WorldWideScience

Sample records for sun-like stars suggests

  1. Is life most likely around Sun-like stars?

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-05-01

    We consider the habitability of Earth-analogs around stars of different masses, which is regulated by the stellar lifetime, stellar wind-induced atmospheric erosion, and biologically active ultraviolet (UV) irradiance. By estimating the timescales associated with each of these processes, we show that they collectively impose limits on the habitability of Earth-analogs. We conclude that planets orbiting most M-dwarfs are not likely to host life, and that the highest probability of complex biospheres is for planets around K- and G-type stars. Our analysis suggests that the current existence of life near the Sun is slightly unusual, but not significantly anomalous.

  2. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    Science.gov (United States)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  3. A practical equation of state for the sun and sun-like stars

    International Nuclear Information System (INIS)

    Lin, H.H.; Daeppen, W.

    2012-01-01

    For models of the Sun and Sun-like stars, a high-quality equation of state is crucial. Conversely, helio- and asteroseismological observations put constraints on the physical formalisms. They effectively turn the Sun and stars into laboratories for dense plasmas. For models of the Sun and Sun-like stars, the most accurate equation of state so far has been the one developed as part of OPAL opacity project of Livermore. However, the OPAL equation of state is limited in two important respects. First, it is only available in the form of pre-computed tables that are provided from Lawrence Livermore National Laboratory. Applications to stellar modeling require therefore interpolation, with unavoidable loss of accuracy. Second, the OPAL equation of state is proprietary and not freely available. Varying its underlying physical parameters is therefore no option for the community. We report on the most recent progress with the development of a high-precision emulation of the OPAL equation of state that will lead to an in-line tool for modelers (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  5. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  6. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Karoff, C. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Campante, T. L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400, Toulouse (France); Kallinger, T. [Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Gruberbauer, M. [Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Mary' s University, B3H 3C3 Halifax (Canada); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Universit Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Caldwell, D. A.; Christiansen, J. L. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kinemuchi, K., E-mail: karoff@phys.au.dk [Bay Area Environmental Research Inst./NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.

  7. Analysis of the Herschel DEBRIS Sun-like star sample

    Science.gov (United States)

    Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Lestrade, J.-F.; Greaves, J. S.; Matthews, B. C.; Duchêne, G.

    2018-04-01

    This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ˜90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission from a debris disc was detected around 47 stars, giving a detection rate of 17.1^{+2.6}_{-2.3} per cent, with lower rates for later spectral types. For each target a blackbody spectrum was fitted to the dust emission to determine its fractional luminosity and temperature. The derived underlying distribution of fractional luminosity versus blackbody radius in the population showed that most detected discs are concentrated at f ˜ 10-5 and at temperatures corresponding to blackbody radii 7-40 au, which scales to ˜40 au for realistic dust properties (similar to the current Kuiper belt). Two outlying populations are also evident; five stars have exceptionally bright emission ( f > 5 × 10-5), and one has unusually hot dust <4 au. The excess emission distributions at all wavelengths were fitted with a steady-state evolution model, showing that these are compatible with all stars being born with a narrow belt that then undergoes collisional grinding. However, the model cannot explain the hot dust systems - likely originating in transient events - and bright emission systems - arising potentially from atypically massive discs or recent stirring. The emission from the present-day Kuiper belt is predicted to be close to the median of the population, suggesting that half of stars have either depleted their Kuiper belts (similar to the Solar system) or had a lower planetesimal formation efficiency.

  8. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    International Nuclear Information System (INIS)

    Karoff, C.; Campante, T. L.; Ballot, J.; Kallinger, T.; Gruberbauer, M.; García, R. A.; Caldwell, D. A.; Christiansen, J. L.; Kinemuchi, K.

    2013-01-01

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars—while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-mode oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures—comparable to what is seen in the Sun.

  9. THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Baraffe, Isabelle; Chabrier, Gilles; Brun, A. Sacha; Bouvier, Jérôme

    2015-01-01

    To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes

  10. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: silk@astro.ox.ac.uk [Institut d’Astrophysique de Paris, UMR 7095 CNRS, Université Pierre et Marie Curie, 98 bis Boulevard Arago, Paris F-75014 (France)

    2017-07-20

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1–10{sup 3} ppm for a solar mass star located at a distance between 1 au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.

  11. RETIRED A STARS AND THEIR COMPANIONS. III. COMPARING THE MASS-PERIOD DISTRIBUTIONS OF PLANETS AROUND A-TYPE STARS AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Bowler, Brendan P.; Johnson, John Asher; Liu, Michael C.; Marcy, Geoffrey W.; Peek, Kathryn M. G.; Henry, Gregory W.; Fischer, Debra A.; Clubb, Kelsey I.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ∼5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 ∼ * /M sun ∼ +9 -8 %, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN ∝ M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (∼50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets.

  12. Retired A Stars and Their Companions. III. Comparing the Mass-Period Distributions of Planets Around A-Type Stars and Sun-Like Stars

    Science.gov (United States)

    Bowler, Brendan P.; Johnson, John Asher; Marcy, Geoffrey W.; Henry, Gregory W.; Peek, Kathryn M. G.; Fischer, Debra A.; Clubb, Kelsey I.; Liu, Michael C.; Reffert, Sabine; Schwab, Christian; Lowe, Thomas B.

    2010-01-01

    We present an analysis of ~5 years of Lick Observatory radial velocity measurements targeting a uniform sample of 31 intermediate-mass (IM) subgiants (1.5 lsim M */M sunlsim 2.0) with the goal of measuring the occurrence rate of Jovian planets around (evolved) A-type stars and comparing the distributions of their orbital and physical characteristics to those of planets around Sun-like stars. We provide updated orbital solutions incorporating new radial velocity measurements for five known planet-hosting stars in our sample; uncertainties in the fitted parameters are assessed using a Markov-Chain Monte Carlo method. The frequency of Jovian planets interior to 3 AU is 26+9 -8%, which is significantly higher than the 5%-10% frequency observed around solar-mass stars. The median detection threshold for our sample includes minimum masses down to {0.2, 0.3, 0.5, 0.6, 1.3} M Jup within {0.1, 0.3, 0.6, 1.0, 3.0} AU. To compare the properties of planets around IM stars to those around solar-mass stars we synthesize a population of planets based on the parametric relationship dN vprop M α P β dlnMdlnP, the observed planet frequency, and the detection limits we derived. We find that the values of α and β for planets around solar-type stars from Cumming et al. fail to reproduce the observed properties of planets in our sample at the 4σ level, even when accounting for the different planet occurrence rates. Thus, the properties of planets around A stars are markedly different than those around Sun-like stars, suggesting that only a small (~50%) increase in stellar mass has a large influence on the formation and orbital evolution of planets. Based on observations obtained at the Lick Observatory, which is operated by the University of California.

  13. The sun as a star: Solar phenomena and stellar applications

    International Nuclear Information System (INIS)

    Noyes, R.W.

    1981-01-01

    Our Sun is a run-of-the-mill star, having no obvious extremes of stellar properties. For this reason it is perhaps more, rather than less, interesting as an astrophysical object, for its sameness to other stars suggests that in studying the Sun, we are studying at close hand common, rather than unusual stellar phenomena. Conversely, comparative study of the Sun and other solar-type stars is an invaluable tool for solar physics, for two reasons: First, it allows us to explore how solar properties and phenomena depend on parameters we cannot vary on the Sun - most fundamentally, rotation rate and mass. Second, study of solar-like stars of different ages allows us to see how stellar and solar phenomena depend on age; study of other stars may be one of the best ways to infer the earlier history of the Sun, as well as its future history. In this review we shall concentrate on phenomena common to the Sun and solar-type (main sequence) stars with different fundamental properties such as mass, age, and rotation. (orig.)

  14. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  15. Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars

    OpenAIRE

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2...

  16. DISCOVERY OF THE COLDEST IMAGED COMPANION OF A SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Thalmann, C.; Carson, J.; Goto, M.; Feldt, M.; Henning, T.; Klahr, H.; Mordasini, C.; Janson, M.; McElwain, M.; Egner, S.; Hayano, Y.; Suzuki, R.; Hashimoto, J.; Kandori, R.; Kudo, T.; Kusakabe, N.; Morino, J.-I.; Suto, H.; Tamura, M.; Hodapp, K. W.

    2009-01-01

    We present the discovery of a brown dwarf or possible planet at a projected separation of 1.''9 = 29 AU around the star GJ 758, placing it between the separations at which substellar companions are expected to form by core accretion (∼5 AU) or direct gravitational collapse (typically ∼>100 AU). The object was detected by direct imaging of its thermal glow with Subaru/HiCIAO. At 10-40 times the mass of Jupiter and a temperature of 550-640 K, GJ 758 B constitutes one of the few known T-type companions, and the coldest ever to be imaged in thermal light around a Sun-like star. Its orbit is likely eccentric and of a size comparable to Pluto's orbit, possibly as a result of gravitational scattering or outward migration. A candidate second companion is detected at 1.''2 at one epoch.

  17. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    Science.gov (United States)

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  18. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Isaacson, Howard; Kolbl, Rea; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  19. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    Science.gov (United States)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have

  20. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  1. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    International Nuclear Information System (INIS)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.

    2013-01-01

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m Kp = 11.6, T eff = 5576 K, M * = 0.98 M ☉ ). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R ⊕ , based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M ⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars

  2. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Johnson, John Asher [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Campante, Tiago L.; Chaplin, William J.; Davies, Guy R. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, Mikkel N. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719 (United States); Fischer, Debra A. [Astronomy Department, Yale University, New Haven, CT (United States); Gilliland, Ronald L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Horch, Elliott P. [Southern Connecticut State University, New Haven, CT 06515 (United States); and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  3. The Sun among the stars. Pt. 3

    International Nuclear Information System (INIS)

    Hardorp, J.

    1980-01-01

    Energy distributions from 3308 to 8390 Angstroem of two candidates for a solar spectral analog and of 14 other northern G-type dwarfs are compared to the solar energy distribution via stellar spectrophotometric standards. The reliability of the stellar and solar flux-calibrations is evaluated. While the stellar calibration seems to be in good shape, solar calibrations differ widely. Labs.and Neckel's calibration is the best match to the energy distributions from 4500 to 8390 Angstroem of those four stars that share the Sun's ultraviolet line spectrum (16 Cyg B, G5V, and the three Hyades stars VB 64, 106, and 142). Below 4500 Angstroem, discrepancies of up to 6% remain which do not seem to be genuine Sun-star differences. An error in the Labs and Neckel tables between 5700 and 6000 Angstroem is corrected. The NASA Standard Tables of Solar Spectral Irradiance cannot be trusted, since there seems to be no star in the sky that look like the NASA-sun. The four stars mentioned are taken to be perfect solar spectral analogs. An improved table of solar spectral irradiance is then given by the magnitudes of 16 Cyg B minus 32.945, based on Tueg's atellar and Labs and Neckel's solar calibrations. The Sun's place in the UBV system is V = -26.71 +- 0.03, B-V = 0.665 +- 0.005, and U-B = 0.20 +- 0.01. Most previous photometric investigations found a bluer Sun because they used the wrong solar calibration. For deriving accurate albedos of planets, any one of the calibrated G-type stars can be used as a standard star, when corrections are applied, although the solar analogs themselves are to be preferred. The MK system of spectral classification should be revised. (orig.)

  4. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    Science.gov (United States)

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  5. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-01-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, Σ, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, Σ r and Σ b , exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weak solar-cycle variability. However, the Ca II K-line photometric sum, Σ K , is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of Σ r and Σ K . We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.

  6. Local perturbations of the upper layers of a sun-like star: The impact on the acoustic oscillation spectrum

    International Nuclear Information System (INIS)

    Brito, Ana; Lopes, Ilídio

    2014-01-01

    In the last decade, the quality and the amount of observational asteroseismic data that has been made available by space based missions had a tremendous upgrowth. The determination of asteroseismic parameters to estimate the fundamental physical processes occurring in stars' interiors can be done today in a way that has never been possible before. In this work, we propose to compute the seismic observable β, which is a proxy of the phase shift of the acoustic modes propagating in the envelope of the Sun-like stars. This seismic parameter β can be used to identify rapid variation regions usually known as glitches. We show that a small variation in the structure, smaller than 1% in the sound speed, produces a glitch in the acoustic potential that could explain the oscillatory character of β. This method allows us to determine the location and the thickness of the glitch with precision. We applied this idea to the Sun-like star α Centauri A and found a glitch located at approximately 0.94 R (1400 s) and with a thickness of 0.2% of the stars' radius. This is fully consistent with the data and also validates other seismic tests.

  7. Local perturbations of the upper layers of a sun-like star: The impact on the acoustic oscillation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Ana; Lopes, Ilídio, E-mail: ana.brito@ist.utl.pt, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2014-02-10

    In the last decade, the quality and the amount of observational asteroseismic data that has been made available by space based missions had a tremendous upgrowth. The determination of asteroseismic parameters to estimate the fundamental physical processes occurring in stars' interiors can be done today in a way that has never been possible before. In this work, we propose to compute the seismic observable β, which is a proxy of the phase shift of the acoustic modes propagating in the envelope of the Sun-like stars. This seismic parameter β can be used to identify rapid variation regions usually known as glitches. We show that a small variation in the structure, smaller than 1% in the sound speed, produces a glitch in the acoustic potential that could explain the oscillatory character of β. This method allows us to determine the location and the thickness of the glitch with precision. We applied this idea to the Sun-like star α Centauri A and found a glitch located at approximately 0.94 R (1400 s) and with a thickness of 0.2% of the stars' radius. This is fully consistent with the data and also validates other seismic tests.

  8. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  9. Observing the Sun with NuSTAR

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is a space telescope primarily designed to detect high-energy X-rays from faint, distant astrophysical sources. Recently, however, its occasionally been pointing much closer to home, with the goal of solving a few longstanding mysteries about the Sun.Intensity maps from an observation of a quiet-Sun region near the north solar pole and an active region just below the solar limb. The quiet-Sun data will be searched for small flares that could be heating the solar corona, and the high-altitude emission above the limb may provide clues about particle acceleration. [Adapted from Grefenstette et al. 2016]An Unexpected TargetThough we have a small fleet of space telescopes designed to observe the Sun, theres an important gap: until recently, there was no focusing telescope making solar observations in the hard X-ray band (above ~3 keV). Conveniently, there is a tool capable of doing this: NuSTAR.Though NuSTARs primary mission is to observe faint astrophysical X-ray sources, a team of scientists has recently conducted a series of observations in which NuSTAR was temporarily repurposed and turned to focus on the Sun instead.These observations pose an interesting challenge precisely because of NuSTARs extreme sensitivity: pointing at such a nearby, bright source can quickly swamp the detectors. But though the instrument cant be used to observe the bright flares and outbursts from the Sun, its the perfect tool for examining the parts of the Sun weve been unable to explore in hard X-rays before now such as faint flares, or the quiet, inactive solar surface.In a recently published study led by Brian Grefenstette (California Institute of Technology), the team describes the purpose and initial results of NuSTARs first observations of the Sun.Solar MysteriesWhat is NuSTAR hoping to accomplish with its solar observations? There are two main questions that hard X-ray observations may help to answer.How are particles accelerated in

  10. PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS-A FIRST LOOK

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug; Gilliland, Ronald L.; Dupree, Andrea K.; Latham, David W.; Meibom, Soeren; Howell, Steve; Brown, Tim

    2010-01-01

    The Kepler mission provides an exciting opportunity to study the light curves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from very similar to rather different stellar properties, at a wide variety of ages. Although Kepler data are in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main-sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid-K spectral types.

  11. Deuterium and 15N fractionation in N2H+ during the formation of a Sun-like star

    Science.gov (United States)

    De Simone, M.; Fontani, F.; Codella, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.; López-Sepulcre, A.; Caux, E.; Vastel, C.; Soldateschi, J.

    2018-05-01

    Although chemical models predict that the deuterium fractionation in N2H+ is a good evolutionary tracer in the star formation process, the fractionation of nitrogen is still a poorly understood process. Recent models have questioned the similar evolutionary trend expected for the two fractionation mechanisms in N2H+, based on a classical scenario in which ion-neutral reactions occurring in cold gas should have caused an enhancement of the abundance of N2D+, 15NNH+, and N15NH+. In the framework of the ASAI IRAM-30m large program, we have investigated the fractionation of deuterium and 15N in N2H+ in the best known representatives of the different evolutionary stages of the Sun-like star formation process. The goal is to ultimately confirm (or deny) the classical `ion-neutral reactions' scenario that predicts a similar trend for D and 15N fractionation. We do not find any evolutionary trend of the 14N/15N ratio from both the 15NNH+ and N15NH+ isotopologues. Therefore, our findings confirm that, during the formation of a Sun-like star, the core evolution is irrelevant in the fractionation of 15N. The independence of the 14N/15N ratio with time, found also in high-mass star-forming cores, indicates that the enrichment in 15N revealed in comets and protoplanetary discs is unlikely to happen at core scales. Nevertheless, we have firmly confirmed the evolutionary trend expected for the H/D ratio, with the N2H+/N2D+ ratio decreasing before the pre-stellar core phase, and increasing monotonically during the protostellar phase. We have also confirmed clearly that the two fractionation mechanisms are not related.

  12. ASTRO-ENTOMOLOGY? ANT-LIKE SPACE STRUCTURE PREVIEWS DEATH OF OUR SUN

    Science.gov (United States)

    2002-01-01

    From ground-based telescopes, the so-called 'ant nebula' (Menzel 3, or Mz 3) resembles the head and thorax of a garden-variety ant. This dramatic NASA/ESA Hubble Space Telescope image, showing 10 times more detail, reveals the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun-like star. The Hubble images directly challenge old ideas about the last stages in the lives of stars. By observing Sun-like stars as they approach their deaths, the Hubble Heritage image of Mz 3 -- along with pictures of other planetary nebulae -- shows that our Sun's fate probably will be more interesting, complex, and striking than astronomers imagined just a few years ago. Though approaching the violence of an explosion, the ejection of gas from the dying star at the center of Mz 3 has intriguing symmetrical patterns unlike the chaotic patterns expected from an ordinary explosion. Scientists using Hubble would like to understand how a spherical star can produce such prominent, non-spherical symmetries in the gas that it ejects. One possibility is that the central star of Mz 3 has a closely orbiting companion that exerts strong gravitational tidal forces, which shape the outflowing gas. For this to work, the orbiting companion star would have to be close to the dying star, about the distance of the Earth from the Sun. At that distance the orbiting companion star wouldn't be far outside the hugely bloated hulk of the dying star. It's even possible that the dying star has consumed its companion, which now orbits inside of it, much like the duck in the wolf's belly in the story 'Peter and the Wolf.' (See http://oposite.stsci.edu/pubinfo/qt/ssudec.mov for an animation that shows how this might work.) A second possibility is that, as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Charged winds moving at speeds up to 1000 kilometers per second from the star, much like those in our sun's solar wind but millions of

  13. The finite - dimensional star and grade star irreducible representation of SU(n/1)

    International Nuclear Information System (INIS)

    Han Qi-zhi.

    1981-01-01

    We derive the conditions of star and grade star representations of SU(n/1) and give some examples of them. We also give a brief review of the finite - dimensional irreducible representations of SU(n/1). (author)

  14. HARPS-N OBSERVES THE SUN AS A STAR

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, Xavier; Glenday, Alex; Phillips, David F.; Charbonneau, David; Latham, David W.; Li, Chih-Hao; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchschacher, Nicolas; Lovis, Christophe; Pepe, Francesco; Udry, Stéphane [Observatoire Astronomique de l’Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS (United Kingdom); Cecconi, Massimo; Cosentino, Rosario; Ghedina, Adriano; Lodi, Marcello; Molinari, Emilio, E-mail: xdumusque@cfa.harvard.edu [INAF—Fundación Galileo Galilei, Rambla José Ana Fernández Pérez 7, E-38712 Breña Baja (Spain)

    2015-12-01

    Radial velocity (RV) perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Sun because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with an astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to RV changes. Over seven days of observing in 2014, we show an average 50 cm s{sup −1} RV rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly RV rms to 60 cm s{sup −1}. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the RV technique.

  15. Global helioseismology (WP4.1): From the Sun to the stars & solar analogs

    Science.gov (United States)

    García, Rafael A.

    2017-10-01

    Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1) has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields). After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  16. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    International Nuclear Information System (INIS)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks around young Sun-like stars (K1-M5) and cool stars/brown dwarfs (M5-M9). The comparison of these two large samples of over 60 sources reveal major differences in the evolution of both the dust and gas components. We report the first detection of organic molecules in disks around brown dwarfs. The detection rate statistics and the line flux ratios of HCN and C 2 H 2 show a striking difference between the two samples, demonstrating a significant underabundance of HCN relative to C 2 H 2 in the disk surface of cool stars. We propose this to originate from the large difference in the UV irradiation around the two types of sources. The statistical comparison of the 10 μm silicate emission features also reveals a difference between the two samples. Cool stars and brown dwarfs show weaker features arising from more processed silicate grains in the disk atmosphere. These findings complement previous indications of flatter disk structures and longer disk lifetimes around cool stars. Our results highlight important differences in the chemical and physical evolution of protoplanetary disks as a function of stellar mass, temperature, and radiation field which should be taken into account in planet formation models. We note that the different chemistry of preplanetary materials in the disk may also influence the bulk composition and volatile content of the forming planets. In particular, if exogenous HCN has played a key role in the synthesis of prebiotic molecules on Earth as proposed, then prebiotic chemistry may unfold differently on planets around cool stars.

  17. Prevalence of Earth-size planets orbiting Sun-like stars

    OpenAIRE

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account...

  18. MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). II. A PUZZLING WHITE DWARF AROUND THE SUN-LIKE STAR HD 11112

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.; Weinberger, Alycia; Butler, R. Paul; Bergeron, P.; Simon, Amélie; Anglada-Escudé, Guillem; Mamajek, Eric E.; Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M.; Bailey, Jeremy; Tinney, C. G.; Wittenmyer, Rob; Carter, Brad; Jenkins, James S.; Jones, Hugh; O’Toole, Simon

    2016-01-01

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M ⊙ , which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.

  19. MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). II. A PUZZLING WHITE DWARF AROUND THE SUN-LIKE STAR HD 11112

    Energy Technology Data Exchange (ETDEWEB)

    Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.; Weinberger, Alycia; Butler, R. Paul [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Bergeron, P.; Simon, Amélie [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Anglada-Escudé, Guillem [School of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London (United Kingdom); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M. [Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Bailey, Jeremy; Tinney, C. G.; Wittenmyer, Rob [Exoplanetary Science at UNSW, School of Physics, UNSW Australia, Sydney, NSW 2052 (Australia); Carter, Brad [Computational Engineering and Science Research Centre, University of Southern Queensland, Springfield, QLD 4300 (Australia); Jenkins, James S. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Las Condes, Santiago (Chile); Jones, Hugh [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB (United Kingdom); O’Toole, Simon, E-mail: trodigas@carnegiescience.edu [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); and others

    2016-11-10

    HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M {sub ⊙}, which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.

  20. Global helioseismology (WP4.1: From the Sun to the stars & solar analogs

    Directory of Open Access Journals (Sweden)

    García Rafael A.

    2017-01-01

    Full Text Available Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1 has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields. After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.

  1. Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-Like Star GJ 504

    Science.gov (United States)

    Kuzuhara, M.; Tamura, M.; Kudo, T.; Janson, M; Kandori, R.; Brandt, T. D.; Thalmann, C.; Spiegel, D.; Biller, B.; Carson, J.; hide

    2013-01-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages ( 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160(+350/-60) Myr, GJ 504 b has an estimated mass of 4(+4.5/-1.0) Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of approx.. 30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510(+30/-20) K)) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.

  2. DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuhara, M. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tamura, M.; Kandori, R.; Hori, Y.; Suzuki, R.; Suenaga, T.; Takahashi, Y. H.; Kwon, J. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kudo, T. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Janson, M.; Brandt, T. D.; Spiegel, D.; Burrows, A.; Turner, E. L.; Moro-Martin, A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Thalmann, C. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE, Amsterdam (Netherlands); Biller, B.; Henning, T. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Carson, J. [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); McElwain, M. W., E-mail: m.kuzuhara@nao.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2013-09-01

    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800-1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct-imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160{sup +350}{sub -60} Myr, GJ 504b has an estimated mass of 4{sup +4.5}{sub -1.0} Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of {approx}30 AU predicted for the core accretion mechanism. GJ 504b is also significantly cooler (510{sup +30}{sub -20} K) and has a bluer color (J - H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets as well as their atmospheric properties.

  3. Evolutionary status of stars with M> or approx. =50 M/sub sun/

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1980-01-01

    The observed masses and space velocities of main-sequence stars with M> or approx. =50 M/sub sun/ and of some of the brightest Wolf--Rayet stars (type WN 7/WN 8) are attributed to mass exchange and supernova explosions in close binary systems. Similar arguments suggest that blue supergiants intensively shedding mass may have an envelope in common with a compact, relativistic object

  4. The Sun - From the star to domestic energy

    International Nuclear Information System (INIS)

    2009-06-01

    Considered as a star and a deity, for a long period of time the Sun was thought to be another planet, whereas the word 'star' was reserved for all the brilliant points of light in the night sky. The Sun's status as a star in the sense of 'an astral body producing and emitting energy' was firmly established only at the beginning of the 20. century. Today astrophysicists are revealing more and more secrets of the fusion burning region located in its core. It is thanks to the Sun that life has appeared and evolved on Earth; it controls the cycle of 'For the last 4.6 million years the Sun has being providing us with light and heat. Today it is man's ambition to control this energy source'. The seasons and provides us with heat and light. But what exactly is the nature and origin of this prodigious energy source, with which man attempts to provide warmth and produce electricity? What is happening in this gigantic ball of fire, impossible to observe without protective glasses? And finally, how long will it continue to shine? Questions such as these took many centuries to be solved and will continue to be the subject of research for a long time to come. (authors)

  5. ASTROMETRIC JITTER OF THE SUN AS A STAR

    International Nuclear Information System (INIS)

    Makarov, V. V.; Parker, D.; Ulrich, R. K.

    2010-01-01

    The daily variation of the solar photocenter over some 11 yr is derived from the Mount Wilson data reprocessed by Ulrich et al. to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 μAU and 0.39 μAU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with solar cycle, reaching 0.91 μAU at maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 μAU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 μAU for the range of periods 0.6-1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets.

  6. The First Focused Hard X-Ray Images of the Sun With NuSTAR

    DEFF Research Database (Denmark)

    Grefenstette, Brian W.; Glesener, Lindsay; Krucker, Sam

    2016-01-01

    We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 ke......V) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations......, and full-disk HXR images of the Sun....

  7. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  8. NEW SUNS IN THE COSMOS?

    Energy Technology Data Exchange (ETDEWEB)

    De Freitas, D. B.; Leao, I. C.; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Canto Martins, B. L.; Alves, S.; De Medeiros, J. R. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Catelan, M. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago (Chile)

    2013-08-20

    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission's Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period-T{sub eff} diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these ''New Sun'' candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter's imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.

  9. The excitation of solar-like oscillations in a δ Sct star by efficient envelope convection

    DEFF Research Database (Denmark)

    Antoci, V.; Handler, G.; Kallinger, T.

    2011-01-01

    Delta Scuti (δSct) stars are opacity-driven pulsators with masses of 1.5-2.5Msolar, their pulsations resulting from the varying ionization of helium. In less massive stars such as the Sun, convection transports mass and energy through the outer 30per cent of the star and excites a rich spectrum...... of resonant acoustic modes. Based on the solar example, with no firm theoretical basis, models predict that the convective envelope in δSct stars extends only about 1per cent of the radius, but with sufficient energy to excite solar-like oscillations. This was not observed before the Kepler mission, so...... the presence of a convective envelope in the models has been questioned. Here we report the detection of solar-like oscillations in the δSct star HD187547, implying that surface convection operates efficiently in stars about twice as massive as the Sun, as the ad hoc models predicted....

  10. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    DEFF Research Database (Denmark)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay

    2017-01-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due...... to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales...... as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the Nu...

  11. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    Science.gov (United States)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted

  12. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    Science.gov (United States)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  13. Nearest star the surprising science of our sun

    CERN Document Server

    Golub, Leon

    2014-01-01

    How did the Sun evolve, and what will it become? What is the origin of its light and heat? How does solar activity affect the atmospheric conditions that make life on Earth possible? These are the questions at the heart of solar physics, and at the core of this book. The Sun is the only star near enough to study in sufficient detail to provide rigorous tests of our theories and help us understand the more distant and exotic objects throughout the cosmos. Having observed the Sun using both ground-based and spaceborne instruments, the authors bring their extensive personal experience to this sto

  14. Cartography of the sun and the stars

    CERN Document Server

    Neiner, Coralie

    2016-01-01

    The mapping of the surface of stars requires diverse skills, analysis techniques and advanced modeling, i.e. the collaboration of scientists in various specialties. This volume gives insights into new techniques allowing for the first time to obtain resolved images of stars. It takes stock of what has been achieved so far in Chile, on the ESO VLTI instrument or, in the States, on the CHARA instrument. In recent times interferometry, combined with adaptive optics has allowed to reconstruct images of stars. Besides the Sun (of course) by now five stars have been resolved in detail. In addition to interferometry, this book highlights techniques used for mapping the surfaces of stars using photometry made by space observatories; Zeeman- and Doppler Imaging; mapping the surface element abundances via spectroscopy. This book will also take stock of the best images of the  solar surface, made by connecting the differential rotation to the underlying physical parameters derived from helioseismology. Recent measureme...

  15. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader

    2013-01-01

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the α Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of α Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the α Centauri system.

  16. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Eggl, Siegfried; Pilat-Lohinger, Elke [University of Vienna, Institute for Astrophysics, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at [Institute for Astronomy and NASA Astrobiology Institute, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery of {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.

  17. Optimization method of star tracker orientation for sun-synchronous orbit based on space light distribution.

    Science.gov (United States)

    Wang, Geng; Xing, Fei; Wei, Minsong; Sun, Ting; You, Zheng

    2017-05-20

    Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

  18. From the sun to the Galactic Center: dust, stars and black hole(s)

    Science.gov (United States)

    Fritz, Tobias

    2013-07-01

    collision of stars in a dense young st! ar cluster. Such a cluster could sink to the GC by dynamical friction. There it would consist of few bright stars like IRS13E. Firstly, I analyze the SEDs of the objects in IRS13E. The SEDs of most objects can be explained by pure dust emission. Thus, most objects in IRS13E are pure dust clumps and only three young stars. This reduces the significance of the 'cluster' IRS13E compared to the stellar background. Secondly, I obtain acceleration limits for these three stars. The non-detection of accelerations makes an IMBH an unlikely scenario in IRS13E. However, since its three stars form a comoving association, which is unlikely to form by chance, the nature of IRS13E is not yet settled. In the third study (Chapter 4) I measure and analyze the extinction curve toward the GC. The extinction is a contaminant for GC observations and therefore it is necessary to know the extinction toward the GC to determine the luminosity properties of its stars. I obtain the extinction curve by measuring the flux of the HII region in the GC in several infrared HII lines and in the unextincted radio continuum. I compare these ratios with the ratios expected from recombination physics and obtain extinctions at 22 different lines between 1 and 19 micron. For the K-band I derive A_Ks=2.62+/-0.11. The extinction curve follows a power law with a steep slope of -2.11+/-0.06 shortward of 2.8 micron. At longer wavelengths the extinction is grayer and there are absorption features from ices. The extinction curve is a tool to constrain the properties of cosmic dust between the sun and the GC. The extinction curve cannot be explained by dust grains consisting of carbonaceous and silicate grains only. In addition composite particles, which also contain ices are necessary to fit the extinction curve. In the final part of this thesis (Chapter 5) I look at the properties of most of the stars in the GC. These are the old stars that form the nuclear cluster of the Milky

  19. THE FIRST FOCUSED HARD X-RAY IMAGES OF THE SUN WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Grefenstette, Brian W.; Madsen, Kristin K.; Forster, Karl; Harrison, Fiona A. [Cahill Center for Astrophysics, 1216 E. California Blvd, California Institute of Technology, Pasadena, CA 91125 (United States); Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota—Twin Cities, Minneapolis, MN 55455 (United States); Krucker, Säm; Hudson, Hugh; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hannah, Iain G. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Smith, David M.; Marsh, Andrew J. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Vogel, Julia K. [Physics Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque, NM (United States); Caspi, Amir [Southwest Research Institute, Boulder, CO 80302 (United States); Chen, Bin [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shih, Albert [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kuhar, Matej [University of Applied Sciences and Arts Northwestern Switzerland, CH-5210 Windisch (Switzerland); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J., E-mail: bwgref@srl.caltech.edu [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); and others

    2016-07-20

    We present results from the the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray ( NuSTAR ) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (>3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR , their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  20. The First Focused Hard X-Ray Images of the Sun with NuSTAR

    Science.gov (United States)

    Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.; hide

    2016-01-01

    We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.

  1. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  2. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Science.gov (United States)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  3. Gravitational Effects on Plasma Waves in Environment of Sun and Neutron Star

    International Nuclear Information System (INIS)

    Lu Quankang; Hsiao-Ling Zhou

    2014-01-01

    Local plasma phenomena in environment of Sun are observed closely by spacecrafts in recent years. We provide a new method to apply general relativity to astro-plasma physics in small local area. The relativistic dispersion relations of Langmuir, electromagnetic and cyclotron waves are obtained. The red shifts of Langmuir and cyclotron frequencies are given analytically. A new equilibrium velocity distribution of particles soaked in local gravitational field is suggested. The gravitational effect of a neutron star is also estimated

  4. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui Invented During the Joseon Dynasty

    Directory of Open Access Journals (Sweden)

    Yong Sam Lee

    2016-09-01

    Full Text Available We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀 made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong, Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀, is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷 currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影, as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong. Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  5. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    Science.gov (United States)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  6. The star ''Sun''

    International Nuclear Information System (INIS)

    Pecker, J.-C.

    1982-01-01

    The author gives a resume of our knowledge of the Sun. In particular, he discusses the mass, luminosity and chemical composition of the Sun, and then asks what an observer from Sirius would think about the Sun. (G.T.H.)

  7. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  8. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  9. Dynamos of the Sun, Stars, and Planets - Preface

    Science.gov (United States)

    Stix, M.

    2005-04-01

    The conference ``Dynamos of the Sun, Stars, and Planets'' was organized by the Kiepenheuer-Institut für Sonnenphysik Freiburg, and was held at the University of Freiburg from 4th to 6th October 2004. About 50 participants attended the conference, with 8 review lectures, 20 contributed talks, and 6 posters. With only few exceptions, these contributions appear in the present issue of Astronomische Nachrichten. This preface summarizes the discussion of the closing session.

  10. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Hinz, P.; Mennesson, B.; Kennedy, G. M.; Danchi, W. C.; Gelino, C.; Hill, J. M.; Hoffmann, W. F.; Rieke, G.; Shannon, A.; Spalding, E.; Stone, J. M.; Vaz, A.; Weinberger, A. J.; Willems, P.; Absil, O.; Arbo, P.; Bailey, V. P.; Beichman, C.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C. A.; Leisenring, J. M.; Marion, L.; McMahon, T. J.; Millan-Gabet, R.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Power, J.; Puglisi, A.; Roberge, A.; Serabyn, E.; Skemer, A. J.; Stapelfeldt, K.; Su, K. Y. L.; Vaitheeswaran, V.; Wyatt, M. C.

    2018-05-01

    The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.

  11. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    Science.gov (United States)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic

  12. Observational evidence for gravitationally trapped massive axion(-like) particles

    CERN Document Server

    Di Lella, L

    2003-01-01

    Several unexpected astrophysical observations can be explained by gravitationally captured massive axions or axion-like particles, which are produced inside the Sun or other stars and are accumulated over cosmic times. Their radiative decay in solar outer space would give rise to a `self-irradiation' of the whole star, providing the time-independent component of the corona heating source (we do not address here the flaring Sun). In analogy with the Sun-irradiated Earth atmosphere, the temperature and density gradient in the corona$-$chromosphere transition region is suggestive for an omnipresent irradiation of the Sun, which is the strongest evidence for the generic axion-like scenario. The same mechanism is compatible with phenomena like the solar wind, the X-rays from the dark-side of the Moon, the X-Ray Background Radiation, the diffuse X-ray excesses (below $\\sim 1$ keV), the non-cooling of oldest Stars, etc. A temperature of $\\sim 10^6$ K is observed in various places, while the radiative decay of a popu...

  13. ON THE CARBON-TO-OXYGEN RATIO MEASUREMENT IN NEARBY SUN-LIKE STARS: IMPLICATIONS FOR PLANET FORMATION AND THE DETERMINATION OF STELLAR ABUNDANCES

    International Nuclear Information System (INIS)

    Fortney, Jonathan J.

    2012-01-01

    Recent high-resolution spectroscopic analysis of nearby FGK stars suggests that a high C/O ratio of greater than 0.8, or even 1.0, is relatively common. Two published catalogs find C/O > 0.8 in 25%-30% of systems, and C/O > 1.0 in ∼6%-10%. It has been suggested that in protoplanetary disks with C/O > 0.8 that the condensation pathways to refractory solids will differ from what occurred in our solar system, where C/O = 0.55. The carbon-rich disks are calculated to make carbon-dominated rocky planets, rather than oxygen-dominated ones. Here we suggest that the derived stellar C/O ratios are overestimated. One constraint on the frequency of high C/O is the relative paucity of carbon dwarf stars (10 –3 -10 –5 ) found in large samples of low-mass stars. We suggest reasons for this overestimation, including a high C/O ratio for the solar atmosphere model used for differential abundance analysis, the treatment of a Ni blend that affects the O abundance, and limitations of one-dimensional LTE stellar atmosphere models. Furthermore, from the estimated errors on the measured stellar C/O ratios, we find that the significance of the high C/O tail is weakened, with a true measured fraction of C/O > 0.8 in 10%-15% of stars, and C/O > 1.0 in 1%-5%, although these are still likely overestimates. We suggest that infrared T-dwarf spectra could show how common high C/O is in the stellar neighborhood, as the chemistry and spectra of such objects would differ compared to those with solar-like abundances. While possible at C/O > 0.8, we expect that carbon-dominated rocky planets are rarer than others have suggested.

  14. Observations spotted solar type stars in Pleiades

    International Nuclear Information System (INIS)

    Magnitskij, A.K.

    1987-01-01

    The september - october 1986 observations discovered periodic light variations in three solar type stars in the Pleiades cluster: Hz 296 (0.8 M Sun ), Hz152(0.91 M Sun ) and Hz739(1.15 M Sun ). Periods and amplitudes are accordingly 2 d and 0 m .11, 4 d .12 and 0 m .07, 2 d .70 and 0 m .05. Considerable light variations of these stars in Pleiades are due to the rotation of spotted stars. Contrast spots of solar type stars likely exist when stars are young and rapidly rotate

  15. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  16. Design and Characterization of the 4STAR Sun-Sky Spectrometer with Results from 4- Way Intercomparison of 4STAR, AATS-14, Prede, and Cimel Photometers at Mauna Loa Observatory.

    Science.gov (United States)

    Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.

    2008-12-01

    Uncertainties in radiative forcing of climate are still dominated by uncertainties in forcing by aerosols. Aerosols impact the radiation balance in three primary ways: the direct effect through scattering and absorption of radiation, the indirect effect by acting as cloud condensation nuclei affecting cloud optical depth and longevity, and the semi-direct effect affecting cloud formation and longevity through heating and thermodynamics. An active collaboration between the Pacific Northwest National Laboratory (PNNL), National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and NASA Goddard Space Flight Center (GSFC) is advancing new instrument concepts with application to reducing these aerosol uncertainties. The concept of 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) and Aeronet-like sky scanning capability with state-of-the-art monolithic spectrometry. The overall science goal for the new instruments is to improve knowledge of atmospheric constituents and their links to climate. The high-resolution spectral capability will improve retrievals of gas constituents (e.g., H2O, O3, and NO2) and thereby improve determination of aerosol properties as residual components of the total optical depth. The sky scanning capability will enable retrievals of aerosol type (via complex refractive index and shape) and aerosol size distribution extending to larger sizes than attainable by direct-beam sun photometry alone. Additional technical goals are to reduce instrument size, weight, and power requirements while increasing autonomy and component modularity to permit operation on a wide range of aircraft including unmanned aerial vehicles (UAVs). To investigate techniques to accomplish these goals, we developed a ground-based prototype, 4STAR-Ground. The 4STAR-Ground operating performance has been characterized in many tests

  17. Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System

    Science.gov (United States)

    Eddy, John A.

    2010-01-01

    In a world of warmth and light and living things we soon forget that we are surrounded by a vast universe that is cold and dark and deadly dangerous, just beyond our door. On a starry night, when we look out into the darkness that lies around us, the view can be misleading in yet another way: for the brightness and sheer number of stars, and their chance groupings into familiar constellations, make them seem much nearer to each other, and to us, that in truth they are. And every one of them--each twinkling, like a diamond in the sky--is a white-hot sun, much like our own. The nearest stars in our own galaxy--the Milky Way-- are more than a million times further away from us than our star, the Sun. We could make a telephone call to the Moon and expect to wait but a few seconds between pieces of a conversation, or but a few hours in calling any planet in our solar system.

  18. THE WHITE DWARFS WITHIN 20 PARSECS OF THE SUN: KINEMATICS AND STATISTICS

    International Nuclear Information System (INIS)

    Sion, Edward M.; McCook, George P.; Wasatonic, Richard; Holberg, J. B.; Oswalt, Terry D.

    2009-01-01

    We present the kinematical properties, distribution of spectroscopic subtypes, and stellar population subcomponents of the white dwarfs within 20 pc of the Sun. We find no convincing evidence of halo white dwarfs in the total 20 pc sample of 129 white dwarfs nor is there convincing evidence of genuine thick disk subcomponent members within 20 parsecs. Virtually, the entire 20 pc sample likely belongs to the thin disk. The total DA to non-DA ratio of the 20 pc sample is 1.6, a manifestation of deepening envelope convection which transforms DA stars with sufficiently thin H surface layers into non-DAs. The addition of five new stars to the 20 pc sample yields a revised local space density of white dwarfs of (4.9 ± 0.5) x 10 -3 pc -3 and a corresponding mass density of (3.3 ± 0.3) x 10 -3 M sun pc -3 . We find that at least 15% of the white dwarfs within 20 parsecs of the Sun (the DAZ and DZ stars) have photospheric metals that possibly originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, this suggests the possibility that the same percentage have planets or asteroid-like bodies orbiting them.

  19. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    OpenAIRE

    Yong Sam Lee; Sang Hyuk Kim; Byeong-Hee Mihn

    2016-01-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without ...

  20. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    Science.gov (United States)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  1. Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Science.gov (United States)

    Lanza, A. F.; Molaro, P.; Monaco, L.; Haywood, R. D.

    2016-03-01

    Context. Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. Aims: We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programmes. Methods: We used the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlated this velocity with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. Results: We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at ~95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 ± 1.44 m/s, which is in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Conclusions: Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.

  2. Optical Polarization of 1000 Stars Within 50-PARSECS from the Sun

    Science.gov (United States)

    Leroy, J. L.

    1993-11-01

    We have prepared a catalogue of optical polarization measurements for 1000 stars closer than 50 parsecs from the Sun. The distances, which are presently those given in the Sky Catalogue 2000.0, 2nd edition (Hirshfeld et al. 1991) are provisional: they will be replaced later by the much safer parallaxes which will result from the Hipparcos mission. The polarization data have been compiled, for 60% in various catalogues with due care to their accuracy for 40% they are new, unpublished, measurements obtained at Pic du Midi Observatory. We expect that this new data base will allow a better understanding of the interstellar medium around the Sun; the analysis, similar to the beautiful work by Tinbergen (1982), is to be found in a companion paper.

  3. Sounds of a Star

    Science.gov (United States)

    2001-06-01

    Acoustic Oscillations in Solar-Twin "Alpha Cen A" Observed from La Silla by Swiss Team Summary Sound waves running through a star can help astronomers reveal its inner properties. This particular branch of modern astrophysics is known as "asteroseismology" . In the case of our Sun, the brightest star in the sky, such waves have been observed since some time, and have greatly improved our knowledge about what is going on inside. However, because they are much fainter, it has turned out to be very difficult to detect similar waves in other stars. Nevertheless, tiny oscillations in a solar-twin star have now been unambiguously detected by Swiss astronomers François Bouchy and Fabien Carrier from the Geneva Observatory, using the CORALIE spectrometer on the Swiss 1.2-m Leonard Euler telescope at the ESO La Silla Observatory. This telescope is mostly used for discovering exoplanets (see ESO PR 07/01 ). The star Alpha Centauri A is the nearest star visible to the naked eye, at a distance of a little more than 4 light-years. The new measurements show that it pulsates with a 7-minute cycle, very similar to what is observed in the Sun . Asteroseismology for Sun-like stars is likely to become an important probe of stellar theory in the near future. The state-of-the-art HARPS spectrograph , to be mounted on the ESO 3.6-m telescope at La Silla, will be able to search for oscillations in stars that are 100 times fainter than those for which such demanding observations are possible with CORALIE. PR Photo 23a/01 : Oscillations in a solar-like star (schematic picture). PR Photo 23b/01 : Acoustic spectrum of Alpha Centauri A , as observed with CORALIE. Asteroseismology: listening to the stars ESO PR Photo 23a/01 ESO PR Photo 23a/01 [Preview - JPEG: 357 x 400 pix - 96k] [Normal - JPEG: 713 x 800 pix - 256k] [HiRes - JPEG: 2673 x 3000 pix - 2.1Mb Caption : PR Photo 23a/01 is a graphical representation of resonating acoustic waves in the interior of a solar-like star. Red and blue

  4. Astronomy: A small star with an Earth-like planet

    Science.gov (United States)

    Deming, Drake

    2015-11-01

    A rocky planet close in size to Earth has been discovered in the cosmic vicinity of our Sun. The small size and proximity of the associated star bode well for studies of the planet's atmosphere. See Letter p.204

  5. Influence of a stellar wind on the evolution of a star of 30 M/sub sun/

    International Nuclear Information System (INIS)

    Stothers, R.; Chin, C.

    1980-01-01

    A coarse grid of theoretical evolutionary tracks has been computed for a star of 30 M/sub sun/, in an attempt to delineate the role of mass loss in the star's evolution during core helium burning. For all of the tracks, Cox-Stewart opacities have been adopted, and the free parameters have included the rate of mass loss, criterion for convection, and initial chemical composition. With the use of the Schwarzschild criterion, the star suffers little mass loss during core helium burning and remains almost to the end, a blue supergiant, well separated from main-sequence stars on the H-R diagram. With the use of the Ledoux criterion, the same consequences are obtained only in the case of a relatively low initial hydrogen or initial metals abundance. Otherwise, the star evolves, first, into a red supergiant, whereupon rapid mass loss must be assumed to take place, if the observed paucity of very bright red supergiants is to be accounted for. The stellar remnant then consists of little more than the original helium core, and may appear, for a time, bluer than equally luminous main-sequence stars, provided that the the initial hydrogen and metals abundances are normal. Thus, a wide variety of possible evolutionary tracks can be obtained for an initial mass of 30 M/sub sun/ with reasonable choices of the free parameters

  6. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  7. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  8. The sun in time

    International Nuclear Information System (INIS)

    Sonett, C.P.; Giampapa, M.S.; Matthews, M.S.

    1991-01-01

    Various papers on solar science are presented. The topics considered include: variability of solar irradiance, sunspot number, solar diameter, and solar wind properties; theory of luminosity and radius variations; standard solar models; the sun and the IMF; variations of cosmic-ray flux with time; accelerated particles in solar flares; solar cosmic ray fluxes during the last 10 million yrs; solar neutrinos and solar history; time variations of Be-10 and solar activity; solar and terrestrial components of the atmospheric C-14 variation spectrum; solar flare heavy-ion tracks in extraterrestrial objects. Also addressed are: the faint young sun problem; atmospheric responses to solar irradiation; quaternary glaciations; solar-terrestrial relationships in recent sea sediments; magnetic history of the sun; pre- and main-sequence evolution of solar activity; magnetic activity in pre-main-sequence stars; classical T Tauri stars; relict magnetism of meteorites; luminosity variability of solar-type stars; evolution of angular momentum in solar-mass stars; time evolution of magnetic fields on solarlike stars

  9. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Indebetouw, R.; Marengo, M.; Sloan, G. C.

    2010-01-01

    We model multi-wavelength broadband UBVIJHK s and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with γ of -3.5, a min of 0.01 μm, and a 0 of 0.1 μm to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be ∼5100 L sun and ∼36,000 L sun , respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of ∼3 M sun and ∼7 M sun . This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius ∼17 and ∼52 times the stellar radius, respectively, with dust temperatures there of

  10. Investigation of Preservice Science Teachers' Comprehension of the Star, Sun, Comet and Constellation Concepts

    Science.gov (United States)

    Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan

    2017-01-01

    The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…

  11. 'My child did not like using sun protection': practices and perceptions of child sun protection among rural black African mothers.

    Science.gov (United States)

    Kunene, Zamantimande; Albers, Patricia N; Lucas, Robyn M; Banwell, Cathy; Mathee, Angela; Wright, Caradee Y

    2017-08-25

    Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child's 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade). Most mothers (97%) liked the sun protection equipment. However, many (78 of 86) reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  12. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Skin chronically exposed to sun results in phenotypic changes referred as photoaging. This aspect of aging has been studied extensively through genomic and proteomic tools. Metabolites, the end product are generated as a result of biochemical reactions are often studied as a culmination of complex interplay of gene and protein expression. In this study, we focused exclusively on the metabolome to study effects from sun-exposed and sun-protected skin sites from 25 human subjects. We generated a highly accurate metabolomic signature for the skin that is exposed to sun. Biochemical pathway analysis from this data set showed that sun-exposed skin resides under high oxidative stress and the chains of reactions to produce these metabolites are inclined toward catabolism rather than anabolism. These catabolic activities persuade the skin cells to generate metabolites through the salvage pathway instead of de novo synthesis pathways. Metabolomic profile suggests catabolic pathways and reactive oxygen species operate in a feed forward fashion to alter the biology of sun exposed skin.

  13. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  14. Many skies alternative histories of the Sun, Moon, planets, and stars

    CERN Document Server

    Upgren, Arthur

    2005-01-01

    Many Skies: Alternative Histories of the Sun, Moon, Planets, and Stars examines the changes in science that  alternative solar, stellar, and galactic arrangements would have brought, and explores the different theologies, astrologies, and methods of tracking time that would have developed to reflect them. Our perception of our surroundings, the number of gods we worship, the symbols we use in art and literature, even the way we form nations and empires are all closely tied to our particular (and accidental) placement in the universe.  Upgren also explores the actual ways tha

  15. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  16. Stars of strange matter

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.; Cooperstein, J.

    1987-01-01

    We investigate suggestions that quark matter with strangeness per baryon of order unity may be stable. We model this matter at nuclear matter densities as a gas of close packed Λ-particles. From the known mass of the Λ-particle we obtain an estimate of the energy and chemical potential of strange matter at nuclear densities. These are sufficiently high to preclude any phase transition from neutron matter to strange matter in the region near nucleon matter density. Including effects from gluon exchange phenomenologically, we investigate higher densities, consistently making approximations which underestimate the density of transition. In this way we find a transition density ρ tr > or approx.7ρ 0 , where ρ 0 is nuclear matter density. This is not far from the maximum density in the center of the most massive neutron stars that can be constructed. Since we have underestimated ρ tr and still find it to be ∝7ρ 0 , we do not believe that the transition from neutron to quark matter is likely in neutron stars. Moreover, measured masses of observed neutron stars are ≅1.4 M sun , where M sun is the solar mass. For such masses, the central (maximum) density is ρ c 0 . Transition to quark matter is certainly excluded for these densities. (orig.)

  17. The difficult births of sunlike stars

    International Nuclear Information System (INIS)

    Stahler, S.; Comins, N.

    1988-01-01

    Over 4.5 billion years ago a small region deep inside an enormous cloud of interstellar gas and dust, located in an outer spiral arm of the Milky Way, gradually contracted until it became gravitationally unstable. When the density in this region of the cloud became great enough to allow gravity to overcome all other forces acting on it, the region collapsed. Materials swirled inward, condensed, heated up, radiated energy, and eventually settled down to form the Sun and our solar system. What properties did that original unstable region have when it began to shrink? Astronomers know it rotated, because its angular momentum manifests itself today mostly in the orbital motions of the planets. But that alone cannot help us answer even the most fundamental questions we have about how stars like the Sun form. To find out more, astronomers are studying similar collapsing regions of interstellar gas and dust in the Milky Way known as cold cores, which are even now in the process of becoming solar-type stars. Astronomers want to answer three specific questions: What qualities do these cold cores have that allow stars like the Sun to form from them? What exactly happens during the collapse process? And how do newly formed stars evolve?

  18. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    Directory of Open Access Journals (Sweden)

    Zamantimande Kunene

    2017-08-01

    Full Text Available Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. They were then provided with sun protection equipment and advice. A follow-up questionnaire was administered two weeks later. Results Mothers reported that during the week prior to the baseline questionnaire, children spent on average less than 1 hour of time outdoors (most often spent in the shade. Most mothers (97% liked the sun protection equipment. However, many (78 of 86 reported that their child did not like any of the sun protection equipment and two-thirds stated that the sun protection equipment was not easy to use. Conclusions Among Black Africans in rural northern South Africa, we found a mismatch between parental preferences and child acceptance for using sun protection when outdoors. A better understanding of the health risks of incidental excess sun exposure and potential benefits of sun protection is required among Black Africans.

  19. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Science.gov (United States)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.

    2017-08-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  20. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    International Nuclear Information System (INIS)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M.; Folini, D.; Popov, M. V.; Walder, R.

    2017-01-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  1. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Folini, D.; Popov, M. V.; Walder, R., E-mail: i.baraffe@ex.ac.uk [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France)

    2017-08-10

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  2. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  3. On the signatures of flare-induced global waves in the Sun: GOLF and VIRGO observations

    Science.gov (United States)

    Kumar, Brajesh; Mathur, Savita; García, Rafael A.; Jiménez, Antonio

    2017-11-01

    Recently, several efforts have been made to identify the seismic signatures of flares and magnetic activity in the Sun and Sun-like stars. In this work, we have analysed the disc-integrated velocity and intensity observations of the Sun obtained from the Global Oscillations at Low Frequencies (GOLF) and Variability of solar IRradiance and Gravity Oscillations/Sun photometers (VIRGO/SPM) instruments, respectively, on board the Solar and Heliospheric Observatory space mission covering several successive flare events, for the period from 2011 February 11 to 2011 February 17, of which 2011 February 11 remained a relatively quiet day and served as a `null test' for the investigation. Application of the spectral analysis to these disc-integrated Sun-as-a-star velocity and intensity signals indicates that there is enhanced power of the global modes of oscillations in the Sun during the flares, as compared to the quiet day. The GOLF instrument obtains velocity observations using the Na I D lines which are formed in the upper solar photosphere, while the intensity data used in our analysis are obtained by VIRGO/SPM instrument at 862 nm, which is formed within the solar photosphere. Despite the fact that the two instruments sample different layers of the solar atmosphere using two different parameters (velocity versus intensity), we have found that both these observations show the signatures of flare-induced global waves in the Sun. These results could suffice in identifying the asteroseismic signatures of stellar flares and magnetic activity in the Sun-like stars.

  4. 100 billion suns

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1983-01-01

    A work on the world of astrophysics primarily for lay readers. The author writes only about the discoveries he ''experienced'' during the past 25 years (before 1979). Illustrated somewhat in color plus a set of superb colar plates. Contents, abridged: The long life of stars. The life story of the sun. The life story of massive stars. The end of stars. How stars are born. Planets and their inhabitants

  5. Another Possibility for Boyajian's Star

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The unusual light curve of the star KIC 8462852, also known as Tabbys star or Boyajians star, has puzzled us since its discovery last year. A new study now explores whether the stars missing flux is due to internal blockage rather than something outside of the star.Mysterious DipsMost explanations for the flux dips of Boyajians star rely on external factors, like this illustrated swarm of comets. [NASA/JPL-Caltech]Boyajians star shows unusual episodes of dimming in its light curve by as much as 20%, each lasting a few to tens of days and separated by periods of typically hundreds of days. In addition, archival observations show that it has gradually faded by roughly 15% over the span of the last hundred years. What could be causing both the sporadic flux dips and the long-term fading of this odd star?Explanations thus far have varied from mundane to extreme. Alien megastructures, pieces of smashed planets or comets orbiting the star, and intervening interstellar medium have all been proposed as possible explanations but these require some object external to the star. A new study by researcher Peter Foukal proposes an alternative: what if the source of the flux obstruction is the star itself?Analogy to the SunDecades ago, researchers discovered that our own stars total flux isnt as constant as we thought. When magnetic dark spots on the Suns surface block the heat transport, the Suns luminosity dips slightly. The diverted heat is redistributed in the Suns interior, becoming stored as a very small global heating and expansion of the convective envelope. When the blocking starspot is removed, the Sun appears slightly brighter than it did originally. Its luminosity then gradually relaxes, decaying back to its original value.Model of a stars flux after a 1,000-km starspot is inserted at time t = 0 and removed at time t = ts at a depth of 10,000 km in the convective zone. The stars luminosity dips, then becomes brighter than originally, and then gradually decays. [Foukal

  6. Stars rich in heavy metals tend to harbor planets

    CERN Multimedia

    2003-01-01

    "A comparison of 754 nearby stars like our Sun - some with planets and some without - shows definitively that the more iron and other metals there are in a star, the greater the chance it has a companion planet" (1 page).

  7. The same frequency of planets inside and outside open clusters of stars.

    Science.gov (United States)

    Meibom, Søren; Torres, Guillermo; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin

    2013-07-04

    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.

  8. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  9. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  10. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  11. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  12. The white dwarfs within 25 pc of the Sun: Kinematics and spectroscopic subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Sion, Edward M.; McCook, George P.; Wasatonic, Richard; Myszka, Janine [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Holberg, J. B. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 75201 (United States); Oswalt, Terry D., E-mail: edward.sion@villanova.edu, E-mail: george.mccook@villanova.edu, E-mail: richard.wasatonic@villanova.edu, E-mail: janine.myszka@villanova.edu, E-mail: holberg@vega.lpl.arizona.edu, E-mail: toswalt@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 19085 (United States)

    2014-06-01

    We present the fractional distribution of spectroscopic subtypes, range and distribution of surface temperatures, and kinematical properties of the white dwarfs (WDs) within 25 pc of the Sun. There is no convincing evidence of halo WDs in the total 25 pc sample of 224 WDs. There is also little to suggest the presence of genuine thick disk subcomponent members within 25 pc. It appears that the entire 25 pc sample likely belongs to the thin disk. We also find no significant kinematic differences with respect to spectroscopic subtypes. The total DA to non-DA ratio of the 25 pc sample is 1.8, a manifestation of deepening envelope convection, which transforms DA stars with sufficiently thin H surface layers into non-DAs. We compare this ratio with the results of other studies. We find that at least 11% of the WDs within 25 pc of the Sun (the DAZ and DZ stars) have photospheric metals that likely originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, then it suggests the possibility that a similar percentage have planets, asteroid-like bodies, or debris disks orbiting them. Our volume-limited sample reveals a pileup of DC WDs at the well-known cutoff in DQ WDs at T {sub eff} ∼ 6000 K. Mindful of small number statistics, we speculate on its possible evolutionary significance. We find that the incidence of magnetic WDs in the 25 pc sample is at least 8% in our volume-limited sample, dominated by cool WDs. We derive approximate formation rates of DB and DQ degenerates and present a preliminary test of the evolutionary scenario that all cooling DB stars become DQ WDs via helium convective dredge-up with the diffusion tail of carbon extending upward from their cores.

  13. Massive stars evolution with mass-loss. 20-100 M(sun) models

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Sreenivasan, S R [Calgary Univ., Alberta (Canada). Dept. of Physics; Nasi, E [Padua Univ. (Italy). Istituto di Astronomia

    1978-02-01

    The evolution of stars with initial masses 20, 30, 40, 60, 80, 100 M(sun) and Population I chemical composition (X = 0.700, Z = 0.02) is calculated, taking into account mass-loss due to stellar winds, from the main sequence up to the early stages of central He-burning. This study incorporates mass-loss rates predicted by the theory of Castor et al. (1975) for the early type phases and a novel way of treating mass-loss rates due to acoustic energy flux driven winds in the later stages analogous to the work of Fusi-Pecci and Renzini (1975a). The results are presented in terms of evolutionary tracks, isochrones, loci of constant mass-loss rates and loci of constant mass in the HR diagram. The effects of mass-loss on the internal structure of the models as well as on the occurrence of semiconvection are also investigated. A detailed comparison of the theoretical predictions and observational results is made and possible implications for O, Of, Wolf-Rayet stars and red supergiants are brought out.

  14. ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Lada, Charles J.; Lombardi, Marco; Alves, Joao F.

    2010-01-01

    In this paper, we investigate the level of star formation activity within nearby molecular clouds. We employ a uniform set of infrared extinction maps to provide accurate assessments of cloud mass and structure and compare these with inventories of young stellar objects within the clouds. We present evidence indicating that both the yield and rate of star formation can vary considerably in local clouds, independent of their mass and size. We find that the surface density structure of such clouds appears to be important in controlling both these factors. In particular, we find that the star formation rate (SFR) in molecular clouds is linearly proportional to the cloud mass (M 0.8 ) above an extinction threshold of A K ∼ 0.8 mag, corresponding to a gas surface density threshold of Σ gas ∼ 116 M sun pc 2 . We argue that this surface density threshold corresponds to a gas volume density threshold which we estimate to be n(H 2 ) ∼ 10 4 cm -3 . Specifically, we find SFR (M sun yr -1 ) = 4.6 ± 2.6 x 10 -8 M 0.8 (M sun ) for the clouds in our sample. This relation between the rate of star formation and the amount of dense gas in molecular clouds appears to be in excellent agreement with previous observations of both galactic and extragalactic star-forming activity. It is likely the underlying physical relationship or empirical law that most directly connects star formation activity with interstellar gas over many spatial scales within and between individual galaxies. These results suggest that the key to obtaining a predictive understanding of the SFRs in molecular clouds and galaxies is to understand those physical factors which give rise to the dense components of these clouds.

  15. Excitation of Solar-like Oscillations: From PMS to MS Stellar Models ...

    Indian Academy of Sciences (India)

    excited modes in pre-main sequence stars are also discussed. Key words. Turbulence—convection—oscillations—excitation—sun, stars: α Cen A—stars: main and pre-main sequence stars. 1. Introduction. In the past approximately five years, solar-like oscillations have been detected in several intermediate massive stars ...

  16. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  17. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  18. CALIBRATING CONVECTIVE PROPERTIES OF SOLAR-LIKE STARS IN THE KEPLER FIELD OF VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Bonaca, Ana; Tanner, Joel D.; Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Chaplin, William J.; Metcalfe, Travis S.; Christensen-Dalsgaard, Jorgen; Garcia, Rafael A.; Mathur, Savita [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Monteiro, Mario J. P. F. G.; Campante, Tiago L. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, Jerome [CNRS, Institut de Recherche en Astrophysique et Planetologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Bedding, Timothy R.; Corsaro, Enrico [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Bonanno, Alfio [INAF-Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania (Italy); Broomhall, Anne-Marie; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Bruntt, Hans; Karoff, Christoffer; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Hekker, Saskia, E-mail: ana.bonaca@yale.edu, E-mail: sarbani.basu@yale.edu, E-mail: joel.tanner@yale.edu [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); and others

    2012-08-10

    Stellar models generally use simple parameterizations to treat convection. The most widely used parameterization is the so-called mixing-length theory where the convective eddy sizes are described using a single number, {alpha}, the mixing-length parameter. This is a free parameter, and the general practice is to calibrate {alpha} using the known properties of the Sun and apply that to all stars. Using data from NASA's Kepler mission we show that using the solar-calibrated {alpha} is not always appropriate, and that in many cases it would lead to estimates of initial helium abundances that are lower than the primordial helium abundance. Kepler data allow us to calibrate {alpha} for many other stars and we show that for the sample of stars we have studied, the mixing-length parameter is generally lower than the solar value. We studied the correlation between {alpha} and stellar properties, and we find that {alpha} increases with metallicity. We therefore conclude that results obtained by fitting stellar models or by using population-synthesis models constructed with solar values of {alpha} are likely to have large systematic errors. Our results also confirm theoretical expectations that the mixing-length parameter should vary with stellar properties.

  19. Our explosive sun a visual feast of our source of light and life

    CERN Document Server

    Brekke, Pal

    2012-01-01

    The center of our Solar System is a star, one among billions of stars in our own galaxy. This star, which we call the Sun, gives rise to all life on Earth, is the driver of the photosynthesis in plants, and is the source of all food, energy, and fossil fuels on Earth. For us humans, the Sun as seen with the naked eye appears as a static and quiet yellow disk in the sky. However, it is in fact a stormy and variable star and contributes much more than only light and heat. It is the source of the beautiful northern and southern lights and can affect our technology-based society in many ways. The Sun is, like astronomy in general, a good entrance to natural science, since it affects us in so many ways and connects us to many other fields of science, such as physics, chemistry, biology, and meteorology. The book includes additional material on Springer Extras, a large number of animations and video material. A PowerPoint presentation of the book is also included there as a useful resource for teachers.

  20. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR ε ERIDANI

    International Nuclear Information System (INIS)

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-01-01

    The active K2 dwarf ε Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in ε Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 ± 0.03 years and 12.7 ± 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Böhm-Vitense. Finally, based on the observed properties of ε Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  1. Search for kinematic siblings of the sun based on data from the XHIP catalog

    Science.gov (United States)

    Bobylev, V. V.; Bajkova, A. T.

    2014-06-01

    From the XHIP catalogue, we have selected 1872 F-G-K stars with relative parallax measurement errors new stars whose Galactic orbits were close to the solar one during a long time interval in the past. These stars are HIP 43852, HIP 104047, and HIP 112158. The spectroscopic binary HIP 112158 is poorly suited for the role of a kinematic sibling of the Sun by its age and spectroscopic characteristics. For the single star HIP 43852 and the multiple system HIP 104047, this role is quite possible. We have also confirmed the status of our previously found candidates for close encounters, HIP 47399 and HIP 87382. The star HIP 87382 with a chemical composition very close to the solar one is currently the most likely candidate, because it persistently shows close encounters with the Sun on time scales of more than 3 Gyr when using various Galactic potential models both without and with allowance made for the influence of the spiral density wave.

  2. Optimal Target Stars in the Search for Life

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    The selection of optimal targets in the search for life represents a highly important strategic issue. In this Letter, we evaluate the benefits of searching for life around a potentially habitable planet orbiting a star of arbitrary mass relative to a similar planet around a Sun-like star. If recent physical arguments implying that the habitability of planets orbiting low-mass stars is selectively suppressed are correct, we find that planets around solar-type stars may represent the optimal targets.

  3. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  4. WAS THE SUN BORN IN A MASSIVE CLUSTER?

    International Nuclear Information System (INIS)

    Dukes, Donald; Krumholz, Mark R.

    2012-01-01

    A number of authors have argued that the Sun must have been born in a cluster of no more than several thousand stars, on the basis that, in a larger cluster, close encounters between the Sun and other stars would have truncated the outer solar system or excited the outer planets into eccentric orbits. However, this dynamical limit is in tension with meteoritic evidence that the solar system was exposed to a nearby supernova during or shortly after its formation; a several-thousand-star cluster is much too small to produce a massive star whose lifetime is short enough to have provided the enrichment. In this paper, we revisit the dynamical limit in the light of improved observations of the properties of young clusters. We use a series of scattering simulations to measure the velocity-dependent cross-section for disruption of the outer solar system by stellar encounters, and use this cross-section to compute the probability of a disruptive encounter as a function of birth cluster properties. We find that, contrary to prior work, the probability of disruption is small regardless of the cluster mass, and that it actually decreases rather than increases with cluster mass. Our results differ from prior work for three main reasons: (1) unlike in most previous work, we compute a velocity-dependent cross-section and properly integrate over the cluster mass-dependent velocity distribution of incoming stars; (2) we recognize that ∼90% of clusters have lifetimes of a few crossing times, rather than the 10-100 Myr adopted in many earlier models; and (3) following recent observations, we adopt a mass-independent surface density for embedded clusters, rather than a mass-independent radius as assumed many earlier papers. Our results remove the tension between the dynamical limit and the meteoritic evidence, and suggest that the Sun was born in a massive cluster. A corollary to this result is that close encounters in the Sun's birth cluster are highly unlikely to truncate the

  5. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kenworthy, Matthew A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Cameron, Andrew Collier; Parley, Neil R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the

  6. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  7. MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Kraus, Adam L.; Ireland, Michael J.; Martinache, Frantz; Hillenbrand, Lynne A.

    2011-01-01

    We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M sun , raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that ∼2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other ∼1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests that fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M sun ) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M sun ) show a paucity of binary companions with separations of ∼>200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M B /M A ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (free-fall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.

  8. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    Science.gov (United States)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  9. Evolution of helium rich stars with hydrogen burning

    International Nuclear Information System (INIS)

    Roeser, M.

    1975-08-01

    Evolutionary tracks of stars with an initial chemical composition X = 0.100, Y = 0.8790, Z = 0.021 are calculated for masses of 0.35 M(sun), 0.66 M(sun), 1.00 M(sun), 2.00 M(sun), and 5.00 M(sun) and with X = 0.302, Y = 0.677, Z = 0.021 for masses of 1.00 M(sun), 3.00 M(sun), and 5.00 M(sun). The evolution is followed from hydrogen burning to helium burning and to carbon burning when the occasion arises. The data of evolution are presented and compared with normal Population I-stars. The helium rich stars show higher effective temperatures, much higher luminosities and therefore shorter time scales. They are situated in regions of the HR-diagram where observed helium stars are found. (orig.) [de

  10. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    Science.gov (United States)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  11. On the feasibility of studying the exospheres of Earth-like exoplanets by Lyman- α monitoring. Detectability constraints for nearby M stars

    Science.gov (United States)

    Castro, Ana I. Gómez de; Beitia-Antero, Leire; Ustamujic, Sabina

    2018-04-01

    Observations of the Earth's exosphere have unveiled an extended envelope of hydrogen reaching further than 10 Earth radii composed of atoms orbiting around the Earth. This large envelope increases significantly the opacity of the Earth to Lyman α (Ly α) photons coming from the Sun, to the point of making feasible the detection of the Earth's transit signature from 1.35 pc if pointing with an 8 meter primary mirror space telescope through a clean line of sight ( N H flux variability. We show that, in spite of the interstellar, heliospheric and astrospheric absorption, the transit signature in M5 V type stars would be detectable with a dedicated Ly α flux monitor implemented in a 4-8 m class space telescope. Such monitoring programs would enable measuring the robustness of planetary atmospheres under heavy space weather conditions like those produced by M-type stars. A 2-m class telescope, such as the World Space Observatory, would suffice to detect an Earth-like planet orbiting around Proxima Centauri, if there was such a planet or nearby M5 type stars.

  12. Tracing the journey of the Sun and the Solar siblings through the Milky Way

    Science.gov (United States)

    Martínez-Barbosa, Carmen Adriana

    2016-04-01

    This thesis is focused on studying the motion of the Sun and the Solar siblings through the Galaxy. The Solar siblings are stars that were born with the Sun in the same molecular cloud 4.6 Gyr ago. In the first part of the thesis, we present an efficient method to calculate the evolution of small systems embedded in larger systems. Generalizations of this method are used to calculate the motion of the Sun and the Solar siblings in an analytical potential containing a central bar and spiral arms. By integrating the orbit of the Sun backwards in time, we determine its birth radius and the amount of radial migration experienced by our star. The birth radius of the Sun is used to investigate the evolution and disruption of the Sun's birth cluster. Depending on the Galaxy model parameters, the present-day phase-space distribution of the Solar siblings might be quite different. We used these data to predict the regions in the Galaxy where it will be more likely to search for So! lar siblings in the future. Finally, we compute the stellar encounters experienced by the Sun along its orbit and their role on the stability of the outer Solar System.

  13. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Faculty of Science Bldg. 1 #711, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  14. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2016-01-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO_2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO_2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  15. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Andrew T.; McKee, Christopher F. [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States); Klein, Richard I. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R., E-mail: atmyers@berkeley.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  16. RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light

  17. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, T. S.; Mathur, S. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Buccino, A. P.; Mauas, P. J. D.; Petrucci, R. [Instituto de Astronomia y Fisica del Espacio (CONICET), C.C. 67 Sucursal 28, C1428EHA-Buenos Aires (Argentina); Brown, B. P. [Department of Astronomy and Center for Magnetic Self-Organization, University of Wisconsin, Madison, WI 53706-1582 (United States); Soderblom, D. R. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Henry, T. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); Hall, J. C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Basu, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  18. A planet in a polar orbit of 1.4 solar-mass star

    Directory of Open Access Journals (Sweden)

    Guenther E.W.

    2015-01-01

    Full Text Available Although more than a thousand transiting extrasolar planets have been discovered, only very few of them orbit stars that are more massive than the Sun. The discovery of such planets is interesting, because they have formed in disks that are more massive but had a shorter life time than those of solar-like stars. Studies of planets more massive than the Sun thus tell us how the properties of the proto-planetary disks effect the formation of planets. Another aspect that makes these planets interesting is that they have kept their original orbital inclinations. By studying them we can thus find out whether the orbital axes planets are initially aligned to the stars rotational axes, or not. Here we report on the discovery of a planet of a 1.4 solar-mass star with a period of 5.6 days in a polar orbit made by CoRoT. This new planet thus is one of the few known close-in planets orbiting a star that is substantially more massive than the Sun.

  19. Ultrabass Sounds of the Giant Star xi Hya

    Science.gov (United States)

    2002-05-01

    First Observations of Solar-type Oscillations in a Star Very Different from the Sun Summary About 30 years ago, astronomers realised that the Sun resonates like a giant musical instrument with well-defined periods (frequencies). It forms a sort of large, spherical organ pipe. The energy that excites these sound waves comes from the turbulent region just below the Sun's visible surface. Observations of the solar sound waves (known as " helioseismology ") have resulted in enormous progress in the exploration of the interior of the Sun, otherwise hidden from view. As is the case on Earth, seismic techniques can be applied and the detailed interpretation of the observed oscillation periods has provided quite accurate information about the structure and motions inside the Sun, our central star. It has now also become possible to apply this technique to some solar-type stars. The first observations concerned the northern star eta Bootis (cf. ESO PR 16/94 ). Last year, extensive and much more accurate observations with the 1.2-m Swiss telescope at the ESO La Silla Observatory proved that Alpha Centauri , a solar "twin", behaves very much like the Sun (cf. ESO PR 15/01 ), and that some of the periods are quite similar to those in the Sun. These new observational data were of a superb quality, and that study marked a true break-through in the new research field of " asteroseismology " (seismology of the stars) for solar-type stars. But what about other types of stars, for instance those that are much larger than the Sun? Based on an extremely intensive observing project with the same telescope, an international group of astronomers [1] has found that the giant star xi Hya ("xi" is the small greek letter [2]; "Hya" is an abbreviation of "Hydrae") behaves like a giant sub-ultra-bass instrument . This star is located in the constellation Hydra (the Water-Monster) at a distance of 130 light-years, it has a radius about 10 times that of the Sun and its luminosity is about 60

  20. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  1. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji [Astronomy Department, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Porto de Mello, Gustavo F.; Ferreira, Leticia D. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lactea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Agol, Eric, E-mail: jpaty@mail.ustc.edu.cn [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  2. The Sun

    CERN Document Server

    Golub, Leon

    2017-01-01

    Essential for life on earth and a major influence on our environment, the Sun is also the most fascinating object in the daytime sky. Every day we feel the effect of its coming and going – literally the difference between day and night. But figuring out what the Sun is, what it’s made of, why it glows so brightly, how old it is, how long it will last – all of these take thought and observation. Leon Golub and Jay M. Pasachoff offer an engaging and informative account of what scientists know about the Sun, and the history of these discoveries. Solar astronomers have studied the Sun over the centuries both for its intrinsic interest and in order to use it as a laboratory to reveal the secrets of other stars. The authors discuss the surface of the Sun, including sunspots and their eleven-year cycle, as well as the magnetism that causes them; the Sun’s insides, as studied mainly from seismic waves that astronomers record on its surface; the outer layers of the Sun that we see from Earth only at eclipses ...

  3. Tribute to Sun Kwok

    International Nuclear Information System (INIS)

    Leung, Kam Ching

    2016-01-01

    winds theory which revolutionized our understanding of the evolution of planetary nebulae. After he joined the University of Calgary, he collaborated with Bruce Hrivnak to discover many proto-planetary nebulae, the then missing link between asymptotic giant branch and planetary nebulae. Together with his former graduate student Kevin Volk, he analyzed the spectra obtained from the Low Resolution Spectrometer of the IRAS satellite and discovered the mysterious 21 micron emission feature, a feature that is still unidentified to this date. Through his work on millimeter-wave and infrared spectroscopy, Sun promoted the idea that evolved stars are prolific molecular factories. In addition to molecules and minerals, he suggested that evolved stars are also producing complex organics. His paper in Nature in 2004 demonstrated that organic synthesis in the late stages of stellar evolution can contaminate the chemical content of the Galaxy and can even affect the chemical composition of the primordial solar system. In addition to publishing in scientific journals, Sun has also written numerous articles in popular science magazines and given public talks to general audience all over the world. His two popular science books Cosmic Butterflies (Cambridge 2001) and Stardust: the cosmic seeds of life (Springer 2013) are extremely successful in the amateur astronomy communities. Sun is a dedicated teacher. He invested a great deal of efforts in his teaching. From the notes he developed over 20 years, he wrote the textbook Physics and Chemistry of the Interstellar Medium (University Science Books 2006). This book is now widely used all over the world, including leading universities such as Caltech. Sun has also been active in international service, having served as President of the IAU Working Group of Planetary Nebulae, President of IAU Commission 34 Interstellar Matter, and is the current President of IAU Commission F3 Astrobiology. Sun returned to Hong Kong in 2006 to take up the

  4. COMPARISON OF KEPLER PHOTOMETRIC VARIABILITY WITH THE SUN ON DIFFERENT TIMESCALES

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Reiners, Ansgar

    2013-01-01

    We utilize Kepler data to study the precision differential photometric variability of solar-type and cooler stars at different timescales, ranging from half an hour to three months. We define a diagnostic that characterizes the median differential intensity change between data bins of a given timescale. We apply the same diagnostics to Solar and Heliospheric Observatory data that has been rendered comparable to Kepler. The Sun exhibits similar photometric variability on all timescales as comparable solar-type stars in the Kepler field. The previously defined photometric ''range'' serves as our activity proxy (driven by starspot coverage). We revisit the fraction of comparable stars in the Kepler field that are more active than the Sun. The exact active fraction depends on what is meant by ''more active than the Sun'' and on the magnitude limit of the sample of stars considered. This active fraction is between a quarter and a third (depending on the timescale). We argue that a reliable result requires timescales of half a day or longer and stars brighter than M Kep of 14, otherwise non-stellar noise distorts it. We also analyze main sequence stars grouped by temperature from 6500 to 3500 K. As one moves to cooler stars, the active fraction of stars becomes steadily larger (greater than 90% for early M dwarfs). The Sun is a good photometric model at all timescales for those cooler stars that have long-term variability within the span of solar variability.

  5. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  6. Tracking Planets around the Sun

    Science.gov (United States)

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  7. A Look into the Hellish Cradles of Suns and Solar Systems

    Science.gov (United States)

    2009-09-01

    New images released today by ESO delve into the heart of a cosmic cloud, called RCW 38, crowded with budding stars and planetary systems. There, young stars bombard fledgling suns and planets with powerful winds and blazing light, helped in their task by short-lived, massive stars that explode as supernovae. In some cases, this onslaught cooks away the matter that may eventually form new solar systems. Scientists think that our own Solar System emerged from such an environment. The dense star cluster RCW 38 glistens about 5500 light years away in the direction of the constellation Vela (the Sails). Like the Orion Nebula Cluster, RCW 38 is an "embedded cluster", in that the nascent cloud of dust and gas still envelops its stars. Astronomers have determined that most stars, including the low mass, reddish ones that outnumber all others in the Universe, originate in these matter-rich locations. Accordingly, embedded clusters provide scientists with a living laboratory in which to explore the mechanisms of star and planetary formation. "By looking at star clusters like RCW 38, we can learn a great deal about the origins of our Solar System and others, as well as those stars and planets that have yet to come", says Kim DeRose, first author of the new study that appears in the Astronomical Journal. DeRose did her work on RCW 38 as an undergraduate student at the Harvard-Smithsonian Center for Astrophysics, USA. Using the NACO adaptive optics instrument on ESO's Very Large Telescope [1], astronomers have obtained the sharpest image yet of RCW 38. They focused on a small area in the centre of the cluster that surrounds the massive star IRS2, which glows in the searing, white-blue range, the hottest surface colour and temperatures possible for stars. These dramatic observations revealed that IRS2 is actually not one, but two stars - a binary system consisting of twin scorching stars, separated by about 500 times the Earth-Sun distance. In the NACO image, the astronomers

  8. Diffusion time scales and accretion in the sun

    International Nuclear Information System (INIS)

    Michaud, G.

    1977-01-01

    It is thought that surface abundances in the Sun could be due largely to accretion either of comets or grains, and it has been suggested that if surface convection zones were smaller than is usually indicated by model calculations, accretion would be especially important. Unless the zone immediately below the surface convection zone is sufficiently stable for diffusion to be important, other transport processes, such as turbulence and meridional circulation, more efficient than diffusion, will tend to homogenise the Sun. Diffusion is the slowest of the transport processes and will become important when other transport processes become inoperative. Using diffusion theory the minimum mass of the convection zone can be determined in order that transport processes at the bottom of the zone are not to influence abundances in the convection zone. If diffusion time scales are shorter than the life of the star (Sun) diffusion will modify the abundances in the convection zone. The mass in the convection zone for which diffusion time scales are equal to the life of the star on the main sequence then determines the minimum mass in the convection zone that justifies neglect of transport processes at the bottom of the convection zone. It is calculated here that, for the Sun, this mass is between 3 x 10 -3 and 10 -2 solar mass, and a general explosion is derived for the diffusion time scale as a function of the mass of the convection zone. (U.K.)

  9. PRE-SUPERNOVA EVOLUTION OF ROTATING SOLAR METALLICITY STARS IN THE MASS RANGE 13-120 M {sub Sun} AND THEIR EXPLOSIVE YIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Chieffi, Alessandro [Istituto Nazionale di Astrofisica-Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Limongi, Marco, E-mail: alessandro.chieffi@inaf.it, E-mail: marco.limongi@oa-roma.inaf.it [Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, P.O. Box 28M, Monash University, Victoria 3800 (Australia)

    2013-02-10

    We present the first set of a new generation of models of massive stars with a solar composition extending between 13 and 120 M {sub Sun }, computed with and without the effects of rotation. We included two instabilities induced by rotation: the meridional circulation and the shear instability. We implemented two alternative schemes to treat the transport of the angular momentum: the advection-diffusion formalism and the simpler purely diffusive one. The full evolution from the pre-main sequence up to the pre-supernova stage is followed in detail with a very extended nuclear network. The explosive yields are provided for a variety of possible mass cuts and are available at the Web site http://www.iasf-roma.inaf.it/orfeo/public{sub h}tml. We find that both the He and the CO core masses are larger than those of their non-rotating counterparts. Also the C abundance left by the He burning is lower than in the non-rotating case, especially for stars with an initial mass of 13-25 M {sub Sun }, and this affects the final mass-radius relation, basically the final binding energy, at the pre-supernova stage. The elemental yields produced by a generation of stars rotating initially at 300 km s{sup -1} do not change substantially with respect to those produced by a generation of non-rotating massive stars, the main differences being a slight overproduction of the weak s-component and a larger production of F. Since rotation also affects the mass-loss rate, either directly or indirectly, we find substantial differences in the lifetimes as O-type and Wolf-Rayet subtypes between the rotating and non-rotating models. The maximum mass exploding as Type IIP supernova ranges between 15 and 20 M {sub Sun} in both sets of models (this value depends basically on the larger mass-loss rates in the red supergiant phase due to the inclusion of the dust-driven wind). This limiting value is in remarkably good agreement with current estimates.

  10. Seismology of rapidly rotating and solar-like stars

    Science.gov (United States)

    Reese, Daniel Roy

    2018-05-01

    A great deal of progress has been made in stellar physics thanks to asteroseismology, the study of pulsating stars. Indeed, asteroseismology is currently the only way to probe the internal structure of stars. The work presented here focuses on some of the theoretical aspects of this domain and addresses two broad categories of stars, namely solar-like pulsators (including red giants), and rapidly rotating pulsating stars. The work on solar-like pulsators focuses on setting up methods for efficiently characterising a large number of stars, in preparation for space missions like TESS and PLATO 2.0. In particular, the AIMS code applies an MCMC algorithm to find stellar properties and a sample of stellar models which fit a set of seismic and classic observational constraints. In order to reduce computation time, this code interpolates within a precalculated grid of models, using a Delaunay tessellation which allows a greater flexibility on the construction of the grid. Using interpolated models based on the outputs from this code or models from other forward modelling codes, it is possible to obtain refined estimates of various stellar properties such as the mean density thanks to inversion methods put together by me and G. Buldgen, my former PhD student. Finally, I show how inversion-type methods can also be used to test more qualitative information such as whether a decreasing rotation profile is compatible with a set of observed rotational splittings and a given reference model. In contrast to solar-like pulsators, the pulsation modes of rapidly rotating stars remain much more difficult to interpret due to the complexity of the numerical calculations needed to calculate such modes, the lack of simple frequency patterns, and the fact that it is difficult to predict mode amplitudes. The work described here therefore focuses on addressing the above difficulties one at a time in the hopes that it will one day be possible to carry out detailed asteroseismology in these

  11. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  12. WIDE COMPANIONS TO HIPPARCOS STARS WITHIN 67 pc OF THE SUN

    International Nuclear Information System (INIS)

    Tokovinin, Andrei; Lépine, Sébastien

    2012-01-01

    A catalog of common-proper-motion (CPM) companions to stars within 67 pc of the Sun is constructed based on the SUPERBLINK proper-motion survey. It contains 1392 CPM pairs with angular separations 30'' –1 , and magnitudes and colors of the secondaries consistent with those of dwarfs in the (M V , V – J) diagram. In addition, we list 21 candidate white dwarf CPM companions with separations under 300'', about half of which should be physical. We estimate a 0.31 fraction of pairs with red dwarf companions to be physical systems (about 425 objects), while the rest (mostly wide pairs) are chance alignments. For each candidate companion, the probability of a physical association is evaluated. The distribution of projected separations s of the physical pairs between 2 kAU and 64 kAU follows f(s)∝s –1.5 , which decreases faster than Öpik's law. We find that solar-mass dwarfs have no less than 4.4% ± 0.3% companions with separations larger than 2 kAU, or 3.8% ± 0.3% per decade of orbital separation in the 2-16 kAU range. The distribution of mass ratio of those wide companions is approximately uniform in the 0.1 < q < 1.0 range, although we observe a dip at q ≅ 0.5 which, if confirmed, could be evidence of bimodal distribution of companion masses. New physical CPM companions to two exoplanet host stars are discovered.

  13. Hemispheric asymmetry of the sun suggested by the annual variation of the aa index

    International Nuclear Information System (INIS)

    Oksman, J.; Kataja, E.

    1986-01-01

    The annual variation of Mayaud's aa index has been discovered to exhibit unequal spring and fall maxima, the relative dominance of the two equinoxes varying in a quasiperiodic way. This finding suggests to us that one magnetic hemisphere of the sun might predominate slightly over the other for several years in succession, the dominance switching over in a quasiperiodic way. The result of this magnetic asymmetry of the sun would be a droop of the current sheet in the solar wind and a difference of the solar magnetic latitudes of the earth in the two equinoxes, resulting in an equinoctial asymmetry in the energy transfer from the solar wind into the magnetosphere and, consequently, in geomagnetic agitation. Comparison with other available pieces of evidence suggests that some non-reconnection mechanism, such as viscous interaction at the flanks of the magnetosphere, might play an important role in geomagnetic agitation

  14. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  15. AN ANALYTIC METHOD TO DETERMINE HABITABLE ZONES FOR S-TYPE PLANETARY ORBITS IN BINARY STAR SYSTEMS

    International Nuclear Information System (INIS)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Gyergyovits, Markus; Funk, Barbara; Georgakarakos, Nikolaos

    2012-01-01

    With more and more extrasolar planets discovered in and around binary star systems, questions concerning the determination of the classical habitable zone have arisen. Do the radiative and gravitational perturbations of the second star influence the extent of the habitable zone significantly, or is it sufficient to consider the host star only? In this article, we investigate the implications of stellar companions with different spectral types on the insolation a terrestrial planet receives orbiting a Sun-like primary. We present time-independent analytical estimates and compare them to insolation statistics gained via high precision numerical orbit calculations. Results suggest a strong dependence of permanent habitability on the binary's eccentricity, as well as a possible extension of habitable zones toward the secondary in close binary systems.

  16. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    Science.gov (United States)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  17. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1.

    Science.gov (United States)

    Gillon, Michaël; Triaud, Amaury H M J; Demory, Brice-Olivier; Jehin, Emmanuël; Agol, Eric; Deck, Katherine M; Lederer, Susan M; de Wit, Julien; Burdanov, Artem; Ingalls, James G; Bolmont, Emeline; Leconte, Jeremy; Raymond, Sean N; Selsis, Franck; Turbet, Martin; Barkaoui, Khalid; Burgasser, Adam; Burleigh, Matthew R; Carey, Sean J; Chaushev, Aleksander; Copperwheat, Chris M; Delrez, Laetitia; Fernandes, Catarina S; Holdsworth, Daniel L; Kotze, Enrico J; Van Grootel, Valérie; Almleaky, Yaseen; Benkhaldoun, Zouhair; Magain, Pierre; Queloz, Didier

    2017-02-22

    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star-named TRAPPIST-1-makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

  18. Neutron stars in non-linear coupling models

    Energy Technology Data Exchange (ETDEWEB)

    Taurines, Andre R.; Vasconcellos, Cesar A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil); Malheiro, Manuel [Universidade Federal Fluminense, Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado, Rio de Janeiro, RJ (Brazil)

    2001-07-01

    We present a class of relativistic models for nuclear matter and neutron stars which exhibits a parameterization, through mathematical constants, of the non-linear meson-baryon couplings. For appropriate choices of the parameters, it recovers current QHD models found in the literature: Walecka, ZM and ZM3 models. We have found that the ZM3 model predicts a very small maximum neutron star mass, {approx} 0.72M{sub s}un. A strong similarity between the results of ZM-like models and those with exponential couplings is noted. Finally, we discuss the very intense scalar condensates found in the interior of neutron stars which may lead to negative effective masses. (author)

  19. NuSTAR Detection of X-Ray Heating Events in the Quiet Sun

    Science.gov (United States)

    Kuhar, Matej; Krucker, Säm; Glesener, Lindsay; Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Hudson, Hugh S.; White, Stephen M.

    2018-04-01

    The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1 MK and emission measures of (0.6–15) × 1044 cm‑3 describe their spectra well, resulting in thermal energies in the range (2–6) × 1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component. However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in soft X-ray flux than the largest solar flares.

  20. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS

    International Nuclear Information System (INIS)

    Heger, Alexander; Woosley, S. E.

    2010-01-01

    The evolution and explosion of metal-free stars with masses 10-100 M sun are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 ≤ Z ≤ 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] ∼ sun ; where 1 B = 1 Bethe = 10 51 erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M sun , with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of ∼40 M sun . A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In

  1. IRIS Burst Spectra Co-spatial to a Quiet-Sun Ellerman-like Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. J.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Freij, N.; Oliver, R. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Reid, A.; Mathioudakis, M., E-mail: c.j.nelson@sheffield.ac.uk [Astrophysics Research Centre (ARC), School of Mathematics and Physics, Queens University, Belfast, BT7 1NN (United Kingdom)

    2017-08-10

    Ellerman bombs (EBs) have been widely studied over the past two decades; however, only recently have the counterparts of these events been observed in the quiet-Sun. The aim of this article is to further understand small-scale quiet-Sun Ellerman-like brightenings (QSEBs) through research into their spectral signatures, including investigating whether the hot signatures associated with some EBs are also visible co-spatial to any QSEBs. We combine H α and Ca ii 8542 Å line scans at the solar limb with spectral and imaging data sampled by the Interface Region Imaging Spectrograph ( IRIS ). Twenty-one QSEBs were identified with average lifetimes, lengths, and widths measured to be around 120 s, 0.″63, and 0.″35, respectively. Three of these QSEBs displayed clear repetitive flaring through their lifetimes, comparable to the behavior of EBs in active regions. Two QSEBs in this sample occurred co-spatial to increased emission in SDO /AIA 1600 Å and IRIS slit-jaw imager 1400 Å data; however, these intensity increases were smaller than those reported co-spatially with EBs. One QSEB was also sampled by the IRIS slit during its lifetime, displaying increases in intensity in the Si iv 1393 Å and Si iv 1403 Å cores, as well as the C ii and Mg ii line wings, analogous to IRIS bursts (IBs). Using RADYN simulations, we are unable to reproduce the observed QSEB H α and Ca ii 8542 Å line profiles, leaving the question of the temperature stratification of QSEBs open. Our results imply that some QSEBs could be heated to transition region temperatures, suggesting that IB profiles should be observed throughout the quiet-Sun.

  2. Life and death of the stars

    CERN Document Server

    Srinivasan, Ganesan

    2014-01-01

    This volume is devoted to one of the fascinating things about stars: how they evolve as they age. This evolution is different for stars of different masses. How stars end their lives when their supply of energy is exhausted also depends on their masses. Interestingly, astronomers conjectured about the ultimate fate of the stars even before the details of their evolution became clear. Part I of this book gives an account of the remarkable predictions made during the 1920s and 1930s concerning the ultimate fate of stars. Since much of this development hinged on quantum physics that emerged during this time, a detailed introduction to the relevant physics is included in the book. Part II is a summary of the life history of stars. This discussion is divided into three parts: low-mass stars, like our Sun, intermediate-mass stars, and massive stars. Many of the concepts of contemporary astrophysics were built on the foundation erected by Subrahmanyan Chandrasekhar in the 1930s. This book, written during his birth c...

  3. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  4. The Sun/Earth System and Space Weather

    Science.gov (United States)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  5. Stars, their evolution and their stability

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    The most important fact concerning a star is its mass. It is measured in units of the mass of the sun, which is 2 x 10 33 g: stars with masses very much less than, or very much more than the mass of the sun are relatively infrequent. The current theories of stellar structure and evolution derive their successes largely from the fact that the following combination of the dimensions of a mass provides a correct measure of stellar masses: natural constant = (hc/G) 3 2 1/H 2 approx. = 29.2 times the mass of sun where G is the constant of gravitation and H is the mass of hydrogen atom. There is an upper limit, M sub limit, to the mass of stars which can become degenerate configurations, as the last stage in their evolution; and stars with M > M sub limit must have end states which cannot be predicted from the considerations presented in this paper. For stars with mass less than 0.43 x the mass of the sun, the end stage of evolution can only be that of the white dwarfs. The inability of massive stars to become white dwarfs must result in the development of much more extreme conditions in their interiors and eventually in the onset of gravitational collapse attended by the supernova phenomena. Neutron stars or black holes form as the natural end products of stellar evolution of massive stars. 24 references, 7 figures, 2 tables

  6. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  7. The Sun A User's Manual

    CERN Document Server

    Vita-Finzi, Claudio

    2008-01-01

    The Sun is an account of the many ways in which our nearest star affects our planet, how its influence has changed over the last few centuries and millennia, and the extent to which we can predict its future impact. The Sun's rays foster the formation of Vitamin D by our bodies, but it can also promote skin cancer, cataracts, and mutations in our DNA. Besides providing the warmth and light essential to most animal and plant life, solar energy contributes substantially to global warming. Although the charged particles of the solar wind shield us from harmful cosmic rays, solar storms may damage artificial satellites and cripple communication systems and computer networks. The Sun is the ideal renewable energy source, but its exploitation is still bedevilled by the problems of storage and distribution. Our nearest star, in short, is a complex machine which needs to be treated with caution, and this book will equip every reader with the knowledge that is required to understand the benefits and dangers it can bri...

  8. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    NARCIS (Netherlands)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks

  9. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Carrasco-Gonzalez, C.; Menten, K. M.; Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Moscadelli, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy); Rygl, K. L. J., E-mail: asanna@mpifr-bonn.mpg.de [IFSI-INAF, Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2012-02-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M{sub Sun }. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s{sup -1}) and perhaps a lower-velocity ({approx}10 km s{sup -1}) wind with an opening angle of about 20 Degree-Sign from the jet axis.

  10. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wolk, Scott J., E-mail: osten@stsci.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  11. Evidence for a solar companion star

    International Nuclear Information System (INIS)

    Muller, R.A.

    1984-08-01

    Periodicity seen in both the mass extinctions and large impact cratering on earth can be explained if one postulates that the sun has a companion star, orbiting in a moderately eccentric orbit with a major axis of 2.8 light-years. No other explanations that have been suggested are compatible with known facts of physics and astronomy. If the companion is a red dwarf star, the most common kind in the galaxy, then no previous astronomical observations would have found it. A search for red objects with large parallax is now underway at Berkeley, and has a good chance of identifying the star in the near future

  12. Evidence for a solar companion star

    Energy Technology Data Exchange (ETDEWEB)

    Muller, R.A.

    1984-08-01

    Periodicity seen in both the mass extinctions and large impact cratering on earth can be explained if one postulates that the sun has a companion star, orbiting in a moderately eccentric orbit with a major axis of 2.8 light-years. No other explanations that have been suggested are compatible with known facts of physics and astronomy. If the companion is a red dwarf star, the most common kind in the galaxy, then no previous astronomical observations would have found it. A search for red objects with large parallax is now underway at Berkeley, and has a good chance of identifying the star in the near future.

  13. The Sun as you never saw it before

    Science.gov (United States)

    1997-02-01

    The remarkable images come from SOHO's visible-light coronagraph LASCO. It masks the intense rays from the Sun's surface in order to reveal the much fainter glow of the solar atmosphere, or corona. Operated with its widest field of view, in its C3 instrument, LASCO's unprecedented sensitivity enables it to see the thin ionized gas of the solar wind out to the edges of the picture, 22 million kilometres from the Sun's surface. Many stars are brighter than the gas, and they create the background scene. The results alter human perceptions of the Sun. Nearly 30 years ago, Apollo photographs of the Earth persuaded everyone of what until then they knew only in theory, that we live on a small planet. Similarly the new imagery shows our motion in orbit around the Sun, and depicts it as one star among - yet close enough to fill the sky emanations that engulf us. For many centuries even astrologers knew that the Sun was in Sagittarius in December and drifting towards the next zodiacal constellation, Capricornus. This was a matter of calculation only, because the Sun's own brightness prevented a direct view of the starfield. The SOHO-LASCO movie makes this elementary point of astronomy a matter of direct observation for the first time. The images are achievable only from a vantage point in space, because the blue glow of the Earth's atmosphere hides the stars during the day. A spacial allocation of observing time, and of data tranmission from the SOHO spacecraft, enabled the LASCO team to obtain large numbers of images over the period 22-28 December 1996. Since then, a sustained effort in image processing, frame by frame, has achieved a result of high technical and aesthetic quality. Only now is the leader of the LASCO team, Guenter Brueckner of the US Naval Research Laboratory, satisfied with the product and ready to authorize its release. "I spend my life examining the Sun," Brueckner says, "but this movie is a special thrill. For a moment I forget the years of effort that

  14. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  15. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. V. A LOW ECCENTRICITY BROWN DWARF FROM THE DRIEST PART OF THE DESERT, MARVELS-6b

    Energy Technology Data Exchange (ETDEWEB)

    De Lee, Nathan; Stassun, Keivan G.; Cargile, Phillip [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Ge, Jian; Fleming, Scott W.; Lee, Brian L.; Chang Liang [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Eastman, Jason; Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Allende Prieto, Carlos [Instituto de Astrofisica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Ghezzi, Luan [Observatorio Nacional, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Wisniewski, John P. [H L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St Norman, OK 73019 (United States); Wood-Vasey, W. Michael [Pittsburgh Particle physics, Astrophysics, and Cosmology Center (PITT PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Agol, Eric; Barnes, Rory [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bizyaev, Dmitry, E-mail: nathan.delee@vanderbilt.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-06-15

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 {+-} 2.0 M{sub Jup} to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M{sub Sun }, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929{sup +0.0063}{sub -0.0062} days with a low eccentricity of 0.1442{sup +0.0078}{sub -0.0073}, and a semi-amplitude of 1644{sup +12}{sub -13} m s{sup -1}. Moderate resolution spectroscopy of the host star has determined the following parameters: T{sub eff} = 5598 {+-} 63, log g = 4.44 {+-} 0.17, and [Fe/H] = +0.40 {+-} 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M{sub *} = 1.11 {+-} 0.11 M{sub Sun} and R{sub *} = 1.06 {+-} 0.23 R{sub Sun} with an age consistent with less than {approx}6 Gyr at a distance of 219 {+-} 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.''7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

  16. Long-term coherent periodicities in the mean magnetic field of the Sun

    International Nuclear Information System (INIS)

    Kotov, V.A.; Levitsky, L.S.

    1983-01-01

    To investigate periodic variations of the magnetic field of the Sun as a star, the authors have used the mean field measurements made in Crimea, Mt. Wilson, and Stanford observatories; in total N = 5783 daily values were available for the time interval 1968 - 1981. In essence, these data offer a unique possibility to study the Sun as a variable magnetic star. (Auth.)

  17. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  18. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    Science.gov (United States)

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  19. WIDE COMPANIONS TO HIPPARCOS STARS WITHIN 67 pc OF THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Lepine, Sebastien, E-mail: atokovinin@ctio.noao.edu, E-mail: lepine@amnh.org [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)

    2012-10-01

    A catalog of common-proper-motion (CPM) companions to stars within 67 pc of the Sun is constructed based on the SUPERBLINK proper-motion survey. It contains 1392 CPM pairs with angular separations 30'' < {rho} < 1800'', relative proper motion between the two components less than 25 mas yr{sup -1}, and magnitudes and colors of the secondaries consistent with those of dwarfs in the (M{sub V} , V - J) diagram. In addition, we list 21 candidate white dwarf CPM companions with separations under 300'', about half of which should be physical. We estimate a 0.31 fraction of pairs with red dwarf companions to be physical systems (about 425 objects), while the rest (mostly wide pairs) are chance alignments. For each candidate companion, the probability of a physical association is evaluated. The distribution of projected separations s of the physical pairs between 2 kAU and 64 kAU follows f(s){proportional_to}s {sup -1.5}, which decreases faster than Oepik's law. We find that solar-mass dwarfs have no less than 4.4% {+-} 0.3% companions with separations larger than 2 kAU, or 3.8% {+-} 0.3% per decade of orbital separation in the 2-16 kAU range. The distribution of mass ratio of those wide companions is approximately uniform in the 0.1 < q < 1.0 range, although we observe a dip at q {approx_equal} 0.5 which, if confirmed, could be evidence of bimodal distribution of companion masses. New physical CPM companions to two exoplanet host stars are discovered.

  20. Diffusion of helium in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Noerdlinger, P D [Michigan State Univ., East Lansing (USA). Dept. of Astronomy and Astrophysics; Amsterdam Univ. (Netherlands). Sterrenkundig Instituut)

    1977-05-01

    I have reduced the set of diffusion and flow equations developed by Burgers for a multi-component gas to a workable scheme for the actual evaluation of the relative diffusion of hydrogen and helium in stars. Previous analyses have used the Aller and Chapman equations, which apply only to trace constitutents and whose coefficients are not believed to be as accurate as Burgers'. Furthermore, the resulting equations have been combined consistently with Paczynski's stellar evolution code to demonstrate small but significant effects in the Sun, from the thermal and gravitational settling of Helium. The core helium content of a 1 M star goes up about 0.04 and the surface helium content down by about -0.03 in 4.5 10/sup 9/ years. The results are still somewhat uncertain because of uncertainties in the underlying plasma physics, and further research is suggested. In any case, the diffusion process speeds up with time, due to increased temperature gradient, and it will be of interest to follow the process in older stars and in later stellar evolution.

  1. Sun exposure, sun protection and sunburn among Canadian adults.

    Science.gov (United States)

    Pinault, Lauren; Fioletov, Vitali

    2017-05-17

    Ultraviolet radiation (UVR) exposure and a history of sunburn are important risk factors for skin cancer. Sunburn is more common among men, younger age groups, and people in higher income households. Sun protection measures also vary by sex, age, and socioeconomic characteristics. Associations between ambient UVR and sunburn and sun safety measures have not been quantified. A total of 53,130 respondents aged 18 or older answered a Canadian Community Health Survey (CCHS) module on sun safety, which was administered in six provinces from 2005 to 2014. The module contained questions about sunburn, time in the sun, and sun protection. These respondents were linked to an ambient erythemal UVR dataset representing the June-to-August mean. Descriptive statistics and logistic regression were used to examine associations between population characteristics, sunburn, sun safety, time in the sun, and ambient UVR. Sunburn was reported by 33% of respondents and was more common among men, younger age groups, people who were not members of visible minorities, residents of higher income households, and individuals who were employed. On a typical summer day, a larger percentage of women than men sought shade and wore sunscreen, whereas a larger percentage of men wore a hat or long pants. As ambient summer UVR increased, women were more likely to apply sunscreen to their face, seek shade, or wear a hat (OR~1.02 to 1.09 per increase of 187 J/m² of erythemally-weighted UVR, or 5.4% of the mean); these associations were not observed among men. Findings related to sunburn and sun protection were similar to those of previous studies. The association between ambient UVR and women's precautionary measures suggests that information about UVR may influence their decision to protect their skin.

  2. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart

  3. Sun behaviour in Canadian children: results of the 2006 National Sun Survey.

    Science.gov (United States)

    Pichora, Erin C; Marrett, Loraine D

    2010-01-01

    Childhood sun exposure is a particularly important determinant of skin cancer, yet little data are available for children. This paper describes sun behaviour among Canadian children for the summer of 2006. As part of the Second National Sun Survey (NSS2), 1,437 parents reported on the time spent in the sun, and the frequency of sun protection behaviours and sunburning for one of their children aged 1 to 12 years. Analysis was carried out using complex survey procedures in SAS and STATA. The majority of children (94%) spend at least 30 minutes in the sun on a typical summer day; however, regular sun protection is only commonly reported for young children (1 to 5 years) and involves covering their heads and wearing sunscreen (85%). The frequency of other protective behaviours is much lower, and sun protection decreases with age. Older children are also twice as likely to spend extended time in the sun and to get a sunburn. Among older children, boys are more likely to cover their heads and girls are more likely to wear sunscreen. Regular sun protection among Canadian children is low, given their sun exposure. Heavy reliance on sunscreen is consistent with previous reports and indicates that other measures, such as seeking shade and wearing protective clothing, need to be promoted. Riskier sun behaviour among older children may reflect decreased parental control, as well as changing attitudes and peer pressure, and highlights the importance of adult role models and targeted interventions for this age group.

  4. Evolution of a 1 M(sun) star with a periodically mixed core

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, M; Noels, A; Scuflaire, R; Boury, A [Liege Univ. (Belgium). Inst. d' Astrophysique

    1976-02-01

    To solve the neutrino problem, Dilke and Gough have suggested that the vibrational instability of g/sup +/ modes of non radial oscillation may be the cause of recurrent mixing in the sun. Supposing this to be correct, the evolution of the sun is completely different from the standard one. Unmixed solar models are stable when older than 3 x 10/sup 9/ years. It is therefore necessary to check whether in the modified evolution, instabilities still exist at the solar age. They do, provided that the mass fraction of the mixed core is large enough. However, the neutrino flux at its minimum during a thermal pulse occurring at the solar age remains too high. Constraints imposed by ice age records are also discussed.

  5. Stellar dynamism. Activity and rotation of solar stars observed from the Kepler satellite

    International Nuclear Information System (INIS)

    Ceillier, Tugdual

    2015-01-01

    This thesis concerns the study of seismic solar-like stars' rotation and magnetic activity. We use data from the Kepler satellite to study the rotational history of these stars throughout their evolution. This allows to have a more complete picture of stellar rotation and magnetism. In the first part, we present the context of this PhD: astro-seismology, the seismic study of stars. We continue by describing the tool we developed to measure surface rotation of stars using photometric data from Kepler. We compare it to other methodologies used by the community and show that its efficiency is very high. In the second part, we apply this tool to around 500 main-sequence and sub-giant solar-like stars. We measure surface rotation periods and activity levels for 300 of them. We show that the measured periods and the ages from astro-seismology do not agree well with the standard period-age relationships and propose to modify these relationships for stars older than the Sun. We also use the surface rotation as a constraint to estimate the internal rotation of a small number of seismic targets. We demonstrate that these stars have, like the Sun, a very low differential rotation ratio. In the third part, we apply our surface rotation-measuring tool to the most extensive sample of red giants observed by Kepler, comprising more than 17,000 stars. We identify more than 360 fast rotating red giants and compare our detection rates with the ones predicted by theory to better understand the reasons for this rapid rotation. We also use stellar modelling to reproduce the internal rotation profile of a particular red giant. This allows us to emphasize how important implementing new angular momentum transport mechanisms in stellar evolution codes is. This work offers new results that are useful to a very wide community of stellar physicists. It also puts strong constraints on the evolution of solar-like stars' rotation and magnetic activity. (author) [fr

  6. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  7. COLORFUL FIREWORKS FINALE CAPS A STAR'S LIFE

    Science.gov (United States)

    2002-01-01

    Glowing gaseous streamers of red, white, and blue -- as well as green and pink -- illuminate the heavens like Fourth of July fireworks. The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope were created by one of the biggest firecrackers seen to go off in our galaxy in recorded history, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before our United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This stunning Hubble image of Cas A is allowing astronomers to study the supernova's remains with great clarity, showing for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the supernova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The star that created this colorful show was a big one, about 15 to 25 times more massive than our Sun. Massive stars like the one that created Cas A have short lives. They use up their supply of nuclear fuel in tens of millions of years, 1,000 times faster than our Sun. With their fuel exhausted, heavy

  8. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  9. The onset of chromospheric activity among the A- and F- type stars

    Science.gov (United States)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  10. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Vinicius M.; Rossi, Silvia [Departamento de Astronomia-Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900 (Brazil); Frebel, Anna [Massachusetts Institute of Technology and Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Karakas, Amanda I.; Kennedy, Catherine R. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Christlieb, Norbert [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany); Stancliffe, Richard J. [Argelander-Institut fuer Astronomie der Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  11. Structure analysis of adsorbed star-like polymers with GISAS and SFM

    CERN Document Server

    Wolkenhauer, M; Wunnicke, O; Stamm, M; Roovers, J; Krosigk, G V; Cubitt, R

    2002-01-01

    The lateral structures of dried adsorbed binary mixtures of star polymers were investigated. Blends of protonated and deuterated polybutadiene stars were prepared from cyclohexane solutions and adsorbed onto silicon substrates. The number of arms and the molecular weight of the arms was varied. With grazing incidence small angle scattering techniques (GISAS) and scanning force microscopy (SFM), different dominant in-plane length scales were determined. The morphology of these structures is dominated by blob-like structures created from single stars or agglomerates of star polymers. (orig.)

  12. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.

    1998-01-01

    The study of X-ray emission from co-evolving populations of stars in open dusters is extremely important for understanding the dynamo activity among the stars. With this objective, we propose to observe a number of open clusters in the X-ray and UV bands using SPECTRUM-Rontgen-Gamma. The high...... throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  13. Dwarf Star Erupts in Giant Flare

    Science.gov (United States)

    2005-01-01

    This movie taken by NASA'S Galaxy Evolution Explorer shows one of the largest flares, or star eruptions, ever recorded at ultraviolet wavelengths. The star, called GJ 3685A, just happened to be in the Galaxy Evolution Explorer's field of view while the telescope was busy observing galaxies. As the movie demonstrates, the seemingly serene star suddenly exploded once, then even more intensely a second time, pouring out in total about one million times more energy than a typical flare from our Sun. The second blast of light constituted an increase in brightness by a factor of at least 10,000. Flares are huge explosions of energy stemming from a single location on a star's surface. They are caused by the brief destruction of a star's magnetic fields. Many types of stars experience them, though old, small, rapidly rotating 'red dwarfs' like GJ 3685A tend to flare more frequently and dramatically. These stars, called flare stars, can experience powerful eruptions as often as every few hours. Younger stars, in general, also erupt more often. One of the reasons astronomers study flare stars is to gain a better picture and history of flare events taking place on the Sun. A preliminary analysis of the GJ 3685A flare shows that the mechanisms underlying stellar eruptions may be more complex than previously believed. Evidence for the two most popular flare theories was found. Though this movie has been sped up (the actual flare lasted about 20 minutes), time-resolved data exist for each one-hundredth of a second. These observations were taken at 2 p.m. Pacific time, April 24, 2004. In the still image, the time sequence starts in the upper left panel, continues in the upper right, then moves to the lower left and ends in the lower right. The circular and linear features that appear below and to the right of GJ 3685A during the flare event are detector artifacts caused by the extreme brightness of the flare.

  14. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  15. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    International Nuclear Information System (INIS)

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  16. CYG X-3: A GALACTIC DOUBLE BLACK HOLE OR BLACK-HOLE-NEUTRON-STAR PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Belczynski, Krzysztof; Bulik, Tomasz [Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Sathyaprakash, B. S. [School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff CF24 3YB (United Kingdom); Zdziarski, Andrzej A.; Mikolajewska, Joanna [Centrum Astronomiczne im. M. Kopernika, Bartycka 18, PL-00-716 Warszawa (Poland)

    2013-02-10

    There are no known stellar-origin double black hole (BH-BH) or black-hole-neutron-star (BH-NS) systems. We argue that Cyg X-3 is a very likely BH-BH or BH-NS progenitor. This Galactic X-ray binary consists of a compact object, wind-fed by a Wolf-Rayet (W-R) type companion. Based on a comprehensive analysis of observational data, it was recently argued that Cyg X-3 harbors a 2-4.5 M {sub Sun} black hole (BH) and a 7.5-14.2 M {sub Sun} W-R companion. We find that the fate of such a binary leads to the prompt ({approx}< 1 Myr) formation of a close BH-BH system for the high end of the allowed W-R mass (M {sub W-R} {approx}> 13 M {sub Sun }). For the low- to mid-mass range of the W-R star (M {sub W-R} {approx} 7-10 M {sub Sun }) Cyg X-3 is most likely (probability 70%) disrupted when W-R ends up as a supernova. However, with smaller probability, it may form a wide (15%) or a close (15%) BH-NS system. The advanced LIGO/VIRGO detection rate for mergers of BH-BH systems from the Cyg X-3 formation channel is {approx}10 yr{sup -1}, while it drops down to {approx}0.1 yr{sup -1} for BH-NS systems. If Cyg X-3 in fact hosts a low-mass black hole and massive W-R star, it lends additional support for the existence of BH-BH/BH-NS systems.

  17. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; Mahadevan, Suvrath; Lee, Brian; Cuong Nguyen, Duy; Morehead, Robert C.; Wan Xiaoke; Zhao Bo; Liu Jian; Guo Pengcheng; Kane, Stephen R.; Eastman, Jason D.; Siverd, Robert J.; Scott Gaudi, B.; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan G.; Gary, Bruce; Wolszczan, Alex; Barnes, Rory

    2010-01-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T eff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M sun and R = 1.15 ± 0.15 R sun . The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M J , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of 'Hot Jupiters'. We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ∼>0.8 R J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

  18. Structural properties of star-like dendrimers in solution

    International Nuclear Information System (INIS)

    Rathgeber, S.; Gast, A.P.; Hedrick, J.L.

    2002-01-01

    We measured the form factor of star-like poly-ε-caprolactone dendrimers under good solvent conditions with small-angle neutron scattering (SANS). The parameters varied in the experiment were the dendrimer generation g=1,2,3 and the number of segments between the branching units n=5,10,15,20. The results are discussed in the frame work of the Beaucage model from which we cannot only derive the radius of gyration R g of the dendrimers but also their fractal dimensions. Decreasing the number of spacer units between the branching points results in a strong stretching of the dendrons. The fractal dimension increases monotonically with increasing generation and spacer number between the limit expected for a low-functionality star P∼5/3 (loose, polymeric structure) and that expected for a high-functionality star P∼3 (compact shape). (orig.)

  19. Vitamin D Beliefs and Associations with Sunburns, Sun Exposure, and Sun Protection

    Science.gov (United States)

    Kim, Bang Hyun; Glanz, Karen; Nehl, Eric J.

    2012-01-01

    The main objective of this study was to examine certain beliefs about vitamin D and associations with sun exposure, sun protection behaviors, and sunburns. A total of 3,922 lifeguards, pool managers, and parents completed a survey in 2006 about beliefs regarding vitamin D and sun-related behaviors. Multivariate ordinal regression analyses and linear regression analysis were used to examine associations of beliefs and other variables. Results revealed that Non-Caucasian lifeguards and pool managers were less likely to agree that they needed to go out in the sun to get enough vitamin D. Lifeguards and parents who were non-Caucasian were less likely to report that sunlight helped the body to produce vitamin D. A stronger belief about the need to go out in the sun to get enough vitamin D predicted more sun exposure for lifeguards. For parents, a stronger belief that they can get enough vitamin D from foods predicted greater sun protection and a stronger belief that sunlight helps the body produce vitamin D predicted lower sun exposure. This study provides information regarding vitamin D beliefs and their association with certain sun related behaviors across different demographic groups that can inform education efforts about vitamin D and sun protection. PMID:22851950

  20. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    International Nuclear Information System (INIS)

    Llama, J.; Shkolnik, E. L.

    2016-01-01

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R p /R ⋆ ). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R p /R ⋆ is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R p /R ⋆ we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails

  1. PEPSI deep spectra. I. The Sun-as-a-star

    Science.gov (United States)

    Strassmeier, K. G.; Ilyin, I.; Steffen, M.

    2018-04-01

    Context. Full-disk solar flux spectra can be directly compared to stellar spectra and thereby serve as our most important reference source for, for example stellar chemical abundances, magnetic activity phenomena, radial-velocity signatures or global pulsations. Aim. As part of the first Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) key-science project, we aim to provide well-exposed and average-combined (viz. deep) high-resolution spectra of representative stellar targets. Such deep spectra contain an overwhelming amount of information, typically much more than what could be analyzed and discussed within a single publication. Therefore, these spectra will be made available in form of (electronic) atlases. The first star in this series of papers is our Sun. It also acts as a system-performance cornerstone. Methods: The Sun was monitored with PEPSI at the Large Binocular Telescope (LBT). Instead of the LBT we used a small robotic solar disk integration (SDI) telescope. The deep spectra in this paper are the results of combining up to ≈100 consecutive exposures per wavelength setting and are compared with other solar flux atlases. Results: Our software for the optimal data extraction and reduction of PEPSI spectra is described and verified with the solar data. Three deep solar flux spectra with a spectral resolution of up to 270 000, a continuous wavelength coverage from 383 nm to 914 nm, and a photon signal to noise ratio (S/N) of between 2000-8000:1 depending on wavelength are presented. Additionally, a time-series of 996 high-cadence spectra in one cross disperser is used to search for intrinsic solar modulations. The wavelength calibration based on Th-Ar exposures and simultaneous Fabry-Pérot combs enables an absolute wavelength solution within 10 m s-1 (rms) with respect to the HARPS laser-comb solar atlas and a relative rms of 1.2 m s-1 for one day. For science demonstration, we redetermined the disk-average solar Li abundance to 1.09

  2. Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Bitsch, Bertram; Johansen, Anders

    2018-01-01

    Jupiter played an important role in determining the structure and configuration of the Solar System. Whereas hot-Jupiter type exoplanets preferentially form around metal-rich stars, the conditions required for the formation of planets with masses, orbits, and eccentricities comparable to Jupiter...... (Jupiter analogs) are unknown. Using spectroscopic metallicities, we show that stars hosting Jupiter analogs have an average metallicity close to solar, in contrast to their hot-Jupiter and eccentric cool-Jupiter counterparts, which orbit stars with super-solar metallicities. Furthermore......, the eccentricities of Jupiter analogs increase with host-star metallicity, suggesting that planet-planet scatterings producing highly eccentric cool Jupiters could be more common in metal-rich environments. To investigate a possible explanation for these metallicity trends, we compare the observations to numerical...

  3. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    Science.gov (United States)

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  4. Neutron star structure: Theory, observation, and speculation

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pines, D.; Smith, R.A.

    1976-01-01

    The broad physical aspects of the neutron-neutron interaction in dense matter are reviewed, and an examination is made of the extent to which the equation of state of neutron star matter is influenced by phase transitions which have been proposed for the high-density regime. The dependence of the maximum neutron star mass and the stellar structure on the neutron-neutron interaction is studied through calculations of the equation of state of neutron matter based on four different models for this interaction: the Reid (R) and Bethe-Johnson (BJ) models, a tensor-interaction (TI) model which assumes that the attraction between nucleons comes from the higher order contribution of the pion-exchange tensor interaction, and a mean field (MF) model which assumes that all the attraction between nucleons is due to the exchange of an effective scalar meson. It is shown that the harder equations of state which result from the BJ, TI, and MF models give rise to significant modifications in the structure of neutron stars; heavy neutron stars (approximately-greater-than1 M/sub sun/) have both larger radii and thicker crusts than were predicted using the R model.These stars are used as a basis for comparing theory with observation for the mass and structure of neutron stars such as the Crab and Vela pulsars, and the compact X-ray sources Her X-1 and Vela X-1. We find that both theory and observation tend to favor an equation of state that is stiff in the region of 10 14 --10 15 g cm -3 and that a neutron star such as Her X-1 (Mapprox.1.3 M/sub sun/) has a radius of the order of 15 km with a crust thickness of order 5 km. Based on starquake theory, it is concluded that the Crab pulsar could have a mass as large as 1.3 M/sub sun/, with a critical strain angle approx.10 -3 , comparable to that suggested for Her X-1. The possibility of solid-core neutron stars and some of their observational consequences is discussed

  5. How to Observe the Sun Safely

    CERN Document Server

    Macdonald, Lee

    2012-01-01

    How to Observe the Sun Safely, Second Edition gives all the basic information and advice the amateur astronomer needs to get started in observing our own ever-fascinating star. Unlike many other astronomical objects, you do not need a large telescope or expensive equipment to observe the Sun. And it is possible to take excellent pictures of the Sun with today's low-cost digital cameras! This book surveys what is visible on the Sun and then describes how to record solar features and measure solar activity levels. There is also an account of how to use H-alpha and Calcium-K filters to observe and record prominences and other features of the solar chromosphere, the Sun's inner atmosphere. Because we are just entering a period of high activity on the Sun, following a long, quiet period, this is a great time to get involved with solar observing. Still emphasizing safety first, this Second Edition reflects recent and exciting advances in solar observing equipment. Chapters 6 through 8 have been completely revised ...

  6. A PHOTOMETRIC VARIABILITY SURVEY OF FIELD K AND M DWARF STARS WITH HATNet

    International Nuclear Information System (INIS)

    Hartman, J. D.; Bakos, G. A.; Noyes, R. W.; Sipocz, B.; Pal, A.; Kovacs, G.; Mazeh, T.; Shporer, A.

    2011-01-01

    Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broadband photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper motion (V - K ∼> 3.0, μ > 30 mas yr -1 , plus additional cuts in J - H versus H - K S and on the reduced proper motion). We search the light curves for periodic variations and for large-amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries (EBs), as secure variable star detections that are not obvious blends. We estimate that a further ∼26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including five of the EBs, have previously been identified as variables or are blended with previously identified variables. One of the newly identified EBs is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M 1 = M 2 = 0.258 ± 0.008 M sun and R 1 = R 2 = 0.289 ± 0.007 R sun . The radii of the component stars are larger than theoretical expectations if the system is older than ∼200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs, finding that many of the well-established relations for F, G, and K dwarfs continue into the M dwarf regime. We find that the fraction of stars that is variable with peak-to-peak amplitudes greater than 0.01 mag increases exponentially with the V - K S color such that

  7. Fast Rotating solar-like stars using asteroseismic datasets

    DEFF Research Database (Denmark)

    A. García, R.; Ceillier, T.; Campante, T.

    2011-01-01

    The NASA Kepler mission is providing an unprecedented set of asteroseismic data. In particular, short-cadence lightcurves (~60s samplings), allow us to study solar-like stars covering a wide range of masses, spectral types and evolutionary stages. Oscillations have been observed in around 600 out...

  8. Post-giant evolution of helium stars

    International Nuclear Information System (INIS)

    Schoenberner, D.

    1977-01-01

    Extremely hydrogen deficient stars (helium stars and R Coronae Borealis variables) are considered to be remnants of double shell source stars (of the asymptotic giant branch). The evolution of stars with a condensed C/O-core and a helium envelope is followed numerically from the red giant stage to the white dwarf domain, crossing the regions of R CrB- and helium stars (so far analyzed). They have typically masses M/M(sun) = 0.7 and luminosities log L/L(sun) = 4.1. The time for crossing the helium star domain is some 10 3 years. The corresponding times in the R CrB-region amounts up to several 10 4 years. The lower limit of the death rate of helium stars is estimated to be 4 x 10 -14 pc -3 yr -1 . This value is only a factor of ten lower than the birth rate of all non-DA white dwarfs. It is therefore possible that the helium stars are the precursors of helium rich white dwarfs. As a consequence, a significant fraction of all stars which end their lives as white dwarfs should pass through the helium star phase. (orig.) [de

  9. Coronal Diagnostics of Intermediate Activity Star XI Boo A

    Science.gov (United States)

    Drake, Jeremy

    2005-01-01

    The analysis of Xi Boo A proved difficult to adapt to our line-by-line approach because of the strong wings of the RGS instrumental profile, as has been detailed in earlier reports. While progress was also delayed because of problems in using SAS v4, we succeeded in the past year or so to bring the analysis to conclusion. Abundances have been derived using both EPIC and RGS data, confirming earlier EUVE findings of a mild solar-like FIP effect, though with some evidence of a turn-up in abundances of elements with higher FIP. Plasma densities appear normal for a moderately active stellar corona. Xi Boo A nicely bridges the gap between the very active stars and stars like the Sun, and it indeed does appear that these are the stars in which the solar-like FIP effects begins to change to the "inverse FIP" type of effect seen in the very active stars. Probing this divide was the main goal of the proposal. These results are in the process of being prepared for publication, though we have not decided the target journal as yet.

  10. Lessons for Asteroseismology from White Dwarf Stars

    OpenAIRE

    Metcalfe, Travis S.

    2005-01-01

    The interpretation of pulsation data for Sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a par...

  11. VLBA Scientists Study Birth of Sunlike Stars

    Science.gov (United States)

    1999-06-01

    Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition

  12. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  13. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  14. The Sun and How to Observe It

    CERN Document Server

    Jenkins, Jamey L

    2009-01-01

    Without the Sun, all life on Earth would perish. But what exactly do we know about this star that lights, heats, and powers Earth? Actually, we know quite a lot, thanks mainly to a host of eager solar observers. Looking directly at the Sun is EXTREMELY hazardous. But many astronomers, both professional and amateur, have found ways to view the Sun safely to learn about it. You, too, can view the Sun in all of its glorious detail. Some of the newest, most exciting telescopes on the market are affordable to amateur astronomers or even just curious sky watchers, and with this guide to what the Sun has to offer, including sunspots, prominences, and flares, plus reviews of the latest instruments for seeing and capturing images of the Sun, you can contribute to humankind’s knowledge of this immense ball of glowing gases that gives us all life. For a complete guide to Sun viewing, see also Total Solar Eclipses and How to Observe Them (2007) by Martin Mobberley in this same series.

  15. Neutrinos and our Sun - Part 2

    Indian Academy of Sciences (India)

    the sun during its lifetime of four and a half billion years is given by ... The balance between ... per unit time (the luminosity): ... are operative in all stars during the bulk of their life: (a) ..... Thus the data collected over several years of hard work.

  16. A Concept for Providing Warning of Chelyabinsk-like Meteors, including those approaching from the Sun

    Science.gov (United States)

    Dunham, D. W.; Reitsema, H.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C. R.; Farquhar, R. W.; Furfaro, R.; Eismont, N. A.; Ledkov, A.; Chumachenko, E.

    2013-12-01

    The detonation of a 20m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, discovered 20h before it exploded over northern Sudan . 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects. The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point 1.5 million km from Earth towards the Sun (about 4 times the distance to the Moon) could find objects like the 'Chelyabinsk' asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach; this would find the approximately 35% of asteroids that approach Earth from a direction too close to the Sun to be observed, or likely to be missed, from the ground. Our concept would give at least several hours, and often a day or more, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. An important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. This concept could also discover many small asteroids that would not impact Earth; some of them would likely be suitable for retrieval to move to a lunar orbit for study by astronauts in the next decade. A concept using a space telescope similar to that needed by our concept is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140m and larger near-Earth objects (NEO

  17. The distribution of masses and radii of white-dwarf stars

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1978-01-01

    The status of determinations of white dwarf radii by model atmosphere methods is reviewed. The results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R(Sun); (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R(Sun), indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R(Sun). (Auth.)

  18. TRANSITING THE SUN. II. THE IMPACT OF STELLAR ACTIVITY ON Lyα TRANSITS

    Energy Technology Data Exchange (ETDEWEB)

    Llama, J.; Shkolnik, E. L., E-mail: joe.llama@lowell.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-01-20

    High-energy observations of the Sun provide an opportunity to test the limits of our ability to accurately measure the properties of transiting exoplanets in the presence of stellar activity. Here we insert the transit of a hot Jupiter into continuous disk integrated data of the Sun in Lyα from NASA’s Solar Dynamics Observatory/EVE instrument to assess the impact of stellar activity on the measured planet-to-star radius ratio (R{sub p}/R{sub ⋆}). In 75% of our simulated light curves, we measure the correct radius ratio; however, incorrect values can be measured if there is significant short-term variability in the light curve. The maximum measured value of R{sub p}/R{sub ⋆} is 50% larger than the input value, which is much smaller than the large Lyα transit depths that have been reported in the literature, suggesting that for stars with activity levels comparable to the Sun, stellar activity alone cannot account for these deep transits. We ran simulations without a transit and found that stellar activity cannot mimic the Lyα transit of 55 Cancari b, strengthening the conclusion that this planet has a partially transiting exopshere. We were able to compare our simulations to more active stars by artificially increasing the variability in the Solar Lyα light curve. In the higher variability data, the largest value of R{sub p}/R{sub ⋆} we measured is <3× the input value, which again is not large enough to reproduce the Lyα transit depth reported for the more active stars HD 189733 and GJ 436, supporting the interpretation that these planets have extended atmospheres and possible cometary tails.

  19. Regular Biology Students Learn Like AP Students with SUN

    Science.gov (United States)

    Batiza, Ann; Luo, Wen; Zhang, Bo; Gruhl, Mary; Nelson, David; Hoelzer, Mark; Ning, Ling; Roberts, Marisa; Knopp, Jonathan; Harrington, Tom; LaFlamme, Donna; Haasch, Mary Anne; Vogt, Gina; Goodsell, David; Marcey, David

    2016-01-01

    The SUN approach to biological energy transfer education is fundamentally different from past practices that trace chemical and energy inputs and outputs. The SUN approach uses a hydrogen fuel cell to convince learners that electrons can move from one substance to another based on differential attraction. With a hydrogen fuel cell, learners can…

  20. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  1. HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Brittany E. [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Road, Tempe, AZ 85281 (United States)

    2017-08-01

    The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV; 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.

  2. Exploration of the brown dwarf regime around solar-like stars by CoRoT

    OpenAIRE

    Csizmadia, Szilárd

    2016-01-01

    Aims. A summary of the CoRoT brown dwarf investigations are presented. Methods. Transiting brown dwarfs around solar like stars were studied by using the photometric time-series of CoRoT, and ground based radial velocity measurements. Results. CoRoT detected three transiting brown dwarfs around F and G dwarf stars. The occurence rate of brown dwarfs was found to be 0.20 +/- 0.15% around solar-like stars which is compatible with the value obtained by Kepler-data.

  3. Halo star streams in the solar neighborhood

    NARCIS (Netherlands)

    Kepley, Amanda A.; Morrison, Heather L.; Helmi, Amina; Kinman, T. D.; Van Duyne, Jeffrey; Martin, John C.; Harding, Paul; Norris, John E.; Freeman, Kenneth C.

    2007-01-01

    We have assembled a sample of halo stars in the solar neighborhood to look for halo substructure in velocity and angular momentum space. Our sample ( 231 stars) includes red giants, RR Lyrae variable stars, and red horizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than -1.0. It was

  4. Stars the size of planets

    International Nuclear Information System (INIS)

    Whitehouse, D.

    1984-01-01

    Red dwarf stars, the faintest and smallest stars that can be seen, sometimes host flares of immense violence. The article discusses the energy of these flares in terms of mass, x-rays, brightness, variation in light output, the sun and magnetic phenomena. (U.K.)

  5. DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302

    International Nuclear Information System (INIS)

    Szyszka, C.; Walsh, J. R.; Zijlstra, Albert A.; Tsamis, Y. G.

    2009-01-01

    NGC 6302 is one of the highest ionization planetary nebulae (PNe) known and shows emission from species with ionization potential > 300 eV. The temperature of the central star must be > 200,000 K to photoionize the nebula, and has been suggested to be up to ∼400,000 K. On account of the dense dust and molecular disk, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrowband filters by Wide Field Camera 3 on the Hubble Space Telescope as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula center on the foreground side of the tilted equatorial disk. The magnitudes of the central star have been reliably measured in two filters (F469N and F673N). Assuming a hot blackbody, the reddening has been measured from the (4688-6766 A) color and a value of c = 3.1, A v = 6.6 mag determined. A G-K main-sequence binary companion can be excluded. The position of the star on the H-R diagram suggests a fairly massive PN central star of about 0.64 M sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T, L, t) = (200,000 K, 2000 L sun , 2200 yr), where t is the nebular age, is obtained; however, the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1% per year. Future observations could test this prediction.

  6. The Sun

    International Nuclear Information System (INIS)

    Hejna, L.; Sobotka, M.

    1987-01-01

    The conference proceedings contain 50 papers classified in six parts. The introductory paper is devoted to magnetic fields of the Sun and of low-mass main-sequence stars. 7 papers discuss the morphology and fine structure of solar active regions, 9 papers deal with evolutionary aspects of the regions, 6 papers with observations and theories of the solar magnetic field, 9 deal with velocity fields, oscillations and waves in the active regions and 18 papers discuss the physical structure of active regions and its diagnostics. (M.D.). 218 figs., 19 tabs., 1,317 refs

  7. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES

    International Nuclear Information System (INIS)

    Rawls, Meredith L.; Orosz, Jerome A.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bailyn, Charles D.; Buxton, Michelle M.

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely, Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming that the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor β of the companion star, where β = 1 indicates a completely filled Roche lobe. In previous work a range of β between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal light-curve data to constrain β. We find neutron star masses of 1.77 ± 0.08 M sun for Vela X-1, 0.87 ± 0.07 M sun for 4U 1538-52 (eccentric orbit), 1.00 ± 0.10 M sun for 4U 1538-52 (circular orbit), 1.04 ± 0.09 M sun for SMC X-1, 1.29 ± 0.05 M sun for LMC X-4, 1.49 ± 0.08 M sun for Cen X-3, and 1.07 ± 0.36 M sun for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.

  8. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  9. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  10. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  11. Weighing the Smallest Stars

    Science.gov (United States)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  12. A statistical analysis of IUE spectra of dwarf novae and nova-like stars

    Science.gov (United States)

    Ladous, Constanze

    1990-01-01

    First results of a statistical analysis of the IUE International Ultraviolet Explorer archive on dwarf novae and nova like stars are presented. The archive contains approximately 2000 low resolution spectra of somewhat over 100 dwarf novae and nova like stars. Many of these were looked at individually, but so far the collective information content of this set of data has not been explored. The first results of work are reported.

  13. Forward modeling of the corona of the sun and solarlike stars

    DEFF Research Database (Denmark)

    Hardi, Peter; Gudiksen, Boris V.; Nordlund, Å.

    2006-01-01

    Transition Region Lines, AB-Initio Approach; Nonequilibrium Inozation; Doppler Shifts; Emission-Lines; Quiet-Sun; Sumer Telescope; Atomic Database; Magnetic-Field; Thin Plasmas......Transition Region Lines, AB-Initio Approach; Nonequilibrium Inozation; Doppler Shifts; Emission-Lines; Quiet-Sun; Sumer Telescope; Atomic Database; Magnetic-Field; Thin Plasmas...

  14. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  15. 55 CANCRI: A COPLANAR PLANETARY SYSTEM THAT IS LIKELY MISALIGNED WITH ITS STAR

    International Nuclear Information System (INIS)

    Kaib, Nathan A.; Duncan, Martin J.; Raymond, Sean N.

    2011-01-01

    Although the 55 Cnc system contains multiple, closely packed planets that are presumably in a coplanar configuration, we use numerical simulations to demonstrate that they are likely to be highly inclined to their parent star's spin axis. Due to perturbations from its distant binary companion, this planetary system precesses like a rigid body about its parent star. Consequently, the parent star's spin axis and the planetary orbit normal likely diverged long ago. Because only the projected separation of the binary is known, we study this effect statistically, assuming an isotropic distribution for wide binary orbits. We find that the most likely projected spin-orbit angle is ∼50°, with a ∼30% chance of a retrograde configuration. Transit observations of the innermost planet—55 Cnc e—may be used to verify these findings via the Rossiter-McLaughlin effect. 55 Cancri may thus represent a new class of planetary systems with well-ordered, coplanar orbits that are inclined with respect to the stellar equator.

  16. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    Science.gov (United States)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  17. Nuclear fusion and carbon flashes on neutron stars

    International Nuclear Information System (INIS)

    Taam, R.E.; Picklum, R.E.

    1978-01-01

    The properties of nuclear burning shells in the envelopes of accreting neutron stars are investigated for neutron star masses of 0.56M/sub sun/ and 1.41M/sub sun/ and mass accretion rates M ranging from 10 -11 M/sub sun/ yr -1 to 2 x 10 -9 M/sub sun/ yr -1 . It is found that (1) the hydrogen-burning shells lie at high density, log rhoapprox.6, (2) the hydrogen and helium shells overlap for M> or approx. =3 x 10 -10 M/sub sun/ yr -1 , and (3) the carbon abundance at the base of the helium shell is a strong function of M, being greater than 0.95 (less than 0.3) for less than 10 -10 M/sub sun/ yr -1 (greater than 10 -9 M/sub sun/ yr -1 ). A stability analysis of the hydrogen and helium burning shells reveals them to be unstable whenever they overlap. Detailed calculations of the thermal evolution of the carbon shells show that carbon flashes occur for 10 -10 -1 ) -9 . Results for lower rates are inconclusive

  18. Little sun

    DEFF Research Database (Denmark)

    Ebbesen, Toke Riis

    2017-01-01

    the ideas of Alfred Gell’s anthropology of art and the indicative framework derived from Argentinian semiotician Juan Pablo Bonta and Jørn Guldberg. The toy-like solar lamp Little Sun by Olafur Eliasson and Frederik Ottesen is used as case that blends the registers of social design and art......, and as an example of how designers attempt to determine meaning potentials through design in a complex interplay of different strategies. In the final analysis, what characterise objects like Little Sun is seldom that they communicate their meanings in themselves, but instead rely on forceful mediations to gain...

  19. Spots and activity of Pleiades stars from observations with the Kepler Space Telescope (K2)

    Science.gov (United States)

    Savanov, I. S.; Dmitrienko, E. S.

    2017-11-01

    Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity ( S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V -Ks)0 color index remains approximately the same over the entire ( V- K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1 M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.

  20. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    star determines its fate . Massive stars (with masses more than 50 times that of the Sun) lead a glorious, but short life. They are hot and very luminous and exhaust their energy supply in just a few million years. At the other end of the scale, low-mass stars like the Sun are more economical with their resources. Being cooler and dimmer, they are able to shine for billions of years [2]. But although the mass determines the fate of a star, it is not a trivial matter to measure this crucial parameter. In fact, it can only be determined directly if the star happens to be gravitationally bound to another star in a binary stellar system. Observations of the orbital motions of the two stars as they circle each other allows to "weigh" them, and also provide other important information, e.g. about their sizes and temperatures. Orbital motions The understanding of orbital motions has a long history in astronomy. The basic laws of Johannes Kepler (1571-1630) are still used to calculate the masses of orbiting objects, in the solar system as well as in binary stellar systems. However, while the observations of the motion of the nine planets and moons have allowed us to measure quite accurately the masses of objects in our vicinity, the information needed to "weigh" the binary stellar systems is not that easy to obtain. As a result, the mass estimates of the stars in binary systems are often rather uncertain. A main problem is that the individual stars in many binary systems can not be visually separated, even in the best telescopes. The information about the orbit may then come from the motions of the stars, if these are revealed by spectroscopic observations of the combined light (such systems are referred to as "spectroscopic binaries"). If absorption lines from both components are present in the spectrum, the measured wavelength of these double lines will shift periodically back and forth. This is the well-known Doppler effect and it directly reflects the changing velocities

  1. Some evidence on the evolution of the flare mechanism in dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Skumanich, A.

    1986-10-01

    White-light flare parameters are estimated for the sun as a star. It is found that these parameters fall in the same domain as those for the dMe flare stars. In particular, it is found that the time-averaged flare power loss and quiescent coronal soft X-ray power loss at solar maximum satisfies the recently proposed flare power-coronal X-ray relation for dMe stars (Doyle and Butler; Skumanich). In addition, one finds that dM stars, which are believed to be magnetically evolved dMe stars, also satisfy the same relation. On this basis, an evolutionary scenario is suggested for the flare mechanism in which the total flare rate remains, more or less, constant but the mean flare yield decreases linearly with coronal X-ray strength. It is also suggested that the flare mechanism is universal in all magnetically active dwarfs. 48 references.

  2. Sun Protection Practices and Sun Exposure among Children with a Parental History of Melanoma

    Science.gov (United States)

    Glenn, Beth A.; Lin, Tiffany; Chang, L. Cindy; Okada, Ashley; Wong, Weng Kee; Glanz, Karen; Bastani, Roshan

    2014-01-01

    Background First-degree relatives of melanoma survivors have a substantially higher lifetime risk for melanoma than individuals with no family history. Exposure to ultraviolet radiation is the primary modifiable risk factor for the disease. Reducing UV exposure through sun protection may be particularly important for children with a parental history of melanoma. Nonetheless, limited prior research has investigated sun protection practices and sun exposure among these children. Methods The California Cancer Registry was used to identify melanoma survivors eligible to participate in a survey to assess their children's sun protection practices and sun exposure. The survey was administered by mail, telephone, or web to Latino and non-Latino white melanoma survivors with at least one child (0–17 years; N = 324). Results Sun exposure was high and the rate of sunburn was equivalent to or higher than estimates from average risk populations. Use of sun protection was suboptimal. Latino children were less likely to wear sunscreen and hats and more likely to wear sunglasses, although these differences disappeared in adjusted analyses. Increasing age of the child was associated with lower sun protection and higher risk for sunburn whereas higher objective risk for melanoma predicted improved sun protection and a higher risk for sunburns. Perception of high barriers to sun protection was the strongest modifiable correlate of sun protection. Conclusions Interventions to improve sun protection and reduce sun exposure and sunburns in high risk children are needed. Impact Intervening in high risk populations may help reduce the burden of melanoma in the U.S. PMID:25587110

  3. Study of γ Pav and its implications in the Mn abundance in the near stars

    International Nuclear Information System (INIS)

    Scheid, P.L.

    1975-05-01

    The spectrum of the star γ Pav has been investigated at high dispersion. A differential curve of growth analysis of this star relative to the sun has been performed to find with good accuracy the abundances of the various elements in the atmosphere of γ Pav. It is found that this star is deficient by a factor of five in relation to the sun. Mn proved to be more underabundant than the other iron group elements as we do not consider the hyperfine structure of its lines. This effect practically disappears as we take into account the wide hyperfine structure of the Mn lines. The abundances of the s-process elements suggest that the material from which γ Pav has been formed has undergone a neutron exposure analogous to the one that originated the s-elements in the solar system (Author) [pt

  4. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  5. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  6. Star formation and abundances in the nearby irregular galaxy VII ZW 403

    Science.gov (United States)

    Tully, R. B.; Boesgaard, A. M.; Dyck, H. M.; Schempp, W. V.

    1981-05-01

    Photometry in J, H, and K bands reveals that there is an unresolved source of infrared emission associated with the brightest H II region in VII Zw 403, and the colors suggest the presence of a substantial number of K and M supergiants in addition to the hot O stars that must be present to account for the ionized gas. Spectrophotometry of this emission region indicates that reddening is substantial, and that the interpretation of the observed Balmer decrement in terms of reddening is not straightforward. The primary nucleosynthesis products O, S, and Ne are underabundant compared with the sun by a factor of 15; N is underabundant compared with the sun by a factor of 160; and the helium abundance suggests that either there could have been only a small number of star formation episodes or the galaxy is younger than the time scale of the process that deposits N in the interstellar medium.

  7. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  8. Automatic grid azimuth by hour angle of the sun, a star or a planet using an electronic theodolite Kern E2

    Science.gov (United States)

    Solaric, Nikola

    1991-03-01

    The paper describes a procedure for automatic determinations of the grid azimuth of an object on the earth surface by the hour angle of a celestial object (the sun, a star, or a planet), using the electronic theodolite Kern E2. The observation procedure is simple because the electronic calculator is directing the procedure, and the degree of accuracy is immediately determined. With this method, the external rms error of a single set is approximately two times smaller than in the case of the altitude method. The paper includes a flowchart of the program.

  9. The Solar system.Stars and constellations

    Science.gov (United States)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  10. STAR FORMATION IN DISK GALAXIES. II. THE EFFECT OF STAR FORMATION AND PHOTOELECTRIC HEATING ON THE FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.

    2011-01-01

    We investigate the effect of star formation and diffuse photoelectric heating on the properties of giant molecular clouds (GMCs) formed in high-resolution (∼ H,c >100 cm -3 are identified as GMCs. Between 1000 and 1500 clouds are created in the simulations with masses M>10 5 M sun and 180-240 with masses M>10 6 M sun in agreement with estimates of the Milky Way's population. We find that the effect of photoelectric heating is to suppress the fragmentation of the interstellar medium, resulting in a filamentary structure in the warm gas surrounding clouds. This environment suppresses the formation of a retrograde rotating cloud population, with 88% of the clouds rotating prograde with respect to the galaxy after 300 Myr. The diffuse heating also reduces the initial star formation rate (SFR), slowing the conversation of gas into stars. We therefore conclude that the interstellar environment plays an important role in the GMC evolution. Our clouds live between 0 and 20 Myr with a high infant mortality (t' < 3 Myr) due to cloud mergers and star formation. Other properties, including distributions of mass, size, and surface density, agree well with observations. Collisions between our clouds are common, occurring at a rate of ∼ 1/4 of the orbital period. It is not clear whether such collisions trigger or suppress star formation at our current resolution. Our SFR is a factor of 10 higher than observations in local galaxies. This is likely due to the absence of localized feedback in our models.

  11. CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Gould, A.; Gaudi, B. S.; Henderson, C. B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Sumi, T. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Beaulieu, J.-P. [Institut d' Astrophysique de Paris, UMR7095 CNRS-Universite Pierre and Marie Curie, 98 bis boulevard Arago, 75014 Paris (France); Street, R. [Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Suite 102, Goleta, CA 93117 (United States); Dominik, M. [School of Physics and Astronomy, SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS (United Kingdom); Allen, W. [Vintage Lane Observatory, Blenheim (New Zealand); Almeida, L. A. [Instituto Nacional de Pesquisas Espaciais/MCTI, Sao Jose dos Campos, Sao Paulo (Brazil); Bos, M. [Molehill Astronomical Observatory, North Shore (New Zealand); Christie, G. W. [Auckland Observatory, P.O. Box 24-180, Auckland (New Zealand); Depoy, D. L. [Department of Physics, Texas A and M University, College Station, TX (United States); Dong, S. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Drummond, J. [Possum Observatory, Patutahi (New Zealand); Gal-Yam, A. [Benoziyo Center for Astrophysics, Weizmann Institute (Israel); Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-05-20

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  12. Sun exposure and sun protection behaviours among young adult sport competitors.

    Science.gov (United States)

    Lawler, Sheleigh; Spathonis, Kym; Eakin, Elizabeth; Gallois, Cindy; Leslie, Eva; Owen, Neville

    2007-06-01

    To explore the relationship between sun protection and physical activity in young adults (18-30 years) involved in four organised sports. Participants (n=237) in field hockey, soccer, tennis and surf sports completed a self-administered survey on demographic and sun-protective behaviours while playing sport. Differences in sun-protective behaviour were explored by sport and by gender. Sunburn during the previous sporting season was high (69%). There were differences between sports for sunburn, sunscreen use and reapplication of sunscreen. Lifesaving had the highest rates compared with the other three sports. Hats and sunglasses worn by participants varied significantly by sports. A greater proportion of soccer and hockey players indicated they were not allowed to wear a hat or sunglasses during competition. For all sports, competition was played mainly in the open with no shade provision for competitors while they were playing. There were some gender differences within each of the sports. Female soccer and tennis players were more likely to wear sunscreen compared with males. Female hockey players were more likely to wear a hat compared with males. Our findings highlight that there is still room for improvement in sun-protective behaviours among young adult sport competitors. There is a need for a systematic approach to sun protection in the sporting environments of young adults. Health promotion efforts to increase physical activity need to be paired with sun protection messages.

  13. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  14. STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.

    2009-01-01

    1.5-4 M sun , in good agreement with what was inferred from the isotope data of presolar grains. The mass distribution of AGB stars that produce O-rich dust is essentially bimodal, with roughly equal contributions from stars in the ranges 1.3-2.5 M sun and ∼4-8 M sun . These model predictions are in conflict with the O-isotope data of presolar grains that indicate contributions essentially only from 1 to 2.5 M sun AGB stars.

  15. Young Stars in Orion May Solve Mystery of Our Solar System

    Science.gov (United States)

    2001-09-01

    Scientists may have to give the Sun a little more credit. Exotic isotopes present in the early Solar System--which scientists have long-assumed were sprinkled there by a powerful, nearby star explosion--may have instead been forged locally by our Sun during the colossal solar-flare tantrums of its baby years. The isotopes--special forms of atomic nuclei, such as aluminum-26, calcium-41, and beryllium-10--can form in the X-ray solar flares of young stars in the Orion Nebula, which behave just like our Sun would have at such an early age. The finding, based on observations by the Chandra X-ray Observatory, has broad implications for the formation of our own Solar System. Eric Feigelson, professor of astronomy and astrophysics at Penn State, led a team of scientists on this Chandra observation and presents these results in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra". "The Chandra study of Orion gives us the first chance to study the flaring properties of stars resembling the Sun when our solar system was forming," said Feigelson. "We found a much higher rate of flares than expected, sufficient to explain the production of many unusual isotopes locked away in ancient meteorites. If the young stars in Orion can do it, then our Sun should have been able to do it too." Scientists who study how our Solar System formed from a collapsed cloud of dust and gas have been hard pressed to explain the presence of these extremely unusual chemical isotopes. The isotopes are short-lived and had to have been formed no earlier than the creation of the Solar System, some five billion years ago. Yet these elements cannot be produced by a star as massive as our Sun under normal circumstances. (Other elements, such as silver and gold, were created long before the creation of the solar system.) The perplexing presence of these isotopic anomalies, found in ancient meteoroids orbiting the Earth, led to the theory that a supernova explosion occurred

  16. The origin of interstellar asteroidal objects like 1I/2017 U1 'Oumuamua

    Science.gov (United States)

    Zwart, S. Portegies; Torres, S.; Pelupessy, I.; Bédorf, J.; Cai, Maxwell X.

    2018-05-01

    We study the origin of the interstellar object 1I/2017 U1 'Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like 'Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating 'Oumuamua backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3 Myr ago 'Oumuamua passed the nearby star HIP 17288 within a mean distance of 1.3 pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of 'Oumuamua is consistent with relatively young objects of 1.1-1.7 Gyr. We just met 'Oumuamua by chance, and with a derived mean Galactic density of ˜3 × 105 similarly sized objects within 100 au from the Sun or ˜1014 per cubic parsec we expect about 2 to 12 such visitors per year within 1 au from the Sun.

  17. The sun and space weather Second Edition

    CERN Document Server

    Hanslmeier, Arnold

    2007-01-01

    This second edition is a great enhancement of literature which will help the reader get deeper into the specific topics. There are new sections included such as space weather data sources and examples, new satellite missions, and the latest results. At the end a comprehensive index is given which will allow the reader to quickly find his topics of interest. The Sun and Space weather are two rapidly evolving topics. The importance of the Sun for the Earth, life on Earth, climate and weather processes was recognized long ago by the ancients. Now, for the first time there is a continuous surveillance of solar activity at nearly all wavelengths. These data can be used to improve our understanding of the complex Sun-Earth interaction. The first chapters of the book deal with the Sun as a star and its activity phenomena as well as its activity cycle in order to understand the complex physics of the Sun-Earth system. The reader will see that there are many phenomena but still no definite explanations and models exis...

  18. KEPLER-21b: A 1.6 R{sub Earth} PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070

    Energy Technology Data Exchange (ETDEWEB)

    Howell, Steve B. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Rowe, Jason F.; Bryson, Stephen T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Quinn, Samuel N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Marcy, Geoffrey W.; Isaacson, Howard [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ciardi, David R. [NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Chaplin, William J.; Elsworth, Yvonne [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Metcalfe, Travis S. [High Altitude Observatory and Scientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Monteiro, Mario J. P. F. G. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Appourchaux, Thierry [Institut d' Astrophysique Spatiale, Universite Paris XI-CNRS (UMR8617), Batiment 121, 91405 Orsay Cedex (France); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Creevey, Orlagh L. [Departamento de Astrofisica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Quirion, Pierre-Olivier [Canadian Space Agency, 6767 Boulevard de l' Aeroport, Saint-Hubert, QC, J3Y 8Y9 (Canada); Stello, Denis [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Kjeldsen, Hans; Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Garcia, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot-IRFU/SAp, 91191 Gif-sur-Yvette Cedex (France); and others

    2012-02-20

    We present Kepler observations of the bright (V = 8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R{sub Earth} object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequency-power spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34 {+-} 0.06 M{sub Sun} and 1.86 {+-} 0.04 R{sub Sun }, respectively, as well as yielding an age of 2.84 {+-} 0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{sigma}) that the transit event is caused by a 1.64 {+-} 0.04 R{sub Earth} exoplanet in a 2.785755 {+-} 0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of {approx}10 M{sub Earth} (2{sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.

  19. New Star-Like Surfacetexture for Enhanced Hydrodynamic Lubrication Performance

    Directory of Open Access Journals (Sweden)

    Uddin M.S.

    2017-09-01

    Full Text Available This paper presents a numerical modelling and optimization of a new ‘star-like’ geometric texture shape with an aim to improve tribological performance. Initial studies showed that the triangle effect is the most dominant in reducing the friction. Motivated with this, a ‘star-like’ texture shape consisting of a series of triangular spikes around the centre of the texture is proposed. It is hypothesised that by increasing the triangular effect on a texture shape, the converging micro-wedge effect is expected to increase, hence increasing the film pressure and reducing the friction. Using the well-known Reynolds boundary conditions, numerical modelling of surface texturing is implemented via finite difference method. Simulation results showed that the number of apex points of the new ‘star-like’ texture has a significant effect on the film pressure and the friction coefficient. A 6-pointed texture at a texture density of 0.4 is shown to be the optimum shape. The new optimum star-like texture reduces the friction coefficient by 80%, 64.39%, 19.32% and 16.14%, as compared to ellipse, chevron, triangle and circle, respectively. This indicates the potential benefit of the proposed new shape in further enhancing the hydrodynamic lubrication performance of slider bearing contacts.

  20. Star formation within OB subgroups: Implosion by multiple sources

    International Nuclear Information System (INIS)

    Klein, R.I.; Sanford, M.T. III; Whitaker, R.W.

    1983-01-01

    We present the results of new detailed two-dimensional radiation-hydrodynamical calculations of the effects of radiation-driven shock waves from two O stars on inhomogeneities embedded in molecular clouds. The calculations indicate the neutral primordial clumps of gas with 84 M/sub sun/ can be highly compressed in 3 x 10 4 yr with density enhancements greater than 170 over ambient densities and 40 M/sub sun/ remaining. Inhomogeneities that are compressed in this manner by stars in the range O7--B0 survive ionization evaporation and may rapidly form new stars. Low-mass objects would not survive, and there would be a natural cutoff of low-mass and high-mass stars. We present a scenario for hierarchical radiation-driven implosion as a potential, new highly efficient mechanismfor star formation that may explain aspects of recent observations of new star formation in ultracompact H II regions

  1. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  2. The Surprising History of Claims for Life on the Sun

    Science.gov (United States)

    Crowe, Michael J.

    2011-11-01

    Because astronomers are now convinced that it is impossible for life, especially intelligent life, to exist on the Sun and stars, it might be assumed that astronomers have always held this view. This paper shows that throughout most of the history of astronomy, some intellectuals, including a number of well-known astronomers, have advocated the existence of intelligent life on our Sun and thereby on stars. Among the more prominent figures discussed are Nicolas of Cusa, Giordano Bruno, William Whiston, Johann Bode, Roger Boscovich, William Herschel, Auguste Comte, Carl Gauss, Thomas Dick, John Herschel, and François Arago. One point in preparing this paper is to show differences between the astronomy of the past and that of the present.

  3. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  4. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ≤ z ≤ 2.2

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Whitaker, K. E.; Van Dokkum, P. G.; Lee, K.-S.; Muzzin, A.; Marchesini, D.; Franx, M.; Kriek, M.; Labbe, I.; Quadri, R. F.; Williams, R.; Rudnick, G.

    2011-01-01

    We study the buildup of the bimodal galaxy population using the NEWFIRM Medium-Band Survey, which provides excellent redshifts and well-sampled spectral energy distributions of ∼27, 000 galaxies with K 3 x 10 10 M sun increases by a factor of ∼10 from z ∼ 2 to the present day, whereas the mass density in star-forming galaxies is flat or decreases over the same time period. Modest mass growth by a factor of ∼2 of individual quiescent galaxies can explain roughly half of the strong density evolution at masses >10 11 M sun , due to the steepness of the exponential tail of the mass function. The rest of the density evolution of massive, quiescent galaxies is likely due to transformation (e.g., quenching) of the massive star-forming population, a conclusion which is consistent with the density evolution we observe for the star-forming galaxies themselves, which is flat or decreasing with cosmic time. Modest mass growth does not explain the evolution of less massive quiescent galaxies (∼10 10.5 M sun ), which show a similarly steep increase in their number densities. The less massive quiescent galaxies are therefore continuously formed by transforming galaxies from the star-forming population.

  5. No smoking guns under the Sun

    CERN Document Server

    CERN. Geneva

    2000-01-01

    The Sun is a typical main sequence star that generates its energy via the fusion of hydrogen into helium in two chains of nuclear reactions: the so-called pp chain and the CNO chain. If the nucleon number, electric charge, lepton flavour and energy are conserved and the Sun is in a steady state, then the total solar neutrino flux is fixed, to a good approximation, by the solar luminosity (approximately 65 billion neutrinos/cm2/s at Earth), independent of the specific nuclear reactions that power the Sun and produce neutrinos by beta decay or the electron capture of reaction products. The neutrinos from the dominant pp chain are produced by the beta decay of proton pairs (pp), boron-8 and lithium-4, and by electron capture by pp pairs and beryllium-7. Their spectra can be measured directly in the laboratory or calculated from the standard theory of electroweak interactions. To a very good approximation, they are independent of the conditions in the Sun. Only their relative contributions depend on the detailed ...

  6. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  7. Kepler-22b: a 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    NARCIS (Netherlands)

    Borucki, W.J.; Koch, D.G.; Batalha, N.; Bryson, S.T.; Rowe, J.; Fressin, F.; Torres, G.; Caldwell, D.A.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; Gautier, T.N.; Geary, J.C.; Gilliland, R.; Gould, A.; Howell, S.B.; Jenkins, J.M.; Latham, D.W.; Lissauer, J.J.; Marcy, G.W.; Sasselov, D.; Boss, A.; Charbonneau, D.; Ciardi, D.; Kaltenegger, L.; Doyle, L.; Dupree, A.K.; Ford, E.B.; Fortney, J.; Holman, M.J.; Steffen, J.H.; Mullally, F.; Still, M.; Tarter, J.; Ballard, S.; Buchhave, L.A.; Carter, J.; Christiansen, J.L.; Demory, B.O.; Désert, J.M.; Dressing, C.; Endl, M.; Fabrycky, D.; Fischer, D.; Haas, M.R.; Henze, C.; Horch, E.; Howard, A.W.; Isaacson, H.; Kjeldsen, H.; Johnson, J.A.; Klaus, T.; Kolodziejczak, J.; Barclay, T.; Li, J.; Meibom, S.; Prsa, A.; Quinn, S.N.; Quintana, E.V.; Robertson, P.; Sherry, W.; Shporer, A.; Tenenbaum, P.; Thompson, S.E.; Twicken, J.D.; Van Cleve, J.; Welsh, W.F.; Basu, S.; Chaplin, W.; Miglio, A.; Kawaler, S.D.; Arentoft, T.; Stello, D.; Metcalfe, T.S.; Verner, G.A.; Karoff, C.; Lundkvist, M.; Lund, M.N.; Handberg, R.; Elsworth, Y.; Hekker, S.; Huber, D.; Bedding, T.R.; Rapin, W.

    2012-01-01

    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an

  8. DETERMINING STAR FORMATION RATES FOR INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Rieke, G. H.; Weiner, B. J.; Perez-Gonzalez, P. G.; Donley, J. L.; Alonso-Herrero, A.; Blaylock, M.; Marcillac, D.

    2009-01-01

    We show that measures of star formation rates (SFRs) for infrared galaxies using either single-band 24 μm or extinction-corrected Paα luminosities are consistent in the total infrared luminosity = L(TIR) ∼ 10 10 L sun range. MIPS 24 μm photometry can yield SFRs accurately from this luminosity upward: SFR(M sun yr -1 ) = 7.8 x 10 -10 L(24 μm, L sun ) from L(TIR) = 5x 10 9 L sun to 10 11 L sun and SFR = 7.8 x 10 -10 L(24 μm, L sun )(7.76 x 10 -11 L(24)) 0.048 for higher L(TIR). For galaxies with L(TIR) ≥ 10 10 L sun , these new expressions should provide SFRs to within 0.2 dex. For L(TIR) ≥ 10 11 L sun , we find that the SFR of infrared galaxies is significantly underestimated using extinction-corrected Paα (and presumably using any other optical or near-infrared recombination lines). As a part of this work, we constructed spectral energy distribution templates for eleven luminous and ultraluminous purely star forming infrared galaxies and over the spectral range 0.4 μm to 30 cm. We use these templates and the SINGS data to construct average templates from 5 μm to 30 cm for infrared galaxies with L(TIR) = 5x 10 9 to 10 13 L sun . All of these templates are made available online.

  9. Under a crimson sun prospects for life in a red dwarf system

    CERN Document Server

    Stevenson, David S

    2013-01-01

    Gliese 581 is a red dwarf star some 20.3 light years from Earth. Red dwarfs are among the most numerous stars in the galaxy, and they sport diverse planetary systems. At magnitude 10, Gliese 581 is visible to amateur observers but does not stand out. So what makes this star so important? It is that professional observers have confirmed that it has at least four planets orbiting it, and in 2009, Planet d was described in the letters of The Astrophysical Journal as “the first confirmed exoplanet that could support Earth-like life.”   Under a Crimson Sun looks at the nature of red dwarf systems such as Gliese as potential homes for life.   Realistically, what are prospects for life on these distant worlds? Could life evolve and survive there? How do these planetary surfaces and geology evolve? How would life on a red dwarf planet differ from life on Earth? And what are the implications for finding further habitable worlds in our galaxy?   Stevenson provides readers with insight into the habitability of pl...

  10. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  11. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  12. Unusual Metals in Galactic Center Stars

    Science.gov (United States)

    Hensley, Kerry

    2018-03-01

    while one star is only slightly above solar metallicity, the other is likely more than four times as metal-rich as the Sun.The features in the observed and synthetic spectra generally matched well, but the absorption lines of scandium, vanadium, and yttrium were consistently stronger in the observed spectra than in the synthetic spectra. This led the authors to conclude that these galactic center stars are unusually rich in these metals trace elements that could reveal the formation history of the galactic nucleus.Old Stars, New Trends?Scandium to iron ratio versusiron abundance for stars in the disk of the Milky Way (blue) and the stars in this sample (orange). The value reported for this sample is a 95% lower limit. [Do et al. 2018]For stars in the disk of the Milky Way, the abundance of scandium relative to iron tends to decrease as the overall metallicity increases, but the stars investigated in this study are both iron-rich and anomalously high in scandium. This hints that the nuclear star cluster might represent a distinct stellar population with different metallicity trends.However, its not yet clear what could cause the elevated abundances of scandium, vanadium, and yttrium relative to other metals. Each of these elements is linked to a different source; scandium and vanadium are mainly produced in Type II and Type Ia supernovae, respectively, while yttrium is likely synthesized in asymptotic giant branch stars. Future observations of stars near the center of the Milky Way may help answer this question and further constrain the origin of our galaxys nuclear star cluster.CitationTuan Do et al 2018 ApJL 855 L5. doi:10.3847/2041-8213/aaaec3

  13. Seek a Minor Sun: The Distribution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

    Science.gov (United States)

    Gaidos, Eric

    2015-07-01

    The Sun-Earth systems has long been used as a template to understand habitable planets around other stars and to develop missions to seek them. However, two decades of exoplanet studies have shown that many, if not most planetary systems around G dwarf stars do not resemble the Solar System. Moreover, an objective census of our Galaxy might ignore solar- type stars and focus on M dwarfs, which constitute some 80% of all stars in the neighborhood. Recent work has shown that M dwarfs have more close-in planets than solar-type stars, and perhaps more planets in the "habitable zone" defined by stellar irradiation. M dwarfs also burn hydrogen over a vastly longer time; slow evolution on the main sequence means a planet can remain habitable for much longer, providing a more permissive environment for the evo- lution of life and intelligence. If M dwarfs are such compelling locales to look for life, why are we ourselves not orbiting a red Sun?

  14. Binary pulsar PSR 1718-19 contains a stripped main-sequence turn-off star

    International Nuclear Information System (INIS)

    Zwitter, T.

    1993-05-01

    Lyne et al. (1993) have recently announced the discovery of a 1-second globular cluster pulsar, 1718-19, in a 6.2-hour binary system which is embedded in a cloud of material originating from the companion star. However the incident flux of the pulsar's radiation on the companion is too low to ablate it and a main sequence companion is too small to fill its Roche lobe. Here I argue that the companion is a stripped turn-off star of 0.2-0.4 solar masses (M sun ) and with approx. 0.1M sun helium core. It has approx. 1.8-times larger radius than a main sequence star of equal mass. Its position in the Hertzsprung-Russell diagram overlaps that of a ∼ 0.65M sun main-sequence star. The evolutionary state of the companion and the highly magnetized slowly rotating neutron star place the system on the verge of the low mass X-ray binary phase. (author). 19 refs, 2 figs

  15. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    International Nuclear Information System (INIS)

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-01-01

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results

  16. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, Nader [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822 (United States); Kaltenegger, Lisa [MPIA, Koenigstuhl 17, Heidelberg, D-69117 (Germany)

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  17. THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M sun yr -1 , with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  18. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  19. THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)

    2012-01-15

    Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

  20. Novel star-like surfactant as dispersant for multi-walled carbon nanotubes in aqueous suspensions at high concentration

    Science.gov (United States)

    Qiao, Min; Ran, Qianping; Wu, Shishan

    2018-03-01

    A kind of novel surfactant with star-like molecular structure and terminated sulfonate was synthesized, and it was used as the dispersant for multi-walled carbon nanotubes (CNTs) in aqueous suspensions compared with a traditional single-chained surfactant. The star-like surfactant showed good dispersing ability for multi-walled CNTs in aqueous suspensions. Surface tension analysis, total organic carbon analysis, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering and transmission electron microscopy were performed to research the effect of star-like surfactant on the dispersion of multi-walled CNTs in aqueous suspensions. With the assistance of star-like surfactant, the CNTs could disperse well in aqueous suspension at high concentration of 50 g/L for more than 30 days, while the CNTs precipitated completely in aqueous suspension after 1 day without any dispersant or after 10 days with sodium 4-dodecylbenzenesulfonic acid as dispersant.

  1. MASS LOSS IN PRE-MAIN-SEQUENCE STARS VIA CORONAL MASS EJECTIONS AND IMPLICATIONS FOR ANGULAR MOMENTUM LOSS

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N. [Astronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Stassun, Keivan G., E-mail: aarnio@umich.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2012-11-20

    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.

  2. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Nakajima, Tadashi; Sorahana, Satoko

    2016-01-01

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H 2 O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  3. CARBON-TO-OXYGEN RATIOS IN M DWARFS AND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Tadashi [Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Sorahana, Satoko, E-mail: tadashi.nakajima@nao.ac.jp, E-mail: sorahana@astron.s.u-tokyo.ac.jp [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-10-20

    It has been suggested that high C/O ratios (>0.8) in circumstellar disks lead to the formation of carbon-dominated planets. Based on the expectation that elemental abundances in the stellar photospheres give the initial abundances in the circumstellar disks, the frequency distributions of C/O ratios of solar-type stars have been obtained by several groups. The results of these investigations are mixed. Some find C/O > 0.8 in more than 20% of stars, and C/O > 1.0 in more than 6%. Others find C/O > 0.8 in none of the sample stars. These works on solar-type stars are all differential abundance analyses with respect to the Sun and depend on the adopted C/O ratio in the Sun. Recently, a method of molecular line spectroscopy of M dwarfs, in which carbon and oxygen abundances are derived respectively from CO and H{sub 2}O lines in the K band, has been developed. The resolution of the K- band spectrum is 20,000. Carbon and oxygen abundances of 46 M dwarfs have been obtained by this nondifferential abundance analysis. Carbon-to-oxygen ratios in M dwarfs derived by this method are more robust than those in solar-type stars derived from neutral carbon and oxygen lines in the visible spectra because of the difficulty in the treatment of oxygen lines. We have compared the frequency distribution of C/O distributions in M dwarfs with those of solar-type stars and have found that the low frequency of high-C/O ratios is preferred.

  4. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  5. DETECTING THE RISE AND FALL OF THE FIRST STARS BY THEIR IMPACT ON COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyungjin [Department of Earth Sciences, Chosun University, Gwangju 501-759 (Korea, Republic of); Iliev, Ilian T. [Astronomy Centre, Department of Physics and Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Shapiro, Paul R.; Mao, Yi [Department of Astronomy and Texas Cosmology Center, University of Texas, Austin, TX 78712-1083 (United States); Mellema, Garrelt [Department of Astronomy and Oskar Klein Centre, Stockholm University, Albanova, SE-10691 Stockholm (Sweden); Koda, Jun, E-mail: kjahn@chosun.ac.kr [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2012-09-01

    The intergalactic medium was reionized before redshift z {approx} 6, most likely by starlight which escaped from early galaxies. The very first stars formed when hydrogen molecules (H{sub 2}) cooled gas inside the smallest galaxies, minihalos (MHs) of mass between 10{sup 5} and 10{sup 8} M{sub Sun }. Although the very first stars began forming inside these MHs before redshift z {approx} 40, their contribution has, to date, been ignored in large-scale simulations of this cosmic reionization. Here we report results from the first reionization simulations to include these first stars and the radiative feedback that limited their formation, in a volume large enough to follow the crucial spatial variations that influenced the process and its observability. We show that, while MH stars stopped far short of fully ionizing the universe, reionization began much earlier with MH sources than without, and was greatly extended, which boosts the intergalactic electron-scattering optical depth and the large-angle polarization fluctuations of the cosmic microwave background significantly. This boost should be readily detectable by Planck, although within current Wilkinson Microwave Anisotropy Probe uncertainties. If reionization ended as late as z{sub ov} {approx}< 7, as suggested by other observations, Planck will thereby see the signature of the first stars at high redshift, currently undetectable by other probes.

  6. News and Views: Kleopatra a pile of rubble, shedding moons; Did plasma flow falter to stretch solar minimum? Amateurs hit 20 million variable-star observations; Climate maths; Planetary priorities; New roles in BGA

    Science.gov (United States)

    2011-04-01

    Metallic asteroid 216 Kleopatra is shaped like a dog's bone and has two tiny moons - which came from the asteroid itself - according to a team of astronomers from France and the US, who also measured its surprisingly low density and concluded that it is a collection of rubble. The recent solar minimum was longer and lower than expected, with a low polar field and an unusually large number of days with no sunspots visible. Models of the magnetic field and plasma flow within the Sun suggest that fast, then slow meridional flow could account for this pattern. Variable stars are a significant scientific target for amateur astronomers. The American Association of Variable Star Observers runs the world's largest database of variable star observations, from volunteers, and reached 20 million observations in February.

  7. Evidence for mass loss at moderate to high velocity in Be stars

    International Nuclear Information System (INIS)

    Snow, T.P. Jr.; Marlborough, J.M.

    1976-01-01

    Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of 12 objects classified as Be or shell stars, and 19 additional early B dwarfs. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si iv doublet at 1400 A, indicating the presence in some cases of outflowing material with maximum velocities of nearly 1000 km s -1 . Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5; the only objects later than B0.5 which show this effect are Be or shell stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the ultraviolet flux from B1-B2 dwarfs is sufficient to drive high-velocity stellar winds only if rotation effects reduce the effective gravity near the equator. The mass loss rate for one of the most active Be stars, 59 Cyg, is crudely estimated to be 10 -10 --10 -9 M/sub sun/ yr -1 . The data are suggestive that the extended atmospheres associated with Be star phenomena may be formed by mass ejection

  8. Precise nuclear physics for the sun

    International Nuclear Information System (INIS)

    Bemmerer, Daniel

    2012-01-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely populated areas

  9. Precise nuclear physics for the sun

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel

    2012-07-01

    For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth's atmosphere in space, have succeeded in observing astronomical objects that are billions of light-years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun's inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth's climate may strongly affect the living conditions in a number of densely

  10. A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schilke, Peter; Menten, Karl; Ho, Paul T. P.; Rodriguez, Luis F.; Palau, Aina; Garrod, Robin T.

    2009-01-01

    Sensitive and high angular resolution (∼0.''4) SO 2 [22 2,20 → 22 1,21 ] and SiO[5 → 4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) toward the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M sun ) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M sun ) and collimated (∼14 0 ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity on the order of 10 5 L sun . A molecular hybrid local thermodynamic equilibrium model of a Keplerian and infalling disk with an inner cavity and a central stellar mass of more than 60 M sun agrees well with the SO 2 [22 2,20 → 22 1,21 ] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate-mass stars, might not be necessary for forming very massive stars.

  11. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  12. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  13. Stars Spring up Out of the Darkness

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Stars Spring up Out of the Darkness This artist's animation illustrates the universe's early years, from its explosive formation to its dark ages to its first stars and mini-galaxies. Scientists using NASA's Spitzer Space Telescope found patches of infrared light splattered across the sky that might be the collective glow of clumps of the universe's first objects. Astronomers do not know if these first objects were stars or 'quasars,' which are black holes voraciously consuming surrounding gas. The movie begins with a flash of color that represents the birth of the universe, an explosion called the Big Bang that occurred about 13.7 billion years ago. A period of darkness ensues, where gas begins to clump together. The universe's first stars are then shown springing up out of the gas clumps, flooding the universe with light, an event that probably happened about a few hundred million years after the Big Bang. Though these first stars formed out of gas alone, their deaths seeded the universe with the dusty heavy chemical elements that helped create future generations of stars. The first stars, called Population III stars (our star is a Population I star), were much bigger and brighter than any in our nearby universe, with masses about 1,000 times that of our sun. They grouped together into mini-galaxies, which then merged to form galaxies like our own mature Milky Way galaxy. The first quasars, not shown here, ultimately became the centers of powerful galaxies that are more common in the distant universe.

  14. ‘My child did not like using sun protection’: practices and perceptions of child sun protection among rural black African mothers

    OpenAIRE

    Zamantimande Kunene; Patricia N. Albers; Robyn M. Lucas; Cathy Banwell; Angela Mathee; Caradee Y. Wright

    2017-01-01

    Abstract Background Photodamage is partially mitigated by darker skin pigmentation, but immune suppression, photoaging and cataracts occur among individuals with all skin types. Methods To assess practices and acceptability to Black African mothers of sun protection equipment for their children living in a rural area, participants were recruited at the time of their child’s 18-month vaccinations. Mothers completed a baseline questionnaire on usual sun behaviours and sun protection practices. ...

  15. Seismic analysis of four solar-like stars observed during more than eight months by Kepler

    DEFF Research Database (Denmark)

    Mathur, S.; L. Campante, T.; Handberg, R.

    2011-01-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data of solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). I......). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months....

  16. Seismic Analysis of Four Solar-like Stars Observed during More Than Eight Months by Kepler

    Science.gov (United States)

    Mathur, S.; Campante, T. L.; Handberg, R.; García, R. A.; Appourchaux, T.; Bedding, T. R.; Mosser, B.; Chaplin, W. J.; Ballot, J.; Benomar, O.; Bonanno, A.; Corsaro, E.; Gaulme, P.; Hekker, S.; Régulo, C.; Salabert, D.; Verner, G.; White, T. R.; Brandão, I. M.; Creevey, O. L.; Dogan, G.; Bazot, M.; Cunha, M. S.; Elsworth, Y.; Huber, D.; Hale, S. J.; Houdek, G.; Karoff, C.; Lundkvist, M.; Metcalfe, T. S.; Molenda-Zakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Stello, D.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kawaler, S. D.; Kjeldsen, H.; Clarke, B. D.; Girouard, F. R.; Hall, J. R.; Quintana, E. V.; Sanderfer, D. T.; Seader, S. E.

    2012-09-01

    Having started science operations in May 2009, the Kepler photometer has been able to provide exquisite data for solar-like stars. Five out of the 42 stars observed continuously during the survey phase show evidence of oscillations, even though they are rather faint (magnitudes from 10.5 to 12). In this paper, we present an overview of the results of the seismic analysis of 4 of these stars observed during more than eight months.

  17. A new view of the Sun from space

    CERN Document Server

    Bonnet, Roger Maurice

    2001-01-01

    Artificial Satellites are providing new tools for the observation of our star. The European Space Agency, ESA, in cooperation with NASA has programmed and developed three important space missions: SOHO, ULYSSES, and CLUSTER which offer new opportunities to study the Sun and how it influences the Earth's environment. SOHO in particular, thanks to an unprecedented stability together with a very complete set of instruments, has responded to several of the most fundamental questions concerning the behaviour and the running of our star. It is now possible to probe its interior down to the very core where the thermonuclear reactions occur and to deduce the physical conditions which exist therein. It is also possible to understand better the origin of the solar wind and why is the solar corona so hot. These two questions have been at the core of a large number of observations and theoretical studies for a long time. Thanks to ULYSSES which observes the Sun from a unique vantage point, outside the ecliptic plane wher...

  18. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  19. One or more bound planets per Milky Way star from microlensing observations.

    Science.gov (United States)

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  20. Very Large Array Observations of the Sun with Related Observations Using the SMM (Solar Maximum Mission) Satellite

    Science.gov (United States)

    1988-10-12

    Maryland. c College Park 20.42. Kenneth R. Lang is an associatestrahlung of thermal electrons acceler- magnetic field. An electromagnetic wave professor...velocity near the ion sound sive weaker bursts are located in the The dwarf M flare stars also exhibit speed (17). Electrons with velocities same coronal...magnetic field (Gary and Linsky 1981; Topka and Marsh 1982). This intepretation is suggested by the analogy with the Sun, in which intense, highly

  1. Methods to Directly Image Exoplanets around Alpha Centauri and Other Multi-Star Systems

    Science.gov (United States)

    Belikov, R.; Sirbu, D.; Bendek, E.; Pluzhnik, E.

    2017-12-01

    The majority of FGK stars exist as multi-star star systems, and thus form a potentially rich target sample for direct imaging of exoplanets. A large fraction of these stars have starlight leakage from their companion that is brighter than rocky planets. This is in particular true of Alpha Centauri, which is 2.4x closer and about an order of magnitude brighter than any other FGK star, and thus may be the best target for any direct imaging mission, if the light of both stars can be suppressed. Thus, the ability to suppress starlight from two stars improves both the quantity and quality of Sun-like targets for missions such as WFIRST, LUVOIR, and HabEx. We present an analysis of starlight leak challenges in multi-star systems and techniques to solve those challenges, with an emphasis on imaging Alpha Centauri with WFIRST. For the case of internal coronagraphs, the fundamental problem appears to be independent wavefront control of multiple stars (at least if the companion is close enough or bright enough that it cannot simply be removed by longer exposure times or post-processing). We present a technique called Multi-Star Wavefront Control (MSWC) as a solution to this challenge and describe the results of our technology development program that advanced MSWC to TRL 3. Our program consisted of lab demonstrations of dark zones in two-star systems, validated simulations, as well as simulated predictions demonstrating that with this technology, contrasts needed for Earth-like planets are in principle achievable. We also demonstrate MSWC in Super-Nyquist mode, which allows suppression of multiple stars at separations greater than the spatial Nyquist limit of the deformable mirror.

  2. 7Li production in bouncing supermassive stars

    International Nuclear Information System (INIS)

    Norgaard, H.; Fricke, K.J.

    1976-01-01

    Nucleosynthesis in detailed models for bouncing supermassive stars is investigated. We consider a non-rotating 5.2 x 10 5 M(sun) and a rotating 3 x 10 6 M (sun) star and follow the time evolution of the abundances throughout the quasistatic contraction phase as well as through the implosion-explosion. Our numerical network integrations show that explosions of such objects cause predominantly the enrichment of 7 Li. Typical enhancement factors for 7 Li with respect to the 'universal' value of Cameron (1973) are of the order of 1,000, whereas those of 13 C, 15 N and 17 O are of the order of 100 or less. (orig./WL) [de

  3. Neutron Star Mergers and the R process

    Science.gov (United States)

    Joniak, Ronald; Ugalde, Claudio

    2017-09-01

    About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).

  4. Stellar Rotation with Kepler and Gaia: Evidence for a Bimodal Star Formation History

    Science.gov (United States)

    Davenport, James

    2018-01-01

    Kepler stars with rotation periods measured via starspot modulations in their light curves have been matched against the astrometric data from Gaia Data Release 1. A total of 1,299 bright rotating stars were recovered, most with temperatures hotter than 5000 K. From these, 894 were selected as being near the main sequence. These main sequence stars show a bimodality in their rotation period distribution, centered around a ~600 Myr rotation-isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler, but was previously undetected for solar-type stars due to sample contamination by subgiant and binary stars. A tenuous connection between the rotation period and total proper motion is found, suggesting the period bimodality is due to the age distribution of stars within 300pc of the Sun, rather than a phase of rapid angular momentum loss. I will discuss how the combination of Kepler/K2/TESS with Gaia will enable us to map the star formation history of our galactic neighborhood.

  5. POPULATION PARAMETERS OF INTERMEDIATE-AGE STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. II. NEW INSIGHTS FROM EXTENDED MAIN-SEQUENCE TURNOFFS IN SEVEN STAR CLUSTERS

    International Nuclear Information System (INIS)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Puzia, Thomas H.; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of seven intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main-sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we cannot formally rule out the latter for the three lowest-mass clusters in our sample (which have masses lower than ∼3 x 10 4 M sun ). This conclusion differs from that of some previous works which suggested that the age distribution in massive clusters in our sample is bimodal. This suggests that any secondary star formation occurred in an extended fashion rather than through short bursts. We discuss these results in the context of the nature of multiple stellar populations in star clusters.

  6. Evolution of a blue supergiant with a neutron star companion immersed in its envelope

    International Nuclear Information System (INIS)

    Delgado, A.J.

    1980-01-01

    The evolution of a binary system consisting of 1 Msub(sun) neutron star and a 25 Msub(sun) blue supergiant through a phase of common envelope is investigated. We include the effects of an additional energy source on the supergiant's envelope, due to the presence of the neutron star, and variable mass loss from the system, taken as proportional to the total luminosity. The results indicate that, independently of the initial period, the system loses its whole envelope as a consequence of the common envelope phase, the final product of this being a detached system, consisting of a neutron star and a helium star. (orig.)

  7. A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars

    Science.gov (United States)

    Henry, Todd J.; Soderblom, David R.; Donahue, Robert A.; Baliunas, Sallie L.

    1996-01-01

    More than 800 southern stars within 50 pc have been observed for chromospheric emission in the cores of the Ca II H and K lines. Most of the sample targets were chosen to be G dwarfs on the basis of colors and spectral types. The bimodal distribution in stellar activity first noted in a sample of northern stars by Vaughan and Preston in 1980 is confirmed, and the percentage of active stars, about 30%, is remarkably consistent between the northern and southern surveys. This is especially compelling given that we have used an entirely different instrumental setup and stellar sample than used in the previous study. Comparisons to the Sun, a relatively inactive star, show that most nearby solar-type stars have a similar activity level, and presumably a similar age. We identify two additional subsamples of stars -- a very active group, and a very inactive group. The very active group may be made up of young stars near the Sun, accounting for only a few percent of the sample, and appears to be less than ~0.1 Gyr old. Included in this high-activity tail of the distribution, however, is a subset of very close binaries of the RS CVn or W UMa types. The remaining members of this population may be undetected close binaries or very young single stars. The very inactive group of stars, contributting ~5%--10% to the total sample, may be those caught in a Maunder Minimum type phase. If the observations of the survey stars are considered to be a sequence of snapshots of the Sun during its life, we might expect that the Sun will spend about 10% of the remainder of its main sequence life in a Maunder Minimum phase.

  8. Sun exposure and sun protection practices of children and their parents.

    LENUS (Irish Health Repository)

    Kiely, A D

    2009-05-01

    The primary aims of this study were: to estimate sun exposure in hours of children in Cork during the summer months; to examine sun protection measures used by children and their parents and to explore parental knowledge of sun exposure and protection. A cross-sectional study, using a semi-structured questionnaire, was conducted in June 2006 in primary schools, pre-schools and creches throughout Cork City and County. Parents of 250 children aged less than 12 years were sampled. Mean sun exposure of Cork children was 40.9 hours per week in the summer months, with 77 (46.1%) children developing sunburn. 59.3% of the studied children were of skin type 1 or 2. 95 (57%) children on weekdays and 137 (82%) children at weekends were exposed to the sun between 11 am and 3 pm. Sunscreen and hats\\/caps were the most common protection measures used. A minority used protective clothing, sunglasses or sought shade. Thirty one (30.5%) children had sunscreen reapplied every 2 hours. Knowledge of sun protection was considerable among Irish parents. However the frequency of sunburn among Irish children suggests we are not providing them with adequate sun protection.

  9. Limits on surface gravities of Kepler planet-candidate host stars from non-detection of solar-like oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Campante, T. L.; Chaplin, W. J.; Handberg, R.; Miglio, A.; Davies, G. R.; Elsworth, Y. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lund, M. N.; Arentoft, T.; Christensen-Dalsgaard, J.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. [Stellar Astrophysics Centre (SAC), Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Huber, D. [NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 (United States); Hekker, S. [Astronomical Institute, " Anton Pannekoek," University of Amsterdam, Amsterdam (Netherlands); García, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot (France); IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Corsaro, E. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Basu, S. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Bedding, T. R. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Gilliland, R. L. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Kawaler, S. D., E-mail: campante@bison.ph.bham.ac.uk [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); and others

    2014-03-10

    We present a novel method for estimating lower-limit surface gravities (log g) of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.

  10. Optical region elemental abundance analyses of B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; Young, J.M.; Baldwin, H.E.

    1984-01-01

    Abundance analyses using optical region data and fully line blanketed model atmospheres have been performed for two sharp-lined hot Am stars o Pegasi and σ Aquarii and for the sharp-lined marginally peculiar A star v Cancri. The derived abundances exhibit definite anomalies compared with those of normal B-type stars and the Sun. (author)

  11. Gyrochronology relating star age to rotational period is derived from first principles through a novel time dual for thermodynamics, named lingerdynamics

    Science.gov (United States)

    Feria, Erlan H.

    2017-10-01

    Gyrochronology estimates the age of a low-mass star from its rotational period, which is found from changes in brightness caused by dark star spots. First revealed as an insight in (Skumanich, A. 1972, The Astrophysical Journal. 171: 565) it allows astronomers to find true sun-like stars that may harbor life in its planets (Meibom, S. et. al., Nature. 517: 589-591). Here a simple expression for the age of a star is derived through a novel linger thermo theory (LTT) integrating thermodynamics with its revealed time-dual, named lingerdynamics. This expression relates the star age to the ratio of past and present rotational period metrics (RPM) of lingerdynamics. LTT has been used earlier to derive a simple expression for the finding of the entropy of spherical-homogeneous mediums (Feria, E. H. Nov. 19, 2016, Linger Thermo Theory, IEEE Int’l Conf. on Smart Cloud, 18 pages, DOI 10.1109/SmartCloud.2016.57, Colombia Univ., N.Y., N.Y. and Feria, E. H. June 7th 2017, AAS 340th Meeting). In LTT the lifespan of system operation τ is given by: τ = (2Π /3v3)G2M2 x RPM where G is the gravitational constant, Π is the pace of mass-energy retention in s/m3 units (e.g., for our current sun it is given by 5 billion ‘future’ years over its volume), and v is the perpetual radial speed about the point-mass M. Since in LTT a star is modeled as a point mass at the center of its spherical volume, its RPM is not the same as the measured rotational period of an actual star. For instance, for our sun its equator rotational period is approximately 25.34 days, while in lingerdynamics it is a fraction of a day, i.e., 0.116 days, where this value is derived from the RPM expression 2πrsun/(GMsun / rsun)1/2 where 2πrsun is the circumference of the sun, (GMsun/rsun)1/2 is the perpetual radial speed v for our point-mass modeled sun, and rsun and Msun are the sun radius and point-mass, respectively. However, using conservation of angular momentum arguments it is assumed that the ratio of

  12. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  13. Photospheric activity of the Sun with VIRGO and GOLF. Comparison with standard activity proxies

    Science.gov (United States)

    Salabert, D.; García, R. A.; Jiménez, A.; Bertello, L.; Corsaro, E.; Pallé, P. L.

    2017-12-01

    We study the variability of solar activity using new photospheric proxies originally developed for the analysis of stellar magnetism with the CoRoT and Kepler photometric observations. These proxies were obtained by tracking the temporal modulations in the observations associated with the spots and magnetic features as the Sun rotates. We analyzed 21 yr of observations, spanning solar cycles 23 and 24, collected by the space-based photometric VIRGO and radial velocity GOLF instruments on board the SoHO satellite. We then calculated the photospheric activity proxy Sph is for each of the three VIRGO photometers and the associated Svel proxy from the radial velocity GOLF observations. Comparisons with several standard solar activity proxies sensitive to different layers of the Sun demonstrate that these new activity proxies, Sph and Svel, provide a new manner to monitor solar activity. We show that both the long- and short-term magnetic variabilities respectively associated with the 11-yr cycle and the quasi-biennial oscillation are well monitored, and that the magnetic field interaction between the subsurface, photosphere, and chromosphere of the Sun was modified between Cycle 24 and Cycle 23. Furthermore, the photometric proxies show a wavelength dependence of the response function of the solar photosphere among the three channels of the VIRGO photometers, providing inputs for the study of the stellar magnetism of Sun-like stars.

  14. Solar flare leaves sun quaking

    Science.gov (United States)

    1998-05-01

    energy, and produce X-rays, microwaves and a shock wave that heats the solar surface. Kosovichev and Zharkova developed a theory that predicts the nature and magnitude of the shock waves that this beam of energetic electrons should create when they slam down into the solar atmosphere. Although their theory directed them to the right area to search for the seismic waves, the waves that they found were 10 times stronger than they had predicted. "They were so strong that you can see them in the raw data," Kosovichev says. The solar seismic waves appear to be compression waves like the "P" waves generated by an earthquake. They travel throughout the Sun's interior. In fact, the waves should recombine on the opposite side of the Sun from the location of the flare to create a faint duplicate of the original ripple pattern, Kosovichev predicts. Now that they know how to find them, the SOHO scientists say that the seismic waves generated by solar flares should allow them to verify independently some of the conditions in the solar interior that they have inferred from studying the pattern of waves that are continually ruffling the Sun's surface. SOHO is part of the International Solar-Terrestrial Physics (ISTP) program, a global effort to observe and understand our star and its effects on our environment. The ISTP mission includes more than 20 satellites, coupled with with ground-based observatories and modeling centers, that allow scientists to study the Sun, the Earth, and the space between them in unprecedented detail. ISTP is a joint program of NASA, ESA, Japan's Institute for Astronautical Science, and Russia's Space Research Institute. Still images of the solar quake can be found at the following internet address: FTP://PAO.GSFC.NASA.GOV/newsmedia/QUAKE/ For further information, please contact : ESA Public Relations Division Tel:+33(0)1.53.69.71.55 Fax: +33(0)1.53.69.76.90 3

  15. Bulk yields of nucleosynthesis from massive stars

    International Nuclear Information System (INIS)

    Arnett, W.D.

    1978-01-01

    Preliminary estimates are made of the absolute yields of abundant nuclei synthesized in observed stars. The compositions of nine helium stars of mass 3 or =10M/sub sun/ is estimated. A variety of choices for the initial mass function (IMF) are used to calculate the yield per stellar generation. For standard choices of the (IMF) the absolute and relative yields of 12 C, 16 O, 20 Ne, 24 Mg, the Si to Ca group, and the iron group agree with solar system values, to the accuracy of the calculations. The relative yields are surprisingly insensitive to the slope of the IMF. In a second approach, using standard estimates (Ostriker, Richstone, and Thuan) for the current rate of stellar death, I find the present rate of nucleosynthesis in the solar neighborhood to be about 10%of the average rate over galactic history. This result is consistent with many standard models of galactic evolution (for example, the Schmidt model in which star formation goes as gas density squared). It appears that if the star formation rate is high enough to produce the stars we see around us, then the nucleosynthesis rate is large enough to produce the processed nuclei (except 4 He) seen in those stars. The typical nucleosynthesis source is massive (Mapprox. =30 M/sub sun/); the death rate of such stars is a small fraction (3-10%) of recent estimates of the total rate of supernovae

  16. WHAT IS THE SOURCE OF QUIET SUN TRANSITION REGION EMISSION?

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, D. J.; De Pontieu, Bart [Lockheed-Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States)

    2016-11-10

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph ( IRIS ) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  17. Pasta structures in neutron stars

    International Nuclear Information System (INIS)

    Gupta, Neha; Shabnam, I.S.; Arumugam, P.

    2011-01-01

    A neutron star (NS) is a stellar remnant, a super-compressed object left over when stars with a mass between 1.4 and about 3 times the mass of our Sun exhaust their nuclear fuel and collapse inwards. The result of such an implosion is a condensed sphere of matter about 10 km across. The outer layer of the of NS, with density less than the nuclear saturation density, represent different challenges and observational opportunities like thermal evolution, X-ray burst, glitches and the very important core-crust transition region. At this density, nucleons are correlated at short distances by attractive strong interactions, they are anti-correlated at large distances because of the Coulomb repulsion. Competition among short- and long-range interactions (i.e., frustration) leads to the development of complex and exotic nuclear shapes, such as sphere, bubbles, rods, slabs and tubes. The term 'pasta phases' has been coined to describe these complex structures. In this work the nuclear pasta phases using different mean-field models along with a droplet model has been studied

  18. Work-time sun behaviours among Canadian outdoor workers: results from the 2006 National Sun Survey.

    Science.gov (United States)

    Marrett, Loraine D; Pichora, Erin C; Costa, Michelle L

    2010-01-01

    The objective of the study was to describe summer work-related sun behaviours among Canadian outdoor workers. Information on time in the sun and sun protection practices at work during the summer of 2006 were collected from 1,337 outdoor workers aged 16-64 years as part of the Second National Sun Survey. Proportions (and 95% confidence intervals) were estimated using procedures appropriate for complex survey designs. Twenty-six percent of all Canadians, 39% of males and 33% of those aged 16-24 years work outdoors during the summer. Although 41% spend four or more hours daily in the sun at work, just over half always or often protect themselves by covering their heads (58%), wearing protective clothing (56%) or wearing sunglasses (54%), and only 29% use sunscreen. Males and those aged 16-24 spend the most work time in the sun but are the least likely to use protection. The prevalence of outdoor work and sun behaviours varies among regions. Study findings confirm the need for strategies to reduce time in the sun and increase the use of sun protection among outdoor workers. In order to be effective, these strategies must include both enhanced workplace policies and practice, and increased individual use of sun protection.

  19. Giant Black Hole Rips Apart Star

    Science.gov (United States)

    2004-02-01

    Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process

  20. Turning the Star Trek Dream into Reality by Understanding Matter & Antimatter

    Science.gov (United States)

    Hansen, Norm

    2002-04-01

    People are going to learn all about matter and antimatter. Where matter and antimatter comes from. Where antimatter exists within our solar system. What the Periodic Table of Matter-AntiMatter Elements looks like. What each of the 109 antimatter element's nuclear, physical, and chemical characteristics are. How much energy is produced from matter and antimatter. And what needs to be done to turn the Star Trek Dream into Reality. The Milky Way Galaxy is composed of matter and antimatter. At the center of the galaxy, there are two black holes. One black hole is composed of matter; and the other is antimatter. The black holes are ejecting matter and antimatter into space forming a halo and spiral arms of matter & antimatter stars. The sun is one of the billions of stars that are composed of matter. There are a similar number of antimatter stars. Our Solar System contains the sun, earth, planets, and asteroids that are composed of matter, and comets that are composed of antimatter. When galactic antimatter enters our solar system, the antimatter is called comets. Astronomers have observed hundred of comets orbiting the sun and are finding new comets every year. During the last century, mass destruction has resulted when antimatter collided with Jupiter and Earth. How Humanity deals with the opportunities and dangers of antimatter will determine our destiny. Mankind has known about comets destructive power for thousands of years going back to the days of antiquity. Did comets have anything to do with the disappearance of Atlantis over twelve thousand years ago? We may never know; but is there a similar situation about to take place? Scientists have been studying antimatter by producing, storing, and colliding small quantities at national laboratories for several decades. Symmetry exists between matter and antimatter. Science and Technology provides unlimited opportunities to benefit humanity. Antimatter can be used, as a natural source of energy, to bring every country

  1. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  2. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  3. Sun Protection Among New Zealand Primary School Children.

    Science.gov (United States)

    Gage, Ryan; Leung, William; Stanley, James; Reeder, Anthony; Mackay, Christina; Smith, Moira; Barr, Michelle; Chambers, Tim; Signal, Louise

    2017-12-01

    Schools are an important setting for raising skin cancer prevention awareness and encouraging sun protection. We assessed the clothes worn and shade used by 1,278 children in eight schools in the Wellington region of New Zealand. These children were photographed for the Kids'Cam project between September 2014 and March 2015 during school lunch breaks. Children's mean clothing coverage (expressed as a percentage of body area covered) was calculated. Data on school sun-safety policies were obtained via telephone. Mean total body clothing coverage was 70.3% (95% confidence interval = 66.3%, 73.8%). Body regions with the lowest mean coverage were the head (15.4% coverage), neck (36.1% coverage), lower arms (46.1% coverage), hands (5.3% coverage), and calves (30.1% coverage). Children from schools with hats as part of the school uniform were significantly more likely to wear a hat (52.2%) than children from schools without a school hat (2.7%). Most children (78.4%) were not under the cover of shade. Our findings suggest that New Zealand children are not sufficiently protected from the sun at school. Schools should consider comprehensive approaches to improve sun protection, such as the provision of school hats, sun-protective uniforms, and the construction of effective shade.

  4. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  5. G345.45+1.50: an expanding ring-like structure with massive star formation

    Science.gov (United States)

    López-Calderón, Cristian; Bronfman, Leonardo; Nyman, Lars-Åke; Garay, Guido; de Gregorio-Monsalvo, Itziar; Bergman, Per

    2016-11-01

    Context. Ring-like structures in the interstellar medium (ISM) are commonly associated with high-mass stars. Kinematic studies of large structures in giant molecular clouds (GMCs) toward these ring-like structures may help us to understand how massive stars form. Aims: The origin and properties of the ring-like structure G345.45+1.50 is investigated through observations of the 13CO(3-2) line. The aim of the observations is to determine the kinematics in the region and to compare physical characteristics estimated from gas emission with those previously determined using dust continuum emission. This area in the sky is well suited for studies like this because the ring is located 1.5° above the Galactic plane at 1.8 kpc from the Sun, thus molecular structures are rarely superposed on our line of sight, which minimizes confusion effects that might hinder identifying of individual molecular condensations. Methods: The 13CO(3-2) line was mapped toward the whole ring using the Atacama Pathfinder Experiment (APEX) telescope. The observations cover 17' × 20' in the sky with a spatial resolution of 0.2 pc and an rms of 1 K at a spectral resolution of 0.1 km s-1. Results: The ring is found to be expanding with a velocity of 1.0 km s-1, containing a total mass of 6.9 × 103M⊙, which agrees well with that determined using 1.2 mm dust continuum emission. An expansion timescale of 3 × 106 yr and a total energy of 7 × 1046 erg are estimated. The origin of the ring might have been a supernova explosion, since a 35.5 cm source, J165920-400424, is located at the center of the ring without an infrared counterpart. The ring is fragmented, and 104 clumps were identified with diameters of between 0.3 and 1.6 pc, masses of between 2.3 and 7.5 × 102M⊙, and densities of between 102 and 104 cm-3. At least 18% of the clumps are forming stars, as is shown in infrared images. Assuming that the clumps can be modeled as Bonnor-Ebert spheres, 13 clumps are collapsing, and the rest of

  6. Living with a Star: New Opportunities in Sun-Climate Research

    Science.gov (United States)

    Eddy, John Allen

    2003-01-01

    Enormous advances have been made in the last quarter century in all of these needed areas, covering the two essential halves of the Sun-Climate question: in what we know of solar variations and, equally important, in what we know of the climate system and of climatic changes. These research achievements allow us to examine all aspects of the question more directly and quantitatively than was ever possible before, and in the brighter light and more objective context of other known or suspected climate change mechanisms, including human-induced global greenhouse warming. Brief summaries of present status and current understanding are given below for nine facets of Sun-Climate science in which major progress has been made in recent years. At the same time it will be seen that in every instance, significant elements of uncertainty still remain, Some of the most important of these unanswered questions are considered later, in Section IV.

  7. Cosmic contamination: elemental clues to the sun's birth

    International Nuclear Information System (INIS)

    Richardson, S.M.; Willson, L.A.

    1980-01-01

    The anomalous isotope abundances in the carbonaceous chondrites can be explained easily by the hypothesis that the meteorites formed soon after a nearby supernova exploded. This seems to imply that the solar system was formed at the same time and place, because the ages of the meteorites are all the same, and that is the same age as our sun. Supporting evidence for this theory of solar system formation has been gathered from theoretical and observational astronomy. These are discussed in the article. The supernova-trigger theory and the Jean's theory of star formation are both studied and related to star formation in our galaxy

  8. End of the Line for a Star like Ours

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…

  9. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    Science.gov (United States)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  10. Constraining the Galaxy's dark halo with RAVE stars

    NARCIS (Netherlands)

    Piffl, T.; Binney, J.; McMillan, P. J.; Steinmetz, M.; Helmi, A.; Wyse, R. F. G.; Bienaymé, O.; Bland-Hawthorn, J.; Freeman, K.; Gibson, B.; Gilmore, G.; Grebel, E. K.; Kordopatis, G.; Navarro, J. F.; Parker, Q.; Reid, W. A.; Seabroke, G.; Siebert, A.; Watson, F.; Zwitter, T.

    2014-01-01

    We use the kinematics of ˜200 000 giant stars that lie within ˜1.5 kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes through the Sun ((6 ± 0.9) × 1010 M⊙), and the surface

  11. The Growing-up of a Star

    Science.gov (United States)

    2008-01-01

    observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").

  12. Constitutional Isomers of Dendrimer-like Star Polymers: Design, Synthesis and Conformational and Structural Properties; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of six constitutional isomers of dendrimer-like star polymers is described. Each of the polymers have comparable molecular weights ((approx) 80,000 g/mol), narrow polydispersities ( and lt; 1.19) and an identical number of branching junctures (45) and surface hydroxyl functionalities (48). The only difference in the six isomers is the placement of the branching junctures. The polymers are constructed from high molecular weight poly(e-caprolactone) with branching junctures derived from 2,2'-bis(hydroxylmethyl) propionic acid (bis-MPA) emanating from a central core. The use of various generations of dendritic initiators and dendrons coupled with the ring opening polymerization of e-caprolactones allowed a modular approach to the dendrimer-like star polymer isomers. The most pronounced effects on the physical properties/morphology and hydrodynamic volume was for those polymers in which the branching was distributed throughout the sample in a dendrimer-like fashion. The versatility of this approach has provided the possibility of understanding the relationship between architecture and physical properties. Dynamic light scattering and small angle X-ray scattering techniques were used to determine the hydrodynamic radius Rh and radius of gyration Rg respectively. The relationship between Rg and molecular weight was indicative of a compact star-like structure, and did not show advanced bias towards either the dense core or dense shell models. The radial density distribution of the isomers was therefore modeled according to a many arm star polymer, and good agreement was found with experimental measures of Rh/Rg

  13. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    that are responsible for lighting up this cloud of gas. The apparently innocuous-looking star at the very center of the nebula, just below the brightest region, is actually about 30 times more massive and almost 200,000 times brighter than our Sun. The intense light and powerful stellar 'winds' from this ultra-bright star have cleared away the surrounding gas to form a large cavity. The bubble is approximately 25 light-years in diameter - about the same size as the famous star-forming Orion Nebula. The Orion Nebula is sculpted by intense radiation from newly born stars in the same way as N83B. Astronomers estimate that the spherical void in N83B must have been carved out of the nebula very recently - in astronomical terms - maybe as little as 30,000 years ago. The hottest star in N83B is 45 times more massive than the Sun and is embedded in the brightest region in the nebula. This bright region, situated just above the center, is only about 2 light-years across. The region's small size and its intense glow are telltale signs of a very young, massive star. This star is the youngest newcomer to this part of the Large Magellanic Cloud. The Hubble image shows a bright arc structure just below the luminous star. This impressive ridge may have been created in the glowing gas by the hot star's powerful wind. Measurements of the age of this star and neighboring stars in the nebula show that they are younger than the nebula's central star. Their formation may have been 'triggered' by the violent wind from the central star. This 'chain-reaction' of stellar births seems to be common in the Universe. About 20 young and luminous stars have been identified in the region, but it may well be that many more massive stars remain undetected in other areas of the Large Magellanic Cloud, hidden by dust in small clusters like N83B. To the right of the glowing N83B is a much larger diffuse nebula, known as DEM22d, which is partly obscured by an extended lane of dust and gas. This image is

  14. AXISYMMETRIC AB INITIO CORE-COLLAPSE SUPERNOVA SIMULATIONS OF 12-25 M{sub Sun} STARS

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, Stephen W.; Yakunin, Konstantin N. [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, Anthony; Hix, W. Raphael; Lingerfelt, Eric J. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Blondin, John M. [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Endeve, Eirik [Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Marronetti, Pedro, E-mail: bruenn@fau.edu [Physics Division, National Science Foundation, Arlington, VA 22207 (United States)

    2013-04-10

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley and Heger progenitors of mass 12, 15, 20, and 25 M{sub Sun }. All four models exhibit shock revival over {approx}200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 M{sub Sun} model and the standing accretion shock instability appearing first in the 25 M{sub Sun} model. Three of the models have developed pronounced prolate morphologies (the 20 M{sub Sun} model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B = 10{sup 51} erg) for the 12, 15, 20, and 25 M{sub Sun} models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 M{sub Sun} diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is {approx}0.3 B, which is comparable to observations for lower mass progenitors.

  15. Sun protection policies of Australian primary schools in a region of high sun exposure.

    Science.gov (United States)

    Harrison, S L; Garzón-Chavez, D R; Nikles, C J

    2016-06-01

    Queensland, Australia has the highest rates of skin cancer globally. Predetermined criteria were used to score the comprehensiveness of sun protection policies (SPP) of primary schools across Queensland. SPP were sought for schools in 10 regions (latitude range 16.3°S-28.1°S) from 2011 to 2014. Of the 723 schools sampled, 90.9% had a written SPP available publicly. Total SPP scores were low {mean 3.6 [95% CI: 3.4-3.9]; median 2 [interquartile range (IQR) 2, 4]}, with only 3.2% of schools achieving the maximum score of 12. Median SPP scores were higher in Northern and Central Queensland [both 2 (IQR 2, 6) and (IQR 2, 5), respectively] than in Southern Queensland [2 (IQR 2, 3); P = 0.004]. Clothing and hat-wearing were addressed in most policies (96% and 89%) while few schools used their SPP to plan outdoor events (5.2%) or reschedule activities to minimize sun exposure (11.7%). The SunSmart Schools program has been operating in Queensland for 17 years, and while most primary schools now have a written SPP, most are not comprehensive. Incentive-based approaches (5-star-rating award scheme and grants) may assist in addressing this issue, to reduce sun exposure of students and teachers. These data provide a baseline from which improvements in the comprehensiveness of school SPPs can be evaluated. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. A new interpretation of luminous blue stars

    International Nuclear Information System (INIS)

    Stothers, R.

    1976-01-01

    A major revision of current theoretical ideas about the brightest blue stars must be made if Carson's new radiative opacities are adopted in stellar models. Unlike earlier opacities, the new opacities exhibit a large ''bump'' due to CNO ionization, which leads to very strong central condensation, convective instability, and pulsational instability in hot, diffuse stellar envelopes (typically those in which L/M>10 3 solar units). Despite a number of theoretical uncertainties, the new picture of the structure of very luminous stars is reasonably successful in accounting for a variety of previously unexplained observations. Thus, the new stellar models for the phase of core hydrogen burning predict large radii and rather cool effective temperatures (which are yet to be observationally confirmed) for O stars, and a spreading out of the main-sequence band in the H-R diagram toward luminous cool supergiants for masses higher than approx.20 M/sub sun/, beginning at M/sub v/=-4.5 and Sp=B1. They also predict slower surface rotations for O stars compared with B stars; and, in binary systems, slower apsidal motions, closer rotational-revolutional synchronism, and smaller orbital eccentricities. In massive X-ray binary systems, circular orbits and supergiant-like visual companions are expected to be quite common. Radial pulsations of the models have been calculated by employing linearized nonadiabatic pulsation theory. Long-period variability is predicted to exist for massive blue supergiants of luminosity class Ia. The new models for helium stars predict large radii and rather cool effective temperatures for Wolf-Rayet stars, as well as multimodal pulsational instability and, possibly, surface turbulence for these stars. Ultrashort-period variability, observed in many classes of hot luminous stars, may be due, in part, to high radial overtone pulsations (or, possibly, to nonradial pulsation or convective modes)

  17. SHOCKED SUPERWINDS FROM THE z {approx} 2 CLUMPY STAR-FORMING GALAXY, ZC406690

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Shapiro Griffin, Kristen [Aerospace Research Laboratories, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Davies, Ric; Foerster-Schreiber, Natascha M.; Tacconi, Linda J.; Kurk, Jaron; Wuyts, Stijn; Genel, Shy; Buschkamp, Peter; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching (Germany); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Renzini, Alvio; Mancini, Chiara [Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, Padova I-35122 (Italy); Bouche, Nicolas [Department of Physics and Astronomy, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Burkert, Andreas [Department fuer Physik, Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen, D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di AstrofisicaOsservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I 50125 Firenze (Italy); Hicks, Erin, E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2012-06-20

    We have obtained high-resolution data of the z {approx} 2 ring-like, clumpy star-forming galaxy (SFG) ZC406690 using the VLT/SINFONI with adaptive optics (in K band) and in seeing-limited mode (in H and J bands). Our data include all of the main strong optical emission lines: [O II], [O III], H{alpha}, H{beta}, [N II], and [S II]. We find broad, blueshifted H{alpha} and [O III] emission line wings in the spectra of the galaxy's massive, star-forming clumps ({sigma} {approx} 85 km s{sup -1}) and even broader wings (up to 70% of the total H{alpha} flux, with {sigma} {approx} 290 km s{sup -1}) in regions spatially offset from the clumps by {approx}2 kpc. The broad emission likely originates from large-scale outflows with mass outflow rates from individual clumps that are 1-8 Multiplication-Sign the star formation rate (SFR) of the clumps. Based on emission line ratio diagnostics ([N II]/H{alpha} and [S II]/H{alpha}) and photoionization and shock models, we find that the emission from the clumps is due to a combination of photoionization from the star-forming regions and shocks generated in the outflowing component, with 5%-30% of the emission deriving from shocks. In terms of the ionization parameter (6 Multiplication-Sign 10{sup 7} to 10{sup 8} cm s{sup -1}, based on both the SFR and the O{sub 32} ratio), density (local electron densities of 300-1800 cm{sup -3} in and around the clumps, and ionized gas column densities of 1200-8000 M{sub Sun }pc{sup -2}), and SFR (10-40 M{sub Sun} yr{sup -1}), these clumps more closely resemble nuclear starburst regions of local ultraluminous infrared galaxies and dwarf irregulars than H II regions in local galaxies. However, the star-forming clumps are not located in the nucleus as in local starburst galaxies but instead are situated in a ring several kpc from the center of their high-redshift host galaxy, and have an overall disk-like morphology. The two brightest clumps are quite different in terms of their internal

  18. A reappraisal of the habitability of planets around M dwarf stars.

    Science.gov (United States)

    Tarter, Jill C; Backus, Peter R; Mancinelli, Rocco L; Aurnou, Jonathan M; Backman, Dana E; Basri, Gibor S; Boss, Alan P; Clarke, Andrew; Deming, Drake; Doyle, Laurance R; Feigelson, Eric D; Freund, Friedmann; Grinspoon, David H; Haberle, Robert M; Hauck, Steven A; Heath, Martin J; Henry, Todd J; Hollingsworth, Jeffery L; Joshi, Manoj M; Kilston, Steven; Liu, Michael C; Meikle, Eric; Reid, I Neill; Rothschild, Lynn J; Scalo, John; Segura, Antigona; Tang, Carol M; Tiedje, James M; Turnbull, Margaret C; Walkowicz, Lucianne M; Weber, Arthur L; Young, Richard E

    2007-02-01

    Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.

  19. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  20. Far beyond the Sun - I. The beating magnetic heart in Horologium

    Science.gov (United States)

    Alvarado-Gómez, Julián D.; Hussain, Gaitee A. J.; Drake, Jeremy J.; Donati, Jean-François; Sanz-Forcada, Jorge; Stelzer, Beate; Cohen, Ofer; Amazo-Gómez, Eliana M.; Grunhut, Jason H.; Garraffo, Cecilia; Moschou, Sofia P.; Silvester, James; Oksala, Mary E.

    2018-02-01

    A former member of the Hyades cluster, ι Horologii (ι Hor) is a planet-hosting Sun-like star which displays the shortest coronal activity cycle known to date (Pcyc ∼ 1.6 yr). With an age of ∼625 Myr, ι Hor is also the youngest star with a detected activity cycle. The study of its magnetic properties holds the potential to provide fundamental information to understand the origin of cyclic activity and stellar magnetism in late-type stars. In this series of papers, we present the results of a comprehensive project aimed at studying the evolving magnetic field in this star and how this evolution influences its circumstellar environment. This paper summarizes the first stage of this investigation, with results from a long-term observing campaign of ι Hor using ground-based high-resolution spectropolarimetry. The analysis includes precise measurements of the magnetic activity and radial velocity of the star, and their multiple time-scales of variability. In combination with values reported in the literature, we show that the long-term chromospheric activity evolution of ι Hor follows a beating pattern, caused by the superposition of two periodic signals of similar amplitude at P1 ≃ 1.97 ± 0.02 yr and P2 ≃ 1.41 ± 0.01 yr. Additionally, using the most recent parameters for ι Hor b in combination with our activity and radial velocity measurements, we find that stellar activity dominates the radial velocity residuals, making the detection of additional planets in this system challenging. Finally, we report here the first measurements of the surface longitudinal magnetic field strength of ι Hor, which displays varying amplitudes within ±4 G and served to estimate the rotation period of the star (P_rot = 7.70^{+0.18}_{-0.67} d).

  1. Solar and stellar flares and their impact on planets

    Science.gov (United States)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  2. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  3. Sun protection counseling by pediatricians has little effect on parent and child sun protection behavior.

    Science.gov (United States)

    Cohen, Liza; Brown, Judith; Haukness, Heather; Walsh, Lori; Robinson, June K

    2013-02-01

    To compare counseling concerning sun protection and outdoor exercise with the parent's report of the behavior of a child aged 9-16 years old. Structured interviews of medical personnel in 3 Chicago area practices elicited information about counseling methods and recommendations. In each practice, a convenience sample of parents completed a self-reported survey of their and their child's behavior. Sun protection counseling occurred more frequently than exercise counseling in all practices (P = .014). Sun protection counseling was associated with parental prompting (P = .004), performing a summer camp physical (P = .002), and the child having a sunburn (P = .003). After controlling for the child's age, sex, and skin tone, sun protection counseling was not associated with the child's use of sun protection. In multivariate analysis of the child's sun protection behavior, parental sunburns, indoor tanning in the last 12 months, perception of skin cancer risk, and sun protection self-efficacy were significant (P = .02). Children who pursued outdoor sports were twice as likely to use inadequate sun protection and sustain sunburns (CI 1.3-1.7). The child's sun protection behavior was influenced by parental sun protection, parental perception of skin cancer risk, and parental sun protection self-efficacy; therefore, sun protection for children needs to be aimed at parents as well as children. Communication with parents in a way that incorporates the principles of motivational interviewing may be more effective in promoting behavioral change than admonitions to use sunscreen. Copyright © 2013 Mosby, Inc. All rights reserved.

  4. PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0-1

    Energy Technology Data Exchange (ETDEWEB)

    Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Coil, Alison L.; Mendez, Alexander J. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Aird, James [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [MMT Observatory, University of Arizona, 1540 E Second Street, Tucson, AZ 85721 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Zhu, Guangtun [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Arnouts, Stephane, E-mail: jmoustakas@siena.edu [Canada-France-Hawaii Telescope Corporation, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States)

    2013-04-10

    We measure the evolution of the stellar mass function (SMF) from z = 0-1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS). From PRIMUS we construct an i < 23 flux-limited sample of {approx}40, 000 galaxies at z = 0.2-1.0 over five fields totaling Almost-Equal-To 5.5 deg{sup 2}, and from the SDSS we select {approx}170, 000 galaxies at z = 0.01-0.2 that we analyze consistently with respect to PRIMUS to minimize systematic errors in our evolutionary measurements. We find that the SMF of all galaxies evolves relatively little since z = 1, although we do find evidence for mass assembly downsizing; we measure a Almost-Equal-To 30% increase in the number density of {approx}10{sup 10} M{sub sun} galaxies since z Almost-Equal-To 0.6, and a {approx}< 10% change in the number density of all {approx}> 10{sup 11} M{sub sun} galaxies since z Almost-Equal-To 1. Dividing the sample into star-forming and quiescent using an evolving cut in specific star formation rate, we find that the number density of {approx}10{sup 10} M{sub sun} star-forming galaxies stays relatively constant since z Almost-Equal-To 0.6, whereas the space density of {approx}> 10{sup 11} M{sub sun} star-forming galaxies decreases by Almost-Equal-To 50% between z Almost-Equal-To 1 and z Almost-Equal-To 0. Meanwhile, the number density of {approx}10{sup 10} M{sub sun} quiescent galaxies increases steeply toward low redshift, by a factor of {approx}2-3 since z Almost-Equal-To 0.6, while the number of massive quiescent galaxies remains approximately constant since z Almost-Equal-To 1. These results suggest that the rate at which star-forming galaxies are quenched increases with decreasing stellar mass, but that the bulk of the stellar mass buildup within the quiescent population occurs around {approx}10{sup 10.8} M{sub sun}. In addition, we conclude that mergers do not appear to be a dominant channel for the stellar mass

  5. Asteroseismic effects in close binary stars

    Science.gov (United States)

    Springer, Ofer M.; Shaviv, Nir J.

    2013-09-01

    Turbulent processes in the convective envelopes of the Sun and stars have been shown to be a source of internal acoustic excitations. In single stars, acoustic waves having frequencies below a certain cut-off frequency propagate nearly adiabatically and are effectively trapped below the photosphere where they are internally reflected. This reflection essentially occurs where the local wavelength becomes comparable to the pressure scale height. In close binary stars, the sound speed is a constant on equipotentials, while the pressure scale height, which depends on the local effective gravity, varies on equipotentials and may be much greater near the inner Lagrangian point (L1). As a result, waves reaching the vicinity of L1 may propagate unimpeded into low-density regions, where they tend to dissipate quickly due to non-linear and radiative effects. We study the three-dimensional propagation and enhanced damping of such waves inside a set of close binary stellar models using a WKB approximation of the acoustic field. We find that these waves can have much higher damping rates in close binaries, compared to their non-binary counterparts. We also find that the relative distribution of acoustic energy density at the visible surface of close binaries develops a ring-like feature at specific acoustic frequencies and binary separations.

  6. Predictors of sun protection behaviours and sunburn among Australian adolescents.

    Science.gov (United States)

    Pettigrew, Simone; Jongenelis, Michelle; Strickland, Mark; Minto, Carolyn; Slevin, Terry; Jalleh, Geoffrey; Lin, Chad

    2016-07-13

    Excessive sun exposure and sunburn increase individuals' risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day) and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14-17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity), gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  7. Spectral fingerprints of Earth-like planets around FGK stars.

    Science.gov (United States)

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  8. First detection of nonflare microwave emissions from the coronae of single late-type dwarf stars

    Science.gov (United States)

    Gary, D. E.; Linsky, J. L.

    1981-01-01

    Results are presented of a search for nonflare microwave radiation from the coronae of nearby late-type dwarf stars comparable to the sun: single stars without evidence for either a large wind or circumstellar envelope. The observing program consisted of flux measurements of six stars over a 24-h period with the VLA in the C configuration at a wavelength of 6 cm with 50 MHz bandwidth. Positive detections at 6 cm were made for Chi 1 Ori (0.6 mJy) and the flare star UV Cet (1.55 mJy), and upper limits were obtained for the stars Pi 1 UMa, Xi Boo A, 70 Oph A and Epsilon Eri. It is suggested that Chi 1 Ori, and possibly UV Cet, represent the first detected members of a new class of radio sources which are driven by gyroresonance emission, i.e. cyclotron emission from nonrelativistic Maxwellian electrons.

  9. Rare White dwarf stars with carbon atmospheres

    OpenAIRE

    Dufour, P.; Liebert, James; Fontaine, G.; Behara, N.

    2007-01-01

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 msun and 8-10 msun, where msun is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for ~80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs...

  10. New planet hints at life in the stars

    CERN Multimedia

    Dalton, A W

    2002-01-01

    Astronomers have detected a distant planet 100 light years from Earth, circling Tau1 Gruis, its star, in the constellation of Grus (the crane). The planet, similar in appearance to Jupiter, is three times as far away from its star as the Earth is from the Sun and takes four years to revolve around the star, in a roughly circular orbit. Scientists believe this type of planetary orbit is the most promising for finding worlds that contain life (1 page).

  11. Fly me to the Sun! ESA inaugurates the European Project on the Sun

    Science.gov (United States)

    2000-11-01

    In an initiative mounted by ECSITE (European Collaborative for Science, Industry and Technology Exhibitions) with funding from the European Commission and under the supervision, coordination and co-sponsorship of ESA, five teams of youngsters (16-18 years old) from Belgium, France, Germany, Italy and the Netherlands were selected and coordinated by European science museums from each of their countries (Musée des Sciences et des Techniques - Parentville, B; Cité de l'Espace - Toulouse, F; Deutsches Museum - Munich, D; Fondazione IDIS - Naples, I; Foundation Noordwijk Space Expo - Noordwijk, NL). The teams each focused on a theme related to solar research: "How does the Sun work?" (I), "The Sun as a star" (F), "Solar activity" (NL), "Observing the Sun" (D), "Humans and the Sun" (B), and built exhibition "modules" that they will present at the inauguration, in the context of European Science and Technology Week 2000 (6-10 November), promoted by the European Commission. During the two-day event, a jury of representatives of other European science and technology museums, ESA scientists, a science journalist, and two ESA astronauts (Frank de Winne and Andre Kuipers) will judge the youngsters' exhibition modules on the basis of their scientific correctness, their museological value and the commitment shown by the young "communication experts". The winning team will be officially announced on 9 November. The prize is a weekend at the Space Camp in Redu, Belgium. The objective of the European Project on the Sun is educational. It aims, through the direct and "fresh" involvement of youngsters, to heighten European citizens' awareness of space research in general and the Sun's influence on our daily lives in particular. The role of the European Space Agency as reference point in Europe for solar research has been fundamental to the project. From ESA's perspective, EPOS is part of this autumn's wider communication initiative called the Solar Season, which is highlighting ESA

  12. A Precise Asteroseismic Age and Radius for the Evolved Sun-like Star KIC 11026764

    DEFF Research Database (Denmark)

    Metcalfe, Travis S.; Monteiro, Mario J.P.F.G.; Thompson, Michael J.

    2010-01-01

    The primary science goal of the Kepler Mission is to provide a census of exoplanets in the solar neighborhood, including the identification and characterization of habitable Earth-like planets. The asteroseismic capabilities of the mission are being used to determine precise radii and ages for th...

  13. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  14. Why do we find ourselves around a yellow star instead of a red star?

    Science.gov (United States)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar; Wolf, Eric T.

    2018-01-01

    M-dwarf stars are more abundant than G-dwarf stars, so our position as observers on a planet orbiting a G-dwarf raises questions about the suitability of other stellar types for supporting life. If we consider ourselves as typical, in the anthropic sense that our environment is probably a typical one for conscious observers, then we are led to the conclusion that planets orbiting in the habitable zone of G-dwarf stars should be the best place for conscious life to develop. But such a conclusion neglects the possibility that K-dwarfs or M-dwarfs could provide more numerous sites for life to develop, both now and in the future. In this paper we analyse this problem through Bayesian inference to demonstrate that our occurrence around a G-dwarf might be a slight statistical anomaly, but only the sort of chance event that we expect to occur regularly. Even if M-dwarfs provide more numerous habitable planets today and in the future, we still expect mid G- to early K-dwarfs stars to be the most likely place for observers like ourselves. This suggests that observers with similar cognitive capabilities as us are most likely to be found at the present time and place, rather than in the future or around much smaller stars.

  15. ABSOLUTE DIMENSIONS OF THE G7+K7 ECLIPSING BINARY STAR IM VIRGINIS: DISCREPANCIES WITH STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Morales, Juan Carlos; Torres, Guillermo; Marschall, Laurence A.; Brehm, William

    2009-01-01

    We report extensive spectroscopic and differential photometric BVRI observations of the active, detached, 1.309-day double-lined eclipsing binary IM Vir, composed of a G7-type primary and a K7 secondary. With these observations, we derive accurate absolute masses and radii of M 1 = 0.981 ± 0.012 M sun , M 2 = 0.6644 ± 0.0048 M sun , R 1 = 1.061 ± 0.016 R sun , and R 2 = 0.681 ± 0.013 R sun for the primary and secondary, with relative errors under 2%. The effective temperatures are 5570 ± 100 K and 4250 ± 130 K, respectively. The significant difference in mass makes this a favorable case for comparison with stellar evolution theory. We find that both stars are larger than the models predict, by 3.7% for the primary and 7.5% for the secondary, as well as cooler than expected, by 100 K and 150 K, respectively. These discrepancies are in line with previously reported differences in low-mass stars, and are believed to be caused by chromospheric activity, which is not accounted for in current models. The effect is not confined to low-mass stars: the rapidly rotating primary of IM Vir joins the growing list of objects of near-solar mass (but still with convective envelopes) that show similar anomalies. The comparison with the models suggests an age of 2.4 Gyr for the system, and a metallicity of [Fe/H] ∼-0.3 that is consistent with other indications, but requires confirmation.

  16. Heating the Chromosphere in the Quiet Sun

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    The best-studied star the Sun still harbors mysteries for scientists to puzzle over. A new study has now explored the role of tiny magnetic-field hiccups in an effort to explain the strangely high temperatures of the Suns upper atmosphere.Schematic illustrating the temperatures in different layers of the Sun. [ESA]Strange Temperature RiseSince the Suns energy is produced in its core, the temperature is hottest here. As expected, the temperature decreases further from the Suns core up until just above its surface, where it oddly begins to rise again. While the Suns surface is 6,000 K, the temperature is higher above this: 10,000 K in the outer chromosphere.So how is the chromosphere of the Sun heated? Its possible that the explanation can be found not amid high solar activity, but in quiet-Sun regions.In a new study led by Milan Goi (Lockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute), a team of scientists has examined a process that quietly happens in the background: the cancellation of magnetic field lines in the quiet Sun.Activity in a SupergranuleTop left: SDO AIA image of part of the solar disk. The next three panels are a zoom of the particular quiet-Sun region that the authors studied, all taken with IRIS at varying wavelengths: 1400 (top right), 2796 (bottom left), and 2832 (bottom right). [Goi et al. 2018]The Sun is threaded by strong magnetic field lines that divide it into supergranules measuring 30 million meters across (more than double the diameter of Earth!). Supergranules may seem quiet inside, but looks can be deceiving: the interiors of supergranules contain smaller, transient internetwork fields that move about, often resulting in magnetic elements of opposite polarity encountering and canceling each other.For those internetwork flux cancellations that occur above the Suns surface, a small amount of energy could be released that locally heats the chromosphere. But though each individual event has a small

  17. "Wonderful" Star Reveals its Hot Nature

    Science.gov (United States)

    2005-04-01

    For the first time an X-ray image of a pair of interacting stars has been made by NASA's Chandra X-ray Observatory. The ability to distinguish between the interacting stars - one a highly evolved giant star and the other likely a white dwarf - allowed a team of scientists to observe an X-ray outburst from the giant star and find evidence that a bridge of hot matter is streaming between the two stars. "Before this observation it was assumed that all the X-rays came from a hot disk surrounding a white dwarf, so the detection of an X-ray outburst from the giant star came as a surprise," said Margarita Karovska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author article in the latest Astrophysical Journal Letters describing this work. An ultraviolet image made by the Hubble Space Telescope was a key to identifying the location of the X-ray outburst with the giant star. X-ray studies of this system, called Mira AB, may also provide better understanding of interactions between other binary systems consisting of a "normal" star and a collapsed star such as a white dwarf, black hole or a neutron star, where the stellar objects and gas flow cannot be distinguished in an image. HST Ultraviolet Image of Mira HST Ultraviolet Image of Mira The separation of the X-rays from the giant star and the white dwarf was made possible by the superb angular resolution of Chandra, and the relative proximity of the star system at about 420 light years from Earth. The stars in Mira AB are about 6.5 billion miles apart, or almost twice the distance of Pluto from the Sun. Mira A (Mira) was named "The Wonderful" star in the 17th century because its brightness was observed to wax and wane over a period of about 330 days. Because it is in the advanced, red giant phase of a star's life, it has swollen to about 600 times that of the Sun and it is pulsating. Mira A is now approaching the stage where its nuclear fuel supply will be exhausted, and it will collapse

  18. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  19. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  20. Distance of the Pleiades cluster and the calibration of photometric luminosities for early-type stars

    International Nuclear Information System (INIS)

    Eggen, O.J.

    1986-01-01

    An examination of the lower main-sequence (mode-A) stars in the Pleiades cluster suggests an Fe/H abundance ratio between 0.0 and 0.1 dex with a resulting modulus of 5.65 + or - 0.1 mag, and fundamental defects in the calculation of Balona and Shobbrook (1984), with an adopted modulus of 5.50 mag, are discussed. It is suggested that the ZAMS of Balona and Shobbrook, and of Mermilliod (1981), are too bright due to their assumption that the color-luminosity arrays of such clusters as the Pleiades represent isochrones, leading to uncertainties in the ZAMS, particularly with respect to slope. Several recently published photometric luminosity calibrations for early-type stars may be incorrect due to their failing to recognize the probable presence of at least two evolutionary modes and the apparent absence of ZAMS stars near the sun. 34 references

  1. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    Science.gov (United States)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  2. STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG

    Energy Technology Data Exchange (ETDEWEB)

    Tanvir, N. R.; Wiersema, K.; O' Brien, P. T.; Starling, R. L. C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Levan, A. J.; Stanway, E. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Fruchter, A. S.; Misra, K.; Graham, J. F. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fynbo, J. P. U.; Hjorth, J.; Watson, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Bremer, M. N. [HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Rhoads, J. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Bersier, D. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool (United Kingdom); Natarajan, P. [Department of Astronomy, Yale University, New Haven, CT 06511-208101 (United States); Greiner, J. [Max-Planck-Institut fuer extraterrestrische Physik, Garching bei Muenchen (Germany); Castro-Tirado, A. J. [Instituto de Astrofsica de Andalucia (IAA-CSIC), Glorieta de la Astronomia s/n, 18.008 Granada (Spain); Wijers, R. A. M. J., E-mail: nrt3@star.le.ac.uk [Astronomical Institute ' Anton Pannekoek' , P.O. Box 94248, 1090 SJ Amsterdam (Netherlands); and others

    2012-07-20

    We present late-time Hubble Space Telescope (HST) imaging of the fields of six Swift gamma-ray bursts (GRBs) lying at 5.0 {approx}< z {approx}< 9.5. Our data include very deep observations of the field of the most distant spectroscopically confirmed burst, GRB 090423, at z = 8.2. Using the precise positions afforded by their afterglows, we can place stringent limits on the luminosities of their host galaxies. In one case, that of GRB 060522 at z 5.11, there is a marginal excess of flux close to the GRB position which may be a detection of a host at a magnitude J{sub AB} Almost-Equal-To 28.5. None of the others are significantly detected, meaning that all the hosts lie below L* at their respective redshifts, with star formation rates (SFRs) {approx}< 4 M{sub Sun} yr{sup -1} in all cases. Indeed, stacking the five fields with WFC3-IR data, we conclude a mean SFR <0.17 M{sub Sun} yr{sup -1} per galaxy. These results support the proposition that the bulk of star formation, and hence integrated UV luminosity, at high redshifts arises in galaxies below the detection limits of deep-field observations. Making the reasonable assumption that GRB rate is proportional to UV luminosity at early times allows us to compare our limits with expectations based on galaxy luminosity functions (LFs) derived from the Hubble Ultra-Deep Field and other deep fields. We infer that an LF, which is evolving rapidly toward steeper faint-end slope ({alpha}) and decreasing characteristic luminosity (L*), as suggested by some other studies, is consistent with our observations, whereas a non-evolving LF shape is ruled out at {approx}> 90% confidence. Although it is not yet possible to make stronger statements, in the future, with larger samples and a fuller understanding of the conditions required for GRB production, studies like this hold great potential for probing the nature of star formation, the shape of the galaxy LF, and the supply of ionizing photons in the early universe.

  3. MAGNETIC FIELD TOPOLOGY IN LOW-MASS STARS: SPECTROPOLARIMETRIC OBSERVATIONS OF M DWARFS

    International Nuclear Information System (INIS)

    Phan-Bao, Ngoc; Lim, Jeremy; Donati, Jean-Francois; Johns-Krull, Christopher M.; MartIn, Eduardo L.

    2009-01-01

    The magnetic field topology plays an important role in the understanding of stellar magnetic activity. While it is widely accepted that the dynamo action present in low-mass partially convective stars (e.g., the Sun) results in predominantly toroidal magnetic flux, the field topology in fully convective stars (masses below ∼0.35 M sun ) is still under debate. We report here our mapping of the magnetic field topology of the M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based on time series data collected from 20 hr of observations spread over three successive nights with the ESPaDOnS spectropolarimeter. Our tomographic imaging technique applied to time series of rotationally modulated circularly polarized profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4 dwarf. We then apply a synthetic spectrum fitting technique for measuring the average magnetic flux on the star. The flux measured in G 164-31 is |Bf| = 3.2 ± 0.4 kG, which is significantly greater than the average value of 0.68 kG determined from the imaging technique. The difference indicates that a significant fraction of the stellar magnetic energy is stored in small-scale structures at the surface of G 164-31. Our Hα emission light curve shows evidence for rotational modulation suggesting the presence of localized structure in the chromosphere of this M dwarf. The radius of the M4 dwarf derived from the rotational period and the projected equatorial velocity is at least 30% larger than that predicted from theoretical models. We argue that this discrepancy is likely primarily due to the young nature of G 164-31 rather than primarily due to magnetic field effects, indicating that age is an important factor which should be considered in the interpretation of this observational result. We also report here our polarimetric observations of five other M dwarfs with spectral types from M0 to M4.5, three of them showing strong Zeeman signatures.

  4. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  5. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    Science.gov (United States)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  6. The Sun in Time: Activity and Environment

    Directory of Open Access Journals (Sweden)

    Güdel Manuel

    2007-12-01

    Full Text Available The Sun's magnetic activity has steadily declined during its main-sequence life. While the solar photospheric luminosity was about 30% lower 4.6 Gyr ago when the Sun arrived on the main sequence compared to present-day levels, its faster rotation generated enhanced magnetic activity; magnetic heating processes in the chromosphere, the transition region, and the corona induced ultraviolet, extreme-ultraviolet, and X-ray emission about 10, 100, and 1000 times, respectively, the present-day levels, as inferred from young solar-analog stars. Also, the production rate of accelerated, high-energy particles was orders of magnitude higher than in present-day solar flares, and a much stronger wind escaped from the Sun, permeating the entire solar system. The consequences of the enhanced radiation and particle fluxes from the young Sun were potentially severe for the evolution of solar-system planets and moons. Interactions of high-energy radiation and the solar wind with upper planetary atmospheres may have led to the escape of important amounts of atmospheric constituents. The present dry atmosphere of Venus and the thin atmosphere of Mars may be a product of early irradiation and heating by solar high-energy radiation. High levels of magnetic activity are also inferred for the pre-main sequence Sun. At those stages, interactions of high-energy radiation and particles with the circumsolar disk in which planets eventually formed were important. Traces left in meteorites by energetic particles and anomalous isotopic abundance ratios in meteoritic inclusions may provide evidence for a highly active pre-main sequence Sun. The present article reviews these various issues related to the magnetic activity of the young Sun and the consequent interactions with its environment. The emphasis is on the phenomenology related to the production of high-energy photons and particles. Apart from the activity on the young Sun, systematic trends applicable to the entire

  7. Neutron star models with realistic high-density equations of state

    International Nuclear Information System (INIS)

    Malone, R.C.; Johnson, M.B.; Bethe, H.A.

    1975-01-01

    We calculate neutron star models using four realistic high-density models of the equation of state. We conclude that the maximum mass of a neutron star is unlikely to exceed 2 M/sub sun/. All of the realistic models are consistent with current estimates of the moment of inertia of the Crab pulsar

  8. Predictors of sun protection behaviours and sunburn among Australian adolescents

    Directory of Open Access Journals (Sweden)

    Simone Pettigrew

    2016-07-01

    Full Text Available Abstract Background Excessive sun exposure and sunburn increase individuals’ risk of skin cancer. It is especially important to prevent sunburn in childhood due to the higher relative risk of skin cancer across the life span compared to risk associated with sunburn episodes experienced later in life. This study examined demographic and attitudinal factors associated with engagement in a range of sun protection behaviours (wearing a hat, wearing protective clothing, staying in the shade, and staying indoors during the middle of the day and the frequency of sunburn among Western Australian adolescents to provide insights of relevance for future sun protection campaigns. Methods Cross-sectional telephone surveys were conducted annually with Western Australians between 2005/06 and 2014/15. The results from 4150 adolescents aged 14–17 years were used to conduct a path analysis of factors predicting various sun protection behaviours and sunburn. Results Significant primary predictors of the sun protection behaviours included in the study were skin type (sun sensitivity, gender, tanning-related attitudes and behaviours, and perceived relevance of public service advertisements that advocate sun protection. Of the four sun protection behaviours investigated, staying in the shade and staying indoors during the middle of the day were associated with a lower frequency of sunburn. Conclusion There is a particular need to target sun protection messages at adolescent males who are less likely to engage in the most effective sun protection behaviours and demonstrate an increased propensity to experience sunburn. The results suggest that such future sun protection messages should include a focus on the importance of staying in the shade or indoors during periods of high UV radiation to increase awareness of the efficacy of these methods of avoiding skin cancer.

  9. EMBEDDED PROTOSTELLAR DISKS AROUND (SUB-)SOLAR STARS. II. DISK MASSES, SIZES, DENSITIES, TEMPERATURES, AND THE PLANET FORMATION PERSPECTIVE

    International Nuclear Information System (INIS)

    Vorobyov, Eduard I.

    2011-01-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun , M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun , M mdn d,CI = 0.15 M sun , respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun . Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  10. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light.

    Science.gov (United States)

    Ishii, Hiroaki; Hamada, Yoko; Utsugi, Hajime

    2012-10-01

    We investigated the effects of sun- and shade-shoot architecture on the photosynthetic rates of two Picea species by applying light from various angles in the laboratory. Compared with sun shoots, shade shoots were characterized by lower mass allocation per light-intercepting area, less leaf mass per shoot mass, less mutual shading among leaves and more efficient allocation of chlorophyll to photosynthesis. The shoot silhouette to total leaf area ratio (STAR(ϕ)) decreased with increasing shoot inclination angle (ϕ, the shoot axis angle relative to the projection plane) and was consistently higher for the shade shoots. Morphological and physiological characteristics of the shade shoots resulted in maximum rates of net photosynthesis at ϕ = 0° (P(max,0)) similar to that of the sun shoots when expressed on a leaf mass, total leaf area and chlorophyll basis. When the angle of incoming light was varied, P(max,ϕ) per total leaf area (P(max,ϕ )/A(T)) of the shade shoots increased linearly with increasing STAR(ϕ), while P(max,ϕ) per shoot silhouette area did not change. In contrast, the response of the sun shoots was non-linear, and an optimum angle of incoming light was determined. Our results suggest that shade-shoot morphology is adaptive for utilizing diffuse light incoming from various angles, while sun-shoot morphology is adaptive for avoiding the negative effects of strong direct radiation and for enhancing light diffusion into the canopy. We propose that the angle of incoming light should be taken into account when estimating photosynthetic rates of sun shoots of conifer trees in the field.

  11. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, P. C. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Andersson, B-G [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, M.S. N232-12 Moffett Field, CA 94035 (United States); Berdyugin, A.; Piirola, V. [Finnish Centre for Astronomy with ESO, University of Turku (Finland); DeMajistre, R. [The Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Funsten, H. O. [Los Alamos National Laboratory, Los Alamos, NM (United States); Magalhaes, A. M.; Seriacopi, D. B. [Inst. de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo (Brazil); McComas, D. J. [Southwest Research Institute, San Antonio, TX (United States); Schwadron, N. A. [Space Science Center, University of New Hampshire, Durham, NH (United States); Slavin, J. D. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Wiktorowicz, S. J. [Department of Astronomy, University of California at Santa Cruz, Santa Cruz, CA (United States)

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The

  12. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    International Nuclear Information System (INIS)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-01-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90° of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47° ± 20°, 25° ± 20°. This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33° ± 4°, 55° ± 4°, as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l ≈0° → 80° and b ≈0° → 30°, where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of ∼0. 0 25 pc –1 . This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of ∼23°. The ordered component and standard relations between polarization, color excess, and H o column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced

  13. Kinematics and age of 15 stars-photometric solar analogs

    Science.gov (United States)

    Galeev, A. I.; Shimansky, V. V.

    2008-03-01

    The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.

  14. An Introduction to Waves and Oscillations in the Sun

    CERN Document Server

    Narayanan, A Satya

    2013-01-01

    Astrophysicists and others studying the Sun will find this expansive coverage of what we know about waves and oscillations in our nearest star an informative introduction to a hot contemporary topic. After a section summarizing the Sun's physical characteristics, the volume moves on to explore the basics of electrodynamics, which in turn facilitate a discussion of magnetohydrodynamics (MHD). The material also details the often complex nature of waves and oscillations in uniform and non-uniform media, before categorizing the observational signatures of oscillations and exploring the instabilities in fluid, dealing with a range of known forms. Lastly, a section on helioseismology explores our growing familiarity with the internal structure of the Sun. This book is a unified portal to a thorough grounding in solar waves that includes a wealth of explanatory vignettes demystifying concepts such as flux tubes, current-free and force-free magnetic fields, the prominences, and the relationship between the vorticity ...

  15. Compartmentalization in hybrid metallacarborane nanoparticles formed by block copolymers with star-like architecture

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Zhigunov, Alexander; Nykänen, A.; Ruokolainen, J.; Matějíček, P.

    2014-01-01

    Roč. 3, č. 11 (2014), s. 1151-1155 ISSN 2161-1653 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : nanoparticles * block copolymers * star-like architecture Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.764, year: 2014

  16. Relative amounts of stars and interstellar matter in the local Milky Way

    International Nuclear Information System (INIS)

    Jura, M.

    1987-01-01

    This paper considers the balance between star formation and mass loss from evolved stars in the region within 1 kpc of the sun. There is considerably more mass in stars than in the interstellar medium, and more material is being incorporated into new stars than is being returned by evolved stars. In the simplest interpretation of the data, it appears that unless there is some infall of new interstellar gas, the era of substantial star formation out of interstellar gas will be over in a few (perhaps 3) billion years. 34 references

  17. Influence of maternal and own genotype at tanning dependence-related SNPs on sun exposure in childhood.

    Science.gov (United States)

    Khouja, Jasmine; Lewis, Sarah J; Bonilla, Carolina

    2018-04-12

    Research suggests there may be a genetic influence on the likelihood of becoming tanning dependent (TD). The way in which mothers regulate their children's sun exposure may be affected by being TD. We investigated the associations between single nucleotide polymorphisms (SNPs) related to being TD and early sun exposure. Data from the Avon Longitudinal Study of Parents and Children (ALSPAC) were used. Associations between 17 TD related SNPs in children and their mothers and 10 sun exposure variables in children (assessed via questionnaire at age 8) were analyzed in logistic and ordinal logistic regressions. Analyses were adjusted for principal components of population structure and age (at time of questionnaire response). Models with additional adjustment for maternal or offspring genotypes were also tested. Secondary analyses included adjustment for sex and skin pigmentation. Among ALSPAC children, the rs29132 SNP in the Vesicle-associated membrane protein-associated protein A (VAPA) gene was associated with five sun exposure variables whilst the rs650662 SNP in the Opioid Receptor Mu 1 (OPRM1) gene was associated with three. The remaining SNPs did not show associations beyond what was expected by chance. After Bonferroni correction one SNP in the children was associated with an increased likelihood of using sun cream whilst in the sun at 8 years old (rs60050811 in the Spermatogenesis and Centriole Associated 1 (SPATC1) gene, OR per C allele = 1.34, 95% CI 1.11-1.62, p = .003). In the mothers, rs650662 in OPRM1 was associated with the use of a lower factor of sun cream in their children, (OR per A allele = 0.89, 95% CI 0.82-0.96, p = .002). Whilst rs2073478 in the Aldehyde Dehydrogenase 1 Family Member B1 (ALDH1B1) gene was associated with a reduced odds of their child using a sun block or cream with a 4 star rating (OR per T allele = 0.68, 95% CI 0.53-0.88, p = .003). Similar but weaker associations were observed for the main findings in

  18. Orphan Stars Found in Long Galaxy Tail

    Science.gov (United States)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  19. SOHO reveals violent action on the quiet Sun

    Science.gov (United States)

    1996-05-01

    SOHO's scientists are impressed by the vigorous action that they see going on every day, because the Sun is in the very quietest phase of its eleven-year cycle of activity. To ground-based observatories it appears extremely calm just now. The early indications of SOHO's performance amply justify the creation of a sungazing spacecraft capable of observing ultraviolet emissions that are blotted out by the Earth's atmosphere. Apart from the imager, two ultraviolet spectrometers and an ultraviolet coronagraph (an imager for the outer atmosphere) are busy analysing the violent processes at a wide range of wavelengths. Between them, these instruments should cure long-lasting ignorance concerning the Sun, especially about why the atmosphere is so hot and what drives the solar wind that blows non-stop into the Solar System. Scientists from other experimental teams use SOHO to explore the Sun from its deep interior to the far reaches of the solar wind. They have watched the supposedly quiet Sun belching huge masses of gas into space. They have mapped a hole burnt by the solar wind in a breeze of gas coming from the stars. And they have detected currents of gas flowing just below the visible surface. SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO on 2 December 1995, and also provides the ground stations and an operations centre near Washington. The first results are the more remarkable because SOHO arrived at its vantage point 1,500,000 kilometres out in space only in February, and formally completed its commissioning on 16 April. It has a long life ahead of it. All scientific instruments are working well. The luminosity oscillation imager belonging to the VIRGO experiment had trouble with its lens cover. When opened, the cover rebounded on its hinges and closed again. Commands were devised that gave a shorter impulse

  20. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  1. Thermonuclear process and accretion onto neutron star envelopes: x-ray burst and transient sources

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Sparks, W.M.; Truran, J.W.; Theoretical Division, Los Alamos National Laboratory)

    1982-01-01

    We have used a Lagrangian, fully implicit, one-dimensional, hydrodynamic computer code to investigate the evolution of thermonuclear runaways in the thick, accreted, hydrogen-rich envelopes of 1.0 M/sub sun/ neutron stars with radii of 10 km and 20 km. Our simulations produce outbursts which range in time scale from about 2000 seconds to longer than 1 day. Peak effective temperature was 3.3 x 10 7 K (kTapprox.2.91 keV), and peak luminosity was 2 x 10 5 L/sub sun/ for the 10 km study. The 20 km neutron star produced a peak effective temperature and luminosity of 5.3 x 10 6 K and 5.9 x 10 2 L/sub sun/, respectively. We also investigated the effects of changes in the rates of the 14 O(α,p) and 15 O(α,ν) reactions on the evolution. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about 10 - 6 seconds

  2. Flare stars in Pleiades. 6

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Chavushyan, O.S.; Oganyan, G.B.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Melikyan, N.D.; Natsvlishvili, R.Sh.; AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya)

    1981-01-01

    The results of photographic observations of stellar flares in the Pleiades region carried out at the Byurakan and Abastumani astrophysical observatories during 1976-1979 are given. On the basis of these observations 17 new flare stars have been found. Total number of all known flare stars in the Pleiades region on 1 June 1980 reached 524, and the number of all flares-1244. The observational data on distribution of flare stars according to the observed flares is satisfactorily represented by the average frequency function introduced by V.A.Ambartsumian. The total number of the flare stars in the Pleiades is of the order of 1100. Using three telescopes, synchronous photographic observations of stellar flares in Pleiades in U, B, V, system are carried out. The colour indices U-B and B-V of stellar flares in periods including the maximum of the flare slightly differ from that of photoelectrically defined for flares of UV Ceti type stars, which testifies the physical relationship of flare stars in Pleiades and in the vicinity of the Sun [ru

  3. HIERARCHICAL FRAGMENTATION AND JET-LIKE OUTFLOWS IN IRDC G28.34+0.06: A GROWING MASSIVE PROTOSTAR CLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou

    2011-01-01

    We present Submillimeter Array (SMA) λ = 0.88 mm observations of an infrared dark cloud G28.34+0.06. Located in the quiescent southern part of the G28.34 cloud, the region of interest is a massive (>10 3 M sun ) molecular clump P1 with a luminosity of ∼10 3 L sun , where our previous SMA observations at 1.3 mm have revealed a string of five dust cores of 22-64 M sun along the 1 pc IR-dark filament. The cores are well aligned at a position angle (P.A.) of 48 deg. and regularly spaced at an average projected separation of 0.16 pc. The new high-resolution, high-sensitivity 0.88 mm image further resolves the five cores into 10 compact condensations of 1.4-10.6 M sun , with sizes of a few thousand AU. The spatial structure at clump (∼1 pc) and core (∼0.1 pc) scales indicates a hierarchical fragmentation. While the clump fragmentation is consistent with a cylindrical collapse, the observed fragment masses are much larger than the expected thermal Jeans masses. All the cores are driving CO (3-2) outflows up to 38 km s -1 , the majority of which are bipolar, jet-like outflows. The moderate luminosity of the P1 clump sets a limit on the mass of protostars of 3-7 M sun . Because of the large reservoir of dense molecular gas in the immediate medium and ongoing accretion as evident by the jet-like outflows, we speculate that P1 will grow and eventually form a massive star cluster. This study provides a first glimpse of massive, clustered star formation that currently undergoes through an intermediate-mass stage.

  4. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. IV. CONSTRUCTION AND VALIDATION OF A GRID OF MODELS FOR OXYGEN-RICH AGB STARS, RED SUPERGIANTS, AND EXTREME AGB STARS

    International Nuclear Information System (INIS)

    Sargent, Benjamin A.; Meixner, M.; Srinivasan, S.

    2011-01-01

    To measure the mass loss from dusty oxygen-rich (O-rich) evolved stars in the Large Magellanic Cloud (LMC), we have constructed a grid of models of spherically symmetric dust shells around stars with constant mass-loss rates using 2Dust. These models will constitute the O-rich model part of the 'Grid of Red supergiant and Asymptotic giant branch star ModelS' (GRAMS). This model grid explores four parameters-stellar effective temperature from 2100 K to 4700 K; luminosity from 10 3 to 10 6 L sun ; dust shell inner radii of 3, 7, 11, and 15 R star ; and 10.0 μm optical depth from 10 -4 to 26. From an initial grid of ∼1200 2Dust models, we create a larger grid of ∼69,000 models by scaling to cover the luminosity range required by the data. These models are available online to the public. The matching in color-magnitude diagrams and color-color diagrams to observed O-rich asymptotic giant branch (AGB) and red supergiant (RSG) candidate stars from the SAGE and SAGE-Spec LMC samples and a small sample of OH/IR stars is generally very good. The extreme AGB star candidates from SAGE are more consistent with carbon-rich (C-rich) than O-rich dust composition. Our model grid suggests lower limits to the mid-infrared colors of the dustiest AGB stars for which the chemistry could be O-rich. Finally, the fitting of GRAMS models to spectral energy distributions of sources fit by other studies provides additional verification of our grid and anticipates future, more expansive efforts.

  5. A SPITZER MIPS STUDY OF 2.5-2.0 M{sub Sun} STARS IN SCORPIUS-CENTAURUS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H.; Bitner, Martin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Pecaut, Mark; Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Su, Kate Y. L., E-mail: cchen@stsci.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2012-09-10

    We have obtained Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m and 70 {mu}m observations of 215 nearby, Hipparcos B- and A-type common proper-motion single and binary systems in the nearest OB association, Scorpius-Centaurus. Combining our MIPS observations with those of other ScoCen stars in the literature, we estimate 24 {mu}m B+A-type disk fractions of 17/67 (25{sup +6}{sub -5}%), 36/131 (27{sup +4}{sub -4}%), and 23/95 (24{sup +5}{sub -4}%) for Upper Scorpius ({approx}11 Myr), Upper Centaurus Lupus ({approx}15 Myr), and Lower Centaurus Crux ({approx}17 Myr), respectively, somewhat smaller disk fractions than previously obtained for F- and G-type members. We confirm previous IRAS excess detections and present new discoveries of 51 protoplanetary and debris disk systems, with fractional infrared luminosities ranging from L{sub IR}/L{sub *} = 10{sup -6} to 10{sup -2} and grain temperatures ranging from T{sub gr} = 40 to 300 K. In addition, we confirm that the 24 {mu}m and 70 {mu}m excesses (or fractional infrared luminosities) around B+A-type stars are smaller than those measured toward F+G-type stars and hypothesize that the observed disk property dependence on stellar mass may be the result of a higher stellar companion fraction around B- and A-type stars at 10-200 AU. Finally, we note that the majority of the ScoCen 24 {mu}m excess sources also possess 12 {mu}m excess, indicating that Earth-like planets may be forming via collisions in the terrestrial planet zone at {approx}10-100 Myr.

  6. K- and M-type dwarf stars within 25 parsecs of the sun. I. The age-chromospheric activity relations from H-alpha equivalent widths

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, O.J. (Observatorio Interamericano de Cerro Totolo, La Serena (Chile))

    1990-02-01

    The available equivalent-width measurements of H-alpha in dwarf K and M stars within 25 pc of the sun indicate that, as a chromospheric diagnostic, the H-alpha decay rate is about t exp 0.5. The decay rate of line emission in Mg II h and k (Ca II H and K) is about t exp 0.3. The decay rates are derived from observations of members of a few stellar superclusters and groups, for which the consistency of results argues strongly for the importance of more data. The only major inconsistency encountered is for the unique HR 1614 group which, in the age/chromospheric-activity progression, gives different results from Mg II h and k and from WH-alpha. 63 refs.

  7. macula: Rotational modulations in the photometry of spotted stars

    Science.gov (United States)

    Kipping, David M.

    2012-09-01

    Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

  8. Short-Period Binary Stars: Observations, Analyses, and Results

    CERN Document Server

    Milone, Eugene F; Hobill, David W

    2008-01-01

    Short-period binaries run the gamut from widely separated stars to black-hole pairs; in between are systems that include neutron stars and white dwarfs, and partially evolved systems such as tidally distorted and over-contact systems. These objects represent stages of evolution of binary stars, and their degrees of separation provide critical clues to how their evolutionary paths differ from that of single stars. The widest and least distorted systems provide astronomers with the essential precise data needed to study all stars: mass and radius. The interactions of binary star components, on the other hand, provide a natural laboratory to observe how the matter in these stars behaves under different and often varying physical conditions. Thus, cataclysmic variables with and without overpoweringly strong magnetic fields, and stars with densities from that found in the Sun to the degenerate matter of white dwarfs and the ultra-compact states of neutron stars and black holes are all discussed. The extensive inde...

  9. TOWARD A SPECTROSCOPIC CENSUS OF WHITE DWARFS WITHIN 40 pc OF THE SUN

    International Nuclear Information System (INIS)

    Limoges, M.-M.; Bergeron, P.; Lépine, S.

    2013-01-01

    We present the preliminary results of a survey aimed at significantly increasing the range and completeness of the local census of spectroscopically confirmed white dwarfs. The current census of nearby white dwarfs is reasonably complete only to about 20 pc of the Sun, a volume that includes around 130 white dwarfs, a sample too small for detailed statistical analyses. This census is largely based on follow-up investigations of stars with very large proper motions. We describe here the basis of a method that will lead to a catalog of white dwarfs within 40 pc of the Sun and north of the celestial equator, thus increasing by a factor of eight the extent of the northern sky census. White dwarf candidates are identified from the SUPERBLINK proper motion database, allowing us to investigate stars down to a proper motion limit μ > 40 mas yr –1 , while minimizing the kinematic bias for nearby objects. The selection criteria and distance estimates are based on a combination of color-magnitude and reduced proper motion diagrams. Our follow-up spectroscopic observation campaign has so far uncovered 193 new white dwarfs, among which we identify 127 DA (including 9 DA+dM and 4 magnetic), 1 DB, 56 DC, 3 DQ, and 6 DZ stars. We perform a spectroscopic analysis on a subsample of 84 DAs, and provide their atmospheric parameters. In particular, we identify 11 new white dwarfs with spectroscopic distances within 25 pc of the Sun, including five candidates to the D < 20 pc subset.

  10. Sun Protection for Children: A Review

    Directory of Open Access Journals (Sweden)

    Nazanin Shafie Pour

    2015-01-01

    Full Text Available Chronic ultraviolet exposure results in premature skin aging (photoaging, dyspigmentation, sallow color, textural changes, loss of elasticity, and premalignant actinic keratoses. UVB radiation is mainly responsible for acute damages such as sunburn, and long-term damage including melanoma. Today the sun's ultraviolet radiation (UVR induced skin cancer is a major issue worldwide. History of sun exposure and sunburns are the most important behavioral risks. Childhood sun exposure is considered as a substantial risk because a child’s skin has a thinner stratum corneum, lower levels of protective melanin, and a higher surface area to body-mass-ratio. Thus, protection against UVR in childhood is essential. Research has shown that people who have had a sunburn in childhood or were in the sun unprotected are more likely to have skin cancer. In this article, we review the literature to address the protection of children against sun and skin cancer.

  11. Tc Trends and Terrestrial Planet Formation: The Case of Zeta Reticuli

    Science.gov (United States)

    Adibekyan, Vardan; Delgado-Mena, Elisa; Figueira, Pedro; Sousa, Sergio; Santos, Nuno; Faria, Joao; González Hernández, Jonay; Israelian, Garik; Harutyunyan, Gohar; Suárez-Andrés, Lucia; Hakobyan, Artur

    2016-11-01

    During the last decade astronomers have been trying to search for chemical signatures of terrestrial planet formation in the atmospheres of the hosting stars. Several studies suggested that the chemical abundance trend with the condensation temperature, Tc, is a signature of rocky planet formation. In particular, it was suggested that the Sun shows 'peculiar' chemical abundances due to the presence of the terrestrial planets in our solar-system. However, the rocky material accretion or the trap of rocky materials in terrestrial planets is not the only explanation for the chemical 'peculiarity' of the Sun, or other Sun-like stars with planets. In this talk I madea very brief review of this topic, and presented our last results for the particular case of Zeta Reticuli binary system: A very interesting and well-known system (known in science fiction and ufology as the world of Grey Aliens, or Reticulans) where one of the components hosts an exo-Kuiper belt, and the other component is a 'single', 'lonely' star.

  12. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.; Villanova, S.; Mennickent, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Zamora, O.; García-Hernández, D. A.; Dell’Agli, F.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Souto, Diogo; Cunha, Katia [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Hasselquist, Sten [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Vieira, K. [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Zasowski, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sobeck, J.; Hayes, C. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Placco, V. M., E-mail: jfernandezt@astro-udec.cl, E-mail: jfernandezt87@gmail.com [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); and others

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  13. New upper limit to the coronal line emission from the T Tauri star RU Lupi

    Energy Technology Data Exchange (ETDEWEB)

    Gahm, G F [Stockholm Observatory (Sweden); Lago, M T.V.T. [Universidade do Porto (Portugal). Grupo de Matematica Aplicada; Penston, M V [ESTEC, European Space Agency, Villafranca Satellite Tracking Station, Madrid, (Spain)

    1981-05-01

    A high dispersion AAT spectrogram sets an upper limit on the (Fe x) emission line lambda 6374.5 A in the T Tauri star RU Lupi. The intensity of any 10/sup 6/ K corona in this star is less than 600 times that of the Sun compared to a chromosphere and transition region of 3 x 10/sup 3/ to 2 x 10/sup 5/ K gas 10/sup 6/ times stronger than the Sun's. The important theoretical implications are noted.

  14. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    Science.gov (United States)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  15. The complex lives of star clusters

    CERN Document Server

    Stevenson, David

    2015-01-01

    As with the author’s recent books Extreme Explosions and Under a Crimson Sun, the complex topic of star clusters is broken down and made accessible with clear links to other areas of astronomy in a language which the non-specialist can easily read and enjoy. The full range of a star cluster's lifespan is depicted, as both globular and open clusters are tracked from birth to eventual death. Why is it some are dense conglomerates of stars while others are looser associations? Are the young, brilliant clusters seen in neighboring galaxies such as the Large Magellanic Cloud, M33 or M82 analogous to the ancient globulars seen in the Milky Way? How will these clusters change as their stars wane and die? More interestingly, how does living in a dense star cluster affect the fates of the stars and any attendant planets that accompany them?   Star clusters form many of the most dazzling objects in the astronomers’ catalogs. Many amateur astronomers are interested in exploring how these objects are created and wh...

  16. THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5

    International Nuclear Information System (INIS)

    Toft, S.; Franx, M.; Van Dokkum, P.; Foerster Schreiber, N. M.; Labbe, I.; Wuyts, S.; Marchesini, D.

    2009-01-01

    We study the relation between size and star formation activity in a complete sample of 225 massive (M * > 5 x 10 10 M sun ) galaxies at 1.5 PSF ∼ 0.''45) ground-based ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z ∼ 2, massive quiescent galaxies are significantly smaller than massive star-forming galaxies, and a median factor of 0.34 ± 0.02 smaller than galaxies of similar mass in the local universe. Thirteen percent of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than five times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies were likely dominated by highly concentrated, intense nuclear starbursts at z ∼ 3-4, in contrast to star-forming galaxies at z ∼ 2 which are extended and dominated by distributed star formation.

  17. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (∼ the peak mass of the IMF), and the lower and upper limits on the mass, m l and m u (taken to be 0.004 and 120 M sun , respectively): ψ(m)dln m ∝ m -Γ {1 - exp [- (m/m ch ) γ+Γ ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses sun ; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  18. Gravitational waves, neutrino emissions and effects of hyperons in binary neutron star mergers

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru

    2012-01-01

    Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that for the nucleonic and hyperonic EOS, a hyper-massive neutron star (HMNS) with a long lifetime (t life ≥ 10 ms) is the outcome for the total mass ≅2.7M sun . For the total mass ≅3 M sun , a long-lived (short-lived with t life ≅ 3 ms) HMNS is the outcome for the nucleonic (hyperonic) EOS. It is shown that the typical total neutrino luminosity of the HMNS is ∼3-6 x 10 53 erg s -1 and the effective amplitude of gravitational waves from the HMNS is 1-4 x 10 -22 at f ≅ 2-3.2 kHz for a source of distance of 100 Mpc. During the HMNS phase, characteristic frequencies of gravitational waves shift to a higher frequency for the hyperonic EOS in contrast to the nucleonic EOS in which they remain constant approximately. Our finding suggests that the effects of hyperons are well imprinted in gravitational waves and their detection will give us a potential opportunity to explore the composition of the neutron star matter. We present the neutrino luminosity curve when a black hole is formed as well. (paper)

  19. ASA's Chandra Neon Discovery Solves Solar Paradox

    Science.gov (United States)

    2005-07-01

    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  20. Spectrophotometry at 10 microns of T Tauri stars

    Science.gov (United States)

    Cohen, M.; Witteborn, F. C.

    1985-01-01

    New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.

  1. NICMOS PEERS INTO HEART OF DYING STAR

    Science.gov (United States)

    2002-01-01

    The Egg Nebula, also known as CRL 2688, is shown on the left as it appears in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) and on the right as it appears in infrared light with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Since infrared light is invisible to humans, the NICMOS image has been assigned colors to distinguish different wavelengths: blue corresponds to starlight reflected by dust particles, and red corresponds to heat radiation emitted by hot molecular hydrogen. Objects like the Egg Nebula are helping astronomers understand how stars like our Sun expel carbon and nitrogen -- elements crucial for life -- into space. Studies on the Egg Nebula show that these dying stars eject matter at high speeds along a preferred axis and may even have multiple jet-like outflows. The signature of the collision between this fast-moving material and the slower outflowing shells is the glow of hydrogen molecules captured in the NICMOS image. The distance between the tip of each jet is approximately 200 times the diameter of our solar system (out to Pluto's orbit). Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider, Dean Hines (University of Arizona); Raghvendra Sahai (Jet Propulsion Laboratory); NICMOS Instrument Definition Team; and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  2. FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA

    International Nuclear Information System (INIS)

    Trenti, Michele; Stiavelli, Massimo

    2009-01-01

    The first stars in the universe formed out of pristine primordial gas clouds that were radiatively cooled to a few hundreds of degrees kelvin either via molecular or atomic (Lyman-α) hydrogen lines. This primordial mode of star formation was eventually quenched once radiative and/or chemical (metal enrichment) feedbacks marked the transition to Population II stars. In this paper, we present a model for the formation rate of Population III stars based on Press-Schechter modeling coupled with analytical recipes for gas cooling and radiative feedback. Our model also includes a novel treatment for metal pollution based on self-enrichment due to a previous episode of Population III star formation in progenitor halos. With this model, we derive the star formation history of Population III stars, their contribution to the reionization of the universe and the time of the transition from Population III star formation in minihalos (M ∼ 10 6 M sun , cooled via molecular hydrogen) to that in more massive halos (M ∼> 2 x 10 7 M sun , where atomic hydrogen cooling is also possible). We consider a grid of models highlighting the impact of varying the values for the free parameters used, such as star formation and feedback efficiency. The most critical factor is the assumption that only one Population III star is formed in a halo. In this scenario, metal-free stars contribute only to a minor fraction of the total number of photons required to reionize the universe. In addition, metal-free star formation is primarily located in minihalos, and chemically enriched halos become the dominant locus of star formation very early in the life of the universe-at redshift z ∼ 25-even assuming a modest fraction (0.5%) of enriched gas converted in stars. If instead multiple metal-free stars are allowed to form out of a single halo, then there is an overall boost of Population III star formation, with a consequent significant contribution to the reionizing radiation budget. In addition

  3. Sun Radio Interferometer Space Experiment (SunRISE)

    Science.gov (United States)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  4. GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang Shan; Haynes, Martha P.; Giovanelli, Riccardo [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Brinchmann, Jarle [Sterrewacht Leiden, Leiden University, NL-2300 RA Leiden (Netherlands); Stierwalt, Sabrina [Spitzer Science Center, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Neff, Susan G., E-mail: shan@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: jarle@strw.leidenuniv.nl, E-mail: sabrina@ipac.caltech.edu, E-mail: susan.g.neff@nasa.gov [NASA GSFC, Code 665, Observational Cosmology Lab, Greenbelt, MD 20771 (United States)

    2012-06-15

    We examine the global properties of the stellar and H I components of 229 low H I mass dwarf galaxies extracted from the ALFALFA survey, including a complete sample of 176 galaxies with H I masses <10{sup 7.7} M{sub Sun} and H I line widths <80 km s{sup -1}. Sloan Digital Sky Survey (SDSS) data are combined with photometric properties derived from Galaxy Evolution Explorer to derive stellar masses (M{sub *}) and star formation rates (SFRs) by fitting their UV-optical spectral energy distributions (SEDs). In optical images, many of the ALFALFA dwarfs are faint and of low surface brightness; only 56% of those within the SDSS footprint have a counterpart in the SDSS spectroscopic survey. A large fraction of the dwarfs have high specific star formation rates (SSFRs), and estimates of their SFRs and M{sub *} obtained by SED fitting are systematically smaller than ones derived via standard formulae assuming a constant SFR. The increased dispersion of the SSFR distribution at M{sub *} {approx}< 10{sup 8} M{sub Sun} is driven by a set of dwarf galaxies that have low gas fractions and SSFRs; some of these are dE/dSphs in the Virgo Cluster. The imposition of an upper H I mass limit yields the selection of a sample with lower gas fractions for their M{sub *} than found for the overall ALFALFA population. Many of the ALFALFA dwarfs, particularly the Virgo members, have H I depletion timescales shorter than a Hubble time. An examination of the dwarf galaxies within the full ALFALFA population in the context of global star formation (SF) laws is consistent with the general assumptions that gas-rich galaxies have lower SF efficiencies than do optically selected populations and that H I disks are more extended than stellar ones.

  5. NO CLEAR SUBMILLIMETER SIGNATURE OF SUPPRESSED STAR FORMATION AMONG X-RAY LUMINOUS ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Del Moro, A.; Rovilos, E. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Altieri, B.; Coia, D. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computation Physics, University of Crete, 71003 Heraklion (Greece); Daddi, E.; Le Floc' h, E.; Leiton, R. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Dannerbauer, H. [Insitut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dasyra, K. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Av. de l' Observatoire, F-75014 Paris (France); Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Ivison, R. J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Magnelli, B.; Popesso, P.; Rosario, D. [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); and others

    2012-11-20

    Many theoretical models require powerful active galactic nuclei (AGNs) to suppress star formation in distant galaxies and reproduce the observed properties of today's massive galaxies. A recent study based on Herschel-SPIRE submillimeter observations claimed to provide direct support for this picture, reporting a significant decrease in the mean star formation rates (SFRs) of the most luminous AGNs (L{sub X} >10{sup 44} erg s{sup -1}) at z Almost-Equal-To 1-3 in the Chandra Deep Field-North (CDF-N). In this Letter, we extend these results using Herschel-SPIRE 250 {mu}m data in the COSMOS and Chandra Deep Field-South fields to achieve an order-of-magnitude improvement in the number of sources at L{sub X} >10{sup 44} erg s{sup -1}. On the basis of our analysis, we find no strong evidence for suppressed star formation in L{sub X} >10{sup 44} erg s{sup -1} AGNs at z Almost-Equal-To 1-3. The mean SFRs of the AGNs are constant over the broad X-ray luminosity range of L{sub X} Almost-Equal-To 10{sup 43}-10{sup 45} erg s{sup -1} (with mean SFRs consistent with typical star-forming galaxies at z Almost-Equal-To 2; (SFRs) Almost-Equal-To 100-200 M{sub Sun} yr{sup -1}). We suggest that the previous CDF-N results were likely due to low number statistics. We discuss our results in the context of current theoretical models.

  6. One of the most massive stars in the Galaxy may have formed in isolation

    OpenAIRE

    Oskinova, L. M.; Steinke, M.; Hamann, W. -R.; Sander, A.; Todt, H.; Liermann, A.

    2013-01-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such i...

  7. Abundances of the elements in sharp-lined early-type stars from IUE high-dispersion spectrograms; 2, the nitrogen deficiency in mercury- manganese stars

    CERN Document Server

    Roby, S W; Adelman, S J

    1999-01-01

    For pt.I see ibid., vol.419, no.1, p.276-85 (1993). The authors determine nitrogen abundances from co-added IUE high-dispersion SWP spectrograms of four HgMn stars and five normal or superficially normal main-sequence B and A stars. They find N deficiencies in the HgMn stars greater than previously reported (depletion factors of 135-400 relative to the Sun). N abundance discrepancies from UV and IR studies of normal stars are discussed in light of possible non-LTE effects. Their data set for their sample of HgMn stars (observed with a consistent strategy to maximize the benefits of co-additions) is an improvement over the single or few images previously used to derive N abundances for most of these stars. (37 refs).

  8. Spinning like a blue straggler: the population of fast rotating blue straggler stars in ω Centauri

    Energy Technology Data Exchange (ETDEWEB)

    Mucciarelli, A.; Lovisi, L.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B. [Dipartimento di Fisica and Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Monaco, L. [European Southern Observatory, Casilla 19001, Santiago (Chile)

    2014-12-10

    By using high-resolution spectra acquired with FLAMES-GIRAFFE at the ESO/VLT, we measured the radial and rotational velocities for 110 blue straggler stars (BSSs) in ω Centauri, the globular cluster-like stellar system harboring the largest known BSS population. According to their radial velocities, 109 BSSs are members of the system. The rotational velocity distribution is very broad, with the bulk of BSSs spinning at less than ∼40 km s{sup –1} (in agreement with the majority of such stars observed in other globular clusters) and a long tail reaching ∼200 km s{sup –1}. About 40% of the sample has v{sub e} sin i > 40 km s{sup –1} and about 20% has v{sub e} sin i > 70 km s{sup –1}. Such a large fraction is very similar to the percentage of fast rotating BSSs observed in M4. Thus, ω Centauri is the second stellar cluster, beyond M4, with a surprisingly high population of fast spinning BSSs. We found a hint of radial behavior for a fraction of fast rotating BSSs, with a mild peak within one core radius, and a possible rise in the external regions (beyond four core radii). This may suggest that recent formation episodes of mass transfer BSSs occurred preferentially in the outskirts of ω Centauri, or that braking mechanisms able to slow down these stars are least efficient in the lowest density environments.

  9. Birth, evolution and death of stars

    CERN Document Server

    Lequeux, James

    2013-01-01

    It has been known for a long time that stars are similar to our Sun. But it was only in 1810 that they were shown to be made of an incandescent gas. The chemical composition of this gas began to be determined in 1860. In 1940, it was demonstrated that the energy radiated by the stars is of thermonuclear origin. How stars form from interstellar matter and how they evolve and die was understood only recently, with our knowledge still incomplete. It was also realized recently that close double stars present a wide variety of extraordinary phenomena, which are far from being completely explored. This book explains all these aspects, and also discusses how the evolution of stars determine that of galaxies. The most interesting observations are illustrated by spectacular images, while the theory is explained as simply as possible, without however avoiding some mathematical or physical developments when they are necessary for a good understanding of what happens in stars. Without being a textbook for specialists, t...

  10. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  11. VLBA Teams With Optical Interferometer to Study Star's Layers

    Science.gov (United States)

    2007-05-01

    Structure of S Ori (Artist's Impression) "Astronomers are like medical doctors, who use various instruments to examine different parts of the human body," said co-author David Boboltz. "While the mouth can be checked with a simple light, a stethoscope is required to listen to the heart beat. Similarly the heart of the star can be observed in the optical, the molecular and dust layers can be studied in the infrared and the maser emission can be probed with radio instruments. Only the combination of the three gives us a more complete picture of the star and its envelope." The maser emission comes from silicon monoxide (SiO) molecules and can be used to image and track the motion of gas clouds in the stellar envelope roughly 10 times the size of the Sun. The astronomers observed S Ori with two of the largest interferometric facilities available: the ESO Very Large Telescope Interferometer (VLTI) at Paranal, observing in the near- and mid-infrared, and the NRAO-operated Very Long Baseline Array (VLBA), that takes measurements in the radio wave domain. Because the star's luminosity changes periodically, the astronomers observed it simultaneously with both instruments, at several different epochs. The first epoch occurred close to the stellar minimum luminosity and the last just after the maximum on the next cycle. ESO PR Photo 25c/07 ESO PR Photo 25c/07 S Ori to Scale (Artist's Impression) The astronomers found the star's diameter to vary between 7.9 milliarcseconds and 9.7 milliarcseconds. At the distance of S Ori, this corresponds to a change of the radius from about 1.9 to 2.3 times the distance between the Earth and the Sun, or between 400 and 500 solar radii! As if such sizes were not enough, the inner dust shell is found to be about twice as big. The maser spots, which also form at about twice the radius of the star, show the typical structure of partial to full rings with a clumpy distribution. Their velocities indicate that the gas is expanding radially, moving away at a

  12. THE COMPLEXITY THAT THE FIRST STARS BROUGHT TO THE UNIVERSE: FRAGILITY OF METAL-ENRICHED GAS IN A RADIATION FIELD

    International Nuclear Information System (INIS)

    Aykutalp, A.; Spaans, M.

    2011-01-01

    The initial mass function (IMF) of the first (Population III) stars and Population II (Pop II) stars is poorly known due to a lack of observations of the period between recombination and reionization. In simulations of the formation of the first stars, it has been shown that, due to the limited ability of metal-free primordial gas to cool, the IMF of the first stars is a few orders of magnitude more massive than the current IMF. The transition from a high-mass IMF of the first stars to a lower-mass current IMF is thus important to understand. To study the underlying physics of this transition, we performed several simulations using the cosmological hydrodynamic adaptive mesh refinement code Enzo for metallicities of 10 -4 , 10 -3 , 10 -2 , and 10 -1 Z sun . In our simulations, we include a star formation prescription that is derived from a metallicity-dependent multi-phase interstellar medium (ISM) structure, an external UV radiation field, and a mechanical feedback algorithm. We also implement cosmic ray heating, photoelectric heating, and gas-dust heating/cooling, and follow the metal enrichment of the ISM. It is found that the interplay between metallicity and UV radiation leads to the coexistence of Pop III and Pop II star formation in non-zero-metallicity (Z/Z sun ≥ 10 -2 ) gas. A cold (T 10 -22 g cm -3 ) gas phase is fragile to ambient UV radiation. In a metal-poor (Z/Z sun ≤ 10 -3 ) gas, the cold and dense gas phase does not form in the presence of a radiation field of F 0 ∼ 10 -5 -10 -4 erg cm -2 s -1 . Therefore, metallicity by itself is not a good indicator of the Pop III-Pop II transition. Metal-rich (Z/Z sun ≥ 10 -2 ) gas dynamically evolves two to three orders of magnitude faster than metal-poor gas (Z/Z sun ≤ 10 -3 ). The simulations including supernova explosions show that pre-enrichment of the halo does not affect the mixing of metals.

  13. Determination of the upper mass limit for stars producing white-dwarf remnants

    International Nuclear Information System (INIS)

    Romanishin, W.; Angel, J.R.P.

    1980-01-01

    We have searched ultraviolet and red plates of four open clusters (NGC 2168, 2287, 2422, and 6633) for faint blue objects which might be white dwarf members of the clusters. The most massive stars in these clusters range from 3 to 6 M/sub sun/. We find a definite concentration of faint blue objects in the clusters. This fact, plus initial photoelectric photometry, provides strong support for the identification of many of these objects as cluster white dwarfs. By modeling the expected number of possible white dwarfs in each cluster, we are able to put some limits on m/sub w/, the upper stellar mass limit for formation of white dwarfs. Our data require that some stars of at least 5 M/sub sun/ have evolved into white dwarfs and give a most probable value of 7 M/sub sun/ for m/sub w/

  14. Brilliant Star in a Colourful Neighbourhood

    Science.gov (United States)

    2010-07-01

    A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colourful surroundings. WR 22 is a very hot and bright star that is shedding its atmosphere into space at a rate many millions of times faster than the Sun. It lies in the outer part of the dramatic Carina Nebula from which it formed. Very massive stars live fast and die young. Some of these stellar beacons have such intense radiation passing through their thick atmospheres late in their lives that they shed material into space many millions of times more quickly than relatively sedate stars such as the Sun. These rare, very hot and massive objects are known as Wolf-Rayet stars [1], after the two French astronomers who first identified them in the mid-nineteenth century, and one of the most massive ones yet measured is known as WR 22. It appears at the centre of this picture, which was created from images taken through red, green and blue filters with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. WR 22 is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. WR 22 lies in the southern constellation of Carina, the keel of Jason's ship Argo in Greek mythology. Although the star lies over 5000 light-years from the Earth it is so bright that it can just be faintly seen with the unaided eye under good conditions. WR 22 is one of many exceptionally brilliant stars associated with the beautiful Carina Nebula (also known as NGC 3372) and the outer part of this huge region of star formation in the southern Milky Way forms the colourful backdrop to this image. The subtle colours of the rich background tapestry are a result of the interactions between the intense ultraviolet radiation coming from hot massive stars, including WR 22, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex

  15. The Drifting Star

    Science.gov (United States)

    2008-04-01

    temperature is 6150 K, its mass is 1.25 times that of the Sun, and its age is 625 million years. Moreover, the star is found to be more metal-rich than the Sun by about 50%. ESO PR Photo 09b/08 ESO PR Photo 09b/08 Constellations "These results show the power of asteroseismology when using a very precise instrument such as HARPS," says Vauclair. "It also shows that Iota Horologii has the same metal abundance and age as the Hyades cluster and this cannot be a coincidence." The Hyades is an ensemble of stars that is seen with the unaided eye in the Northern constellation Taurus ("The Bull"). This open cluster, located 151 light-years away, contains stars that were formed together 625 million years ago. The star Iota Horologii must have thus formed together with the stars of the Hyades cluster but must have slowly drifted away, being presently more than 130 light-years away from its original birthplace. This is an important result to understand how stars move on the galactic highways of the Milky Way. This also means that the amount of metals present in the star is due to the original cloud from which it formed and not because it engulfed planetary material. "The chicken and egg question of whether the star got planets because it is metal-rich, or whether it is metal-rich because it made planets that were swallowed up is at least answered in one case," says Vauclair. More information The astronomers' study is being published as a Letter to the Editor in Astronomy and Astrophysics ("The exoplanet-host star iota Horologii: an evaporated member of the primordial Hyades cluster", by S. Vauclair et al.). The team is composed of Sylvie Vauclair, Marion Laymand, Gérard Vauclair, Alain Hui Bon Hoa, and Stéphane Charpinet (LATT, Toulouse, France), François Bouchy (IAP, Paris, France), and Michaël Bazot (University of Porto, Portugal).

  16. Metallicity of Sun-like G-stars that have Exoplanets

    Indian Academy of Sciences (India)

    Shashanka R. Gurumath

    2017-06-19

    Jun 19, 2017 ... Birth of a stellar system takes place in the nebula which consists of gas and dust ... occurrence rate of terrestrial planets or low mass planets is independent of the host .... 2008) statistical method. However, basic errors that ...

  17. Detection of dark-matter-radiation of stars during visible sun eclipses

    International Nuclear Information System (INIS)

    Volkamer, Klaus

    2003-01-01

    Recently a so-far unknown form of quantized, cold dark matter was detected on a laboratory scale which shows a complementary structure as compared to known forms of matter. From the experiments results that the observed quanta of the new type of matter as integer multiples of the Planck mass (mp = n · √((h·c)/((2 · π · G))) = n 0 21.77 μg, with n = 1, 2, 3 etc.) exhibit a spatially extended 'field-like' structure ranging over distances of centimetres or more, opposite to the 'point-like' structure of the known elementary particles of the standard model. Association of quanta of the new form of 'soft' (or subtle) matter to clusters was observed, as well as re-clustering after absorption. Thus, between such quanta a physical interaction must exist. In addition, the new form of matter shows at least two interactions with normal matter, a gravitational one due to its real mass content and a so-far unknown 'topological', i.e. form-specific, interaction at phase borders. Additional indications for a weak electromagnetic interaction exist. Furthermore, the experimental results reveal that some types of quanta of the new form of 'field-like' matter exhibit positive mass, as normal matter, but others exhibit a negative mass content, both in the order of magnitude of the Planck mass. Memory effects in normal matter were detected after absorption of quanta of the new form of soft matter. In general, the findings characterize the quanta of 'fieldlike' matter as WIMP candidates of a cosmic background radiation of cold dark matter (quanta with positive mass) as well as of a cosmic background radiation of dark energy (quanta with negative mass). During visible sun eclipses in 1989, 1996 and. 1999, as well as during full moon of 6 January 2001, a so-far unknown form of dark-matter-radiation ('dark radiation') was detected. The quanta of this 'dark radiation' travel with the speed of light, but reveal macroscopic real mass, with positive and with negative mass content. The

  18. Solar and Stellar Flares and Their Effects on Planets

    Science.gov (United States)

    Shibata, Kazunari

    2015-08-01

    Recent space observations of the Sun revealed that the solar atmosphere is full of explosions, such as flares and flare-like phenomena. These flares generate not only strong electromagnetic emissions but also nonthermal particles and bulk plasma ejections, which sometimes lead to geomagnetic storms and affect terrestrial environment and our civilization, damaging satellite, power-grids, radio communication etc. Solar flares are prototype of various explosions in our universe, and hence are important not only for geophysics and environmental science but also for astrophysics. The energy source of solar flares is now established to be magnetic energy stored near sunspots. There is now increasing observational evidence that solar flares are caused by magnetic reconnection, merging of anti-parallel magnetic field lines and associated magneto-plasma dynamics (Shibata and Magara 2011, Living Review). It has also been known that many stars show flares similar to solar flares, and often such stellar flares are much more energetic than solar flares. The total energy of a solar flare is typically 10^29 - 10^32 erg. On the other hand, there are much more energetic flares (10^33 - 10^38 erg) in stars, especially in young stars. These are called superflares. We argue that these superflares on stars can also be understood in a unified way based on the reconnection mechanism. Finally we show evidence of occurrence of superflares on Sun-like stars according to recent stellar observations (Maehara et al. 2012, Nature, Shibayama et al. 2013), which revealed that superflares with energy of 10^34 - 10^35 erg (100 - 1000 times of the largest solar flares) occur with frequency of once in 800 - 5000 years on Sun-like stars which are very similar to our Sun. Against the previous belief, these new observations as well as theory (Shibata et al. 2013) suggest that we cannot deny the possibility of superflares on the present Sun. Finally, we shall discuss possible impacts of these superflares

  19. A Polarimetric Investigation on Interstellar Dust Within 50-PARSECS from the Sun

    Science.gov (United States)

    Leroy, J. L.

    1993-07-01

    We have analyzed the polarization catalogue, for 1000 stars closer than 50 Pc, which has been presented in a companion paper. Although the accuracy of the measurements is generally very good (better than 0.02% for more than 700 stars), the catalogue contains essentially unpolarized stars, which is to be related to the well known depletion of dust in the Sun's vicinity. However, setting apart some stars which are known to display intrinsic polarization (e.g. several Ap magnetic variables), we have been able to select 25 stars whose polarization is indisputable. But, looking in more detail at the (presently available) data on the distance of this sample reveals that, in almost all the cases, the distances have been under-estimated. While this result will require a confirmation with the help of the Hipparcos parallaxes, we can already say that we fully confirm the main result of the preceding investigation on this topic by Tinbergen (1982), namely the complete depletion of dust within 35 pc from the Sun. Actually, we find that the dust signature begins at 40-50 pc in a few cases, but more much frequently at 70 to 100 pc, which seems to be the boundary of the local Bubble, as far as dust is concerned. We cannot confirm the previous detection by Tinbergen of a faint, near-by dusty region around l = 0°, b = -20°. Altogether, the picture given by the polarization analysis is consistent (although more sensitive) with the data derived from reddening measurements, and, to a lesser extent, with the investigations based on the measurements of interstellar absorption lines. Extending the polarization measurements to the 50-100 pc zone would provide a very precise picture of the location of those dust clouds which appear, here and there, as one gets out from the local Bubble.

  20. Our Explosive Sun

    Science.gov (United States)

    Brown, D. S.

    2009-01-01

    The Sun's atmosphere is a highly structured but dynamic place, dominated by the solar magnetic field. Hot charged gas (plasma) is trapped on lines of magnetic force that can snap like an elastic band, propelling giant clouds of material out into space. A range of ground-based and space-based solar telescopes observe these eruptions, particularly…

  1. The habitability of planets orbiting M-dwarf stars

    Science.gov (United States)

    Shields, Aomawa L.; Ballard, Sarah; Johnson, John Asher

    2016-12-01

    The prospects for the habitability of M-dwarf planets have long been debated, due to key differences between the unique stellar and planetary environments around these low-mass stars, as compared to hotter, more luminous Sun-like stars. Over the past decade, significant progress has been made by both space- and ground-based observatories to measure the likelihood of small planets to orbit in the habitable zones of M-dwarf stars. We now know that most M dwarfs are hosts to closely-packed planetary systems characterized by a paucity of Jupiter-mass planets and the presence of multiple rocky planets, with roughly a third of these rocky M-dwarf planets orbiting within the habitable zone, where they have the potential to support liquid water on their surfaces. Theoretical studies have also quantified the effect on climate and habitability of the interaction between the spectral energy distribution of M-dwarf stars and the atmospheres and surfaces of their planets. These and other recent results fill in knowledge gaps that existed at the time of the previous overview papers published nearly a decade ago by Tarter et al. (2007) and Scalo et al. (2007). In this review we provide a comprehensive picture of the current knowledge of M-dwarf planet occurrence and habitability based on work done in this area over the past decade, and summarize future directions planned in this quickly evolving field.

  2. Formation of polystyrene/poly(methyl methacrylate) heteroarm star-like nanogels from complementarily reactive well-defined diblock copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Amamoto, Y; Otsuka, H; Takahara, A, E-mail: otsuka@ms.ifoc.kyushu-u.ac.j [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0385 (Japan)

    2009-08-01

    Formation of star-like nanogels with two different arms via cross-linking reaction of complementarily reactive diblock copolymers was successfully accomplished. The two types of diblock copolymers, consisting of poly(methyl methacrylate) (PMMA) or polystyrene (PSt) block and alkoxyamine-based cross-linkable block, were prepared by atom transfer radical polymerization (ATRP) methods. The cross-linking reactions were carried out by merely heating their mixture, and traced by gel permeation chromatography (GPC) and multi-angle light scattering (MALS) measurements. The diblock copolymers were reacted in complementarily reactive systems, showing that all star-like nanogels have necessarily two types of arms as PMMA and PSt chains.

  3. Chemical analysis of eight giant stars of the globular cluster NGC 6366

    Science.gov (United States)

    Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz

    2018-05-01

    The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.

  4. CO J = 2-1 EMISSION FROM EVOLVED STARS IN THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, Benjamin A.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Patel, N. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Otsuka, M.; Srinivasan, S. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Riebel, D., E-mail: baspci@rit.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2013-03-01

    We observe a sample of eight evolved stars in the Galactic bulge in the CO J = 2-1 line using the Submillimeter Array with angular resolution of 1''-4''. These stars have been detected previously at infrared wavelengths, and several of them have OH maser emission. We detect CO J = 2-1 emission from three of the sources in the sample: OH 359.943 +0.260, [SLO2003] A12, and [SLO2003] A51. We do not detect the remaining five stars in the sample because of heavy contamination from the galactic CO emission. Combining CO data with observations at infrared wavelengths constraining dust mass loss from these stars, we determine the gas-to-dust ratios of the Galactic bulge stars for which CO emission is detected. For OH 359.943 +0.260, we determine a gas mass-loss rate of 7.9 ({+-}2.2) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 310 ({+-}89). For [SLO2003] A12, we find a gas mass-loss rate of 5.4 ({+-}2.8) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 220 ({+-}110). For [SLO2003] A51, we find a gas mass-loss rate of 3.4 ({+-}3.0) Multiplication-Sign 10{sup -5} M {sub Sun} yr{sup -1} and a gas-to-dust ratio of 160 ({+-}140), reflecting the low quality of our tentative detection of the CO J = 2-1 emission from A51. We find that the CO J = 2-1 detections of OH/IR stars in the Galactic bulge require lower average CO J = 2-1 backgrounds.

  5. Exciting Message from a Dying Monster Star

    Science.gov (United States)

    1996-03-01

    this is radiation from a SiO maser in the atmosphere of the star. If it would not have been a maser, it would have been far too weak to have been detected. Although we know several hundred masers of this type in the Milky Way, this is the first discovery of a SiO maser in another galaxy than our own . Since then, the observations have been continued in collaboration with Australian astronomers, using radio telescopes at Parkes and Mopra on that continent. A most unusual star When Swedish astronomer Bengt Westerlund and his colleagues first observed this LMC maser star in 1981 with optical telescopes, they thought that it was a rather normal, cool and not particularly bright star. However, a few years later, the Dutch-British-USA InfraRed Astronomical Satellite (IRAS) revealed its true nature. The IRAS measurements showed that the star radiates most of its light in the form of infrared radiation [4], making it one of the most powerful stars in the LMC; in fact, it emits about half a million times more energy than the Sun. On this occasion, it was given the designation IRAS 04553-6825 , the number indicating its position in the sky. IRAS 04553-6825 is unusual in other ways. It is some fifty times as heavy as our Sun, and it is the biggest known star in the LMC: if it were to take the place of our Sun, it would fill the solar system out to the planet Neptune, thirty times the distance from the Earth to the Sun. It is rather cool when compared to other stars - although it still has a temperature of about 2,000 C - and it therefore has a very red colour [5]. This Press Release is accompanied by ESO Press Photo 15/96 which demonstrates that while the star is hardly visible in blue light, it shines brightly in red and infrared light. Stars like IRAS 04553-6825 are known as red supergiants. It has been unofficially dubbed `The Monster', and having reached the end of a short and hectic life, it is now dying. The nuclear reactions deep inside are undergoing important changes at

  6. Population and age-group trends in weekend sun protection and sunburn over two decades of the SunSmart programme in Melbourne, Australia.

    Science.gov (United States)

    Makin, J K; Warne, C D; Dobbinson, S J; Wakefield, M A; Hill, D J

    2013-01-01

    In response to the high skin cancer burden in Australia, the multicomponent, community-wide SunSmart programme has worked since 1988 to reduce excessive sun exposure.  To examine trends in key sun-protection behaviours and sunburn for the Melbourne population from 1987 to 2007, and examine for the first time patterns of change among age groups.   Representative cross-sectional weekly telephone surveys of weekend sun protection and sunburn were conducted over 11 of the summers in the period 1987-88 to 2006-07. Trends were analysed for the population and for age groups, adjusting for ambient temperature and ultraviolet radiation, which are environmental determinants of sun-related behaviour and sunburn.   The general pattern of trends suggests two distinct periods, one with rapid improvement in behaviours (more sunscreen use, less unprotected body exposure and less sunburn) from 1987-88 to 1994-95, and the second from 1997-98 to 2006-07 with fewer changes in behaviours noted. The age-group analyses showed a similar pattern of change over time across groups, with a few notable exceptions.  The similarity of the pattern of trends among age groups suggests that external influences including the SunSmart programme's activity had a relatively similar impact across the population. Sun-related behaviours continue to be amenable to change. More recent relative stability with some declines in sun protection suggests further intensive campaigns and other strategies may be needed to maintain previous successes and to achieve more universal use of sun protection. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  7. VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT

    Energy Technology Data Exchange (ETDEWEB)

    Ma Bo; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Wang Ji [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Barnes, Rory; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Dutra-Ferreira, Leticia; Porto de Mello, G. F. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antonio, 43, CEP: 20080-090, Rio de Janeiro, RJ (Brazil); Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I. [Instituto de Astrofisica de Canarias, C/Via Lctea S/N, E-38200 La Laguna (Spain); Gaudi, B. Scott [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Ghezzi, Luan [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ 20921-400 (Brazil); Hebb, Leslie; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Wisniewski, John P. [Homer L Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks St, Norman, OK 73019 (United States); Bizyaev, Dmitry, E-mail: boma@astro.ufl.edu [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2013-01-01

    We present an eccentric, short-period brown dwarf candidate orbiting the active, slightly evolved subgiant star TYC 2087-00255-1, which has effective temperature T{sub eff} = 5903 {+-} 42 K, surface gravity log (g) = 4.07 {+-} 0.16 (cgs), and metallicity [Fe/H] = -0.23 {+-} 0.07. This candidate was discovered using data from the first two years of the Multi-object APO Radial Velocity Exoplanets Large-area Survey, which is part of the third phase of Sloan Digital Sky Survey. From our 38 radial velocity measurements spread over a two-year time baseline, we derive a Keplerian orbital fit with semi-amplitude K = 3.571 {+-} 0.041 km s{sup -1}, period P = 9.0090 {+-} 0.0004 days, and eccentricity e = 0.226 {+-} 0.011. Adopting a mass of 1.16 {+-} 0.11 M{sub Sun} for the subgiant host star, we infer that the companion has a minimum mass of 40.0 {+-} 2.5 M{sub Jup}. Assuming an edge-on orbit, the semimajor axis is 0.090 {+-} 0.003 AU. The host star is photometrically variable at the {approx}1% level with a period of {approx}13.16 {+-} 0.01 days, indicating that the host star spin and companion orbit are not synchronized. Through adaptive optics imaging we also found a point source 643 {+-} 10 mas away from TYC 2087-00255-1, which would have a mass of 0.13 M{sub Sun} if it is physically associated with TYC 2087-00255-1 and has the same age. Future proper motion observation should be able to resolve if this tertiary object is physically associated with TYC 2087-00255-1 and make TYC 2087-00255-1 a triple body system. Core Ca II H and K line emission indicate that the host is chromospherically active, at a level that is consistent with the inferred spin period and measured v{sub rot}sin i, but unusual for a subgiant of this T{sub eff}. This activity could be explained by ongoing tidal spin-up of the host star by the companion.

  8. Cosmic Dawn: The First Star in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Tom

    2008-04-29

    What was the first thing in the Universe? A black hole or a star? How did it form? Even our biggest and best telescopes cannot tell us. Direct calculation with supercomputers, however, can. The first luminous objects in the Universe were very massive stars shining one million times as brightly as our sun. They died quickly and seeded the cosmos with the chemical elements necessary for life. One star at a time, galaxies started to assemble just one hundred million years after the Big Bang, and they are still growing now. Join Dr. Abel in a fascinating journey through the early universe, where he uses the latest computer animations of early star formation, supernovae explosions and the buildup of the first galaxies.

  9. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  10. Lifestyle, sun worshipping and sun tanning - what about UV-A sun beds?

    International Nuclear Information System (INIS)

    Thune, P.

    1991-01-01

    This article considers the effects of ultraviolet (UV) light from the sun and UV-A sun beds on the skin. Sun worshipping and sun therapy has been en vogue for centuries, but in another way than used today. A changing lifestyle has led to an increase of various skin diseases, including skin cancer. Short wave UV-light (UV-B) in particular has been blamed for inducing not only erythema and pigmentation but also more chronic skin lesions. Long wave UV-light (UV-A) has been shown to be the cause of similar changes to the skin but the pigmentation is of another quality and affords less protection against the harmful effects of UV-B. A concept of sun reactive skin typing has been created. This is based on self-reported responses to an initial exposure to sun as regards tanning ability and erythema reaction. These two factors have certain practical consequences, not only for UV-phototherapy but also for a person's risk of developing skin cancer. Recently, several research groups and dermatologists have discouraged extensive use of UV-A sun beds because of side effects of varying degrees of seriousness. The possible implications of these side effects for the organism are not fully elucidated and may be more profound than known today. The British Photodermatology Group has issued more stringent rules for persons who, despite advice to the contrary, still wish to use UV-A sun beds. 14 refs., 1 tab

  11. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    Science.gov (United States)

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  12. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  13. "Movie Star" Acting Strangely, Radio Astronomers Find

    Science.gov (United States)

    1999-01-01

    Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the first-ever time-lapse "movie" showing details of gas motions around a star other than our Sun. The study, the largest observational project yet undertaken using Very Long Baseline Interferometry, has produced surprising results that indicate scientists do not fully understand stellar atmospheres. The "movie" shows that the atmosphere of a pulsating star more than 1,000 light-years away continues to expand during a part of the star's pulsation period in which astronomers expected it to start contracting. Philip Diamond and Athol Kemball, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, announced their findings at the American Astronomical Society's meeting in Austin, TX, today. "The continued expansion we're seeing contradicts current theoretical models for how these stars work," Diamond said. "The models have assumed spherical symmetry in the star's atmosphere, and our movie shows that this is not the case. Such models suggest that a shock wave passes outward from the star. Once it's passed, then the atmosphere should begin to contract because of the star's gravity. We've long passed that point and the contraction has not begun." The time-lapse images show that the gas motions are not uniform around the star. Most of the motion is that of gas moving directly outward from the star's surface. However, in about one-fourth of the ring, there are peculiar motions that do not fit this pattern. The scientists speculate that the rate of mass loss may not be the same from all parts of the star's surface. "A similar star behaved as predicted when studied a few years ago, so we're left to wonder what's different about this one," Diamond said. "Right now, we think that different rates of mass loss in the two stars may be the cause of the difference. This star is losing mass at 100 times the rate of the star in the earlier study." "This

  14. On the Path to SunShot: Emerging Opportunities and Challenges in Financing Solar

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-05-01

    This report analyzes solar financing strategies and their role in achieving the U.S. Department of Energy's SunShot goals. Financing is critical to solar deployment, because the costs of solar technologies are paid up front, while their benefits are realized over decades. Solar financing has been shaped by government solar incentives, particularly federal tax incentives, which have spawned complex tax-equity structures that monetize tax benefits for project sponsors who otherwise could not use them efficiently. Although these structures have helped expand solar deployment, they are relatively costly and inefficient. This has spurred solar stakeholders to develop lower-cost financing solutions such as securitization of solar project portfolios, solar-specific loan products, and methods for incorporating residential solar's value into home values. To move solar further toward an unsubsidized SunShot future, additional financial innovation must occur. Development of a larger, more mature U.S. solar industry will likely increase financial transparency and investor confidence, which in turn will enable simpler, lower-cost financing methods. Utility-scale solar might be financed more like conventional generation assets are today, non-residential solar might be financed more like a new roof, and residential solar might be financed more like an expensive appliance. Assuming a constant, SunShot-level installed photovoltaic (PV) system price, such financing innovations could reduce PV's levelized cost of electricity (LCOE) by an estimated 25%-50% compared with historical financing approaches. These results suggest that financing can adapt to changing conditions and might ease the transition away from a reliance on tax incentives while driving solar's LCOE toward the SunShot goals.

  15. AN ACCOUNTING OF THE DUST-OBSCURED STAR FORMATION AND ACCRETION HISTORIES OVER THE LAST ∼11 BILLION YEARS

    International Nuclear Information System (INIS)

    Murphy, E. J.; Chary, R.-R.; Dickinson, M.; Pope, A.; Frayer, D. T.; Lin, L.

    2011-01-01

    We report on an accounting of the star-formation- and accretion-driven energetics of 24 μm-detected sources in the Great Observatories Origins Deep Survey-North field. For sources having infrared (IR; 8-1000 μm) luminosities ∼>3 x 10 12 L sun when derived by fitting local spectral energy distributions (SEDs) to 24 μm photometry alone, we find these IR luminosity estimates to be a factor of ∼4 times larger than those estimated when the SED fitting includes additional 16 and 70 μm data (and in some cases mid-IR spectroscopy and 850 μm data). This discrepancy arises from the fact that high-luminosity sources at z >> 0 appear to have far- to mid-IR ratios, as well as aromatic feature equivalent widths, typical of lower luminosity galaxies in the local universe. Using our improved estimates for IR luminosity and active galactic nucleus (AGN) contributions, we investigate the evolution of the IR luminosity density versus redshift arising from star formation and AGN processes alone. We find that, within the uncertainties, the total star-formation-driven IR luminosity density is constant between 1.15 ∼ 2. AGNs appear to account for ∼ 11 L sun ≤ L IR 12 L sun ) appear to dominate the star formation rate density along with normal star-forming galaxies (L IR 11 L sun ) between 0.6 ∼ 2, the contribution from ultraluminous infrared galaxies (L IR ≥ 10 12 L sun ) becomes comparable with that of LIRGs. Using our improved IR luminosity estimates, we find existing calibrations for UV extinction corrections based on measurements of the UV spectral slope typically overcorrect UV luminosities by a factor of ∼2, on average, for our sample of 24 μm-selected sources; accordingly we have derived a new UV extinction correction more appropriate for our sample.

  16. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  17. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market.

    Science.gov (United States)

    Wright, Caradee Y; Reddy, Tarylee; Mathee, Angela; Street, Renée A

    2017-09-28

    Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7%) were female. Portable shade was the most commonly used form of sun protection (69.9%). Glare from the sun (59.7%) and excessive sweating (57.6%) were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard ( p = 0.003). In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  18. Sun Exposure, Sun-Related Symptoms, and Sun Protection Practices in an African Informal Traditional Medicines Market

    Directory of Open Access Journals (Sweden)

    Caradee Y. Wright

    2017-09-01

    Full Text Available Informal workers in African market trade have little formal protection against sun exposure. We aimed to examine sun exposure, sun-related symptoms, and sun protection practices in an informal occupational setting. Trained fieldworkers asked 236 workers in the Warwick Junction market about their workplace, skin and eye sensitivity and skin colour, symptoms faced at work during the summer due to heat, and preventive measures. Data were analyzed using univariate logistic regression to assess the effect of gender and the risk of experiencing symptoms to sun exposure in relation to pre-existing diseases and perception of sun exposure as a hazard. Of the 236 participants, 234 were Black African and 141 (59.7% were female. Portable shade was the most commonly used form of sun protection (69.9%. Glare from the sun (59.7% and excessive sweating (57.6% were commonly reported sun-related health symptoms. The use of protective clothing was more prevalent among those who perceived sun exposure as a hazard (p = 0.003. In an informal occupational setting, sun exposure was high. Protective clothing and portable shade to eliminate heat and bright light were self-implemented. Action by local authorities to protect informal workers should consider sun exposure to support workers in their efforts to cope in hot weather.

  19. THE INTERACTION OF ASYMPTOTIC GIANT BRANCH STARS WITH THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Villaver, Eva [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco 28049 Madrid (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea S/N, E-38200 La Laguna, Tenerife (Spain); Garcia-Segura, Guillermo, E-mail: eva.villaver@uam.es, E-mail: amt@ll.iac.es, E-mail: ggs@astrosen.unam.mx [Instituto de Astronomia-UNAM, Apartado postal 877, Ensenada, 22800 Baja California (Mexico)

    2012-04-01

    We study the hydrodynamical behavior of the gas expelled by moving asymptotic giant branch stars interacting with the interstellar medium (ISM). Our models follow the wind modulations prescribed by stellar evolution calculations, and we cover a range of expected relative velocities (10-100 km s{sup -1}), ISM densities (between 0.01 and 1 cm{sup -3}), and stellar progenitor masses (1 and 3.5 M{sub Sun }). We show how and when bow shocks and cometary-like structures form, and in which regime the shells are subject to instabilities. Finally, we analyze the results of the simulations in terms of the different kinematical stellar populations expected in the Galaxy.

  20. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  1. The star book an introduction to stargazing and the solar system

    CERN Document Server

    Grego, Peter

    2012-01-01

    An Introduction to Stargazing and the Solar System is an introductory section taken from The Star Book that guides you through the night skies, from the history and lives of the stars, to deep-sky objects beyond the Milky Way, and the Celestial Sphere. Followed by an introductory guide to the solar system with high quality images and observational drawings of the planets, covering the Sun, Moon, Inferior and Superior planets. Everyone is interested in the stars and on a clear night astonished by them. The Star Book will answer any questions you may have whe

  2. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  3. Reconnection on the Sun

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  4. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  5. Sun Exposure and Psychotic Experiences

    Directory of Open Access Journals (Sweden)

    Izabela Pilecka

    2017-06-01

    Full Text Available ObjectiveSun exposure is considered the single most important source of vitamin D. Vitamin D deficiency has been suggested to play a role in the etiology of psychotic disorders. The aim of the present study was to evaluate the association between sun exposure and psychotic experiences (PEs in a general population sample of Swedish women.MethodsThe study population included participants from The Swedish Women’s Lifestyle and Health cohort study. The 20-item community assessment of psychic experiences (CAPEs was administered between ages 30 and 50 to establish PEs. Sun exposure as measured by (1 sunbathing holidays and (2 history of sunburn was measured between ages 10 and 39. The association between sun exposure and PEs was evaluated by quantile regression models.Results34,297 women were included in the analysis. Women who reported no sunbathing holidays and 2 or more weeks of sunbathing holidays scored higher on the CAPE scale than women exposed to 1 week of sunbathing holidays across the entire distribution, when adjusting for age and education. Similarly, compared with women who reported a history of one sunburn, the women with none or two or more sunburns showed higher scores on the CAPE scale.ConclusionThe results of the present study suggest that, in a population-based cohort of middle aged women, both low and high sun exposure is associated with increased level of positive PEs.

  6. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  7. The HR diagram for luminous stars in nearby galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1978-01-01

    Due to the extreme faintness of stars in other galaxies it is only possible to sample the brightest stars in the nearest galaxies. The observations must then be compared with comparable data for the brightest stars, the supergiants and O-type stars, in the Milky Way. The data for the luminous stars are most complete for the Milky Way and the Large Magellanic Cloud. The luminosities for the stars in our Galaxy are based on their membership in associations and clusters, and consequently are representative of Population I within approximately 3kpc of the Sun. The data for the stars in the LMC with spectral types O to G8 come from published observations, and the M supergiants are from the author's recent observations of red stars in the LMC. This is the first time that the M supergiants have been included in an HR diagram of the Large Cloud. The presence of the red stars is important for any discussion of the evolution of the massive stars. (Auth.)

  8. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?

    Science.gov (United States)

    Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T.

    2018-01-01

    The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 ± 75 K and log g of 4.35 ± 0.10. The ratio of X-ray to bolometric luminosity, {log}{L}X/{L}{bol}, lies in the range ‑3.7 to ‑3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30–50 Myr, which in turn implies that RZ Psc lies at a distance of ∼170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.

  9. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function.

    Directory of Open Access Journals (Sweden)

    Jana Link

    2014-02-01

    Full Text Available LINC complexes are evolutionarily conserved nuclear envelope bridges, composed of SUN (Sad-1/UNC-84 and KASH (Klarsicht/ANC-1/Syne/homology domain proteins. They are crucial for nuclear positioning and nuclear shape determination, and also mediate nuclear envelope (NE attachment of meiotic telomeres, essential for driving homolog synapsis and recombination. In mice, SUN1 and SUN2 are the only SUN domain proteins expressed during meiosis, sharing their localization with meiosis-specific KASH5. Recent studies have shown that loss of SUN1 severely interferes with meiotic processes. Absence of SUN1 provokes defective telomere attachment and causes infertility. Here, we report that meiotic telomere attachment is not entirely lost in mice deficient for SUN1, but numerous telomeres are still attached to the NE through SUN2/KASH5-LINC complexes. In Sun1(-/- meiocytes attached telomeres retained the capacity to form bouquet-like clusters. Furthermore, we could detect significant numbers of late meiotic recombination events in Sun1(-/- mice. Together, this indicates that even in the absence of SUN1 telomere attachment and their movement within the nuclear envelope per se can be functional.

  10. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  11. Occurrence and persistence of magnetic elements in the quiet Sun

    Science.gov (United States)

    Giannattasio, F.; Berrilli, F.; Consolini, G.; Del Moro, D.; Gošić, M.; Bellot Rubio, L.

    2018-03-01

    Context. Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convective and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims: To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods: Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results: A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations ( 2 h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements.

  12. On origin and evolutionary stage of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1976-01-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter with the rate of 10 -5 -10 -6 M/yr over the period of 10 5 -10 6 years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the stage of red giant, and also of more close pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10 -6 -10 -9 M/yr and some consequencies of accretion on a C-O dwarf have been considered

  13. Evolution of helium stars: a self-consistent determination of the boundary of a helium burning convective core

    International Nuclear Information System (INIS)

    Savonije, G.J.; Takens, R.J.

    1976-01-01

    A generalization of the Henyey-scheme is given that introduces the mass of the convective core and the density at the outer edge of the convective core boundary as unknowns which have to be solved simultaneously with the other unknowns. As a result, this boundary is determined in a physically self-consistent way for expanding as well as contracting cores, i.e. during the Henyey iterative cycle; its position becomes consistent with the overall physical structure of the star, including the run of the chemical abundances throughout the star. Using this scheme, the evolution of helium stars was followed up to carbon ignition for a number of stellar masses. As compared with some earlier investigations, the calculations show a rather large increase in mass of the convective cores during core helium burning. Evolutionary calculations for a 2M(sun) helium star show that the critical mass for which a helium star ignites carbon non-degenerately lies near 2M(sun). (orig.) [de

  14. Fiber to the serving area: telephone-like star architecture for CATV

    Science.gov (United States)

    Fellows, David M.

    1992-02-01

    CATV systems traditionally use a tree and branch architecture to bring up to 550 MHz of analog bandwidth to every home in a franchise area. This changed slightly with the advent of AM fiber optic equipment, as fiber optics were used in an overlay fashion to reduce coaxial amplifier cascades and improve subscriber quality and reliability. Within the last year, fiber has economically replaced coaxial trunking. The resulting fiber to the serving area architecture combines fiber and coaxial stars for a network that looks much like the carrier serving area architectures used by telephone companies.

  15. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Deborah; Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  16. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    Energy Technology Data Exchange (ETDEWEB)

    Gaidos, Eric [Department of Geology and Geophysics, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Mann, Andrew W.; Howard, Andrew W., E-mail: gaidos@hawaii.edu [Institute for Astronomy, University of Hawai' i at Manoa, Honolulu, HI 96822 (United States)

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  17. Sun-Earth National Program. 2006-2009 results and prospects

    International Nuclear Information System (INIS)

    Fontaine, Dominique; Vilmer, Nicole

    2010-01-01

    PNST (Programme National Soleil-Terre/Sun-Earth National Program) is dedicated to analysis of the Sun-Earth system, from generation of the solar magnetic field, flares and coronal mass ejections, until impact on the terrestrial magnetosphere, ionosphere and thermosphere. Research activities carried out in the frame of Programme National Soleil-Terre (PNST) rely on both ground-based and space-borne instruments. One of the main objectives of PNST is to stimulate coordinated studies and to optimize scientific return of these instruments. This document is the 2006-2009 scientific report of the program. It presents in the introduction some highlights, the main questions, the thematic reviews and the forces and weaknesses of the program. Then, part 2 is a review of the main scientific questions: mechanisms at the origin of the eruptive activity in plasmas; mechanisms involved in particles heating and acceleration; energy transfers at different scales in the plasma and dynamics of turbulence in this anisotropic medium; coupling mechanisms between the different plasma envelopes; Sun-Earth relations and space meteorology; interfaces with other programs (planetary plasmas, magnetism and sun-type stars activity). Part 3 presents the results and prospects of the ground and space instrumentation, of databases and numerical tools. Finally, the administrative and financial status of the program is summarized (Program structure and operation, budget, manpower, publications)

  18. An astrometric search for a stellar companion to the sun

    International Nuclear Information System (INIS)

    Perlmutter, S.

    1986-01-01

    A companion star within 0.8 pc of the Sun has been postulated to explain a possible 26 Myr periodicity in mass extinctions of species on the Earth. Such a star would already be catalogued in the Yale Bright Star catalogue unless it is fainter than m/sub nu/ = 6.5; this limits the possible stellar types for an unseen companion to red dwarfs, brown dwarfs, or compact objects. Red dwarfs account for about 75% of these possible stars. We describe here the design and development of an astrometric search for a nearby red dwarf companion with a six-month peak-to-peak parallax of ≥2.5 arcseconds. We are measuring the parallax of 2770 candidate faint red stars selected from the Dearborn Observatory catalogue. An automated 30-inch telescope and CCD camera system collect digitized images of the candidate stars, along with a 13' x 16' surrounding field of background stars. Second-epoch images, taken a few months later, are registered to the first epoch images using the background stars as fiducials. An apparent motion, m/sub a/, of the candidate stars is found to a precision of σ/sub m//sub a/ ≅ 0.08 pixel ≅ 0.2 arcseconds for fields with N/sub fiducial/ ≥ 10 fiducial stars visible above the background noise. This precision is sufficient to detect the parallactic motion of a star at 0.8 pc with a two month interval between the observation epochs. Images with fewer fiducial stars above background noise are observed with a longer interval between epochs. If a star is found with high parallactic motion, we will confirm its distance with further parallax measurements, photometry, and spectral studies, and will measure radial velocity and proper motion to establish its orbit. We have demonstrated the search procedure with observations of 41 stars, and have shown that none of these is a nearby star. 37 refs., 16 figs., 3 tabs

  19. Brown dwarfs forming in discs: Where to look for them?

    Directory of Open Access Journals (Sweden)

    Stamatellos D.

    2011-07-01

    Full Text Available A large fraction of the observed brown dwarfs may form by gravitational fragmentation of unstable discs. This model reproduces the brown dwarf desert, and provides an explanation for the existence of planetary-mass objects and for the binary properties of low-mass objects. We have performed an ensemble of radiative hydrodynamic simulations and determined the statistical properties of the low-mass objects produced by gravitational fragmentation of discs. We suggest that there is a population of brown dwarfs loosely bound on wide orbits (100–5000 AU around Sun-like stars that surveys of brown dwarf companions should target. Our simulations also indicate that planetary-mass companions to Sun-like stars are unlikely to form by disc fragmentation.

  20. An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    NARCIS (Netherlands)

    Matthews, B.C.; Greaves, J.S.; Holland, W.S.; Wyatt, M.C.; Barlow, M.J.; Bastien, P.; Beichman, C.A.; Biggs, A.; Butner, H.M.; Dent, W.R.F.; Francesco, J. Di; Dominik, C.; Fissel, L.; Friberg, P.; Gibb, A.G.; Halpern, M.; Ivison, R.J.; Jayawardhana, R.; Jenness, T.; Johnstone, D.; Kavelaars, J.J.; Marshall, J.L.; Phillips, N.; Schieven, G.; Snellen, I.A.G.; Walker, H.J.; Ward-Thompson, D.; Weferling, B.; White, G.J.; Yates, J.; Zhu, M.; Craigon, A.

    2007-01-01

    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main-sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral

  1. A weight limit emerges for neutron stars

    Science.gov (United States)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  2. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  3. Environments of T Tauri stars

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    The environments of T Tauri stars are probably determined by the interaction of a stellar wind with matter which is falling toward a newly formed star. As shown by Ulrich, the steady infall of cool gas with angular momentum toward the star leads to a density distribution with rhoproportionalr/sup -1/2/ inside a radius r/sub d/ and rhoproportionalr/sup -3/2/ outside r/sub d/. The radius r/sub d/ is determined by the angular momentum of the infalling gas. The expansion of the wind into this medium depends on the parameter α = M/sub w/v/sub w//M/sub in/v/sub in/(r/sub d/), where v/sub in/(r/sub d/) is the free-fall velocity at r/sub d/, M/sub in/ is the mass accretion rate, v/sub w/ is the wind velocity, and M/sub w/ is the mass loss rate. For α 14 cm, v/sub w/ = 150 km s -1 , M/sub in/ = 10 -7 M/sub sun/ yr -1 , and M/sub w/ = 3 x 10 -8 M/sub sun/ yr -1 . The inflow is clumpy. The shocked wind gives the radio emission and nebular emission from T Tauri, and dust within the clumps gives the infrared emission. T Tauri is in a transitory phase in which most of the wind has only recently propagated beyond r/sub d/. The model naturally predicts variable obscuration of T Tauri stars because the infalling clumps move on nonradial trajectories. The infrared emission can vary either because of structural changes in the circumstellar gas or because of variations in the stellar luminosity. Infrared variability should be small at short time scales because of light-travel time effects

  4. Gufa, a unique cultural ritual--a tale of forbidden sun and a girl

    Science.gov (United States)

    Shrestha, Pritisha

    2015-08-01

    Gufa, one of the traditional rituals has been performed in Nepal since time immemorial by an especial indigenous Newar people. Gufa, in its literal translation means cave. Just like in the cave where darkness seeps deep within its wall as the sun’s ray cannot penetrate, in the ritual of Gufa, a young girl who just had her first period is hidden in a dark room for twelve consecutive days. The girl, by strict custom and ritual performance stays in the room, protected from the sun’s light. From her female elders, she also receives informal education on family and societal values and norms.Sun, the reason behind our existence, is forbidden for the girl to observe. This very aspect of purely shunning away from the sun has become the crucial aspect for delving into the explanations offered by cultural astronomy. The present paper would argue that astronomy and astronomy education should not only focus on looking into the future, but also should go back to the ancient civilization to comprehend ritual performance our forefathers had learned from gazing the sky.After twelve days, the girl is carefully brought out to an open space where she sees the forbidden sun and symbolically marries the star via ritual. The logic behind the union after a pure restriction is to protect her sensitive young body and to ward off any harm to her reproductive parts from the sun’s harsh rays.From astronomical point, this logic behind protecting the girl from the effects of then deemed harmful rays should be studied. In ancient times, who with which instruments could have possibly fathom the life-giving sun could harness harmful solar rays. Although it looks like a primitive custom of hiding the girl immediately during her first period, there are logical social, cultural and scientific reasons for doing it even today in modern, urban and among the educated Newar households of Nepal and abroad.The paper would expound the importance of traditional ritual performance and its nexus with

  5. Sun and Sun Worship in Different Cultures

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2014-10-01

    The Sun symbol is found in many cultures throughout history, it has played an important role in shaping our life on Earth since the dawn of time. Since the beginning of human existence, civilisations have established religious beliefs that involved the Sun's significance to some extent. As new civilisations and religions developed, many spiritual beliefs were based on those from the past so that there has been an evolution of the Sun's significance throughout cultural development. For comparing and finding the origin of the Sun we made a table of 66 languages and compared the roots of the words. For finding out from where these roots came from, we also made a table of 21 Sun Gods and Goddesses and proved the direct crossing of language and mythology.

  6. Optical region elemental abundance analyses of B and A stars

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1984-01-01

    Abundance analyses using optical region data and fully line blanketed model atmospheres have been performed for six moderately sharplined middle to late B-type stars. The derived abundances have values similar to those of the Sun. (author)

  7. A Spectroscopic Orbit for the Late-type Be Star β CMi

    Energy Technology Data Exchange (ETDEWEB)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L. [Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606-3390 (United States); Carciofi, Alex C. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP 05508-900 (Brazil); Klement, Robert [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago (Chile); Wang, Luqian, E-mail: noel.richardson@UToledo.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2017-02-10

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α line with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  8. Skin Tone Dissatisfaction, Sun Exposure, and Sun Protection in Australian Adolescents.

    Science.gov (United States)

    Hutchinson, Amanda D; Prichard, Ivanka; Ettridge, Kerry; Wilson, Carlene

    2015-08-01

    This study aimed to assess the adoption of sun protection and sun exposure behaviors, the extent to which these behaviors group together, and the relationship between skin tone dissatisfaction and sun-related behaviors in South Australian adolescents (aged 12-17). A total of 2,875 secondary school students (1,461 male and 1,414 female) completed a questionnaire including questions about sun protection and sun exposure behaviors and skin tone dissatisfaction. Regular adoption of sun protection behaviors was low and ranged from 20% (wearing protective clothing) to 44% (sunscreen use). A principal components analysis identified four subgroups of sun-related behaviors: sun protection, appearance enhancement, sun avoidance, and sun exposure. Females had significantly higher skin tone dissatisfaction than males. Skin tone dissatisfaction was associated with decreased sun protection and avoidance and increased appearance enhancement and sun exposure in both males and females. Skin tone dissatisfaction plays an important role in Australian adolescents' sun-related behavior. Appearance-based interventions may be effective in reducing skin cancer risk through reduced sun exposure.

  9. Nucleosynthesis and remnants in massive stars of solar metallicity

    International Nuclear Information System (INIS)

    Woosley, S.E.; Heger, A.

    2007-01-01

    Hans Bethe contributed in many ways to our understanding of the supernovae that happen in massive stars, but, to this day, a first principles model of how the explosion is energized is lacking. Nevertheless, a quantitative theory of nucleosynthesis is possible. We present a survey of the nucleosynthesis that occurs in 32 stars of solar metallicity in the mass range 12-120M sun . The most recent set of solar abundances, opacities, mass loss rates, and current estimates of nuclear reaction rates are employed. Restrictions on the mass cut and explosion energy of the supernovae based upon nucleosynthesis, measured neutron star masses, and light curves are discussed and applied. The nucleosynthetic results, when integrated over a Salpeter initial mass function (IMF), agree quite well with what is seen in the sun. We discuss in some detail the production of the long lived radioactivities, 26 Al and 60 Fe, and why recent model-based estimates of the ratio 60 Fe/ 26 Al are overly large compared with what satellites have observed. A major source of the discrepancy is the uncertain nuclear cross sections for the creation and destruction of these unstable isotopes

  10. The Sun on Trial

    Science.gov (United States)

    Robitaille, Pierre-Marie

    2014-03-01

    For 150 years, the Sun has been seen as a gaseous object devoid of a surface, as required by the Standard Solar Model (SSM). Yet, not one line of observational evidence supports a gaseous Sun. In contrast, overwhelming evidence exists that the Sun is comprised of condensed matter. Recently, 40 proofs have been compiled in conjunction with the Liquid Metallic Hydrogen Solar Model (LMHSM). This model advances that the Sun has a true surface. Photospheric structures, such as sunspots, granules, and faculae, are not optical illusions, as in the SSM, but real objects with a condensed nature. The LMHSM accounts for the thermal spectrum by invoking true inter-atomic structure on the photosphere in the form of the graphite-like layered hexagonal metallic hydrogen lattice first proposed by Wigner and Huntington. Within the convection zone, layered metallic hydrogen, insulated by intercalate atoms, enables the generation of the solar dynamo. Electrons located in conduction bands provide a proper means of generating magnetic fields. Metallic hydrogen ejected from the photosphere also thinly populates the corona, as reflected by the continuous K-coronal spectrum. This coronal matter harvests electrons, resulting in the production of highly ionized atoms. Electron affinity, not temperature, governs the ion profile. The chromosphere is a site of hydrogen and proton capture. Line emission in this region, strongly supports the idea that exothermic condensation reactions are occurring in the chromosphere. In the LMHSM, solar activity and solar winds are regulated by exfoliation reactions occurring in the Sun itself, as the metallic hydrogen lattice excludes non-hydrogen elements from the solar body.

  11. LP 543-25: A Rare Low-mass Runaway Disk Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    LP 543-25 or PSS 544-7 is a high proper-motion star located 458 pc from the Sun in the constellation of Canis Minor; it has been argued that it could be a candidate cannonball star ejected by a star cluster. Here, we revisit the issue of the kinematics of this interesting star using Gaia DR2. The heliocentric Galactic velocity components are (U, V, W) = (206, -289, 30) km/s; the corresponding Galactocentric Galactic velocity components show that LP 543-25 is moving in the Galactic plane and away from the Galactic Center at a rate of nearly 200 km/s, which is compatible with an origin in one of the multiple star clusters that inhabit the inner regions of the Milky Way. LP 543-25 appears to be a member of an elusive class of stars, the low-mass runaway stars. It is perhaps one of the closest and less massive runaway stars identified so far.

  12. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Griv, Evgeny [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Jiang, Ing-Guey [Department of Physics, National Tsing-Hua University, Kuang-Fu Road 101, Hsin-Chu 30013, Taiwan (China); Hou, Li-Gang, E-mail: griv@bgu.ac.il [National Astronomical Observatories, Chinese Academy of Sciences, Jia-20, Beijing 100012 (China)

    2017-08-01

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysis of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.

  13. The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach

    International Nuclear Information System (INIS)

    Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang

    2017-01-01

    As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysis of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.

  14. Parental use of sun protection for their children-does skin color matter?

    Science.gov (United States)

    Tan, Marcus G; Nag, Shudeshna; Weinstein, Miriam

    2018-03-01

    Excessive sun exposure during childhood is a risk factor for skin cancer. This study aimed to compare the frequency of ideal sun protection use between parents with lighter- and darker-skinned children and explore their attitudes and beliefs on sun safety and their choice of sun protection. Parents of children aged 6 months to 6 years completed self-administered questionnaires about sun protection practices for their children. Parents assessed their child's Fitzpatrick phototype and were divided into lighter- (Fitzpatrick phototype I-III) and darker-skinned (Fitzpatrick phototype IV-VI) groups. Sun safety guidelines from the Canadian Dermatology Association were used to qualify ideal sun protection. A total of 183 parents were included. Overall, 31 parents (17%) used ideal sun protection for their children. As their children grew older, parents were less likely to use ideal sun protection (odds ratio = 0.69, 95% confidence interval = 0.53-0.90). Parents in the lighter-skinned group were more likely to use ideal sun protection for their children (odds ratio = 7.4, 95% confidence interval = 2.7-20.1), believe that sun exposure was harmful (odds ratio = 17.2, 95% confidence interval = 4.0-74.9), and perceive value in sun protection (odds ratio = 11.4, 95% confidence interval = 3.3-39.0); the darker-skinned group believed that darker skin tones provided more sun protection (odds ratio = 12.4, 95% confidence interval = 6.1-25.4). Ideal parental sun protection efforts are overall low, particularly in parents of darker-skinned children. The identified attitudes toward and beliefs about sun safety may aid in delivery of future sun protection interventions, especially in multiracial populations. © 2018 Wiley Periodicals, Inc.

  15. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    Energy Technology Data Exchange (ETDEWEB)

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B., E-mail: osantrich@on.br, E-mail: claudio@on.br, E-mail: denise@on.br [Observatorio Nacional/MCT, Rua Gen. Jose Cristino, 77, 20921-400 Rio de Janeiro (Brazil)

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  16. Outdoor Workers' Use of Sun Protection at Work and Leisure

    Directory of Open Access Journals (Sweden)

    Cheryl E. Peters

    2016-09-01

    Conclusion: This high-participation rate cohort helps characterize sun protection behaviors among outdoor workers. Workers practiced better sun protection at work than on weekends, suggesting that workplace policies supportive of sun protection could be useful for skin cancer prevention in the construction industry.

  17. Sunwatchers Across Time: Sun-Earth Day from Ancient and Modern Solar Observatories

    Science.gov (United States)

    Hawkins, I.; Vondrak, R.

    Humans across all cultures have venerated, observed, and studied the Sun for thousands of years. The Sun, our nearest star, provides heat and energy, is the cause of the seasons, and causes space weather effects that influence our technology-dependent society. The Sun is also part of indigenous tradition and culture. The Inca believed that the Sun had the power to make things grow, and it does, providing us with the heat and energy that are essential to our survival. From a NASA perspective, Sun-Earth Connection research investigates the effects of our active Sun on the Earth and other planets, namely, the interaction of the solar wind and other dynamic space weather phenomena with the solar system. We present plans for Sun-Earth Day 2005, a yearly celebration of the Sun-Earth Connection sponsored by the NASA Sun-Earth Connection Education Forum (SECEF). SECEF is one of four national centers of space science education and public outreach funded by NASA Office of Space Science. Sun-Earth Day involves an international audience of schools, science museums, and the general public in activities and events related to learning about the Sun-Earth Connection. During the year 2005, the program will highlight cultural and historical perspectives, as well as NASA science, through educational and public outreach events intended to involve diverse communities. Sun-Earth Day 2005 will include a series of webcasts from solar observatories produced by SECEF in partnership with the San Francisco Exploratorium. Webcasts from Chaco Culture National Historical Park in New Mexico, USA, and from Chichen Itza, Mexico, will be accessed by schools and the public. Sun-Earth Day will also feature NASA Sun-Earth Connection research, missions, and the people who make it possible. One of the goals of this talk is to inform and engage COSPAR participants in these upcoming public events sponsored by NASA. Another goal is to share best practices in public event programming, and present impact

  18. Empirical Determination of Dark Matter Velocities Using Metal-Poor Stars.

    Science.gov (United States)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Madau, Piero; Necib, Lina

    2018-01-26

    The Milky Way dark matter halo is formed from the accretion of smaller subhalos. These sub-units also harbor stars-typically old and metal-poor-that are deposited in the Galactic inner regions by disruption events. In this Letter, we show that the dark matter and metal-poor stars in the Solar neighborhood share similar kinematics due to their common origin. Using the high-resolution eris simulation, which traces the evolution of both the dark matter and baryons in a realistic Milky Way analog galaxy, we demonstrate that metal-poor stars are indeed effective tracers for the local, virialized dark matter velocity distribution. The local dark matter velocities can therefore be inferred from observations of the stellar halo made by the Sloan Digital Sky Survey within 4 kpc of the Sun. This empirical distribution differs from the standard halo model in important ways and suggests that the bounds on the spin-independent scattering cross section may be weakened for dark matter masses below ∼10  GeV. Data from Gaia will allow us to further refine the expected distribution for the smooth dark matter component, and to test for the presence of local substructure.

  19. Strings in the Sun?

    International Nuclear Information System (INIS)

    Chudnovsky, E.; Vilenkin, A.

    1988-01-01

    If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy

  20. Spots and the Activity of Stars in the Hyades Cluster from Observations with the Kepler Space Telescope (K2)

    Science.gov (United States)

    Savanov, I. S.; Dmitrienko, E. S.

    2018-03-01

    Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by Δ S 0.05-0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars ( S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades ( S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun ( = 8.6 d ), but slower than similar Pleiades stars.

  1. UCLA, British astronomers discover wake of planet around nearby star. Strong evidence for solar system like ours

    CERN Multimedia

    2002-01-01

    "An international team of astronomers reports the first strong evidence for the existence of massive planets on wide orbits - like those of Saturn, Uranus and Neptune - around many stars. The new research provides some of the strongest evidence so far that solar systems similar to our own, or even larger, are likely to exist: (1 page).

  2. Seismic sensitivity of normal-mode coupling to Lorentz stresses in the Sun

    Science.gov (United States)

    Hanasoge, Shravan M.

    2017-09-01

    Understanding the governing mechanism of solar magnetism remains an outstanding challenge in astrophysics. Seismology is the most compelling technique to infer the internal properties of the Sun and stars. Waves in the Sun, nominally acoustic, are sensitive to the emergence and cyclical strengthening of magnetic field, evidenced by measured changes in resonant oscillation frequencies that are correlated with the solar cycle. The inference of internal Lorentz stresses from these measurements has the potential to significantly advance our appreciation of the dynamo. Indeed, seismological inverse theory for the Sun is well understood for perturbations in composition, thermal structure and flows but, is not fully developed for magnetism, owing to the complexity of the ideal magnetohydrodynamic (MHD) equation. Invoking first-Born perturbation theory to characterize departures from spherically symmetric hydrostatic models of the Sun and applying the notation of generalized spherical harmonics, we calculate sensitivity functions of seismic measurements to the general time-varying Lorentz stress tensor. We find that eigenstates of isotropic (I.e. acoustic only) background models are dominantly sensitive to isotropic deviations in the stress tensor and much more weakly than anisotropic stresses (and therefore challenging to infer). The apple cannot fall far from the tree.

  3. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    Science.gov (United States)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  4. DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Duy Cuong Nguyen; Jayawardhana, Ray; Van Kerkwijk, Marten H.; Damjanov, Ivana; Brandeker, Alexis; Scholz, Alexander

    2009-01-01

    We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F-K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M 0.5 for our sample which spans a mass range of ∼0.16-3 M sun . This power law complements previous studies in Orion which estimated j ∝ M 0.25 for ∼ sun . Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.

  5. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  6. European team gauges a gamma-ray star

    Science.gov (United States)

    1996-03-01

    Italian astrophysicists have pushed the Hubble Space Telescope to the limit of its powers in finding the distance of Geminga, a pointlike object 500 light-years from the Earth. It is the prototype of a novel kind of star, a radio-silent neutron star, which may be much more common in the Universe than previously supposed. Geminga is so weak in visible light that Hubble had to stare at the spot for more than an hour to register it adequately. The object is nevertheless one of the brightest sources of gamma-rays in the sky, and its output of this very energetic form of radiation can now be accurately ganged. Neutron stars, first discovered as radio pulsars in 1967, are fantastic creations of exploding stars, just one step short of a black hole. They are heavier than the Sun yet only about twenty kilometres wide. Made of compressed nuclear matter, they have gravity and magnetic fields many billions of times stronger than on the Earth. With the first direct measurement of the distance of a radio-silent neutron star, astrophysicists can assess Geminga's power and speed of motion. The astronomical task was like judging the width of a one- franc piece in Paris, seen from the distance of Sicily. Geminga's low brightness greatly aggravated the difficulties. Patrizia Caraveo and her colleagues at the Istituto di Fisica Cosmica in Milan arranged for Hubble's wide-field camera (WFPC2) to make its prolonged observations of Geminga three times. Their findings will be published in Astrophysical Journal Letters on 20 April 1996. Caraveo's co-authors are Giovanni Bignami and Roberto Mignani of Milan, and Laurence Taff of Johns Hopkins University, Maryland. The Italians took advantage of the European Space Agency's collaboration with NASA in the Hubble mission, which gives European astronomers privileged access to the Space Telescope. Shifts of millionths of a degree The three sightings of Geminga, made at intervals of six months, revealed small shifts in the position of the faint

  7. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  8. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  9. Star-like superalkali cations featuring planar pentacoordinate carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Tian, Wen-Juan; Zhao, Xue-Feng; Wu, Yan-Bo, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn; Li, Si-Dian, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Wang, Ying-Jin [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhai, Hua-Jin, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe{sub 5} can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) cations containing a CBe{sub 5} moiety. Polyhalogenation and polyalkalination on the CBe{sub 5} unit may help eliminate the high reactivity of bare CBe{sub 5} molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe{sub 5}X{sub 5}{sup +} range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12–2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76–11.07 eV for X = F, Cl, Br and 4.99–6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be–X–Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe{sub 5} motif is robust in the

  10. SunPy: Python for Solar Physics

    Science.gov (United States)

    Bobra, M.; Inglis, A. R.; Mumford, S.; Christe, S.; Freij, N.; Hewett, R.; Ireland, J.; Martinez Oliveros, J. C.; Reardon, K.; Savage, S. L.; Shih, A. Y.; Pérez-Suárez, D.

    2017-12-01

    SunPy is a community-developed open-source software library for solar physics. It is written in Python, a free, cross-platform, general-purpose, high-level programming language which is being increasingly adopted throughout the scientific community. SunPy aims to provide the software for obtaining and analyzing solar and heliospheric data. This poster introduces a new major release, SunPy version 0.8. The first major new feature introduced is Fido, the new primary interface to download data. It provides a consistent and powerful search interface to all major data providers including the VSO and the JSOC, as well as individual data sources such as GOES XRS time series. It is also easy to add new data sources as they become available, i.e. DKIST. The second major new feature is the SunPy coordinate framework. This provides a powerful way of representing coordinates, allowing simple and intuitive conversion between coordinate systems and viewpoints of different instruments (i.e., Solar Orbiter and the Parker Solar Probe), including transformation to astrophysical frames like ICRS. Other new features including new timeseries capabilities with better support for concatenation and metadata, updated documentation and example gallery. SunPy is distributed through pip and conda and all of its code is publicly available (sunpy.org).

  11. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  12. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Kornbleuth, M.

    2016-01-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg's strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.

  13. Sun Allergy

    Science.gov (United States)

    Sun allergy Overview Sun allergy is a term often used to describe a number of conditions in which an itchy red rash occurs on skin that has been exposed to sunlight. The most common form of sun allergy is ...

  14. X-Ray Snapshots Capture the First Cries of Baby Stars

    Science.gov (United States)

    2000-11-01

    CXC PR: 00-27 Stars, like babies, make quite a fuss in their first days after birth. Astronomers using the Chandra X-ray Observatory have discovered that protostars--stars in their youngest, "neonatal" stage--are marked by powerful X rays from plasma ten times hotter and 100 to 100,000 times brighter than the flares on our Sun. This is all long before their nuclear furnaces of hydrogen even ignite, the mark of stellar maturity. The X-ray flares have also provided the closest look yet at the youngest stars in the universe, never before detected because they are hidden within dust and molecular clouds that filter all other types of light. Yohko Tsuboi of the Pennsylvania State University (Penn State) presents these findings today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "We peered at newborn stars deeply embedded in their cradle and found that their crying is much more tumultuous than we expected," said Tsuboi. "With Chandra, we now have a new tool to examine protostars, which have been impossible to gain access to in any other wavelength." Protostars located in the rho-Ophiuchi molecular cloud Protostars located in the rho-Ophiuchi molecular cloud 1 square light years field X-ray image around rho Ophiuchi molecular cloud core. Red colorrepresents less absorbed X rays, while blue represents absorbed X rays. Lightcurves for each sources are also shown. Tsuboi and her collaborators looked at the two youngest types of protostars: Class-0 (zero) protostars, about 10,000 years old; and Class-I protostars, about 100,000 years old. In human terms, these protostars are like one-hour-old and 10-hour-old babies, respectively. The transition from one class to another is marked by changes in the protostar's infrared spectrum as the gas and dust envelope diminishes. The envelope has been well studied by infrared and radio astronomers. Protostars themselves and their most extreme

  15. White dwarf stars with carbon atmospheres.

    Science.gov (United States)

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  16. Unlocking the secrets of white dwarf stars

    CERN Document Server

    Van Horn, Hugh M

    2015-01-01

    White dwarfs, each containing about as much mass as our Sun but packed into a volume about the size of Earth, are the endpoints of evolution for most stars. Thousands of these faint objects have now been discovered, though only a century ago only three were known. They are among the most common stars in the Milky Way Galaxy, and they have become important tools in understanding the universe. Yet a century ago only three white dwarfs were known.   The existence of these stars completely baffled the scientists of the day, and solving the mysteries of these strange objects required revolutionary advances in science and technology, including the development of quantum physics, the construction and utilization of large telescopes, the invention of the digital computer, and the ability to make astronomical observations from space.   This book tells the story of the growth in our understanding of white dwarf stars, set within the context of the relevant scientific and technological advances. Part popular science, ...

  17. Einstein X-ray observations of Herbig Ae/Be stars

    Science.gov (United States)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  18. Sun-Earth National Program (PNST). 2010-2013 results and prospects

    International Nuclear Information System (INIS)

    2014-01-01

    PNST (Programme National Soleil-Terre/Sun-Earth National Program) is dedicated to analysis of the Sun-Earth system, from generation of the solar magnetic field, flares and coronal mass ejections, until impact on the terrestrial magnetosphere, ionosphere and thermosphere. Research activities carried out in the frame of Programme National Soleil-Terre (PNST) rely on both ground-based and space-borne instruments. One of the main objectives of PNST is to stimulate coordinated studies and to optimize scientific return of these instruments. This document is the 2010-2013 scientific report of the program. It presents in the introduction the main questions and the 2010-2013 highlights. The 2010-2013 results and prospects are detailed in part 2: coupling mechanisms between the different plasma envelopes; multi-scale energy transport and turbulence; plasma acceleration and heating mechanisms; eruptive or impulsive activity in plasmas; space meteorology; perspectives. Part 3 deals with the interfaces with other programs (planetary plasmas, magnetism and sun-type stars activity). Part 4 presents the means, services and tools (ground and space instrumentation, databases and numerical tools). Finally, the administrative and financial status of the program is summarized (Program structure and operation, budget, manpower, publications)

  19. HAT-P-68b: A Transiting Hot Jupiter Around a K5 Dwarf Star

    Science.gov (United States)

    Lindor, Bethlee; Hartman, Joel D.

    2018-01-01

    One of the main goals of the astrophysical society has been to detect sources of life outside of Earth. To aid this search, astronomers have spent the last 2 decades focused on the discovery and characterization of exoplanets. The most effective method for doing so has been transit photometry, wherein we measure the brightness of stars over periods of time. These measurements, or light curves, are later analyzed for dips in brightness caused by objects passing in front of the star. However, variations in these time series can also occur due to non-planetary systems and a meticulous process is needed to distinguish the planets from the various false positives that are detected. HATNet is one of many surveys involved in this endeavor, and in this work I analyze HAT-P-68. First, I model the system as a single star with a transiting planet and derive estimates of the stellar and planetary physical parameters. I also model HAT-P-68 as a number of a false positives such as a pair of stars in an eclipsing binary blended with a background star, and a planet-sized star orbiting a Sun-like star. In order to rule out the possibility that HAT-P-68 is a blend, I carried out a statistical blend analysis of the photometric data and find that all blend models tested can be ruled out. Thus, I conclude that HAT-P-68 is a system with a transiting hot jupiter and consider what future observations would be most promising to further characterize the system.

  20. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    Energy Technology Data Exchange (ETDEWEB)

    Aleo, Patrick D.; Sobotka, Alexander C. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1402, Austin, TX 78712-1205 (United States); Ramírez, Ivan [Tacoma Community College, 6501 South 19th Street, Tacoma, WA 98466-7400 (United States)

    2017-09-01

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe i, ii) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe ii–Fe i increases for stars of the same cluster with decreasing T {sub eff}, reaching an astonishing 1.0 dex at T {sub eff} ∼ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary star is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T {sub eff} ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T {sub eff} ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe ii lines, namely λ = (4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å). When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ∼0.6 dex in the field binaries and ∼0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca ii H+K emission and Li absorption, but these results appear to be small to negligible.