SOLID (projects.pmodwrc.ch/solid/) projects, we produced a survey of all existing catalogs providing detailed sunspot information (Lefevre & Clette, 2014:10.1007/s11207-012-0184-5) and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs. These are first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The preliminary version catalog now extends over the last 150 years. It makes use of data from DPD (http://fenyi.solarobs.unideb.hu/DPD/index.html), from the Uccle Solar Equatorial Table (USET:http://sidc.oma.be/uset/) operated by the Royal Obeservatory of Belgium, the Greenwich

  15. A model of a sunspot chromosphere based on OSO 8 observations

    Science.gov (United States)

    Lites, B. W.; Skumanich, A.

    1982-01-01

    OSO 8 spectrometer observations of the H I, Mg II, and Ca II resonance lines of a large quiet sunspot during November 16-17, 1975, along with a C IV line of that event obtained by a ground-based spectrometer, are analyzed together with near-simultaneous ground-based Stokes measurements to yield an umbral chromosphere and transition region model. Features of this model include a chromosphere that is effectively thin in the resonance lines of H I and Mg II, while being saturated in Ca II, and an upper chromospheric structure similar to that of quiet-sun models. The similarity of the upper chromosphere of the sunspot umbra to the quiet-sun chromosphere suggests that the intense magnetic field plays only a passive role in the chromospheric heating mechanism, and the observations cited indicate that solar-type stars with large areas of ordered magnetic flux would not necessarily exhibit extremely active chromosphere.

  16. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    Science.gov (United States)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  17. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  18. LIGHT and LUMINOSITY, from Einstein to LHC

    CERN Multimedia

    CERN. Geneva; Prof. ROSSI, Lucio

    2015-01-01

    After an introduction on the concept of light in physics, this talk will focus on CERN’s High Luminosity LHC project, aiming at extending the discovery potential of CERN’s flagship accelerator by increasing its “luminosity” (ie the number of particles that can be squeezed inside the accelerator to maximize the number of collisions). To achieve this objective, many new technologies are being developed at CERN and many collaborating institutes worldwide, especially in the field of superconductivity. Lucio Rossi, the main speaker, is the head of the HL-LHC project, based at CERN. Giorgio Apollinari, Director for the LHC Accelerator Research Program (LARP) will speak through a videoconference from Fermilab (USA). The event is webcast live and will be followed by Fermilab and other institutes in the USA.

  19. The chromosphere above a δ-sunspot in the presence of fan-shaped jets

    Science.gov (United States)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime

    2018-01-01

    Context. Delta-sunspots are known to be favourable locations for fast and energetic events like flares and coronal mass ejections. The photosphere of this sunspot type has been thoroughly investigated in the past three decades. The atmospheric conditions in the chromosphere are not as well known, however. Aims: This study is focused on the chromosphere of a δ-sunspot that harbours a series of fan-shaped jets in its penumbra. The aim of this study is to establish the magnetic field topology and the temperature distribution in the presence of jets in the photosphere and the chromosphere. Methods: We use data from the Swedish 1m Solar Telescope (SST) and the Solar Dynamics Observatory. We invert the spectropolarimetric Fe I 6302 Å and Ca II 8542 Å data from the SST using the non-LTE inversion code NICOLE to estimate the magnetic field configuration, temperature, and velocity structure in the chromosphere. Results: A loop-like magnetic structure is observed to emerge in the penumbra of the sunspot. The jets are launched from this structure. Magnetic reconnection between this emerging field and the pre-existing vertical field is suggested by hot plasma patches on the interface between the two fields. The height at which the reconnection takes place is located between log τ500 = -2 and log τ500 = -3. The magnetic field vector and the atmospheric temperature maps show a stationary configuration during the whole observation. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  20. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    Science.gov (United States)

    2014-03-27

    initiating the java program scripted to communicate with the SOON telescope used for continual observation of the sun. The SOON telescope is used at...proximity of spots refers to the angular separation between different spots that could make up a group. The area of each sunspot means the total area...degrees and the different magnetic polarities of each spot being considered. For a spot pair that has the same polarity and small angular separation

  1. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Nagovitsyn, Yury A. [Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg 196140 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Chapman, Gary A.; Cookson, Angela M. [San Fernando Observatory, Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Watson, Fraser T. [National Solar Observatory, Tucson, AZ 85719 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizes the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)

  2. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Robbrecht, E.

    2011-01-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  3. SOLAR CYCLE 24: CURIOUS CHANGES IN THE RELATIVE NUMBERS OF SUNSPOT GROUP TYPES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Ozguc, A.; Rozelot, J. P.

    2014-01-01

    Here, we analyze different sunspot group (SG) behaviors from the points of view of both the sunspot counts (SSCs) and the number of SGs, in four categories, for the time period of 1982 January-2014 May. These categories include data from simple (A and B), medium (C), large (D, E, and F), and decaying (H) SGs. We investigate temporal variations of all data sets used in this study and find the following results. (1) There is a very significant decrease in the large groups' SSCs and the number of SGs in solar cycle 24 (cycle 24) compared to cycles 21-23. (2) There is no strong variation in the decaying groups' data sets for the entire investigated time interval. (3) Medium group data show a gradual decrease for the last three cycles. (4) A significant decrease occurred in the small groups during solar cycle 23, while no strong changes show in the current cycle (cycle 24) compared to the previous ones. We confirm that the temporal behavior of all categories is quite different from cycle to cycle and it is especially flagrant in solar cycle 24. Thus, we argue that the reduced absolute number of the large SGs is largely, if not solely, responsible for the weak cycle 24. These results might be important for long-term space weather predictions to understand the rate of formation of different groups of sunspots during a solar cycle and the possible consequences for the long-term geomagnetic activity

  4. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-01-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 ± 1.3%, emissivity reduction 8.2 ± 1.4%, and local suppression 68.5 ± 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10 -5 rad s -1 .

  5. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  6. The Glare Effect Test and the Impact of Age on Luminosity Thresholds

    Directory of Open Access Journals (Sweden)

    Alessio Facchin

    2017-06-01

    Full Text Available The glare effect (GE is an illusion in which a white region appears self-luminous when surrounded by linearly decreasing luminance ramps. It has been shown that the magnitude of the luminosity effect can be modulated by manipulating the luminance range of the gradients. In the present study we tested the thresholds for the GE on two groups of adults: young (20–30 years old and elderly (60–75 years old. Purpose of our perspective study was to test the possibility of transforming the GE into a test that could easily measure thresholds for luminosity and discomfort glare. The Glare Effect Test (GET consisted in 101 printed cards that differed from each other for the range of luminance ramps. Participants were assessed with GET and a battery of visual tests: visual acuity, contrast sensitivity, illusion of length perception, and Ishihara test. Specifically in the GET, participants were required to classify cards on the basis of two reference cards (solid black-no gradient; full range black to white gradient. PSEs of the GE show no correlation with the other visual tests, revealing a divergent validity. A significant difference between young and elderly was found: contrary to our original expectations, luminosity thresholds of GE for elderly were higher than those for young, suggesting a non-direct relationship between luminosity perception and discomfort glare.

  7. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Denney, Kelly D.; Vestergaard, Marianne; Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W.; Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Li Weidong; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Treu, Tommaso; Woo, Jong-Hak

    2013-01-01

    We present an updated and revised analysis of the relationship between the Hβ broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the Hβ time lag, which is assumed to yield the average Hβ BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R BLR -L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of α= 0.533 +0.035 -0.033 , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 ± 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R BLR -L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  8. THE LOW-LUMINOSITY END OF THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Denney, Kelly D.; Vestergaard, Marianne [Dark Cosmology Center, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Grier, Catherine J.; Peterson, Bradley M.; De Rosa, Gisella; Pogge, Richard W. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bennert, Vardha N. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Filippenko, Alexei V.; Li Weidong [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gates, Elinor L. [University of California Observatories/Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Peyton Hall - Ivy Lane, Princeton, NJ 08544 (United States); Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Treu, Tommaso [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Woo, Jong-Hak, E-mail: bentz@chara.gsu.edu [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)

    2013-04-20

    We present an updated and revised analysis of the relationship between the H{beta} broad-line region (BLR) radius and the luminosity of the active galactic nucleus (AGN). Specifically, we have carried out two-dimensional surface brightness decompositions of the host galaxies of nine new AGNs imaged with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create ''AGN-free'' images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new reverberation-mapping measurements of the H{beta} time lag, which is assumed to yield the average H{beta} BLR radius. The final sample includes 41 AGNs covering four orders of magnitude in luminosity. The additions and updates incorporated here primarily affect the low-luminosity end of the R{sub BLR}-L relationship. The best fit to the relationship using a Bayesian analysis finds a slope of {alpha}= 0.533{sup +0.035}{sub -0.033}, consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy of their reported time lags. The scatter around the relationship is found to be 0.19 {+-} 0.02 dex, but would be decreased to 0.13 dex by the removal of these two suspect measurements. A large fraction of the remaining scatter in the relationship is likely due to the inaccurate distances to the AGN host galaxies. Our results help support the possibility that the R{sub BLR}-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts.

  9. Detector Performance and Upgrade Plans of the Pixel Luminosity Telescope for Online per-Bunch Luminosity Measurement at CMS

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated system for luminosity measurement at the CMS experiment using silicon pixel sensors. It was installed during LS1 and has been providing luminosity measurements throughout Run 2. The online bunch-by-bunch luminosity measurement employs the "fast-or" capability of the pixel readout chip (PSI46) to quickly identify likely tracks at the full 40MHz interaction rate. In addition, the full pixel information is read out at a lower rate, allowing for more detailed offline analysis. In this talk, we will present details of the commissioning, performance and operational history of the currently installed hardware and upgrade plans for LS2.

  10. Intrinsic luminosities of the Jovian planets

    International Nuclear Information System (INIS)

    Hubbard, W.B.

    1980-01-01

    We review available data and theories on the size and nature of interior power sources in the Jovian planets. Broad band infrared measurements indicate that Jupiter and Saturn have interior heat fluxes about 150 and 50 times larger, respectively, than the terrestrial value. While Neptune has a modest heat flux (approx.5 times terrestrial), it is clearly detected by earth-based measurements. Only Uranus seems to lack a detectable interior heat flow. Various models, ranging from simple cooling to gravitational layering to radioactivity, are discussed. Current evidence seems to favor a cooling model in which the escape of heat is regulated by the atmosphere. This model seems capable of explaining phenomena such as the uniformity of effective temperature over Jupiter's surface and the different emission rates of Uranus and Neptune. In such a model the heat radiated from the atmosphere may derived from depletion of a thermal reservoir in the interior, or it may derive from separation of chemical elements during formation of a core. Calculations indicate that in the earlier stages of cooling, Jupiter and Saturn may have more homogeneous abundances of hydrogen and helium and radiate energy derived from simple cooling. At a subsequent phase (which may be later than the present time), hydrogen and helium will separate and supply grativational energy. Either model is consistent with a hot, high-luminosity origin for the Jovian Planets

  11. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  12. ATLAS gets its own luminosity detector

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    During the winter shutdown, the ATLAS collaboration has completed the installation of ALFA, the detector system that aims at the LHC absolute luminosity at Point 1 analysing the elastic scattering of protons at small angles.   Upper and lower ALFA Roman Pots as installed in sector 8-1 of the LHC tunnel, 240 metres from the ATLAS Interaction Point. The detectors of the ALFA system are installed at ± 240 meters from the interaction point 1, on either side of the ATLAS detector. The whole system consists of four stations, two on each side of the interaction point. Each station is equipped with two Roman Pots; each pot – that is separated from the vacuum of the accelerator by a thin window but is connected with bellows to the beam-pipe – can be moved very close to the beam. “The Roman Pot technique has been used successfully in the past for the measurement of elastic scattering very close to the circulating beam,” says Patrick Fassn...

  13. Luminosity Tuning at the Large Hadron Collider

    CERN Document Server

    Wittmer, W

    2006-01-01

    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)i...

  14. Higher luminosities via alternative incident channels

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1985-04-01

    We show that PEP provides some unique opportunities for one and two photon physics with real photons as well as for QCD studies with internal targets. Photon beams would avoid the major limitation on the luminosity of present machines and could provide PEP an ideal b-physics factory producing the full range of J/sub c//sup PC/ and J/sub b//sup PC/ states that may not be observable otherwise as well as allow a whole new class of ''missing-mass'' experiments. These latter particles are the pseudo-Goldstone bosons and their supersymmetric counterparts. These and related possibilities like a single-pass, ''free electron laser'' facility or even synchrotron radiation beam lines all favor a mini-maxi configuration for the low-beta insertions in PEP. This allows more diverse experiments without excluding any ongoing experimental programs. Such possibilities have interesting implications for a number of proposed facilities including the SSC. Some systematic machine physics studies over a range of energies are suggested. 24 refs., 6 figs

  15. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  16. Design of the new ATLAS Inner Tracker for the High Luminosity LHC

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2017-01-01

    In the high luminosity era of the Large Hadron Collider (HL-LHC), the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with this high rate, the ATLAS Inner Detector is being completely redesigned, and will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems. The components of the Inner Tracker will have to be resistant to the large radiation dose from the particles produced in HL-LHC collisions, and have low mass and sufficient sensor granularity to ensure a good tracking performance over the pseudorapidity range |η|<4. In this talk, first the challenges and second possible solutions to these challenges will be discussed, i.e. designs under consideration for the pixel and strip modules, and the mechanics of local supports in the barrel and endcaps.

  17. Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

    CERN Document Server

    Vickey, Trevor; The ATLAS collaboration

    2017-01-01

    Abstract: In the high luminosity era of the Large Hadron Collider (HL-LHC), the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with this high rate, the ATLAS Inner Detector is being completely redesigned, and will be replaced by an all-silicon system, the Inner Tracker (ITk). This new tracker will have both silicon pixel and silicon strip sub-systems. The components of the Inner Tracker will have to be resistant to the large radiation dose from the particles produced in HL-LHC collisions, and have low mass and sufficient sensor granularity to ensure a good tracking performance over the pseudorapidity range |η|<4. In this talk, first the challenges and second possible solutions to these challenges will be discussed, i.e. designs under consideration for the pixel and strip modules, and the mechanics of local supports in the barrel and endcaps.

  18. Overview of a high luminosity μ+μ- collider

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of a 4 TeV high luminosity μ + μ - collider, and of a 0.5 TeV lower luminosity demonstration machine. The authors discuss the various systems in such muon colliders

  19. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  20. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    Science.gov (United States)

    Gehrz, Robert D.; Humphreys, R. M.; Jones, T. J.

    2006-12-01

    The luminosity of the famous red supergiant VY CMa ( L = 4 5 x 105 L ) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Implications for its location on the HR Diagram and its apparent size are discussed.

  1. Physics at high luminosity muon colliders and a facility overview

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Physics potentials at future colliders including high luminosity μ + μ - colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included

  2. High Luminosity LHC (HL-LHC) general infographics

    CERN Multimedia

    Landua, Fabienne

    2016-01-01

    The High-Luminosity LHC, which is expected to be operational after 2025, will increase the LHC’s luminosity by a factor of 10. To achieve this major upgrade, several technologies, some of which are completely innovative, are being developed.

  3. SOHO sees right through the Sun, and finds sunspots on the far side

    Science.gov (United States)

    2000-03-01

    The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space

  4. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2017-01-01

    Full Text Available The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.

  5. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    Science.gov (United States)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  6. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  7. Possible relationship between metal abundance and luminosity for disk galaxies

    International Nuclear Information System (INIS)

    Bothun, G.D.; Romanishin, W.; Strom, S.E.; Strom, K.M.

    1984-01-01

    Near-infrared colors have been measured for a sample of 31 late-type galaxies in the Pegasus I and Pisces clusters; system luminosities in the sample cover the range -19< M/sub H/<-23.5. The color index (J-K) correlates strongly with the absolute H magnitude; lower-luminosity systems have bluer colors. These observations are consistent with the assumption that the mean metal abundance of the old disk population decreases systematically with luminosity. The systematic variation of (B-H) with absolute H magnitude reported recently by Tully et al. derives in part from this proposed systematic change of metallicity with luminosity. However, one must still posit a relative increase in the number of newly formed stars and/or a systematic smaller age for lower-luminosity disks in order to fully explain the observed (B-H), H relation

  8. On Solar Granulations, Limb Darkening, and Sunspots: Brief Insights in Remembrance of Father Angelo Secchi

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Father Angelo Secchi used the existence of solar granulation as a central line of rea- soning when he advanced that the Sun was a gaseous body with a photosphere contain- ing incandescent particulate matter (Secchi A. Sulla Struttura della Fotosfera Solare. Bullettino Meteorologico dell’Osservatorio del Collegio Romano , 30 November 1864, v.3(11, 1–3. Secchi saw the granules as condensed matter emitting the photospheric spectrum, while the darkened intergranular lanes conveyed the presence of a gaseous solar interior. Secchi also considered the nature of sunspots and limb darkening. In the context of modern solar models, opacity arguments currently account for the emis- sive properties of the photosphere. Optical depth is thought to explain limb darkening. Both temperature variations and magnetic fields are invoked to justify the weakened emissivities of sunspots, even though the presence of static magnetic fields in materi- als is not usually associated with modified emissivity. Conversely, within the context of a liquid metallic hydrogen solar model, the appearance of granules, limb darkening, and sunspots can be elegantly understood through the varying directional emissivity of condensed matter. A single explanation is applicable to all three phenomena. Granular contrast can be directly associated with the generation of limb darkening. Depending on size, granules can be analyzed by considering Kolmogoroff’s formulations and B ́ enard convection, respectively, both of which were observed using incompressible liquids, not gases. Granules follow the 2-dimensional space filling laws of Aboav-Weiner and Lewis. Their adherence to these structural laws provides supportive evidence that the granular surface of the Sun represents elements which can only be constructed from condensed matter. A gaseous Sun cannot be confined to a 2-dimensional framework. Mesogranules, supergranules, and giant cells constitute additional entities which further

  9. The Formation of a Sunspot Penumbra Sector in Active Region NOAA 12574

    Science.gov (United States)

    Li, Qiaoling; Yan, Xiaoli; Wang, Jincheng; Kong, DeFang; Xue, Zhike; Yang, Liheng; Cao, Wenda

    2018-04-01

    We present a particular case of the formation of a penumbra sector around a developing sunspot in the active region NOAA 12574 on 2016 August 11 by using the high-resolution data observed by the New Solar Telescope at the Big Bear Solar Observatory and the data acquired by the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory satellite. Before the new penumbra sector formed, the developing sunspot already had two umbrae with some penumbral filaments. The penumbra sector gradually formed at the junction of two umbrae. We found that the formation of the penumbra sector can be divided into two stages. First, during the initial stage of penumbral formation, the region where the penumbra sector formed always appeared blueshifted in a Dopplergram. The area, mean transverse magnetic field strength, and total magnetic flux of the umbra and penumbra sector all increased with time. The initial penumbral formation was associated with magnetic emergence. Second, when the penumbra sector appeared, the magnetic flux and area of the penumbra sector increased after the umbra’s magnetic flux and area decreased. These results indicate that the umbra provided magnetic flux for penumbral development after the penumbra sector appeared. We also found that the newly formed penumbra sector was associated with sunspot rotation. Based on these findings, we suggest that the penumbra sector was the result of the emerging flux that was trapped in the photosphere at the initial stage of penumbral formation, and when the rudimentary penumbra formed, the penumbra sector developed at the cost of the umbra.

  10. LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt [Departamento de Física, ECT, Instituto de Ciências da Terra, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora (Portugal)

    2015-05-10

    The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by the turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.

  11. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    International Nuclear Information System (INIS)

    McClintock, B. H.; Norton, A. A.

    2016-01-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations

  12. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Yang, L. H. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Priest, E. R. [Mathematics Institute, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Guo, Q. L., E-mail: yanxl@ynao.ac.cn [College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.

  13. Relation of flare activity to the approach and separation of sunspots in an active region and to its magnetic properties

    International Nuclear Information System (INIS)

    Markova, E.

    1978-01-01

    The relation between the flare activity of active regions within the scope of a large complex and the magnetic gradients of these active regions and their daily variations is investigated in the interval of the exceptionally high flare activity occurring in June 1970. New indices, characterizing the active region, were defined, e.g., the instantaneous sunspot-area density and the instantaneous sunspot-number density. These indices were determined on the basis of measurements of the surface containing all sunspots of the complex of active regions enclosed by an envelope. An attempt was made to substitute the surface in the relation for the individual indices by distance. The daily variations of these indices were again compared with the flare activity and some mutual relations were derived. (author)

  14. Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day

    Science.gov (United States)

    Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.

    2018-02-01

    It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (r = 0.60, p r = -0.30, p = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.

  15. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  16. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  17. Seeking the epoch of maximum luminosity for dusty quasars

    International Nuclear Information System (INIS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-01-01

    Infrared luminosities νL ν (7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 luminosity does not show a maximum at any redshift z < 5, reaching a plateau for z ≳ 3 with maximum luminosity νL ν (7.8 μm) ≳ 10 47 erg s –1 ; luminosity functions show one quasar Gpc –3 having νL ν (7.8 μm) > 10 46.6 erg s –1 for all 2 luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν (0.25 μm), have the largest values of the ratio νL ν (0.25 μm)/νL ν (7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  18. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    Science.gov (United States)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  19. On the statistical aspects of sunspot number time series and its association with the summer-monsoon rainfall over India

    Science.gov (United States)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.

  20. The spectrometer system for measuring ZEUS luminosity at HERA

    International Nuclear Information System (INIS)

    Helbich, M.; Ning, Y.; Paganis, S.; Ren, Z.; Schmidke, W.B.; Sciulli, F.; Schneekloth, U.; Buettner, C.; Caldwell, A.; Sutiak, J.

    2006-01-01

    The upgrade of the HERA accelerator has provided much increased collider luminosity. In turn, the improvements have necessitated a new design for the ZEUS luminosity measurements. The intense synchrotron radiation field, as well as the high probability of a bremsstrahlung photon in each bunch crossing, posed new experimental constraints. In this report, we describe how these challenges were met with the ZEUS luminosity spectrometer system. The design, testing and commissioning of the device are described, and the results from the initial operational experience are reported

  1. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  2. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  3. Luminosity Optimization With Offset, Crossing Angle, and Distortion

    CERN Document Server

    Wu, Juhao

    2005-01-01

    In a linear collider, sources of beam jitter due to kicker noise, quadrupole vibration and long-range transverse wakefields will lead to beam offsets and tilts at the Intersection Point (IP). In addition, sources of emittance dilution such as short-range transverse wakefields or dispersive errors will lead to internal beam distortions. When the IP disruption parameter is large, these beam imperfections will be amplified by a single bunch kink instability which will lead to luminosity loss. In this paper, we study the luminosity loss and then the optimization required to cancel the luminosity loss first analytically and then with simulation.

  4. The miniature optical transmitter and transceiver for the High-Luminosity LHC (HL-LHC) experiments

    International Nuclear Information System (INIS)

    Liu, C; Zhao, X; Deng, B; Gong, D; Guo, D; Li, X; Liang, F; Liu, G; Liu, T; Xiang, A C; Ye, J; Chen, J; Huang, D; Hou, S; Teng, P-K

    2013-01-01

    We present the design and test results of the Miniature optical Transmitter (MTx) and Transceiver (MTRx) for the high luminosity LHC (HL-LHC) experiments. MTx and MTRx are Transmitter Optical Subassembly (TOSA) and Receiver Optical Subassembly (ROSA) based. There are two major developments: the Vertical Cavity Surface Emitting Laser (VCSEL) driver ASIC LOCld and the mechanical latch that provides the connection to fibers. In this paper, we concentrate on the justification of this work, the design of the latch and the test results of these two modules with a Commercial Off-The-Shelf (COTS) VCSEL driver

  5. WAVES AS THE SOURCE OF APPARENT TWISTING MOTIONS IN SUNSPOT PENUMBRAE

    International Nuclear Information System (INIS)

    Bharti, L.; Cameron, R. H.; Hirzberger, J.; Solanki, S. K.; Rempel, M.

    2012-01-01

    The motion of dark striations across bright filaments in a sunspot penumbra has become an important new diagnostic of convective gas flows in penumbral filaments. The nature of these striations has, however, remained unclear. Here, we present an analysis of small-scale motions in penumbral filaments in both simulations and observations. The simulations, when viewed from above, show fine structure with dark lanes running outward from the dark core of the penumbral filaments. The dark lanes either occur preferentially on one side or alternate between both sides of the filament. We identify this fine structure with transverse (kink) oscillations of the filament, corresponding to a sideways swaying of the filament. These oscillations have periods in the range of 5-7 minutes and propagate outward and downward along the filament. Similar features are found in observed G-band intensity time series of penumbral filaments in a sunspot located near disk center obtained by the Broadband Filter Imager on board the Hinode. We also find that some filaments show dark striations moving to both sides of the filaments. Based on the agreement between simulations and observations we conclude that the motions of these striations are caused by transverse oscillations of the underlying bright filaments.

  6. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    Science.gov (United States)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  7. Sunspots and the physics of magnetic flux tubes in the sun

    International Nuclear Information System (INIS)

    Ballegooijen, A.A. van.

    1982-01-01

    This thesis refers to the sub-surface structure of the solar magnetic field. Following an introductory chapter, chapter II presents an analysis of spectroscopic observations of a sunspot at infrared wavelengths and models of the temperature stratification in the sunspot atmosphere are derived. The main subject of this thesis concerns the structure of the magnetic field deep down below the stellar surface, near the base of the convective envelope. In Chapter III the stability of toroidal flux tubes to wave-like perturbations is discussed, assuming that the tubes are neutrally buoyant. A model is proposed in which the toroidal flux tubes are neutrally buoyant and located in a stably stratified layer just below the base of the convective zone. On the basis of some simple assumptions for the temperature stratification in this storage layer the author considers in Chapter IV the properties of the vertical flux tubes in the convective zone. The adiabatic flux model cannot satisfactorily be applied to the simplified model of the storage layer, so that the problem of magnetic flux storage is reconsidered in Chapter V. A new model of the temperature stratification at the interface of convective zone and radiative interior of the sun is described. Finally, in Chapter VI, the stability of toroidal flux tubes in a differentially rotating star are discussed. It is demonstrated that for realistic values of the magnetic field strength, rotation has a strong effect on the stability of the toroidal flux tubes. (C.F.)

  8. NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.; Fu, Hui; Mou, Chaozhou; Xie, Haixia, E-mail: z.huang@sdu.edu.cn, E-mail: xld@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209 Shandong (China)

    2016-10-01

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, four events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.

  9. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  10. Solar wind and coronal structure near sunspot minimum: Pioneer and SMM observations from 1985-1987

    International Nuclear Information System (INIS)

    Mihalov, J.D.; Barnes, A.; Hundhausen, A.J.; Smith, E.J.

    1990-01-01

    The solar wind speeds observed in the outer heliosphere (20 to 40 AU heliocentric distance, approximately) by Pioneers 10 an 11, and at a heliocentric distance of 0.7 AU by the Pioneer Venus spacecraft, reveal a complex set of changes in the years near the recent sunspot minimum, 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations made from the Solar Maximum Mission spacecraft during the same epoch show a systematic variation in coronal structure and (by implication) the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet (or with heliomagnetic latitude), and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum. The authors confirm here that this basic organization of the solar wind speed persists in the outer heliosphere with an orientation of the neutral sheet consistent with that inferred at a heliocentric distance of a few solar radii, from the coronal observations

  11. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    Science.gov (United States)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  12. Sunspots and the physics of magnetic flux tubes. II. Aerodynamic drag

    International Nuclear Information System (INIS)

    Parker, E.N.

    1979-01-01

    The aerodynamic drag on a slender flux tube stretched vertically across a convective cell may push the flux tube into the updrafts or into the downdrafts, depending on the density stratification of the convecting fluid and the asymmetry of the fluid motions. The drag is approximately proportional to the local kinetic energy density, so the density stratification weights the drag in favor of the upper layers where the density is low, tending to push the vertical tube into the downdrafts. If, however, the horizontal motions in the convective cell are concentrated toward the bottom of the cell, they may dominate over the upper layers, pushing the tube into the updrafts. In the simple, idealized circumstance of a vertical tube extending across a fluid of uniform density in a convective cell that is symmetric about its midplane, the net aerodynamic drag vanishes in lowest order. The higher order contributions, including the deflection of the tube, then provide a nonvanishing force pushing the tube into a stable equilibrium midway between the updraft and the downdraft.It is pointed out that in the strongly stratified convective zone of the Sun, a downdraft herds flux tubes together into a cluster, while an updraft disperses them. To account for the observed strong cohesion of the cluster of flux tubes that make up a sunspot, we propose a downdraft of the order 2 km s - 1 through the cluster of seprate tubes beneath the sunspot

  13. Initial phase of the development of sunspot groups and their forecast

    International Nuclear Information System (INIS)

    Berlyand, B.O.; Burov, V.A.; Stepanyan, N.N.

    1979-01-01

    Some characteristics of the initial phase of sunspot groups and their forecast have been considered. Experimental data on 340 sunspot groups were obtained in 1967-1969. It was found that oscillations of the magnetic flux in the groups indicate the possibility of the existence of typical periods (2 and 4 days) of the magnetic field development. Most of the groups appears in young plages. The probability of the protons injection from the young groups is very small. The typical time of the development of the proton centre is 10-30 days. The characteristics of the group on the first day of its existence are vaguely connected with the lifetime of the group. On the second and third days the magnetic characteristics (the summary magnetic flux and the number of the unipolar regions) have the highest correlation coefficient (approximately 70%) with the lifetime of the group. The problem of the group lifetime forecast was being solved with the pattern recognition technique. On the base of the second day observation of the existence of the group verification of the received forecast 14% exceeds the verification of the climatological forecast. The forecast of the Zurich class with the same technique is effective beginning with the fifth day of the group existence and the forecast of the flare activity of the group since the day of its appearance. The exceeding of the verification as compared with the climatological forecasts in these problems is 10% and 8% accordingly

  14. LOW CO LUMINOSITIES IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Schruba, Andreas; Walter, Fabian; Sandstrom, Karin; Leroy, Adam K.; Bigiel, Frank; Brinks, Elias; De Blok, W. J. G.; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl; Usero, Antonio; Weiss, Axel; Wiesemeyer, Helmut

    2012-01-01

    We present maps of 12 COJ = 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13'' angular resolution, ∼250 pc at our average distance of D = 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarf galaxies outside the Local Group ranging from individual lines of sight, stacking over IR-bright regions of embedded star formation, and stacking over the entire galaxy. We detect five galaxies in CO with total CO luminosities of L CO2-1 = (3-28) × 10 6 K km s –1 pc 2 . The other 11 galaxies remain undetected in CO even in the stacked images and have L CO2-1 ∼ 6 K km s –1 pc 2 . We combine our sample of dwarf galaxies with a large sample of spiral galaxies from the literature to study scaling relations of L CO with M B and metallicity. We find that dwarf galaxies with metallicities of Z ≈ 1/2-1/10 Z ☉ have L CO of 2-4 orders of magnitude smaller than massive spiral galaxies and that their L CO per unit L B is 1-2 orders of magnitude smaller. A comparison with tracers of star formation (FUV and 24 μm) shows that L CO per unit star formation rate (SFR) is 1-2 orders of magnitude smaller in dwarf galaxies. One possible interpretation is that dwarf galaxies form stars much more efficiently: we argue that the low L CO /SFR ratio is due to the fact that the CO-to-H 2 conversion factor, α CO , changes significantly in low-metallicity environments. Assuming that a constant H 2 depletion time of τ dep = 1.8 Gyr holds in dwarf galaxies (as found for a large sample of nearby spirals) implies α CO values for dwarf galaxies with Z ≈ 1/2-1/10 Z ☉ that are more than one order of magnitude higher than those found in solar metallicity spiral galaxies. Such a significant increase of α CO at low metallicity is consistent with previous studies, in particular those of Local Group dwarf

  15. Unified treatment of the luminosity distance in cosmology

    International Nuclear Information System (INIS)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio

    2016-01-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  16. Unified treatment of the luminosity distance in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaiyul; Scaccabarozzi, Fulvio, E-mail: jyoo@physik.uzh.ch, E-mail: fulvio@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Zürich (Switzerland)

    2016-09-01

    Comparing the luminosity distance measurements to its theoretical predictions is one of the cornerstones in establishing the modern cosmology. However, as shown in Biern and Yoo, its theoretical predictions in literature are often plagued with infrared divergences and gauge-dependences. This trend calls into question the sanity of the methods used to derive the luminosity distance. Here we critically investigate four different methods—the geometric approach, the Sachs approach, the Jacobi mapping approach, and the geodesic light cone (GLC) approach to modeling the luminosity distance, and we present a unified treatment of such methods, facilitating the comparison among the methods and checking their sanity. All of these four methods, if exercised properly, can be used to reproduce the correct description of the luminosity distance.

  17. Improvement to the D0 luminosity monitor constant

    International Nuclear Information System (INIS)

    Bantley, J.

    1996-03-01

    The D0 experiment has previously calculated its luminosity using the visible cross section (luminosity monitor constant) for its Level 0 trigger, σ L0 = 48.2 mb, based on the world average pp inelastic cross sections at √s = 1.8 TeV. The error on luminosity had been set at 12%. Recent studies using the MBR and DTUJET Monte Carlo event generators and unbiased D0 data samples have resulted in a more precise determination of the D0 luminosity monitor constant. The result, σ L0 = 46.7 ± 2.5 mb, lowers the central value by 3.1% and reduces the error to 5.4%. 12 refs., 7 figs., 9 tabs

  18. The CMS Outer Tracker Upgrade for the High Luminosity LHC

    CERN Document Server

    Luetic, Jelena

    2017-01-01

    The era of the High Luminosity Large Hadron Collider will pose unprecedented challenges for detector design and operation. The planned luminosity of the upgraded machine is $5$x$10^{34} $ cm$^{-2}$s$^{-1}$, reaching an integrated luminosity of more than 3000 fb$^{-1}$ by the end of 2037. The CMS Tracker detector will have to be replaced in order to fully exploit the delivered luminosity and cope with the demanding operating conditions. The new detector will provide robust tracking as well as input for the first level trigger. This report is focusing on the replacement of the CMS Outer Tracker system, describing the new layout and technological choices together with some highlights of research and development activities.

  19. Physics potential of precision measurements of the LHC luminosity

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The uncertainty in the determination of the LHC luminosity is rapidly becoming a limiting factor for the analysis and interpretation of many important LHC processes. In this talk first of all we discuss the theoretical accuracy of total cross sections and examine in which cases the luminosity error is or will be dominant. We then review the impact of LHC data in PDF determinations, with enphasis on the effects of the luminosity uncertainty. We explore the requirements for the accuracy of the 2011 luminosity determination from the point of view of standard candle cross section and other important processes. Finally we discuss what we can learn from the accurate measurement of cross section ratios at different center of mass energies for processes like W, ttbar and dijet production.

  20. The low-luminosity end of the radius-luminosity relationship for active galactic nuclei

    DEFF Research Database (Denmark)

    Bentz, M.C.; Denney, K.D.; Vestergaard, Marianne

    2013-01-01

    fit to the relationship using a Bayesian analysis finds a slope of , consistent with previous work and with simple photoionization arguments. Only two AGNs appear to be outliers from the relationship, but both of them have monitoring light curves that raise doubt regarding the accuracy...... with the Hubble Space Telescope Wide Field Camera 3. The surface brightness decompositions allow us to create "AGN-free" images of the galaxies, from which we measure the starlight contribution to the optical luminosity measured through the ground-based spectroscopic aperture. We also incorporate 20 new...... results help support the possibility that the R-L relationship could potentially be used to turn the BLRs of AGNs into standardizable candles. This would allow the cosmological expansion of the universe to be probed by a separate population of objects, and over a larger range of redshifts....

  1. Triggering at high luminosity: fake triggers from pile-up

    International Nuclear Information System (INIS)

    Johnson, R.

    1983-01-01

    Triggers based on a cut in transverse momentum (p/sub t/) have proved to be useful in high energy physics both because they indicte that a hard constituent scattering has occurred and because they can be made quickly enough to gate electronics. These triggers will continue to be useful at high luminosities if overlapping events do not cause an excessive number of fake triggers. In this paper, I determine if this is indeed a problem at high luminosity machines

  2. VY Canis Majoris: The Astrophysical Basis of Its Luminosity

    OpenAIRE

    Humphreys, Roberta M.

    2006-01-01

    The luminosity of the famous red supergiant VY CMa (L ~ 4 - 5 x 10e5 Lsun) is well-determined from its spectral energy distribution and distance, and places it near the empirical upper luminosity limit for cool hypergiants. In contrast, its surface temperature is fundamentally ill-defined. Both contradict a recent paper by Massey, Levesque and Plez (2006). Implications for its location on the HR Diagram and its apparent size are discussed.

  3. On the Luminosity Distance and the Hubble Constant

    OpenAIRE

    Yuri Heymann

    2013-01-01

    By differentiating luminosity distance with respect to time using its standard formula we find that the peculiar velocity is a time varying velocity of light. Therefore, a new definition of the luminosity distance is provided such that the peculiar velocity is equal to c. Using this definition a Hubble constant H0 = 67.3 km s−1 Mpc−1 is obtained from supernovae data.

  4. Performance of the new high precision luminosity monitor of DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.; Benvenuti, A.C.; Giordano, V.; Guerzoni, M.; Navarria, F.L.; Perrotta, A.; Camporesi, T.; Obraztsov, V.; Paganoni, M.; Vallazza, E.; Bozzo, M.; Cereseto, R.; Barreira, G.; Espirito Santo, M.C.; Maio, A.; Onofre, A.; Peralta, L.; Pimenta, M.; Tome, B.; Carling, H.; Falk, E.; Hedberg, V.; Jarlskog, G.; Kronkvist, I.; Bonesini, M.; Chignoli, F.; Ferrari, P.; Gumenyuk, S.; Leoni, R.; Mazza, R.; Negri, P.; Petrovykh, L.; Terranova, F.; Dharmasiri, D.R.; Nossum, B.; Read, A.L.; Skaali, B.; Rohne, O.; Castellani, L.; Pegoraro, M.; Fenyuk, A.; Ivanyushenkov, I.; Karyukhin, A.; Konopliannikov, A.; Shalanda, N.; Sen'ko, V.; Vlasov, E.; Zaitsev, A.; Bigi, M.; Cassio, V.; Gamba, D.; Gouz, I.; Migliore, E.; Romero, A.; Simonetti, L.; Trapani, P.P.; Bari, M.; Della Ricca, G.; Lanceri, L.; Poropat, P.; Prest, M.

    1997-01-01

    The STIC calorimeter was installed in the DELPHI detector in 1994. The main goal is to measure the luminosity with an accuracy better than 0.1%. The calorimeter was built using the ''Shashlik'' technique. The light is collected by wavelength shifting fibers and readout by phototetrodes that can operate inside the magnetic field. The detector performance during the 1994-1995 data taking is presented. The different contributions to the systematic error on the luminosity measurement are discussed. (orig.)

  5. Precision of MPX detectors as LHC luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Benes, Petr; Bergmann, Benedikt; Biskup, Bartolomej; Caforio, Davide; Heijne, Erik; Pospisil, Stanislav; Seifert, Frank; Solc, Jaroslav; Suk, Michal; Turecek, Daniel; Vykydal, Zdenek [IEAP CTU in Prague (Czech Republic); Asbah, Nedaa; Leroy, Claude; Soueid, Paul [University of Montreal (Canada); Campbell, Michael; Nessi, Marzio [CERN (Switzerland); Kladiva, Edward [IEP SAS Kosice (Slovakia)

    2015-07-01

    A network consisting of MPX detectors based on Medipix2 silicon pixel devices were originally adapted for measuring the composition and spectral characteristics of the radiation field in the ATLAS experiment and its surroundings. We demonstrate that the MPX network, which consists of 16 MPX detectors, is a self-contained luminosity monitor system. As the MPX detectors are collecting data independently of the ATLAS data-recording chain, they provide independent measurements of the bunch-integrated ATLAS/LHC luminosity. In particular, the MPX detectors close enough to the primary interaction point are used to perform van der Meer calibration scans with good precision. Results from the luminosity monitoring are presented for 2012 data taken at √(s)=8 TeV proton-proton collisions. The characteristics of the LHC luminosity reduction are studied and the effects of beam-beam (burn-off) and beam-gas (single bunch) interactions are evaluated. The variations of the MPX luminosity measurements around the fitted curve lead to a relative uncertainty on the luminosity measurement below 0.3% for one minute time intervals.

  6. The reconciliation of an F-region irregularity model with sunspot-cycle variations in spread-F occurrence

    International Nuclear Information System (INIS)

    Singleton, D.G.

    1974-11-01

    A recently proposed means of combining models of ionospheric F-layer peak electron density and irregularity incremental electron density (ΔN) so as to simulate the global occurrence probability of the frequency spreading component of spread-F is discussed. This procedure is then used to model experimental spread-F occurrence results. It is found possible to readily simulate the sunspot-maximum results, independently of season, with only small adjustments to the amplitudes of the empirical expressions used to ΔN in the several latitude regimes. However, at sunspot minimum and for each season, the ΔN model requires modification in the equatorial and mid-latitude regions of high irregularity incidence, before successful simulations of the spread-F data can be obtained. These modifications, which include a broadening of the equatorial region and a polewards shift to the mid-latitude region with decreasing sunspot number, are discussed in detail. It is concluded that the scintillation data base, from which the original ΔN model derives, is not sufficiently representative with regard to sunspot number and magnetic index. The use of the spread-F adaptation of the ΔN model, as well as its original scintillation version, to rectify these failings of the ΔN model are also discussed. (author)

  7. Effect of solar flare ans sunspot numbers on the intensity of 5577A line in the night airglow

    International Nuclear Information System (INIS)

    Kundu, N.; Ghosh, S.N.

    1981-01-01

    The effects of solar flare and sunspot number on the intensity of 5577 A line emission are presented. The time lag between the occurrence of a flare and the enhancement of 5577 A line intensity is determined by observing the intensity of the line on three successive nights- the night preceding the flare and the two nights following it. The velocity of the solar corpuscles is then calculated. The value obtained at Allahabad (2400 Km/sec) is in agreement with the De Jager's prediction for explosive flare. Day-to-day analyses of the observations taken at Allahabad exhibit high correlation of the intensity of 5577 A line emission with sunspot number. Also, correlation is found for the intensity of 5577 A with the change in sunspot number (DELTA R) from the day preceding the night of observation to the day following it. The intensity appears to vary with the magnetic field produced by the sunspot and not with the spot area. (author)

  8. Values of Kp Indices, Ap Indices, Cp Indices, C9 Indices, Sunspot Number, and 10.7 cm Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data file consists of Kp indices, Ap indices, Cp indices, C9 indices, sunspot number, and 10.7 cm flux. The most often requested parameter of this file are the...

  9. New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone" methods

    Science.gov (United States)

    Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.

    2017-06-01

    Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar

  10. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  11. A luminosity measurement at LEP using the L3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Koffeman, E.N.

    1996-06-25

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.).

  12. A luminosity measurement at LEP using the L3 detector

    International Nuclear Information System (INIS)

    Koffeman, E.N.

    1996-01-01

    To perform high precision measurements at particle colliders it is crucial to know the exact intensity of the colliding beams. In particle physics this quantity is generally referred to as the luminosity. The determination of the luminosity in one of the experiments (L3) is the topic of this thesis. The implementation and the use of a silicon strip detector in L3, will be described in detail. In chapter one the most important parameters measured at LEP are discussed, preceded by a short introduction to the Standard Model. The process generally used for luminosity measurements in electron positron colliders is small angle Bhabha scattering. This process is discussed at the end of chapter one. In chapter two the characteristics of the collider and the L3 experiment are given. Together with the signature of the small angle Bhabha scattering, these experimental conditions determine the specifications for the design of the luminosity monitor. The general features of silicon strip detectors for their application in high energy physics are presented in chapter three. Some special attention is given to the behaviour of the sensors used for the tracking detector in the luminosity monitor. The more specific design details of the luminosity monitor are constricted to chapter four. In chapter five the conversion from detector signals into ccordinates relevant for the analysis is explained. The selection of the small angle Bhabha scattering events and the subsequent determination of the luminosity, are presented in chapter six. Systematic uncertainties are carefully studied. Important for a good understanding of the Bhabha selection are the events where a photon is produced in the scattering process. These events are separately studied. In chapter seven a comparison is presented between the radiative events observed in the data and their modelling in the Bhlumi Monte Carlo programme. (orig.)

  13. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Mikuz, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)], E-mail: Marko.Mikuz@ijs.si; Cindro, V.; Dolenc, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Frais-Koelbl, H. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Gorisek, A. [CERN, Geneva (Switzerland); Griesmayer, E. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H. [Ohio State University, Columbus (United States); Kramberger, G.; Mandic, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Niegl, M. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Pernegger, H. [CERN, Geneva (Switzerland); Trischuk, W. [University of Toronto, Toronto (Canada); Weilhammer, P. [CERN, Geneva (Switzerland); Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z={+-}183.8cm and r{approx}55mm ({eta}{approx}4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14{+-}2.

  14. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    International Nuclear Information System (INIS)

    Mikuz, M.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Gorisek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandic, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r∼55mm (η∼4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2

  15. A Readout Driver for the ATLAS LAr Calorimeter at a High Luminosity LHC

    CERN Document Server

    Kielburg-Jeka, A

    2011-01-01

    A new readout driver (ROD) is being developed as a central part of the signal processing of the ATLAS liquid-argon calorimeters for operation at the High Luminosity LHC (HL-LHC). In the architecture of the upgraded readout system, the ROD modules will have several challenging tasks: receiving of up to 1.4 Tb/s of data per board from the detector front-end on multiple high-speed serial links, low-latency data processing, data buffering, and data transmission to the ATLAS trigger and DAQ systems. In order to evaluate the different components, prototype boards in ATCA format equipped with modern Xilinx and Altera FPGAs have been built. We will report on the measured performance of the SERDES devices, the parallel signal processing using DSP slices, the implementation of trigger interfaces, using e.g. multi-Gb Ethernet, as well as the development of the ATCA infrastructure on the ROD prototype modules.

  16. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  17. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Gonella, Laura

    2013-10-01

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  18. Notes on LEP luminosity performance in July and August

    CERN Document Server

    Assmann, R W

    1998-01-01

    The LEP luminosity performance at 94.5 GeV is examined for two periods of the 1998 run. The analysis is meant to complement other ongoing studies. The studies presented here analyze the performance in terms of specific luminosity. The large amount of available data is filtered through quality cuts and appropriate averaging and binning algorithms. The results show that the beam-beam limit is being a pproached in high current LEP operation. This is seen in an increase of vertical beam size and a reduction of specific luminosity with current. Though the effect is clear for both analyzed periods of time, it is also shown that the full beam-beam limit is not yet reached. Over a fill the reduction of specific luminosity with beam current is less than half of the one expected in the fully beam-beam limited regime. It is shown that the measured positron lifetime can be fully explained from the beam-beam interaction. It turns out that the beam lifetime is indeed an excellent way to measure the ab solute luminosity in ...

  19. An early separation scheme for the LHC luminosity upgrade

    CERN Document Server

    Sterbini, G

    2010-01-01

    The present document is organized in five chapters. In the first chapter the framework of the study is described, developing the motivations, the goals and the requirements for the LHC Luminosity Upgrade. We analyze the need for the crossing angle and its impact on the peak luminosity of the collider. After having introduced the Early Separation Scheme, we explain how it may overcome some limitations of the present machine. We compare the nominal LHC crossing scheme with the proposed one underlining its potential in terms of performance and its issues with respect to the integration in the detectors. An analysis of the integrated magnetic field required is given. In the second chapter we introduce one of the most powerful aspect of the scheme: the luminosity leveling. After the description of the physical model adopted, we compare the results of its analytical and numerical solutions. All the potential improvement due to the Early Separation Scheme are shown on the luminosity plane (peak luminosity versus int...

  20. Very high-luminosity infrared galaxies - are they very young?

    International Nuclear Information System (INIS)

    Burbidge, G.

    1986-01-01

    It is proposed that most of the very high-luminosity IRAS galaxies, those which emit greater than or equal to 10 to the 12th solar luminosities nearly all in the far infrared out to 100 microns, are very young systems with ages less than or equal to 10 to the 9th years. The luminosity comes largely from stars with masses near 100 solar masses which evolve rapidly, ejecting much of their mass as elements heavier than hydrogen. The gas ejected condenses into dust in circumstellar shells. The prototype star in the Galaxy which shows all of these attributes is Eta Car. It is shown that total masses of order 10 to the 7th-10 to the 8th solar masses condensed into such stars can produce the observed luminosities, and that 10-100 generations of such stars will produce enough dust (about 10 to the 8th solar masses) to explain the observed infrared luminosities. If this hypothesis is correct the composition of gas and dust may well be highly anomalous, and there should be no old stars with ages about 10 to the 10th years present. Initial star formation is probably triggered by interactions with close companion galaxies. 40 references

  1. LHCb: LHCb Muon System Performance at High Luminosity

    CERN Multimedia

    Pinci, D

    2013-01-01

    The LHCb detector was conceived to operate with an average Luminosity of $2 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. During the last year of LHC run, the whole apparatus has shown to be able to perfectly acquire and manage data produced at a Luminosity as high as $4 \\times 10^{32}$ cm$^{-2}$ s$^{-1}$. In these conditions, all sub-detectors operated at average particle rates higher than the design ones and in particular the Multi-Wire Proportional Chambers equipping the Muon System had to sustain a particle rate as high as 250 kHz/cm$^{2}$. In order to study the possibility of increasing the Luminosity of operation of the whole experiment several tests were performed. The effective beam Luminosity at the interaction point of LHCb was increased in several steps up to $10^{33}$ cm$^{-2}$ s$^{-1}$ and in each step the behavior of all the detectors in the Muon System was recorded. The data analysis has allowed to study the performance of the Muon System as a function of the LHC Luminosity and the results are r...

  2. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    Science.gov (United States)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  3. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    Science.gov (United States)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  4. Oscillations in sunspot umbras due to trapped Alfven waves excited by overstability

    International Nuclear Information System (INIS)

    Uchida, Yutaka; Sakurai, Takashi.

    1975-01-01

    Oscillations observed in sunspot umbras are interpreted as a vertical motion in the atmosphere induced by a standing Alfven wave trapped in the region between the overstable layer under the photosphere and the chromosphere-corona transition layer. The Alfven wave motion is considered to be excited by the overstable convection occurring at the bottom of the abovementioned oscillating layer, and waves with special frequencies are selected as eigen-mode waves standing in the ''cavity,'' while other waves which are out of phase with themselves after reflections will disappear. It is shown by solving the eigen-value problem that the fundamental eigen frequency falls in a range around 0.04 rad s -1 (corresponding to 140-180 s) for the condition in the umbra of a typical spot, and also that the eigen frequencies do not depend greatly on the circumstantial physical or geometric parameters of the model atmosphere, such as the temperature in the layer, or the height of the transition layer, etc. The eigen frequencies, however, depend on the Alfven velocity at the base of the oscillating layer (or at the top of the overstable layer), but the latter quantity, which represents the stiffness of the magnetic tube of force against the overturning motion, takes roughly a common value for different sunspots according to SAVAGE's (1969) stability analysis of the umbral atmosphere against thermal convection, and thus gives a comparatively narrow range of resonant frequencies. In addition to the selection mechanism for oscillations of 140-180-s period, some other aspects of the oscillation, such as the relation to the running penumbral waves, are discussed. (auth.)

  5. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  6. THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES

    International Nuclear Information System (INIS)

    Doschek, G. A.; Warren, H. P.

    2016-01-01

    Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as an Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.

  7. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.

  8. NUMERICAL SIMULATIONS OF CONVERSION TO ALFVÉN WAVES IN SUNSPOTS

    International Nuclear Information System (INIS)

    Khomenko, E.; Cally, P. S.

    2012-01-01

    We study the conversion of fast magnetoacoustic waves to Alfvén waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfvén/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfvén speed gradient, but around and above this reflection height it partially converts to Alfvén waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfvén waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfvén waves. We find that the conversion to Alfvén waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90° the generated Alfvén waves continue upward, but above 90° downgoing Alfvén waves are preferentially produced. This yields negative Alfvén energy flux for azimuths between 90° and 180°. Alfvén energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.

  9. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  10. ATLAS Future Plans: Upgrade and the Physics with High Luminosity

    Directory of Open Access Journals (Sweden)

    Rajagopalan S.

    2013-05-01

    Full Text Available The ATLAS experiment is planning a series of detector upgrades to cope with the planned increases in instantaneous luminosity and multiple interactions per crossing to maintain its physics capabilities. During the coming decade, the Large Hadron Collider will collide protons on protons at a center of mass energy up to 14 TeV with luminosities steadily increasing in a phased approach to over 5 × 1034 cm−2s−1. The resulting large data sets will significantly enhance the physics reach of the ATLAS detector building on the recent discovery of the Higgs-like boson. The planned detector upgrades being designed to cope with the increasing luminosity and its impact on the ATLAS physics program will be discussed.

  11. High luminosity μ+ μ- collider: Report of a feasibility study

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.; Tollestrup, A.; Sessler, A.

    1996-12-01

    Parameters are given of 4 TeV and 0.5 TeV (c-of-m) high luminosity μ + μ - colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are analyzed. Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. We briefly mention the luminosity requirements of hadrons and lepton machines and their high-energy-physics advantages and disadvantages in reference to their effective center of mass energy. Finally, we present an R ampersand D plan to determine whether such machines are practical

  12. Reduction of beta* and increase of luminosity at RHIC

    International Nuclear Information System (INIS)

    Pilat, F.; Bai, M.; Bruno, D.; Cameron, P.; Della Penna, A.; Drees, A.; Litvinenko, V.; Luo, Y.; Malitsky, N.; Marr, G.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.

    2009-01-01

    The reduction of β* beyond the 1m design value at RHIC has been consistently achieved over the last 6 years of RHIC operations, resulting in an increase of luminosity for different running modes and species. During the recent 2007-08 deuteron-gold run the reduction to 0.70 from the design 1m achieved a 30% increase in delivered luminosity. The key ingredients allowing the reduction have been the capability of efficiently developing ramps with tune and coupling feedback, orbit corrections on the ramp, and collimation, to minimize beam losses in the final focus triplets, the main aperture limitations for the collision optics. We will describe the operational strategy used to reduce the β*, at first squeezing the beam at store, to test feasibility, followed by the operationally preferred option of squeezing the beam during acceleration, and the resulting luminosity increase. We will conclude with future plans for the beta squeeze

  13. Report of the Working Group on High Luminosities at LEP

    International Nuclear Information System (INIS)

    Blucher, E.; Jowett, J.; Merritt, F.; Mikenberg, G.; Panman, J.; Renard, F.M.; Treille, D.

    1991-01-01

    The availability of an order-of-magnitude increase in the luminosity of LEP (CERN's Large Electron-Positron Collider) can dramatically increase its physics output. With the help of a pretzel scheme, it should be possible to increase the peak luminosity beyond 10 32 cm -2 s -1 at the Z energy and to significantly increase the luminosity around the W-pari threshold. This report spells out the physics possibilities opened up by the availability of several 10 7 Z events. The three domains of physics that benefit mostly from this abundance are very accurate measurements of Standard Model parameters, rare decays of the Z, and the physics of fermion-antifermion states such as B physics. The possibilities and implications for the machine and the experiments are presented. The physics possibilities are explored and compared with those at other accelerators. (orig.)

  14. The LUCID detector ATLAS luminosity monitor and its electronic system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00378808; The ATLAS collaboration

    2016-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  15. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    CERN Document Server

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  16. Evolution of the cluster x-ray luminosity function slope

    International Nuclear Information System (INIS)

    Henry, J.P.; Soltan, A.; Briel, U.; Gunn, J.E.

    1982-01-01

    We report the results of an X-ray survey of 58 clusters of galaxies at moderate and high redshifts. Using a luminosity-limited subsample of 25 objects, we find that to a redshift of 0.5 the slope (i.e., power-law index) of the luminosity function of distant clusters is independent of redshift and consistent with that of nearby clusters. The time scale for change in the slope must be greater than 9 billion years. We cannot measure the normalization of the luminosity function because our sample is not complete. We discuss the implications of our data for theoretical models. In particular, Perrenod's models with high Ω are excluded by the present data

  17. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  18. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444244; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  19. Luminosity and Redshift dependence of quasar spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Daniel E. Vanden Berk et al.

    2004-03-09

    Using a large sample of quasar spectra from the SDSS, we examine the composite spectral trends of quasars as functions of both redshift and luminosity, independently of one another. Aside from the well known Baldwin effect (BE)--the decrease of line equivalent width with luminosity--the average spectral properties are remarkably similar. Host galaxy contamination and the BE are the primary causes for apparent changes in the average spectral slope of the quasars. The BE is detected for most emission lines, including the Balmer lines, but with several exceptions including NV1240A. Emission line shifts of several lines are associated with the BE. The BE is mainly a function of luminosity, but also partly a function of redshift in that line equivalent widths become stronger with redshift. Some of the complex iron features change with redshift, particularly near the small blue bump region.

  20. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  1. MODELING THE RED SEQUENCE: HIERARCHICAL GROWTH YET SLOW LUMINOSITY EVOLUTION

    International Nuclear Information System (INIS)

    Skelton, Rosalind E.; Bell, Eric F.; Somerville, Rachel S.

    2012-01-01

    We explore the effects of mergers on the evolution of massive early-type galaxies by modeling the evolution of their stellar populations in a hierarchical context. We investigate how a realistic red sequence population set up by z ∼ 1 evolves under different assumptions for the merger and star formation histories, comparing changes in color, luminosity, and mass. The purely passive fading of existing red sequence galaxies, with no further mergers or star formation, results in dramatic changes at the bright end of the luminosity function and color-magnitude relation. Without mergers there is too much evolution in luminosity at a fixed space density compared to observations. The change in color and magnitude at a fixed mass resembles that of a passively evolving population that formed relatively recently, at z ∼ 2. Mergers among the red sequence population ('dry mergers') occurring after z = 1 build up mass, counteracting the fading of the existing stellar populations to give smaller changes in both color and luminosity for massive galaxies. By allowing some galaxies to migrate from the blue cloud onto the red sequence after z = 1 through gas-rich mergers, younger stellar populations are added to the red sequence. This manifestation of the progenitor bias increases the scatter in age and results in even smaller changes in color and luminosity between z = 1 and z = 0 at a fixed mass. The resultant evolution appears much slower, resembling the passive evolution of a population that formed at high redshift (z ∼ 3-5), and is in closer agreement with observations. We conclude that measurements of the luminosity and color evolution alone are not sufficient to distinguish between the purely passive evolution of an old population and cosmologically motivated hierarchical growth, although these scenarios have very different implications for the mass growth of early-type galaxies over the last half of cosmic history.

  2. Altered luminosity functions for relativistically beamed objects. II - Distribution of Lorentz factors and parent populations with complex luminosity functions

    International Nuclear Information System (INIS)

    Urry, C.M.; Padovani, P.

    1991-01-01

    In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs

  3. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  4. Modified use of Van de Meer method for luminosity determination

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1975-01-01

    Modifications are suggested which should improve the accuracy of the Van de Meer method of determining beam luminosity at the CERN ISR. Four bending magnets would be inserted between the quadrupoles of a given experimental straight section, connected in series, and shimmed so that the machine parameters are not affected. The magnets would be driven with a zigzag current power supply with a uniform rate of current change. Experiments requiring accurate luminosity determination would be run while the deflection magnets are being driven with the oscillatory current pattern. (U.S.)

  5. Electron-positron annihilation at high luminosity colliding beams

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Khodzhamiryan, A.Yu.

    1977-01-01

    Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1

  6. The quasar luminosity function from a variability-selected sample

    Science.gov (United States)

    Hawkins, M. R. S.; Veron, P.

    1993-01-01

    A sample of quasars is selected from a 10-yr sequence of 30 UK Schmidt plates. Luminosity functions are derived in several redshift intervals, which in each case show a featureless power-law rise towards low luminosities. There is no sign of the 'break' found in the recent UVX sample of Boyle et al. It is suggested that reasons for the disagreement are connected with biases in the selection of the UVX sample. The question of the nature of quasar evolution appears to be still unresolved.

  7. Luminosity distribution in galaxies. I. The elliptical galaxy NGC 3379 as a luminosity distribution standard

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; Capaccioli, M.

    1979-01-01

    A standard mean luminosity profile in the B band of the El galaxy NGC 3379 along its east-west x-axis is derived from four sets of medium- and low-resolution photographic and photoelectric McDonald data. The 154 mean points cover a range in excess of 11 mag down to μ/sub B/=27.8 mag arcsec -2 (x=7'.3), with possible detection out to x=16'.3 (μ/sub B/approx. =30.9).The profile is presented within +- 0.08 mag at all x>10'' by μ 1 =14.076+3.0083 x/sup 1/4/ (x in arcsec). Near the center the galaxy is brighter than μ 1 by up to 0.35 mag; the excess can be represented by a Gaussian core μ/sub II/=18.565+0.03965 r 2 (r in arcsec) contributing 19.8% of the integrated magnitude B=11.97 within r* =12'' and 4.0% of the total magnitude B/sub T/=10.225 of the galaxy.This two-component model convolved by the appropriate point spread function represents the data within a standard deviation of 0.04 mag over the whole range. Other analytical formulae give generally poorer fits. There is no evidence for a tidal cutoff or a tidal extension.The integrated magnitudes derived from the model agree with aperture photometry (47 values) within 0.05 mag

  8. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO, 80307 (United States)

    2017-09-10

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed through the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.

  9. Physics of a high-luminosity Tau-Charm Factory

    International Nuclear Information System (INIS)

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity (∼10 33 cm -2 s -1 ) e + e - collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in τ and charm physics are emphasized

  10. Attaining high luminosity in linear e+e- colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1990-11-01

    The attainment of high luminosity in linear colliders is a complex problem because of the interdependence of the critical parameters. For instance, changing the number of particles per bunch affects the damping ring design and thus the emittance; it affects the wakefields in the linac and thus the momentum spread; the momentum spread affects the final focus design and thus the final β*; but the emittance change also affects the final focus design; and all these come together to determine the luminosity, disruption and beamstrahlung at the intersection. Changing the bunch length, or almost any other parameter, has a similar chain reaction. Dealing with this problem by simple scaling laws is very difficult because one does not know which parameter is going to be critical, and thus which should be held constant. One can only maximize the luminosity by a process of search and iteration. The process can be facilitated with the aid of a computer program. Examples can then be optimized for maximum luminosity, and compared to the optimized solutions with different approaches. This paper discusses these approaches

  11. Gauge-invariance and infrared divergences in the luminosity distance

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-04-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  12. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  13. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    In this talk for BEAUTY 2018 the ATLAS upgrade plans for the high-luminosity phase of the LHC are presented. Especially, prospects for the flagship B physics analyses $B_s^0 \\to J/\\psi \\phi$ (with $J/\\psi \\to \\mu^+\\mu^-$) and $B_{(s)}^0 \\to \\mu^+\\mu^-$ analyses are discussed.

  14. TOTAL INFRARED LUMINOSITY ESTIMATION OF RESOLVED AND UNRESOLVED GALAXIES

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Bendo, G.; Dale, D.; Engelbracht, C.; Kennicutt, R.; Lee, J. C.; Van Zee, L.; Moustakas, J.

    2010-01-01

    The total infrared (TIR) luminosity from galaxies can be used to examine both star formation and dust physics. We provide here new relations to estimate the TIR luminosity from various Spitzer bands, in particular from the 8 μm and 24 μm bands. To do so, we use data for 45'' subregions within a subsample of nearby face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) that have known oxygen abundances as well as integrated galaxy data from the SINGS, the Local Volume Legacy survey (LVL), and Engelbracht et al. samples. Taking into account the oxygen abundances of the subregions, the star formation rate intensity, and the relative emission of the polycyclic aromatic hydrocarbons at 8 μm, the warm dust at 24 μm, and the cold dust at 70 μm and 160 μm, we derive new relations to estimate the TIR luminosity from just one or two of the Spitzer bands. We also show that the metallicity and the star formation intensity must be taken into account when estimating the TIR luminosity from two wave bands, especially when data longward of 24 μm are not available.

  15. The Evolution of the Type Ia Supernova Luminosity Function

    NARCIS (Netherlands)

    Shen, K.J.; Toonen, S.; Graur, O.

    2017-01-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia

  16. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  17. Gauge-invariance and infrared divergences in the luminosity distance

    International Nuclear Information System (INIS)

    Biern, Sang Gyu; Yoo, Jaiyul

    2017-01-01

    Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations of the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.

  18. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    Science.gov (United States)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  19. The luminosity function and formation rate history of GRBs

    International Nuclear Information System (INIS)

    Firmani, C.; Avila-Reese, V.; Ghisellini, G.; Tutukov, A.V.

    2005-01-01

    The isotropic luminosity function (LF) and formation rate history (FRH) of long GRBs is by the first time constrained by using jointly both the observed GRB peak-flux and redshift distributions. Our results support an evolving LF and a FRH that keeps increasing after z = 2. We discuss some interesting implications related to these results

  20. Emittance scans for CMS luminosity calibration in 2017

    CERN Document Server

    CMS Collaboration

    2018-01-01

    Emittance scans are short van der Meer type scans performed at the beginning and at the end of LHC fills. The beams are scanned against each other in X and Y planes in 7 displacement steps. These scans are used for LHC diagnostics and since 2017 for a cross check of the CMS luminosity calibration. An XY pair of scans takes around 3 minutes. The BRIL project provides to LHC three independent online luminosity measurement from the Pixel Luminosity Telescope (PLT), the Fast Beam Condition Monitor (BCM1F) and the Forward calorimeter (HF). The excellent performance of the BRIL detector front-ends, fast back-end electronics and CMS XDAQ based data processing and publication allow the use of emittance scans for linearity and stability studies of the luminometers. Emittance scans became a powerful tool and dramatically improved the understanding of the luminosity measurement during the year. Since each luminometer is independently calibrated in every scan the measurements are independent and ratios of luminometers ca...

  1. LHC Report: Boost in bunches brings record luminosity

    CERN Multimedia

    2011-01-01

    Having hit a luminosity of around 8.4x1032 cm-2 s-1 with 768 bunches per beam, the LHC went into a 5-day machine development (MD) program on Wednesday 4 May. Operators are now working on increasing the number of particle bunches in the machine towards a 2011 maximum of around 1380 bunches. The team is already hitting major milestones, recording another record-breaking peak luminosity on Monday 23 May.   Former LHC Project Leader Lyn Evans (to the right) and Laurette Ponce, the engineer-in-charge when the recent luminosity record was achieved. The MD periods improve our understanding of the machine, with the aim of increasing its short- and long-term performance. This one also included tests of the machine’s configurations for special physics runs and a future high luminosity LHC. It was an intense program and overall it went very well, with most measurements carried out successfully. Highlights included: commissioning a dedicated machine setup for TOTEM and ALFA; succe...

  2. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution HST images of all 35 AGNs with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measureme...

  3. The Radius-Luminosity Relationship for Active Galactic Nuclei

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.

    2006-01-01

    We have obtained high resolution images of the central regions of 14 reverberation-mapped active galactic nuclei (AGN) using the Hubble Space Telescope Advanced Camera for Surveys High Resolution Camera to account for host-galaxy starlight contamination of measured AGN luminosities. We measure th...

  4. NGC 5548 in a Low-Luminosity State

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Denney, Kelly D.; Cackett, Edward M.

    2007-01-01

    between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population...

  5. Fast and precise luminosity measurement at the international linear ...

    Indian Academy of Sciences (India)

    6. — journal of. December 2007 physics pp. 1151–1157. Fast and precise luminosity measurement ... The fast investigation of the collision quality for intrabunch feedback and the ... consisting of the sensor, the absorber and an interconnection structure. 2. ... outer radius of BeamCal is increased to keep the angular overlap.

  6. Spectral-luminosity evolution of active galactic nuclei (AGN)

    Science.gov (United States)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  7. Fast and precise luminosity measurement at the international linear

    Indian Academy of Sciences (India)

    The detectors of the ILC will feature a calorimeter system in the very forward region. The system comprises mainly two electromagnetic calorimeters: LumiCal, which is dedicated to the measurement of the absolute luminosity with highest precision and BeamCal, which uses the energy deposition from beamstrahlung pairs ...

  8. A Size-Luminosity Relationship for Protoplanetary Disks in Lupus

    Science.gov (United States)

    Terrell, Marie; Andrews, Sean

    2018-01-01

    The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.

  9. The luminosity function for globular clusters, 4: M3

    International Nuclear Information System (INIS)

    Simoda, Mahiro; Fukuoka, Takashi

    1976-01-01

    The subgiant-turnoff portion (V = 17.2 - 20.0 mag) of the luminosity function for the globular cluster M3 has been determined from photometry of the stars within the annuli 3'-8' and 6'-8' for V = 17.2 - 19.0 mag and 19.0 - 20.0 mag, respectively, by using plates taken with the Kitt Peak 2.1-m reflector. Our result shows that the luminosity function for M3 has a similar steep rise in the subgiant portion as other clusters so far studied (M5, M13, and M92), in direct conflict with the result by SANDAGE (1954, 1957). A probable cause of this discrepancy is given. Comparison with theoretical luminosity functions by SIMODA and IBEN (1970) suggests that theory and observation are not inconsistent if the initial helium abundance of M3 stars is taken to be about 20 percent. It is suggested that M13 has a larger helium abundance than M3 and M92 from the intercomparison of their luminosity functions and color-magnitude diagrams. (auth.)

  10. A new record peak luminosity for the LHC

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Two weeks of dedicated machine development paid off last weekend when the LHC ran for physics with three nominal intensity (∼1011 protons) bunches in each beam.   This brought a new record peak luminosity of around 8×1029 cm-2 s-1, and allowed the LHC to double the integrated luminosity delivered to the experiments since 30 March from 16 to 32 inverse nanobarns over the weekend. After a few more fills in this configuration, the number of bunches will be raised to six per beam, which will in turn allow the peak luminosity to break the 1030 cm-2 s-1 barrier for the first time, well on the way to achieving the 2010 objective of 1032 cm-2 s-1. This peak luminosity goal requires 800 nominal bunches per beam squeezed to a beta of 3.5 metres. The plan for 2011 is to run the LHC in this configuration over about 10 months, thus achieving the objective of recording one inverse femtobarn of data in total. The machine development period also allowed the TOTEM detectors to be set up with 45...

  11. Upgrade of the CMS Tracker for the High Luminosity LHC

    CERN Document Server

    Auzinger, Georg

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about $ 5 \\times 10^{34}$cm$^{-2}$s$^{-1}$ in 2028, possibly reaching an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 Upgrade. The current CMS Tracker, including both inner pixel and outer strip systems, is already running beyond design specifications and will not be able to survive HL-LHC radiation conditions. CMS will need a completely new device in order to fully exploit the demanding operating conditions and the delivered luminosity. The upgrade plan includes extending the Pixel Detector in the forward region from the current coverage of $ \\lvert \\eta \\rvert < 2.4 $ to $ \\lvert \\eta \\rvert < 4$, where up to seven forward- and four extension disks will compose the new detector. Additionally, the new outer system should also have trigger capabilities. To achieve such goals, R\\&...

  12. Machine constraints for experiments in an intermediate luminosity interaction region

    International Nuclear Information System (INIS)

    Groom, D.

    1989-05-01

    We summarize existing information about the luminosity as a function of clear space between the interaction point and the front of the final-focus triplet, and about the minimum beam pipe dimensions (stay-clear dimensions) in the region. 7 refs., 4 figs., 1 tab

  13. Introductory Overview of Intermediate-luminosity X-ray Objects

    Science.gov (United States)

    Colbert, E. J. M.

    2001-05-01

    Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.

  14. A Single Bremsstrahlung Monitor to Measure Luminosity at LEP

    CERN Multimedia

    2002-01-01

    The luminosity, the beam divergence and the longitudinal polarization can be measured at an interaction point of LEP by dectecting the energy, the angular distribution and the circular polarization of the single bremsstrahlung photons (SB) emitted at very forward angle. The luminosity can be measured by this met than by the conventional method of detecting small angle Bhabha scattering. The bunch to bunch relative luminosity can be monitored at a few per mil level in few minutes. Absolute values of the luminosity and of the polarization can be measured with a precision of the order of 1\\%. \\\\ \\\\ The apparatus to detect SB photons consists of a low Z absorber and of an EM calorimeter made of lead and scintillating fibres. Both the total energy and the space distribution of the SB photons are measured. This apparatus has been designed and built at the Department of Physics and INFN Section of the University of Rome ``La Sapienza''. Later on, together with suitable monocrystal converters, it may be used also for...

  15. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  16. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  17. Precision luminosity measurement at LHCb with beam-gas imaging

    International Nuclear Information System (INIS)

    Barschel, Colin

    2014-01-01

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy √(s)=8 TeV and √(s)=2.76 TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. Therefore, a new method has been developed using all reconstructed vertices in order to improve the understanding of the vertex resolution. In addition to the overlap integral, the knowledge of the colliding bunch populations is required to measure the luminosity. The determination of the bunch populations relies on LHC instruments to measure the bunch population fractions and the total beam intensity. Studies performed as part of this work resulted in a reduction of the bunch current normalization uncertainty from ±2.7% to ±0.2% and making it possible to achieve precision luminosity measurements at all LHC experiments. Furthermore, information on beam-gas interactions not originating from nominally filled bunches was analyzed to determine the charge fraction not participating in bunch collisions. The knowledge of this fraction is required to correct the total beam intensity. The reference cross-section of pp interactions with at least two tracks in the vertex detector

  18. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    International Nuclear Information System (INIS)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-01-01

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare

  19. DIRECT OXYGEN ABUNDANCES FOR LOW-LUMINOSITY LVL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Institute for Astrophysics, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Marble, Andrew R.; Engelbracht, Charles W. [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Van Zee, Liese [Astronomy Department, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Lee, Janice C. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Calzetti, Daniela [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, 1000 E. University, Laramie, WY 82071 (United States); Johnson, Benjamin D., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: cengelbracht@as.arizona.edu, E-mail: amarble@nso.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jlee@stsci.edu, E-mail: calzetti@astro.umass.edu, E-mail: ddale@uwyo.edu, E-mail: johnson@iap.fr [Institut d' Astrophysique de Paris, UMR 7095, 98 bis Bvd Arago, 75014 Paris (France)

    2012-08-01

    We present MMT spectroscopic observations of H II regions in 42 low luminosity galaxies in the Spitzer Local Volume Legacy survey. For 31 of the 42 galaxies in our sample, we were able to measure the temperature sensitive [O III] {lambda}4363 line at a strength of 4{sigma} or greater, and thus determine oxygen abundances using the 'direct' method. Our results provide the first 'direct' estimates of oxygen abundance for 19 of these galaxies. 'Direct' oxygen abundances were compared to B-band luminosities, 4.5 {mu}m luminosities, and stellar masses in order to characterize the luminosity-metallicity and mass-metallicity relationships at low luminosity. We present and analyze a 'Combined Select' sample composed of 38 objects (drawn from a sub-set of our parent sample and the literature) with 'direct' oxygen abundances and reliable distance determinations (based on the tip of the red giant branch or Cepheid variables). Consistent with previous studies, the B band and 4.5 {mu}m luminosity-metallicity relationships for the 38 objects were found to be 12 + log(O/H) = (6.27 {+-} 0.21) + (- 0.11 {+-} 0.01)M{sub B} and 12 + log(O/H) = (6.10 {+-} 0.21) + (- 0.10 {+-} 0.01)M{sub [4.5]} with dispersions of {sigma} = 0.15 and 0.14, respectively. The slopes of the optical and near-IR L-Z relationships have been reported to be different for galaxies with luminosities greater than that of the LMC. However, the similarity of the slopes of the optical and near-IR L-Z relationships for our sample probably reflects little influence by dust extinction in the low luminosity galaxies. For this sample, we derive a mass-metallicity relationship of 12 + log(O/H) = (5.61 {+-} 0.24) + (0.29 {+-} 0.03)log (M{sub *}), which agrees with previous studies; however, the dispersion ({sigma} = 0.15) is not significantly lower than that of the L-Z relationships. Because of the low dispersions in these relationships, if an accurate distance is available

  20. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  1. Luminosity measurements and two-photon physics with the DELPHI VSAT at LEP

    International Nuclear Information System (INIS)

    Jonsson, Per M.

    1998-02-01

    This thesis describes analysis of data from the DELPHI Very Small Angle Tagger (VSAT) calorimeter at LEP1. The VSAT consists of four Silicon-Tungsten calorimeter modules symmetrically positioned 7.7 meters away from the inter-action point. It measures elastically scattered electrons and positrons, Bhabha events, within the polar angular region between 5-12 mrad. Trigger efficiency and reconstruction procedures for the energy and position measurement of VSAT data are described. Off momentum electron background and online luminosity monitoring with the VSAT are also discussed. The extraction of various beam-parameters from analysis of the impact point of Bhabha pairs reveal the ability to measure variations in beam angles with a precision of 50 microrad. The relative luminosity measurement of the VSAT with a precision level of 0.1% for the 1993-1994 Z 0 scan is also presented. Through the study of double-tag-photon events, using the VSAT for measuring the energy of both scattered electrons, the behaviour of the total hadronic two-photon cross section is for the first time investigated up to invariant masses of 35 GeV

  2. GAMMA-RAY BURST LUMINOSITY RELATIONS: TWO-DIMENSIONAL VERSUS THREE-DIMENSIONAL CORRELATIONS

    International Nuclear Information System (INIS)

    Yu Bo; Qi Shi; Lu Tan

    2009-01-01

    The large scatters of luminosity relations of gamma-ray bursts (GRBs) have been one of the most important reasons that prevent the extensive applications of GRBs in cosmology. In this paper, we extend the two-dimensional (2D) luminosity relations with τ lag , V, E peak , and τ RT as the luminosity indicators to three dimensions (3D) using the same set of luminosity indicators to explore the possibility of decreasing the intrinsic scatters. We find that, for the 3D luminosity relations between the luminosity and an energy scale (E peak ) and a timescale (τ lag or τ RT ), their intrinsic scatters are considerably smaller than those of corresponding 2D luminosity relations. Enlightened by the result and the definition of the luminosity (energy released in units of time), we discussed possible reasons behind this result, which may give us helpful suggestions on seeking more precise luminosity relations for GRBs in the future.

  3. CYCLIC VARIATIONS OF ORBITAL PERIOD AND LONG-TERM LUMINOSITY IN CLOSE BINARY RT ANDROMEDAE

    International Nuclear Information System (INIS)

    Manzoori, Davood

    2009-01-01

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ( O - C curve ) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency of the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.

  4. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    Science.gov (United States)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  5. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Priya, T. G.; Yu, S. J.; Zhang, M. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ji, K. F. [Kunming University of Science and Technology, Kunming 650093 (China); Banerjee, D. [Indian Institute of Astrophysics, Koramangala Bangalore 560034 (India); Cao, W. D. [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Zhao, J. S.; Ji, H. S., E-mail: jt@bao.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2016-01-01

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequency range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.

  6. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    Science.gov (United States)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  7. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L.; Martínez-Sykora, J. [Bay Area Environmental Research Institute, 625 2nd Street, Ste. 209, Petaluma, CA (United States); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Judge, P. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); De Pontieu, B.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Jaeggli, S., E-mail: lucia.kleint@fhnw.ch [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); and others

    2014-07-10

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.

  8. EVIDENCE FOR A TRANSITION REGION RESPONSE TO PENUMBRAL MICROJETS IN SUNSPOTS

    International Nuclear Information System (INIS)

    Vissers, G. J. M.; Rouppe van der Voort, L. H. M.; Carlsson, M.

    2015-01-01

    Penumbral microjets (PMJs) are short-lived, fine-structured, and bright jets that are generally observed in chromospheric imaging of the penumbra of sunspots. Here we investigate their potential transition region signature by combining observations with the Swedish 1-m Solar Telescope in the Ca ii H and Ca ii 8542 Å lines with ultraviolet imaging and spectroscopy obtained with the Interface Region Imaging Spectrograph (IRIS), which includes the C ii 1334/1335 Å, Si iv 1394/1403 Å, and Mg ii h and k 2803/2796 Å lines. We find a clear corresponding signal in the IRIS Mg ii k, C ii, and Si iv slit-jaw images, typically offset spatially from the Ca ii signature in the direction along the jets: from base to top, the PMJs are predominantly visible in Ca ii, Mg ii k, and C ii/Si iv, suggesting progressive heating to transition region temperatures along the jet extent. Hence, these results support the suggestion from earlier studies that PMJs may heat to transition region temperatures

  9. Fan-shaped jets above the light bridge of a sunspot driven by reconnection

    Science.gov (United States)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc

    2016-05-01

    We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  10. A steady-state supersonic downflow in the transition region above a sunspot umbra

    Science.gov (United States)

    Straus, Thomas; Fleck, Bernhard; Andretta, Vincenzo

    2015-10-01

    We investigate a small-scale (~1.5 Mm along the slit), supersonic downflow of about 90 km s-1 in the transition region above the lightbridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16:40 to 17:59 UT. The downflow shows up as redshifted "satellite" lines of the Si iv and O iv transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O iv lines (Ne = 1010.6 ± 0.25 cm-3) is only a factor 2 smaller than the one inferred from the main components (Ne = 1010.95 ± 0.20 cm-3). Consequently, this implies a substantial mass flux (~5 × 10-7 g cm-2 s-1), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. The movie is available in electronic form at http://www.aanda.org

  11. Complex network approach to characterize the statistical features of the sunspot series

    International Nuclear Information System (INIS)

    Zou, Yong; Liu, Zonghua; Small, Michael; Kurths, Jürgen

    2014-01-01

    Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse-transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15–1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models. (paper)

  12. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  13. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, we suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.

  14. On the structure of a magnetic field and its evolution in the vicinity of sunspots

    International Nuclear Information System (INIS)

    Gopasyuk, S.I.; Kartashova, L.G.

    1981-01-01

    The structure of magnetic field and its evolution around single large sunspots has been studied. For this purpose observational data of the longitudinal magnetic field on the photospheric level and hsub(α) filtergrams for 18 active regions have been used. It is shown that there are characteristic directions corresponding to the transition of the spot field without sign change into an extended region of the same polarity and coinciding with extended (100000-300000 km) systems of filamentary feature chains of the fine chromospheric structure in active region. The horizontal magnetic f+eld component of the spot (systems of filamentary feature chains of the fine chromospheric structure) disappears on an extended region of chromospheric surface in the direction, where the satellite field (the field of opposite polarity) appears near its boundary. On the other hand, when satellite field disappears at some direction from the spot the transversal magnetic field appears on the extended surface region of the chromosphere keeping the same direction. One of the possible causes of disappearance of the transversal magnetic field on an extended region in the chromosphere might be the reconnection of magnetic lines of force [ru

  15. Variations and Regularities in the Hemispheric Distributions in Sunspot Groups of Various Classes

    Science.gov (United States)

    Gao, Peng-Xin

    2018-05-01

    The present study investigates the variations and regularities in the distributions in sunspot groups (SGs) of various classes in the northern and southern hemispheres from Solar Cycles (SCs) 12 to 23. Here, we use the separation scheme that was introduced by Gao, Li, and Li ( Solar Phys. 292, 124, 2017), which is based on A/U ( A is the corrected area of the SG, and U is the corrected umbral area of the SG), in order to separate SGs into simple SGs (A/U ≤ 4.5) and complex SGs (A/U > 6.2). The time series of Greenwich photoheliographic results from 1875 to 1976 (corresponding to complete SCs 12 - 20) and Debrecen photoheliographic data during the period 1974 - 2015 (corresponding to complete SCs 21 - 23) are used to show the distributions of simple and complex SGs in the northern and southern hemispheres. The main results we obtain are reported as follows: i) the larger of the maximum annual simple SG numbers in the two hemispheres and the larger of the maximum annual complex SG numbers in the two hemispheres occur in different hemispheres during SCs 12, 14, 18, and 19; ii) the relative changing trends of two curves - cumulative SG numbers in the northern and southern hemispheres - for simple SGs are different from those for complex SGs during SCs 12, 14, 18, and 21; and iii) there are discrepancies between the dominant hemispheres of simple and complex SGs for SCs 12, 14, 18, and 21.

  16. Absolute luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam-Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used *van der Meer scan* method (VDM). The technique has been used in 10 LHC fills during 2012 including and also provided a first luminosity measurement for proton-lead collisions. This talk presents the principles of the gas injection and the improvements reached with the increased pressure. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch. Those uncertainties are becoming the dominating factor because the uncertainty on the total beam current have been reduced.

  17. SLC-2000: A luminosity upgrade for the SLC

    International Nuclear Information System (INIS)

    Breidenbach, M.; Decker, F.-J.; Helm, R.; Napoly, O.; Phinney, N.; Raimondi, P.; Raubenheimer, T.O.; Siemann, R.; Zimmermann, F.; Hertzbach, S.

    1996-01-01

    We discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnets in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider. (author)

  18. Temperatures and luminosities of white dwarfs in dwarf novae

    International Nuclear Information System (INIS)

    Smak, J.

    1984-01-01

    Far ultraviolet radiation observed in dwarf novae at minimum can only be attributed to their white dwarfs. In three systems white dwarfs are detected directly through their eclipses. These data are used to determine the effective temperatures and luminosities of white dwarfs. The resulting temperatures range from about logT e = 4.1 to about 4.9, with typical values of about 4.5. The luminosities range from about logL 1 = 31.0 to about 33.5 and show correlation with the average accretion rates. Radiation from white dwarfs is likely to be the source of excitation of the emission lines from disks. It is also argued that the heating by the white dwarf can significantly modify the structure of the innermost parts of the disk and, particularly, inhibit the incidence of thermal instability in that region. 26 refs., 2 figs., 1 tab. (author)

  19. The CMS High Granularity Calorimeter for the High Luminosity LHC

    CERN Document Server

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  20. Evolution of the cluster X-ray luminosity function

    DEFF Research Database (Denmark)

    Mullis, C.R.; Vikhlinin, A.; Henry, J.P.

    2004-01-01

    We report measurements of the cluster X-ray luminosity function out to z = 0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z similar to 0.6 at luminosities of less...... than a few times 10(44) h(50)(-2) ergs s(-1) (0.5 - 2.0 keV). However, for 0.6 cluster deficit using integrated number counts...... independently confirm the presence of evolution. Whereas the bulk of the cluster population does not evolve, the most luminous and presumably most massive structures evolve appreciably between z = 0.8 and the present. Interpreted in the context of hierarchical structure formation, we are probing sufficiently...

  1. Using Micromegas in ATLAS to Monitor the Luminosity

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    Five small prototype micromegas detectors were positioned in the ATLAS detector during LHC running at $\\sqrt{s} = 8\\, \\mathrm{TeV}$. A $9\\times 4.5\\, \\mathrm{cm^2}$ two-gap detector was placed in front of the electromagnetic calorimeter and four $9\\times 10\\, \\mathrm{cm^2}$ detectors on the ATLAS Small Wheels, the first station of the forward muon spectrometer. The one attached to the calorimeter was exposed to interaction rates of about $70\\,\\mathrm{kHz/cm^2}$ at ATLAS luminosity $\\mathcal{L}=5\\times 10^{33}\\,\\mathrm{cm^{-2}s^{-1}}$ two orders of magnitude higher than the rates in the Small Wheel. We compare the currents drawn by the detector installed in front of the electromagnetic calorimeter with the luminosity measurement in ATLAS experiment.

  2. SLHC, the High-Luminosity Upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  3. Luminosity Measurement at ATLAS with a Scintillating Fiber Tracker

    CERN Document Server

    Ask, S

    2007-01-01

    We are reporting about a scintillating fiber tracking detector which is proposed for a precise determination of the absolute luminosity of the CERN LHC at interaction point 1 where the ATLAS experiment is located. The detector needs to track protons elastically scattered under micro-radian angles in direct vicinity to the LHC beam. It is based on square shaped scintillating plastic fibers read out by multi-anode photomultiplier tubes and is housed in Roman Pots. We describe the design and construction of prototype detectors and the results of two beam test experiments carried out at DESY and at CERN. The excellent detector performance established in these tests validates the detector design and supports the feasibility of the proposed challenging method of luminosity measurement. All results from the CERN beam test should be considered as preliminary.

  4. MASSIVE BLACK HOLES IN STELLAR SYSTEMS: 'QUIESCENT' ACCRETION AND LUMINOSITY

    International Nuclear Information System (INIS)

    Volonteri, M.; Campbell, D.; Mateo, M.; Dotti, M.

    2011-01-01

    Only a small fraction of local galaxies harbor an accreting black hole, classified as an active galactic nucleus. However, many stellar systems are plausibly expected to host black holes, from globular clusters to nuclear star clusters, to massive galaxies. The mere presence of stars in the vicinity of a black hole provides a source of fuel via mass loss of evolved stars. In this paper, we assess the expected luminosities of black holes embedded in stellar systems of different sizes and properties, spanning a large range of masses. We model the distribution of stars and derive the amount of gas available to a central black hole through a geometrical model. We estimate the luminosity of the black holes under simple, but physically grounded, assumptions on the accretion flow. Finally, we discuss the detectability of 'quiescent' black holes in the local universe.

  5. ATLAS Fast Tracker Status and Tracking at High luminosity LHC

    CERN Document Server

    Ilic, Nikolina; The ATLAS collaboration

    2018-01-01

    The LHC’s increase in centre of mass energy and luminosity in 2015 makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer (FTK) is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The FTK reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fit to these track patterns using modern FPGAs. This talk describes the electronics system used for the FTK’s massive parallelization. The installation, commissioning and running of the system is happening in 2016, and is detailed in this talk. Tracking at High luminosity LHC is also presented.

  6. Symmetric Moeller/Bhabha luminosity monitor for the OLYMPUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, Luigi; Maas, Frank; Perez Benito, Roberto; Rodriguez Pineiro, David [Helmholtz-Institut Mainz, Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); O' Connor, Colton [Massachusetts Institute of Technology, Cambridge, MA (United States); Diefenbach, Juergen; Glaeser, Boris [Institut fuer Kernphysik, Mainz (Germany); Khaneft, Dmitry [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Helmholtz-Institut Mainz, Mainz (Germany); Ma, Yue [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    The OLYMPUS experiment is motivated by the discrepancy between the proton electric to magnetic form factor ratio measured using unpolarized and polarized electron scattering. This discrepancy can be explained by a two-photon exchange (TPE) contribution in lepton-hadron scattering. Measuring the ratio of electron-proton and positron-proton elastic scattering cross sections the contribution of the TPE can be determined. For this purpose, very precise measurements of the relative luminosity have to be performed. The symmetric Moeller/Bhabha luminosity monitor, made of calorimetric lead fluoride (PbF{sub 2}) Cherenkov detectors, provides precise data from counting coincidences Moeller and Bhabha events. High sensitivity to the geometrical acceptance and alignment requires accurate study of systematic uncertainties.

  7. Stellar bars and the spatial distribution of infrared luminosity

    International Nuclear Information System (INIS)

    Devereux, N.

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology

  8. Study of the mass-luminosity in binary stars

    International Nuclear Information System (INIS)

    Gimenez, A.; Zamorano, J.

    1986-01-01

    The results of a study of the mass-luminosity relation for main-sequence stars are presented as obtained from the latest data provided by the analysis of eclipsing and visual binary systems. The derived numerical values are discussed in light of their practical use and possible parametrizations indicated by internal structure homologous models. Finally, the astrophysical significance of our results is evaluated and they are compared to available theoretical models. (author)

  9. High-field Magnet Development toward the High Luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, Giorgio [Fermilab

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  10. Progenitors of low-luminosity Type II-Plateau supernovae

    Science.gov (United States)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2018-01-01

    The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.

  11. Physics potential and experimental challenges of the LHC luminosity upgrade

    CERN Document Server

    Gianotti, F.; Virdee, T.; Abdullin, S.; Azuelos, G.; Ball, A.; Barberis, D.; Belyaev, A.; Bloch, P.; Bosman, M.; Casagrande, L.; Cavalli, D.; Chumney, Pamela R.K.; Cittolin, S.; Dasu, S.; De Roeck, A.; Ellis, N.; Farthouat, P.; Fournier, D.; Hansen, J.B.; Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; van der Bij, J.; Watson, A.; Wielers, M.

    2005-01-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10**35 cm-2s-1. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes

  12. LHC abort gap cleaning studies during luminosity operation

    CERN Document Server

    Bartmann, W; Bracco, C; Bravin, E; Goddard, B; Höfle, W; Jacquet, D; Jeff, A; Kain, V; Meddahi, M; Roncarolo, F; Uythoven, J; Valuch, D; Gianfelice-Wendt, E

    2012-01-01

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  13. RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vorobyov, Eduard I., E-mail: michael.dunham@yale.edu, E-mail: eduard.vorobiev@univie.ac.at [Institute of Astronomy, University of Vienna, Vienna 1180 (Austria)

    2012-03-01

    We determine the observational signatures of protostellar cores by coupling two-dimensional radiative transfer calculations with numerical hydrodynamical simulations that predict accretion rates that both decline with time and feature short-term variability and episodic bursts caused by disk gravitational instability and fragmentation. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse, using as inputs the core, disk, protostellar masses, radii, and mass accretion rates predicted by the hydrodynamical simulations. From the resulting spectral energy distributions, we calculate standard observational signatures (L{sub bol}, T{sub bol}, L{sub bol}/L{sub smm}) to directly compare to observations. We show that the accretion process predicted by these models reproduces the full spread of observed protostars in both L{sub bol}-T{sub bol} and L{sub bol}-M{sub core} space, including very low luminosity objects, provides a reasonable match to the observed protostellar luminosity distribution, and resolves the long-standing luminosity problem. These models predict an embedded phase duration shorter than recent observationally determined estimates (0.12 Myr versus 0.44 Myr), and a fraction of total time spent in Stage 0 of 23%, consistent with the range of values determined by observations. On average, the models spend 1.3% of their total time in accretion bursts, during which 5.3% of the final stellar mass accretes, with maximum values being 11.8% and 35.5% for the total time and accreted stellar mass, respectively. Time-averaged models that filter out the accretion variability and bursts do not provide as good of a match to the observed luminosity problem, suggesting that the bursts are required.

  14. Luminosity geometric reduction factor from colliding bunches with different lengths

    Energy Technology Data Exchange (ETDEWEB)

    Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-29

    In the interaction point of the future electron-Ion collider eRHIC, the electron beam bunches are at least one order of magnitude shorter than the proton beam bunches. With the introduction of a crossing angle, the actual number of collisions resulting from the bunch collision gets reduced. Here we derive the expression for the luminosity geometric reduction factor when the bunches of the two incoming beams are not equal.

  15. Electron-cloud effects in high-luminosity colliders

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, F.

    1998-01-01

    Electron-cloud instabilities are expected to be important in most high-luminosity double-ring colliders. In this report, the author describes a few parameter regimes and some critical parameter dependences of this type of instability, and illustrate these with simulation results for the PEP-II and KEK B factories, the LHC, the VLHC, and DAPHNE. In addition, the author studies the possibility and the potential impact of an electron cloud in the interaction region.

  16. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  17. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  18. High-Luminosity LHC moves to the next phase

    CERN Multimedia

    2015-01-01

    This week saw several meetings vital for the medium-term future of CERN.    From Monday to Wednesday, the Resource Review Board, RRB, that oversees resource allocation in the LHC experiments, had a series of meetings. Thursday then saw the close-out meeting for the Hi-Lumi LHC design study, which was partially funded by the European Commission. These meetings focused on the High Luminosity upgrade for the LHC, which responds to the top priority of the European Strategy for Particle Physics adopted by the CERN Council in 2013. This upgrade will transform the LHC into a facility for precision studies, the logical next step for the high-energy frontier of particle physics. It is a challenging upgrade, both for the LHC and the detectors. The LHC is already the highest luminosity hadron collider ever constructed, generating up to a billion collisions per second at the heart of the detectors. The High Luminosity upgrade will see that number rise by a factor of five from 2025. For the detectors...

  19. Theoretical stellar luminosity functions and globular cluster ages and compositions

    International Nuclear Information System (INIS)

    Ratcliff, S.J.

    1985-01-01

    The ages and chemical compositions of the stars in globular clusters are of great interest, particularly because age estimates from the well-known exercise of fitting observed color-magnitude diagrams to theoretical predictions tend to yield ages in excess of the Hubble time (an estimate to the age of the Universe) in standard cosmological models, for currently proposed high values of Hubble's constant (VandenBerg 1983). Relatively little use has been made of stellar luminosity functions of the globular clusters, for which reliable observations are now becoming available, to constrain the ages or compositions. The comparison of observed luminosity functions to theoretical ones allows one to take advantage of information not usually used, and has the advantage of being relatively insensitive to our lack of knowledge of the detailed structure of stellar envelopes and atmospheres. A computer program was developed to apply standard stellar evolutionary theory, using the most recently available input physics (opacities, nuclear reaction rates), to the calculation of the evolution of low-mass Population II stars. An algorithm for computing luminosity functions from the evolutionary tracks was applied to sets of tracks covering a broad range of chemical compositions and ages, such as may be expected for globular clusters

  20. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  1. Beam dynamics studies to develop LHC luminosity model

    CERN Document Server

    Campogiani, Giovanna; Papaphilippou, Ioannis

    The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...

  2. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    International Nuclear Information System (INIS)

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-01-01

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M 1450 2 , then extend to lower luminosities (M 1450 2 of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 1450 * ∼-27). The bright-end slope is steep (β ∼ 1450 < –26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate ∼30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  3. An ionization chamber shower detector for the LHC luminosity monitor

    CERN Document Server

    Beche, J F; Datte, P S; Haguenauer, Maurice; Manfredi, P F; Millaud, J E; Placidi, Massimo; Ratti, L; Re, V; Riot, V J; Schmickler, Hermann; Speziali, V; Turner, W C

    2000-01-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~235 W at design luminosity 10/sup 34/ cm/sup -2/ s/sup -1/). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desire...

  4. A Search for Low-Luminosity BL Lacertae Objects

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.; Perlman, Eric S.

    1999-05-01

    Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or value for the X-ray-selected EMSS BL Lac sample. Thus, these observations do not explain fully the discrepancy between the X-ray- and radio-selected BL Lac samples.

  5. EU supports the LHC high-luminosity study

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The design collision energy and luminosity of the LHC are already at record numbers, making the machine one of the most complex scientific instruments ever built. However, to extend its discovery potential even further, a major upgrade of the LHC will be required around 2020. This will increase its average luminosity by a factor of 5 to 10 beyond its design value. Fifteen worldwide institutions and the European Union are supporting the initial design phase of the project through the HiLumi LHC programme, whose kick-off meeting will take place on 16-18 November.   The CERN team that has successfully built and tested the Short Magnet Coil – a small 40 cm long magnet capable of producing a 12.5 T magnetic field. The upgrade of the LHC will require about 10 years of design, construction and implementation. The new machine configuration will be called “High Luminosity LHC” (HL-LHC). The similarly named “HiLumi LHC” is the EU programme that supports...

  6. The GRB variability/peak luminosity correlation: new results

    International Nuclear Information System (INIS)

    Guidorzi, C.; Rossi, F.; Hurley, K.; Mundell, C.G.

    2005-01-01

    We test the correlation between time variability and isotropic-equivalent peak luminosity found by Reichart et al. (ApJ, 552 (2001) 57) using a set of 26 Gamma-Ray Bursts (GRBs) with known redshift. We confirm the correlation, thought with a larger spread around the best-fit power-law obtained by Reichart et al. which in turn does not provide an acceptable description any longer. In addiction, we find no evidence for correlation between variability and beaming-corrected peak luminosity for a subset of 14 GRBs whose beaming angles have been taken from Ghirlanda et al. (ApJ, 616 (2004) 331). Finally, we investigate the possible connection for some GRBs between the location in the variability/peak luminosity space and some afterglow properties, such as the detectability in the optical band, by adding some GRBs whose redshifts, unknown from direct measurements, have been derived assuming the Amati at al. (AeA, 390 (2002) 81) relationship

  7. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  8. A composite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars

    International Nuclear Information System (INIS)

    Sopp, H.M.; Alexander, P.

    1991-01-01

    We have constructed a composite plot of far-infrared versus radioluminosity for late-type galaxies, Seyferts, quasars and radio galaxies. The most striking result is that the radio and far-infrared luminosities of radio-quiet quasars are correlated and follow the same correlation as normal star-forming galaxies and ultra-luminous infrared galaxies, whereas the radio-loud quasars have luminosities in both bands similar to those of radio galaxies. We conclude that the far-infrared emission from radio-quiet quasars is from star-forming host galaxies and not from active galactic nuclei. The far-infrared radio plot may be a powerful discriminator between host galaxy type. (author)

  9. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  10. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  11. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    Science.gov (United States)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  12. Worldwide variation in atmospheric noise intensities with sunspot number: an in-depth look at the 20 to 24 hour seasonal time block

    International Nuclear Information System (INIS)

    Joglekar, P.J.; Sathiamurthy, T.S.

    1975-01-01

    Comparisons of the variation of atmospheric radio noise intensities for 20 to 24 hr to sunspot numbers have been completed. Statistical dependence between the noise intensities and sunspot numbers was found for different seasons at a number of frequencies for many locations in the global network of ARN-2 noise recorders. The noise intensities generally tended to decrease with sunspot number in the range from 50 kHz to 5 MHz, which is presumed to be due to increases in residual ionospheric absorption during nighttime. At frequencies greater than 5 MHz, noise intensities increased with sunspot number in many cases, which would be expected from our present knowledge of ionospheric behavior in the HF range. By convention, CCIR treats year-to-year variation in the noise intensities as random and includes them in the prediction uncertainty sigma /sub Fam/ (for which one value is given at a frequency for a seasonal time block for all locations) in system performance evaluation. An error analysis on a global basis shows that a large portion of the year-to-year variability is due to sunspot variation. This suggests the possibility of improved noise estimates. (auth)

  13. Drift effects on the galactic cosmic ray modulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurenza, M.; Storini, M. [INAF/IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Vecchio, A. [Istituto Nazionale di Geofisica e Vulcanologia-Sede di Cosenza, I-87036 Rende (CS) (Italy); Carbone, V., E-mail: monica.laurenza@iaps.inaf.it [Dipartimento di Fisica, Università della Calabria, I-87036 Rende (CS) (Italy)

    2014-02-01

    Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effects on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.

  14. Heliospheric Impact on Cosmic Rays Modulation

    Science.gov (United States)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  15. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-10-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  16. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    International Nuclear Information System (INIS)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong

    2016-01-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  17. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    Science.gov (United States)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  18. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  19. Physics as a function of energy and luminosity

    International Nuclear Information System (INIS)

    Ellis, J.

    1984-01-01

    In this paper, a new physics in the range of mass up to TeV region is discussed. Most of the discussion concern hadron-hadron (hh) colliders, and also electron-positron colliders are discussed. The cross-sections for new particle production in hh colliders have the general Drell-Yan form, in which the differential luminosity for the collision of partons is included. The formulas with the parton distribution scaled up from present energy using the Altarelli-Parisi equations may be approximately correct within a factor of 2 for the production of particles. Some typical parton-parton luminosity functions for proton-proton and proton-antiproton collisions are presented. From the consideration of luminosity, it can be said that the pp colliders are to be preferred. The case studies of some of the possible new physics discussed by Zakharov, mainly on Higgs bosons and supersymmetric particles, but also a few remarks about technicolor are presented. It seems possible to detect technicolor at a large hh collider. The physics reaches of different possible hh colliders are summarized in tables. In the tables, the observable production of Higgses up to 1 TeV in mass, the observable masses for gluinos (squarks) and the technicolor observability are shown. The cleanliness of electron-positron colliders compared to hadron-hadron colliders is pled, a guess is given as to the appropriate conversion factors between the energy in the electron-positron and hh collisions, the complementarity of electron-positron and hh colliders is urged, and it is argued that a rational mix of world accelerators would include both. (Kato, T.)

  20. Sky luminosity for Rio de Janeiro City - Brazil

    International Nuclear Information System (INIS)

    Corbella, O.D.

    1995-12-01

    This paper presents sky luminosity data for Rio de Janeiro City, useful to be used in daylighting design in architecture. The data are presented as monthly graphics that correlate sunshine-hours with the frequency of occurrence during the day of a specific type of sky, that would present one of five defined characteristics (among clear and overcast sky). These results were derived from the knowledge of daily solar radiation and sunshine-hours data, for every day for a twelve year period. (author). 10 refs, 13 figs, 16 tabs

  1. Cosmological perturbation effects on gravitational-wave luminosity distance estimates

    Science.gov (United States)

    Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino

    2018-06-01

    Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.

  2. Physics potential and experimental challenges of the LHC luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, F.; Ball, A.; Bloch, P.; Casagrande, L.; Cittolin, S.; Roeck, A. de; Ellis, N.; Farthouat, P.; Hansen, J.-B. [CERN, Experimental Physics Division, Geneva (Switzerland); Mangano, M.L. [CERN, Theoretical Physics Division, Geneva (Switzerland); Virdee, T. [CERN, Experimental Physics Division, Geneva (Switzerland); Imperial College, London (United Kingdom); Abdullin, S. [University of Maryland (United States); Azuelos, G. [University of Montreal, Group of Particle Physics, Montreal (Canada); Barberis, D. [Universita di Genova, Dipartimento di Fisica and INFN (Italy); Belyaev, A. [Florida State University, Tallahassee, FL (United States); Bosman, M. [IFAE, Barcelona (Spain); Cavalli, D. [INFN, Milano (Italy); Chumney, P.; Dasu, S. [Univ. of Wisconsin, Madison, WI (United States); Fournier, D. [LAL, Orsay (France); Hinchliffe, I.; Hohlfeld, M.; Huhtinen, M.; Jakobs, K.; Joram, C.; Mazzucato, F.; Mikenberg, G.; Miagkov, A.; Moretti, M.; Moretti, S.; Niinikoski, T.; Nikitenko, A.; Nisati, A.; Paige, F.; Palestini, S.; Papadopoulos, C.G.; Piccinini, F.; Pittau, R.; Polesello, G.; Richter-Was, E.; Sharp, P.; Slabospitsky, S.R.; Smith, W.H.; Stapnes, S.; Tonelli, G.; Tsesmelis, E.; Usubov, Z.; Vacavant, L.; Bij, J. van der; Watson, A.; Wielers, M.

    2004-02-01

    We discuss the physics potential and the experimental challenges of an upgraded LHC running at an instantaneous luminosity of 10{sup 35} cm{sup -2}s{sup -1}. The detector R and D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are discussed. A few examples of the increased physics potential are given, ranging from precise measurements within the Standard Model (in particular in the Higgs sector) to the discovery reach for several New Physics processes. (orig.)

  3. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    Varol, Tulin; The ATLAS collaboration

    2017-01-01

    The Higgs physics prospects at the high-luminosity LHC are presented, assuming an energy of $\\sqrt s = 14$ TeV and a data sample of 3000-4000 fb$^{-1}$. In particular, the ultimate precision attainable on the couplings measurements of the 125 GeV Higgs boson with SM fermions and bosons is discussed, as well as perspectives on the search for the Standard Model di-Higgs production, which could lead to the measurement of the Higgs boson self-coupling.

  4. Prospects for physics at high luminosity with CMS

    Directory of Open Access Journals (Sweden)

    Varela João

    2013-05-01

    Full Text Available The precision measurements of the properties of the recently discovered Higgs-like boson will be central to the future LHC physics program. In parallel the search for New Physics beyond the SM will continue. Higher luminosity will extend the mass reach and allow sensitive searches for possible subtle signatures for new physics. In this paper we review the potential sensitivity of CMS to a selection of relevant future physics scenarios accessible with the LHC upgrades and a correspondingly upgraded CMS detector.

  5. The luminosity monitor of the HERMES experiment at DESY

    CERN Document Server

    Benisch, T; Devitsin, E G; Kozlov, V; Potashov, S Yu; Rith, K; Terkulov, A R; Weiskopf, C

    2001-01-01

    A detector is described which measures the luminosity of the HERMES experiment at DESY. It is based on the coincident detection of electron-positron and photon pairs, or electron pairs, originating from the interaction of the beam positrons, or electrons, with the electrons of the atomic gas target. It consists of two calorimeters with radiation hard NaBi(WO sub 4) sub 2 crystals. Properties of the monitor, investigated in an electron test beam, and its performance in the experiment are presented.

  6. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  7. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  8. Absolute luminosity measurements with the LHCb detector at the LHC

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Brisbane, S; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Caicedo Carvajal, J M; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Constantin, F; Conti, G; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Almagne, B; D'Ambrosio, C; David, P; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Deissenroth, M; Del Buono, L; Deplano, C; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Eames, C; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; d'Enterria, D G; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hofmann, W; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koblitz, S; Koppenburg, P; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kukulak, S; Kumar, R; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Luisier, J; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Mclean, C; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nardulli, J; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Nies, S; Niess, V; Nikitin, N; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B; Palacios, J; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Pie Valls, B; Pietrzyk, B; Pilar, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; du Pree, T; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shao, B; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skottowe, H P; Skwarnicki, T; Smith, A C; Smith, N A; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Styles, N; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vervink, K; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Voong, D; Vorobyev, A; Voss, H; Wacker, K; Wandernoth, S; Wang, J; Ward, D R; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5\\% in the absolute lumi...

  9. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  10. ATLAS Plans for the High-Luminosity LHC

    CERN Document Server

    Walkowiak, Wolfgang; The ATLAS collaboration

    2018-01-01

    Despite the excellent performance of the Large Hadron Collider (LHC) at CERN an upgrade to a High-Luminosity LHC (HL-LHC) with a peak instantaneous luminosity of up to $7.5\\times 10^{34}$ fb$^{-1}$ will be required after collecting a total dataset of approximately 300 fb$^{-1}$ by the end of Run 3 (in 2023). The upgrade will substantially increase the statistics available to the experiments for addressing the remaining open puzzles of particle physics. The HL-LHC is expected to start operating in 2026 and to deliver up to 4000 fb$^{-1}$ within twelve years. The corresponding upgrades of the ATLAS detector and the ATLAS beauty physics program at the HL-LHC are being discussed. As examples, preliminary results on the expected sensitivities for the search for CP-violation in the decay channel $B^0_s \\to J/\\psi \\,\\phi$ using the parameters $\\Delta\\Gamma_s$ and $\\phi_s$ as well as projections for the branching fractions of the rare decays $B^0_s \\to \\mu^+\\mu^-$ and $B^0\\to\\mu^+\\mu^-$ are provided.

  11. ATLAS Higgs Physics Prospects at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218105; The ATLAS collaboration

    2016-01-01

    The High-Luminosity Large Hadron Collider will provide an unprecedented opportunity to study the properties of the Higgs boson and eventually probe for new physics beyond the Standard Model. The large anticipated data sample will allow for more precise investigations of topics already studied with earlier data samples, as well as for studies of processes that are accessible only with the much larger statistics. Rates and signal strengths will be measured for a variety of Higgs-boson production and decay modes, allowing extraction of the Higgs boson couplings. Particular final states will allow differential cross-sections to be measured for all production modes, and for studies of the Higgs width and CP properties, as well as the tensor structure of its coupling to bosons. An important part of the High-Luminosity LHC experimental program will be investigations of the Higgs self-coupling, which is accessible via studies of di-Higgs production. In this note the projections of the ATLAS physics reach in the Higgs...

  12. Disk accretion onto a black hole at subcritical luminosity

    International Nuclear Information System (INIS)

    Bisnovatyi-Kogan, G.S.; Blinnikov, S.I.

    1977-01-01

    The influence of radiation pressure on the structure of an accretion disk is considered when the total luminosity L approaches the Eddington limit Lsub(c). The motion of particles in the disk radiation field and gravitational field of a nonrotating black hole is investigated. It is shown that the disk accretion is destroyed when L approximately equal to (0.6 / 1.0) Lsub(c). Matter outflow from the central parts of the disk to infinity then sets in. We conclude that the luminosity cannot significantly exceed the Eddington limit. We show that for L > approximately 0.1 Lsub(c) the plasma in the upper layers of the central region of the disk is heated up to temperatures T approximately 10 9 K and the disk becomes thicker as compared with the standard theory. It is shown that the radiative force can generate magnetic fields B approximately 100 G. We find that convection is the main energy transfer mechanism along z-coordinate in the central parts of the disk. The convection generates an acoustic flux which dissipates in the upper, optically thin layers of the disk and heats them. The comptonization of soft photons going from layers to the hot upper layers and variable accretion rate may explain the spectrum and variations of X-ray emission of the CygX-1. (orig.) [de

  13. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00439268; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 1034 cm−2s−1, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and expected ...

  14. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00421104; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 \\times 10^{34} cm^{-2}s^{-1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture an...

  15. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    George, Simon; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of 7.5 × 10^{34} cm^{−2}s^{−1}, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architecture and ...

  16. ATLAS Trigger and Data Acquisition Upgrades for High Luminosity LHC

    CERN Document Server

    Balunas, William Keaton; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at CERN is planning a second phase of upgrades to prepare for the "High Luminosity LHC", a 4th major run due to start in 2026. In order to deliver an order of magnitude more data than previous runs, 14 TeV protons will collide with an instantaneous luminosity of $7.5 × 10^{34}$ cm$^{−2}$s$^{−1}$, resulting in much higher pileup and data rates than the current experiment was designed to handle. While this extreme scenario is essential to realise the physics programme, it is a huge challenge for the detector, trigger, data acquisition and computing. The detector upgrades themselves also present new requirements and opportunities for the trigger and data acquisition system. Initial upgrade designs for the trigger and data acquisition system are shown, including the real time low latency hardware trigger, hardware-based tracking, the high throughput data acquisition system and the commodity hardware and software-based data handling and event filtering. The motivation, overall architectur...

  17. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; Buscher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; Mattig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Schafer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nuclear Research (CERN) in Switzerland. It is designed to observe phenomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4 10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5 micro seconds. It is primarily composed of the Calori...

  18. Topological and Central Trigger Processor for 2014 LHC luminosities

    CERN Document Server

    Simioni, E; The ATLAS collaboration; Bauss, B; Berge, D; B\\"{u}scher, V; Childers, T; Degele, R; Dobson, E; Ebling, A; Ellis, N; Farthouat, P; Gabaldon, C; Gorini, B; Haas, S; Ji, W; Kaneda, M; M\\"{a}ttig, S; Messina, A; Meyer, C; Moritz, S; Pauly, T; Pottgen, R; Sch\\"{a}fer, U; Spiwoks, R; Tapprogge, S; Wengler, T; Wenzel, V

    2012-01-01

    The ATLAS experiment is located at the European Center for Nu- clear Research (CERN) in Switzerland. It is designed to observe phe- nomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4×10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the AT- LAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 400Hz and, at the same time, selecting those events considered interesting. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5μs. It is primarily composed of the Calorimete...

  19. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  20. ATLAS Physics Prospects at the High-Luminosity LHC

    CERN Document Server

    Bindi, Marcello; The ATLAS collaboration

    2017-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  1. LHC Report: spring cleaning over, bunches of luminosity

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Scrubbing was completed on Wednesday 13 April. The run had seen over 1000 bunches per beam successfully circulating at 450 GeV. Measurements showed that electron cloud activity in the cold regions had been suppressed. A decrease of vacuum activity in the warm regions demonstrated that the cleaning had also achieved the required results there. As discussed in the last Bulletin, the scrubbing was performed with high intensity bunches with 50 nanosecond spacing. Given the potential luminosity performance with this spacing (more bunches, higher bunch intensity from the injectors) and in the light of the results of the scrubbing run, the decision was taken to continue the 2011 physics run with this bunch spacing.   A few issues with 50 nanosecond spacing had to be resolved when standard operations for luminosity production resumed. Once things had been tidied up, stable beams were provided for the experiments, firstly with 228 bunches per beam and then with 336 bunches per beam. The 336 bunch fill that w...

  2. Luminosity Optimization for a Higher-Energy LHC

    CERN Document Server

    Dominguez, O

    2011-01-01

    A Higher-Energy Large Hadron Collider (HE-LHC) is an option to further push the energy frontier of particle physics beyond the present LHC. A beam energy of 16.5 TeV would require 20 T dipole magnets in the existing LHC tunnel, which should be compared with 7 TeV and 8.33 T for the nominal LHC. Since the synchrotron radiation power increases with the fourth power of the energy, radiation damping becomes significant for the HE-LHC. It calls for transverse and longitudinal emittance control vis-a-vis beam-beam interaction and Landau damping. The heat load from synchrotron radiation, gas scattering, and electron cloud also increases with respect to the LHC. In this paper we discuss the proposed HE-LHC beam parameters; the time evolution of luminosity, beam-beam tune shifts, and emittances during an HE-LHC store; the expected heat load; and luminosity optimization schemes for both round and flat beams.

  3. Radio and optical studies of high luminosity Iras galaxies

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Parker, Q.A.; Savage, A.; MacGillivray, H.T.; Leggett, S.K.; Clowes, R.G.; Unger, S.W.; Pedlar, A.; Heasley, J.N.; Menzies, J.W.

    1987-01-01

    Follow-up observations of a complete sample of 154 IRAS galaxies, optically identified down to B=21, indicate that between 3 and 9% of the sample are ultraluminous depending on the choice of H 0 . VLA observations at 20 cm of the complete sample indicate that 85% are detected above 1mJy and for the most part the radio emission is centrally concentrated. The tight linear relation between radio and infrared luminosities is valid at the highest luminosities. Of the 11 most luminous objects one is a quasar: it fits the radio infrared relation very well which suggests that the infrared and radio emission has the same origin as in the other IRAS galaxies, ie. it probably originates primarily in regions of star formation in the host galaxy. The other 10 very luminous galaxies are either close but resolved mergers or double galaxies, presumably interacting. Radio observations of the 10 original empty field sources in our sample with no optical counterpart (B ≤ 21) allow us to conclude that 4 of these are fainter galaxies just outside the IRAS error ellipse with high values of L IR /L B . One other object, with a radio source at the edge of the error ellipse but no optical counterpart brighter than B = 23, may prove to be a highly luminous galaxy with L IR /L B > ∼ 1250

  4. The Discovery of Low-Luminosity BL Lacs

    Science.gov (United States)

    Rector, Travis A.; Stocke, John T.

    1995-12-01

    Many of the properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis whereby BL Lacs are ``highly beamed'' FR-I radio galaxies (i.e. our line of sight to these objects is nearly along the jet axis). Further, radio-selected BL Lacs (RBLs) are believed to be seen nearly ``on-axis'' (the line-of-sight angle theta ~ 8deg ) while X-ray selected BL Lacs (XBLs) are seen at larger angles (theta ~ 30deg ; the X-ray emitting jet is believed to be less collimated). However, a major problem with this model was that a transition population between beamed BL Lacs and unbeamed FR-Is had not been detected. Low-luminosity BL Lacs may be such a transition population, and were predicted to exist by Browne and Marcha (1993). We present ROSAT HRI images, VLA radio maps and optical spectra which confirm the existence of low-luminosity BL Lacs, objects which were previously mis-identified in the EMSS catalog as clusters of galaxies. Thus our results strengthen the relativistic beaming hypothesis.

  5. A luminosity monitor for LHC [notes of a thesis

    CERN Document Server

    Perrot, Anne Laure

    2000-01-01

    LHC luminosity will reach 10/sup 34/ cm/sup -2/ s/sup -1/ but special runs at 10/sup 28/ cm/sup -2/ s/sup -1/ are foreseen. Thus a luminosity monitor must have a dynamic range of six orders of magnitude. A good tolerance to radiation is also required. A detector using both ionisation and secondary emission techniques has been studied in this context. Its design is based on monitors used previously at the CERN PS and SPS. Special attention was devoted to minimise leakage currents. Linearity in both Secondary Emission Counter (SEC) and Ionisation Chamber (IC) modes has been tested from ~10/sup 4/ incident particles to ~10/sup 8/ incident particles. SEC is linear above ~5.10/sup 6/ incident particles while IC is linear over the full studied range. However, because of the radiation environment at LHC, the SEC mode is much preferred at high intensity. A solution actually foreseen is to switch from IC to SEC mode when the intensity is around 5.10/sup 6/ incident particles per second corresponding to an LHC luminosi...

  6. Luminosity on development and flowering of Dendrobium nobile Lindl.

    Directory of Open Access Journals (Sweden)

    Yara Brito Chaim Jardim Rosa

    2014-09-01

    Full Text Available This study, conducted at Jardinocultura area of Faculdade de Ciências Agrárias of UFGD during the period from September of 2010 to August of 2011, had as aim evaluate the cultivation and flowering of Dendrobium nobile Lindl., under five levels of luminosity (83, 104, 115, 154 e 237 μmol m-2 s-1 . During 12 months the plants were irrigated and fertilized with NPK 10-10-10 and after this period they were evaluated for the number, length and diameter of pseudobulbs, being calculated the increments in relation to initial data. At flowering time it was counted the total buds, reproductive buds, vegetative buds and undifferentiated buds and registered the anthesis at each light intensity. The experimental was arranged at completely randomized design with five treatments and seven replicates with two plants and the averages were compared by Tukey test at 5% probability. All the lighting conditions were favorable to the D. nobile cultivation, being registered increases of 36,7%, 16,0% e 16,2% in the number, diameter and length of pseudobulbs, respectively. The largest number of reproductive buds was observed at 104 μmol m-2 s-1. D. nobile can be cultivated in the light conditions varying between 83 and 237 μmol m-2 s-1, recommending the luminosity of 104 μmol m-2 s-1 to promote their flowering.

  7. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  8. Physics prospects at the high luminosity LHC with ATLAS

    CERN Document Server

    Simioni, Eduard; The ATLAS collaboration

    2016-01-01

    The physics prospects at the luminosity upgrade of LHC, HL-LHC, with a data set equivalent to 3000 fb-1 simulated in the ATLAS detector, are presented and discussed. The ultimate precision attainable on measurements of 125 GeV Higgs boson couplings to elementary fermions and bosons is discussed, as well as the searches for partners associated with this new particle. The electroweak sector is further studied with the analysis of the vector boson scattering, testing the SM predictions at the LHC energy scale. Supersymmetry is still one of the best motivated extensions of the Standard Model. The current searches at the LHC have yielded sensitivity to TeV scale gluinos and 1st and 2nd generation squarks, as well as to 3rd generation squarks. The sensitivity to electro-weakinos has reached the hundreds of GeV mass range. Benchmark studies are presented to show how the sensitivity improves at the future high-luminosity LHC runs. Prospects for searches for new heavy bosons and dark matter candidates at 14 TeV pp col...

  9. High-luminosity LHC prospects with the upgraded ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379172; The ATLAS collaboration

    2016-01-01

    Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will be reached at the high-luminosity LHC run with a proton-proton centre-of-mass energy of 14 TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosities 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson couplings to elementary fermions and bosons, its trilinear self-coulping, as well as perspectives on the searches for partners associated with it. Benchmark studies are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a parameterised simulation of the upgraded ATLAS detector is used and expected pileup condition...

  10. Period of sunspot numbers is 11.02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    International Nuclear Information System (INIS)

    Norita, Sadataka

    1976-01-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce an stationarity into the autoregressive process and then it is the first purpose to compute precisely period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now. (auth.)

  11. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  12. Determination of the Alfvén Speed and Plasma-beta Using the Seismology of Sunspot Umbra

    Energy Technology Data Exchange (ETDEWEB)

    Cho, I.-H.; Moon, Y.-J.; Nakariakov, V. M.; Park, J.; Choi, S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Cho, K.-S.; Bong, S.-C.; Baek, J.-H.; Kim, Y.-H.; Lee, J., E-mail: ihjo@khu.ac.kr [Space Science Division, Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2017-03-01

    For 478 centrally located sunspots observed in the optical continuum with Solar Dynamics Observatory /Helioseismic Magnetic Imager, we perform seismological diagnostics of the physical parameters of umbral photospheres. The new technique is based on the theory of slow magnetoacoustic waves in a non-isothermally stratified photosphere with a uniform vertical magnetic field. We construct a map of the weighted frequency of three-minute oscillations inside the umbra and use it for the estimation of the Alfvén speed, plasma-beta, and mass density within the umbra. We find the umbral mean Alfvén speed ranges between 10.5 and 7.5 km s{sup −1} and is negatively correlated with magnetic field strength. The umbral mean plasma-beta is found to range approximately between 0.65 and 1.15 and does not vary significantly from pores to mature sunspots. The mean density ranges between (1–6) × 10{sup −4} kg m{sup −3} and shows a strong positive correlation with magnetic field strength.

  13. Period of sunspot numbers is 11. 02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    Energy Technology Data Exchange (ETDEWEB)

    Norita, S [Miyazaki Univ. (Japan). Faculty of Engineering

    1976-09-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce a stationarity into the autoregressive process and then it is the first purpose to compute precisely the period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now.

  14. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

    Science.gov (United States)

    Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.

    2018-04-01

    We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.

  15. Present and past neutrino luminosity of the sun

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J K; Cleveland, B T; Davis, R Jr; Hampel, W; Kirsten, T

    1979-01-01

    The neutrino radiation from the sun can give direct information on the basic nuclear fusion processes that provide the solar energy. Results are reported which have been obtained over the last seven years with the Brookhaven solar neutrino detector that depends upon the neutrino capture reaction, /sup 37/Cl(..nu..,e/sup -/)/sup 37/ Ar. These results do not agree with the predictions of the standard solar model. It is of great interest to know whether the lack of agreement between the measurements and theoretical expectation could possibly be explained by a secular variation in the rate of the fusion process. Two radiochemical neutrino detection techniques have been proposed previously that could in principle record the neutrino flux of the past. An analysis of the expected background processes for these experiments is given. These and other possible methods of recording the past solar neutrino luminosity are discussed in relation to variations expected from theoretical solar models. 2 figures, 6 tables, 36 references.

  16. Preliminary accelerator plans for maximizing the integrated LHC luminosity

    CERN Document Server

    Benedikt, Michael; Ruggiero, F; Ostojic, R; Scandale, Walter; Shaposhnikova, Elena; Wenninger, J

    2006-01-01

    A working group on "Proton Accelerators for the Future" (PAF) has been created in May 2005 by the CERN direction to elaborate a baseline scenario of the possible development and upgrade of the present Proton Accelerator Complex. This report is the result of the investigation conducted until the end of 2005, in close connection with the working group on "Physics Opportunities with Future Proton Accelerators" (POFPA) and is consistent with their recommendations. Focused on the goal of maximizing the integrated luminosity for the LHC experiments, a scenario of evolution is proposed, subject to further refinement using the future experience of commissioning and running-in the collider and its injector complex. The actions to be taken in terms of consolidation, R & D and improvement are outlined. The benefits for other types of physics are mentioned and will be investigated in more detail in the future.

  17. Beam-beam effect and luminosity in SPEAR

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1980-07-01

    Measurements performed at SPEAR have been discussed and scaling laws for the maximum luminosity and the maximum linear tune shift parameter with energy are shown. There are two distinct regimes, one below 2 GeV where the linear tune shift parameter scales like xi/sub y/ approx. E 2 4 and the other regime where this parameter is constant xi/sub y/ approx. = 0.05 to 0.06. In the lower energy regime the limit is reached when the vertical beam size is blown up to the acceptance of the storage ring. A significant (< 10%) horizontal beam blow up is not observed and the value of the horizontal linear tune shift parameter xi/sub x/ does not seem to be related to the beam-beam limit

  18. CKM fits as a function of luminosity (Time)

    International Nuclear Information System (INIS)

    Hoecker, A.; Lacker, H.; Laplace, S.; Le Diberder, F.

    2001-05-01

    Possible scenarios for CKM fits in the years 2005 and 2010 are presented using B- and K - physics results from extrapolated luminosities for B-factories at the γ(4S), for the hadron machines at Tevatron and LHC and experiments for rare kaon decays. The study provides an estimate of what precision for the CKM matrix elements can be achieved if all relevant experiments and accelerators, including upgrades for the existing e + e - machines, reach their design goals. It is intended to give information used to explore which type of future experiments are needed to cover all relevant physics topics related to the CKM matrix and the search of physics beyond the Standard Model. (authors)

  19. SLHC, the high-luminosity upgrade (public event)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    In the morning of February 26th a public event is organised in CERN's main auditorium with the aim of informing the particle physics community about the current status of preparation work for the future LHC luminosity upgrade (Phase 1 and Phase 2). The presentations will provide an overview of the various accelerator sub-projects, the physics potential and the experiment upgrade plans. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the SLHC project. Informing the public about the overall status of SLHC is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  20. An Upgraded ATLAS Central Trigger for 2015 Luminosities

    International Nuclear Information System (INIS)

    Poettgen, Ruth; Gutenberg, Johannes

    2013-06-01

    The Central Trigger Processor (CTP) is a core unit of the first of three levels that constitute the ATLAS trigger system. Based on information from calorimeter and muon trigger processors as well as from some additional systems it produces the level-1 trigger decision and prompts the read-out of the sub-detectors. The increase in luminosity at the LHC has pushed the CTP operation to its design limits. In order to still satisfy the physics goals of the experiment after the shutdown of the LHC of 2013/2014 the CTP will be upgraded during this period. This article discusses the current Central Trigger Processor, the motivation for the upgrade, and the changes foreseen to meet the requirements of the post-2014 physics runs at the LHC. (authors)

  1. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  2. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  3. The distribution in luminosity of OB stars and evolutionary timescales

    International Nuclear Information System (INIS)

    Bisiacchi, F.; Carrasco, L.; Costero, R.; Firmani, C.; Rayo, J.F.

    1979-01-01

    The authors have obtained the observed fraction of supergiant (luminosity classes I and II), giant (III) and dwarf (IV-V) stars of spectral types B2 and earlier. The stellar sample used was formed with all the stars with bidimensional spectral classification listed in the Catalogue of Galactic O stars by Cruz-Gonzalez et al. (1974) , and unpublished compilation of BO and BO.5 stars by J. F. Rayo, and the B1-B2 stars listed by Morgan et at. (1955). The results are listed together with the total number of stars considered in each spectral interval. A prominent conclusion is drawn from the table: The fractions remain approximately constant all over the spectral range considered. (Auth.)

  4. The Physics Landscape of the High Luminosity LHC

    CERN Document Server

    Mangano, M

    2015-01-01

    We review the status of HEP after the first run of the LHC and discuss the opportunities offered by the HL-LHC, in light of the needs for future progress that are emerging from the data. The HL-LHC will push to the systematic limit the precision of most measurements of the Higgs boson, and will be necessary to firmly establish some of the more rare decays foreseen by the Standard Model, such as the decays to dimuons and to a Z+ photon pair. The HL-LHC luminosity will provide additional statistics required by the quantitative study of any discovery the LHC may achieve during the first 300 inverse femtobarn, and will further extend the discovery potential of the LHC, particularly for rare, elusive or low-sensitivity processes.

  5. Present and past neutrino luminosity of the sun

    International Nuclear Information System (INIS)

    Rowley, J.K.; Cleveland, B.T.; Davis, R. Jr.; Hampel, W.; Kirsten, T.

    1979-01-01

    The neutrino radiation from the sun can give direct information on the basic nuclear fusion processes that provide the solar energy. Results are reported which have been obtained over the last seven years with the Brookhaven solar neutrino detector that depends upon the neutrino capture reaction, 37 Cl(ν,e - ) 37 Ar. These results do not agree with the predictions of the standard solar model. It is of great interest to know whether the lack of agreement between the measurements and theoretical expectation could possibly be explained by a secular variation in the rate of the fusion process. Two radiochemical neutrino detection techniques have been proposed previously that could in principle record the neutrino flux of the past. An analysis of the expected background processes for these experiments is given. These and other possible methods of recording the past solar neutrino luminosity are discussed in relation to variations expected from theoretical solar models. 2 figures, 6 tables, 36 references

  6. Silicon sensors for trackers at high-luminosity environment

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Timo, E-mail: timo.peltola@helsinki.fi

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. - Highlights: • An overview of the recent results from the RD50 collaboration. • Accuracy of TCAD simulations increased by including both bulk and surface damage. • Sensors with n-electrode readout and MCz material offer higher radiation hardness. • 3D detectors are a promising choice for the extremely high fluence environments. • Detectors with an enhanced charge carrier generation under systematic investigation.

  7. An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation

    Science.gov (United States)

    Matrà, L.; Marino, S.; Kennedy, G. M.; Wyatt, M. C.; Öberg, K. I.; Wilner, D. J.

    2018-05-01

    Resolved observations of millimeter-sized dust, tracing larger planetesimals, have pinpointed the location of 26 Edgeworth–Kuiper Belt analogs. We report that a belt’s distance R to its host star correlates with the star’s luminosity L ⋆, following R\\propto {L}\\star 0.19 with a low intrinsic scatter of ∼17%. Remarkably, our Edgeworth–Kuiper Belt in the solar system and the two CO snow lines imaged in protoplanetary disks lie close to this R–L ⋆ relation, suggestive of an intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation, we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias could produce the slope and intercept of the R–L ⋆ relation but is unable to reproduce its low scatter. We then repeat the simulation taking into account the collisional evolution of belts, following the steady-state model that fits the belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of the simulated R–L ⋆ relation; however, this scatter remains only marginally consistent with the one observed. The inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks. The similar trend for CO snow line locations would then indicate that the formation of planetesimals or planets in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet formation models.

  8. PROPERTIES OF THE MOLECULAR CORES OF LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Tien-Hao; Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Belloche, Arnaud; Wyrowski, Friedrich [Max-Planck-Institut für Radioastronomie (MPIfR), Bonn (Germany); Hung, Chao-Ling, E-mail: slai@phys.nthu.edu.tw, E-mail: shawinchone@gmail.com [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-04-01

    We present a survey toward 16 low luminosity objects (LLOs with an internal luminosity, L{sub int}, lower than 0.2 L{sub ⊙}) with N{sub 2}H{sup +} (1–0), N{sub 2}H{sup +} (3–2), N{sub 2}D{sup +} (3–2), HCO{sup +} (3–2), and HCN (3–2) using the Arizona Radio Observatory Kitt Peak 12 m Telescope and Submillimeter Telescope. Our goal is to probe the nature of these faint protostars which are believed to be either very low mass or extremely young protostars. We find that the N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios of LLOs are similar to those of typical starless cores and Class 0 objects. The N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios are relatively high (>0.05) for LLOs with kinetic temperatures less than 10 K in our sample. The distribution of N{sub 2}H{sup +} (1–0) line widths spreads between that of starless cores and young Class 0 objects. If we use the line width as a dynamic evolutionary indicator, LLOs are likely young Class 0 protostellar sources. We further use the optically thick tracers, HCO{sup +} (3–2) and HCN (3–2), to probe the infall signatures of our targets. We derive the asymmetry parameters from both lines and estimate the infall velocities by fitting the HCO{sup +} (3–2) spectra with two-layer models. As a result, we identify eight infall candidates based on the infall velocities and seven candidates have infall signatures supported by asymmetry parameters from at least one of HCO{sup +} (3–2) and HCN (3–2)

  9. Variations of the core luminosity and solar neutrino fluxes

    Science.gov (United States)

    Grandpierre, Attila

    The aim of the present work is to analyze the geological and astrophysical data as well as presenting theoretical considerations indicating the presence of dynamic processes present in the solar core. The dynamic solar model (DSM) is suggested to take into account the presence of cyclic variations in the temperature of the solar core. Comparing the results of calculations of the CO2 content, albedo and solar evolutionary luminosity changes with the empirically determined global earthly temperatures, and taking into account climatic models, I determined the relation between the earthly temperature and solar luminosity. These results indicate to the observed maximum of 10o change on the global terrestrial surface temperature a related solar luminosity change around 4-5 % on a ten million years timescale, which is the timescale of heat diffusion from the solar core to the surface. The related solar core temperature changes are around 1 % only. At the same time, the cyclic luminosity changes of the solar core are shielded effectively by the outer zones since the radiation diffusion takes more than 105 years to reach the solar surface. The measurements of the solar neutrino fluxes with Kamiokande 1987-1995 showed variations higher than 40 % around the average, at the Super-Kamiokande the size of the apparent scatter decreased to 13 %. This latter scatter, if would be related completely to stochastic variations of the central temperature, would indicate a smaller than 1 % change. Fourier and wavelet analysis of the solar neutrino fluxes indicate only a marginally significant period around 200 days (Haubold, 1998). Helioseismic measurements are known to be very constraining. Actually, Castellani et al. (1999) remarked that the different solar models lead to slightly different sound speeds, and the different methods of regularization yield slightly different sound speeds, too. Therefore, they doubled the found parameter variations, and were really conservative assuming

  10. Normal and counter Evershed flows in the photospheric penumbra of a sunspot SPINOR 2D inversions of Hinode-SOT/SP observations

    Czech Academy of Sciences Publication Activity Database

    Siu-Tapia, A.; Lagg, A.; Solanki, S.K.; van Noort, M.; Jurčák, Jan

    2017-01-01

    Roč. 607, November (2017), A36/1-A36/17 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : sunspots * photosphere * magnetic fields Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  11. Measurement of the luminosity in the ZEUS experiment at HERA II

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, L.; Bold, T. [AGH Univ. of Science and Technology, Cracow (Poland); Andruszkow, J. [Polish Academy of Sciences, Cracow (Poland). Inst. of Nuclear Physics] [and others

    2013-06-15

    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.

  12. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  13. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  14. THE LOCAL [C ii] 158 μ m EMISSION LINE LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Yan, Lin; Capak, Peter; Faisst, Andreas; Masters, Daniel [Infrared Processing and Analysis Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena CA 91125 (United States); Diaz-Santos, Tanio [Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile); Armus, Lee, E-mail: shemmati@ipac.caltech.edu [Spitzer Science Center, Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2017-01-01

    We present, for the first time, the local [C ii] 158 μ m emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample. [C ii] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey and estimated for the rest of the sample based on the far-infrared (far-IR) luminosity and color. The sample covers 91.3% of the sky and is complete at S{sub 60μm} > 5.24 Jy. We calculate the completeness as a function of [C ii] line luminosity and distance, based on the far-IR color and flux densities. The [C ii] luminosity function is constrained in the range ∼10{sup 7–9} L{sub ⊙} from both the 1/ V{sub max} and a maximum likelihood methods. The shape of our derived [C ii] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [C ii] luminosity functions to agree, we propose a varying ratio of [C ii]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [C ii] high-redshift observations as well as estimates based on the IR and UV luminosity functions are suggestive of an evolution in the [C ii] luminosity function similar to the evolution trend of the cosmic star formation rate density. Deep surveys using the Atacama Large Millimeter Array with full capability will be able to confirm this prediction.

  15. Testing and Improving the Luminosity Relations for Gamma-Ray Bursts

    Science.gov (United States)

    Collazzi, Andrew C.

    2012-01-01

    Gamma Ray Bursts (GRBs) have several luminosity relations where a measurable property of a burst light curve or spectrum is correlated with the burst luminosity. These luminosity relations are calibrated for the fraction of bursts with spectroscopic redshifts and hence the known luminosities. GRBs have thus become known as a type of "standard candle” where standard candle is meant in the usual sense that luminosities can be derived from measurable properties of the bursts. GRBs can therefore be used for the same cosmology applications as Type Ia supernovae, including the construction of the Hubble Diagram and measuring massive star formation rate. The greatest disadvantage of using GRBs as standard candles is that their accuracy is lower than desired. With the recent advent of GRBs as a new standard candle, every effort must be made to test and improve the distance measures. Here, methods are employed to do just that. First, generalized forms of two tests are performed on the luminosity relations. All the luminosity relations pass one of these tests, and all but two pass the other. Even with this failure, redundancies in using multiple luminosity relations allows all the luminosity relations to retain value. Next, the "Firmani relation” is shown to have poorer accuracy than first advertised. It is also shown to be derivable from two other luminosity relations. For these reasons, the Firmani relation is useless for cosmology. The Amati relation is then revisited and shown to be an artifact of a combination of selection effects. Therefore, the Amati relation is also not good for cosmology. Fourthly, the systematic errors involved in measuring a luminosity indicator (Epeak) are measured. The result is an irreducible systematic error of 28%. Finally, the work concludes with a discussion about the impact of the work and the future of GRB luminosity relations.

  16. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  17. The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    OpenAIRE

    Hopkins, Philip F.; Hernquist, Lars; Cox, Thomas J.; Di Matteo, Tiziana; Robertson, Brant; Springel, Volker

    2005-01-01

    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the fai...

  18. HIGH RESOLUTION He i 10830 Å NARROW-BAND IMAGING OF AN M-CLASS FLARE. I. ANALYSIS OF SUNSPOT DYNAMICS DURING FLARING

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Ji, Haisheng [Key Laboratory of DMSA, Purple Mountain Observatory, CAS, Nanjing, 210008 (China); Zeng, Zhicheng; Goode, Philip R.; Cao, Wenda [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States); Ji, Kaifan [Yunnan Astronomical Observatories, Kunming 650011 (China)

    2016-12-20

    In this paper, we report our first-step results of high resolution He i 10830 Å narrow-band imaging (bandpass: 0.5 Å) of an M1.8 class two-ribbon flare on 2012 July 5. The flare was observed with the 1.6 m aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extension of umbral flashes; both take the form of absorption in the 10830 Å narrow-band images. From a space–time image made of a slit cutting across a flare ribbon and the sunspot, we find that the dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside the ribbon when it sweeps into the sunspot’s penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a return of the absorption strip with similar speed. We tentatively explain the phenomena as the result of a sudden increase in the density of ortho-helium atoms in the area of the sunspot being excited by the flare’s extreme ultraviolet illumination. This explanation is based on the observation that 10830 Å absorption around the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  19. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  20. The INFN R\\&D: new pixel detector for the High Luminosity Upgrade of the LHC

    CERN Document Server

    Dinardo, Mauro

    2017-01-01

    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few $10^{16}$~ particles/cm$^2$ at $\\sim$3~cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R\\&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100~$\\mu {\\rm m}$ and 130~$\\mu {\\rm m}$ active thickness for planar sensors, and 130~$\\mu {\\rm m}$ for 3D sensors, the thinnest ones ever produced so far. First prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. Preliminary results on their performance before and after irradiation are presented.