WorldWideScience

Sample records for sun-like stars suggests

  1. Are the majority of Sun-like stars single?

    CERN Document Server

    Whitworth, A P

    2015-01-01

    It has recently been suggested that, in the field, $\\sim\\!\\!56\\%$ of Sun-like stars ($0.8\\,{\\rm M}_{_\\odot}\\lesssim M_\\star\\lesssim 1.2\\,{\\rm M}_{_\\odot}$) are single. We argue here that this suggestion may be incorrect, since it appears to be based on the multiplicity frequency of systems with Sun-like primaries, and therefore takes no account of Sun-like stars that are secondary (or higher-order) components in multiple systems. When these components are included in the reckoning, it seems likely that only $\\sim\\!46\\%$ of Sun-like stars are single. This estimate is based on a model in which the system mass function has the form proposed by Chabrier, with a power-law Salpeter extension to high masses; there is a flat distribution of mass ratios; and the probability that a system of mass $M$ is a binary is $\\,0.50 + 0.46\\log_{_{10}}\\!\\left(M/{\\rm M}_{_\\odot}\\right)\\,$ for $\\,0.08\\,{\\rm M}_{_\\odot}\\leq M\\leq 12.5\\,{\\rm M}_{_\\odot}$, $\\,0\\,$ for $\\,M12.5\\,{\\rm M}_{_\\odot}$. The constants in this last relation ar...

  2. Challenges for asteroseismic analysis of Sun-like stars

    CERN Document Server

    Chaplin, W J; Appourchaux, T; Elsworth, Y; New, R; Toutain, T

    2008-01-01

    Asteroseismology of Sun-like stars is undergoing rapid expansion with, for example, new data from the CoRoT mission and continuation of ground-based campaigns. There is also the exciting upcoming prospect of NASA's Kepler mission, which will allow the asteroseismic study of several hundred Sun-like targets, in some cases for periods lasting up to a few years. The seismic mode parameters are the input data needed for making inference on stars and their internal structures. In this paper we discuss the ease with which it will be possible to extract estimates of individual mode parameters, dependent on the mass, age, and visual brightness of the star. Our results are generally applicable; however, we look at mode detectability in the context of the upcoming Kepler observations. To inform our discussions we make predictions of various seismic parameters. To do this we use simple empirical scaling relations and detailed pulsation computations of the stochastic excitation and damping characteristics of the Sun-like...

  3. High-energy irradiances of Sun-like stars

    Science.gov (United States)

    Sanz-Forcada, Jorge; Ribas, Ignasi

    2015-07-01

    Research on exoplanetary atmospheres has developed an increasing interest. Astrobiology has put its eyes on the effects that stellar irradiance may have on the atmosphere of planets, and on the early development of life. The high energy (XUV and UV) part of the spectrum is of special interest for this purpose. Part of this spectral range, the EUV is of no access to current telescopes, hampering the studies that intend to model planetary atmospheres. A program was developed to to circumvent this problem, and to provide with spectral energy distributions of stars hosting exoplanets (X-exoplanets) in the XUV range. We present here a work in which we develop further this program to create a semiempirical grid of models of emission of Sun-like stars, based on real data and coronal models, covering the XUV and UV ranges. These models will represent a great improvement with respect to currently used models of the solar irradiance at different ages, and intend to be the reference for the years to come. These models will be of special interest to reproduce the conditions of the Earth and solar system planets during different stages of the evolution, and can be safely exported to exoplanets orbiting Sun-like stars.

  4. Superflares on Sun-Like Stars: Bane of Habitability?

    Science.gov (United States)

    Ayres, T.

    2014-04-01

    A key aspect of planetary habitability is the existence of rare, but catastrophic events. One Earthly example is the attribution of several geological mass extinctions to asteroid collisions. Indeed, the Late Heavy Bombardment, during which the 600 Myr old Earth was pummeled persistently by impactors over a period of perhaps a hundred Myr, likely significantly delayed the permanent foothold of life on our planet. Another, less well known, example is the proposed existence of "superflares" on Sun-like stars. Although the quantity of energy in a superflare is negligible compared with the time-integrated X-ray dose from the quiescent multi-MK corona, the quality of the radiation (i.e., composition dominated by gamma rays) released from the transient, but extreme, outburst is what could be of concern to the survival of primitive lifeforms struggling for existence on a semi-habitable world. However, existing reports of superflares mainly involve interpretations of historical materials, such as long-term astronomical plate collections; there are very few concrete examples of such events observed by modern techniques at the most relevant wavelengths, namely ultraviolet or X-rays. The lack of good examples is mostly because these rare events are, well, rare. However, a recent HST Cosmic Origins Spectrograph program to record the ultraviolet spectrum of young (~50 Myr) solar analog EK Draconis, fortuitously captured a giant, hour-long FUV transient, in hot lines like the C IV 155 nm doublet (T~100,000 K), and very toasty Fe XXI 124 nm coronal forbidden line (~10 MK). If translated into the equivalent GOES 0.1-0.8 nm X-ray fluence, the event would correspond to an X25000-class flare (most extreme observed on the Sun might reach as high as a mere X50). The EK Dra giant flare, as viewed with the excellent wavelength resolution, broad coverage, and high sensitivity of COS, provides the opportunity to deduce properties of such events to help inform possible impacts on planetary

  5. The Colorful Demise of a Sun-like Star

    Science.gov (United States)

    2007-01-01

    This image, taken by NASA's Hubble Space Telescope, shows the colorful 'last hurrah' of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our Sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers named them planetary nebulae because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of nearly 400,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bow tie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The image was taken Feb. 6, 2007 with Hubble's Wide Field Planetary Camera 2. The colors correspond to material expelled by the star. Blue corresponds to helium; blue-green to oxygen; and red to nitrogen and hydrogen.

  6. Rotation period distribution of CoRoT and Kepler Sun-like stars

    Science.gov (United States)

    Leão, I. C.; Pasquini, L.; Ferreira Lopes, C. E.; Neves, V.; Valcarce, A. A. R.; de Oliveira, L. L. A.; Freire da Silva, D.; de Freitas, D. B.; Canto Martins, B. L.; Janot-Pacheco, E.; Baglin, A.; De Medeiros, J. R.

    2015-10-01

    Aims: We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. For this purpose, we identify the main populations of these samples and interpret their main biases specifically for a comparison with the solar Prot. Methods: Prot and variability amplitude (A) measurements were obtained from public CoRoT and Kepler catalogs, which were combined with public data of physical parameters. Because these samples are subject to selection effects, we computed synthetic samples with simulated biases to compare with observations, particularly around the location of the Sun in the Hertzsprung-Russel (HR) diagram. Publicly available theoretical grids and empirical relations were used to combine physical parameters with Prot and A. Biases were simulated by performing cutoffs on the physical and rotational parameters in the same way as in each observed sample. A crucial cutoff is related with the detectability of the rotational modulation, which strongly depends on A. Results: The synthetic samples explain the observed Prot distributions of Sun-like stars as having two main populations: one of young objects (group I, with ages younger than ~1 Gyr) and another of main-sequence and evolved stars (group II, with ages older than ~1 Gyr). The proportions of groups I and II in relation to the total number of stars range within 64-84% and 16-36%, respectively. Hence, young objects abound in the distributions, producing the effect of observing a high number of short periods around the location of the Sun in the HR diagram. Differences in the Prot distributions between the CoRoT and Kepler Sun-like samples may be associated with different Galactic populations. Overall, the synthetic distribution around the solar period agrees with observations, which suggests that the solar rotation is normal with respect to Sun-like

  7. Catastrophic rotational braking among Sun-like stars. A model of the Sun's rotation evolution

    Science.gov (United States)

    Gondoin, P.

    2017-03-01

    Context. Observations of young open clusters show a bimodal distribution of stellar rotation. In those clusters, Sun-like stars group into two main populations of fast and slow rotators. Beyond an age of approximately 600 Myr, the two populations converge towards a single sequence of slow rotators. Aims: The present study addresses the origin of this bimodal distribution and the cause of its observed evolution. Methods: New prescriptions of mass-loss rate and Alfven radius dependences on Rossby number suggested by observations are implemented in a phenomenological model of angular-momentum loss and redistribution. The obtained model is used to calculate the time evolution of a rotation-period distribution of solar-mass stars similar to that observed in the 5 Myr-old NGC 2362 open cluster. The simulated distributions at subsequent ages are compared with those of h Per, the Pleiades, M 50, M 35, and M 37. Results: The model is able to reproduce the appearance and disappearance of a bimodal rotation-period distribution in open clusters providing that a brief episode of large-angular-momentum loss is included in the early evolution of Sun-like stars. Conclusions: I argue that a transitory episode of large-angular-momentum loss occurs on Sun-like stars with Rossby numbers between 0.13 and 0.3. This phenomenon of enhanced magnetic braking by stellar wind would be mainly driven by a rapid increase of mass loss at a critical rotation rate. This scenario accounts for the bimodal distribution of stellar rotation in open clusters with ages between 20-30 Myr and approximately 600 Myr. The mass-loss rate increase could account for a significant fraction of the X-ray luminosity decay of Sun-like stars in the 0.13-0.3 Rossby number range where a transition from the saturated to the non-saturated regime of X-ray emission is observed. Observed correlations between Li abundance and rotation sequences in the Pleiades and M 34 clusters support this scenario.

  8. Detection of Planetary Transits Across a Sun-like Star

    CERN Document Server

    Charbonneau, D; Latham, D W; Mayor, M; Charbonneau, David; Brown, Timothy M.; Latham, David W.; Mayor, Michel

    1999-01-01

    We report high precision, high cadence photometric measurements of the star HD 209458, which is known from radial velocity measurements to have a planetary mass companion in a close orbit. We detect two separate transit events at times that are consistent with the radial velocity measurements. In both cases, the detailed shape of the transit curve due to both the limb darkening of the star and the finite size of the planet is clearly evident. Assuming stellar parameters of 1.1 R_Sun and 1.1 M_Sun, we find that the data are best interpreted as a gas giant with a radius of 1.27 +/- 0.02 R_Jup in an orbit with an inclination of 87.1 +/- 0.2 degrees. We present values for the planetary surface gravity, escape velocity, and average density, and discuss the numerous observations that are warranted now that a planet is known to transit the disk of its parent star.

  9. Seismic constraints on rotation of Sun-like star and mass of exoplanet.

    Science.gov (United States)

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R

    2013-08-13

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85(-0.42)(+0.52)M(Jupiter), which implies that it is a planet, not a brown dwarf.

  10. Seismic constraints on rotation of Sun-like star and mass of exoplanet

    CERN Document Server

    Gizon, Laurent; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R

    2013-01-01

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85 (+0.52,-0.42) M...

  11. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    Science.gov (United States)

    Lopes, Ilídio; Silk, Joseph

    2017-07-01

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1-103 ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.

  12. Planet signatures in the chemical composition of Sun-like stars

    CERN Document Server

    Melendez, Jorge

    2016-01-01

    There are two possible mechanisms to imprint planet signatures in the chemical composition of Sun-like stars: i) dust condensation at the early stages of planet formation, causing a depletion of refractory elements in the gas accreted by the star in the late stages of its formation; ii) planet engulfment, enriching the host star in lithium and refractory elements. We discuss both planet signatures, the influence of galactic chemical evolution, and the importance of binaries composed of stellar twins as laboratories to verify abundance anomalies imprinted by planets.

  13. New Suns in the Cosmos II: Differential rotation in $Kepler$ Sun-like stars

    CERN Document Server

    Chagas, M L Das; Costa, A D; Lopes, C E Ferreira; Sobrinho, R Silva; Paz-Chinchón, F; Leão, I C; Valio, A; de Freitas, D B; Martins, B L Canto; Lanza, A F; De Medeiros, J R

    2016-01-01

    The present study reports the discovery of Sun-like stars, namely main-sequence stars with $T_{\\rm eff}$, $\\log g$ and rotation periods $P_{rot}$ similar to solar values, presenting evidence of surface differential rotation. An autocorrelation of the time series was used to select stars presenting photometric signal stability from a sample of 881 stars with light curves collected by the $Kepler$ space-borne telescope, in which we have identified 17 stars with stable signals. A simple two-spot model together with a Bayesian information criterion were applied to these stars in the search for indications of differential rotation; in addition, for all 17 stars, it was possible to compute the spot rotation period $P$, the mean values of the individual spot rotation periods and their respective colatitudes, and the relative amplitude of the differential rotation.

  14. New Suns in the Cosmos II: differential rotation in Kepler Sun-like stars

    Science.gov (United States)

    Das Chagas, M. L.; Bravo, J. P.; Costa, A. D.; Ferreira Lopes, C. E.; Silva Sobrinho, R.; Paz-Chinchón, F.; Leão, I. C.; Valio, A.; de Freitas, D. B.; Canto Martins, B. L.; Lanza, A. F.; De Medeiros, J. R.

    2016-12-01

    The present study reports the discovery of Sun-like stars, namely main-sequence stars with Teff, log g and rotation periods Prot similar to solar values, presenting evidence of surface differential rotation (DR). An autocorrelation of the time series was used to select stars presenting photometric signal stability from a sample of 881 stars with light curves collected by the Kepler space-borne telescope, in which we have identified 17 stars with stable signals. A simple two-spot model together with a Bayesian information criterion were applied to these stars in the search for indications of DR; in addition, for all 17 stars, it was possible to compute the spot rotation period P, the mean values of the individual spot rotation periods and their respective colatitudes, and the relative amplitude of the DR.

  15. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  16. Prevalence of Earth-size planets orbiting Sun-like stars

    CERN Document Server

    Petigura, Erik A; Marcy, Geoffrey W

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that $11\\pm4%$ of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to $\\sim200$ d. Extrapolating, one finds $5.7^{+1.7}_{-2.2}%$ of Sun-like s...

  17. Magnetic fields on young, moderately rotating Sun-like stars II. EK Draconis (HD 129333)

    CERN Document Server

    Waite, Ian; Carter, Brad; Petit, Pascal; Jeffers, Sandra; Morin, Julien; Vidotto, Aline; Donati, Jean-Francois

    2016-01-01

    The magnetic fields, activity and dynamos of young solar-type stars can be empirically studied using time-series of spectropolarimetric observations and tomographic imaging techniques such as Doppler imaging and Zeeman Doppler imaging. In this paper we use these techniques to study the young Sun-like star EK Draconis (Sp-Type: G1.5V, HD 129333) using ESPaDOnS at the Canada-France-Hawaii Telescope and NARVAL at the T\\`elescope Bernard Lyot. This multi-epoch study runs from late 2006 until early 2012. We measure high levels of chromospheric activity indicating an active, and varying, chromosphere. Surface brightness features were constructed for all available epochs. The 2006/7 and 2008 data show large spot features appearing at intermediate-latitudes. However, the 2012 data indicate a distinctive polar spot. We observe a strong, almost unipolar, azimuthal field during all epochs that is similar to that observed on other Sun-like stars. Using magnetic features, we determined an average equatorial rotational vel...

  18. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Karoff, C. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Campante, T. L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400, Toulouse (France); Kallinger, T. [Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Gruberbauer, M. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary' s University, B3H 3C3 Halifax (Canada); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Universit Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Caldwell, D. A.; Christiansen, J. L. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kinemuchi, K., E-mail: karoff@phys.au.dk [Bay Area Environmental Research Inst./NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.

  19. Interactions between brown-dwarf binaries and Sun-like stars

    CERN Document Server

    Kaplan, M; Whitworth, A P

    2012-01-01

    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, $a\\ga 100\\,{\\rm AU}$ (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close ($a\\la 10\\,{\\rm AU}$) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulatio...

  20. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    Science.gov (United States)

    Petigura, Erik Ardeshir

    2015-04-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using optical spectra taken by the California Planet Search. I found a large range in the relative abundance of carbon and oxygen in this sample, including a handful of carbon-rich stars. I also developed a new technique called SpecMatch for extracting fundamental stellar parameters from optical spectra. SpecMatch is particularly applicable to the relatively faint planet-hosting stars discovered by Kepler.

  1. HAT-P-55b: A Hot Jupiter Transiting a Sun-like Star

    CERN Document Server

    Juncher, D; Hartman, J D; Bakos, G Á; Bieryla, A; Kovács, T; Boisse, I; Latham, D W; Kovács, G; Bhatti, W; Csubry, Z; Penev, K; de Val-Borro, M; Falco, E; Torres, G; Noyes, R W; Lázár, J; Papp, I; Sári, P

    2015-01-01

    We report the discovery of a new transiting extrasolar planet, HAT-P-55b. The planet orbits a V = 13.207 +/- 0.039 sun-like star with a mass of 1.013 +/- 0.037 solar masses, a radius of 1.011 +/- 0.036 solar radii and a metallicity of -0.03 +/- 0.08. The planet itself is a typical hot Jupiter with a period of 3.5852467 +/- 0.0000064 days, a mass of 0.582 +/- 0.056 Jupiter masses and a radius of 1.182 +/- 0.055 Jupiter radii. This discovery adds to the increasing sample of transiting planets with measured bulk densities, which is needed to put constraints on models of planetary structure and formation theories.

  2. Prevalence of Earth-size Planets Orbiting Sun-like Stars

    CERN Document Server

    Petigura, Erik Ardeshir

    2015-01-01

    In this thesis, I explore two topics in exoplanet science. The first is the prevalence of Earth-size planets in the Milky Way Galaxy. To determine the occurrence of planets having different sizes, orbital periods, and other properties, I conducted a survey of extrasolar planets using data collected by NASA's Kepler Space Telescope. This project involved writing new algorithms to analyze Kepler data, finding planets, and conducting follow-up work using ground-based telescopes. I found that most stars have at least one planet at or within Earth's orbit and that 26% of Sun-like stars have an Earth-size planet with an orbital period of 100 days or less. The second topic is the connection between the properties of planets and their host stars. The precise characterization of exoplanet hosts helps to bring planet properties like mass, size, and equilibrium temperature into sharper focus and probes the physical processes that form planets. I studied the abundance of carbon and oxygen in over 1000 nearby stars using ...

  3. Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273

    NARCIS (Netherlands)

    T.L. Campante; R. Handberg; S. Mathur; T. Appourchaux; T.R. Bedding; W.J. Chaplin; B. Mosser; O. Benomar; A. Bonanno; E. Corsaro; S.T. Fletcher; P. Gaulme; S. Hekker; C. Karoff; D. Salabert; G.A. Verner; T.R. White; G. Houdek; I.M. Brandao; O.L. Creevey; G. Dogan; M. Bazot; J. Christensen-Dalsgaard; M.S. Cunha; Y. Elsworth; D. Huber; H. Kjeldsen; M. Lundkvist; J. Molenda-Zakowicz; M.J.P.F.G. Monteiro; D. Stello; B.D. Clarke; F.R. Girouard; J.R. Hall; R.A. Garcia; C. Regulo

    2011-01-01

    Context. The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the

  4. Toroidal vs. poloidal magnetic fields in Sun-like stars: a rotation threshold

    CERN Document Server

    Petit, P; Solanki, SK; Donati, J-F; Aurière, M; Lignières, F; Morin, J; Paletou, F; Ramírez, J; Catala, C; Fares, R

    2008-01-01

    From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars. We reconstruct the large-scale magnetic geometry of the targets as a low-order (l<10) spherical harmonics expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (a) The magnetic energy of the large-scale field increases with rotation rate. The increase of chromospheric emission with the mean magnetic field is flatter than observed ...

  5. Activity and Magnetic Field Structure of the Sun-Like Planet Hosting Star HD 1237

    CERN Document Server

    Alvarado-Gómez, J D; Grunhut, J; Fares, R; Donati, J -F; Alecian, E; Kochukhov, O; Oksala, M; Morin, J; Redfield, S; Cohen, O; Drake, J J; Jardine, M; Matt, S; Petit, P; Walter, F M

    2015-01-01

    We analyse the magnetic activity characteristics of the planet hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements consistent with our ZDI analysis, with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on shape of the extracted Stokes V profile but does result in a small increase in the S/N ($\\sim$ 7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also impacts the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI maps solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes ($\\sim$45 degr...

  6. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    Science.gov (United States)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  7. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity -- comparison with the Sun

    CERN Document Server

    Bruevich, E A; Shimanovskaya, E V

    2016-01-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycles, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of the chromospheric and coronal activity confirms that the Sun belongs to stars with the low level of the chromospheric activity and stands apart among these stars by the minimum level of its coronal radiation and the minimum level of its variations of the photospheric flux.

  8. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  9. On the rotation period distribution of CoRoT and Kepler Sun-like stars

    CERN Document Server

    Leao, I C; Lopes, C E Ferreira; Neves, V; Valcarce, A A R; de Oliveira, L L A; da Silva, D Freire; de Freitas, D B; Martins, B L Canto; Janot-Pacheco, E; Baglin, A; De Medeiros, J R

    2015-01-01

    We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. We identify the main populations of these samples and interpret their main biases particularly for a comparison with the solar Prot. Prot and variability amplitude (A) measurements were obtained from public CoRoT and Kepler catalogs, which were combined with public data of physical parameters. Because these samples are subject to selection effects, we computed synthetic samples with simulated biases to compare with observations, particularly around the Sun's HR-diagram location. Theoretical grids and empirical relations were used to combine physical parameters with Prot and A. Biases were simulated by performing cutoffs on the physical and rotational parameters in the same way as in each observed sample. A crucial cutoff is related with the detectability of the rotational modulation,...

  10. How Dry is the Brown Dwarf Desert?: Quantifying the Relative Number of Planets, Brown Dwarfs and Stellar Companions around Nearby Sun-like Stars

    CERN Document Server

    Grether, D; Grether, Daniel; Lineweaver, Charles H.

    2004-01-01

    Sun-like stars have stellar, brown dwarf and planetary companions. To help constrain their formation and migration scenarios, we analyse the close companions (orbital period 2 M_Solar respectively. However, we find no evidence that companion mass scales with host mass in general. Approximately 16% of Sun-like stars have close (P < 5 years) companions more massive than Jupiter: 11% are stellar, 1% are brown dwarf and 4% are giant planets. The companion mass function in the brown dwarf and stellar mass range, has a different shape than the initial mass function of individual stars and free-floating brown dwarfs. This suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits.

  11. TENTATIVE EVIDENCE FOR RELATIVISTIC ELECTRONS GENERATED BY THE JET OF THE YOUNG SUN-LIKE STAR DG Tau

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, Rachael E.; Ray, Tom P.; Taylor, Andrew M. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Scaife, Anna M. M. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Green, David A.; Buckle, Jane V., E-mail: rainsworth@cp.dias.ie [Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE (United Kingdom)

    2014-09-01

    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from active galactic nuclei. We present data at 325 and 610 MHz taken with the Giant Metrewave Radio Telescope of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass young stellar object at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength B {sub min} ≈ 0.11 mG and particle energy E {sub min} ≈ 4 × 10{sup 40} erg, which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.

  12. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; Hori, Y.; Suzuki, R.; Burrows, A.; Henning, T.; Turner, E. L.; McElwain, M. W.; Moro-Martin, A.; Suenaga, T.; Takahashi, Y. H.; Kwon, J.; Lucas, P.; Abe, L.; Brandner, W.; Grady, C. A.; Serabyn, E.

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  13. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have

  14. Dust discs around intermediate mass and Sun-like stars in the 16 Myr old NGC 1960 open cluster

    CERN Document Server

    Smith, R

    2011-01-01

    We present an analysis of Spitzer IRAC (3.6--8um) and MIPS (24um) imaging of members of the 16(+10/-5)Myr old open cluster NGC 1960 (M36). Models of terrestrial planet formation indicate that rocky planets are likely to achieve their final masses at around 10-30Myr, and thus this cluster is at an interesting epoch for planet formation. We find 21 B-F5 type stars and 14 F6-K9 type stars which have 24um excess emission, and thus determine that >30% of B-F5 type stars and >23% of F6-K9 type stars in this cluster have 24um excess emission. These excess frequencies are similar to those observed in other clusters of similar age. Three early type stars have excesses at near-infrared wavelengths. Analysis of their SEDs confirms that these are true debris discs and not remnant primordial or transitional discs. None of the 61 sun-like stars have confirmed near-infrared excess, and we can place a limit on the frequency of 8um excess emission around sun-like stars of <7%. All of the detected excesses are consistent wi...

  15. A super-Earth-sized planet orbiting in or near the habitable zone around Sun-like star

    CERN Document Server

    Barclay, Thomas; Howell, Steve B; Rowe, Jason F; Huber, Daniel; Isaacson, Howard; Jenkins, Jon M; Kolbl, Rea; Marcy, Geoffrey W; Quintana, Elisa V; Still, Martin; Twicken, Joseph D; Bryson, Stephen T; Borucki, William J; Caldwell, Douglas A; Ciardi, David; Clarke, Bruce D; Christiansen, Jessie L; Coughlin, Jeffrey L; Fischer, Debra A; Li, Jie; Haas, Michael R; Hunter, Roger; Lissauer, Jack J; Mullally, Fergal; Sabale, Anima; Seader, Shawn E; Smith, Jeffrey C; Tenenbaum, Peter; Uddin, AKM Kamal; Thompson, Susan E

    2013-01-01

    We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth ...

  16. A unified normal mode approach to dynamic tides and its application to rotating Sun-like stars

    CERN Document Server

    Ivanov, P B; Chernov, S V

    2013-01-01

    We determine the response of a uniformly rotating star to tidal perturbations due to a companion. General periodic orbits and parabolic flybys are considered. We evaluate energy and angular momentum exchange rates as a sum of contributions from normal modes allowing for dissipative processes. We consider the case when the response is dominated by the contribution of an identifiable regular spectrum of low frequency modes, such as gravity modes and evaluate it in the limit of very weak dissipation. Our formalism may be applied both to Sun-like stars with radiative cores and convective envelopes and to more massive stars with convective cores and radiative envelopes. We provide general expressions for transfer of energy and angular momentum valid for an orbit with any eccentricity. Detailed calculations are made for Sun-like stars in the slow rotation regime where centrifugal distortion is neglected in the equilibrium and the traditional approximation is made for the normal modes. We use both a WKBJ procedure a...

  17. Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations

    Science.gov (United States)

    Holman, Matthew J.; Fabrycky, Daniel C.; Ragozzine, Darin; Ford, Eric B.; Steffen, Jason H.; Welsh, William F.; Lissauer, Jack J.; Latham, David W.; Marcy, Geoffrey W.; Walkowicz, Lucianne M.; Batalha, Natalie M.; Jenkins, Jon M.; Rowe, Jason F.; Cochran, William D.; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A.; Sasselov, Dimitar D.; Borucki, William J.; Koch, David G.; Basri, Gibor; Brown, Timothy M.; Caldwell, Douglas A.; Charbonneau, David; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald L.; Haas, Michael R.; Howell, Steve B.; Ciardi, David R.; Endl, Michael; Fischer, Debra; Fürész, Gábor; Hartman, Joel D.; Isaacson, Howard; Johnson, John A.; MacQueen, Phillip J.; Moorhead, Althea V.; Morehead, Robert C.; Orosz, Jerome A.

    2010-10-01

    The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

  18. Kepler-9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations.

    Science.gov (United States)

    Holman, Matthew J; Fabrycky, Daniel C; Ragozzine, Darin; Ford, Eric B; Steffen, Jason H; Welsh, William F; Lissauer, Jack J; Latham, David W; Marcy, Geoffrey W; Walkowicz, Lucianne M; Batalha, Natalie M; Jenkins, Jon M; Rowe, Jason F; Cochran, William D; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A; Sasselov, Dimitar D; Borucki, William J; Koch, David G; Basri, Gibor; Brown, Timothy M; Caldwell, Douglas A; Charbonneau, David; Dunham, Edward W; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Howell, Steve B; Ciardi, David R; Endl, Michael; Fischer, Debra; Fürész, Gábor; Hartman, Joel D; Isaacson, Howard; Johnson, John A; MacQueen, Phillip J; Moorhead, Althea V; Morehead, Robert C; Orosz, Jerome A

    2010-10-01

    The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

  19. Metallicity of Sun-like G-stars that have Exoplanets

    Indian Academy of Sciences (India)

    Shashanka R. Gurumath; K. M. Hiremath; V. Ramasubramanian

    2017-06-01

    By considering the physical and orbital characteristics of G type stars and their exoplanets, we examine the association between stellar mass and its metallicity that follows a power law. Similar relationship is also obtained in case of single and multiplanetary stellar systems suggesting that, Sun′s present mass is about 1% higher than the estimated value for its metallicity. Further, for all the stellar systems with exoplanets, association between the planetary mass and the stellar metallicity is investigated, that suggests planetary mass is independent of stellar metallicity. Interestingly, in case of multiplanetary systems, planetary mass is linearly dependent on the stellar absolute metallicity, that suggests, metal rich stars produce massive (≥1 Jupiter mass) planets compared to metal poor stars. This study also suggests that there is a solar system planetary missing mass of ∼0.8 Jupiter mass. It is argued that probably 80% of missing mass is accreted onto the Sun and about 20% of missing mass might have been blown off to the outer solar system (beyond the present Kuiper belt) during early history of solar system formation. We find that, in case of single planetary systems, planetary mass is independent of stellar metallicity with an implication of their non-origin in the host star’s protoplanetary disk and probably are captured from the space. Final investigation of dependency of the orbital distances of planets on the host stars metallicity reveals that inward migration of planets is dominant in case of single planetary systems supporting the result that most of the planets in single planetary systems are captured from the space.

  20. Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars

    CERN Document Server

    Kim, J S; Backman, D E; Hillenbrand, L A; Meyer, M R; Rodmann, J; Moro-Martin, A; Carpenter, J M; Silverstone, M D; Bouwman, J; Mamajek, E E; Wolf, S; Malhotra, R; Pascucci, I; Najita, J; Padgett, D L; Henning, T; Brooke, T Y; Cohen, M; Strom, S E; Stobie, E B; Engelbracht, C W; Gordon, K D; Misselt, K; Morrison, J E; Muzerolle, J; Su, K Y L; Kim, Jinyoung Serena; Hines, Dean C.; Backman, Dana E.; Hillenbrand, Lynne A.; Meyer, Michael R.; Rodmann, Jens; Moro-Martin, Amaya; Carpenter, John M.; Silverstone, Murray D.; Bouwman, Jeroen; Mamajek, Eric E.; Wolf, Sebastian; Malhotra, Renu; Pascucci, Ilaria; Najita, Joan; Padgett, Deborah L.; Henning, Thomas; Brooke, Timothy Y.; Cohen, Martin; Strom, Stephen E.; Stobie, Elizabeth B.; Engelbracht, Charles W.; Gordon, Karl D.; Misselt, Karl; Morrison, Jane E.; Muzerolle, James; Su, Kate Y. L.

    2005-01-01

    We present the discovery of debris systems around three solar mass stars based upon observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, ``the Formation and Evolution of Planetary Systems'' (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 micron band, but are consistent with photospheric emission at <= 33 micron. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the likely planet(s) responsible for stirring the system and ultimately releasing dust through coll...

  1. Occurrence and core-envelope structure of 1--4x Earth-size planets around Sun-like stars

    CERN Document Server

    Marcy, Geoffrey W; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-01-01

    Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2 R_e planets that receive 1-4x the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 AU, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R_e show that the smallest of them, R < 1.5 R_e, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: rho = 2.32 + 3.19 R/R_e [g/cc]. ...

  2. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    Science.gov (United States)

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  3. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    Science.gov (United States)

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  4. Two sun-like superflare stars rotating as slow as the Sun*

    Science.gov (United States)

    Nogami, Daisaku; Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Shibata, Kazunari

    2014-04-01

    We report on the results of high dispersion spectroscopy of two "superflare stars," KIC 9766237 and KIC 9944137 with Subaru/HDS. Superflare stars are G-type main sequence stars, but show gigantic flares compared to the Sun, which have recently been discovered in the data obtained with the Kepler spacecraft. Though most of these stars are thought to have a rotation period shorter than 10 d on the basis of photometric variabilities, the two targets of the present paper are estimated to have rotation periods of 21.8 d and 25.3 d. Our spectroscopic results clarified that these stars have stellar parameters similar to those of the Sun in terms of the effective temperature, surface gravity, and metallicity. The projected rotational velocities derived by us are consistent with the photometric rotation period, indicating a fairly high inclination angle. The average strength of the magnetic field on the surface of these stars are estimated to be 1-20 G, by using the absorption line of Ca II 8542. We could not detect any hint of binarity in our spectra, although more data are needed to firmly rule out the presence of an unseen low-mass companion. These results claim that the spectroscopic properties of these superflare stars are very close to those of the Sun, and support the hypothesis that the Sun might cause a superflare.

  5. Grand Challenges in the Physics of the Sun and Sun-like Stars

    CERN Document Server

    Thompson, Michael J

    2014-01-01

    The study of stellar structure and evolution is one of the main building blocks of astrophysics, and the Sun has an importance both as the star that is most amenable to detailed study and as the star that has by far the biggest impact on the Earth and near-Earth environment through its radiative and particulate outputs. Over the past decades, studies of stars and of the Sun have become somewhat separate. But in recent years, the rapid advances in asteroseismology, as well as the quest to better understand solar and stellar dynamos, have emphasized once again the synergy between studies of the stars and the Sun. In this article I have selected two "grand challenges" both for their crucial importance and because I thnk that these two problems are tractable to significant progress in the next decade. They are (i) understanding how solar and stellar dynamos generate magnetic field, and (ii) improving the predictability of geo-effective space weather.

  6. The variability of Sun-like stars: reproducing observed photometric trends

    CERN Document Server

    Shapiro, A I; Krivova, N A; Schmutz, W K; Ball, W T; Knaack, R; Rozanov, E V; Unruh, Y C

    2014-01-01

    The Sun and stars with low magnetic activity levels, become photometrically brighter when their activity increases. Magnetically more active stars display the opposite behaviour and get fainter when their activity increases. We reproduce the observed photometric trends in stellar variations with a model that treats stars as hypothetical Suns with coverage by magnetic features different from that of the Sun. The presented model attributes the variability of stellar spectra to the imbalance between the contributions from different components of the solar atmosphere, such as dark starspots and bright faculae. A stellar spectrum is calculated from spectra of the individual components, by weighting them with corresponding disc area coverages. The latter are obtained by extrapolating the solar dependences of spot and facular disc area coverages on chromospheric activity to stars with different levels of mean chromospheric activity. We have found that the contribution by starspots to the variability increases faster...

  7. Two Sun-like Superflare Stars Rotating as Slow as the Sun

    CERN Document Server

    Nogami, Daisaku; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Shibata, Kazunari

    2014-01-01

    We report on the results of high dispersion spectroscopy of two `superflare stars', KIC 9766237, and KIC 9944137 with Subaru/HDS. Superflare stars are G-type main sequence stars, but show gigantic flares compared to the Sun, which have been recently discovered in the data obtained with the Kepler spacecraft. Though most of these stars are thought to have a rotation period shorter than 10 days on the basis of photometric variabilities, the two targets of the present paper are estimated to have a rotation period of 21.8 d, and 25.3 d. Our spectroscopic results clarified that these stars have stellar parameters similar to those of the Sun in terms of the effective temperature, surface gravity, and metallicity. The projected rotational velocities derived by us are consistent with the photometric rotation period, indicating a fairy high inclination angle. The average strength of the magnetic field on the surface of these stars are estimated to be 1-20 G, by using the absorption line of Ca II 8542. We could not det...

  8. Asteroseismic determination of fundamental parameters of Sun-like stars using multilayered neural networks

    Science.gov (United States)

    Verma, Kuldeep; Hanasoge, Shravan; Bhattacharya, Jishnu; Antia, H. M.; Krishnamurthi, Ganapathy

    2016-10-01

    The advent of space-based observatories such as Convection, Rotation and planetary Transits (CoRoT) and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial helium abundance, initial metallicity, mixing length (assumed to be constant over time), and the age to which the star must be evolved. Some of these parameters are also very useful in characterizing the associated planets and in studying Galactic archaeology. How to obtain these parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using artificial neural networks, is successful in determining the evolutionary parameters based on spectroscopic and seismic measurements. Our trained networks show robustness over a broad range of parameter space, and critically, are entirely computationally inexpensive and fully automated. We analyse the observations of a few stars using this method and the results compare well to inferences obtained using other techniques. This method is both computationally cheap and inferentially accurate, paving the way for analysing the vast quantities of stellar observations from past, current, and future missions.

  9. Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star

    CERN Document Server

    Sanchis-Ojeda, Roberto; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard; Johnson, John Asher; Torres, Guillermo; Albrecht, Simon; Campante, Tiago L; Chaplin, William J; Davies, Guy R; Lund, Mikkel L; Carter, Joshua A; Dawson, Rebekah I; Buchhave, Lars A; Everett, Mark E; Fischer, Debra A; Geary, John C; Gilliland, Ronald L; Horch, Elliott P; Howell, Steve B; Latham, David W

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, $m_{\\rm Kp} = 11.6$, $T_{\\rm eff} = 5576$ K, $M_\\star = 0.98\\, M_\\odot$). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is $6.1 \\pm 0.2 R_{\\earth}$, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit we can place a rough upper bound of $120 M_{\\earth}$ (3$\\sigma$). The host star has a high obliquity ($\\psi$ = $104^{\\circ}$), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-cross...

  10. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    NARCIS (Netherlands)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks ar

  11. A Precise Asteroseismic Age and Radius for the Evolved Sun-like Star KIC 11026764

    DEFF Research Database (Denmark)

    Metcalfe, Travis S.; Monteiro, Mario J.P.F.G.; Thompson, Michael J.

    2010-01-01

    that attempt to match the asteroseismic and spectroscopic constraints simultaneously. We determine both the radius and the age of KIC 11026764 with a precision near 1%, and an accuracy near 2% for the radius and 15% for the age. Continued observations of this star promise to reveal additional oscillation...

  12. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    Science.gov (United States)

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  13. Long-term magnetic field monitoring of the Sun-like star Ksi Boo A

    CERN Document Server

    Morgenthaler, A; Saar, S; Solanki, S K; Auriere, M; Dintrans, B; Fares, R; Gastine, T; Lanoux, J; Lignieres, F; Marsden, S C; Morin, J; Paletou, F; Velez, J C Ramirez; Theado, S; Van Grootel, V

    2011-01-01

    Aims. We aim at investigating the long-term temporal evolution of the magnetic field of the solar-type star Ksi Boo A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods. We use 7 time-series of high-resolution, circularly-polarized spectra obtained with the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using about 6,100 photospheric spectral lines covering the visible domain, we employ a cross-correlation procedure to compute, from each spectrum, a mean polarized line profile. We model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler Imaging and follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitor the width of several magnetically-sensitive spectral lines, the radial velocity and line asymmetry of intensity line profiles and the chromospheric emission in the cores of the Ca II H and Halpha lines. Results. During the highest obser...

  14. The influence of the magnetic topology on the wind braking of sun-like stars.

    Science.gov (United States)

    Réville, V.; Brun, A. S.; Matt, S. P.; Strugarek, A.; Pinto, R.

    2014-12-01

    Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).

  15. Searching for IR excesses in Sun-like stars observed by WISE

    CERN Document Server

    de Miera, Fernando Cruz-Saenz; Bertone, Emanuele; Vega, Olga

    2013-01-01

    We present the results of a search of infrared excess candidates in a comprehensive (29\\,000 stars) magnitude limited sample of dwarf stars, spanning the spectral range F2-K0, and brighter than V$=$15 mag. We searched the sample within the {\\em WISE} all sky survey database for objects within 1 arcsecond of the coordinates provided by SIMBAD database and found over 9\\,000 sources detected in all {\\em WISE} bands. This latter sample excludes objects that are flagged as extended sources and those images which are affected by various optical artifacts. For each detected object, we compared the observed W4/W2 (22$\\mu$m/4.6$\\mu$m) flux ratio with the expected photospheric value and identified 197 excess candidates at 3$\\sigma$. For the vast majority of candidates, the results of this analysis represent the first reported evidence of an IR excess. Through the comparison with a simple black-body emission model, we derive estimates of the dust temperature, as well as of the dust fractional luminosities. For more than...

  16. The influence of the magnetic topology on the braking of sun-like stars

    CERN Document Server

    Réville, Victor; Matt, Sean; Strugarek, Antoine; Pinto, Rui

    2014-01-01

    Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at t...

  17. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    CERN Document Server

    Kuzuhara, M; Kudo, T; Janson, M; Kandori, R; Brandt, T D; Thalmann, C; Spiegel, D; Biller, B; Carson, J; Hori, Y; Suzuki, R; Burrows, A; Henning, T; Turner, E L; McElwain, M W; Moro-Martin, A; Suenaga, T; Takahashi, Y H; Kwon, J; Lucas, P; Abe, L; Brandner, W; Egner, S; Feldt, M; Fujiwara, H; Goto, M; Grady, C A; Guyon, O; Hashimoto, J; Hayano, Y; Hayashi, M; Hayashi, S S; Hodapp, K W; Ishii, M; Iye, M; Knapp, G R; Matsuo, T; Mayama, S; Miyama, S; Morino, J -I; Nishikawa, J; Nishimura, T; Kotani, T; Kusakabe, N; Pyo, T -S; Serabyn, E; Suto, H; Takami, M; Takato, N; Terada, H; Tomono, D; Watanabe, M; Wisniewski, J P; Yamada, T; Takami, H; Usuda, T

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary ...

  18. Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars

    Science.gov (United States)

    Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng

    2017-09-01

    Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance

  19. MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112

    CERN Document Server

    Rodigas, Timothy J; Simon, Amelie; Arriagada, Pamela; Faherty, Jackie; Anglada-Escude, Guillem; Mamajek, Eric E; Weinberger, Alycia; Butler, R Paul; Males, Jared R; Morzinski, Katie; Close, Laird M; Hinz, Philip M; Bailey, Jeremy; Carter, Brad; Jenkins, James S; Jones, Hugh; O'Toole, Simon; Tinney, C G; Wittenmyer, Rob; Debes, John

    2016-01-01

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2\\fasec 2 (100 AU) at multiple wavelengths spanning 0.6-4 \\microns ~and show that it is most likely a gravitationally-bound cool white dwarf. Modeling its spectral energy distribution (SED) suggests that its mass is 0.9-1.1 \\msun, which corresponds to very high-eccentricity, near edge-on orbits from Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is $>2\\sigma$ discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate ...

  20. The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star

    Science.gov (United States)

    Obertas, Alysa; Van Laerhoven, Christa; Tamayo, Daniel

    2017-09-01

    Many of the multi-planet systems discovered to date have been notable for their compactness, with neighbouring planets closer together than any in the Solar System. Interestingly, planet-hosting stars have a wide range of ages, suggesting that such compact systems can survive for extended periods of time. We have used numerical simulations to investigate how quickly systems go unstable in relation to the spacing between planets, focusing on hypothetical systems of Earth-mass planets on evenly-spaced orbits (in mutual Hill radii). In general, the further apart the planets are initially, the longer it takes for a pair of planets to undergo a close encounter. We recover the results of previous studies, showing a linear trend in the initial planet spacing between 3 and 8 mutual Hill radii and the logarithm of the stability time. Investigating thousands of simulations with spacings up to 13 mutual Hill radii reveals distinct modulations superimposed on this relationship in the vicinity of first and second-order mean motion resonances of adjacent and next-adjacent planets. We discuss the impact of this structure and the implications on the stability of compact multi-planet systems. Applying the outcomes of our simulations, we show that isolated systems of up to five Earth-mass planets can fit in the habitable zone of a Sun-like star without close encounters for at least 109 orbits.

  1. Conditions for water ice lines and Mars-mass exomoons around accreting super-Jovian planets at 1 - 20 AU from Sun-like stars

    CERN Document Server

    Heller, René

    2015-01-01

    Exomoon detections might be feasible with NASA's Kepler or ESA's upcoming PLATO mission or the ground-based E-ELT. To use observational resources most efficiently we need to know where the largest, most easily detected moons can form. We explore the possibility of large exomoons by following the movement of water (H2O) ice lines in the accretion disks around young super-Jovian planets. We want to know how different heating sources in those disks affect the H2O ice lines. We simulate 2D rotationally symmetric accretion disks in hydrostatic equilibrium around super-Jovian exoplanets. The energy terms in our semi-analytical model -- (1) viscous heating, (2) planetary illumination, (3) accretional heating, and (4) stellar illumination -- are fed by precomputed planet evolution tracks. We consider planets accreting 1 to 12 Jupiter masses at distances between 1 and 20 AU to a Sun-like star. Accretion disks around Jupiter-mass planets closer than ~4.5 AU to Sun-like stars do not feature H2O ice lines, but the most m...

  2. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  3. The Solar Twin Planet Search: IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars

    CERN Document Server

    Santos, Leonardo A dos; Nascimento, José-Dias do; Bedell, Megan; Ramírez, Iván; Bean, Jacob L; Asplund, Martin; Spina, Lorenzo; Dreizler, Stefan; Alves-Brito, Alan; Casagrande, Luca

    2016-01-01

    It is still unclear how common the Sun is when compared to other similar stars in regards to some of its physical properties, such as rotation. Considering that gyrochronology relations are widely used today to estimate ages of stars in the main sequence, and that the Sun is used to calibrate it, it is crucial to assess if these procedures are acceptable. We analyze the rotational velocities -- limited by the unknown rotation axis inclination angle -- of an unprecedented large sample of solar twins in order to study the rotational evolution of Sun-like stars, and assess if the Sun is a typical rotator. We use high-resolution ($R = 115000$) spectra obtained with the HARPS spectrograph and ESO's 3.6 m telescope at La Silla Observatory. The projected rotational velocities for 82 solar twins are estimated by line profile fitting with synthetic spectra. Macroturbulence velocities are inferred from a prescription that accurately reflects their dependence with effective temperature and luminosity of the stars. Our s...

  4. Formation and Evolution of Planetary Systems (FEPS): Primordial Warm Dust Evolution From 3-30 Myr around Sun-like Stars

    CERN Document Server

    Silverstone, M D; Mamajek, E E; Hines, D C; Hillenbrand, L A; Najita, J; Pascucci, I; Bouwman, J; Kim, J S; Carpenter, J M; Stauffer, J R; Backman, D E; Moro-Martin, A; Henning, T; Wolf, S; Brooke, T Y; Padgett, D L

    2006-01-01

    We present data obtained with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope (Spitzer) for a sample of 74 young (t < 30 Myr old) Sun-like (0.7 < M(star)/M(Sun) < 1.5) stars. These are a sub-set of the observations that comprise the Spitzer Legacy science program entitled the Formation and Evolution of Planetary Systems (FEPS). Using IRAC we study the fraction of young stars that exhibit 3.6-8.0 micron infrared emission in excess of that expected from the stellar photosphere, as a function of age from 3-30 Myr. The most straightforward interpretation of such excess emission is the presence of hot (300-1000K) dust in the inner regions (< 3 AU) of a circumstellar disk. Five out of the 74 young stars show a strong infrared excess, four of which have estimated ages of 3-10 Myr. While we detect excesses from 5 optically thick disks, and photospheric emission from the remainder of our sample, we do not detect any excess emission from optically thin disks at these wavelengths. We comp...

  5. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    NARCIS (Netherlands)

    Kuzuhara, M.; et al., [Unknown; Thalmann, C.

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial mo

  6. Evolution of the cycles of magnetic activity of the Sun and Sun-like stars in time

    CERN Document Server

    Bruevich, E A; Artamonov, B P

    2016-01-01

    We applied the method of continuous wavelet-transform to the time-frequency analysis to the sets of observations of relative sunspot numbers, sunspot areas and to 6 Mount Wilson HK-project stars with well-defined magnetic cycles. Wavelet analysis of these data reveals the following pattern: at the same time there are several activity cycles whose periods vary widely from the quasi-biennial up to the centennial period for the Sun and vary significant during observations time of the HK-project stars. These relatively low-frequency periodic variations of the solar and stellar activity gradually change the values of periods of different cycles in time. This phenomenon can be observed in every cycles of activity

  7. The Lick-Carnegie Exoplanet Survey: HD32963 -- A New Jupiter Analog Orbiting a Sun-like Star

    CERN Document Server

    Rowan, Dominick; Laughlin, Gregory; Vogt, Steven S; Butler, R Paul; Burt, Jennifer; Wang, Songhu; Holden, Brad; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Diaz, Matias

    2015-01-01

    We present a set of 109 new, high-precision Keck/HIRES radial velocity (RV) observations for the solar-type star HD 32963. Our dataset reveals a candidate planetary signal with a period of 6.49 $\\pm$ 0.07 years and a corresponding minimum mass of 0.7 $\\pm$ 0.03 Jupiter masses. Given Jupiter's crucial role in shaping the evolution of the early Solar System, we emphasize the importance of long-term radial velocity surveys. Finally, using our complete set of Keck radial velocities and correcting for the relative detectability of synthetic planetary candidates orbiting each of the 1,122 stars in our sample, we estimate the frequency of Jupiter analogs across our survey at approximately 3%.

  8. Kepler-20: A Sun-like Star with Three Sub-Neptune Exoplanets and Two Earth-size Candidates

    CERN Document Server

    Gautier, Thomas N; Rowe, Jason F; Marcy, Geoffrey W; Isaacson, Howard; Torres, Guillermo; Fressin, Francois; Rogers, Leslie A; Désert, Jean-Michel; Buchhave, Lars A; Latham, David W; Quinn, Samuel N; Ciardi, David R; Fabrycky, Daniel C; Ford, Eric B; Gilliland, Ronald L; Walkowicz, Lucianne M; Bryson, Stephen T; Cochran, William D; Endl, Michael; Fischer, Debra A; Howel, Steve B; Horch, Elliott P; Barclay, Thomas; Batalha, Natalie; Borucki, William J; Christiansen, Jessie L; Geary, John C; Henze, Christopher E; Holman, Matthew J; Ibrahim, Khadeejah; Jenkins, Jon M; Kinemuchi, Karen; Koch, David G; Lissauer, Jack J; Sanderfer, Dwight T; Sasselov, Dimitar D; Seager, Sara; Silverio, Kathryn; Smith, Jeffrey C; Still, Martin; Stumpe, Martin C; Tenenbaum, Peter; Van Cleve, Jeffrey

    2011-01-01

    We present the discovery of the Kepler-20 planetary system, which we initially identified through the detection of five distinct periodic transit signals in the Kepler light curve of the host star 2MASSJ19104752+4220194. We find a stellar effective temperature Teff=5455+-100K, a metallicity of [Fe/H]=0.01+-0.04, and a surface gravity of log(g)=4.4+-0.1. Combined with an estimate of the stellar density from the transit light curves we deduce a stellar mass of Mstar=0.912+-0.034 Msun and a stellar radius of Rstar=0.944^{+0.060}_{-0.095} Rsun. For three of the transit signals, our results strongly disfavor the possibility that these result from astrophysical false positives. We conclude that the planetary scenario is more likely than that of an astrophysical false positive by a factor of 2e5 (Kepler-20b), 1e5 (Kepler-20c), and 1.1e3 (Kepler-20d), sufficient to validate these objects as planetary companions. For Kepler-20c and Kepler-20d, the blend scenario is independently disfavored by the achromaticity of the ...

  9. MagAO Imaging of Long-period Objects (MILO). I. A Benchmark M Dwarf Companion Exciting a Massive Planet around the Sun-like Star HD 7449

    CERN Document Server

    Rodigas, Timothy J; Faherty, Jackie; Anglada-Escude, Guillem; Kaib, Nathan; Butler, R Paul; Shectman, Stephen; Weinberger, Alycia; Males, Jared R; Morzinski, Katie M; Close, Laird M; Hinz, Philip M; Crane, Jeffrey D; Thompson, Ian; Teske, Johanna; Diaz, Matias; Minniti, Dante; Lopez-Morales, Mercedes; Adams, Fred C; Boss, Alan P

    2015-01-01

    We present high-contrast Magellan adaptive optics (MagAO) images of HD 7449, a Sun-like star with one planet and a long-term radial velocity (RV) trend. We unambiguously detect the source of the long-term trend from 0.6-2.15 \\microns ~at a separation of \\about 0\\fasec 54. We use the object's colors and spectral energy distribution to show that it is most likely an M4-M5 dwarf (mass \\about 0.1-0.2 \\msun) at the same distance as the primary and is therefore likely bound. We also present new RVs measured with the Magellan/MIKE and PFS spectrometers and compile these with archival data from CORALIE and HARPS. We use a new Markov chain Monte Carlo procedure to constrain both the mass ($> 0.17$ \\msun ~at 99$\\%$ confidence) and semimajor axis (\\about 18 AU) of the M dwarf companion (HD 7449B). We also refine the parameters of the known massive planet (HD 7449Ab), finding that its minimum mass is $7.8^{+3.7}_{-1.35}$ \\mj, its semimajor axis is $2.33^{+0.01}_{-0.02}$ AU, and its eccentricity is $0.8^{+0.08}_{-0.06}$. ...

  10. Kepler-22b: a 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    NARCIS (Netherlands)

    Borucki, W.J.; Koch, D.G.; Batalha, N.; Bryson, S.T.; Rowe, J.; Fressin, F.; Torres, G.; Caldwell, D.A.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; Gautier, T.N.; Geary, J.C.; Gilliland, R.; Gould, A.; Howell, S.B.; Jenkins, J.M.; Latham, D.W.; Lissauer, J.J.; Marcy, G.W.; Sasselov, D.; Boss, A.; Charbonneau, D.; Ciardi, D.; Kaltenegger, L.; Doyle, L.; Dupree, A.K.; Ford, E.B.; Fortney, J.; Holman, M.J.; Steffen, J.H.; Mullally, F.; Still, M.; Tarter, J.; Ballard, S.; Buchhave, L.A.; Carter, J.; Christiansen, J.L.; Demory, B.O.; Désert, J.M.; Dressing, C.; Endl, M.; Fabrycky, D.; Fischer, D.; Haas, M.R.; Henze, C.; Horch, E.; Howard, A.W.; Isaacson, H.; Kjeldsen, H.; Johnson, J.A.; Klaus, T.; Kolodziejczak, J.; Barclay, T.; Li, J.; Meibom, S.; Prsa, A.; Quinn, S.N.; Quintana, E.V.; Robertson, P.; Sherry, W.; Shporer, A.; Tenenbaum, P.; Thompson, S.E.; Twicken, J.D.; Van Cleve, J.; Welsh, W.F.; Basu, S.; Chaplin, W.; Miglio, A.; Kawaler, S.D.; Arentoft, T.; Stello, D.; Metcalfe, T.S.; Verner, G.A.; Karoff, C.; Lundkvist, M.; Lund, M.N.; Handberg, R.; Elsworth, Y.; Hekker, S.; Huber, D.; Bedding, T.R.; Rapin, W.

    2012-01-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an

  11. Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    DEFF Research Database (Denmark)

    Borucki, W.J.; Koch, D.G.; Batalha, N.

    2012-01-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an astero......A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined...... with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 ± 0.060 M sun and 0.979 ± 0.020 R sun. The depth of 492 ± 10 ppm for the three observed transits yields a radius of 2.38 ± 0.13 Re for the planet. The system passes a battery of tests for false positives, including...... masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other...

  12. The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars

    Science.gov (United States)

    Boisse, I.; Pepe, F.; Perrier, C.; Queloz, D.; Bonfils, X.; Bouchy, F.; Santos, N. C.; Arnold, L.; Beuzit, J.-L.; Díaz, R. F.; Delfosse, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A.-M.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Santerne, A.; Ségransan, D.; Sivan, J.-P.; Udry, S.

    2012-09-01

    We present radial-velocity measurements obtained in one of a number of programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, which had been mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD 150706 and HD 222155 in 16.1 yr and 10.9 yr at 6.7-1.4+4.0 AU and 5.1-0.7+0.6 AU, and to have minimum masses of 2.71-0.66+1.14 MJup and 1.90-0.53+0.67 MJup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD 154345b and HD 89307b, and publish the first reliable orbit for HD 24040b. This last companion has a minimum mass of 4.01 ± 0.49 MJup orbiting its star in 10.0 yr at 4.92 ± 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD 24040 system. With a surrounding dust debris disk, HD 150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. In contrast, HD 222155 is an inactive G2V star. In the SOPHIE measurements, an instrumental effect could be characterized and partly corrected. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up surveys to constrain the system parameters and for higher-precision radial-velocity searches for lower mass planets, aiming to find a solar system twin

  13. Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Howell, Steve B.; Lissauer, Jack J. [NASA-Ames Research Center, Moffett Field, CA 94035-0001 (United States); Batalha, Natalie [Department of Physics and Astronomy, San Jose State University, San Jose, CA, 95192 (United States); Rowe, Jason; Caldwell, Douglas A.; DeVore, Edna; Jenkins, Jon M. [SETI Institute, Mountain View, CA 94043 (United States); Fressin, Francois; Torres, Guillermo; Geary, John C.; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Christensen-Dalsgaard, Jorgen [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Cochran, William D. [McDonald Observatory, University of Texas at Austin, Austin, TX 78712 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 91109 (United States); Gilliland, Ronald [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Gould, Alan [Lawrence Hall of Science, University of California, Berkeley, CA 94720 (United States); Marcy, Geoffrey W., E-mail: William.J.Borucki@nasa.gov [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2012-02-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 {+-} 0.060 M{sub Sun} and 0.979 {+-} 0.020 R{sub Sun }. The depth of 492 {+-} 10 ppm for the three observed transits yields a radius of 2.38 {+-} 0.13 Re for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities (RVs) obtained with the High Resolution Echelle Spectrometer on Keck I over a one-year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{sigma} upper limit of 124 M{sub Circled-Plus }, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262 K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the habitable zone of any star other than the Sun.

  14. Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    CERN Document Server

    Borucki, William J; Batalha, Natalie; Bryson, Stephen T; Caldwell, Douglas A; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Rowe, Jason; Sasselov, Dimitar; Boss, Alan; Charbonneau, David; Ciardi, David; Torres, Guillermo; Fressin, Francois; Kaltenegger, Lisa; Doyle, Laurance; Dupree, Andrea K; Ford, Eric B; Fortney, Jonathan; Holman, Matthew J; Steffen, Jason A; Mullally, Fergal; Still, Martin; Tarter, Jill; Ballard, Sarah; Buchhave, Lars A; Carter, Josh; Christiansen, Jessie L; Demory, Brice-Olivier; Désert, Jean-Michel; Dressing, Courtney; Endl, Michael; Fabrycky, Daniel; Fischer, Debra; Haas, Michael R; Henze, Christopher; Horch, Elliott; Howard, Andrew W; Isaacson, Howard; Kjeldsen, Hans; Johnson, John Asher; Klaus, Todd; Kolodziejczak, Jeffery; Barclay, Thomas; Li, Jie; Meibom, Søren; Prsa, Andrej; Quinn, Samuel N; Quintana, Elisa V; Robertson, Paul; Sherry, William; Shporer, Avi; Tenenbaum, Peter; Thompson, Susan E; Twicken, Joseph D; Van Cleve, Jeffrey; Welsh, William F; Basu, Sarbani; Chaplin, Bill; Miglio, Andrea; Kawaler, Steve; Arentoft, Torben; Stello, Dennis; Metcalfe, Travis S; Verner, Graham; Karoff, Christoffer; Lundkvist, Mia; Lund, Mikkel; Handberg, Rasmus; Elsworth, Yvonne; Hekker, Saskia; Huber, Daniel; Bedding, Timothy R

    2011-01-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although t...

  15. A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Science.gov (United States)

    Patsourakos, S.; Georgoulis, M. K.

    2017-07-01

    Patsourakos et al. ( Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis ( Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies {≈} 104 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.

  16. Simple nonlinear models suggest variable star universality

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.

  17. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    Science.gov (United States)

    Kennedy, Grant M.; Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  18. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc

    Science.gov (United States)

    Kenworthy, Matthew A.; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Wyatt, Mark C.

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc’s bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc. PMID:28280566

  19. Could Ultracool Dwarfs Have Sun-Like Activity?

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with

  20. Magnetic Evolution and the Disappearance of Sun-Like Activity Cycles

    Science.gov (United States)

    Metcalfe, Travis S.; van Saders, Jennifer

    2017-09-01

    After decades of effort, the solar activity cycle is exceptionally well characterized, but it remains poorly understood. Pioneering work at the Mount Wilson Observatory demonstrated that other Sun-like stars also show regular activity cycles, and suggested two possible relationships between the rotation rate and the length of the cycle. Neither of these relationships correctly describes the properties of the Sun, a peculiarity that demands explanation. Recent discoveries have started to shed light on this issue, suggesting that the Sun's rotation rate and magnetic field are currently in a transitional phase that occurs in all middle-aged stars. Motivated by these developments, we identify the manifestation of this magnetic transition in the best available data on stellar cycles. We propose a reinterpretation of previously published observations to suggest that the solar cycle may be growing longer on stellar evolutionary timescales, and that the cycle might disappear sometime in the next 0.8 - 2.4 Gyr. Future tests of this hypothesis will come from ground-based activity monitoring of Kepler targets that span the magnetic transition, and from asteroseismology with the Transiting Exoplanet Survey Satellite (TESS) mission to determine precise masses and ages for bright stars with known cycles.

  1. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Ricky [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Metcalfe, Travis S. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Hall, Jeffrey C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Henry, Gregory W., E-mail: egeland@ucar.edu [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States)

    2015-10-10

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.

  2. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kenworthy, Matthew A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Cameron, Andrew Collier; Parley, Neil R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the

  3. Sun-Like Magnetic Cycles in the Rapidly-Rotating Young Solar Analog HD 30495

    CERN Document Server

    Egeland, Ricky; Hall, Jeffrey C; Henry, Gregory W

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial ($\\sim$2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, an $\\sim$1 Gyr-old G1.5V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at $\\sim$1.7 years and a long cycle of $...

  4. Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars.

    Science.gov (United States)

    Castro-Tirado, A J; de Ugarte Postigo, A; Gorosabel, J; Jelínek, M; Fatkhullin, T A; Sokolov, V V; Ferrero, P; Kann, D A; Klose, S; Sluse, D; Bremer, M; Winters, J M; Nuernberger, D; Pérez-Ramírez, D; Guerrero, M A; French, J; Melady, G; Hanlon, L; McBreen, B; Leventis, K; Markoff, S B; Leon, S; Kraus, A; Aceituno, F J; Cunniffe, R; Kubánek, P; Vítek, S; Schulze, S; Wilson, A C; Hudec, R; Durant, M; González-Pérez, J M; Shahbaz, T; Guziy, S; Pandey, S B; Pavlenko, L; Sonbas, E; Trushkin, S A; Bursov, N N; Nizhelskij, N A; Sánchez-Fernández, C; Sabau-Graziati, L

    2008-09-25

    Magnetars are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray transient sources that are occasionally detected as bursters in the high-energy sky. No optical counterpart to the gamma-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11 days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of approximately 3.7 kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long-term X-ray emission is short-lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the 'persistent' soft gamma-ray repeaters/anomalous X-ray pulsars and dim isolated neutron stars.

  5. Extrasolar Comets in our Solar System Captured During Close Encounters with Nearby Stars?

    Science.gov (United States)

    Rocca, M. C. L.; Acevedo, R. D.

    2014-09-01

    It is a fact that many nearby Sun like stars have their own cometary clouds. Close encounters with passing nearby stars may induce to the capture and exchange of cometary nuclei between the Sun and the coming star.

  6. The initial conditions of isolated star formation - X. A suggested evolutionary diagram for prestellar cores

    CERN Document Server

    Simpson, R J; Nutter, D; Ward-Thompson, D; Whitworth, A P

    2011-01-01

    We propose an evolutionary path for prestellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell Diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus star-forming complex, we analyse the HCO+ (J=4\\rightarrow3) spectral line profiles of prestellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a prestellar core evolves across this diagram. We hypothesise that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasistatically, increasing in both mass and radius. When it crosses the limit of gravitational instability it begins to co...

  7. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to establish periodicity in the light curve and deduce Earth's diurnal period and the existence of fixed surface units.

  8. The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation

    CERN Document Server

    Stamatellos, Dimitris

    2008-01-01

    We suggest that a high proportion of brown dwarfs are formed by gravitational fragmentation of massive extended discs around Sun-like stars. Such discs should arise frequently, but should be observed infrequently, precisely because they fragment rapidly. By performing an ensemble of radiation-hydrodynamic simulations, we show that such discs fragment within a few thousand years, and produce mainlybrown dwarf (BDs) stars, but also planetary mass (PM) stars and very low-mass hydrogen-burning (HB) stars. Most of the the PM stars and BDs are ejected by mutual interactions. We analyse the statistical properties of these stars, and compare them with observations. After a few hundred thousand years the Sun-like primary is typically left with a close low-mass HB companion, and two much wider companions: a low-mass HB star and a BD star, or a BD-BD binary. There is a BD desert extending out to at least ~100 AU; this is because BDs tend to be formed further out than low-mass HB stars, and then they tend to be scattered...

  9. AsteroFLAG - from the Sun to the stars

    Energy Technology Data Exchange (ETDEWEB)

    Chaplin, W J; Elsworth, Y [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Appourchaux, T; Baudin, F [Institut d' Astrophysique Spatiale (IAS), Batiment 121, F-91405, Orsay Cedex (France); Arentoft, T; Christensen-Dalsgaard, J; Kjeldsen, H [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Ballot, J [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, Postfach 1317, 85741, Garching (Germany); Bazot, M [Centro de AstrofIsica Universidade do Porto, 4150-762 Porto (Portugal); Bedding, T R [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Creevey, O L [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States); Duez, V; Garcia, R A [DAPNIA/CEA, CE Saclay, FR-91191 Gif-sur-Yvette Cedex (France); Fletcher, S T [Faculty of Arts, Computing, Engineering and Sciences, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Gough, D O; Houdek, G [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Jimenez, A; Jimenez-Reyes, S J [Instituto de Astrofisica de Canarias, E-38200, La Laguna, Tenerife (Spain); Lazrek, M [LPHEA, Faculte des Sciences Semlalia, Universite Cadi Ayyad, Marrakech (Morocco); Leibacher, J W, E-mail: w.j.chaplin@bham.ac.uk (and others)

    2008-10-15

    We stand on the threshold of a critical expansion of asteroseismology of Sun-like stars, the study of stellar interiors by observation and analysis of their global acoustic modes of oscillation. The Sun-like oscillations give a very rich spectrum allowing the internal structure and dynamics to be probed down into the stellar cores to very high precision. Asteroseismic observations of many stars will allow multiple-point tests of crucial aspects of stellar evolution and dynamo theory. The aims of the asteroFLAG collaboration are to help the community to refine existing, and to develop new, methods for analysis of the asteroseismic data on the Sun-like oscillators.

  10. The initial conditions of isolated star formation - X. A suggested evolutionary diagram for pre-stellar cores

    Science.gov (United States)

    Simpson, R. J.; Johnstone, D.; Nutter, D.; Ward-Thompson, D.; Whitworth, A. P.

    2011-10-01

    We propose an evolutionary path for pre-stellar cores on the radius-mass diagram, which is analogous to stellar evolutionary paths on the Hertzsprung-Russell diagram. Using James Clerk Maxwell Telescope (JCMT) observations of L1688 in the Ophiuchus star-forming complex, we analyse the HCO+ (J= 4 → 3) spectral line profiles of pre-stellar cores. We find that of the 58 cores observed, 14 show signs of infall in the form of a blue-asymmetric double-peaked line profile. These 14 cores all lie beyond the Jeans mass line for the region on a radius-mass plot. Furthermore, another 10 cores showing tentative signs of infall, in their spectral line profile shapes, appear on or just over the Jeans mass line. We therefore propose the manner in which a pre-stellar core evolves across this diagram. We hypothesize that a core is formed in the low-mass, low-radius region of the plot. It then accretes quasi-statically, increasing in both mass and radius. When it crosses the limit of gravitational instability, it begins to collapse, decreasing in radius, towards the region of the diagram where protostellar cores are seen.

  11. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara [Institute for Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Georgakarakos, Nikolaos, E-mail: siegfried.eggl@univie.ac.at, E-mail: elke.pilat-lohinger@univie.ac.at [128 V. Olgas str., Thessaloniki 546 45 (Greece)

    2012-06-10

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  12. An Analytic Method to determine Habitable Zones for S-Type Planetary Orbits in Binary Star Systems

    CERN Document Server

    Eggl, Siegfried; Georgakarakos, Nikolaos; Gyergyovits, Markus; Funk, Barbara

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical Habitable Zone arise. Do the radiative and gravitational perturbations of the second star influence the extent of the Habitable Zone significantly, or is it sufficient to consider the host-star only? In this article we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time independent analytical estimates and compare these to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of Habitable Zones towards the secondary in close binary systems.

  13. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    Science.gov (United States)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  14. An Exoplanet Spinning Up Its Star

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    , for transiting planets with orbital periods shorter than 2 days and masses greater than 0.1 Jupiter masses. HATS-18b is denoted by the red star. [Penev et al. 2016]Tidal InteractionsWhat happens when a massive planet orbits this close to its star? Tidal interactions between the star and the planet cause tidal dissipation in the star, resulting in decay of the planets orbit. But there may be an additional effect of this interaction in the case of HATS-18b, the authors claim: the planet may be transferring some of its angular momentum to the star.As stars age, they should gradually spin slower as they lose angular momentum viastellar winds. But Penev and collaborators note that this exoplanets host star, HATS-18, spins roughly three times as fast asits inferred age suggests it should. The authors conclude that the angular momentum lost by the planet as its orbit shrinks is deposited in the star, causing the star to spin up.HATS-18 is an excellent laboratory for studying how very short-period planets interact with their stars in fact, Penev and collaborators have already used their observations of the system to constrain models of tidal dissipation from Sun-like stars. Additional observations of HATS-18 and other short-period systems should allow us to further test models of how planetary systems form and evolve.CitationK. Penev et al 2016 AJ 152 127. doi:10.3847/0004-6256/152/5/127

  15. Star Shows It Has The Right Stuff

    Science.gov (United States)

    2004-01-01

    Astronomers have used an observation by NASA's Chandra X-ray Observatory to make the best case yet that a star can be engulfed by its companion star and survive. This discovery will help astronomers better understand how closely coupled stars, and perhaps even stars and planets, evolve when one of the stars expands enormously in its red giant phase. The binary star system known as V471 Tauri comprises a white dwarf star (the primary) in a close orbit -- one thirtieth of the distance between Mercury and the Sun -- with a normal Sun-like star (the secondary). Chandra's data showed that the hot upper atmosphere of the secondary star has a deficit of carbon atoms relative to nitrogen atoms. "This deficit of carbon atoms is the first clear observational evidence that the normal star was engulfed by its companion in the past," according to Jeremy Drake of the Smithsonian Astrophysical Observatory in Cambridge, MA, who coauthored an article on V471 in The Astrophysical Journal Letters with Marek Sarna of the N. Copernicus Astronomical Center in Poland. The white dwarf star was once a star several times as massive as the Sun. Nuclear fusion reactions in the core of such a star convert carbon into nitrogen over a period of about a billion years. When the fuel in the core of the star is exhausted, the core collapses, triggering more energetic nuclear reactions that cause the star to expand and transform into a red giant before eventually collapsing to become a white dwarf. The carbon-poor material in the core of the red giant is mixed with outer part of the star, so its atmosphere shows a deficit of carbon, as compared with Sun-like stars. The X-ray spectra of a red giant star (top panel) and a Sun-like star (bottom panel) show the large difference in the peaks due to carbon atoms in the two stars. Theoretical calculations indicate that a red giant in a binary system can completely envelop its companion star and dramatically affect its evolution. During this common envelope

  16. Magnetised winds in single and binary star systems

    Science.gov (United States)

    Johnstone, Colin

    2016-07-01

    Stellar winds are fundamentally important for the stellar magnetic activity evolution and for the immediate environment surrounding their host stars. Ionised winds travel at hundreds of km/s, impacting planets and clearing out large regions around the stars called astropheres. Winds influence planets in many ways: for example, by compressing the magnetosphere and picking up atmospheric particles, they can cause significant erosion of a planetary atmosphere. By removing angular momentum, winds cause the rotation rates of stars to decrease as they age. This causes the star's magnetic dynamo to decay, leading to a significant decay in the star's levels of X-ray and extreme ultraviolet emission. Despite their importance, little is currently known about the winds of other Sun-like stars. Their small mass fluxes have meant that no direct detections have so far been possible. What is currently known has either been learned indirectly or through analogies with the solar wind. In this talk, I will review what is known about the properties and evolution of the winds of other Sun-like stars. I will also review wind dynamics in binary star systems, where the winds from both stars impact each other, leading to shocks and compression regions.

  17. KOI-3278: A Self-Lensing Binary Star System

    CERN Document Server

    Kruse, Ethan

    2014-01-01

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  18. MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars

    Science.gov (United States)

    Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley

    2017-01-01

    Results from Kepler and ground-based exoplanet surveys suggest that M-dwarfs host numerous small sized planets. Additionally, the discovery of the Earth-sized exoplanets orbiting Proxima Centauri and Trappist 1 demonstrate that these stars can host terrestrial planets in their habitable zones. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining 1 m/s Doppler resolution to detect their planetary companions remains a challenge for instruments designed for sun-like stars. We describe a novel, high-cadence approach aimed at detecting and characterizing planets orbiting the closest low-mass stars to the Sun. MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm, where M-dwarfs are brightest. The spectrograph will be temperature controlled at 20C +/- 10mk and in a vacuum chamber which maintains a pressure below 0.01 mbar while using a Fabry-Perot etalon and U/Ne lamp for wavelength calibration. The spectrometer will operate with a robotic, 0.7-meter telescope at Mt. Hopkins, Arizona. We expect first light in 2017.

  19. Angular Momentum Transport via Internal Gravity Waves in Evolving Stars

    CERN Document Server

    Fuller, Jim; Cantiello, Matteo; Brown, Ben

    2014-01-01

    Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many sub-giant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of internal gravity waves in angular momentum transport in evolving low mass stars. In agreement with previous results, we find that convectively excited gravity waves can prevent the development of strong differential rotation in the radiative cores of Sun-like stars. As stars evolve into sub-giants, however, low frequency gravity waves become strongly attenuated and cannot propagate below the hydrogen burning shell, allowing the spin of the core to decouple from the convective envelope. This decoupling occurs at the base of the sub-giant branch when stars have surface temperatures of roughly 5500 K. However, gravity waves can s...

  20. Transits Probabilities Around Hypervelocity and Runaway Stars

    CERN Document Server

    Fragione, Giacomo

    2016-01-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. In this paper, we explore the possibility of detecting planetary transits around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multi-planetary transit is $10^{-3}\\lesssim P\\lesssim 10^{-1}$. We therefore need to observe $\\sim 10-1000$ high-velocity stars to spot a transit. We predict that the European Gaia satellite, along with TESS, could spot such transits.

  1. Stars Form Surprisingly Close to Milky Way's Black Hole

    Science.gov (United States)

    2005-10-01

    million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for

  2. Witnessing the Emergence of a Carbon Star

    CERN Document Server

    Guzman-Ramirez, L; Wesson, R; Zijlstra, A A; Muller, A; Jones, D; Boffin, H M J; Sloan, G C; Redman, M P; Smette, A; Karakas, A I; Nyman, Lars-Ake

    2015-01-01

    During the late stages of their evolution, Sun-like stars bring the products of nuclear burning to the surface. Most of the carbon in the Universe is believed to originate from stars with masses up to a few solar masses. Although there is a chemical dichotomy between oxygen-rich and carbon-rich evolved stars, the dredge-up itself has never been directly observed. In the last three decades, however, a few stars have been shown to display both carbon- and oxygen-rich material in their circumstellar envelopes. Two models have been proposed to explain this dual chemistry: one postulates that a recent dredge-up of carbon produced by nucleosynthesis inside the star during the Asymptotic Giant Branch changed the surface chemistry of the star. The other model postulates that oxygen-rich material exists in stable keplerian rotation around the central star. The two models make contradictory, testable, predictions on the location of the oxygen-rich material, either located further from the star than the carbon-rich gas,...

  3. Silicon-bearing molecules in the shock L1157-B1: first detection of SiS around a Sun-like protostar

    Science.gov (United States)

    Podio, L.; Codella, C.; Lefloch, B.; Balucani, N.; Ceccarelli, C.; Bachiller, R.; Benedettini, M.; Cernicharo, J.; Faginas-Lago, N.; Fontani, F.; Gusdorf, A.; Rosi, M.

    2017-09-01

    The shock L1157-B1 driven by the low-mass protostar L1157-mm is a unique environment to investigate the chemical enrichment due to molecules released from dust grains. IRAM-30m and Plateau de Bure Interferometer observations allow a census of Si-bearing molecules in L1157-B1. We detect SiO and its isotopologues and, for the first time in a shock, SiS. The strong gradient of the [SiO/SiS] abundance ratio across the shock (from ≥180 to ∼25) points to a different chemical origin of the two species. SiO peaks where the jet impacts the cavity walls ([SiO/H2] ∼ 10-6), indicating that SiO is directly released from grains or rapidly formed from released Si in the strong shock occurring at this location. In contrast, SiS is only detected at the head of the cavity opened by previous ejection events ([SiS/H2] ∼ 2 × 10-8). This suggests that SiS is not directly released from the grain cores but instead should be formed through slow gas-phase processes using part of the released silicon. This finding shows that Si-bearing molecules can be useful to distinguish regions where grains or gas-phase chemistry dominates.

  4. Asteroseismology of Red Giant stars

    CERN Document Server

    Tarrant, N J; Elsworth, Y P; Spreckley, S A; Stevens, I R

    2008-01-01

    Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now been observed in a number of Red Giant stars. Compared to those seen in the Sun, these modes are of large amplitude and long period, making the oscillations attractive prospects for observation. However, the low Q-factor of these modes, and issues relating to the rising background at low frequencies, present some interesting challenges for identifying modes and determining the related asteroseismic parameters. We report on the analysis procedure adopted for peak-bagging by our group at Birmingham, and the techniques used to robustly ensure these are not a product of noise. I also show results from a number of giants extracted from multi-year observations with the SMEI instrument.

  5. Solar-like oscillating stars as standard clocks and rulers for Galactic studies

    CERN Document Server

    Miglio, Andrea; Rodrigues, Thaise S; Stello, Dennis; Chaplin, William J

    2014-01-01

    The CoRoT and Kepler space missions have detected oscillations in hundreds of Sun-like stars and thousands of field red-giant stars. This has opened the door to a new era of stellar population studies in the Milky Way. We report on the current status and future prospects of harvesting space-based photometric data for ensemble asteroseismology, and highlight some of the challenges that need to be faced to use these stars as accurate clocks and rulers for Galactic studies.

  6. The same frequency of planets inside and outside open clusters of stars.

    Science.gov (United States)

    Meibom, Søren; Torres, Guillermo; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin

    2013-07-04

    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.

  7. The Tidal Disruption of Giant Stars and Their Contribution to the Flaring Supermassive Black Hole Population

    CERN Document Server

    MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2012-01-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the $t^{-5/3}$ decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on months to years timescales. We calculate the relative disruption rates of stars of varying evolutionary stages in...

  8. Lessons for Asteroseismology from White Dwarf Stars

    Indian Academy of Sciences (India)

    Travis S. Metcalfe

    2005-06-01

    The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.

  9. The MUSCLES Treasury Survey: Temporally- and Spectrally-Resolved Irradiance from Low-mass Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Parke Loyd, R. O.; Youngblood, Allison; Linsky, Jeffrey; MUSCLES Treasury Survey Team

    2016-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to near-UV; 5 - 3200 Ang) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential "biomarker" gases. It has been shown that the atmospheric signatures of potentially habitable planets around low-mass stars may be significantly different from planets orbiting Sun-like stars owing to the different UV spectral energy distribution. I will present results from a panchromatic survey (Hubble/Chandra/XMM/optical) of M and K dwarf exoplanet hosts, the MUSCLES Treasury Survey (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems). We reconstruct the Lyman-alpha and extreme-UV (100-900 Ang) radiation lost to interstellar attenuation and create 5 Angstrom to 5 micron stellar irradiance spectra; these data will be publically available as a High-Level Science Product on MAST. We find that all low-mass exoplanet host stars exhibit significant chromospheric/transition region/coronal emission -- no "UV inactive" M dwarfs are observed. The F(far-UV)/F(near-UV) flux ratio, a driver for possible abiotic production of the suggested biomarkers O2 and O3, increases by ~3 orders of magnitude as the habitable zone moves inward from 1 to 0.1 AU, while the incident far-UV (912 - 1700 Ang) and XUV (5 - 900 Ang) radiation field strengths decrease by factors of a few across this range. Far-UV flare activity is common in 'optically inactive' M dwarfs; statistics from the entire sample indicate that large UV flares (E(300 - 1700 Ang) >= 10^31 erg) occur several times per day on typical M dwarf exoplanet hosts.

  10. The same frequency of planets inside and outside open clusters of stars

    CERN Document Server

    Meibom, Søren; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin

    2013-01-01

    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dens...

  11. Nearby stars as gravitational wave detectors

    CERN Document Server

    Lopes, Ilídio

    2015-01-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from $10^{-7}$ Hz to $10^{-2}$ Hz. In particular, these stars can probe the $10^{-6}$ Hz -- $10^{-4}$ Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as SKA and eLISA. The PLATO stellar seismic mission will achieve photospheric velocity amplitude accuracy of $~ {\\rm cm/s}$. For a gravitational wave search, we will need to achieve accuracies of the order of $10^{-2}{\\rm cm/s}$, i.e., at least one generation beyond PLATO. However, we have...

  12. Transit probabilities around hypervelocity and runaway stars

    Science.gov (United States)

    Fragione, G.; Ginsburg, I.

    2017-04-01

    In the blooming field of exoplanetary science, NASA's Kepler Space Telescope has revolutionized our understanding of exoplanets. Kepler's very precise and long-duration photometry is ideal for detecting planetary transits around Sun-like stars. The forthcoming Transiting Exoplanet Survey Satellite (TESS) is expected to continue Kepler's legacy. Along with transits, the Doppler technique remains an invaluable tool for discovering planets. The next generation of spectrographs, such as G-CLEF, promise precision radial velocity measurements. In this paper, we explore the possibility of detecting planets around hypervelocity and runaway stars, which should host a very compact system as consequence of their turbulent origin. We find that the probability of a multiplanetary transit is 10-3 ≲ P ≲ 10-1. We therefore need to observe ∼10-1000 high-velocity stars to spot a transit. However, even if transits are rare around runaway and hypervelocity stars, the chances of detecting such planets using radial velocity surveys is high. We predict that the European Gaia satellite, along with TESS and the new-generation spectrographs G-CLEF and ESPRESSO, will spot planetary systems orbiting high-velocity stars.

  13. The Proportion of Stars with Planets

    Science.gov (United States)

    Woolfson, M. M.

    2016-04-01

    Estimates of the proportion of Sun-like stars with accompanying planets vary widely; the best present estimate is that it is about 0.34. The capture theory of planet formation involves an interaction between a condensed star and either a diffuse protostar or a high-density region in a dense embedded cluster. The protostar, or dense region, is tidally stretched into a filament that is gravitationally unstable and breaks up into a string of protoplanetary blobs, which subsequently collapse to form planets, some of which are captured by the star. A computational model, in which the passage of collapsing protostars, with initial radii 1000, 1500 and 2000 au, through a dense embedded cluster are followed, is used to estimate the proportion of protostars that would be disrupted to give planets, in environments with star number-densities in the range 5000-25,000 pc-3. It is concluded from the results that the capture theory might explain the presently-estimated proportion of stars with exoplanet companions, although other possible ways of producing exoplanets are not excluded.

  14. Evidence for dynamo bistability among very low mass stars

    CERN Document Server

    Morin, J; Donati, J -F; Dormy, E; Forveille, T; Jardine, M; Petit, P; Schrinner, M

    2012-01-01

    Dynamo action in fully convective stars is a debated issue that also questions our understanding of magnetic field generation in partly convective Sun-like stars. During the past few years, spectropolari- metric observations have demonstrated that fully convective objects are able to trigger strong large-scale and long-lived magnetic fields. We present here the first spectropolarimetric study of a sample of active late M dwarfs (M5-M8) carried out with ESPaDOnS@CFHT. It reveals the co-existence of two distinct types of magnetism among stars having similar masses and rotation rates. A possible explanation for this unexpected discovery is the existence of two dynamo branches in this parameter regime, we discuss here the possible identification with the weak vs strong field bistability predicted for the geodynamo.

  15. Nearby Stars as Gravitational Wave Detectors

    Science.gov (United States)

    Lopes, Ilídio; Silk, Joseph

    2015-07-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.

  16. Superflares on the slowly rotating solar-type stars KIC10524994 and KIC07133671?

    CERN Document Server

    Kitze, M; Hambaryan, V; Ginski, C

    2014-01-01

    An investigation of the G-type stellar population with Kepler (as done by Maehara et al.) shows that less than 1 per cent of those stars show superflares. Due to the large pixel scale of Kepler ($\\sim4 arcsec \\: px^{-1}$), it is still not clear whether the detected superflares really occur on the G-type stars. Knowing the origin of such large brightenings is important to study their frequency statistics, which are uncertain due to the low number of sun-like stars ($T_{eff} = 5600-6000 \\:K$ and $P_{rot} > 10 \\:d$) which are currently considered to exhibit superflares. We present a complete Kepler data analysis of the sun-like stars KIC10524994 and KIC07133671 (the only two stars within this subsample of solar twins with flare energies larger than $10^{35}$ erg; Maehara et al.), regarding superflare properties and a study about their origin. We could detect four new superflares within the epoch Maehara et al. investigated and found 14 superflares in the remaining light curve for KIC10524994. Astrometric Kepler ...

  17. Using K2 to Investigate Planetary Systems Orbiting Low-Mass Stars

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Joshua E.; K2 CHAI Consortium

    2016-10-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. Unlike the original Kepler mission, which stared at a single region of the sky for four years, K2 observes each field for a much shorter timespan of roughly 80 days. While planets in the habitable zones of Sun-like stars would be unlikely to transit even once during an 80-day interval, planets in the habitable zones of faint low-mass stars have much shorter orbital periods and may even transit multiple times during a single K2 campaign. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 target stars are not well-characterized and some candidate low-mass stars are actually giants or reddened Sun-like stars. We are improving the characterization of K2 planetary systems orbiting low-mass stars by using SpeX on the NASA Infrared Telescope Facility and TripleSpec on the 200-inch Hale Telescope at Palomar Observatory to acquire near-infrared spectra of K2 target stars. We then employ empirically-based relations to determine the temperatures, radii, luminosities, and metallicities of K2 planet candidate host stars. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of stellar properties and discuss the prospects for using K2 data to investigate whether planet occurrence rates for mid-M dwarfs are similar to those for early-M and late-K dwarfs.

  18. Managing the star performer.

    Science.gov (United States)

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas.

  19. A rocky planet transiting a nearby low-mass star

    CERN Document Server

    Berta-Thompson, Zachory K; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-01-01

    M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun -- are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the plane...

  20. The Star Formation History of RCW 36

    NARCIS (Netherlands)

    L. Ellerbroek; L. Kaper; A. Bik; K.M. Maaskant; L. Podio

    2014-01-01

    Recent studies of massive-star forming regions indicate that they can contain multiple generations of young stars. These observations suggest that star formation in these regions is sequential and/or triggered by a previous generation of (massive) stars. Here we present new observations of the star

  1. The First Stars

    Science.gov (United States)

    Yoshida, Naoki

    2010-10-01

    The standard cosmological model predicts that the first cosmological objects are formed when the age of the universe is a few hundred million years. Recent theoretical studies and numerical simulations consistently suggest that the first objects are very massive primordial stars. We introduce the key physics and explain why the first stars are thought to be massive, rather than to be low-mass stars. The state-of-the-art simulations include all the relevant atomic and molecular physics to follow the thermal evolution of a prestellar gas cloud to very high ``stellar'' densities. Evolutionary calculations of the primordial stars suggest the formation of massive blackholes in the early universe. Finally, we show the results from high-resolution simulations of star formation in a low-metallicity gas. Vigorous fragmentation is triggered in a star-forming gas cloud at a metallicity of as low as Z = 10-5Zsolar.

  2. Multiplicity of massive stars

    CERN Document Server

    Preibisch, T; Zinnecker, H; Preibisch, Thomas; Weigelt, Gerd; Zinnecker, Hans

    2000-01-01

    We discuss the observed multiplicity of massive stars and implications on theories of massive star formation. After a short summary of the literature on massive star multiplicity, we focus on the O- and B-type stars in the Orion Nebula Cluster, which constitute a homogenous sample of very young massive stars. 13 of these stars have recently been the targets of a bispectrum speckle interferometry survey for companions. Considering the visual and also the known spectroscopic companions of these stars, the total number of companions is at least 14. Extrapolation with correction for the unresolved systems suggests that there are at least 1.5 and perhaps as much as 4 companions per primary star on average. This number is clearly higher than the mean number of about 0.5 companions per primary star found for the low-mass stars in the general field population and also in the Orion Nebula cluster. This suggests that a different mechanism is at work in the formation of high-mass multiple systems in the dense Orion Nebu...

  3. The Death of a Star

    Science.gov (United States)

    Thorne, Kip S.

    1971-01-01

    Theories associated with the gravitational collapse of a star into black holes" are described. Suggests that the collapse and compression might go through the stages from white dwarf star to neutron core to black hole." (TS)

  4. The Sun as a star: empirical estimates of stellar coronal mass ejection rates and properties

    Science.gov (United States)

    Aarnio, Alicia

    2017-05-01

    Our nearest star provides exquisite, up-close views of the physical processes driving energetic phenomena we observe on stars and cannot yet spatially resolve. Stars provide a statistical ensemble of solar analogs spanning a range of ages representing snapshots along our Sun's full life cycle. In this talk, I will share a project bringing the astronomer's large scale statistical approach to bear on solar data. Combining a decades' worth of solar flare and CME data, we characterize for the first time a relationship between flare and CME properties in order to extend analogy to readily observable stellar flares. We aim to better understand the properties and evolution of magnetic activity on Sun-like stars and exoweather on planets about distant Suns.

  5. Dying star creates sculpture of gas and dust

    Science.gov (United States)

    2004-09-01

    format) 287 Kb High resolution version (TIFF format) 4674 Kb Although the rings may be the key to explaining the final ‘gasp’ of the dying central star, the mystery behind the Cat’s Eye Nebula’s nested ‘Russian doll’ structure remains largely unsolved. The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. Observations suggest that the star ejected its mass in a series of pulses at 1500-year intervals. These convulsions created dust shells that each contains as much mass as all of the planets in our Solar System combined (but still only one-percent of the Sun's mass). These concentric shells make a layered onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each layer of skin is discernible. Until recently, it was thought that shells around planetary nebulae were a rare phenomenon. However, Romano Corradi (Isaac Newton Group of Telescopes, Spain) and collaborators, in a paper published in the European journal Astronomy & Astrophysics in April 2004, have instead shown that the formation of these rings is likely to be the rule rather than the exception. The bull's-eye patterns seen around planetary nebulae come as a surprise to

  6. Search for Planetary-mass Companions of the LHB Star eta Corvi

    Science.gov (United States)

    Marengo, Massimo; Lisse, Carey; Stapelfeldt, Karl; Hulsebus, Alan; Sitko, Michael

    2016-08-01

    The nearby sun-like star eta Corvi (F2V, d = 18 pc, age = 1.2 Gyr) has long been known to possess a bright, dusty Kuiper belt that has been recently resolved with Herschel/PACS. In addition to this structure, eta Corvi is one of the rare mature planetary systems to possess also an inner warm belt (~ 3 AU radius), located within the Terrestrial Habitable Zone (TLZ) of this star. Our characterization of this structure, based on Spitzer/IRS and NASA/IRTF SpeX spectral observations, reveals the signature of ice, organics and silicate dust in this warm belt. This supports the hypothesis that eta Corvi is undergoing a Late Heavy Bombardment (LHB), delivering life-bearing water- and organic-rich material from the Kuiper belt to the TLZ, at roughly the same age as the Solar System?s LHB. For the past four years we have monitored the brightness of eta Corvi?s warm belt with Spitzer/IRAC, finding that its infrared emission has been stable over a multi-year timescale. In 2012 we have also conducted a search for widely separated substellar-mass companions of this star, whose presence as been suggested as a possible trigger for the LHB currently undergoing in the system. This search has led to the identification of three sources with colors and magnitudes consistent with being late-T and Y dwarf companions of this star. We here propose to acquire a new deep roll-subtracted image of the system, 5 years after our first visit, to test for common proper motion of these candidate companions, and determine if any of this sources is physically associated with eta Corvi. A positive identification of a substellar-mass companions (one of which could be a 3-5 MJ planet at ~360 AU from the star) would be a significant step in understanding the processes leading to LHB-like events in a system analogous to the Solar System.

  7. SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Takuya; Notsu, Shota; Notsu, Yuta; Nagao, Takashi [Department of Astronomy, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Maehara, Hiroyuki; Honda, Satoshi; Ishii, Takako T.; Nogami, Daisaku; Shibata, Kazunari, E-mail: shibayama@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatory, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2013-11-01

    By extending our previous study by Maehara et al., we searched for superflares on G-type dwarfs (solar-type stars) using Kepler data for a longer period (500 days) than that (120 days) in our previous study. As a result, we found 1547 superflares on 279 G-type dwarfs, which is much more than the previous 365 superflares on 148 stars. Using these new data, we studied the statistical properties of the occurrence rate of superflares, and confirmed the previous results, i.e., the occurrence rate (dN/dE) of superflares versus flare energy (E) shows a power-law distribution with dN/dE∝E {sup –α}, where α ∼ 2. It is interesting that this distribution is roughly similar to that for solar flares. In the case of the Sun-like stars (with surface temperature 5600-6000 K and slowly rotating with a period longer than 10 days), the occurrence rate of superflares with an energy of 10{sup 34}-10{sup 35} erg is once in 800-5000 yr. We also studied long-term (500 days) stellar brightness variation of these superflare stars and found that in some G-type dwarfs the occurrence rate of superflares was extremely high, ∼57 superflares in 500 days (i.e., once in 10 days). In the case of Sun-like stars, the most active stars show a frequency of one superflare (with 10{sup 34} erg) in 100 days. There is evidence that these superflare stars have extremely large starspots with a size about 10 times larger than that of the largest sunspot. We argue that the physical origin of the extremely high occurrence rate of superflares in these stars may be attributed to the existence of extremely large starspots.

  8. Star Clusters

    OpenAIRE

    Gieles, M.

    1993-01-01

    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  9. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  10. Stars and Star Myths.

    Science.gov (United States)

    Eason, Oliver

    Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…

  11. Stabilization of CO2 Atmospheres on Exoplanets around M Dwarf Stars

    CERN Document Server

    Gao, Peter; Robinson, Tyler D; Li, Cheng; Yung, Yuk L

    2015-01-01

    We investigate the chemical stability of CO2-dominated atmospheres of M dwarf terrestrial exoplanets using a 1-dimensional photochemical model. On planets orbiting Sun-like stars, the photolysis of CO2 by Far-UV (FUV) radiation is balanced by the reaction between CO and OH, the rate of which depends on H2O abundance. By comparison, planets orbiting M dwarf stars experience higher FUV radiation compared to planets orbiting Sun-like stars, and they are also likely to have low H2O abundance due to M dwarfs having a prolonged, high-luminosity pre-main sequence (Luger & Barnes 2015). We show that, for H2O-depleted planets around M dwarfs, a CO2-dominated atmosphere is stable to conversion to CO and O2 by relying on a catalytic cycle involving H2O2 photolysis. However, this cycle breaks down for planets with atmospheric hydrogen mixing ratios below ~1 ppm, resulting in ~40% of the atmospheric CO2 being converted to CO and O2 on a time scale of 1 Myr. The increased abundance of O2 also results in high O3 concent...

  12. Regarding the Potential Impact of Double Star Observations on Conceptions of the Universe of Stars in the Early 17TH Century

    CERN Document Server

    Graney, Christopher M

    2008-01-01

    Galileo Galilei believed that stars were distant suns whose sizes measured via his telescope were a direct indication of distance -- fainter stars (appearing smaller in the telescope) being farther away than brighter ones. Galileo argued in his Dialogue that telescopic observation of a chance alignment of a faint (distant) and bright (closer) star would reveal annual parallax, if such double stars were found. This would provide support both for Galileo's ideas concerning the nature of stars and for the motion of the Earth. However, Galileo actually made observations of such double stars, well before publication of the Dialogue. We show that the results of these observations, and the likely results of observations of any double star that was a viable subject for Galileo's telescope, would undermine Galileo's ideas, not support them. We argue that such observations would lead either to the more correct idea that stars were sun-like bodies of varying sizes which could be physically grouped, or to the less correc...

  13. A Review and Preview of Magnetic Star-Planet Interactions

    Science.gov (United States)

    Shkolnik, Evgenya

    2017-05-01

    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within 20 stellar radii (=0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfvénic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet. As we refine our observational techniques for hot Jupiter systems, we can begin to extend them to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs where the region near tens of stellar radii begins to coincide with the classical habitable zone. Future studies of SPI with space-based telescopes and the next generation of ground-based telescopes will be informative pursuits for the study of the internal dynamics and atmospheric evolution of exoplanets.

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  15. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  16. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  17. The Impact of Stars on Moons

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    . The black dotted line shows how the critical semimajor axis for stability evolves with time as the planet loses mass. [Yang et al. 2016]Yang and collaborators find that the photoevaporation process has a critical impact on whether or not the moons remain in stable orbits. As the photoevaporation drives mass loss of the planet, the planets gravitational influence shrinks and the orbits of its exomoons expand and become more eccentric. Eventually these orbits can reach critical values where theyre no longer stable, often resulting in systems with only one or no surviving moons.The team finds that even in the best-case scenario of only small moons, no more than roughly a quarter of them survive the simulation still in orbit around their planet. In simulations that include larger moons further out, the system is even more likely to become unstable as the planet loses mass, with more moons ultimately escaping.What happens to the moons that escape? Some leave the planetmoon system to become planet-like objects that remain in orbit around the host star. Others are smashed to bits when they collide with other moons or with the planet. And some can even escape their entire solar system to become a free-floating object in the galaxy!Based on their simulations, the authors speculate that exomoons are less common around planets that are close to their host stars (0.1 AU). Furthermore, exomoons are likely less common in solar systems around especially X-ray-luminous stars (e.g., M dwarfs) that can more easily drive photoevaporation. For these reasons, our best chances for finding exomoons in future missions will be aroundstars that are more Sun-like, orbitingplanets that arent too close to their hosts.CitationMing Yang et al 2016 ApJ 833 7. doi:10.3847/0004-637X/833/1/7

  18. Hadron star models. [neutron stars

    Science.gov (United States)

    Cohen, J. M.; Boerner, G.

    1974-01-01

    The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.

  19. A rocky planet transiting a nearby low-mass star.

    Science.gov (United States)

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  20. Watching the Birth of Super Star Clusters

    CERN Document Server

    Turner, J L; Turner, Jean L.; Beck, Sara C.

    2003-01-01

    Subarcsecond infrared and radio observations yield important information about the formation of super star clusters from their surrounding gas. We discuss the general properties of ionized and molecular gas near young, forming SSCs, as illustrated by the prototypical young forming super star cluster nebula in the dwarf galaxy, NGC 5253. This super star cluster appears to have a gravitationally bound nebula. The lack of molecular gas suggests a very high star formation efficiency, consistent with the formation of a large, bound star cluster.

  1. The Habitability of Planets Orbiting M-dwarf Stars

    CERN Document Server

    Shields, Aomawa L; Johnson, John A

    2016-01-01

    The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge g...

  2. Producing Runaway Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  3. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  4. Star Wreck

    OpenAIRE

    Kusenko, Alexander; Shaposhnikov, Mikhail E.; Tinyakov, P. G.; Tkachev, Igor I.

    1998-01-01

    Electroweak models with low-energy supersymmetry breaking predict the existence of stable non-topological solitons, Q-balls, that can be produced in the early universe. The relic Q-balls can accumulate inside a neutron star and gradually absorb the baryons into the scalar condensate. This causes a slow reduction in the mass of the star. When the mass reaches a critical value, the neutron star becomes unstable and explodes. The cataclysmic destruction of the distant neutron stars may be the or...

  5. Star polygons

    OpenAIRE

    Riosa, Blažka

    2014-01-01

    In mathematics we often encounter polygons, such us triangle, square, hexagon, etc., but we hardly encounter star polygons. Despite the fact that we do not meet them so often in mathematics, in nature they can be traced almost on every step. In this paper the emphasis is on the geometric meaning of regular star polygons. Star polygon is a generalization of the concept of regular polygons. In star polygons also non-adjacent sides intersect. Up to similarity they are determined by Schläfli symb...

  6. Theories of Suggestion.

    Science.gov (United States)

    Brown, W

    1928-02-01

    The word "suggestion" has been used in educational, scientific and medical literature in slightly different senses. In psychological medicine the use of suggestion has developed out of the earlier use of hypnotic influence.Charcot defined hypnosis as an artificial hysteria, Bernheim as an artificially increased suggestibility. The two definitions need to be combined to give an adequate account of hypnosis. Moreover, due allowance should be made for the factors of dissociation and of rapport in hypnotic phenomena.The relationships between dissociation, suggestibility, and hypnotizability.Theories of suggestion propounded by Pierre Janet, Freud, McDougall, Pawlow and others. Ernest Jones's theory of the nature of auto-suggestion. Janet explains suggestion in terms of ideo-motor action in which the suggested idea, because of the inactivity of competing ideas, produces its maximum effect. Freud explains rapport in terms of the sex instinct "inhibited in its aim" (transference) and brings in his distinction of "ego" and "ego-ideal" (or "super-ego") to supplement the theory. Jones explains auto-suggestion in terms of narcissism. McDougall explains hypnotic suggestion in terms of the instinct of self-abasement. But different instincts may supply the driving power to produce suggestion-effects in different circumstances. Such instincts as those of self-preservation (fear) and gregariousness may play their part. Auto-suggestion as a therapeutic factor is badly named. It supplements, but does not supplant the will, and makes complete volition possible.

  7. Do O-stars form in isolation?

    CERN Document Server

    Parker, Richard J

    2007-01-01

    Around 4% of O-stars are observed in apparent isolation, with no associated cluster, and no indication of having been ejected from a nearby cluster. We define an isolated O-star as a star > 17.5 M_\\odot in a cluster with total mass 10 M_\\odot) stars. We show that the fraction of apparently isolated O-stars is reproduced when stars are sampled (randomly) from a standard initial mass function and a standard cluster mass function of the form N(M) \\propto M^-2. This result is difficult to reconcile with the idea that there is a fundamental relationship between the mass of a cluster and the mass of the most massive star in that cluster. We suggest that such a relationship is a typical result of star formation in clusters, and that `isolated O-stars' are low-mass clusters in which massive stars have been able to form.

  8. STAR Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, W W, E-mail: jacobsw@indiana.ed [Indiana University Cyclotron Facility and Department of Physics, 2401 Milo B. Sampson Lane, Bloomington IN 47408 (United States)

    2009-04-01

    The main STAR calorimeters comprise a full Barrel EMC and single Endcap EMC plus a Forward Meson Spectrometer. Together they give a nearly complete coverage over the range -1 < pseudorapidity < 4 and provide EM readout and triggering that help drive STAR physics capabilities. Their description, status, performance and operations (and a few physics anecdotes) are briefly presented and discussed.

  9. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  10. Star Imager

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol.......The version of the star imager developed for Astrid II is described. All functions and features are described as well as the operations and the software protocol....

  11. Hot Subluminous Stars

    Science.gov (United States)

    Heber, U.

    2016-08-01

    Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subdwarf O/B stars and extremely low mass white dwarfs: atmospheric parameters and abundances, formation and evolution, binaries, planetary companions, pulsation, and kinematics.

  12. WASP-135b: a highly irradiated, inflated hot Jupiter orbiting a G5V star

    CERN Document Server

    Spake, Jessica J; Doyle, Amanda P; Hébrard, Guillaume; McCormac, James; Armstrong, David J; Pollacco, Don; Chew, Yilen Gómez Maqueo; Anderson, David R; Barros, Susana C C; Bouchy, François; Boumis, Panayotis; Bruno, Giovanni; Cameron, Andrew Collier; Courcol, Bastien; Davies, Guy R; Faedi, Francesca; Hellier, Coel; Kirk, James; Lam, Kristine W F; Liakos, Alexios; Louden, Tom; Maxted, Pierre F L; Osborn, Hugh P; Palle, Enric; Arranz, Jorge Prieto; Udry, Stéphane; Walker, Simon R; West, Richard G; Wheatley, Peter J

    2015-01-01

    We report the discovery of a new transiting planet from the WASP survey. WASP-135b is a hot Jupiter with a radius of 1.30 pm 0.09 Rjup, a mass of 1.90 pm 0.08 Mjup and an orbital period of 1.401 days. Its host is a Sun-like star, with a G5 spectral type and a mass and radius of 0.98 pm 0.06 Msun and 0.96 pm 0.05 Rsun respectively. The proximity of the planet to its host means that WASP-135b receives high levels of insolation, which may be the cause of its inflated radius. Additionally, we find weak evidence of a transfer of angular momentum from the planet to its star.

  13. Suggested safeguards an

    African Journals Online (AJOL)

    MJM Venter

    ... COORDINATION. (FACILITATION OR CASE MANAGEMENT) IN SOUTH AFRICA ... SUGGESTED SAFEGUARDS AND LIMITATIONS FOR EFFECTIVE AND .... professional practice.27 They have to assess the situation; educate the parents.

  14. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently `los

  15. Rising Star

    OpenAIRE

    Worley, Christiana

    2012-01-01

    Rising Star is a novel about appearances. Thailand Allen is a girl who thinks she understands what she sees. But when what she sees are cracks in her perfect world, maturation and new sight are not far off. Before growth can occur, Thailand must undergo a painful process of learning that carries with it embarrassment, sorrow, anger and confusion. Thailand lives with her mother in a small Texas town called Rising Star. Rising Star is like every other small town with its community gather...

  16. Research Suggestions for Students

    Science.gov (United States)

    Holland, John L.

    1974-01-01

    Describes how to perform accurate research. Also includes suggestions for specific research projects under such headings as: (1) types; (2) environments; (3) interactions; (4) classification; (5) hexagonal model; and (6) differentiation. (HMV)

  17. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1984

    1984-01-01

    Contributors offer suggestions concerning parents as reading stimulators, book discussions, a test bank for the secondary school/college reading lab, standardized reading tests, television reading, plagiarism, vocabulary development, and book reports. (FL)

  18. Open To Suggestion.

    Science.gov (United States)

    Journal of Reading, 1988

    1988-01-01

    Suggests class activities in three short articles including: (1) "Students Evaluate Reading," by Lenore Sandel; (2) "Solving Verbal Analogies," by Edward J. Dwyer; and (3) "Becoming Testwise," by Dean Schoen. (RS)

  19. Instability of mass transfer in a planet-star system

    Science.gov (United States)

    Jia, Shi; Spruit, H. C.

    2017-02-01

    We show that the angular momentum exchange mechanism governing the evolution of mass-transferring binary stars does not apply to Roche lobe filling planets, because most of the angular momentum of the mass-transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche lobe overflow. We explore the conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depends somewhat sensitively on equation of state used. Silicate planets in the range 1 mass transfer before settling to slow overflow when their mass drops to less than 1 M⊕.

  20. Instability of mass transfer in a planet-star system

    CERN Document Server

    Jia, Shi

    2016-01-01

    We show that the angular momentum exchange mechanism governing the evolution of mass transferring binary stars does not apply to Roche-lobe filling planets, because most of the angular momentum of the mass transferring stream is absorbed by the host star. Apart from a correction for the difference in specific angular momentum of the stream and the centre of mass of the planet, the orbit does not expand much on Roche-lobe overflow. We explore the conditions for dynamically unstable Roche-lobe overflow as a function of planet mass and mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky planets depend somewhat sensitively on equation of state used. Silicate planets in the range $1 M_{\\oplus}

  1. Interpreting the extended emission around three nearby debris disc host stars

    CERN Document Server

    Marshall, Jonathan P; Ertel, S; Augereau, J -C; Kennedy, G M; Booth, M; Wolf, S; Montesinos, B; Eiroa, C; Matthews, B

    2014-01-01

    Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. The Herschel Open Time Key Programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around $\\sim$ 20% of stars. Herschel's high angular resolution ($\\sim$ 7" FWHM at 100 $\\mu$m) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 1315...

  2. A hot Jupiter orbiting a 2-Myr-old solar-mass T Tauri star

    CERN Document Server

    Donati, JF; Malo, L; Baruteau, C; Yu, L; Hebrard, E; Hussain, G; Alencar, S; Menard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Cameron, A Collier

    2016-01-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of...

  3. Solar-type dynamo behaviour in fully convective stars without a tachocline

    CERN Document Server

    Wright, Nicholas J

    2016-01-01

    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dyna...

  4. Rock Stars

    Institute of Scientific and Technical Information of China (English)

    张国平

    2000-01-01

    Around the world young people are spending unbelievable sums of money to listen to rock music. Forbes Magazine reports that at least fifty rock stars have incomes between two million and six million dollars per year.

  5. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  6. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  7. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  8. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  9. F stars: A challenge to stellar evolution

    CERN Document Server

    Suchkov, A A

    2014-01-01

    Many main-sequence F and early G stars are too luminous for their effective temperature, surface gravity, and chemical composition. These {\\it overluminous stars} have two curious properties. First, their kinematics as a function of age from stellar evolution modeling (isochrone fitting) is very different from that of normal stars. Second, while X-ray luminosity of normal stars declines with age, the X-ray luminosity of overluminous F stars changes in the opposite direction, being on average higher for older stars. These properties imply that, in defiance of standard models of stellar evolution, F stars of a given mass and chemical composition can evolve very differently. Assuming that the models correctly describe normal stars, for overluminous F stars they predict too young age and the X-ray emission evolving in the direction opposite to the actually observed trend. This discrepancy between modeling results and observational data suggests that standard stellar evolution models and models of stellar activity...

  10. Attitudes to Suggestions

    Institute of Scientific and Technical Information of China (English)

    PETER; JOHNSON

    2007-01-01

    As an Australian expat teaching English in China for over four years, I often encourage my students to not only learn the English language but also try to understand Western culture. This includes the fact that Westerners frequently initiate proactive suggestions on any aspects of soci-

  11. Suggestions for Teaching Practice

    Institute of Scientific and Technical Information of China (English)

    ZHAN Na-na

    2013-01-01

    Teacher development and teaching practice(TP) have caught the eyes of researchers at home and abroad for many years. Many western scholars hold that reflective teaching is an efficient way to promote teacher development, but traditional TP is prevailing in China. Based on the merits and demerits of traditional TP and reflective TP, the author hopes to provide some suggestions for the people involved to promote the development of teacher education.

  12. Dynamics of Rotating, Magnetized Neutron Stars

    OpenAIRE

    Liebling, Steven L.

    2010-01-01

    Using a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions, the dynamics of magnetized, rigidly rotating neutron stars are studied. Beginning with fully consistent initial data constructed with Magstar, part of the Lorene project, we study the dynamics and stability of rotating, magnetized polytropic stars as models of neutron stars. Evolutions suggest that some of these rotating, magnetized stars may be minimally uns...

  13. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  14. An extrasolar giant planet in a close triple-star system.

    Science.gov (United States)

    Konacki, Maciej

    2005-07-14

    Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.

  15. Rossby waves and polar spots in rapidly rotating stars: Implications for stellar wind evolution

    CERN Document Server

    Zaqarashvili, T V; Ballester, J L; Carbonell, M; Khodachenko, M L; Lammer, H; Leitzinger, M; Odert, P

    2011-01-01

    Rapidly rotating stars show short-period oscillations in magnetic activity and polar appearance of starspots. The aim of this paper is to study large-scale shallow water waves in the tachoclines of rapidly rotating stars and their connection to the periodicity and the formation of starspots at high latitudes. Shallow-water magnetohydrodynamic equations were used to study the dynamics of large-scale waves at the rapidly rotating stellar tachoclines in the presence of toroidal magnetic field. Dispersion relations and latitudinal distribution of wave modes were derived. We found that low-frequency magnetic Rossby waves tend to be located at poles, but high-frequency magnetic Poincare waves are concentrated near the equator in rapidly rotating stars. These results have important implications for the evolution of the stellar wind in young Sun-like stars. Unstable magnetic Rossby waves may lead to the local enhancement of magnetic flux at high latitudes of tachoclines in rapidly rotating stars. The enhanced magneti...

  16. Morning Star

    OpenAIRE

    Harris, Mark

    2010-01-01

    Morning Star comprises a group of paintings and drawings whose imagery derives from photographs of 1960s American hippie communes. The paintings are made using oil paint on linen. Their dimensions vary between 180 x 120, and 228 x 217 centimetres. The drawings are in pencil on watercolour paper and are all 56 x 76 centimetres. The work has been exhibited in conventional form, hanging on gallery walls. For Morning Star I made pencil drawings and oil paintings derived from images in Dick Fa...

  17. Triggered Star Formation Surrounding Wolf-Rayet Star HD 211853

    Science.gov (United States)

    Liu, Tie; Wu, Yuefang; Zhang, Huawei; Qin, Sheng-Li

    2012-05-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 103 cm-3 and kinematic temperature ~20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core "A," which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the "collect and collapse" process functions in this region. The star-forming activities in core "A" seem to be affected by the "radiation-driven implosion" process.

  18. Triggered star formation surrounding Wolf-Rayet star HD 211853

    CERN Document Server

    Liu, Tie; Zhang, Huawei; Qin, Sheng-Li

    2012-01-01

    The environment surrounding Wolf-Rayet star HD 211853 is studied in molecular emission, infrared emission, as well as radio and HI emission. The molecular ring consists of well-separated cores, which have a volume density of 10$^{3}$ cm$^{-3}$ and kinematic temperature $\\sim$20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From SED modeling towards the young stellar objects (YSOs), sequential star formation is revealed on a large scale in space spreading from the Wolf-Rayet star to the molecular ring. A small scale sequential star formation is revealed towards core A, which harbors a very young star cluster. Triggered star formations is thus suggested. The presence of PDR, the fragmentation of the molecular ring, the collapse of the cores, the large scale sequential star formation indicate the "Collect and Collapse" process functions in this region. The star forming activities in core A seem to be affected by the "Radiation-Driven Implosion" (...

  19. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  20. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  1. Stars Underground

    CERN Multimedia

    Jean Leyder

    1996-01-01

    An imaginary voyage in time where we were witness of the birth of the universe itself, the time of the Big-Bang 15 billion years ago. Particules from the very first moments of time : protons, neutrons and electrons, and also much more energetic one. These particules are preparing to interact collider and generating others which will be the birth to the stars ........

  2. STAR Highlights

    OpenAIRE

    Masui, Hiroshi; collaboration, for the STAR

    2011-01-01

    We report selected results from STAR collaboration at RHIC, focusing on jet-hadron and jet-like correlations, quarkonium suppression and collectivity, di-electron spectrum in both p+p and Au+Au, and higher moments of net-protons as well as azimuthal anisotropy from RHIC Beam Energy Scan program.

  3. Of Variability, or its Absence, in HgMn Stars

    CERN Document Server

    Turcotte, S

    2003-01-01

    Current models and observations of variability in HgMn stars disagree. We present here the models that argue for pulsating HgMn stars with properties similar to those of Slowly Pulsating B Stars. The lack of observed variable HgMn stars suggests that some physical process is missing from the models. Some possibilities are discussed.

  4. Stars get dizzy after lunch

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Michael [Department of Astrophysical Sciences, Princeton University, 5491 Frist Center, Princeton, NJ 08544 (United States); Penev, Kaloyan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States)

    2014-06-01

    Exoplanet searches have discovered a large number of {sup h}ot Jupiters{sup —}high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q {sub *}. This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q {sub *} = 10{sup 6}, 3.9 × 10{sup –6} of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  5. Stars Get Dizzy After Lunch

    Science.gov (United States)

    Zhang, Michael; Penev, Kaloyan

    2014-06-01

    Exoplanet searches have discovered a large number of "hot Jupiters"—high-mass planets orbiting very close to their parent stars in nearly circular orbits. A number of these planets are sufficiently massive and close-in to be significantly affected by tidal dissipation in the parent star, to a degree parameterized by the tidal quality factor Q *. This process speeds up their star's rotation rate while reducing the planet's semimajor axis. In this paper, we investigate the tidal destruction of hot Jupiters. Because the orbital angular momenta of these planets are a significant fraction of their star's rotational angular momenta, they spin up their stars significantly while spiraling to their deaths. Using the Monte Carlo simulation, we predict that for Q * = 106, 3.9 × 10-6 of stars with the Kepler Target Catalog's mass distribution should have a rotation period shorter than 1/3 day (8 hr) due to accreting a planet. Exoplanet surveys such as SuperWASP, HATnet, HATsouth, and KELT have already produced light curves of millions of stars. These two facts suggest that it may be possible to search for tidally destroyed planets by looking for stars with extremely short rotational periods, then looking for remnant planet cores around those candidates, anomalies in the metal distribution, or other signatures of the recent accretion of the planet.

  6. Axion star collisions with neutron stars and fast radio bursts

    Science.gov (United States)

    Raby, Stuart

    2016-11-01

    Axions may make a significant contribution to the dark matter of the Universe. It has been suggested that these dark matter axions may condense into localized clumps, called "axion stars." In this paper we argue that collisions of dilute axion stars with neutron stars, of the type known as "magnetars," may be the origin of most of the observed fast radio bursts. This idea is a variation of an idea originally proposed by Iwazaki. However, instead of the surface effect of Iwazaki, we propose a perhaps stronger volume effect caused by the induced time dependent electric dipole moment of neutrons.

  7. Axion star collisions with Neutron stars and Fast Radio Bursts

    CERN Document Server

    Raby, Stuart

    2016-01-01

    Axions may make a significant contribution to the dark matter of the universe. It has been suggested that these dark matter axions may condense into localized clumps, called "axion stars." In this paper we argue that collisions of dilute axion stars with neutron stars may be the origin of most of the observed fast radio bursts. This idea is a variation of an idea originally proposed by Iwazaki. However, instead of the surface effect of Iwazaki, we propose a perhaps stronger volume effect caused by the induced time dependent electric dipole moment of neutrons.

  8. Carbon-rich RR Lyr type stars

    CERN Document Server

    Wallerstein, George; Andrievsky, S M

    2009-01-01

    We have derived CNO abundances in 12 RR Lyrae stars. Four stars show [C/Fe] near 0.0 and two stars show [C/Fe] = 0.52 and 0.65. Red giant branch stars, which are known to be the predecessors of RR Lyrae stars, generally show a deficiency of carbon due to proton captures during their evolution from the main sequence up the giant branch. We suggest that the enhancement of carbon is due to production during the helium flash combined with mixing to the surface by vigorous convection induced by the flash itself.

  9. Precise mass and radius measurements for the components of the bright solar-type eclipsing binary star V1094 Tau

    CERN Document Server

    Maxted, P F L; Torres, G; Lacy, C H S; Southworth, J; Smalley, B; Pavlovski, K; Marschall, L A; Clausen, J V

    2015-01-01

    V1094 Tau is bright eclipsing binary star with an orbital period close to 9 days containing two stars similar to the Sun. Our aim is to test models of Sun-like stars using precise and accurate mass and radius measurements for both stars in V1094 Tau. We present new spectroscopy of V1094 Tau which we use to estimate the effective temperatures of both stars and to refine their spectroscopic orbits. We also present new, high-quality photometry covering both eclipses of V1094 Tau in the Stroemgren uvby system and in the Johnson V-band. The masses, radii and effective temperatures of the stars in V1094 Tau are found to be M$_A$ = 1.0964 $\\pm$ 0.0040 M$_{\\odot}$, R$_A$ = 1.4129 $\\pm$ 0.0058 R$_{\\odot}$, T$_{\\rm eff,A}$ = 5850 $\\pm$ 100 K, and M$_B$ = 1.0120 $\\pm$ 0.0028 M$_{\\odot}$, R$_B$ = 1.0913 $\\pm$ 0.0066 R$_{\\odot}$, T$_{\\rm eff,B}$ = 5700 $\\pm$ 100 K. An analysis of the times of mid-eclipse and the radial velocity data reveals apsidal motion with a period of 14500 $\\pm$ 3700 years. The observed masses, radii...

  10. Magnetic and Gravitational Disk-Star Interactions: An Interdependence of PMS Stellar Rotation Rates and Spin-Orbit Misalignments

    CERN Document Server

    Batygin, Konstantin

    2013-01-01

    The presence of giant gaseous planets that reside in close proximity to their host stars may be a consequence of large-scale radial migration through the proto-planetary nebulae. Within the context of this picture, significant orbital obliquities characteristic of a substantial fraction of such planets can be attributed to external torques that perturb the disks out of alignment with the spin axes of their host stars. Therefore, the acquisition of orbital obliquity exhibits sensitive dependence on the physics of disk-star interactions. Here, we analyze the primordial excitation of spin-orbit misalignment of Sun-like stars, in light of disk-star angular momentum transfer. We begin by calculating the stellar pre-main sequence rotational evolution, accounting for spin-up due to gravitational contraction and accretion as well as spin-down due to magnetic star-disk coupling. We devote particular attention to angular momentum transfer by accretion, and show that while generally subdominant to gravitational contract...

  11. Isolating Triggered Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Elizabeth J.; Arnold, Jacob A.; /UC, Irvine; Zentner, Andrew R.; /KICP, Chicago /Chicago U., EFI; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo

    2007-09-12

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding

  12. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    CERN Document Server

    Sokal, Kimberly R; Indebetouw, Remy; Massey, Philip

    2016-01-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4m Mayall Telescope at...

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  14. Planck stars

    CERN Document Server

    Rovelli, Carlo

    2014-01-01

    A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density --not by size-- the star can be much larger than planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can can then be larger than planckian by a factor $(m/m_{\\scriptscriptstyle P})^n$, where $m$ is the mass fallen into the hole, $m_{\\scriptscriptstyle P}$ is the Planck mass, and $n$ is positive. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the $10^{-14} cm$ wavelength.

  15. Weighing the Smallest Stars

    Science.gov (United States)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  16. HATS-18 b: An Extreme Short--Period Massive Transiting Planet Spinning Up Its Star

    CERN Document Server

    Penev, Dr Kaloyan M; Bakos, Dr Gaspar A; Ciceri, Ms Simona; Brahm, Dr Rafael; Bayliss, Dr Daniel; Bento, Joao; Jord'an, Andr'es; Csubry, Mr Zoltan; Bhatti, W; de Val-Borro, Miguel; Espinoza, Mr Néstor; Zhou, Dr George; Mancini, Dr Luigi; Rabus, Dr Markus; Suc, Vincent; Henning, Thomas; Schmidt, Prof Brian P; Noyes, Dr Robert W; L'az'ar, J; Papp, Istvan; S'ari, P

    2016-01-01

    We report the discovery by the HATSouth network of HATS-18 b: a 1.980 +/- 0.077 Mj, 1.337 +0.102 -0.049 Rj planet in a 0.8378 day orbit, around a solar analog star (mass 1.037 +/- 0.047 Msun, and radius 1.020 +0.057 -0.031 Rsun) with V=14.067 +/- 0.040 mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range 6.5 <= lg(Q*/k_2) <= 7 even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star--planet interactions, be they gravitational, magnetic or radiative, as well as planet formation and migration theories.

  17. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  18. Measure of the stars

    Energy Technology Data Exchange (ETDEWEB)

    Henbest, N.

    1984-12-13

    The paper concerns the Hertzsprung-Russel (H-R) diagram, which is graph relating the brightness to the surface temperature of the stars. The diagram provides a deep insight into the fundamental properties of the stars. Evolution of the stars; the death of a star; distances; and dating star clusters, are all briefly discussed with reference to the H-R diagram.

  19. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have perfor

  20. Really Hot Stars

    Science.gov (United States)

    2003-04-01

    the vicinity. Some astronomers have suggested that N44C is a "fossil X-ray nebula". What does that mean ? It may well be that this O-type star is not alone, but actually possesses a compact companion. The X-ray emission from such a binary may not be constant. During their orbital motion, the two stars can move away from each other, and the larger separation may cause the X-ray emission to stop (because of the cessation of accretion of matter onto the compact object). In this case, the observed high excitation nebula could still persist for a short period of time as a "fossil" of the previous X-ray ionized nebula. Later, that part of the nebula would then gradually disappear. However, to the astonishment of the astronomers, the present VLT observations show little or no variation in the HeII emission. Thus the above described "fossil X-ray nebula" explanation does not appear to be completely adequate and the cause of the high excitation in N44C remains a challenge to astronomers. "You can't win them all", says Yaël Nazé. "We were able to fully understand three nebulae, but we must now look more closely at N44C. I would not be surprised, if we will be able to solve this riddle by means of additional VLT observations." More information The information contained in this press release is based on two research articles to be published in the European research journal "Astronomy & Astrophysics", one of which is available at the preprint website at the Institut d'Astrophysique et de Géophysique de Liège (Belgium). Notes [1]: The team consists of Yaël Nazé, Grégor Rauw, Jean Manfroid and Jean-Marie Vreux (Liège Institute, Belgium), and You-Hua Chu (University of Illinois, USA). [2]: The names of these stars refer to the research papers in which they were first decribed. BAT99-2 and BAT99-49 are nos. 2 and 49 in the list published by Breysacher, Azzopardi and Testor (A&AS, 137, 117, 1999), AB7 is star no. 7 in the list by Azzopardi and Breysacher (A&A, 75, 120, 1979

  1. Massive stars. A chemical signature of first-generation very massive stars.

    Science.gov (United States)

    Aoki, W; Tominaga, N; Beers, T C; Honda, S; Lee, Y S

    2014-08-22

    Numerical simulations of structure formation in the early universe predict the formation of some fraction of stars with several hundred solar masses. No clear evidence of supernovae from such very massive stars has, however, yet been found in the chemical compositions of Milky Way stars. We report on an analysis of a very metal-poor star SDSS J001820.5-093939.2, which possesses elemental-abundance ratios that differ significantly from any previously known star. This star exhibits low [α-element Fe] ratios and large contrasts between the abundances of odd and even element pairs, such as scandium/titanium and cobalt/nickel. Such features have been predicted by nucleosynthesis models for supernovae of stars more than 140 times as massive as the Sun, suggesting that the mass distribution of first-generation stars might extend to 100 solar masses or larger.

  2. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  3. Filamentary star formation in NGC 1275

    Science.gov (United States)

    Canning, R. E. A.; Ryon, J. E.; Gallagher, J. S.; Kotulla, R.; O'Connell, R. W.; Fabian, A. C.; Johnstone, R. M.; Conselice, C. J.; Hicks, A.; Rosario, D.; Wyse, R. F. G.

    2014-10-01

    We examine the star formation in the outer halo of NGC 1275, the central galaxy in the Perseus cluster (Abell 426), using far-ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organized on multiple kiloparsec scales. Many of these star clusters are associated with `streaks' of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10 per cent of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC 1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. The stellar streaks then could represent stars moving on ballistic orbits in the potential well of the galaxy cluster. We propose a model where star-forming filaments, switched on ˜50 Myr ago and are currently feeding the growth of the NGC 1275 stellar halo at a rate of ≈-2 to 3 M⊙ yr-1. This type of process may also build stellar haloes and form isolated star clusters in the outskirts of youthful galaxies.

  4. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.

  5. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  6. An extremely primitive halo star

    CERN Document Server

    Caffau, E; François, P; Sbordone, L; Monaco, L; Spite, M; Spite, F; Ludwig, H -G; Cayrel, R; Zaggia, S; Hammer, F; Randich, S; Molaro, P; Hill, V; 10.1038/nature10377

    2012-01-01

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium1, almost all other elements were created in stars and supernovae. The mass fraction, Z, of elements more massive than helium, is called "metallicity". A number of very metal poor stars have been found some of which, while having a low iron abundance, are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with metallicities lower than Z=1.5E-5, it has been suggested that low mass stars (M<0.8M\\odot, the ones that survive to the present day) cannot form until the interstellar medium has been enriched above a critical value, estimated to lie in the range 1.5E-8\\leqZ\\leq1.5E-6, although competing theories claiming the contrary do exist. Here we report the chemical composition of a star with a very low Z\\leq6.9E-7 (4.5E-5 of that of the Sun) and a chemical pattern typical of classical extremely metal poor stars, meaning without the enrichment of carbon, nitroge...

  7. Can strange stars mimic dark energy stars?

    CERN Document Server

    Deb, Debabrata; Guha, B K; Ray, Saibal

    2016-01-01

    The possibility of strange stars mixed with dark energy to be one of candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter is acting as dark energy after certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature not only a physically acceptable stable model but also mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particulary note that two-fluid distribution is the major reason for anisotropic nature of the spherical stellar system.

  8. Interpreting the extended emission around three nearby debris disc host stars

    Science.gov (United States)

    Marshall, J. P.; Kirchschlager, F.; Ertel, S.; Augereau, J.-C.; Kennedy, G. M.; Booth, M.; Wolf, S.; Montesinos, B.; Eiroa, C.; Matthews, B.

    2014-10-01

    Context. Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. Aims: The Herschel open time key programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around ~20% of stars. Herschel's high angular resolution (~7'' FWHM at 100 μm) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50-100 au). Methods: As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs' radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. Results: We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.

  9. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  10. Interaction of free-floating planets with a star-planet pair

    CERN Document Server

    Varvoglis, Harry; Tsiganis, Kleomenis

    2012-01-01

    The recent discovery of free-floating planets and their theoretical interpretation as celestial bodies, either condensed independently or ejected from parent stars in tight clusters, introduced an intriguing possibility. Namely the existence of exoplanets not condensed from the protoplanetary disk of their parent star. In this novel scenario a free-floating planet interacts with an already existing planetary system, created in a tight cluster, and is captured as a new planet. In the present work we study this interaction process by integrating trajectories of planet-sized bodies, which encounter a binary system consisting of a Jupiter-sized planet revolving around a Sun-like star. To simplify the problem we assume coplanar orbits for the bound and the free-floating planet and an initially parabolic orbit for the free-floating planet. By calculating the uncertainty exponent, a quantity that measures the dependence of the final state of the system on small changes of the initial conditions, we show that the int...

  11. Starspot activity and rotation of the planet-hosting star Kepler-17

    CERN Document Server

    Bonomo, Aldo S

    2012-01-01

    Context. Kepler-17 is a G2V sun-like star accompanied by a transiting planet with a mass of ~2.5 Jupiter masses and an orbital period of 1.486 d, recently discovered by the Kepler space telescope. This star is highly interesting as a young solar analogue. Aims. We used about 500 days of high-precision, high-duty-cycle optical photometry collected by Kepler to study the rotation of the star and the evolution of its photospheric active regions. Methods. We applied a maximum-entropy light curve inversion technique to model the flux rotational modulation induced by active regions that consist of dark spots and bright solar-like faculae with a fixed area ratio. Their configuration was varied after a fixed time interval to take their evolution into account. Active regions were used as tracers to study stellar differential rotation, and planetary occultations were used to constrain the latitude of some spots. Results. Our modelling approach reproduces the light variations of Kepler-17 with a standard deviation of th...

  12. Gravitational waves from dark matter collapse in a star

    CERN Document Server

    Kurita, Yasunari

    2016-01-01

    We investigate the collapse of clusters of weakly interacting massive particles (WIMPs) in the core of a Sun-like star and the possible formation of mini-black holes and the emission of gravity waves. When the number of WIMPs is small, thermal pressure balances the WIMP cluster's self gravity. If the number of WIMPs is larger than a critical number, thermal pressure cannot balance gravity and the cluster contracts. If WIMPs are collisionless and bosonic, the cluster collapses directly to form a mini-black hole. For fermionic WIMPs, the cluster contracts until it is sustained by Fermi pressure, forming a small compact object. If the fermionic WIMP mass is smaller than $4\\times 10^2$ GeV, the radius of the compact object is larger than its Schwarzschild radius and Fermi pressure temporally sustains its self gravity, halting the formation of a black hole. If the fermionic WIMP mass is larger than $4\\times 10^2$ GeV, the radius is smaller than its Schwarzschild radius and the compact object becomes a mini-black h...

  13. Lifestyles of the Stars.

    Science.gov (United States)

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  14. First Stars. I. Evolution without mass loss

    CERN Document Server

    Bahena, D

    2010-01-01

    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on...

  15. The Most Iron-deficient Stars as the Polluted Population III Stars

    Science.gov (United States)

    Komiya, Yutaka; Suda, Takuma; Fujimoto, Masayuki Y.

    2015-08-01

    We investigate the origin of the most iron-poor stars including SMSS J031300.36-670839.3 with [{Fe}/{{H}}]\\lt -7.52. We compute the change of surface metallicity of stars with the of interstellar matter (ISM) after their birth using the chemical evolution model within the framework of the hierarchical galaxy formation. The predicted metallicity distribution function agrees very well with that observed from extremely metal-poor stars. In particular, the lowest metallicity tail is well reproduced by the Population III stars whose surfaces are polluted with metals through ISM accretion. This suggests that the origin of iron group elements is explained by ISM accretion for the stars with [{Fe}/{{H}}]≲ -5. The present results give new insights into the nature of the most metal-poor stars and the search for Population III stars with pristine abundances.

  16. The most iron-deficient stars as the polluted population III stars

    CERN Document Server

    Komiya, Yutaka; Fujimoto, Masayuki Y

    2015-01-01

    We investigate the origin of the most iron-poor stars including SMSS J031300.36-670839.3 with [Fe/H] < -7.52. We compute the change of surface metallicity of stars with the accretion of interstellar matter (ISM) after their birth using the chemical evolution model within the framework of the hierarchical galaxy formation. The predicted metallicity distribution function agrees very well with that observed from extremely metal-poor stars. In particular, the lowest metallicity tail is well reproduced by the Population III stars whose surfaces are polluted with metals through ISM accretion. This suggests that the origin of iron group elements is explained by ISM accretion for the stars with [Fe/H]$\\lesssim -5$. The present results give new insights into the nature of the most metal-poor stars and the search for Population III stars with pristine abundances.

  17. Superflares on solar-type stars.

    Science.gov (United States)

    Maehara, Hiroyuki; Shibayama, Takuya; Notsu, Shota; Notsu, Yuta; Nagao, Takashi; Kusaba, Satoshi; Honda, Satoshi; Nogami, Daisaku; Shibata, Kazunari

    2012-05-16

    Solar flares are caused by the sudden release of magnetic energy stored near sunspots. They release 10(29) to 10(32) ergs of energy on a timescale of hours. Similar flares have been observed on many stars, with larger 'superflares' seen on a variety of stars, some of which are rapidly rotating and some of which are of ordinary solar type. The small number of superflares observed on solar-type stars has hitherto precluded a detailed study of them. Here we report observations of 365 superflares, including some from slowly rotating solar-type stars, from about 83,000 stars observed over 120 days. Quasi-periodic brightness modulations observed in the solar-type stars suggest that they have much larger starspots than does the Sun. The maximum energy of the flare is not correlated with the stellar rotation period, but the data suggest that superflares occur more frequently on rapidly rotating stars. It has been proposed that hot Jupiters may be important in the generation of superflares on solar-type stars, but none have been discovered around the stars that we have studied, indicating that hot Jupiters associated with superflares are rare.

  18. The Cambridge Double Star Atlas

    Science.gov (United States)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  19. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  20. Investigation of Energy Release from X-ray Flares on Young Stellar Objects with NuSTAR

    Science.gov (United States)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David M.

    2017-08-01

    Young stellar objects (YSOs), which tend to flare more frequently and at higher temperatures than what is typically observed on Sun-like stars, are excellent targets for studying the nature of energy release and transport in large flaring events. Multiple star-forming regions have been observed in the past by soft x-ray missions such as Chandra and XMM-Newton, but the energy ranges of these missions fall off prior to the hard x-ray regime, where it would be possible to search for a crossover from thermal to nonthermal emission. To investigate this hard x-ray emission, three 50ks observations of the star-forming region rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR), which is optimized over the energy range of 3-79 keV. Multiple stellar flares have been identified in the observations; here we present the current spectral and timing analyses of the brightest of the these events, exploring the way energy is released as well as the effects of these large flares on the surrounding environment. We compare these results to what is typically observed for solar flares.

  1. Kuiper belts around nearby stars

    NARCIS (Netherlands)

    Nilsson, R.; Liseau, R.; Brandeker, A.; Olofsson, G.; Pilbratt, G. L.; Risacher, C.; Rodmann, J.; Augereau, J-C.; Bergman, P.; Eiroa, C.; Fridlund, M.; Thebault, P.; White, G. J.

    2010-01-01

    Context. The existence of dusty debris disks around a large fraction of solar type main-sequence stars, inferred from excess far-IR and submillimetre emission compared to that expected from stellar photospheres, suggests that leftover planetesimal belts analogous to the asteroid-and comet reservoirs

  2. On the Hipparcos parallaxes of O stars

    Science.gov (United States)

    Schröder, S. E.; Kaper, L.; Lamers, H. J. G. L. M.; Brown, A. G. A.

    2004-12-01

    We compare the absolute visual magnitude of the majority of bright O stars in the sky as predicted from their spectral type with the absolute magnitude calculated from their apparent magnitude and the Hipparcos parallax. We find that many stars appear to be much fainter than expected, up to five magnitudes. We find no evidence for a correlation between magnitude differences and the stellar rotational velocity as suggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whose small sample of stars is partly included in ours. Instead, by means of a simulation we show how these differences arise naturally from the large distances at which O stars are located, and the level of precision of the parallax measurements achieved by Hipparcos. Straightforwardly deriving a distance from the Hipparcos parallax yields reliable results for one or two O stars only. We discuss several types of bias reported in the literature in connection with parallax samples (Lutz-Kelker, Malmquist) and investigate how they affect the O star sample. In addition, we test three absolute magnitude calibrations from the literature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth & Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) and find that they are consistent with the Hipparcos measurements. Although O stars conform nicely to the simulation, we notice that some B stars in the sample of \\citeauthor{La97} have a magnitude difference larger than expected.

  3. Population III stars around the Milky Way

    CERN Document Server

    Komiya, Yutaka; Fujimoto, Masayuki Y

    2016-01-01

    We explore the possibility of observing Population III (Pop~III) stars, born of the primordial gas. Pop~III stars with masses below $0.8 M_\\odot$ should survive to date though are not observed yet, but the existence of stars with low metallicity as [Fe/H]$ < -5$ in the Milky Way halo suggests the surface pollution of Pop~III stars with accreted metals from the interstellar gas after birth. In this paper, we investigate the runaway of Pop~III stars from their host mini-halos, considering the ejection of secondary members from binary systems when their massive primaries explode as supernovae. These stars save them from the surface pollution. By computing the star formation and chemical evolution along with the hierarchical structure formation based on the extended Press--Schechter merger trees, we demonstrate that several hundreds to tens of thousands of low-mass Pop~III stars escape from the building blocks of the Milky Way. The second and later generations of extremely metal-poor (EMP) stars are also escap...

  4. HUBBLE SEES A VAST 'CITY' OF STARS

    Science.gov (United States)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  5. A Mysterious Population of Stars With Weak CN Absorption in the Disk of M31

    Science.gov (United States)

    Kamath, Anika; Sales, Alyssa; Sarukkai, Atmika; Guhathakurta, Puragra; Hays, Jon; Rosenfield, Philip; SPLASH Collaboration; PHAT Collaboration

    2017-01-01

    From our study of certain stars in the Andromeda Galaxy, we found stars with clear evidence of the molecule cyanogen (CN) alongside molecules typically in oxygen-rich stars (TiO, Calcium) in their atmospheres. The juxtaposition of these molecules is amplified by our observation that stars do not normally simultaneously exhibit carbonaceous and oxygenaceous molecules. Due to the less apparent presence of CN in these stars compared to carbon stars, we initially named these stars ‘weak CN’ stars and assumed a relationship between these stars and carbon stars. To further deepen our understanding of the characteristics of these stars, we measured and analyzed their spectroscopic data, position on Color Magnitude Diagrams, variations in velocity, and placement in evolutionary stellar models. While spectra of weak CN and carbon stars indicated a shared presence of CN in both star groups, the placements of these stars on color magnitude diagrams suggested that these two populations are unrelated due to variations in brightness and temperature. Additional analyses of velocity, based on an observed correlation between velocity dispersion and age of a star (Dorman 2015), further implied that these weak CN stars are a younger and clearly separate group of stars. Finally, using stellar models to track changes in temperature and luminosity of stars over time, we mapped positions of weak CN stars to a region on the evolutionary path of massive stars. Based on our knowledge of this region, we found sufficient evidence to conclude that weak CN stars are part of a relatively unknown, young evolutionary phase of massive stars called red core Helium burning (RCHeB) stars. Over the course of our research, we also built a detection program to identify other weak CN stars based on their subtle spectral features. In the future, we hope to apply other limitations based on our knowledge of red core Helium burning stars to refine our search and expand our knowledge on this population of

  6. Evolution of Nuclear Star Clusters

    CERN Document Server

    Merritt, David

    2008-01-01

    Two-body relaxation times of nuclear star clusters are short enough that gravitational encounters should substantially affect their structure in 10 Gyr or less. In nuclear star clusters without massive black holes, dynamical evolution is a competition between core collapse, which causes densities to increase, and heat input from the surrounding galaxy, which causes densities to decrease. The maximum extent of a nucleus that can resist expansion is derived numerically for a wide range of initial conditions; observed nuclei are shown to be compact enough to resist expansion, although there may have been an earlier generation of low-density nuclei that were dissolved. An evolutionary model for NGC 205 is presented which suggests that the nucleus of this galaxy has already undergone core collapse. Adding a massive black hole to a nucleus inhibits core collapse, and nuclear star clusters with black holes always expand, due primarily to heat input from the galaxy. The expansion rate is smaller for larger black hole...

  7. Testing planet formation theories with Giant stars

    CERN Document Server

    Pasquini, Luca; Hatzes, A; Setiawan, J; Girardi, L; da Silva, L; De Medeiros, J R

    2008-01-01

    Planet searches around evolved giant stars are bringing new insights to planet formation theories by virtue of the broader stellar mass range of the host stars compared to the solar-type stars that have been the subject of most current planet searches programs. These searches among giant stars are producing extremely interesting results. Contrary to main sequence stars planet-hosting giants do not show a tendency of being more metal rich. Even if limited, the statistics also suggest a higher frequency of giant planets (at least 10 %) that are more massive compared to solar-type main sequence stars. The interpretation of these results is not straightforward. We propose that the lack of a metallicity-planet connection among giant stars is due to pollution of the star while on the main sequence, followed by dilution during the giant phase. We also suggest that the higher mass and frequency of the planets are due to the higher stellar mass. Even if these results do not favor a specific formation scenario, they su...

  8. Deepening Sleep by Hypnotic Suggestion

    Science.gov (United States)

    Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn

    2014-01-01

    Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909

  9. Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations

    CERN Document Server

    Beeck, Benjamin; Cameron, Robert H; Reiners, Ansgar

    2015-01-01

    The convective envelopes of cool main-sequence stars harbour magnetic fields with a complex global and local structure. These fields affect the near-surface convection and the outer stellar atmospheres in many ways and are responsible for the observable magnetic activity of stars. Our aim is to understand the local structure in unipolar regions with moderate average magnetic flux density. These correspond to plage regions covering a substantial fraction of the surface of the Sun (and likely also the surface of other Sun-like stars) during periods of high magnetic activity. We analyse the results of 18 local-box magnetohydrodynamics simulations covering the upper layers of the convection zones and the photospheres of cool main-sequence stars of spectral types F to early M. The average vertical field in these simulations ranges from 20 to 500G. We find a substantial variation of the properties of the surface magnetoconvection between main-sequence stars of different spectral types. As a consequence of a reduced...

  10. Spectroscopic observations of active solar-analog stars with high X-ray luminosity, as a proxy of superflare stars

    Science.gov (United States)

    Notsu, Yuta; Honda, Satoshi; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2017-02-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high-dispersion spectroscopy of 49 nearby solar-analog stars (G-type main-sequence stars with Teff ≈ 5600-6000 K) identified as ROSAT soft X-ray sources, which are not binary stars from previous studies. We expected that these stars could be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters (temperature, surface gravity, and metallicity) are within the range of ordinary solar-analog stars. We measured the intensity of Ca II 8542 and Hα lines, which are good indicators of the stellar chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured v sin i (projected rotational velocity) and lithium abundance for the target stars. Li abundance is a key to understanding the evolution of the stellar convection zone, which reflects the stellar age, mass and rotational history. We confirmed that many of the target stars rapidly rotate and have high Li abundance, compared with the Sun, as suggested by many previous studies. There are, however, also some target stars that rotate slowly (v sin i = 2-3 km s-1) and have low Li abundance like the Sun. These results support that old and slowly rotating stars similar to the Sun could have high activity levels and large starspots. This is consistent with the results of our previous studies of solar-type superflare stars. In the future, it is important to conduct long-term monitoring observations of these active solar-analog stars in order to investigate detailed properties of large starspots from the viewpoint of stellar dynamo theory.

  11. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    completely.Amplifying EncountersFor stars that survive their encounter with the black hole, Guillochon and McCourt find that the process of partial disruption and re-accretion can amplify the magnetic field of the star by up to a factor of 20. Repeated encounters of the star with the black hole could amplify the field even more.The authors suggest an interesting implication of this idea: a population of highly magnetized stars may have formed in our own galactic center, resulting from their encounters with the supermassive black hole Sgr A*.A turbulent magnetic field forms after a partial stellar disruption and re-accretion of the tidal tails. [Adapted from Guillochon McCourt 2017]Effects in DestructionFor stars that are completely shredded and form a tidal stream after their encounter with the black hole, the authors find that the magnetic field geometry straightens within the stream of debris. There, the pressure of the magnetic field eventually dominates over the gas pressure and self-gravity.Guillochon and McCourt find that the fields new configuration isnt ideal for powering jets from the black hole but it is strong enough to influence how the stream interacts with itself and its surrounding environment, likely affecting what we can expect to see from these short-lived events.These simulations have clearly demonstrated the need to further explore the role of magnetic fields in the disruptions of stars by black holes.BonusCheck out the full (brief) video from one of the simulations by Guillochon and McCourt (be sure to watch it in high-res!). It reveals the evolution of a stars magnetic field configuration as the star is partially disrupted by the forces of a supermassive black hole and then re-accretes.CitationJames Guillochon and Michael McCourt 2017 ApJL 834 L19. doi:10.3847/2041-8213/834/2/L19

  12. Enigma of Runaway Stars Solved

    Science.gov (United States)

    1997-01-01

    evolution theory predicts that all OB stars will end their life in a supernova explosion. The heavier the OB star, the shorter its life. For instance, an OB star with a mass of 25 times that of the Sun, will explode after only 10 million years, compared to an expected life-time of about 13,000 million years for the Sun (which is not an OB star and will not become a supernova). Blaauw suggested that when an OB star is bound to another OB star in a binary system (a `double star'), the supernova explosion of one of the stars (the heaviest of the two would explode first) results in the rapid acceleration (in astronomical terminology, a `kick') of the other one. The reason for this is as follows. When two heavy stars orbit each other at high velocity, they are held together by their mutual gravitational attraction. But after the supernova explosion, one of the stars has lost most of its mass and there is no force to hold back the remaining OB star. The OB-star therefore immediately leaves its orbit and continues in a straight line while preserving its high orbital velocity. The effect is the same as when cutting a swinging rope with a stone attached to the end. Soon thereafter, this star will escape from the OB-association and start its journey through interstellar space as a new OB-runaway. Stellar evolution in a binary system About half of the known OB stars are members of a binary system. Modern evolutionary scenarios for such systems were developed by Edward van den Heuvel [4]. He realized that during the evolution of a close binary system, a phase of intensive mass transfer occurs, whereby matter flows from the heavier star towards its lighter companion. This has important consequences for the further evolution of the system. The mass transfer happens, after a few million years or even less, when the heaviest and therefore most rapidly evolving star increases in size and becomes a supergiant , many times larger than our Sun. The rate of mass transfer can become so large

  13. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  14. ENERGY STAR Certified Furnaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Furnaces that are effective as of February 1,...

  15. ENERGY STAR Certified Computers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.1 ENERGY STAR Program Requirements for Computers that are effective as of June 2, 2014....

  16. From cloud crash to star birth: star formation in cloud collisions

    Science.gov (United States)

    Shima, Kazuhiro; Tasker, Elizabeth; Habe, Asao

    2015-08-01

    Much speculation surrounds the role of collisions between giant molecular clouds (GMCs) in the galactic star formation rate.Once thought to be uncommon occurrences, observations and simulation now suggestthese could explain the formation of our most massive stars and super star clusters.To explore the result of such interactions, we simulated idealised GMC collisions with star formation and radiative feedback processes.Our results suggest that the star population formed has a stellar mass function index of -0.1 (compared with -1.4 for the non-collisional population),in good agreement with the observations of the assumed cloud collision case, NGC6334 (Munoz et al. 2007).Radiative feedback has a relatively modest dynamical effect on the collisional gas distribution,but increases the star formation rate post collision as the expanding HII bubbles trigger a subsequent stellar population.

  17. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  18. Star operations and Pullbacks

    OpenAIRE

    Fontana, Marco; Park, Mi Hee

    2003-01-01

    In this paper we study the star operations on a pullback of integral domains. In particular, we characterize the star operations of a domain arising from a pullback of ``a general type'' by introducing new techniques for ``projecting'' and ``lifting'' star operations under surjective homomorphisms of integral domains. We study the transfer in a pullback (or with respect to a surjective homomorphism) of some relevant classes or distinguished properties of star operations such as $v-, t-, w-, b...

  19. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    CERN Document Server

    Briquet, M; De Cat, P; Aerts, C; North, P; Scholler, M; 10.1051/0004-6361:20066940

    2009-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods. We carry out a comparative study between samples of confirmed and well-studied SPB stars and a sample of well-studied Bp stars with known periods and magnetic field strengths. We determine their evolutionary state using accurate HIPPARCOS parallaxes and Geneva photometry. We discuss the occurrence and strengths of magnetic fields as well as the occurrence of stellar pulsation among both groups. Further, we make a comparison of Geneva photometric variability for both kinds of stars. Results. The group of Bp stars is significantly younger than the group of SPB stars. Longitudinal magnetic fields in SPB stars are weaker than those of Bp stars, suggesting that the magnetic field strength is an important factor for B type stars to become chemically pec...

  20. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  1. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  2. Magnetism in massive stars

    NARCIS (Netherlands)

    Henrichs, H.F.

    2012-01-01

    Stars with mass more than 8 solar masses end their lives as neutron stars, which we mostly observe as highly magnetized objects. Where does this magnetic field come from? Such a field could be formed during the collapse, or is a (modified) remnant of a fossil field since the birth of the star, or ot

  3. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  4. America's Star Libraries

    Science.gov (United States)

    Lyons, Ray; Lance, Keith Curry

    2009-01-01

    "Library Journal"'s new national rating of public libraries, the "LJ" Index of Public Library Service, identifies 256 "star" libraries. It rates 7,115 public libraries. The top libraries in each group get five, four, or three Michelin guide-like stars. All included libraries, stars or not, can use their scores to learn from their peers and improve…

  5. To rescue a star

    OpenAIRE

    1996-01-01

    Massless neutrinos are exchanged in a neutron star, leading to long range interactions. Many body forces of this type follow and we resum them. Their net contribution to the total energy is negligible as compared to the star mass. The stability of the star is not in danger, contrary to recent assertions.

  6. Undercover Stars Among Exoplanet Candidates

    Science.gov (United States)

    2005-03-01

    is only 16% larger than this giant planet! A Dense Star "Imagine that you add 95 times its own mass to Jupiter and nevertheless end up with a star that is only slightly larger", suggests Claudio Melo from ESO and member of the team of astronomers who made the study. "The object just shrinks to make room for the additional matter, becoming more and more dense." The density of such a star is more than 50 times the density of the Sun. "This result shows the existence of stars that look strikingly like planets, even from close by", emphasizes Frederic Pont of the Geneva Observatory (Switzerland). "Isn't it strange to imagine that even if we were to receive images from a future space probe approaching such an object at close range, it wouldn't be easy to discern whether it is a star or a planet?" As all stars, OGLE-TR-122b produces indeed energy in its interior by means of nuclear reactions. However, because of its low mass, this internal energy production is very small, especially compared to the energy produced by its solar-like companion star. Not less striking is the fact that exoplanets which are orbiting very close to their host star, the so-called "hot Jupiters", have radii which may be larger than the newly found star. The radius of exoplanet HD209458b, for example, is about 30% larger than that of Jupiter. It is thus substantially larger than OGLE-TR-122b! Masqueraders ESO PR Photo 06c/05 ESO PR Photo 06c/05 Comparison Between OGLE-TR-122b, Jupiter and the Sun [Preview - JPEG: 400 x 598 pix - 30k] [Normal - JPEG: 800 x 1196 pix - 350k] [HiRes - JPEG: 5000 x 3344 pix - 2.2M] Caption: ESO PR Photo 06c/05 is a comparison between the newly found low-mass star OGLE-TR-122b and the Sun and Jupiter. OGLE-TR-122b, while still 96 times as massive as Jupiter, is only 16% larger than this giant planet. It weighs 1/11th the mass of the Sun and has 1/8th of its diameter. (credits: Sun image: SOHO/ESA; Jupiter: Cassini/NASA/JPL/University of Arizona/ESA) This discovery also

  7. A Statistical Reconstruction of the Planet Population Around Kepler Solar-Type Stars

    CERN Document Server

    Silburt, Ari; Wu, Yanqin

    2014-01-01

    Using the most recent Kepler catalog, we reconstruct the occurrence rate of small (Neptune-sized or below) planets as a function of orbital period and planet radius, taking careful account of various detection biases. We analyze a sample of $76,000$ Sun-like stars and their associated planet candidates with periods between $20$ and $200$ days, and sizes between $1$ and $4 R_\\oplus$. Such planets have likely experienced little photoevaporation, and may reflect the "primordial" planet population. Assuming that the size distribution of planets are independent of their orbital periods (and vice versa), we conclude that Kepler planets are preferentially peaked at $2-2.8 R_\\oplus$, with their numbers decreasing gradually toward smaller sizes. These planets are found roughly uniformly in logarithmic period. The average number of planets per star, in the stated period and size ranges, is $0.46 \\pm 0.03$. This number rises by $\\sim 0.2$ if one includes planets inward of $20$ days. Upon extrapolation we obtain an occur...

  8. Filamentary Star Formation in NGC 1275

    CERN Document Server

    Canning, R E A; Gallagher, J S; Kotulla, R; O'Connell, R W; Fabian, A C; Johnstone, R M; Conselice, C J; Hicks, A; Rosario, D; Wyse, R F G

    2014-01-01

    We examine the star formation in the outer halo of NGC~1275, the central galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical images obtained with the Hubble Space Telescope. We have identified a population of very young, compact star clusters with typical ages of a few Myr. The star clusters are organised on multiple-kiloparsec scales. Many of these star clusters are associated with "streaks" of young stars, the combination of which has a cometary appearance. We perform photometry on the star clusters and diffuse stellar streaks, and fit their spectral energy distributions to obtain ages and masses. These young stellar populations appear to be normal in terms of their masses, luminosities and cluster formation efficiency; <10% of the young stellar mass is located in star clusters. Our data suggest star formation is associated with the evolution of some of the giant gas filaments in NGC~1275 that become gravitationally unstable on reaching and possibly stalling in the outer galaxy. ...

  9. Are there carbon stars in the Bulge?

    CERN Document Server

    Ng, Y K

    1998-01-01

    The bulge carbon stars have been a mystery since their discovery, because they are about 2.5mag too faint to be regarded as genuine AGB stars, if located inside the metal-rich bulge (m-M=14.5mag). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m-M=17.0mag). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity. The sigma_RV=113+/-14 km/s radial velocity dispersion of the stars appears to be consistent with bulge membership. On the other hand, a similar velocity dispersion could be the result from an induced star formation event when the SDG crosses the galactic midplane. It is suggested that the carbon stars are tracers of such an event and that they therefore are located at distances related to the SDG. However, the majority of the carbon stars are not member of the SDG, nor are they similar to the C-stars which are member of the SDG. The radial velocities can be used to determine a possible membership to the SD...

  10. When efficient star formation drives cluster formation

    CERN Document Server

    Parmentier, G

    2008-01-01

    We investigate the impact of the star formation efficiency in cluster forming cores on the evolution of the mass in star clusters over the age range 1-100Myr, when star clusters undergo their infant weight-loss/mortality phase. Assuming a constant formation rate of gas-embedded clusters and a weak tidal field, we show that the ratio between the total mass in stars bound to the clusters over that age range and the total mass in stars initially formed in gas-embedded clusters is a strongly increasing function of the averaged local SFE, with little influence from any assumed core mass-radius relation. Our results suggest that, for young starbursts with estimated tidal field strength and known recent star formation history, observed cluster-to-star mass ratios, once corrected for the undetected clusters, constitute promising probes of the local SFE, without the need of resorting to gas mass estimates. Similarly, the mass ratio of stars which remain in bound clusters at the end of the infant mortality/weight-loss ...

  11. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  12. Magnetic chemically peculiar stars

    CERN Document Server

    Schöller, Markus

    2015-01-01

    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.

  13. [Suggestion and hypnosis in hysteria].

    Science.gov (United States)

    Berner, P

    1995-12-15

    Suggestive influences allow to resolve ambiguities. Normally they are only accepted if they correspond with the knowledge and believes of the subject. Under hypnosis or under the impact of serious psychic perturbations one may take up reality constructions which are not in conformity with these criteria. The restriction of consciousness and the ignoring of certain functions permitting this are the common basis of hypnosis and hysteria. But suggestions do not cause the later; they may only shape the symptomatology. Hypnosis can create a terrain facilitating the resolution of the problems underlying hysteria but it does not represent the treatment of hysteria.

  14. VizieR Online Data Catalog: High quality Spitzer/MIPS obs. of F4-K2 stars (Sierchio+, 2014)

    Science.gov (United States)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.

    2016-11-01

    We used specific criteria to draw samples of stars from the entire Spitzer Debris Disk Database (see section 2.1.1). V magnitudes were taken from Hipparcos and transformed to Johnson V. All stars were also required to have observations on the Two Micron All Sky Survey (2MASS) Ks system. Additional measurements were obtained at SAAO on the 0.75m telescope using the MarkII Infrared Photometer (transformed as described by Koen et al. 2007MNRAS.380.1433K), and at the Steward Observatory 61 in telescope using a NICMOS2-based camera with a 2MASS filter set and a neutral density filter to avoid saturation. These measurements will be described in a forthcoming paper (K. Y. L. Su et al., in preparation). The original programs in which our sample stars were measured are identified in Table 1. A large majority (93%) come from seven Spitzer programs: (1) the MIPS Guaranteed Time Observer (GTO) Sun-like star observations (Trilling+ 2008ApJ...674.1086T); (2) Formation and Evolution of Planetary Systems (FEPS; Meyer+ 2006, J/PASP/118/1690); (3) Completing the Census of Debris Disks (Koerner+ 2010ApJ...710L..26K); (4) potential Space Interferometry Mission/Terrestrial Planet Finder (SIM/TPF) targets (Beichman+ 2006ApJ...652.1674B); (5) an unbiased sample of F-stars (Trilling+ 2008ApJ...674.1086T); and (6) two coordinated programs selecting stars on the basis of indicators of youth (Low+ 2005ApJ...631.1170L; Plavchan+ 2009ApJ...698.1068P). See section 2.1.2. (1 data file).

  15. THE FIRST STARS

    Directory of Open Access Journals (Sweden)

    Daniel J. Whalen

    2013-12-01

    Full Text Available Pop III stars are the key to the character of primeval galaxies, the first heavy elements, the onset of cosmological reionization, and the seeds of supermassive black holes. Unfortunately, in spite of their increasing sophistication, numerical models of Pop III star formation cannot yet predict the masses of the first stars. Because they also lie at the edge of the observable universe, individual Pop III stars will remain beyond the reach of observatories for decades to come, and so their properties are unknown. However, it will soon be possible to constrain their masses by direct detection of their supernovae, and by reconciling their nucleosynthetic yields to the chemical abundances measured in ancient metal-poor stars in the Galactic halo, some of which may bear the ashes of the first stars. Here, I review the state of the art in numerical simulations of primordial stars and attempts to directly and indirectly constrain their properties.

  16. The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit

    Science.gov (United States)

    von Boetticher, Alexander; Triaud, Amaury H. M. J.; Queloz, Didier; Gill, Sam; Lendl, Monika; Delrez, Laetitia; Anderson, David R.; Collier Cameron, Andrew; Faedi, Francesca; Gillon, Michaël; Gómez Maqueo Chew, Yilen; Hebb, Leslie; Hellier, Coel; Jehin, Emmanuël; Maxted, Pierre F. L.; Martin, David V.; Pepe, Francesco; Pollacco, Don; Ségransan, Damien; Smalley, Barry; Udry, Stéphane; West, Richard

    2017-08-01

    We report the discovery of an eclipsing binary system with mass-ratio q ˜ 0.07. After identifying a periodic photometric signal received by WASP, we obtained CORALIE spectroscopic radial velocities and follow-up light curves with the Euler and TRAPPIST telescopes. From a joint fit of these data we determine that EBLM J0555-57 consists of a sun-like primary star that is eclipsed by a low-mass companion, on a weakly eccentric 7.8-day orbit. Using a mass estimate for the primary star derived from stellar models, we determine a companion mass of 85 ± 4 MJup (0.081 M⊙) and a radius of 0.84+ 0.14-0.04RJup (0.084 R⊙) that is comparable to that of Saturn. EBLM J0555-57Ab has a surface gravity log g2 =5.50+ 0.03-0.13 and is one of the densest non-stellar-remnant objects currently known. These measurements are consistent with models of low-mass stars. The photometry tables and radial velocities are only available at the CDS and on demand via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/L6

  17. Beryllium abundances in stars hosting giant planets

    CERN Document Server

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  18. Nucleosynthetic signatures of the first stars

    CERN Document Server

    Frebel, A; Christlieb, N; Ando, H; Asplund, M; Barklem, P S; Beers, T C; Eriksson, K; Fechner, C; Fujimoto, M Y; Honda, S; Kajino, T; Minezaki, T; Nomoto, K; Norris, J E; Ryan, S G; Takada-Hidai, M; Tsangarides, S A; Yoshii, Y; Frebel, Anna; Aoki, Wako; Christlieb, Norbert; Ando, Hiroyasu; Asplund, Martin; Barklem, Paul S.; Beers, Timothy C.; Eriksson, Kjell; Fechner, Cora; Fujimoto, Masayuki Y.; Honda, Satoshi; Kajino, Toshitaka; Minezaki, Takeo; Nomoto, Ken`ichi; Norris, John E.; Ryan, Sean G.; Takada-Hidai, Masahide; Tsangarides, Stelios; Yoshii, Yuzuru

    2005-01-01

    The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models have been suggested to explain the origin of the abundance pattern of the giant star HE 0107-5240, which hithero exhibited the highest deficiency of heavy elements known. Here we report the discovery of HE 1327-2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE 0107-5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE 1327-2326, however, challenge exist...

  19. HATS-18b: An Extreme Short-period Massive Transiting Planet Spinning Up Its Star

    Science.gov (United States)

    Penev, K.; Hartman, J. D.; Bakos, G. Á.; Ciceri, S.; Brahm, R.; Bayliss, D.; Bento, J.; Jordán, A.; Csubry, Z.; Bhatti, W.; de Val-Borro, M.; Espinoza, N.; Zhou, G.; Mancini, L.; Rabus, M.; Suc, V.; Henning, T.; Schmidt, B.; Noyes, R. W.; Lázár, J.; Papp, I.; Sári, P.

    2016-11-01

    We report the discovery by the HATSouth network of HATS-18b: a 1.980+/- 0.077 {M}{{J}}, {1.337}-0.049+0.102 {R}{{J}} planet in a 0.8378 day orbit, around a solar analog star (mass 1.037+/- 0.047 {M}⊙ and radius {1.020}-0.031+0.057 {R}⊙ ) with V=14.067+/- 0.040 mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range of 6.5≲ {{log}}10({Q}* /{k}2)≲ 7 even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star-planet interactions, be they gravitational, magnetic, or radiative, as well as planet formation and migration theories. The HATSouth network is operated by a collaboration consisting of Princeton University (PU), the Max Planck Institute für Astronomie (MPIA), the Australian National University (ANU), and the Pontificia Universidad Católica de Chile (PUC). The station at Las Campanas Observatory (LCO) of the Carnegie Institute is operated by PU in conjunction with PUC, the station at the High Energy Spectroscopic Survey (H.E.S.S.) site is operated in conjunction with MPIA, and the station at Siding Spring Observatory (SSO) is operated jointly with ANU. This paper includes data gathered with the MPG 2.2 m telescope at the ESO Observatory in La Silla. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope.

  20. Spitzer Digs Up Hidden Stars

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4 Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope. The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image. The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is currently being

  1. Inflow of atomic gas fuelling star formation

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, Jeppe;

    2016-01-01

    Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation in these ga......Gamma-ray burst host galaxies are deficient in molecular gas, and show anomalous metal-poor regions close to GRB positions. Using recent Australia Telescope Compact Array (ATCA) Hi observations we show that they have substantial atomic gas reservoirs. This suggests that star formation...... in these galaxies may be fuelled by recent inflow of metal-poor atomic gas. While this process is debated, it can happen in low-metallicity gas near the onset of star formation because gas cooling (necessary for star formation) is faster than the Hi-to-H2 conversion....

  2. Placing Observational Constraints on Massive Star Models

    Science.gov (United States)

    Rosenfield, Philip

    2011-10-01

    The lives and deaths of massive stars are intricately linked to the evolution of galaxies. Yet, despite their integral importance to understanding galaxy evolution, models of massive stars are inconsistent with observations. These uncertainties can be traced to limited observational constraints available for improving massive star models. A sensitive test of the underlying physics of massive stars, e.g., convection, rotation, and mass loss is to measure the ratio of blue core helium burning stars {BHeB} to red core helium burning stars {RHeB}, 5-20Msun stars in the stage evolution immediately following the main sequence. Even the most sophisticated models cannot accurately predict the observed ratio over a range of metallicities, suggesting an insufficient understanding of the underlying physics. However, observational measurements of this ratio over a wide range of environments would provide substantial constraints on the physical parameters governing the evolution of all stars >5 Msun.We propose to place stringent observational constraints on the physics of massive star evolution by uniformly measuring the B/R HeB ratio in a wide range of galaxies. The HST archive contains high quality optical imaging of resolved stellar populations of dozens of nearby galaxies. From the ANGST program, we identified 38 galaxies, spanning 2 dex in metallicity that have significant BHeB and RHeB populations. Using this sample, we will empirically characterize the colors of the BHeB and RHeB sequences as a function of luminosity and metallicity, measure the B/R ratio, and constrain the lifetimes of the BHeB and RHeBs in the Padova stellar evolution models and the Cambridge STARS code.

  3. The Massive Star Population in M101

    Science.gov (United States)

    Grammer, Skyler; Humphreys, R. M.

    2014-01-01

    An increasing number of non-terminal giant eruptions are being observed by modern supernova and transient surveys. But very little is known about the origin of these giant eruptions and their progenitors, many of which are presumably very massive, evolved stars. Motivated by the small number of progenitors positively associated with these giant eruptions, we have begun a survey of the evolved massive star populations in nearby galaxies. The nearby, nearly face on, giant spiral M101 is an excellent laboratory for studying a large population of very massive stars and their environments. Using archival Hubble Space Telescope (HST) Advanced Camera For Surveys (ACS) data, we have produced a catalog of luminous stars with photometric errors history (SFH) of the massive star population in M101. We examine how the build up of stars over the last 100 Myrs has proceeded both radially in the disk, and in the spiral arms and inter- arms. Our results indicate the presence of a radial age gradient in the disk with the youngest stars occurring at smaller radii. Comparing the SFHs in the arms to the inter-arms, we find that the star formation rates (SFR) are higher in the arms, by ˜ 1 dex, over the 100 Myr time. The cumulative star formation functions in the arm and inter-arms do not differ appreciably suggesting the arm and inter-arm populations have evolved coevally. We have determined the light curves for a large sample of the massive stars in M101 from the Large Binocular Telescope (LBT) nearby galaxy monitoring program. We have also obtained spectra of the visually brightest and most luminous variable sources with the multiple object spectrograph Hectospec on the Multiple Mirror Telescope and with the Multiple Object Dual Spectrograph on the LBT.

  4. The Rb problem in massive AGB stars.

    Science.gov (United States)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  5. Star Clusters within FIRE

    Science.gov (United States)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  6. Dark stars: a review.

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  7. Dark stars: a review

    Science.gov (United States)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  8. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  9. Touchstone Stars: Highlights from the Cool Stars 18 Splinter Session

    CERN Document Server

    Mann, Andrew W; Boyajian, Tabetha; Gaidos, Eric; von Braun, Kaspar; Feiden, Gregory A; Metcalfe, Travis; Swift, Jonathan J; Curtis, Jason L; Deacon, Niall R; Filippazzo, Joseph C; Gillen, Ed; Hejazi, Neda; Newton, Elisabeth R

    2014-01-01

    We present a summary of the splinter session on "touchstone stars" -- stars with directly measured parameters -- that was organized as part of the Cool Stars 18 conference. We discuss several methods to precisely determine cool star properties such as masses and radii from eclipsing binaries, and radii and effective temperatures from interferometry. We highlight recent results in identifying and measuring parameters for touchstone stars, and ongoing efforts to use touchstone stars to determine parameters for other stars. We conclude by comparing the results of touchstone stars with cool star models, noting some unusual patterns in the differences.

  10. Chemical evolution of star clusters

    OpenAIRE

    van Loon, Jacco Th.

    2009-01-01

    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxi...

  11. Suggestions on photons and fermions

    CERN Document Server

    Alvargonzalez, R

    2007-01-01

    In this paper we suggest a configuration of photons consistent with a spin $\\hbar$, and a configuration of the fermions coherent with a spin $\\hbar/2$. These suggested configurations open the way to further analyses which lead to the following conclusions: - There cannot exist elementary particles of spin $\\hbar/2$ with a mass inferior to $1m_e$ or with a radius greater than $1l_e$. - The electrostatic force derives from the centrifugal forces inherent to the spin and are propagated by photons. - The derivation of the electrostatic force explains the existence of positive and negative charges and Coulomb's law. - The enormous differences between the centrifugal forces and the centripetal forces at the surface of the protons give rise to quantic fluctuations of space which generate the energy flows necessary for equilibrium. These energy flows can explain gravitation and the strong force. - The mass of the proton, $m_p$, and the mass of the neutron, $m_n$, must each have a concrete value required for the cohes...

  12. STAR in CTO PCI: When is STAR not a star?

    Science.gov (United States)

    Hira, Ravi S; Dean, Larry S

    2016-04-01

    Subintimal tracking and reentry (STAR) has been used as a bailout strategy and involves an uncontrolled dissection and recanalization into the distal lumen to reestablish vessel patency. In the current study, thrombolysis in myocardial infarction (TIMI) flow < 3 was the only variable which they found to be significantly associated with restenosis and reocclusion after stent placement. It may be reasonable to consider second generation drug eluting stent placement in patients receiving STAR that have TIMI 3 flow, however, this should only be done if there is no compromise of major side branches. If unsure, we recommend to perform balloon angioplasty without stenting. © 2016 Wiley Periodicals, Inc.

  13. A Four-Star Lightweight

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    least 1,800 AU which means that, if the system is only a few million years old, the binary pairs have orbited each other no more than ~20 times.The authors measurements show that the first binary pair (labeled Aab, where Aa and Ab are the two stars) consists of a 200 MJup low-mass star and a 35 MJup brown dwarf. The second binary pair (Bab) consists of a 19 MJup brown dwarf and a ~10 MJup companion. This gives 2M0441+2301 AabBab a total mass of only ~0.26 solar masses, making it the lowest-mass quadruple system yet discovered.The hierarchical structure of this system strongly suggests that it formed from the collapse and fragmentation of a molecular cloud core. What makes this system especially interesting is the span of masses involved. The low mass of the companion in Bab indicates that its possible to form planetary-mass companions from a cloud-fragmentation pathway which suggests that this may also be legitimate channel to consider for the formation of massive exoplanets.Note: article edited to more accurately reflect the specific contributions of this study.CitationBrendan P. Bowler and Lynne A. Hillenbrand 2015 ApJ 811 L30. doi:10.1088/2041-8205/811/2/L30

  14. The lack of carbon stars in the Galactic bulge

    Institute of Scientific and Technical Information of China (English)

    Zhu Chun-Hua; Lv Guo-Liang; Wang Zhao-Jun; Zhang Jun

    2008-01-01

    In order to explain the lack of carbon stars in the Galactic bulge, we have made a detailed study of thermal pulseasymptotic giant branch (TP-AGB) stars by using a population synthesis code. The effects of the oxygen overabundance and the mass loss rate on the ratio of the number of carbon stars to that of oxygen stars in the Galactic bulge are discussed. We find that the oxygen overabundance which is about twice as large as that in the solar neighbourhood (close to the present observations) is insufficient to explain the rareness of carbon stars in the bulge. We suggest that the large mass loss rate may serve as a controlling factor in the ratio of the number of carbon stars to that of oxygen stars.

  15. Strange nonchaotic stars

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  16. Star-Paths, Stones and Horizon Astronomy

    Science.gov (United States)

    Brady, Bernadette

    2015-05-01

    Archaeoastronomers tend to approach ancient monuments focusing on the landscape and the horizon calendar events of sun and moon and, due to problems with precession, generally ignore the movement of the stars. However, locating the position of solar calendar points on the horizon can have other uses apart from calendar and/or cosmological purposes. This paper firstly suggests that the stars do not need to be ignored. By considering the evidence of the Phaenomena, a sky poem by Aratus of Soli, a third century BC Greek poet, and his use of second millennium BC star lore fragments, this paper argues that the stars were a part of the knowledge of horizon astronomy. Aratus' poem implied that the horizon astronomy of the late Neolithic and Bronze Age periods included knowledge of star-paths or 'linear constellations' that were defined by particular horizon calendar events and other azimuths. Knowledge of such star-paths would have enabled navigation and orientation, and by using permanent markers, constructed or natural, to define these paths, they were immune to precession as the stones could redefine a star-path for a future generation. Finally the paper presents other possible intentions behind the diverse orientation of passage tombs and some megalithic sites.

  17. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  18. ENERGY STAR Unit Reports

    Data.gov (United States)

    Department of Housing and Urban Development — These quarterly Federal Fiscal Year performance reports track the ENERGY STAR qualified HOME units that Participating Jurisdictions record in HUD's Integrated...

  19. Strange Nonchaotic Stars

    Science.gov (United States)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  20. Massive binary stars as a probe of massive star formation

    Science.gov (United States)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass

  1. Pre-supernova mixing in CEMP-no source stars

    Science.gov (United States)

    Choplin, Arthur; Ekström, Sylvia; Meynet, Georges; Maeder, André; Georgy, Cyril; Hirschi, Raphael

    2017-09-01

    Context. CEMP-no stars are long-lived low-mass stars with a very low iron content, overabundances of carbon and no or minor signs for the presence of s- or r-elements. Although their origin is still a matter of debate, they are often considered as being made of a material ejected by a previous stellar generation (source stars). Aims: We place constraints on the source stars from the observed abundance data of CEMP-no stars. Methods: We computed source star models of 20, 32, and 60 M⊙ at Z = 10-5 with and without fast rotation. For each model we also computed a case with a late mixing event occurring between the hydrogen and helium-burning shell 200 yr before the end of the evolution. This creates a partially CNO-processed zone in the source star. We use the 12C/13C and C/N ratios observed on CEMP-no stars to put constraints on the possible source stars (mass, late mixing or not). Then, we inspect more closely the abundance data of six CEMP-no stars and select their preferred source star(s). Results: Four out of the six CEMP-no stars studied cannot be explained without the late mixing process in the source star. Two of them show nucleosynthetic signatures of a progressive mixing (due e.g. to rotation) in the source star. We also show that a 20 M⊙ source star is preferred compared to one of 60 M⊙ and that likely only the outer layers of the source stars were expelled to reproduce the observed 12C/13C. Conclusions: The results suggest that (1) a late mixing process could operate in some source stars; (2) a progressive mixing, possibly achieved by fast rotation, is at work in several source stars; (3) 20 M⊙ source stars are preferred compared to 60 M⊙ ones; and (4) the source star might have preferentially experienced a low energetic supernova with large fallback.

  2. Horizontal Branch stars as AmFm/HgMn stars

    CERN Document Server

    Michaud, G

    2008-01-01

    Recent observations and models for horizontal branch stars are briefly described and compared to models for AmFm stars. The limitations of those models are emphasized by a comparison to observations and models for HgMn stars.

  3. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    Science.gov (United States)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  4. No evidence of disk destruction by OB stars

    Science.gov (United States)

    Richert, Alexander J. W.; Feigelson, Eric

    2015-01-01

    It has been suggested that the hostile environments observed in massive star forming regions are inhospitable to protoplanetary disks and therefore to the formation of planets. The Orion Proplyds show disk evaporation by extreme ultraviolet (EUV) photons from Theta1 Orionis C (spectral type O6). In this work, we examine the spatial distributions of disk-bearing and non-disk bearing young stellar objects (YSOs) relative to OB stars in 17 massive star forming regions in the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey. Any tendency of disky YSOs, identified by their infrared excess, to avoid OB stars would reveal complete disk destruction.We consider a sample of MYStIX that includes 78 O3-O9 stars, 256 B stars, 5,606 disky YSOs, and 5,794 non-disky YSOs. For each OB star, we compare the cumulative distribution functions of distances to disky and non-disky YSOs. We find no significant avoidance of OB stars by disky YSOs. This result indicates that OB stars are not sufficiently EUV-luminous and long-lived to completely destroy a disk within its ordinary lifetime. We therefore conclude that massive star forming regions are not clearly hostile to the formation of planets.

  5. Kepler observations of variability in B-type stars

    CERN Document Server

    Balona, L A; De Cat, P; Handler, G; Gutierrez-Soto, J; Engelbrecht, C A; Frescura, F; Briquet, M; Cuypers, J; Daszynska-Daszkiewicz, J; Degroote, P; Dukes, R J; Garcia, R A; Green, E M; Heber, U; Kawaler, S D; Ostensen, R; Pricopi, D; Roxburgh, I; Salmon, S; Smith, M A; Suarez, J C; Suran, M; Szabo, R; Uytterhoeven, K; Christensen-Dalsgaard,; Kjeldsen, H; Caldwell, D A; Girouard, F R; Sanderfer, D T

    2011-01-01

    The analysis of the light curves of 48 B-type stars observed by Kepler is presented. Among these are 15 pulsating stars, all of which show low frequencies characteristic of SPB stars. Seven of these stars also show a few weak, isolated high frequencies and they could be considered as SPB/beta Cep hybrids. In all cases the frequency spectra are quite different from what is seen from ground-based observations. We suggest that this is because most of the low frequencies are modes of high degree which are predicted to be unstable in models of mid-B stars. We find that there are non-pulsating stars within the beta Cep and SPB instability strips. Apart from the pulsating stars, we can identify stars with frequency groupings similar to what is seen in Be stars but which are not Be stars. The origin of the groupings is not clear, but may be related to rotation. We find periodic variations in other stars which we attribute to proximity effects in binary systems or possibly rotational modulation. We find no evidence fo...

  6. An infrared study of Be stars based on ISO SWS01 spectra

    Institute of Scientific and Technical Information of China (English)

    Pin Zhang; Zai-Qi Fu

    2009-01-01

    The Infrared Space Observatory (ISO) Short-Wavelength Spectrometer (SWS) spectra of 10 Be stars are presented. It can be seen that the Be stars show a diversity in their ISO SWS01 spectral classifications by Kraemer et al., from naked stars, stars associated with dust, stars with warm dust shells, stars with cool dust shells to very red sources. In addition, the Brc/HI(14-6) line flux ratio derived for the sample stars is compared with that of P Cyg, and it is found that the line ratio of Be stars which were investigated show not only lower values as suggested by Waters et al., but also larger values. Therefore, the line ratio cannot he used to judge whether a star is a Be star or not.

  7. Variability and star formation in Leo T, the lowest luminosity star-forming galaxy known today

    CERN Document Server

    Clementini, Gisella; Ramos, Rodrigo Contreras; Federici, Luciana; Ripepi, Vincenzo; Marconi, Marcella; Tosi, Monica; Musella, Ilaria

    2012-01-01

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way (MW) "ultra-faint" dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 10 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409 $^{+29}_{-27}$ kpc (distance modulus of 23.06 $\\pm$ 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V-I color-magnitude diagram of Leo T reaches V~29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the star formation history, based on the comparison of the observed V,V-I CMD...

  8. Production of Star-Grazing and Star-Impacting Planetestimals via Orbital Migration of Extrasolar Planets

    Science.gov (United States)

    Quillen, A. C.; Holman, M.

    2000-01-01

    During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.

  9. Star Trek in the Schools

    Science.gov (United States)

    Journal of Aerospace Education, 1977

    1977-01-01

    Describes specific educational programs for using the Star Trek TV program from kindergarten through college. For each grade level lesson plans, ideas for incorporating Star Trek into future classes, and reports of specific programs utilizing Star Trek are provided. (SL)

  10. Three New Variable Stars in Indus

    CERN Document Server

    Golovin, Alex; Virnina, Natalia; Santiago, Javier Lopez

    2009-01-01

    We report the discovery of three new variable stars in Indus: USNO-B1.0 0311-0760061, USNO-B1.0 0309-0771315, and USNO-B1.0 0315-0775167. Light curves of 3712 stars in a 87' x 58' field centered on the asynchronous polar CD Ind were obtained using a remotely controlled 150 mm telescope of Tzec Maun Observatory (Pingelly, Western Australia). The VaST software based on SExtractor package was used for semi-automatic search for variable stars. We suggest the following classification for the newly discovered variable stars: USNO-B1.0 0311-0760061 - RR Lyr-type, USNO-B1.0 0309-0771315 - W UMa-type, and USNO-B1.0 0315-0775167 - W UMa-type.

  11. Signatures of star formation by cold collapse

    CERN Document Server

    Kuznetsova, Aleksandra; Ballesteros-Paredes, Javier

    2015-01-01

    Sub-virial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed SPH simulations of the initial formation and evolution of a dynamically young star cluster through cold (sub-virial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of sub-virial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made either early in cluster formation and/or at larger scales, away from the grow...

  12. The Nature and Nurture of Star Clusters

    CERN Document Server

    Elmegreen, Bruce G

    2009-01-01

    Star clusters have hierarchical patterns in space and time, suggesting formation processes in the densest regions of a turbulent interstellar medium. Clusters also have hierarchical substructure when they are young, which makes them all look like the inner mixed parts of a pervasive stellar hierarchy. Young field stars share this distribution, presumably because some of them came from dissolved clusters and others formed in a dispersed fashion in the same gas. The fraction of star formation that ends up in clusters is apparently not constant, but may increase with interstellar pressure. Hierarchical structure explains why stars form in clusters and why many of these clusters are self-bound. It also explains the cluster mass function. Halo globular clusters share many properties of disk clusters, including what appears to be an upper cluster cutoff mass. However, halo globulars are self-enriched and often connected with dwarf galaxy streams. The mass function of halo globulars could have initially been like th...

  13. Star Formation in Turbulent Interstellar Gas

    CERN Document Server

    Klessen, R S

    2003-01-01

    Understanding the star formation process is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that supersonic interstellar turbulence rather than magnetic fields controls star formation. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic molecular clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence.

  14. Stars and Flowers, Flowers and Stars

    Science.gov (United States)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  15. Hybrid stars that masquerade as neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  16. Spectroscopic observations of active solar-analog stars having high X-ray luminosity, as a proxy of superflare stars

    CERN Document Server

    Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Namekata, Kosuke; Nogami, Daisaku; Shibata, Kazunari

    2016-01-01

    Recent studies of solar-type superflare stars have suggested that even old slowly rotating stars similar to the Sun can have large starspots and superflares. We conducted high dispersion spectroscopy of 49 nearby solar-analog stars (G-type main sequence stars with $T_{\\rm{eff}}\\approx5,600\\sim6,000$ K) identified as ROSAT soft X-ray sources, which are not binary stars from the previous studies. We expected that these stars can be used as a proxy of bright solar-analog superflare stars, since superflare stars are expected to show strong X-ray luminosity. More than half (37) of the 49 target stars show no evidence of binarity, and their atmospheric parameters ($T_{\\rm{eff}}$, $\\log g$, and [Fe/H]) are within the range of ordinary solar-analog stars. We measured Ca II 8542 and H$\\alpha$ lines, which are good indicators of the chromospheric activity. The intensity of these lines indicates that all the target stars have large starspots. We also measured $v\\sin i$ (projected rotational velocity) and Lithium abundan...

  17. PAHs and star formation

    NARCIS (Netherlands)

    Tielens, AGGM; Peeters, E; Bakes, ELO; Spoon, HWW; Hony, S; Johnstone, D; Adams, FC; Lin, DNC; Neufeld, DA; Ostriker, EC

    2004-01-01

    Strong IR emission features at 3.3, 6.2, 7.7, 8.6, and 11.2 mum are a common characteristic of regions of massive star formation. These features are carried by large (similar to 50 C-atom) Polycyclic Aromatic Hydrocarbon molecules which are pumped by the strong FUV photon flux from these stars. Thes

  18. Observing Double Stars

    Science.gov (United States)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  19. How do stars form

    Science.gov (United States)

    Tscharnuter, W. M.

    1980-02-01

    Modes and model concept of star formation are reviewed, beginning with the theory of Kant (1755), via Newton's exact mathematical formulation of the laws of motion, his recognition of the universal validity of general gravitation, to modern concepts and hypotheses. Axisymmetric and spherically symmetric collapse models are discussed, and the origin of double and multiple star systems is examined.

  20. Star Trek Physics: Where Does the Science End and the Fiction Begin?

    Science.gov (United States)

    Radhe, Sue Ellen; Cole, Lynn

    2002-01-01

    Uses the science fiction television show "Star Trek" as an instructional medium to teach physics concepts. Includes suggestions on how to motivate students through "Star Trek" episodes and the Internet. (YDS)

  1. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  2. Mira Symbiotic Stars

    Institute of Scientific and Technical Information of China (English)

    Guo-Liang Lü; Chun-Hua Zhu; Zhan-Wen Han

    2007-01-01

    We have carried out a detailed study of Mira symbiotic stars by means of a population synthesis code. We estimate the number of Mira symbiotic stars in the Galaxy as 1700 - 3100 and the Galactic occurrence rate of Mira symbiotic novae as from ~ 0.9 to 6.0 yr-1,depending on the model assumptions. The distributions of the orbital periods, the masses of the components, mass-loss rates of cool components, mass-accretion rates of hot components and Mira pulsation periods in Mira symbiotic stars are simulated. By a comparison of the number ratio of Mira symbiotic stars to all symbiotic stars, we find the model with the stellar wind model of Winters et al. to be reasonable.

  3. Revised Anatomy of Stars

    CERN Document Server

    Dubin, M; Dubin, Maurice; Soberman, Robert K.

    1997-01-01

    Stars accrete near invisible hydrogen dominated agglomerates. This population, the `dark matter,' effects the nature of stars. Measurements show plasma streams impacting Earth, planets, Sun and stars. This mass-energy source contradicts nebula collapse model for stars. The visual derived model, to which later discoveries (e.g., fusion) were appended, is confounded and contradicted by new observations. Discovery of a quantity of beryllium 7 (53 day half-life) in the Earth's upper atmosphere, fusion produced, hence from the solar outer zone, proves core fusion wrong. Magnetically pinched plasmas from aggregates impact stars at hundreds of km/s, create impulsive conditions for nuclear explosions below the surface. Disks with planets aid cluster capture. Planets modulate the influx varying fusion, hence luminosity (e.g., solar cycle). This population, with no assumptions or ad hoc physics, explains mysterious phenomena, e.g., luminosity/wind variation, sunspots, high temperature corona, CMEs, etc. Standard explan...

  4. The Carbon Star Phenomenon

    Science.gov (United States)

    Wing, Robert F.

    2000-06-01

    The atmospheres of many stars have chemical compositions that are significantly different from that of the interstellar medium from which they are formed. This symposium considered all kinds of late-type stars showing altered compositions, the carbon stars being simply the best-known of these. All stages of stellar evolution from the main sequence to the ejection of a planetary nebula were considered, with emphasis on the changes that occur on the asymptotic giant branch. The spectroscopic properties of the photospheres and circumstellar envelopes of chemically-peculiar red giant stars, their origins via single-star evolution or mass transfer in binary systems, and the methods currently used to study them were all discussed in detail. This volume includes the full texts of papers given orally at the symposium and abstracts of the posters. Link: http://www.wkap.nl/book.htm/0-7923-6347-7

  5. Gaia and Variable Stars

    CERN Document Server

    Udalski, A; Skowron, D M; Skowron, J; Pietrukowicz, P; Mróz, P; Poleski, R; Szymański, M K; Kozłowski, S; Wyrzykowski, Ł; Ulaczyk, K; Pawlak, M

    2016-01-01

    We present a comparison of the Gaia DR1 samples of pulsating variable stars - Cepheids and RR Lyrae type - with the OGLE Collection of Variable Stars aiming at the characterization of the Gaia mission performance in the stellar variability domain. Out of 575 Cepheids and 2322 RR Lyrae candidates from the Gaia DR1 samples located in the OGLE footprint in the sky, 559 Cepheids and 2302 RR Lyrae stars are genuine pulsators of these types. The number of misclassified stars is low indicating reliable performance of the Gaia data pipeline. The completeness of the Gaia DR1 samples of Cepheids and RR Lyrae stars is at the level of 60-75% as compared to the OGLE Collection dataset. This level of completeness is moderate and may limit the applicability of the Gaia data in many projects.

  6. Ages of young stars

    CERN Document Server

    Soderblom, David R; Jeffries, Rob D; Mamajek, Eric E; Naylor, Tim

    2013-01-01

    Determining the sequence of events in the formation of stars and planetary systems and their time-scales is essential for understanding those processes, yet establishing ages is fundamentally difficult because we lack direct indicators. In this review we discuss the age challenge for young stars, specifically those less than ~100 Myr old. Most age determination methods that we discuss are primarily applicable to groups of stars but can be used to estimate the age of individual objects. A reliable age scale is established above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young clusters, and consistency is shown between these ages and those from the upper main sequence and the main sequence turn-off -- if modest core convection and rotation is included in the models of higher-mass stars. Other available methods for age estimation include the kinematics of young groups, placing stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface gravity measurement, rotation and activ...

  7. Neutron stars - General review

    Science.gov (United States)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  8. Boson Stars in AdS

    CERN Document Server

    Buchel, Alex; Lehner, Luis

    2013-01-01

    We construct boson stars in global Anti de Sitter (AdS) space and study their stability. Linear perturbation results suggest that the ground state along with the first three excited state boson stars are stable. We evolve some of these solutions and study their nonlinear stability in light of recent work \\cite{Bizon:2011gg} arguing that a weakly turbulent instability drives scalar perturbations of AdS to black hole formation. However evolutions suggest that boson stars are nonlinearly stable and immune to the instability for sufficiently small perturbation. Furthermore, these studies find other families of initial data which similarly avoid the instability for sufficiently weak parameters. Heuristically, we argue that initial data families with widely distributed mass-energy distort the spacetime sufficiently to oppose the coherent amplification favored by the instability. From the dual CFT perspective our findings suggest that there exist families of rather generic initial conditions in strongly coupled CFT ...

  9. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, P E [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Avgeropoulos, A [Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina (Greece); Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Universidad Nacional de Educacion a Distancia, Facultad de Ciencias, Senda del Rey 9, 28040 Madrid (Spain); Kosmas, M [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Vlahos, C [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece)

    2007-11-21

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  10. Stars and linear dunes on Mars

    Science.gov (United States)

    Edgett, Kenneth S.; Blumberg, Dan G.

    1994-01-01

    A field containing 11 star and incipient star dunes occurs on Mars at 8.8 deg S, 270.9 deg W. Examples of linear dunes are found in a crater at 59.4 deg S, 343 deg W. While rare, dune varieties that form in bi- and multidirectional wind regimes are not absent from the surface of Mars. The occurence of both of these dune fields offers new insight into the nature of martian wind conditions and sand supply. The linear dunes appears to have formed through modification of a formerly transverse aeolian deposit, suggesting a relatively recent change in local wind direction. The 11 dunes in the star dune locality show a progressive change from barchan to star form as each successive dune has traveled up into a valley, into a more complex wind regime. The star dunes corroborate the model of N. Lancaster (1989), for the formation of star dunes by projection of transverse dunes into a complex, topographically influenced wind regime. The star dunes have dark streaks emanating from them, providing evidence that the dunes were active at or near the time the relevant image was obtained by the Viking 1 orbiter in 1978. The star and linear dunes described here are located in different regions on the martian surface. Unlike most star and linear dunes on Earth, both martian examples are isolated occurrences; neither is part of a major sand sea. Previously published Mars general circulation model results suggest that the region in which the linear dune field occurs should be a bimodal wind regime, while the region in which the star dunes occur should be unimodal. The star dunes are probably the result of localized complication of the wind regime owing to topographic confinement of the dunes. Local topographic influence on wind regime is also evident in the linear dune field, as there are transverse dunes in close proximity to the linear dunes, and their occurrence is best explained by funneling of wind through a topographic gap in the upwind crater wall.

  11. Catch a Star!

    Science.gov (United States)

    2006-11-01

    ESO and the European Association for Astronomy Education are launching today the 2007 edition of 'Catch a Star!', their international astronomy competition for school students. Now in its fifth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. Students are invited to 'become astronomers' and embark on a journey to explore the Universe. ESO PR Photo 42/06 The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, 'Catch a Star!' also includes an artwork competition, 'Catch a Star Artists'. "'Catch a Star!' offers a unique opportunity for students to learn more about astronomy and about the methods scientists use to discover new things about the Universe", said Douglas Pierce-Price, Education Officer at ESO. In teams, students choose an astronomical topic to study and produce an in-depth report. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes or a telescope of the future can contribute to their investigations of the subject. As well as the top prize - a trip to one of ESO's observatory sites in Chile - visits to observatories in Germany, Austria and Spain, and many other prizes are also available to be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. The first editions of 'Catch a Star!' have attracted several hundred entries from more than 25 countries worldwide. Previous winning entries have included "Star clusters and the structure of the Milky Way" (Budapest, Hungary), "Vega" (Acqui Terme, Italy) and "Venus

  12. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  13. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  14. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  15. Chlorine Abundances in Cool Stars

    CERN Document Server

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  16. The sun, our star

    Science.gov (United States)

    Noyes, R. W.

    Observational data, analytical models, and instrumentation used to study the sun and its evolution are detailed, and attention is given to techniques for converting solar energy to useful power on earth. The star ignited when the mutual gravitational attractions of dust and vapor in a primordial cloud in the Galaxy caused an in-rush of accelerating particles which eventually became dense enough to ignite. The heat grew until inward rushing matter was balanced by outward moving radiative forces. The planets formed from similar debris, and solar radiation is suggested to have triggered the chemical reactions giving rise to life on earth. Visual, spectroscopic, coronagraphic, and UV observations of the sun from the ground and from spacecraft, particularly Skylab, are described, together with features of the solar surface, magnetic field, sunspots, and coronal loops. Models for the processes that occur in the solar interior are explored, as are the causes of solar flares. Attention is given to solar cells, heliostat arrays, wind turbines, and water turbines as means to convert, either directly or indirectly, the earth-bound solar energy to electrical and thermal power. Finally, the life cycle of the sun, about 9 billion yr in duration, is summarized, noting the current status of midlife.

  17. Star Formation History In Merging Galaxies

    CERN Document Server

    Chien, Li-Hsin

    2009-01-01

    Galaxy interactions are known to trigger starbursts. Young massive star clusters formed in interacting galaxies and mergers may become young globular clusters. The ages of these clusters can provide clues about the timing of interaction-triggered events, and thus provide an important way to reconstruct the star formation history of merging galaxies. Numerical simulations of galaxy mergers can implement different star formation rules. For instance, star formation dependent on gas density or triggered by shocks, predicts significantly different star formation histories. To test the validity of these models, multi-object spectroscopy was used to map the ages of young star clusters throughout the bodies and tails of a series of galaxy mergers at different stages (Arp 256, NGC 7469, NGC 4676, Arp 299, IC 883 and NGC 2623). We found that the cumulative distribution of ages becomes shallower as the stage of merger advances. This result suggests a trend of cluster ages as a function of merger stage. In NGC 4676 we fo...

  18. Is molecular gas necessary for star formation?

    CERN Document Server

    Glover, S C O

    2011-01-01

    On galactic scales, the surface density of star formation appears to be well correlated with the surface density of molecular gas. This has lead many authors to suggest that there exists a causal relationship between the chemical state of the gas and its ability to form stars -- in other words, the assumption that the gas must be molecular before star formation can occur. We test this hypothesis by modelling star formation within a dense cloud of gas with properties similar to a small molecular cloud using a series of different models of the chemistry, ranging from one in which the formation of molecules is not followed and the gas is assumed to remain atomic throughout, to one that tracks the formation of both H2 and CO. We find that presence of molecules in the gas has little effect on the ability of the gas to form stars: star formation can occur just as easily in atomic gas as in molecular gas. At low densities (< 10^4 cm^-3), the gas is able to cool via C+ fine-structure emission almost as efficiently...

  19. Applying Machine Learning to Star Cluster Classification

    Science.gov (United States)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  20. Fractal Structure in Galactic Star Fields

    CERN Document Server

    Elmegreen, B G; Elmegreen, Bruce G.; Elmegreen, Debra Meloy

    2001-01-01

    The fractal structure of star formation on large scales in disk galaxies is studied using the size distribution function of stellar aggregates in kpc-scale star fields. Achival HST images of 10 galaxies are Gaussian smoothed to define the aggregates, and a count of these aggregates versus smoothing scale gives the fractal dimension. Fractal and Poisson models confirm the procedure. The fractal dimension of star formation in all of the galaxies is ~2.3. This is the same as the fractal dimension of interstellar gas in the Milky Way and nearby galaxies, suggesting that star formation is a passive tracer of gas structure defined by self-gravity and turbulence. Dense clusters like the Pleiades form at the bottom of the hierarchy of structures, where the protostellar gas is densest. If most stars form in such clusters, then the fractal arises from the spatial distribution of their positions, giving dispersed star fields from continuous cluster disruption. Dense clusters should have an upper mass limit that increase...

  1. Star Formation History in the Solar Vicinity

    CERN Document Server

    Gianpaolo, B; Gianpaolo, Bertelli; Emma, Nasi

    2000-01-01

    The star formation history in the solar neighbourhood is inferred comparing a sample of field stars from the Hipparcos Catalog with synthetic CMDs. We considered separately the main sequence and the red giant region of the HR diagram. The criteria for our best solutions are based on the $\\chi^{2}$ minimization of star distributions in selected zones of the HR diagram. Our analysis suggests that: a) the solutions are compatible with a Salpeter IMF and with {\\sl a star formation rate increasing, in a broad sense, from the beginning to the present time}; b) the deduced volume mass densities and the corresponding absolute scale of the SFR solutions are strongly influenced by the initial mass function slope of low mass stars (below 0.5 Mo); c) the stellar evolutionary models are not completely adequate: in fact {\\sl the theoretical ratio between the He-burning and MS star numbers is always a factor 1.5 greater than the observational value}. This fact could indicate the need of a more efficient overshoot in the evo...

  2. r-Process Enhanced Halo Stars

    CERN Document Server

    Cowan, J J; Lawler, J E; Den Hartog, E A

    2006-01-01

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities -- which diminishes with increasing metallicity or [Fe/H] -- suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of t...

  3. Modes of star formation from Herschel

    CERN Document Server

    Testi, Leonardo; Longmore, S

    2012-01-01

    We summarize some of the results obtained from Herschel surveys of the nearby star forming regions and the Galactic plane. We show that in the nearby star forming regions the starless core spatial surface density distribution is very similar to that of the young stellar objects. This, taken together with the similarity between the core mass function and the initial mass function for stars and the relationship between the amount of dense gas and star formation rate, suggest that the cloud fragmentation process defines the global outcome of star formation. This "simple" view of star formation may not hold on all scales. In particular dynamical interactions are expected to become important at the conditions required to form young massive clusters. We describe the successes of a simple criterion to identify young massive cluster precursors in our Galaxy based on (sub-)millimetre wide area surveys. We further show that in the location of our Galaxy where the best candidate for a precursor of a young massive cluste...

  4. A Novel Approach for Star Extraction from Star Image

    Institute of Scientific and Technical Information of China (English)

    ZHENGSheng; LIUJian; TIANJinwen; YANGRuijuan

    2005-01-01

    Star acquisition is one of the most timeconsuming routines in star tracker operation. One star Point spread function (PSF) forms a near Gaussian distribution in the star image, the star image can be regarded as 2-D intensity surface, and every pixel is the sampled point. The star cluster grouping is to find the highes tintensity pixel among the PSFs and collect the adjacent pixels and group them. The possible highest intensity pixels are the maximum extremum points of the 2-D intensity surface. To efficiently extract star from the star image, a novel star acquisition approach, which uses the simplified least squares support vector machines regression algorithm to find the optimal intensity surface function and predictthe maximum extremum points, is proposed. Comput erexperiments are carried out for the simulated star images.The experimental results demonstrate that the proposed method has a lot of advantages, including the high efficiency and good robustness over a wide range of sensor noise.

  5. Infrared spectroscopy of stars

    Science.gov (United States)

    Merrill, K. M.; Ridgway, S. T.

    1979-01-01

    This paper reviews applications of IR techniques in stellar classification, studies of stellar photospheres, elemental and isotopic abundances, and the nature of remnant and ejected matter in near-circumstellar regions. Qualitative IR spectral classification of cool and hot stars is discussed, along with IR spectra of peculiar composite star systems and of obscured stars, and IR characteristics of stellar populations. The use of IR spectroscopy in theoretical modeling of stellar atmospheres is examined, IR indicators of stellar atmospheric composition are described, and contributions of IR spectroscopy to the study of stellar recycling of interstellar matter are summarized. The future of IR astronomy is also considered.

  6. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  7. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  8. Do Hydrogen-deficient Carbon Stars have Winds?

    CERN Document Server

    Geballe, T R; Clayton, Geoffrey C

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 Angstrom line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is perhaps to be expected.

  9. Mass segregation in star clusters is not energy equipartition

    CERN Document Server

    Parker, Richard J; Wright, Nicholas J; Meyer, Michael R; Quanz, Sascha P

    2016-01-01

    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation -- which is observed in many star clusters -- is not a signature of energy equipartit...

  10. Lithium Abundance Of The Solar-Type Superflare Stars

    Science.gov (United States)

    Honda, Satoshi; Notsu, Yuta; Maehara, Hiroyuki; Notsu, Shota; Shibayama, Takuya; Nogami, Daisaku; Shibata, Kazunari

    2016-07-01

    We performed the high dispersion spectroscopy of solar-type superflare stars by Subaru/HDS, and estimate the stellar parameters and lithium abundance of the stars to compare with the Sun. Our spectroscopic analysis of superflare stars show more than half of targets have no evidence of binary system and the stellar parameters are in the range of solar-type stars (Notsu et al. 2015a&b). We also investigate the correlations of Lithium abundance with stellar atmospheric parameters, rotational velocity, and superflare activities to understand the nature of superflare stars and the possibility of the nucleosynthesis of lithium by superflares. The derived lithium abundance in superflare stars do not show the correlation with stellar parameters. As compared with the lithium abundance in Hyades cluster which is younger than the sun, it is suggested that half of observed stars are young. However, there are some objects which show the low lithium and slowly rotate from the estimated v sin(i) and period of brightness variation. These results indicate that the superflare stars are not only young stars but also old stars like our sun. In our observations, we could not find the any evidence of lithium productions by superflare.

  11. Massive Stars in the W33 Giant Molecular Complex

    CERN Document Server

    Messineo, Maria; Figer, Donald F; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R Michael; Menten, Karl M; Ivanov, Valentin D; Valenti, Elena; Trombley, Christine; Chen, C -H Rosie; Davies, Ben

    2015-01-01

    Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total mass of (~0.8 - ~8.0) X 10^5 Msun. The integrated radio and IR luminosity of W33 - when combined with the direct detection of methanol masers, the protostellar object W33A, and protocluster embedded within the radio source W33 main - mark the region out as a site of vigorous ongoing star formation. In order to assess the long term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time fourteen early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the last ~2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does ...

  12. Neutron-capture nucleosynthesis in the first stars

    Energy Technology Data Exchange (ETDEWEB)

    Roederer, Ian U. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Preston, George W.; Thompson, Ian B.; Shectman, Stephen A. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sneden, Christopher, E-mail: iur@umich.edu [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States)

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  13. On the Stability of Strange Dwarf Hybrid Stars

    Science.gov (United States)

    Alford, Mark G.; Harris, Steven P.; Sachdeva, Pratik S.

    2017-10-01

    We investigate the stability of “strange dwarfs”: white-dwarf-sized stars with a density discontinuity between a small dense core of quark matter and a thick low-density mantle of degenerate electrons. Previous work on strange dwarfs suggested that such a discontinuity could stabilize stars that would have been classified as unstable by the conventional criteria based on extrema in the mass–radius relation. We investigate the stability of such stars by numerically solving the Sturm–Liouville equations for the lowest-energy modes of the star. We find that the conventional criteria are correct, and strange dwarfs are not stable.

  14. Gravitational Waves, Gamma Ray Bursts, and Black Stars

    CERN Document Server

    Vachaspati, Tanmay

    2016-01-01

    Stars that are collapsing toward forming a black hole but appear frozen near their Schwarzschild horizon are termed "black stars". The collision of two black stars leads to gravitational radiation during the merging phase followed by a delayed gamma ray burst during coalescence. The recent observation of gravitational waves by LIGO, followed by a possible gamma ray counterpart by Fermi, suggests that the source may have been a merger of two black stars with profound implications for quantum gravity and the nature of black holes.

  15. Destruction of Be star disk by large scale magnetic fields

    Science.gov (United States)

    Ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel; Vanyo, Michael

    2017-01-01

    Classical Be stars are rapidly rotating stars with circumstellar disks that come and go on time scale of years. Recent observational data strongly suggests that these stars lack the ~10% incidence of global magnetic fields observed in other main-sequence B stars. Such an apparent lack of magnetic fields may indicate that Be disks are fundamentally incompatible with a significant large scale magnetic field. In this work, using numerical magnetohydrodynamics (MHD) simulations, we show that a dipole field of only 100G can lead to the quick disruption of a Be disk. Such a limit is in line with the observational upper limits for these objects.

  16. Young stars of low mass in the Gum nebula

    Science.gov (United States)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  17. The TRENDS High-Contrast Imaging Survey. V. Discovery of an Old and Cold Benchmark T-dwarf Orbiting the Nearby G-star HD 19467

    CERN Document Server

    Crepp, Justin R; Howard, Andrew W; Marcy, Geoffrey W; Brewer, John; Fischer, Debra A; Wright, Jason T; Isaacson, Howard

    2013-01-01

    The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of -1.37+/-0.09 m/s/yr over an 16.9 year time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast adaptive optics images of the star using NIRC2 at Keck Observatory and report the direct detection of the body that causes the acceleration. The companion, HD 19467 B, is dK=12.57+/-0.09 mag fainter than its parent star (contrast ratio of 9.4e-6), has blue colors J-K_s=-0.36+/-0.14 (J-H=-0.29+/-0.15), and is separated by 1.653+/-0.004" (51.1+/-1.0 AU). Follow-up astrometric measurements obtained over an 1.1 year time baseline demonstrate physical association through common parallactic and proper motion. We calculate a firm lower-limit of m>51.9^{+3.6}_{-4.3}Mjup for the companion mass from orbital dynamics using a combination of Doppler observations and imaging. We estimate a model-dependent mass of m=56.7^{+4.6}_{-7.2}Mjup from a gyrochronological age of 4.3^{+1.0}_{-1.2...

  18. On the conversion of neutron stars into quark stars

    CERN Document Server

    Pagliara, Giuseppe

    2013-01-01

    The possible existence of two families of compact stars, neutron stars and quark stars, naturally leads to a scenario in which a conversion process between the two stellar objects occurs with a consequent release of energy of the order of $10^{53}$ erg. We discuss recent hydrodynamical simulations of the burning process and neutrino diffusion simulations of cooling of a newly formed strange star. We also briefly discuss this scenario in connection with recent measurements of masses and radii of compact stars.

  19. Detection of Arsenic in the Atmospheres of Dying Stars

    Science.gov (United States)

    Chayer, Pierre; Dupuis, Jean; Kruk, Jeffrey W.

    2015-06-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD 0621-376, and WD 2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD 149499 B, HZ 21, and RE 0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ 21 is significantly lower than that observed in HD 149499 B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  20. Unveiling the Massive Stars in the Galactic Center

    CERN Document Server

    Dong, Hui; Morris, Mark R; Wang, Daniel Q; Cotera, Angela

    2013-01-01

    We present our recent efforts to unveil and understand the origin of massive stars outside the three massive star clusters in the Galactic Center. From our HST/NICMOS survey of the Galactic Center, we have identified 180 Paschen-alpha emitting sources, most of which should be evolved massive stars with strong optically thin stellar winds. Recently, we obtained Gemini GNIRS/NIFS H- and K-band spectra of eight massive stars near the Arches cluster. From their radial velocities, ages and masses, we suggest that in our sample, two stars are previous members of the Arches cluster, while other two stars embedded in the H1/H2 HII regions formed in-situ.

  1. Observational evidence for enhanced magnetic activity of superflare stars.

    Science.gov (United States)

    Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei

    2016-03-24

    Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.

  2. Parametric Studies on Star Port Propellant Grain For Ballistic Evaluation

    Directory of Open Access Journals (Sweden)

    Himanshu Shekhar

    2005-10-01

    Full Text Available Star port propellant grains have been extensively studied for their operating as well as geometrical parameters. It is observed that reduced tail-off and better neutrality cannot be achieved simultaneously in a configuration. Parametric study is conducted to know the effect of various parameters of star-shaped propellant grains for ballistic evaluation motor. For reduced tail-off, higher characteristic velocity, lower outer diameter of the star, and lower value of angular fraction is preferred. Star angle, burning rate, and throat diameter have negligible effects on the tail-off factor. For better neutrality, higher value of angular  fraction, higher star outer diameter, and star angle near to neutrality, is needed. An alternate configuration is suggested using this parametric study to ascertain least tail-off and enhanced neutrality.

  3. Cold Dust in Three Massive Evolved Stars in the LMC

    CERN Document Server

    Boyer, M L; van Loon, J Th; Srinivasan, S; Clayton, G C; Kemper, F; Smith, L J; Matsuura, M; Woods, Paul M; Marengo, M; Meixner, M; Engelbracht, C; Gordon, K D; Hony, S; Indebetouw, R; Misselt, K; Okumura, K; Panuzzo, P; Riebel, D; Roman-Duval, J; Sauvage, M; Sloan, G C

    2010-01-01

    Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71 is a Luminous Blue Variable, HD36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10^-3 solar masses/year, suggesting that high-mass stars are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.

  4. Detection of Arsenic in the Atmospheres of Dying Stars

    CERN Document Server

    Chayer, Pierre; Kruk, Jeffrey W

    2014-01-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD0621-376, and WD2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD149499B, HZ21, and RE0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ21 is significantly lower than that observed in HD149499B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  5. Rotation Periods of Nine ROSAT Selected Solar-Type Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We monitored 16 X-ray selected young solar-type stars for light variation and found appreciable periodic light variability with amplitudes of a few hundredths of a magnitude in nine of the objects. Using the method of Phase Dispersion Minimization (PDM) and Fourier analysis (software PERIOD04), the rotation periods of these stars were determined from the photometric data. The rotation periods of all nine stars are shorter than about 3 days.It is suggested that, as with the Pleiades cluster, small amplitude light variations are quite common among young solar-type stars with rotation periods around 3 days or less. This gives further evidence for the spin up of solar-type stars predicted by models of angular momentum evolution of pre-main sequence stars.

  6. High-angular resolution observations of the Pistol Star

    CERN Document Server

    Martayan, Christophe; Bouquin, Jean-Baptiste Le; Merand, Antoine; Montagnier, Guillaume; Selman, Fernando; Girard, Julien; Fox, Andrew; Baade, Dietrich; Fremat, Yves; Lobel, Alex; Martins, Fabrice; Patru, Fabien; Rivinius, Thomas; Sana, Hugues; Stefl, Stan; Zorec, Jean; Semaan, Thierry

    2010-01-01

    First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinforce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.

  7. STARS Quarterly Review. Fall 2012: The Role of Institutional Diversity

    Science.gov (United States)

    Urbanski, Monika

    2012-01-01

    The Fall 2012 SQR: "The Role of Institutional Diversity," explores how the diversity of STARS institutions has changed over time and how participation in STARS according to institution type compares to U.S. demographics. Findings in this review suggest that the institutional characteristics that make higher education institutions distinct also…

  8. STARS: A Campus-Wide Integrated Continuous Planning Opportunity

    Science.gov (United States)

    Martin, Richard J.

    2011-01-01

    In this article, the author talks about Sustainability Tracking, Assessment and Rating System or "STARS," a tool currently available that aims to help a campus answer the "how" and "how hard" questions. Created by AASHE (the Association for the Advancement of Sustainability in Higher Education), STARS presents guidelines and suggestions (based on…

  9. A propelling neutron star in the enigmatic Be-star $\\gamma$~Cassiopeia

    CERN Document Server

    Postnov, K; Torrejón, J M

    2016-01-01

    The enigmatic X-ray emission from the bright optical star, $\\gamma$ Cassiopeia, is a long-standing problem. $\\gamma$ Cas is known to be a binary system consisting of a Be-type star and a low-mass ($M\\sim 1\\,M_\\odot$) companion of unknown nature orbiting in the Be-disk plane. Here we apply the quasi-spherical accretion theory onto a compact magnetized star and show that if the low-mass companion of $\\gamma$ Cas is a fast spinning neutron star, the key observational signatures of $\\gamma$ Cas are remarkably well reproduced. Direct accretion onto this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed that emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from $\\gamma$ Cas. We suggest that $\\gamma$ Cas and its analogs constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subseq...

  10. A propelling neutron star in the enigmatic Be-star γ Cassiopeia

    Science.gov (United States)

    Postnov, K.; Oskinova, L.; Torrejón, J. M.

    2017-02-01

    γ Cassiopeia (γ Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M ˜ 1 M⊙) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of γ Cas is a fast spinning neutron star, the key observational signatures of γ Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from γ Cas. We suggest that γ Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of γ Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from γ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.

  11. Interferometric star tracker Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to develop a high accuracy version of its interferometric star tracker capable of meeting the milli-arcsecond-level pointing...

  12. Notes on Star Formation

    CERN Document Server

    Krumholz, Mark R

    2015-01-01

    This book provides an introduction to the field of star formation at a level suitable for graduate students or advanced undergraduates in astronomy or physics. The structure of the book is as follows. The first two chapters begin with a discussion of observational techniques, and the basic phenomenology they reveal. The goal is to familiarize students with the basic techniques that will be used throughout, and to provide a common vocabulary for the rest of the book. The next five chapters provide a similar review of the basic physical processes that are important for star formation. Again, the goal is to provide a basis for what follows. The remaining chapters discuss star formation over a variety of scales, starting with the galactic scale and working down to the scales of individual stars and their disks. The book concludes with a brief discussion of the clearing of disks and the transition to planet formation. The book includes five problem sets, complete with solutions.

  13. Spectroscopy among the stars.

    Science.gov (United States)

    Winnewisser, G

    1996-06-01

    The space between the stars is not void, but filled with interstellar matter, mainly composed of dust and gas, which gather in large interstellar clouds. In our Galaxy these interstellar clouds are distributed along a thin, but extended layer which basically traces out the spiral distribution of matter: the stars, the gas, and the dust component. Up to the present time more than 100 different molecules have been identified in interstellar molecular clouds. The majority of the interstellar molecules constitute carbon containing organic substances. During the past years, overwhelming evidence has been gathered, mainly through spectroscopic observations, that interstellar molecular clouds provide the birthplaces for stars. In fact detailed high spectral and spatial resolution spectroscopic measurements reveal physical and chemical processes of the intricate star formation process.

  14. Sports Stars Shine

    Institute of Scientific and Technical Information of China (English)

    Yu Yan

    2012-01-01

    Alive and exciting award ceremony drew the attention of numerous Chinese households on the night of January 15.The most popular Chinese sports stars attended the 2011 CCTV Sports Personality Award Ceremony at the National Indoor Stadium in Beijing.

  15. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  16. Magnetospheres of massive stars

    Science.gov (United States)

    Küker, M.

    We study the interaction of line-driven winds from massive stars with the magnetic field rooted in these stars by carrying out numerical simulations using the Nirvana MHD code in 2D in spherical polar coordinates. The code's adaptive mesh refinement feature allows high spatial resolution across the whole simulation box. We study both O and Wolf-Rayet stars for a range of magnetic field strengths from weak to strong as measured by the confinement parameter. For weak fields our simulations show that the initially dipolar field opens up far away from the star and a thin disk-like structure forms in the equatorial plane of the magnetic field. For stronger fields the disk is disrupted close to the stellar surface and closed field lines persist at low latitudes. For very strong fields a pronounced magnetosphere forms where the gas is forced to move along the field lines and eventually falls back to the stellar surface.

  17. Stars resembling the Sun

    Science.gov (United States)

    Cayrel de Strobel, G.

    This review is primarily directed to the question whether photometric solar analogues remain such when subjected to detailed spectroscopic analyses and interpreted with the help of internal stucture models. In other words, whether the physical parameters: mass, chemical composition, age (determining effective temperature and luminosity), chromospheric activity, equatorial rotation, lithium abundance, velocity fields etc., we derive from the spectral analysis of a photometric solar analogue, are really close to those of the Sun. We start from 109 photometric solar analogues extracted from different authors. The stars selected had to satisfy three conditions: i) their colour index (B-V) must be contained in the interval: Δ (B-V) = 0.59-0.69, ii) they must possess a trigonometric parallax, iii) they must have undergone a high resolution detailed spectroscopic analysis. First, this review presents photometric and spectrophotometric researches on solar analogues and recalls the pionneering work on these stars by the late Johannes Hardorp. After a brief discussion on low and high resolution spectroscopic researches, a comparison is made between effective temperatures as obtained, directly, from detailed spectral analyses and those obtained, indirectly, from different photometric relations. An interesting point in this review is the discussion on the tantalilizing value of the (B-V)solar of the Sun, and the presentation of a new reliable value of this index. A short restatement of the kinematic properties of the sample of solar analogues is also made. And, finally, the observational ( T eff, M bol) diagram, obtained with 99 of the initially presented 109 analogues, is compared to a theoretical ( T eff, M bol) diagram. This latter has been constructed with a grid of internal structure models for which, (very important for this investigation), the Sun was used as gauge. In analysing the position, with respect to the Sun, of each star we hoped to find a certain number of

  18. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  19. Worlds around other stars

    Science.gov (United States)

    Black, David C.

    1991-01-01

    The possible, though tentative, detection of planetary companions to other stars which may be capable of supporting life as we know it through the use of a new generation of detectors and telescopes, combined with some innovative detection techniques, is discussed. The current view of the origin of the solar system, based on the nebular hypothesis, is discussed as it pertains to the formation of how and where planets form and, hence, how and where to search for them. Both direct methods of search for other planetary systems, which involve detecting reflected light or infrared radiation form the planets themselves, and indirect methods, which involve the scrutinization of a star for signs that it is responding to the gravitational tug of an orbiting planet, are discussed at length. In particular, various methods for detecting minute velocity perturbations of stars are discussed. It is noted that the study of brown dwarfs may also provide clues on the formation of stars and planets.

  20. Catch a Star 2008!

    Science.gov (United States)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners

  1. The History of Variable Stars: A Fresh Look

    Science.gov (United States)

    Hatch, R. A.

    2012-06-01

    (Abstract only) For historians of astronomy, variable stars are important for a simple reason - stars change. But good evidence suggests this is a very modern idea. Over the millennia, our species has viewed stars as eternal and unchanging, forever fixed in time and space - indeed, the Celestial Dance was a celebration of order, reason, and stability. But everything changed in the period between Copernicus and Newton. According to tradition, two New Stars announced the birth of the New Science. Blazing across the celestial stage, Tycho's Star (1572) and Kepler's Star (1604) appeared dramatically - and just as unexpectedly - disappeared forever. But variable stars were different. Mira Ceti, the oldest, brightest, and most controversial variable star, was important because it appeared and disappeared again and again. Mira was important because it did not go away. The purpose of this essay is to take a fresh look at the history of variable stars. In re-thinking the traditional narrative, I begin with the first sightings of David Fabricius (1596) and his contemporaries - particularly Hevelius (1662) and Boulliau (1667) - to new traditions that unfolded from Newton and Maupertuis to Herschel (1780) and Pigott (1805). The essay concludes with important 19th-century developments, particularly by Argelander (1838), Pickering (1888), and Lockyer (1890). Across three centuries, variable stars prompted astronomers to re-think all the ways that stars were no longer "fixed." New strategies were needed. Astronomers needed to organize, to make continuous observations, to track changing magnitudes, and to explain stellar phases. Importantly - as Mira suggested from the outset - these challenges called for an army of observers with the discipline of Spartans. But recruiting that army required a strategy, a set of theories with shared expectations. Observation and theory worked hand-in-hand. In presenting new historical evidence from neglected printed sources and unpublished

  2. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  3. Chaotic Star Birth

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives. The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region. The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333. In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  4. The Star Formation Histories of Disk Galaxies: the Live, the Dead, and the Undead

    CERN Document Server

    Oemler, Augustus; Gladders, Michael D; Dressler, Alan; Poggianti, Bianca M; Vulcani, Benedetta

    2016-01-01

    We reexamine the systematic properties of local galaxy populations, using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below the "main sequence" of star formation vs mass. We find an unexpectedly large population of galaxies with star formation rates intermediate between vigorously star-forming main sequence galaxies and passive galaxies, and with gas content disproportionately high for their star formation rates. Several lines of evidence suggest that these quiescent galaxies form a distinct population rather than a low star formation tail of the main sequence. We demonstrate that a tight main sequence, evolving with epoch, is a natural outcome of most histories of star formation and has little astrophysical significance, but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dep...

  5. First supernova companion star found

    Science.gov (United States)

    2004-01-01

    ). These two mighty galaxies in the Plough (Ursa Major) belong to some of the most famous and beloved galaxies known to amateur astronomers. This may be one of the reasons that Supernova 1993J was discovered by the Spanish amateur astronomer Francisco Garcia Diaz and not a professional astronomer. The violent star-forming activity in the neighbouring Messier 82 gives rise to a strong galactic wind that is spewing knotty filaments of hydrogen and nitrogen gas (seen in red) out of its centre. Supernovae are some of the most significant sources of chemical elements in the Universe, and they are at the heart of our understanding of the evolution of galaxies. Supernovae are some of the most violent events in the Universe. For many years astronomers have thought that they occur in either solitary massive stars (Type II supernovae) or in a binary system where the companion star plays an important role (Type I supernovae). However no one has been able to observe any such companion star. It has even been speculated that the companion stars might not survive the actual explosion... The second brightest supernova discovered in modern times, SN 1993J, was found in the beautiful spiral galaxy M81 on 28 March 1993. From archival images of this galaxy taken before the explosion, a red supergiant was identified as the mother star in 1993 - only the second time astronomers have actually seen the progenitor of a supernova explosion (the first was SN 1987A, the supernova that exploded in 1987 in our neighbouring galaxy, the Large Magellanic Cloud). Initially rather ordinary, SN 1993J began to puzzle astronomers as its ejecta seemed too rich in the chemical element helium and instead of fading normally it showed a bizarre sharp increase in brightness. The astronomers realised that a normal red supergiant alone could not have given rise to such a weird supernova. It was suggested that the red supergiant orbited a companion star that had shredded its outer layers just before the explosion. Ten

  6. Star on the Run - Speeding Star Observed with VLT hints at Massive Black Hole

    Science.gov (United States)

    2005-11-01

    Using ESO's Very Large Telescope, astronomers [1] have recorded a massive star moving at more than 2.6 million kilometres per hour. Stars are not born with such large velocities. Its position in the sky leads to the suggestion that the star was kicked out from the Large Magellanic Cloud, providing indirect evidence for a massive black hole in the Milky Way's closest neighbour. These results will soon be published in the Astrophysical Journal Letters [2]. "At such a speed, the star would go around the Earth in less than a minute!", says Uli Heber, one of the scientists at the Dr. Remeis-Sternwarte (University of Erlangen-Nürnberg, Germany) and the Centre for Astrophysics Research (University of Hertfordshire, UK) who conducted the study. The hot massive star was discovered in the framework of the Hamburg/ESO sky survey far out in the halo of the Milky Way, towards the Doradus Constellation ("the Swordfish"). "This is a rather unusual place for such a star: massive stars are ordinarily found in the disc of the Milky Way", explains Ralf Napiwotzki, another member of the team. "Our data obtained with the UVES instrument on the Very Large Telescope, at Paranal (Chile), confirm the star to be rather young and to have a chemical composition similar to our Sun." The data also revealed the high speed of the star, solving the riddle of its present location: the star did not form in the Milky Way halo, but happens to be there while on its interstellar - or intergalactic - travel. "But when we calculated how long it would take for the star to travel from the centre of our Galaxy to its present location, we found this to be more than three times its age", says Heber. "Either the star is older than it appears or it was born and accelerated elsewhere", he adds. As a matter of fact, HE0457-5439 - as the star is called - lies closer to one of the Milky Way satellite galaxies, the Large Magellanic Cloud (LMC), located 160,000 light-years away from us. The astronomers find it likely

  7. Young Stars with SALT

    Science.gov (United States)

    Riedel, Adric R.; Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L.; Henry, Todd J.

    2017-05-01

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups. Based on observations made with the Southern African Large Telescope (SALT).

  8. Uncovering the monster stars in W49: the most luminous star-forming region in the Milky Way

    Science.gov (United States)

    Wu, Shiwei; Bik, Arjan; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2015-08-01

    As a part of the LOBSTAR project (Luci OBservations of STARburst regions), which aims at understanding the stellar content of some of the most massive star-forming regions, we present our result on the high-mass stellar content of W49. K-band spectra of the candidate massive stars from VLT/ISAAC and LBT/LUCI provide us with reliable spectral types of dozens of massive stars in this HII region.The first results show that this region hosts several of the most massive stars in our galaxy. Two most brightest stars, one in the core of the central cluster and one in W49 South, were identified as very massive stars (M > 100 M⊙). Their K-band spectra exhibit strong stellar wind features, and they are classified as O2-3.5If* supergiant stars. After comparison to the Geneva evolutionary models, the mass range of W49nr1 was estimated to be between 100 M⊙ and 180 M⊙. Additionally we find 12 O stars with spectral types between O7V and O3V and masses from 25 M⊙ to 125 M⊙, respectively.These results allow us to derive the fundamental parameters of the cluster (mass, age) as well as the total energy output in the form of ionising photons. This will enable us to study the feedback effects of this extreme star forming region in great detail. To our surprise, two young stellar objects with infrared excess feature showing CO emission lines in their spectra are identified. This suggests that circumstellar disks can survive even in this extreme environment. Finally the spatial distribution of the massive stars is analysed to discuss the star formation history and identify potential runaway stars. The extreme properties of this region makes it a good template for more extreme star formation outside our galaxy.

  9. On the nature of the WO3 star DR1 in IC 1613

    CERN Document Server

    Tramper, F; Hartoog, O E; Sana, H; de Koter, A; Vink, J S; Ellerbroek, L E; Langer, N; Garcia, M; Kaper, L; de Mink, S E

    2013-01-01

    We present the results of a quantitative spectroscopic analysis of the oxygen-sequence Wolf- Rayet star DR1 in the low-metallicity galaxy IC 1613. Our models suggest that the strong oxygen emission lines are the result of the high temperature of this WO3 star and do not necessarily reflect a more advanced evolutionary stage than WC stars.

  10. Discovery of the magnetic field in the pulsating B star β Cephei

    NARCIS (Netherlands)

    Henrichs, H.F.; de Jong, J.A.; Verdugo, E.; Schnerr, R.S.; Neiner, C.; Donati, J.-F.; Catala, C.; Shorlin, S.L.S.; Wade, G.A.; Veen, P.M.; Nichols, J.S.; Damen, E.M.F.; Talavera, A.; Hill, G.M.; Kaper, L.; Tijani, A.M.; Geers, V.C.; Wiersema, K.; Plaggenborg, B.; Rygl, K.L.J.

    2013-01-01

    Context. Although the star itself is not helium enriched, the periodicity and the variability in the UV wind lines of the pulsating B1 IV star β Cephei are similar to what is observed in magnetic helium-peculiar B stars, suggesting that β Cep is magnetic. Aims. We searched for a magnetic field using

  11. Habitability of planets around red dwarf stars.

    Science.gov (United States)

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  12. Life Cycle of Stars

    Science.gov (United States)

    1999-01-01

    In this stunning picture of the giant galactic nebula NGC 3603, the crisp resolution of NASA's Hubble Space Telescope captures various stages of the life cycle of stars in one single view. To the upper left of center is the evolved blue supergiant called Sher 25. The star has a unique circumstellar ring of glowing gas that is a galactic twin to the famous ring around the supernova 1987A. The grayish-bluish color of the ring and the bipolar outflows (blobs to the upper right and lower left of the star) indicates the presence of processed (chemically enriched) material. Near the center of the view is a so-called starburst cluster dominated by young, hot Wolf-Rayet stars and early O-type stars. A torrent of ionizing radiation and fast stellar winds from these massive stars has blown a large cavity around the cluster. The most spectacular evidence for the interaction of ionizing radiation with cold molecular-hydrogen cloud material are the giant gaseous pillars to the right of the cluster. These pillars are sculptured by the same physical processes as the famous pillars Hubble photographed in the M16 Eagle Nebula. Dark clouds at the upper right are so-called Bok globules, which are probably in an earlier stage of star formation. To the lower left of the cluster are two compact, tadpole-shaped emission nebulae. Similar structures were found by Hubble in Orion, and have been interpreted as gas and dust evaporation from possibly protoplanetary disks (proplyds). This true-color picture was taken on March 5, 1999 with the Wide Field Planetary Camera 2.

  13. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    Science.gov (United States)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  14. On the evolution of the magnetic field of Ap star $\\alpha^2$ CVn

    CERN Document Server

    Bychkov, V D; Madej, J; Topilskaya, G P

    2016-01-01

    New high-precision measurements of the longitudinal magnetic field of Ap stars suggest the existence of secular intrinsic variations of the global magnetic field in some stars. We argue that such changes are apparent in the Ap star $\\alpha^2$ CVn in the time scale of $\\sim$ 10 years, which results from the analysis of literature data. Therefore, such an observation implies, that the rate of magnetic field evolution of Ap stars is much higher than was previously thought.

  15. Asteroseismology of Scuti and Doradus Stars

    Indian Academy of Sciences (India)

    Gerald Handler

    2005-06-01

    We give an overview of past and present efforts to make seismology of Scuti and Doradus stars possible. Previous work has not led to the observational detection and identification of a sufficient number of pulsation modes for these pulsators for the construction of unique seismic models. However, recent efforts including large ground-based observational campaigns, work on pre-main sequence pulsators, asteroseismic satellite missions, theoretical advances on mode identification methods, and the discovery of a star showing simultaneous self-excited Scuti and Doradus oscillations suggest that we may be able to explore the interiors of these pulsators in the very near future.

  16. Stability of realistic strange stars (RSS)

    CERN Document Server

    Bhowmick, S; Dey, M; Ray, S; Ray, R; Bhowmick, Siddhartha; Dey, Jishnu; Dey, Mira; Ray, Subharthi; Ray, Ranjan

    2001-01-01

    Strange stars (SS) calculated from a realistic equation of state (EOS) are very stable, for example under fast rotation but have a soft surface, on which ripples may occur when radiation is emitted close to it. We suggest this as a natural explanation of the fluctuations observed in the intensity profile of X-ray pulsars. In contrast, SS based on EOS derived from the bag models (Bag SS) are less stable against fast rotation and do not have a hard surface and cannot explain these ripples. There are other important differences between Bag SS and the SS, based on a realistic EOS, which we call realistic strange stars (RSS).

  17. Infrared Observations of Late Type Stars

    Science.gov (United States)

    Merrill, K. M.

    1977-01-01

    Substantive mass loss resulting in appreciable circumstellar dust envelopes is common in late-type stars. The evolutionary history and physical state of a cool star determine the chemistry within the outer stellar atmosphere mirrored by the molecular and particulate material present in the envelope. The observational consequences of this debris determined by moderate spectral resolution infrared spectrophotometry are reviewed. Significant information is provided by observations of the emergent energy flux of both the cool stellar photosphere and of the circumstellar dust envelope. The observation suggests that mass-loss occurs to some degree throughout late stellar evolutionary phases and that occasional periods of high mass loss are not uncommon.

  18. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  19. Fouling-resistant surfaces of tropical sea stars.

    Science.gov (United States)

    Guenther, Jana; Walker-Smith, Genefor; Warén, Anders; De Nys, Rocky

    2007-01-01

    Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.

  20. Hypervelocity Stars: Young and Heavy or Old and Light?

    CERN Document Server

    Heber, Uli; Edelmann, Heinz; Napiwotzki, Ralf; O`Toole, Simon; Brown, Warren; Altmann, Martin

    2008-01-01

    The first three hyper-velocity stars (HVS) unbound to the Galaxy were serendipitously discovered in 2005. The only suggested origin of hyper-velocity stars is the Galactic Centre as it hosts a super-massive black hole capable of accelerating stars to such high velocities. Only one HVS, the sdO star US 708, is known to be an old low mass star, while HE 0437$-$5439 is an apparently normal early-type B-star, too short-lived to originate from the Galactic Centre, but could possibly come from the LMC. A systematic survey has led to the discovery of seven new HVS of late B-type (similar to the prototype HVS1), which can either be massive stars 3 M(sun) or horizontal branch stars, sufficiently long-lived to have travelled from the Galactic Centre. We present new spectral analyses of five known HVS as well as of a newly discovered candidate. It is possible that the late B-type HVS are a mix of main sequence and evolved BHB stars. In view of the time scale problem we revisit HE 0437$-$5439 and discuss a possible sublu...

  1. Blocking Metal Accretion onto Population III Stars by Stellar Wind

    Science.gov (United States)

    Tanaka, Shuta J.; Chiaki, Gen; Tominaga, Nozomu; Susa, Hajime

    2017-08-01

    Low-mass population III (PopIII) stars of ≲ 0.8 {M}⊙ could survive up until the present. The nondetection of low-mass PopIII stars in our Galaxy has already put a stringent constraint on the initial mass function (IMF) of PopIII stars, suggesting that PopIII stars have a top-heavy IMF. On the other hand, some claim that the lack of such stars stems from metal enrichment of their surfaces by the accretion of heavy elements from the interstellar medium (ISM). We investigate the effects of the stellar wind on metal accretion onto low-mass PopIII stars because accretion of the local ISM onto the Sun is prevented by the solar wind, even for neutrals. The stellar wind and radiation of low-mass PopIII stars are modeled based on knowledge of nearby low-mass stellar systems, including our Sun. We find that low-mass PopIII stars traveling across the Galaxy form a stellar magnetosphere in most of their life. Once the magnetosphere is formed, most of the neutral interstellar particles are photoionized before reaching the stellar surface and are blown away by the wind. Especially, the accretion abundance of iron will be reduced by a factor of constraining the IMF of PopIII stars.

  2. The Discovery of λ Bootis Stars: The Southern Survey I

    Science.gov (United States)

    Gray, R. O.; Riggs, Q. S.; Koen, C.; Murphy, S. J.; Newsome, I. M.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.

    2017-07-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μm. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μm.

  3. Stars, Galaxies and Quasars

    Directory of Open Access Journals (Sweden)

    Patrick Das Gupta

    2009-05-01

    Full Text Available This article provides a brief introduction to the basics of stars, galaxies and Quasi-stellar objects (QSOs. In stars, the central pressure and temperature must be high in order to halt the stellar gravitational collapse. High temperature leads to thermonuclear fusion in the stellar core, releasing thereby enormous amount of nuclear energy, making the star shine brilliantly. On the other hand, the QSOs are very bright nuclei lying in the centres of some galaxies. Many of these active galactic nuclei, which appear star-like when observed through a telescope and  whose power output are more than 1011 times that of the Sun, exhibit rapid time variability in their X-ray emissions.  Rapid variability along with the existence of a maximum speed limit, c, provide a strong argument in favour of a compact central engine model for QSOs in which a thick disc of hot gas going around a supermassive blackhole is what makes a QSO appear like a bright point source. Hence, unlike stars, QSOs are powered by gravitational potential energy.

  4. Hot subluminous stars

    CERN Document Server

    Heber, Ulrich

    2016-01-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich vs. He-poor hot subdwarf stars of the globular clusters omega Cen and NGC~2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope phase of evolution.They provide a clean-cut laboratory to study this important but yet purely understood phase of stellar evolution. Substellar companions to sdB stars have also been found. For HW~Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the pulsator V391 ...

  5. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  6. Dark Stars: A Review

    CERN Document Server

    Freese, Katherine; Spolyar, Douglas; Valluri, Monica

    2015-01-01

    Dark Stars (DS) are stellar objects made (almost entirely) of ordinary atomic material but powered by the heat from Dark Matter (DM) annihilation (rather than by fusion). Weakly Interacting Massive Particles (WIMPs), among the best candidates for DM, can be their own antimatter and can accumulate inside the star, with their annihilation products thermalizing with and heating the DS. The resulting DSs are in hydrostatic and thermal equilibrium. The first phase of stellar evolution in the history of the Universe may have been dark stars. Though DM constituted only $10^6 M_\\odot$), very bright ($>10^9 L_\\odot$), and potentially detectable with the James Webb Space Telescope (JWST). Once the DM runs out and the dark star dies, it may collapse to a black hole; thus DSs can provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The curre...

  7. Young Stars with SALT

    CERN Document Server

    Riedel, Adric R; Rice, Emily L; Cruz, Kelle L; Henry, Todd J

    2016-01-01

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph (RSS) on the South African Large Telescope (SALT), we have determined radial velocities, H-alpha, Lithium 6708\\AA, and Potassium 7699\\AA~equivalent widths linked to age and activity, and spectral types for all our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 parsecs of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, nine members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find fourteen young star systems that are not members of any known groups. The remaining 33 star syst...

  8. Stars a very short introduction

    CERN Document Server

    King, Andrew

    2012-01-01

    Stars: A Very Short Introduction looks at how stars live, producing all the chemical elements beyond helium, and how they die, leaving remnants such as black holes. Every atom of our bodies has been part of a star. Our very own star, the Sun, is crucial to the development and sustainability of life on Earth. Understanding stars is key to understanding the galaxies they inhabit, the existence of planets, and the history of our entire Universe. This VSI explores the science of stars, the mechanisms that allow them to form, the processes that allow them to shine, and the results of their death.

  9. Instability of Magnetic Equilibria in Barotropic Stars

    CERN Document Server

    Mitchell, J P; Reisenegger, A; Spruit, H; Valdivia, J A; Langer, N

    2014-01-01

    In stably stratified stars, numerical magneto-hydrodynamics simulations have shown that arbitrary initial magnetic fields evolve into stable equilibrium configurations, usually containing nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work, we test the hypothesis that stable stratification is a requirement for the existence of such stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields in barotropic (and thus neutrally stable) stars, starting from two different types of initial conditions, namely random disordered magnetic fields, as well as linked poloidal-toroidal configurations resembling the previously found equilibria. With many trials, we always find a decay of the magnetic field over a few Alfv\\'en times, never a stable equilibrium. This strongly suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the assumption of barotropic equations of state often imposed on the search of magneti...

  10. Infrared spectroscopy of star formation in galaxies

    Science.gov (United States)

    Beck, Sara C.; Ho, Paul T. P.; Turner, Jean L.

    1987-01-01

    The Brackett alpha and beta lines with 7.2 seconds angular and 350 km/s velocity resolution were observed in 11 infrared-bright galaxies. From these measurements extinctions, Lyman continuum fluxes, and luminosities due to OB stars were derived. The galaxies observed to date are NGC3690, M38, NGC 5195, Arp 220, NGC 520, NGC660, NGC1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which were suggested at some time to be starburst ogjects. The contributions of OB stars to the luminosities of these galaxies can be quantified from the measurements and range from insignificant to sufficient to account for the total energy output. The OB stellar luminosities observed are as high as 10 to the 12th solar luminosities in the galaxy NGC 1614. It is noteworthy that star formation can play very different roles in the infrared energy output of galaxies of similar luminosity, as for example Arp 220 and NGC 1614. In addition to probing the star formation process in these galaxies, the Brackett line measurements, when compared to radio and infrared continuum results, have revealed some unexpected and at present imperfectly understood phenomena: in some very luminous sources the radio continuum appears to be suppressed relative to the infrared recombination lines; in many galaxies there is a substantial excess of 10 micron flux over that predicted from simple models of Lyman alpha heating of dust if young stars are the only significant energy source.

  11. Surface rotation of Kepler red giant stars

    Science.gov (United States)

    Ceillier, T.; Tayar, J.; Mathur, S.; Salabert, D.; García, R. A.; Stello, D.; Pinsonneault, M. H.; van Saders, J.; Beck, P. G.; Bloemen, S.

    2017-09-01

    Kepler allows the measurement of starspot variability in a large sample of field red giants for the first time. With a new method that combines autocorrelation and wavelet decomposition, we measure 361 rotation periods from the full set of 17 377 oscillating red giants in our sample. This represents 2.08% of the stars, consistent with the fraction of spectroscopically detected rapidly rotating giants in the field. The remaining stars do not show enough variability to allow us to measure a reliable surface rotation period. Because the stars with detected rotation periods have measured oscillations, we can infer their global properties, e.g. mass and radius, and quantitatively evaluate the predictions of standard stellar evolution models as a function of mass. Consistent with results for cluster giants when we consider only the 4881 intermediate-mass stars, M > 2.0 M⊙ from our full red giant sample, we do not find the enhanced rates of rapid rotation expected from angular momentum conservation. We therefore suggest that either enhanced angular momentum loss or radial differential rotation must be occurring in these stars. Finally, when we examine the 575 low-mass (Mhttp://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A111

  12. Discovery of the first symbiotic star in NGC6822

    CERN Document Server

    Kniazev, A; Whitelock, P A; Menzies, J W; Feast, M W; Grebel, E K; Buckley, D; Hashimoto, Y; Loaring, N; Romero-Colmenero, E; Sefako, R; Burgh, E B; Nordsieck, K

    2009-01-01

    We report the discovery of the first symbiotic star (V=21.6, K_S=15.8 mag) in the Local Group dwarf irregular galaxy NGC6822. This star was identified during a spectral survey of Ha emission-line objects using the Southern African Large Telescope (SALT) during its performance-verification phase. The observed strong emission lines of HI and HeII suggest a high electron density and T* < 130 000 K for the hot companion. The infrared colours allow us to classify this object as an S-type symbiotic star, comprising a red giant losing mass to a compact companion. The red giant is an AGB carbon star, and a semi-regular variable, pulsating in the first overtone with a period of 142 days. Its bolometric magnitude is M_bol=-4.4 mag. We review what is known about the luminosities of extragalactic symbiotic stars, showing that most, possibly all, contain AGB stars. We suggest that a much larger fraction of Galactic symbiotic stars may contain AGB stars than was previously realised.

  13. Dynamical Boson Stars

    Directory of Open Access Journals (Sweden)

    Steven L. Liebling

    2012-05-01

    Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

  14. Collapse of axion stars

    Science.gov (United States)

    Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.

    2016-12-01

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.

  15. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  16. Giant star seismology

    CERN Document Server

    Hekker, S

    2016-01-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  17. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  18. Collapse of axion stars

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States); Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL, 60510 (United States); Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L.C.R. [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States)

    2016-12-15

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.

  19. General Relativity&Compact Stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  20. Pulsating Star Mystery Solved

    Science.gov (United States)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  1. A search for nearby young stars among the flare stars

    CERN Document Server

    König, B; Hambaryan, V; Neuh\\"auser, Ralph; Hambaryan, Valeri

    2001-01-01

    Flare stars were discovered in the late 1940s in the solar vicinity and were named UV Cet-type variables (classical FSs). Among the FSs within 100 pc we search for young stars. For the search we take spectra with sufficient resolution to resolve Lithium at 6707 \\AA and Calcium at 6718 \\AA of all the stars. The real young stars are prime targets for the search of extra-solar planets by direct imaging.

  2. American Urban Star Fest

    Science.gov (United States)

    Pazmino, John

    2003-12-01

    Over the last couple of decades New York City implemented, and continues to carry out, several schemes of eradicating luminous graffiti. One result has been the gradual recovery of the natural night sky. By 1994 the normal clear sky transparency over Manhattan deepened to fourth magnitude and has been slowly creeping deeper, until in 2002 it is at magnitude 4 to 4.5. In the spring of 1995, during some lazing on a Manhattan rooftop under a sky full of stars, several New York astronomers hatched the idea of letting the whole people celebrate the renewed starry sky. In due course they, through the Amateur Astronomers Association, engaged the New York City Parks Department and the Urban Park Rangers in an evening of quiet picnicking to enjoy the stars in their natural sky. Thus the Urban Star Fest was born. The event thrilled about 3,000 visitors in Central Park's Sheep Meadow on Saturday 30 September 1995. This year's Fest, the eighth in the series demonstrated the City's upper skyline of stars on Saturday 5 October 2002 to about 2,200 enthused visitors. Although the Fest is always noted as cancelable for inclement weather, so far, it has convened every year, with attendance ranging from 4,000 down to a mere 1,000, this latter being under the smoke plume of the World Trade Center in 2001. Despite this swing in attendance, the American Urban Star Fest is America's largest regularly scheduled public astronomy event. Of course, special occasions, like comets or eclipses, can and do attract far larger interest both in the city and elsewhere. The presentation shows the setup and program of the American Urban Star Fest, to illustrate how the general public can actively become aware of the night sky and see for themselves the result of their very own efforts at removing light pollution--and note where improvement is yet to come.

  3. Morphodynamics of star dunes

    Science.gov (United States)

    Zhang, D.; Narteau, C.; Rozier, O.; Courrech du Pont, S.

    2012-04-01

    Star dunes are among the biggest and the most impressive dunes in Earth sand seas. Nonetheless, they remain poorly studied, probably because of their apparent complexity. They are massive pyramidal dunes with interlaced arms whose slip faces are oriented in various directions. Being large, they can integrate wind properties over a wide range of time scales. Thus, they are observed for wind regimes with multiple directions, and may result from the amalgamation of dunes or from the development of arms on a well-established dune pattern. In both cases, the roles of wind directional variability and secondary flow have been emphasized but not precisely quantified. Here, we report simulations where the star dune shape results from a a combination of longitudinal dunes, which form the star dune arms. These arms may radiate and so interact with the other dunes in the field. This mass exchange, controlled by the morphodynamics of star dunes arms, must play an important role in the large-scale arrangement of star dunes networks. We first demonstrate that star dune arms orientation maximizes the flux in the direction of crests. This is opposed to the usually admit dunes orientation, which maximizes the sediment transport perpendicular to the crest. Indeed, depending on sand availability, dunes development results from the growth of a wave on a sand bed or from a net transport of sediment, which grows and extends an isolated longitudinal dune over a non-erodible soil. These two different mechanisms lead to two different modes of crests orientation. Then, we show that the propagating arms reach a stationary state characterized by constant width, height and growth rate. These are controlled by the frequency at which the wind changes direction. Arm width and height increase, whereas the propagation speed decreases with a decreasing frequency. These morphodynamics properties are helpful to assess from pattern observation the variability of wind directionality over several time

  4. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  5. HUBBLE PROVIDES 'ONE-TWO PUNCH' TO SEE BIRTH OF STARS IN GALACTIC WRECKAGE

    Science.gov (United States)

    2002-01-01

    Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies. The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars. The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies. ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions. IRAS 19297-0406 is producing about 200 new Sun-like stars every year -- about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation. The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust. The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years. Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region. IRAS 19297-0406 may be

  6. Is XTE J1739-285 a quark star masquerading as a neutron star

    CERN Document Server

    Xiaoping, Zheng; Li, Zhang

    2007-01-01

    The recent discovery of burst oscillation at 1122Hz in the X-ray transient XTE J1739-285 supports the suggestion that it contains a submillisecond pulsar\\cite{1}. We here find for the first time the enormous dissipation effect in the transition boundary layer between quark matter core and hadron matter envelope. Just combining the estimation with previous dissipation mechanism together, we show that XTE J1739-285 can be uniquely restricted to a quark star masquerading as a neutron star (hybrid star) that contains a pure quark matter or mixed quark-hadron matter core from synthesizing both gravitational wave radiation (r-mode) instability and Keplerian motion constraints at 1122Hz lever. Such constraints allow the radii in the range $9{\\rm km}\\leq R\\leq 12{\\rm km}$ and the masses in the range $1.2M_\\odot\\leq M\\leq 2.0M_\\odot$. The normal neutron stars, hyperon stars and strange stars within the mass-radius limits are excluded.

  7. The physics of stars

    CERN Document Server

    Phillips, A C

    1999-01-01

    The Physics of Stars, Second Edition, is a concise introduction to the properties of stellar interiors and consequently the structure and evolution of stars. Strongly emphasising the basic physics, simple and uncomplicated theoretical models are used to illustrate clearly the connections between fundamental physics and stellar properties. This text does not intend to be encyclopaedic, rather it tends to focus on the most interesting and important aspects of stellar structure, evolution and nucleosynthesis. In the Second Edition, a new chapter on Helioseismology has been added, along with a list

  8. Digital Standard Star Tracker

    Science.gov (United States)

    McQuerry, J. P., Jr.

    The Digital Standard Star Tracker (DSST) is an electro-optical instrument which provides position data used for precise attitude determination. The new DSST design uses flight-proven optical and sensor components from the BASD/NASA Standard Star Tracker (SST) programs while incorporating digital electronics techniques to improve producibility and reliability. This design approach has resulted in a new instrument capable of less than 10 arc second calibrated accuracy with 50 percent of the electrical components and only 10 percent of the electrical assemblies used in the SST.

  9. A Real Shooting Star

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light. The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years. As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake. Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence. Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira and its 'whale of a tail' can be

  10. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  11. The formation of stars

    CERN Document Server

    Stahler, Steven W

    2008-01-01

    This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text f

  12. Synthetic guide star generation

    Science.gov (United States)

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  13. RCW 108: Massive Young Stars Trigger Stellar Birth

    Science.gov (United States)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars. This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image. The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193. Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to

  14. RCW 108: Massive Young Stars Trigger Stellar Birth

    Science.gov (United States)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars. This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image. The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193. Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to

  15. IS THERE A METALLICITY CEILING TO FORM CARBON STARS?-A NOVEL TECHNIQUE REVEALS A SCARCITY OF C STARS IN THE INNER M31 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M. L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Girardi, L. [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Marigo, P. [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Williams, B. F.; Rosenfield, P.; Dalcanton, J. J.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aringer, B.; Nowotny, W. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dorman, C. E.; Guhathakurta, P. [University of California Observatories/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Melbourne, J. L. [Caltech Optical Observatories, Division of Physics, Mathematics and Astronomy, Mail Stop 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Olsen, K. A. G., E-mail: martha.boyer@nasa.gov [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-09-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of asymptotic giant branch (AGB) stars to develop a new tool for efficiently distinguishing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we find a surprising lack of C stars, contrary to the findings of previous C star searches in other regions of M31. We find only one candidate C star (plus up to six additional, less certain C star candidates), resulting in an extremely low ratio of C to M stars (C/M= (3.3{sup +20}{sub -0.1}) Multiplication-Sign 10{sup -4}) that is one to two orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies.

  16. Is There a Metallicity Ceiling to Form Carbon Stars? - A Novel Technique Reveals a Scarcity of C-Stars in the Inner M31 Disk

    Science.gov (United States)

    Boyer, Martha L.; Girardi, L.; Marigo, P.; Williams, B. F.; Aringer, B.; Nowotny, W.; Rosenfield, P.; Dorman, C. E.; Guhathakurta, P.; Dalcanton, J. J.; Melbourne, J. L.; Olsen, K. A. G.; Weisz, D. R.

    2013-01-01

    We use medium-band near-infrared (NIR) Hubble Space Telescope WFC3 photometry with model NIR spectra of Asymptotic Giant Branch (AGB) stars to develop a new tool for efficiently distinguish- ing carbon-rich (C-type) AGB stars from oxygen-rich (M-type) AGB stars in galaxies at the edge of and outside the Local Group. We present the results of a test of this method on a region of the inner disk of M31, where we nd a surprising lack of C stars, contrary to the ndings of previous C star searches in other regions of M31. We nd only 1 candidate C star (plus up to 6 additional, less certain C stars candidates), resulting in an extremely low ratio of C to M stars (C=M = (3.3(sup +20)(sub - 0.1) x 10(sup -4)) that is 1-2 orders of magnitude lower than other C/M estimates in M31. The low C/M ratio is likely due to the high metallicity in this region which impedes stars from achieving C/O > 1 in their atmospheres. These observations provide stringent constraints to evolutionary models of metal-rich AGB stars and suggest that there is a metallicity threshold above which M stars are unable to make the transition to C stars, dramatically affecting AGB mass loss and dust production and, consequently, the observed global properties of metal-rich galaxies.

  17. ENERGY STAR Certified Imaging Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Imaging Equipment that are effective as of...

  18. ENERGY STAR Certified Water Coolers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Water Coolers that are effective as of February...

  19. ENERGY STAR Certified Vending Machines

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Refrigerated Beverage Vending Machines that are...

  20. ENERGY STAR Certified Water Heaters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Water Heaters that are effective April 16, 2015....

  1. ENERGY STAR Certified Commercial Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 2.0 ENERGY STAR Program Requirements for Commercial Dishwashers that are effective as of...

  2. Kepler observations of Am stars

    DEFF Research Database (Denmark)

    Balona, L. A.; Ripepi, V.; Cantanzaro, G.

    2011-01-01

    We present an analysis of high-resolution spectra for two pulsating Am stars in the Kepler field. The stellar parameters derived in this way are important because parameters derived from narrow-band photometry may be affected by the strong metal lines in these stars. We analyse the Kepler time...... series of ten known Am stars and find that six of them clearly show δ Scuti pulsations. The other four appear to be non-pulsating. We derive fundamental parameters for all known pulsating Am stars from ground-based observations and also for the Kepler Am stars to investigate the location...... of the instability strip for pulsating Am stars. We find that there is not much difference between the Am-star instability strip and the δ Scuti instability strip. We find that the observed location of pulsating Am stars in the HR diagram does not agree with the location predicted from diffusion calculations. Based...

  3. Solid Bare Strange Quark Stars

    CERN Document Server

    Xu, R X

    2003-01-01

    The reason, we need three terms of `strange', `bare', and `solid' before quark stars, is presented concisely though some fundamental issues are not certain. Observations favoring these stars are introduced.

  4. Asteroseismology of white dwarf stars

    CERN Document Server

    Córsico, A H

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity of white dwarfs can be inferred from spectroscopy, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods of appropriate theoretical models. In this communication, we first briefly describe the physical properties of white dwarf stars and the various families of pulsating white dwarfs known up to the present day, and then we present two recent analysis carried out by the La...

  5. ENERGY STAR Certified Audio Video

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Audio Video Equipment that are effective as of...

  6. Stellar populations in star clusters

    CERN Document Server

    Li, Chengyuan; Deng, Licai

    2016-01-01

    Stellar populations contain the most important information about star clus- ter formation and evolution. Until several decades ago, star clusters were believed to be ideal laboratories for studies of simple stellar populations (SSPs). However, discoveries of multiple stellar populations in Galactic globular clusters have expanded our view on stellar populations in star clusters. They have simultaneously generated a number of controversies, particularly as to whether young star clusters may have the same origin as old globular clusters. In addition, extensive studies have revealed that the SSP scenario does not seem to hold for some intermediate-age and young star clusters either, thus making the origin of multiple stellar populations in star clusters even more complicated. Stellar population anomalies in numerous star clusters are well-documented, implying that the notion of star clusters as true SSPs faces serious challenges. In this review, we focus on stellar populations in massive clusters with different ...

  7. ENERGY STAR Certified Residential Dishwashers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Residential Dishwashers that are effective as of...

  8. ENERGY STAR Certified Commercial Fryers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Commercial Fryers that are effective as of...

  9. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  10. Gravitational wave background from rotating neutron stars

    Science.gov (United States)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  11. Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    CERN Document Server

    Smalley, B; Holdsworth, D L; Kurtz, D W; Murphy, S J; De Cat, P; Anderson, D R; Catanzaro, G; Cameron, A Collier; Hellier, C; Maxted, P F L; Norton, A J; Pollacco, D; Ripepi, V; West, R G; Wheatley, P J

    2016-01-01

    We present the results of a study of a large sample of A and Am stars with spectral types from LAMOST and light curves from WASP. We find that, unlike normal A stars, $\\delta$ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 $<$ $T_{\\rm eff}$ $<$ 7600 K. We find evidence that the incidence of pulsations in Am stars decreases with increasing metallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the $\\kappa$-mechanism, which is expected to be suppressed by gravitational settling in these stars.

  12. Bursts of star formation in computer simulations of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  13. The Stability of F-star Brightness on Century Timescales

    CERN Document Server

    Lund, Michael B; Stassun, Keivan G; Hippke, Michael; Angerhausen, Daniel

    2016-01-01

    The century-long photometric record of the DASCH project provides a unique window into the variability of stars normally considered to be photometrically inactive. In this paper, we look for long-term trends in the brightness of F stars, with particular attention to KIC 8462852,an F3 main sequence star that has been identified as significant short-term variability according to Kepler observations. Although a simple search for variability suggests long-term dimming of a number of F stars, we find that such trends are artifacts of the 'Menzel Gap' in the DASCH data. That includes the behavior of KIC 8462852, which we believe is consistent with constant flux over the full duration of observations. We do, however, present a selection of F stars thatdo have significant photometric trends, even after systematics are taken into account.

  14. Infrared spectroscopy of radio-luminous OH/IR stars

    Science.gov (United States)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  15. A Superwind from Early Post-Red Giant Stars?

    CERN Document Server

    Soker, N; Rood, R T; Harpaz, A; Soker, Noam; Catelan, Marcio; Rood, Robert T.; Harpaz, Amos

    2001-01-01

    We suggest that the gap observed at 20,000 K in the horizontal branches of several Galactic globular clusters is caused by a small amount of extra mass loss which occurs when stars start to "peel off" the red giant branch (RGB), i.e., when their effective temperature starts to increase, even though they may still be on the RGB. We show that the envelope structure of RGB stars which start to peel off is similar to that of late asymptotic giant branch stars known to have a super-wind phase. An analogous super-wind in the RGB peel-off stars could easily lead to the observed gap in the distribution of the hottest HB stars.

  16. Alignment in star-debris disc systems seen by Herschel

    CERN Document Server

    Greaves, J S; Thureau, N; Eiroa, C; Marshall, J P; Maldonado, J; Matthews, B C; Olofsson, G; Barlow, M J; Moro-Martin, A; Sibthorpe, B; Absil, O; Ardila, D R; Booth, M; Broekhoven-Fiene, H; Brown, D J A; Cameron, A Collier; del Burgo, C; Di Francesco, J; Duchene, G; Eisloffel, J; Ertel, S; Holland, W S; Horner, J; Kalas, P; Kavelaars, J J; Lestrade, J -F; Vican, L; Wilner, D J; Wolf, S; Wyatt, M C

    2013-01-01

    Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A to M where the stellar inclination is known and can be compared to that of the spatially-resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ~<10 degrees. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of AU are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.

  17. Lithium abundances in Bulge-like SMR stars

    Science.gov (United States)

    Barbuy, Beatriz; Trevisan, M.; Gustafsson, B.; Eriksson, K.; Grenon, M.; Pompéia, L.

    2010-04-01

    We analyze a sample of 21 super-metal-rich (SMR) stars, using high-resolution échelle spectra obtained with the FEROS Spectrograph at the 1.5m ESO telescope. The metallicities are in the range 0.15 < [Fe/H] < 0.5, 3 of them in common with Pompéia et al. (2002). Geneva photometry, astrometric data from Hipparcos, and radial velocities from CORAVEL are available for these stars. The peculiar kinematics suggests the thin disk close to the bulge as the probable birthplace of these stars (Grenon 1999). From Hipparcos data, it appears that the turnoff of this population indicates an age of 10-11 Gyr (Grenon 1999). Detailed analysis of the sample stars is carried out. Lithium abundances of these stars were derived, and their behaviour with effective temperature is shown.

  18. FEROS Abundance Analysis of 21 Bulgelike SMR Stars

    Science.gov (United States)

    Trevisan, Marina; Barbuy, Beatriz; Grenon, M.; Gustafsson, B.; Pompéia, L.

    2010-03-01

    We analyze a sample of 21 super-metal-rich (SMR) stars, using high-resolution échelle spectra obtained with the Fiber-fed Extended Range Optical Spectrograph at the 1.5m ESO telescope. The metallicities are in the range 0.07 ≤ [Fe/H] ≤ 0.45, 3 of them in common with Pompéia et al. (2009). Geneva photometry, astrometric data from Hipparcos, and radial velocities from CORAVEL are available for these stars. The peculiar kinematics suggests the thin disk close to the bulge as the probable birthplace of these stars (Grenon 1999). From Hipparcos data, it appears that the turnoff of this population indicates an age of 10-11 Gyr (Grenon 1999). Detailed analysis of the sample stars is carried out, and atmospheric parameters are derived from spectroscopic and photometric determinations. Oxygen abundances of these stars are derived, and [O/Fe] overabundances up to +0.35 are found.

  19. Alignment in star-debris disc systems seen by Herschel

    Science.gov (United States)

    Greaves, J. S.; Kennedy, G. M.; Thureau, N.; Eiroa, C.; Marshall, J. P.; Maldonado, J.; Matthews, B. C.; Olofsson, G.; Barlow, M. J.; Moro-Martín, A.; Sibthorpe, B.; Absil, O.; Ardila, D. R.; Booth, M.; Broekhoven-Fiene, H.; Brown, D. J. A.; Cameron, A. Collier; del Burgo, C.; Di Francesco, J.; Eislöffel, J.; Duchêne, G.; Ertel, S.; Holland, W. S.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Lestrade, J.-F.; Vican, L.; Wilner, D. J.; Wolf, S.; Wyatt, M. C.

    2014-02-01

    Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A-M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.

  20. Evidence of Rocky Planetesimals Orbiting Two Hyades Stars

    CERN Document Server

    Farihi, J; Koester, D

    2013-01-01

    The Hyades is the nearest open cluster, relatively young and containing numerous A-type stars; its known age, distance, and metallicity make it an ideal site to study planetary systems around 2-3 Msun stars at an epoch similar to the late heavy bombardment. Hubble Space Telescope far-ultraviolet spectroscopy strongly suggests ongoing, external metal pollution in two remnant Hyads. For ongoing accretion in both stars, the polluting material has log[n(Si)/n(C)] > 0.2, is more carbon deficient than chondritic meteorites, and is thus rocky. These data are consistent with a picture where rocky planetesimals and small planets have formed in the Hyades around two main-sequence A-type stars, whose white dwarf descendants bear the scars. These detections via metal pollution are shown to be equivalent to infrared excesses of Lir/L* ~ 1e-6 in the terrestrial zone of the stars.

  1. Beijing Star Lake Ecology Park

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Beijing Star Lake Ecology Park is a Five-star hotel which has developed multi-functions of restaurant, lodge, bath, landscape seeing, leisure,body exercise, recreation, Ecology agriculture,etc. Occupying an area of 500 mu, the park is an environmental friendly five-star hotel.

  2. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  3. Reaching for the Stars

    Science.gov (United States)

    Terry, Dorothy Givens

    2012-01-01

    Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…

  4. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  5. Neutron Star Matter

    CERN Document Server

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  6. Trek to the Stars

    Science.gov (United States)

    Rubinstein, Robert E.

    1977-01-01

    "Star Trek", which was aired on television for three years, brought the creatures and conflicts of the "outer reaches" of space into our living rooms. Here its new episodes and reruns are analyzed by elementary students as part of a social studies/elementary science curriculum. (Author/RK)

  7. Seismology of active stars

    NARCIS (Netherlands)

    Hekker, S.; García, R.A.

    2012-01-01

    In this review we will discuss the current standing and open questions of seismology in active stars. With the longer photometric time series data that are, and will become, available from space-missions such as Kepler we foresee significant progress in our understanding of stellar internal structur

  8. First Star I See.

    Science.gov (United States)

    Caffrey, Jaye Andras

    This children's novel tells the story of a young girl with attention deficit disorder (ADD) without hyperactivity and her younger brother who has ADD with hyperactivity. Trying to win a school writing contest on the topic of space and stars helps bright, imaginative Paige Bradley realize that fixing her "focusing knob" will compensate for her ADD.…

  9. Reaching for the Stars

    Science.gov (United States)

    Terry, Dorothy Givens

    2012-01-01

    Dr. Mae Jemison is the world's first woman astronaut of color who continues to reach for the stars. Jemison was recently successful in leading a team that has secured a $500,000 federal grant to make interstellar space travel a reality. The Dorothy Jemison Foundation for Excellence (named after Jemison's mother) was selected in June by the Defense…

  10. Housing Star Schools Reforms.

    Science.gov (United States)

    Tushnet, Naida C.

    The Star Schools Program has funded projects to explore innovative educational applications of technology in distance education. Funded projects have applied a variety of technologies, including videodisks, compressed data transmission, fiber optic technology, and computer networks. Program evaluation is a mandated aspect of the program. This…

  11. StarLogo TNG

    Science.gov (United States)

    Klopfer, Eric; Scheintaub, Hal; Huang, Wendy; Wendel, Daniel

    Computational approaches to science are radically altering the nature of scientific investigatiogn. Yet these computer programs and simulations are sparsely used in science education, and when they are used, they are typically “canned” simulations which are black boxes to students. StarLogo The Next Generation (TNG) was developed to make programming of simulations more accessible for students and teachers. StarLogo TNG builds on the StarLogo tradition of agent-based modeling for students and teachers, with the added features of a graphical programming environment and a three-dimensional (3D) world. The graphical programming environment reduces the learning curve of programming, especially syntax. The 3D graphics make for a more immersive and engaging experience for students, including making it easy to design and program their own video games. Another change to StarLogo TNG is a fundamental restructuring of the virtual machine to make it more transparent. As a result of these changes, classroom use of TNG is expanding to new areas. This chapter is concluded with a description of field tests conducted in middle and high school science classes.

  12. Magnetic Dynamos and Stars

    Energy Technology Data Exchange (ETDEWEB)

    Eggleton, P P

    2007-02-15

    Djehuty is a code that has been developed over the last five years by the Lawrence Livermore National Laboratory (LLNL), from earlier code designed for programmatic efforts. Operating in a massively parallel environment, Djehuty is able to model entire stars in 3D. The object of this proposal was to continue the effort to introduce magneto-hydrodynamics (MHD) into Djehuty, and investigate new classes of inherently 3D problems involving the structure, evolution and interaction of stars and planets. However, towards the end of the second year we discovered an unexpected physical process of great importance in the evolution of stars. Consequently for the third year we changed direction and concentrated on this process rather than on magnetic fields. Our new process was discovered while testing the code on red-giant stars, at the 'helium flash'. We found that a thin layer was regularly formed which contained a molecular-weight inversion, and which led therefore to Rayleigh-Taylor instability. This in turn led to some deeper-than-expected mixing, which has the property that (a) much {sup 3}He is consumed, and (b) some {sup 13}C is produced. These two properties are closely in accord with what has been observed over the last thirty years in red giants, whereas what was observed was largely in contradiction to what earlier theoretical models predicted. Thus our new 3D models with Djehuty explain a previously-unexplained problem of some thirty years standing.

  13. Astrometric microlensing of stars

    NARCIS (Netherlands)

    Dominik, M; Sahu, KC

    2000-01-01

    Because of dramatic improvements in the precision of astrometric measurements, the observation of light centroid shifts in observed stars due to intervening massive compact objects ("astrometric microlensing") will become possible in the near future. Upcoming space missions, such as SIM and GAIA,

  14. Hadrons in compact stars

    Indian Academy of Sciences (India)

    Debades Bandyopadhyay

    2006-05-01

    We discuss -equilibrated and charge neutral matter involving hyperons and $\\bar{K}$ condensates within relativistic models. It is observed that populations of baryons are strongly affected by the presence of antikaon condensates. Also, the equation of state including $\\bar{K}$ condensates becomes softer resulting in a smaller maximum mass neutron star.

  15. Sleeping under the stars

    Science.gov (United States)

    Zirkel, Jack

    Sherlock Holmes and Dr. Watson went on a camping trip. As they lay down for the night, Holmes said, “Watson, look up at the sky and tell me what you see.”Watson:“! see millions and millions of stars.”

  16. A Comprehensive Census of Nearby Infrared Excess Stars

    Science.gov (United States)

    Cotten, Tara H.; Song, Inseok

    2016-07-01

    The conclusion of the Wide-Field Infrared Survey Explorer (WISE) mission presents an opportune time to summarize the history of using excess emission in the infrared as a tracer of circumstellar material and exploit all available data for future missions such as the James Webb Space Telescope. We have compiled a catalog of infrared excess stars from peer-reviewed articles and perform an extensive search for new infrared excess stars by cross-correlating the Tycho-2 and all-sky WISE (AllWISE) catalogs. We define a significance of excess in four spectral type divisions and select stars showing greater than either 3σ or 5σ significance of excess in the mid- and far-infrared. Through procedures including spectral energy distribution fitting and various image analyses, each potential excess source was rigorously vetted to eliminate false positives. The infrared excess stars from the literature and the new stars found through the Tycho-2 and AllWISE cross-correlation produced nearly 500 “Prime” infrared excess stars, of which 74 are new sources of excess, and >1200 are “Reserved” stars, of which 950 are new sources of excess. The main catalog of infrared excess stars are nearby, bright, and either demonstrate excess in more than one passband or have infrared spectroscopy confirming the infrared excess. This study identifies stars that display a spectral energy distribution suggestive of a secondary or post-protoplanetary generation of dust, and they are ideal targets for future optical and infrared imaging observations. The final catalogs of stars summarize the past work using infrared excess to detect dust disks, and with the most extensive compilation of infrared excess stars (˜1750) to date, we investigate various relationships among stellar and disk parameters.

  17. A GALAXY BLAZES WITH STAR FORMATION

    Science.gov (United States)

    2002-01-01

    Most galaxies form new stars at a fairly slow rate, but members of a rare class known as 'starburst' galaxies blaze with extremely active star formation. Scientists using NASA's Hubble Space Telescope are perfecting a technique to determine the history of starburst activity in galaxies by using the colors of star clusters. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue, and older stars redder, the colors can be related to the ages, somewhat similar to counting the rings in a fallen tree trunk in order to determine the tree's age. The galaxy NGC 3310 is forming clusters of new stars at a prodigious rate. Astronomer Gerhardt Meurer of The Johns Hopkins University leads a team of collaborators who are studying several starburst galaxies, including NGC 3310, which is showcased in this month's Hubble Heritage image. There are several hundred star clusters in NGC 3310, visible in the Heritage image as the bright blue diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy. Once formed, the star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show that they have ages ranging from about one million up to more than one hundred million years. This suggests that the starburst 'turned on' over 100 million years ago. It may have been triggered when a companion galaxy collided with NGC 3310. These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief episodes, resulting from catastrophic events like a galactic collision. However, the wide range of cluster ages in NGC 3310 suggests that the starbursting can continue for an extended interval, once

  18. Hierarchical Star Formation in Nearby LEGUS Galaxies

    CERN Document Server

    Elmegreen, Debra Meloy; Adamo, Angela; Aloisi, Alessandra; Andrews, Jennifer; Annibali, Francesca; Bright, Stacey N; Calzetti, Daniela; Cignoni, Michele; Evans, Aaron S; Gallagher, John S; Gouliermis, Dimitrios A; Grebel, Eva K; Hunter, Deidre A; Johnson, Kelsey; Kim, Hwi; Lee, Janice; Sabbi, Elena; Smith, Linda; Thilker, David; Tosi, Monica; Ubeda, Leonardo

    2014-01-01

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in 7 galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarf...

  19. Vega is a rapidly rotating star

    CERN Document Server

    Peterson, D M; Pauls, T A; Armstrong, J T; Benson, J A; Gilbreath, G C; Hindsley, R B; Hutter, D J; Johnston, K J; Mozurkewich, D; Schmitt, H R

    2006-01-01

    Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visibile spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93% of breakup speed. In addition to explaining the unusual brightness and line shape pecularities, this result leads to the prediction of an excess of near-infra...

  20. Modelling the photosphere of active stars for planet detection and characterization

    Science.gov (United States)

    Herrero, Enrique; Ribas, Ignasi; Jordi, Carme; Morales, Juan Carlos; Perger, Manuel; Rosich, Albert

    2016-02-01

    Context. Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes in the measurements obtained from photometric and spectroscopic time series observations. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Aims: Accurate simulations of the stellar photosphere based on the most recent available models for main-sequence stars can provide synthetic photometric and spectroscopic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales (defined by the passbands of given instruments or space missions) to design strategies to remove or minimize them. Methods: We present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. The resulting synthetic time series data generated with this simulator were used to characterize the effects of activity jitter in extrasolar planet measurements from photometric and spectroscopic observations. Results: Several cases of synthetic data series for Sun-like stars are presented to illustrate the capabilities of the methodology. A specific application for characterizing and modelling the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low-temperature contrasts of spots. Synthetic multi-band photometry and radial velocity time series are modelled for HD 189733 by adopting the known system parameters and fitting for the

  1. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  2. LANL/Green Star spectrometer tests

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, T.E.; Cremers, T.L.; Vo, D.T. [Los Alamos National Lab., NM (United States); Seldiakov, Y.P.; Dorin, A.B.; Kondrashov, M.V. [Green Star, Moscow (Russian Federation); Timoshin, V.I. [VNIINM, Moscow (Russian Federation)

    1997-12-01

    The US and Russia have agreed to the joint development of a nondestructive assay system for use to support the dismantlement of nuclear weapons in Russia. This nondestructive assay system will be used to measure plutonium produced by the conversion of Russian nuclear weapons. The NDA system for Russia will be patterned after the ARIES NDA system being constructed at Los Alamos. One goal of the program is to produce an NDA system for use in Russia that maximizes the use of Russian resources to facilitate maintenance and future upgrades. The Green Star SBS50 Single Board Spectrometer system (Green Star Ltd., Moscow, Russia) has been suggested for use as the data acquisition component for gamma ray instruments in the system. Possible uses are for plutonium isotopic analysis and also segmented gamma scanning. Green Star has also developed analysis software for the SBS50. This software, both plutonium isotopic analysis and uranium enrichment analysis, was developed specifically for customs/border inspection applications (low counting rate applications and identification as opposed to quantification) and was not intended for MC and A applications. Because of the relative immaturity of the Green Star plutonium isotopic analysis software (it has been under development for only one year and is patterned after US development circa 1980), it was tentatively agreed, before the tests, that the Russian NDA system would use the Los Alamos PC/FRAM software for plutonium isotopic analysis. However, it was also decided to include the Green Star plutonium isotopic software in the testing, both to quantify its performance for MC and A applications and also to provide additional data to Green Star for further development of their software. The main purpose of the testing was to evaluate the SBS-50 spectrometer as a data acquisition device for use with LANL software.

  3. Multicompartmental Microcapsules from Star Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  4. Central stars of planetary nebulae: The white dwarf connection

    CERN Document Server

    Werner, K

    2011-01-01

    This paper is focused on the transition phase between central stars and white dwarfs, i.e. objects in the effective temperature range 100,000 - 200,000 K. We confine our review to hydrogen-deficient stars because the common H-rich objects are subject of the paper by Ziegler et al. in these proceedings. We address the claimed iron-deficiency in PG1159 stars and [WC] central stars. The discovery of new Ne VII and Ne VIII lines in PG1159 stars suggests that the identification of O VII and O VIII lines that are used for spectral classification of [WCE] stars is wrong. We then present evidence for two distinct post-AGB evolutionary sequences for H-deficient stars based on abundance analyses of the He-dominated O(He) stars and the hot DO white dwarf KPD0005+5106. Finally, we report on evidence for an H-deficient post-super AGB evolution sequence represented by the hottest known, carbon/oxygen-atmosphere white dwarf H1504+65 and the recently discovered carbon-atmosphere "hot DQ" white dwarfs.

  5. Massive runaway stars in the Small Magellanic Cloud

    CERN Document Server

    Gvaramadze, V V; Kroupa, P

    2010-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) via detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations suggesting that these may be "alien" stars contributing to the observed age spread in such associations. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction betwe...

  6. Bubble-Induced Star Formation in Dwarf Irregular Galaxies

    CERN Document Server

    Kawata, Daisuke; Barnes, David J; Grand, Robert J J; Rahimi, Awat

    2013-01-01

    To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM. We use the new version of our original N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from lar...

  7. Evolution of emission line activity in intermediate mass young stars

    CERN Document Server

    Manoj, P; Maheswar, G; Muneer, S

    2006-01-01

    We present optical spectra of 45 intermediate mass Herbig Ae/Be stars. Together with the multi-epoch spectroscopic and photometric data compiled for a large sample of these stars and ages estimated for individual stars by using pre-main sequence evolutionary tracks, we have studied the evolution of emission line activity in them. We find that, on average, the H_alpha emission line strength decreases with increasing stellar age in HAeBe stars, indicating that the accretion activity gradually declines during the PMS phase. This would hint at a relatively long-lived (a few Myr) process being responsible for the cessation of accretion in Herbig Ae/Be stars. We also find that the accretion activity in these stars drops substantially by ~ 3 Myr. This is comparable to the timescale in which most intermediate mass stars are thought to lose their inner disks, suggesting that inner disks in intermediate mass stars are dissipated rapidly after the accretion activity has fallen below a certain level. We, further find a r...

  8. A Vanishing Star Revisited

    Science.gov (United States)

    1999-07-01

    VLT Observations of an Unusual Stellar System Reinhold Häfner of the Munich University Observatory (Germany) is a happy astronomer. In 1988, when he was working at a telescope at the ESO La Silla observatory, he came across a strange star that suddenly vanished off the computer screen. He had to wait for more than a decade to get the full explanation of this unusual event. On June 10-11, 1999, he observed the same star with the first VLT 8.2-m Unit Telescope (ANTU) and the FORS1 astronomical instrument at Paranal [1]. With the vast power of this new research facility, he was now able to determine the physical properties of a very strange stellar system in which two planet-size stars orbit each other. One is an exceedingly hot white dwarf star , weighing half as much as the Sun, but only twice as big as the Earth. The other is a much cooler and less massive red dwarf star , one-and-a-half times the size of planet Jupiter. Once every three hours, the hot star disappears behind the other, as seen from the Earth. For a few minutes, the brightness of the system drops by a factor of more than 250 and it "vanishes" from view in telescopes smaller than the VLT. A variable star named NN Serpentis ESO PR Photo 30a/99 ESO PR Photo 30a/99 [Preview - JPEG: 400 x 468 pix - 152k] [Normal - JPEG: 800 x 936 pix - 576k] [High-Res - JPEG: 2304 x 2695 pix - 4.4M] Caption to ESO PR Photo 30a/99 : The sky field around the 17-mag variable stellar system NN Serpentis , as seen in a 5 sec exposure through a V(isual) filter with VLT ANTU and FORS1. It was obtained just before the observation of an eclipse of this unsual object and served to centre the telescope on the corresponding sky position. The field shown here measures 4.5 x 4.5 armin 2 (1365 x 1365 pix 2 ; 0.20 arcsec/pix). The field is somewhat larger than that shown in Photo 30b/99 and has the same orientation to allow comparison: North is about 20° anticlockwise from the top and East is 90° clockwise from that direction. The

  9. Swift, UVOT and Hot Stars

    CERN Document Server

    Siegel, Michael H; Hagen, Lea M Z; Hoversten, Erik A

    2015-01-01

    We present the results of our ongoing investigation into the properties of hot stars and young stellar populations using the Swift/UVOT telescope. We present UVOT photometry of open and globular clusters and show that UVOT is capable of characterizing a variety of rare hot stars, including Post-Asymptotic Giant Branch and Extreme Horizontal Branch Stars. We also present very early reults of our survey of stellar populations in the Small Magellanic Cloud. We find that the SMC has experienced recent bouts of star formation but constraining the exact star formation history will depend on finding an effective model of the reddening within the SMC.

  10. The Dependence of Signal-To-Noise Ratio (S/N) Between Star Brightness and Background on the Filter Used in Images Taken by the Vulcan Photometric Planet Search Camera

    Science.gov (United States)

    Mena-Werth, Jose

    1998-01-01

    The Vulcan Photometric Planet Search is the ground-based counterpart of Kepler Mission Proposal. The Kepler Proposal calls for the launch of telescope to look intently at a small patch of sky for four year. The mission is designed to look for extra-solar planets that transit sun-like stars. The Kepler Mission should be able to detect Earth-size planets. This goal requires an instrument and software capable of detecting photometric changes of several parts per hundred thousand in the flux of a star. The goal also requires the continuous monitoring of about a hundred thousand stars. The Kepler Mission is a NASA Discovery Class proposal similar in cost to the Lunar Prospector. The Vulcan Search is also a NASA project but based at Lick Observatory. A small wide-field telescope monitors various star fields successively during the year. Dozens of images, each containing tens of thousands of stars, are taken any night that weather permits. The images are then monitored for photometric changes of the order of one part in a thousand. These changes would reveal the transit of an inner-orbit Jupiter-size planet similar to those discovered recently in spectroscopic searches. In order to achieve a one part in one thousand photometric precision even the choice of a filter used in taking an exposure can be critical. The ultimate purpose of an filter is to increase the signal-to-noise ratio (S/N) of one's observation. Ideally, filters reduce the sky glow cause by street lights and, thereby, make the star images more distinct. The higher the S/N, the higher is the chance to observe a transit signal that indicates the presence of a new planet. It is, therefore, important to select the filter that maximizes the S/N.

  11. Star Cluster Formation and Feedback

    CERN Document Server

    Krumholz, Mark R; Arce, Hector G; Dale, James E; Gutermuth, Robert; Klein, Richard I; Li, Zhi-Yun; Nakamura, Fumitaka; Zhang, Qizhou

    2014-01-01

    Stars do not generally form in isolation. Instead, they form in clusters, and in these clustered environments newborn stars can have profound effects on one another and on their parent gas clouds. Feedback from clustered stars is almost certainly responsible for a number of otherwise puzzling facts about star formation: that it is an inefficient process that proceeds slowly when averaged over galactic scales; that most stars disperse from their birth sites and dissolve into the galactic field over timescales $\\ll 1$ Gyr; and that newborn stars follow an initial mass function (IMF) with a distinct peak in the range $0.1 - 1$ $M_\\odot$, rather than an IMF dominated by brown dwarfs. In this review we summarize current observational constraints and theoretical models for the complex interplay between clustered star formation and feedback.

  12. Ecology of blue straggler stars

    CERN Document Server

    Carraro, Giovanni; Beccari, Giacomo

    2015-01-01

    The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.

  13. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    OpenAIRE

    2012-01-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (~2 Myr) implies that the ejection was caused by a dynam...

  14. Chemical evolution of star clusters

    CERN Document Server

    van Loon, Jacco Th

    2009-01-01

    I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.

  15. Chemical evolution of star clusters.

    Science.gov (United States)

    van Loon, Jacco Th

    2010-02-28

    I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters.

  16. Making Stars … With a Little Help

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    Extremely high star formation rates have been observed in galaxies at high redshifts, posing somewhat of a mystery: how are these enormous rates achieved? A team of scientists has proposed that these high rates of star formation could be explained by feedback from active nuclei at the centers of the galaxies.Pressurized BubbleWe believe that star formation occurs in galaxies as a result of gas clumps that collapse under their own gravity, eventually becoming dense enough to launch nuclear fusion. Recently, theres been mounting evidence that the star formation rate is significantly higher in high-redshift galaxies, particularly those with active galactic nuclei (AGN). Could this simply be caused by a higher gas fraction at higher redshifts? Or is it possible that a different mechanism is at work in these galaxies, producing more efficient star formation?A team of authors led by Rebekka Bieri (Paris Institute of Astrophysics) has proposed that this enhanced star formation may be caused by positive feedback from the active nucleus of the galaxy. The team suggests that an outflow from the AGN could create an over-pressurized bubble around the galactic disk that pushes back on the disk, leading to a higher rate of star formation.Simulating a BoostThe authors test this toy model by simulating the scenario. They model a disk galaxy with roughly a tenth of the mass of the Milky Way, which starts in a relaxed state. The galaxy is then evolved either with or without an applied external pressure, representing the isotropic pressure from the bubble created by the AGN outflow. These models are tested in two different scenarios: one where the initial gas fraction is 10%, and one where the initial gas fraction is 50%.Star formation rates for the low-gas-fraction (left) and high-gas-fraction (right) simulated galaxies. The blue lines show the rates without external pressure; the red lines show the rates with external pressure applied. [Bieri et al. 2015]The simulations show that

  17. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  18. Suggestibility and negative priming: two replication studies.

    Science.gov (United States)

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  19. On the Carbon-Star Status of Five Stars in a New Carbon Star Catalog

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We find that five sources listed in the new carbon star catalog are not really carbon-rich objects but oxygen-rich stars, because they all have the prominent 10μm silicate features in absorption and the 1612 MHz OH maser emission or/and the SiO molecular features. These objects were considered as carbon stars in the catalog based only on their locations in the infrared two-color diagram. Therefore to use the infrared two-color diagram to distinguish carbon-rich stars from oxygenrich stars must be done with caution, because, in general, it has only a statistical meaning.

  20. Collapse of Axion Stars

    CERN Document Server

    Eby, Joshua; Suranyi, Peter; Wijewardhana, L C R

    2016-01-01

    Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. These dense configurations, which are the endpoints of collapse, have extremely high binding energy, and as a result, decay through number changing $3\\,a\\rightarrow a$ interactions with an extremely short lifetime.

  1. Pulsating stars harbouring planets

    Directory of Open Access Journals (Sweden)

    Moya A.

    2013-04-01

    Full Text Available Why bother with asteroseismology while studying exoplanets? There are several answers to this question. Asteroseismology and exoplanetary sciences have much in common and the synergy between the two opens up new aspects in both fields. These fields and stellar activity, when taken together, allow maximum extraction of information from exoplanet space missions. Asteroseismology of the host star has already proved its value in a number of exoplanet systems by its unprecedented precision in determining stellar parameters. In addition, asteroseismology allows the possibility of discovering new exoplanets through time delay studies. The study of the interaction between exoplanets and their host stars opens new windows on various physical processes. In this review I will summarize past and current research in exoplanet asteroseismology and explore some guidelines for the future.

  2. Fab Four Neutron Stars

    CERN Document Server

    Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-01-01

    Horndeski's theory of gravity is the most general scalar-tensor theory with a single scalar whose equations of motion contain at most second-order derivatives. A subsector of Horndeski's theory known as "Fab Four" gravity allows for dynamical self-tuning of the quantum vacuum energy, and therefore it has received particular attention in cosmology as a possible alternative to the $\\Lambda$CDM model. Here we study compact stars in Fab Four gravity, which includes as special cases general relativity ("George"), Einstein-dilaton-Gauss-Bonnet gravity ("Ringo"), theories with a nonminimal coupling with the Einstein tensor ("John") and theories involving the double-dual of the Riemann tensor ("Paul"). We generalize and extend previous results in theories of the John class and we show that there are no viable compact star solutions in theories of the Paul class.

  3. Shooting Star Experiment

    Science.gov (United States)

    1997-01-01

    The Shooting Star Experiment (SSE) is designed to develop and demonstrate the technology required to focus the sun's energy and use the energy for inexpensive space Propulsion Research. Pictured is an engineering model (Pathfinder III) of the Shooting Star Experiment (SSE). This model was used to test and characterize the motion and deformation of the structure caused by thermal effects. In this photograph, alignment targets are being placed on the engineering model so that a theodolite (alignment telescope) could be used to accurately measure the deformation and deflections of the engineering model under extreme conditions, such as the coldness of deep space and the hotness of the sun as well as vacuum. This thermal vacuum test was performed at the X-Ray Calibration Facility because of the size of the test article and the capabilities of the facility to simulate in-orbit conditions

  4. STAR - Copperhead Interface.

    Science.gov (United States)

    1981-03-01

    first three logic segments of the Copperhead design have many similarities with the cide already written for the conventional artillery systems in STAR...Carpenter, Howard J. and Thu~rman, Edward E. grmt~ lauitiop of -afintry actics and -ui ment Dismounted STR 1.S. Tesis , Naval Postgraduate sch00l...Monterey, 2. Haislip, William A. Jr. omnqtn4ecris Mon er ar)b S.* Tesis , Naval Postgradutiae School, 3. Department of the Army, FM 6- 30 (Copperhead

  5. Galaxy Structure as a Driver of the Star Formation Sequence Slope and Scatter

    CERN Document Server

    Whitaker, Katherine E; Bezanson, Rachel; Brammer, Gabriel B; van Dokkum, Pieter G; Kriek, Mariska T; Labbe, Ivo; Leja, Joel; Momcheva, Ivelina G; Nelson, Erica J; Rigby, Jane R; Rix, Hans-Walter; Skelton, Rosalind E; van der Wel, Arjen; Wuyts, Stijn

    2015-01-01

    It is well established that (1) star-forming galaxies follow a relation between their star formation rate (SFR) and stellar mass (M$_{\\star}$), the "star-formation sequence", and (2) the SFRs of galaxies correlate with their structure, where star-forming galaxies are less concentrated than quiescent galaxies at fixed mass. Here, we consider whether the scatter and slope of the star-formation sequence is correlated with systematic variations in the Sersic indices, $n$, of galaxies across the SFR-M$_{\\star}$ plane. We use a mass-complete sample of 23,848 galaxies at $0.52$ (implying more dominant bulges) have significantly lower SFR/M$_{\\star}$ than the main ridgeline of the star-formation sequence. These results suggest that bulges in massive $z\\sim2$ galaxies are actively building up, where the stars in the central concentration are relatively young. At $z<1$, the presence of older bulges within star-forming galaxies lowers global SFR/M$_{\\star}$, decreasing the slope and contributing significantly to the ...

  6. The Na-O anticorrelation in horizontal branch stars. II. NGC1851

    CERN Document Server

    Gratton, R G; Carretta, E; Bragaglia, A; D'Orazi, V; Momany, Y Al; Sollima, A; Salaris, M; Cassisi, S

    2012-01-01

    We studied the Na-O anti-correlation from moderately high resolution spectra for 35 stars on the blue HB (BHB), one RR Lyrae, and 55 stars are on the red HB (RHB) of NGC1851. We also derived abundances for He and N in BHB stars, and Ba and upper limits for N in RHB stars. The RHB stars clearly separate into two groups: the vast majority are O-rich and Na-poor, while about 10-15% are Na-rich and moderately O-poor. Most Na-rich RHB stars are also Ba-rich and there is an overall correlation between Na and Ba abundances within the RHB. The group of Ba-rich RHB stars resides on the warmer edge and includes ~10% of the RHB stars. We propose that they are the descendant of the stars on the RGB sequence with very red v-y colour. This sequence is known also to consist of Ba and perhaps CNO-rich stars. However, the upper limit we obtain for N ([N/Fe]<1.55) for one of the Ba-rich stars coupled with the low C-abundances for RGB Ba-rich stars from the literature suggests that the total CNO might not be particularly hig...

  7. Sending Hidden Data via Google Suggest

    CERN Document Server

    Bialczak, Piotr; Szczypiorski, Krzysztof

    2011-01-01

    Google Suggest is a service incorporated within Google Web Search which was created to help user find the right search phrase by proposing the autocompleting popular phrases while typing. The paper presents a new network steganography method called StegSuggest which utilizes suggestions generated by Google Suggest as a hidden data carrier. The detailed description of the method's idea is backed up with the analysis of the network traffic generated by the Google Suggest to prove its feasibility. The traffic analysis was also performed to discover the occurrence of two TCP options: Window Scale and Timestamp which StegSuggest uses to operate. Estimation of method steganographic bandwidth proves that it is possible to insert 100 bits of steganogram into every suggestions list sent by Google Suggest service.

  8. Parametrising Star Formation Histories

    CERN Document Server

    Simha, Vimal; Conroy, Charlie; Dave, Romeel; Fardal, Mark; Katz, Neal; Oppenheimer, Benjamin D

    2014-01-01

    We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, "red and dead" galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these paramet...

  9. What are the stars?

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    The outstanding question in astronomy at the turn of the twentieth century was: What are the stars and why are they as they are? In this volume, the story of how the answer to this fundamental question was unravelled is narrated in an informal style, with emphasis on the underlying physics. Although the foundations of astrophysics were laid down by 1870, and the edifice was sufficiently built up by 1920, the definitive proof of many of the prescient conjectures made in the 1920s and 1930s came to be established less than ten years ago. This book discusses these recent developments in the context of discussing the nature of the stars, their stability and the source of the energy they radiate.  Reading this book will get young students excited about the presently unfolding revolution in astronomy and the challenges that await them in the world of physics, engineering and technology. General readers will also find the book appealing for its highly accessible narrative of the physics of stars.  “... The reade...

  10. Asteroseismology of Pulsating Stars

    Indian Academy of Sciences (India)

    Santosh Joshi; Yogesh C. Joshi

    2015-03-01

    The success of helioseismology is due to its capability of measuring -mode oscillations in the Sun. This allows us to extract information on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations. In this review we highlight the progress in the observational asteroseismology, including some basic theoretical aspects. In particular, we discuss our contributions to asteroseismology through the study of chemically peculiar stars under the 'Nainital-Cape Survey' project being conducted at ARIES, Nainital, since 1999. This survey aims to detect new rapidly-pulsating Ap (roAp) stars in the northern hemisphere. We also discuss the contribution of ARIES towards the asteroseismic study of the compact pulsating variables. We comment on the future prospects of our project in the light of the new optical 3.6-m telescope to be installed at Devasthal (ARIES). Finally, we present a preliminary optical design of the high-speed imaging photometers for this telescope.

  11. The STAR PXL detector

    Science.gov (United States)

    Contin, G.

    2016-12-01

    The PiXeL detector (PXL) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Designed to extend the STAR measurement capabilities in the heavy flavor domain, it took data in Au+Au collisions, p+p and p+Au collisions at 0√sNN=20 GeV at RHIC, during the period 2014-2016. The PXL detector is based on 50 μm-thin MAPS sensors with a pitch of 20.7 μm. Each sensor includes an array of nearly 1 million pixels, read out in rolling shutter mode in 185.6 μs. The 170 mW/cm2 power dissipation allows for air cooling and contributes to reduce the global material budget to 0.4% radiation length on the innermost layer. Experience and lessons learned from construction and operations will be presented in this paper. Detector performance and results from 2014 Au+Au data analysis, demonstrating the STAR capabilities of charm reconstruction, will be shown.

  12. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Science.gov (United States)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.

    2017-06-01

    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  13. Massive stars in their death-throes

    CERN Document Server

    Eldridge, J J

    2008-01-01

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently there are 8 detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants as theory has long predicted. However no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae which, given the expected progenitors, is an unlikely result. Also observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict current stellar evolution theory. This suggests that we may need to update our understanding.

  14. Spectroscopy of Nine Cataclysmic Variable Stars

    CERN Document Server

    Sheets, H A; Peters, C J; Kapusta, A B; Taylor, C J

    2007-01-01

    We present optical spectroscopy of nine cataclysmic binary stars, mostly dwarf novae, obtained primarily to determine orbital periods Porb. The stars and their periods are LX And, 0.1509743(5) d; CZ Aql, 0.2005(6) d; LU Cam, 0.1499686(4) d; GZ Cnc, 0.0881(4) d; V632 Cyg, 0.06377(8) d; V1006 Cyg, 0.09903(9) d; BF Eri, 0.2708804(4) d; BI Ori, 0.1915(5) d; and FO Per, for which Porb is either 0.1467(4) or 0.1719(5) d. Several of the stars proved to be especially interesting. In BF Eri, we detect the absorption spectrum of a secondary star of spectral type K3 +- 1 subclass, which leads to a distance estimate of approximately 1 kpc. However, BF Eri has a large proper motion (100 mas/yr), and we have a preliminary parallax measurement that confirms the large proper motion and yields only an upper limit for the parallax. BF Eri's space velocity is evidently large, and it appears to belong to the halo population. In CZ Aql, the emission lines have strong wings that move with large velocity amplitude, suggesting a mag...

  15. Temporal Variability of Stars and Stellar Systems

    CERN Document Server

    Lister, T A; Brown, T M; Street, R A

    2009-01-01

    Although the Sun is our closest star by many orders of magnitude and despite having sunspot records stretching back to ancient China, our knowledge of the Sun's magnetic field is far from complete. Indeed, even now, after decades of study, the most obvious manifestations of magnetic fields in the Sun (e.g. sunspots, flares and the corona) are scarcely understood at all. These failures in spite of intense effort suggest that to improve our grasp of magnetic fields in stars and of astrophysical dynamos in general, we must broaden our base of examples beyond the Sun; we must study stars with a variety of ages, masses, rotation rates, and other properties, so we can test models against as broad a range of circumstances as possible. Over the next decade, an array of indirect techniques will be supplemented by rapidly maturing new capabilities such as gyrochronology, asteroseismology and precision photometry from space, which will transform our understanding of the temporal variability of stars and stellar systems....

  16. ULXs: Neutron Stars vs Black Holes

    CERN Document Server

    King, Andrew

    2016-01-01

    We consider ultraluminous X-ray sources (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently-discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker ($\\simeq 10^{11}{\\rm G}$) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have {\\it higher} apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely propo...

  17. Massive stars in their death throes.

    Science.gov (United States)

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  18. Reinventing suggestion systems for continuous improvement

    NARCIS (Netherlands)

    Schuring, R.W.; Luijten, Harald

    2001-01-01

    This article reports an experiment to increase the effectiveness of a suggestion system by deliberately applying principles of the kaizen and performance management. Design rules for suggestion systems are derived from these theories. The suggestion system that resulted differs from traditional

  19. Reinventing suggestion systems for continuous improvement

    NARCIS (Netherlands)

    Schuring, Roel W.; Luijten, Harald

    2001-01-01

    This article reports an experiment to increase the effectiveness of a suggestion system by deliberately applying principles of the kaizen and performance management. Design rules for suggestion systems are derived from these theories. The suggestion system that resulted differs from traditional sugg

  20. Magnetic fields in star formation: from galaxies to stars

    CERN Document Server

    Price, Daniel J; Dobbs, Clare L

    2008-01-01

    Magnetic fields are important at every scale in the star formation process: from the dynamics of the ISM in galaxies, to the collapse of turbulent molecular clouds to form stars and in the fragmentation of individual star forming cores. The recent development of a robust algorithm for MHD in the Smoothed Particle Hydrodynamics method has enabled us to perform simulations of star formation including magnetic fields at each of these scales. This paper focusses on three questions in particular: What is the effect of magnetic fields on fragmentation in star forming cores? How do magnetic fields affect the collapse of turbulent molecular clouds to form stars? and: What effect do magnetic fields have on the dynamics of the interstellar medium?