WorldWideScience

Sample records for sulphate reducing bacteria

  1. Bacterial Reduction Of Barium Sulphate By Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2015-12-01

    Full Text Available Acid mine drainage (AMD is a worldwide problem leading to contamination of water sources. AMD are characterized by low pH and high content of heavy metals and sulphates. The barium salts application presents one of the methods for the sulphates removing from AMD. Barium chloride, barium hydroxide and barium sulphide are used for the sulphates precipitation in the form of barium sulphate. Because of high investment costs of barium salts, barium sulphide is recycled from barium sulphate precipitates. It can be recycled by thermic or bacterial reduction of barium sulphate. The aim of our study was to verify experimentally the possibility of the bacterial transformation of BaSO4 to BaS by sulphate-reducing bacteria. Applied BaSO4 came from experiments of sulphates removal from Smolnik AMD using BaCl2.

  2. Electroactive biofilms of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina; Moura, Jose J.G.

    2008-01-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m -2 that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces

  3. Electroactive biofilms of sulphate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cordas, Cristina M.; Guerra, L. Tiago; Xavier, Catarina [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Moura, Jose J.G. [Requimte-CQFB, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)], E-mail: jose.moura@dq.fct.unl.pt

    2008-12-01

    Biofilms formed from a pure strain of Desulfovibrio desulfuricans 27774 on stainless steel and graphite polarised surfaces were studied. The polarisation conditions applied were -0.4 V vs. SCE for different times. A cathodic current related with the biofilms growth was observed with a maximum intensity of -270 mA m{sup -2} that remained stable for several days using graphite electrodes. These sulphate reducing bacteria biofilms present electrocatalytic activity towards hydrogen and oxygen reduction reactions. Electrode polarisation has a selective effect on the catalytic activity. The biofilms were also observed by scanning electronic microscopy revealing the formation of homogeneous films on the surfaces.

  4. Removal of sulphates from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Luptáková Alena

    2002-03-01

    Full Text Available are present in almost all types of water, usually as a simple anion SO42-. The sulphates together with hydrogencarbonates and chlorides are principal anions in natural waters. In typical underground and surface waters, the concentration of sulphates is in the range from ten to hundreds milligrams per litre.Nowadays, the importance of the control of sulphate concentration in waste waters increases. According to the Slovak legislation the limit concentration of sulphates in surface and drinking waters is 250 mg.l-1 . In rivers the contents of sulphates increases mainly by the discharge of waste waters, which are coming mainly from chemical, textile, metallurgical, pharmaceutical, paper and mining industry. The concentration of sulphates in these waters is in the order of grams per litre.Many technologies for the sulphates removal from waste waters exist, including biologico-chemical processes. The principle of one of these methods is the reduction of sulphates by sulphate-reducing bacteria to hydrogen-sulphide.The objective of this work was to study the effect of initial sulphates concentration on the activity of anaerobic sulphate reducers as well as the kinetics of the anaerobic sulphate reduction. The batch reactor was used at temperature of 30°C and pH 7,5. Lactate was used as the carbon source.

  5. Effect of radiation on activity of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Agaev, N.M.; Smorodin, A.E.; Gusejnov, M.M.

    1985-01-01

    The effect of γ-radiation on activity of sulphate reducing bacteria has been studied. Concentration of biogenic hydrogen, generated in the medium, is the main criterion, characterizing corrosion activity of the bacteria studied. The developed method of suppression of active development of sulfate reducing bacteria considerably reduces, and at lethal doses of γ-radiation eliminates altogether the bacteria activity and formation of the main corrosion agent-hydrogen sulphide-in the medium and that, in its turn, liquidates hydrogen sulphide corrosion

  6. The Reclamation of Industrial Wastes Inclusive Sulphates by Sulphate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Mária Kušnierová

    2004-12-01

    Full Text Available The objective of our study was to verify experimentally the possibility of using coal mine drainage and gypsum from the „stabilizate“ (the final product from the combustion desulphurisation as the source of sulphate for the cultivation of SRB with the prospect of: purging of mine waste waters inclusive sulphates, recycling of desulphurisation agent (limestone and production of elemental sulphur from hydrogen sulphide. The results confirmed the theoretical assumptions on the use of gypsum, which forms the substantial component of „stabilizate“, as the source of sulphate for sulphate-reducing bacteria, which produce hydrogen sulphide in the process of bacterial reduction of sulphates. They also showed the possibility of recycling the desulphurisation agent – limestone, as well as the realistic alternative of using „stabilizate“ in the production of elemental sulphur which still represents an important raw material needed in chemical, paper or other industries.

  7. Monitoring structural transformation of hydroxy-sulphate green rust in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Abdelmoula, M.; Zegeye, A.; Jorand, F.; Carteret, C.

    2006-01-01

    The activities of bacterial consortia enable organisms to maximize their metabolic capabilities. This article assesses the synergetic relationship between iron reducing bacteria (IRB), Shewanella putrefaciens and sulphate reducing bacteria (SRB) Desulfovibrio alaskensis. Thus, the aim of this study was first to form a biogenic hydroxy-sulpahte green rust GR2(SO 4 -2 ) through the bioreduction of lepidocrocite by S. putrefaciens and secondly to investigate if sulfate anions intercalated in the biogenic GR2(SO 4 -2 ) could serve as final electron acceptor for a sulfate reducing bacterium, D. alaskensis. The results indicate that the IRB lead to the formation of GR2(SO 4 -2 ) and this mineral serve as an electron acceptor for SRB. GR2(SO 4 -2 ) precipitation and its transformation was demonstrated by using X-ray diffraction (DRX), Moessbauer spectroscopy (TMS) and transmission electron spectroscopy (TEM). These observations point out the possible acceleration of steel corrosion in marine environment in presence of IRB/SRB consortia.

  8. Removal heavy metals and sulphate from waste waters by sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kušnierová Mária

    2000-09-01

    Full Text Available This article is devoted to the process of bacterial sulphate reduction, which is used to removal of heavy metals and sulphate ions from waste waters.The life of animals and plants depends on the existence of microscopic organisms – microorganisms (MO, which play an important role in cycle changes of biogenic elements on the earth. The sulphur cycle in the nature is considered as one of the oldest and most significant biological systems (Fig. 1. The sulphate-reducing bacteria (SRB miss the assimilatory part of the cycle and produce sulphides. The microbial population of this dissimilatory part is called “sulfuretum”. The SRB can be found in anaerobic mud and sediments of freshwater, thermal or non-thermal sulphur springs, mining waters from sulphide deposits, oil deposits, sea and ocean beds, and in the gastrointestinal tract of man and animals. The SRB represent a group of chemoorganotrophic, strictly anaerobic and gramnegative bacteria, which exhibit a great morphological and physiological diversity. Despite of their considerable morphological variety, they have one property in common, which is the ability to utilise preferentially sulphates (occasionally sulphites, thiosulphates, tetrathionates as electron acceptors, which are reduced to sulphides, during anaerobic respiration. The electron donors in these processes are simple organic compounds as lactate, malate, etc.,(heterotrophically reduction or gaseous hydrogen (autotrophically reduction. SRB can produce a considerable amount of hydrogen sulphide, which reacts easily in aqueous solution with the cations of heavy metals, forming metal sulphides that have low solubility. The bacterial sulphate reduction can be used for the treatment of acid mine drainage waters, which is considered to be the major problem associated with mining activities.In order to remove heavy metals from waste waters, e.g., from galvanizing plants, mine waters (Smolnik, Šobov locality and metallurgic plants (works

  9. Sulphate-reducing bacteria associated with biocorrosion: a review

    Directory of Open Access Journals (Sweden)

    Tania C. de Araujo-Jorge

    1992-09-01

    Full Text Available Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag- that measured changes in free potentials induced by the presence of exogeneously

  10. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    esiri

    2013-11-13

    Nov 13, 2013 ... Key words: Sulphate-reducing bacteria, corrosion, water pipeline, biocide. INTRODUCTION ... small amount of organic material required to produce biomass):. )1(. 3. 2 .... Oil, gas and shipping industries are seriously affected.

  11. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    Directory of Open Access Journals (Sweden)

    Lúcio de Souza Gonçalves

    2014-01-01

    Full Text Available Aim: To detect for the presence of sulphate-reducing bacteria (SRB and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods: The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient. Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR and sequencing of the 16S rRNA gene. Results: SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii and patient 7 (Pseudomonas aeruginosa. Conclusions: The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample.

  12. Effect of water hyacinth on distribution of sulphate-reducing bacteria ...

    African Journals Online (AJOL)

    The effect of the water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub, on the distribution of populations of sulphate-reducing bacteria (SRB) in sediments from various stations on the shores of Lake Victoria around Mwanza Municipality, Tanzania, was studied. Lactate-utilising SRB were observed to be the dominant ...

  13. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  14. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Pagnanelli, F., E-mail: francesca.pagnanelli@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cruz Viggi, C., E-mail: carolina.cruzviggi@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Cibati, A., E-mail: alessio.cibati@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Uccelletti, D., E-mail: daniela.uccelletti@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy); Toro, L., E-mail: luigi.toro@uniroma1.it [Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome (Italy); Palleschi, C., E-mail: claudio.palleschi@uniroma1.it [Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome (Italy)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). Black-Right-Pointing-Pointer Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). Black-Right-Pointing-Pointer Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L{sup -1}), ethanol (1.5 g L{sup -1}) and Cr(VI) (50 mg L{sup -1}). At steady state the column inoculated with SRB removed 65 {+-} 5% of sulphate and 95 {+-} 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  15. Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol

    International Nuclear Information System (INIS)

    Pagnanelli, F.; Cruz Viggi, C.; Cibati, A.; Uccelletti, D.; Toro, L.; Palleschi, C.

    2012-01-01

    Highlights: ► Use of ethanol as electron donor for sulphate-reducing bacteria for the treatment of Cr(VI). ► Isolation of contribution in Cr removal (adsorption vs. bioprecipitation). ► Bioassessment of the process effectiveness by ecotoxicological in vivo tests using C. elegans. - Abstract: Biological treatment of Cr(VI) contaminated waters was performed in fixed bed reactors inoculated with SRB (sulphate-reducing bacteria) growing on ethanol. Treatment efficiency was evaluated by checking chemical abatement of Cr(VI) and by ecotoxicological tests using the nematode Caenorhabditis elegans. A preliminary comparison between ethanol and lactate was performed, denoting that using ethanol, the same values of final sulphate abatement were obtained. In addition ethanol showed to be a substrate more competitive than lactate in kinetic terms. Fixed bed column reactors were continuously fed with a solution containing sulphates (3 g L −1 ), ethanol (1.5 g L −1 ) and Cr(VI) (50 mg L −1 ). At steady state the column inoculated with SRB removed 65 ± 5% of sulphate and 95 ± 5% of chromium. Bioactive removal mechanisms predominated over biosorption. Diminution of Cr(VI) toxicity was assessed by using the nematode C. elegans as a test organism showing that the survival of nematodes was 20% in the presence of the untreated influent and raised up to 53% when the nematodes were exposed to the treated effluent.

  16. The bioactivation procedure for increasing the sulphate-reducing bacteria in a UASB reactor

    Directory of Open Access Journals (Sweden)

    M. M. M. Gonçalves

    2005-12-01

    Full Text Available Bioactivation, a procedure to obtain anaerobic sulphidogenic sludge, was developed in order to increase sulphate reduction and, consequently, sulphide production to remove metals from effluents. This procedure, in which the source of carbon/energy (lactate is gradually replaced, consisted of three operational conditions. It was observed that bioactivation took six months so there was a 100-fold increase in the population of sulphate-reducing bacteria estimated by the most-probable-number (MPN when molasses was employed as a new source.

  17. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment

    DEFF Research Database (Denmark)

    Sahm, K.; MacGregor, BJ; Jørgensen, BB

    1999-01-01

    In the past, enumeration of sulphate-reducing bacteria (SRB) by cultivation-based methods generally contradicted measurements of sulphate reduction, suggesting unrealistically high respiration rates per cell. Here, we report evidence that quantification of SRB rRNA by slot-blot hybridization......, directly above the sulphate reduction maximum. Cell numbers calculated by converting the relative contribution of SRB rRNA to the percentage of DAPI-stained cells indicated a population size for SRB of 2.4-6.1 x 10(8) cells cm(-3) wet sediment. Cellular sulphate reduction rates calculated on the basis...

  18. The Application of Sulphate-Reducing Bacteria for the Heavy Metals Elimination from Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Alena Luptáková

    2004-12-01

    Full Text Available One of the most important problems affecting mining companies around the world is the treatment of acid mine drainage (AMD. AMD is characterised by its high acidity, high concentration of metals (Cu, Zn, Cd,… and high concentration of dissolved sulphates. The techniques traditionally used for the treatment of AMD have been based on chemical methods of neutralization and precipitation. A possible alternative to the chemical treatment of AMD is bioremediation using anaerobic sulphate-reducing bacteria (SRB. The treatment of AMD by SRB is based on the ability of SRB to reduce sulphates to hydrogen sulphide, which binds readily with metals to form sparingly soluble precipitates. In this study we have attempted to investigate the feasibility of anaerobic biotreatment of the copper contaminated model solution and a real effluent AMD from the shaft Pech (the locality Smolnik using SRB. This method involves three stages: The H2S production by sulphate-reducing bacteria, the metals precipitation by the biologically produced H2S and the metal sulphides filtration. The studies confirm that copper was effectively recovered from the solution using bacterial produced H2S. An initial copper concentration 10 mg.l-1 was decreased to less than 0.05 mg.l-1 after 3 hours. The most adequate pH value for cooper precipitation was 2.5. Results of the copper precipitation from the areal effluent indicates that the optimal pH value for the copper precipitation is 3.5, but the created precipitates contain a mixture of copper and iron sulphides.

  19. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment

    DEFF Research Database (Denmark)

    Sahm, K.; MacGregor, BJ; Jørgensen, BB

    1999-01-01

    In the past, enumeration of sulphate-reducing bacteria (SRB) by cultivation-based methods generally contradicted measurements of sulphate reduction, suggesting unrealistically high respiration rates per cell. Here, we report evidence that quantification of SRB rRNA by slot-blot hybridization...... between 18% and 25% to the prokaryotic rRNA pool. The dominant SRB were related to complete oxidizing genera (Desulphococcus, Desulphosarcina and Desulphobacterium), while Desulpho-bacter could not be detected. The vertical profile and quantity of rRNA from SRB was compared with sulphate reduction rates......, directly above the sulphate reduction maximum. Cell numbers calculated by converting the relative contribution of SRB rRNA to the percentage of DAPI-stained cells indicated a population size for SRB of 2.4-6.1 x 10(8) cells cm(-3) wet sediment. Cellular sulphate reduction rates calculated on the basis...

  20. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  1. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields...... at in site conditions....

  2. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  3. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  4. Electrochemical impedance spectroscopy and Surface Studies of Steel Corrosion by Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Zaharah Ibrahim; Madzlan Aziz; Adibah Yahya

    2009-01-01

    Sulphate-reducing bacteria (SRB), implicated in microbiologically influenced corrosion were isolated from the deep subsurface at the vicinity of Pasir Gudang, Johor, Malaysia. Electrochemical impedance spectroscopic (EIS) study was carried out to determine the polarization resistance in various types of culturing solutions, with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated (control). EIS results showed that in the presence of SRB1, SRB2 and mixed culture SRB1 and SRB2, polarisation resistance values were 7170, 6370 and 7190 ohms respectively compared to that of control, 92400 ohm. X-ray analysis (EDS) of the specimens indicated high sulphur content in the medium containing SRBs. Localized corrosion was observed on the metal surface which was associated with the SRB activity. (author)

  5. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    Science.gov (United States)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  6. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    Science.gov (United States)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  7. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    International Nuclear Information System (INIS)

    Pusch, R.

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m 3 . Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter

  8. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite - microstructural aspects

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    1999-12-01

    Sulphate-reducing bacteria will not be able to enter MX-80 buffer clay with the intended bulk density, i.e. 1900-2100 kg/m{sup 3}. Nor will they be able to survive and migrate in such environment. The only circumstances under which sulphate-reducing bacteria can enter, survive and migrate in engineered soil barriers in a KBS-3-type repository are those prevailing in backfills with lower MX-80 contents than about 10 % or in more smectite-rich, poorly compacted backfills saturated with electrolyte-rich pore water with Ca as dominating cation. In the phase of hydration and expansion of canister-embedding buffer, bacteria can enter the initially very soft clay gel at the rock/buffer contact to a depth of about a centimeter.

  9. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site

    International Nuclear Information System (INIS)

    Martins, Monica; Faleiro, Maria Leonor; Chaves, Sandra; Tenreiro, Rogerio; Costa, Maria Clara

    2010-01-01

    This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeirica. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes under uranium stress conditions. TGGE profiles of dsrB gene fragment demonstrated that the initial cultures were composed of SRB species affiliated with Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfomicrobium spp. (sample U), and by species related to D. desulfuricans (sample W). A drastic change in SRB communities was observed as a result of uranium (VI) exposure. Surprisingly, SRB were not detected in the uranium removal communities. Such findings emphasize the need of monitoring the dominant populations during bio-removal studies. TGGE and phylogenetic analysis of the 16S rRNA gene fragment revealed that the uranium removal consortia are composed by strains affiliated to Clostridium genus, Caulobacteraceae and Rhodocyclaceae families. Therefore, these communities can be attractive candidates for environmental biotechnological applications associated to uranium removal.

  10. Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline.

    Science.gov (United States)

    Robertson, W J; Franzmann, P D; Mee, B J

    2000-02-01

    Previous studies on the geochemistry of a shallow unconfined aquifer contaminated with hydrocarbons suggested that the degradation of some hydrocarbons was linked to bacterial sulphate reduction. There was attenuation of naphthalene, 1,3,5-trimethylbenzene (TMB), toluene, p-xylene and ethylbenzene in the groundwater with concomitant loss of sulphate. Here, the recovery of eight strains of sulphate-reducing bacteria (SRB) from the contaminated site is reported. All were straight or curved rod-shaped cells which formed endospores. Amplification and sequencing of the 16S rDNA indicated that the strains were all sulphate reducers of the Gram-positive line of descent, and were most closely related to Desulfosporosinus (previously Desulfotomaculum) orientis DSM 8344 (97-98.9% sequence similarity). The strains clustered in three phylogenetic groups based on 16S rRNA sequences. Whole cell fatty acid compositions were similar to those of D. orientis DSM 8344, and were consistent with previous studies of fatty acids in soil and groundwater from the site. Microcosms containing groundwater from this aquifer indicated a role for sulphate reduction in the degradation of [ring-UL-14C]toluene, but not for the degradation of [UL-14C]benzene which could also be degraded by the microcosms. Adding one of the strains that was isolated from the groundwater (strain T2) to sulphate-enriched microcosms increased the rate of toluene degradation four- to 10-fold but had no effect on the rate of benzene degradation. The addition of molybdate, an inhibitor of sulphate reduction, to the groundwater samples decreased the rate of toluene mineralization. There was no evidence to support the mineralization of [UL-14C]benzene, [ring-UL-14C]toluene or unlabelled m-xylene, p-xylene, ethylbenzene, TMB or naphthalene by any of the strains in pure culture. Growth of all the strains was completely inhibited by 100 micromol l-1 TMB.

  11. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB

    1999-01-01

    and T(opt). For strains LSv21 and LSv514, however, growth yields were highest at the lowest temperatures, around 0 degrees C. The results indicate that psychrophilic sulphate-reducing bacteria are specially adapted to permanently low temperatures by high relative growth rates and high growth yields......Five psychrophilic sulphate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and LSv514) isolated from Arctic sediments were examined for their adaptation to permanently low temperatures, All strains grew at -1.8 degrees C, the freezing point of sea water, but their optimum temperature...... for growth (T(opt)) were 7 degrees C (PSv29), 10 degrees C (ASv26, LSv54) and 18 degrees C (LSv21, LSv514), Although T(opt) was considerably above the in situ temperatures of their habitats (-1.7 degrees C and 2.6 degrees C), relative growth rates were still high at 0 degrees C, accounting for 25...

  12. Feasibility of lead removal from industrial effluents by sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Nunez, L. A.; Diez, M.; Rodriguez, F. J.

    2009-01-01

    Battery manufacturing wastewater contains high concentration of sulphate and lead at low pH values. Biogical treatment by anaerobic reduction of sulphate to sulphite, with organic matter as electron donor, increases alkalinity and allow precipitating lead as sulphide. the type of organic matter, COD/SO 4 ratio and lead concentration over sulphate reduction rate are investigated in this work. (Author)

  13. The effects of sulphate reducing bacteria on the corrosion of mild steel embedded in a bentonite-granitic groundwater paste

    International Nuclear Information System (INIS)

    Philp, J.C.; Taylor, K.J.

    1987-08-01

    Preliminary experiments were set up to investigate how the corrosion of forged 0.2% carbon steel is affected by the presence of sulphate reducing bacteria (SRB). The tests used cultures of a thermophilic bacterium Desulphotomaculum nigrificans mixed with bentonite and synthetic groundwater, to simulate a bacteria contaminated backfill, and placed in contact with carbon steel disc specimens held in perspex cells at 50 0 C under anaerobic conditions. The rate of corrosion with exposure was monitored by electrochemical techniques, together with changes in near field redox potential, during the course of the tests. After 340 days exposure the test cells were dismantled to measure the nature and extent of any corrosion that had occurred and to assess the residual SRB content of the bentonite. Recovery of relatively large numbers of bacteria after almost a year's incubation at 50 0 C in this moderately alkaline (pH 9.5) medium has confirmed the pH tolerance of the strain. There was evidence of the initiation of enhanced corrosion occurring in at least two of the five cells that contained SRB, at about three times the rate of the control. This was probably associated with the presence of SRB despite the nutritionally poor environment which existed in the bentonite gel. (author)

  14. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. E.; Patino-Carachure, C.; Alfonso, I.; Rodriguez, J. A.; Rosas, G.

    2012-11-01

    The corrosion behavior originated by sulfate-reducing bacteria (SRB) was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM) and heat affected zone (HAZ), from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 degree centigrade for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM) and optical microscopy (OM). H{sub 2}S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H{sub 2}S (pH minimum). It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity. (Author) 15 refs.

  15. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  16. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    International Nuclear Information System (INIS)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do

    2016-01-01

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E_o_c_p), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  17. Study of sulphate-reducing bacteria corrosion in the weld joint for API X-70 steel

    Directory of Open Access Journals (Sweden)

    Flores, J. E.

    2012-10-01

    Full Text Available The corrosion behavior originated by sulfate-reducing bacteria (SRB was studied in two regions of welded API X-70 steel pipeline. The studies were focused on base material (BM and heat affected zone (HAZ, from the internal region of the pipe. SRB were extracted from oil and grown in a Postgate medium. Corrosion was evaluated at 60 °C for times between 5 and 64 days. Potentiodynamic polarization curves, obtained by electrochemical techniques, indicated surface activation at short times. Structural and morphological characterizations were carried out by scanning electron microscopy (SEM and optical microscopy (OM. H2S concentration and pH were also measured. Results showed an important increase in the corrosion damage up to 20 days, influenced by the SRB activity, which lead to a maximum of H2S (pH minimum. It was found a localized corrosion attack in the HAZ in a higher quantity compared to BM; and the formation of a thin film on the steel surface, originated by corrosion products and bacterial activity.

    El comportamiento ante la corrosión, originada por bacterias sulfato-reductoras (SRB, fue estudiado en dos regiones de un tubo de acero soldado API X-70. Los estudios se enfocaron en el material base (BM y la zona afectada térmicamente (HAZ, en la parte interna del tubo. Las SRB fueron extraídas del petróleo y cultivadas en un medio Postgate. El comportamiento a la corrosión fue evaluado a una temperatura de 60 °C, por periodos comprendidos entre 5 y 64 días. El análisis de las curvas de polarización potenciodinámicas, obtenidas por técnicas electroquímicas, indicó la activación de la superficie para tiempos cortos. La superficie fue caracterizada estructural y morfológicamente mediante microscopia electrónica de barrido (SEM, así como mediante microscopía óptica (OM. La concentración de H2S y el pH también fueron medidos. Los resultados mostraron un aumento importante de la corrosi

  18. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions

    International Nuclear Information System (INIS)

    Wan Yi; Zhang Dun; Liu Huaiqun; Li Yongjuan; Hou Baorong

    2010-01-01

    The growth cycle of sulphate-reducing bacteria (SRB), Desulfovibrio caledoniensis, and the effect of SRB on the environmental parameters and corrosion behavior of Q235 steel during a growth cycle in aerobic (air- and O 2 -saturated culture solutions) and anaerobic (N 2 - saturated culture solutions) conditions were investigated. Oxygen dissolved in the culture solutions induced slow growth and fast decay of SRB. The growth process of SRB under anaerobic and aerobic conditions influenced sulphide anion concentration (C s 2- ), pH, and conductivity (κ). The values of C s 2- and κ under aerobic conditions were lower than those under anaerobic conditions, and the pH values increased from O 2 - to air- to N 2 -saturated culture solutions. Aerobic conditions induced the open circuit potential (E OC ) to shift in the positive direction after the stationary phase of SRB growth. The charge transfer resistance (R ct ) increased quickly during the exponential growth phase, almost maintained stability during the stationary phase, and decreased after the stationary phase in all three conditions, and the impedance magnitude decreased from O 2 - to air- to N 2 -saturated culture solutions. The biofilms induced by SRB were observed by scanning electron microscopy (SEM) under aerobic and anaerobic conditions, and energy dispersive spectroscopy (EDS) was performed in abiotic and SRB-containing systems to distinguish the corrosion products. The reasons for the effects of SRB on the environmental parameters and corrosion behavior of carbon steel are discussed.

  19. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments.

    Science.gov (United States)

    Purdy, K J.; Nedwell, D B.; Embley, T M.; Takii, S

    2001-07-01

    The distribution of sulphate-reducing bacteria (SRBs) in three anaerobic sediments, one predominantly freshwater and low sulphate and two predominantly marine and high sulphate, on the River Tama, Tokyo, Japan, was investigated using 16S rRNA-targeted oligonucleotide probes. Hybridisation results and sulphate reduction measurements indicated that SRBs are a minor part of the bacterial population in the freshwater sediments. Only Desulfobulbus and Desulfobacterium were detected, representing 1.6% of the general bacterial probe signal. In contrast, the SRB community detected at the two marine-dominated sites was larger and more diverse, representing 10-11.4% of the bacterial signal and with Desulfobacter, Desulfovibrio, Desulfobulbus and Desulfobacterium detected. In contrast to previous reports our results suggest that Desulfovibrio may not always be the most abundant SRB in anaerobic sediments. Acetate-utilising Desulfobacter were the dominant SRB in the marine-dominated sediments, and Desulfobulbus and Desulfobacterium were active in low-sulphate sediments, where they may utilise electron acceptors other than sulphate.

  20. Occurrence of sulphate reducing bacteria (SRB) associated with biocorrosion on metallic surfaces in a hydroelectric power station in Ibirama (SC) - Brazil

    OpenAIRE

    Paulo Roberto Dantas Marangoni; Diogo Robl; Marcos Antonio Coelho Berton; Carlos Mario Garcia; Angela Bozza; Mariana Vieira Porsani; Patricia do Rocio Dalzoto; Vânia Aparecida Vicente; Ida Chapaval Pimentel

    2013-01-01

    The aim of this study was evaluate, two methods for the detection and identification of sulphate reducing bacteria (SRB): ML medium and PCR with specific primers for SRB groups. SRB were detected through the selective medium only on carbon steel, which showed corrosion. Employing specific PCR primer, SBR were detected from all the metallic components assayed, even those that did not present visible corrosion spots, such stainless steel and copper alloys. Despite the presence or absence of cor...

  1. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study.

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S; Saha, Shikha; Doleman, Joanne F; Narbad, Arjan; Mithen, Richard F

    2017-09-01

    We examined whether a Brassica-rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate-reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. A randomised crossover study was performed with ten healthy adults who were fed a high- and a low-Brassica diet for 2-wk periods, with a 2-wk washout phase separating the diets. The high-Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low-Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2-wk Brassica-free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p < 0.01). The increased consumption of Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5 wt.% NaCl media

    International Nuclear Information System (INIS)

    Bao, Qi; Zhang, Dun; Lv, Dandan; Wang, Peng

    2012-01-01

    Highlights: ► Extracellular polymeric substances have been isolated from a batch culture of sulphate-reducing bacteria successfully. ► Sulphide and extracellular polymeric substances have triggered distinct electrochemical characteristics. ► ATR-IR analysis has confirmed the Fe 2+ -complexing capability of extracellular polymeric substances. ► In situ AFM results show extracellular polymeric substances can form a densely packed film on Q235 steels. ► The adsorbed extracellular polymeric substances film has protected the Q235 steels to a certain degree. - Abstract: The electrochemical corrosion behaviour of Q235 steels in 3.5 wt.% NaCl solutions with sulphide and extracellular polymeric substances (EPS), the two main metabolites of sulphate-reducing bacteria, was separately investigated through potentiodynamic polarisation and electrochemical impedance spectroscopy. Either sulphide or EPS increased the anodic current density by nearly one order of magnitude and negatively shifted the corrosion potential. The effects of EPS at the initial stage of corrosion may be ascribed to the Fe 2+ -complexing capability and the quickly adsorbed film. Moreover, the feeble protective effect of EPS after 16 d of immersion was observed through scanning electron microscopy.

  3. Chemical and electrochemical aspects of the corrosion of stainless steels in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Feron, D.

    1990-01-01

    The corrosion behaviour of austenitic and ferritic stainless steels (316 L and 430Ti) in the presence of sulfate reducing bacteria, was investigated by several electrochemical techniques which were coupled with corrosion measurements on coupons and chemical analyses. Experiments were performed with 'Desulfovibrio vulgaris' and 'Desulfovibrio gigas' in three growth media containing lactate and sulfate. The decreases in corrosion potentials were correlated to the increase in sulphide content. The polarization curves showed also the major influence of sulphides on the passivity of stainless steels. Electrochemical impedance measurements were used to provide information in understanding the interactions between growth media or bacteria and stainless steels surfaces. The behaviour of the tested stainless steels in these conditions was mainly dependent on sulphide concentrations. (Author). 7 refs., 8 figs., 4 tabs

  4. Occurrence of sulphate reducing bacteria (SRB associated with biocorrosion on metallic surfaces in a hydroelectric power station in Ibirama (SC - Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Dantas Marangoni

    2013-10-01

    Full Text Available The aim of this study was evaluate, two methods for the detection and identification of sulphate reducing bacteria (SRB: ML medium and PCR with specific primers for SRB groups. SRB were detected through the selective medium only on carbon steel, which showed corrosion. Employing specific PCR primer, SBR were detected from all the metallic components assayed, even those that did not present visible corrosion spots, such stainless steel and copper alloys. Despite the presence or absence of corrosion at the later stages effectively by using the selective medium,, the initial stages of the corrosion could only be detected by the amplification of total DNA with SRB specific primers. The early detection of SRB could be employed for preventing the damages on metal surfaces before the installation of corrosion processes. Strategies for reducing the time spent on SRB isolation and identification could be auxiliary tools for controlling the corrosion of materials.

  5. Studies on the effects of sulphate-reducing bacteria on mild carbon-steel relevant to radioactive waste disposal in the UK

    International Nuclear Information System (INIS)

    Philp, J.C.; Christofi, N.; Taylor, K.J.; West, J.M.

    1987-01-01

    Sulphate-reducing bacteria (SRB) have been used to determine their maximum effect on mild carbon-steel (BS4360 grade 43A) of relevance to waste disposal. Batch (static) and continuous culture studies were carried out and corrosion effects monitored by measuring weight loss and pitting. Results show that corrosion increases linearly with increased ferrous iron concentrations. Maximum corrosion was obtained in continuous culture where the organisms were maintained in the exponential phase of growth. Corrosion by SRB has been monitored in model systems mimicking low groundwater flow, deep rock formations in which steel coupons were subjected to a synthetic granitic water/bentonite environment with or without microorganisms. At termination of the experiment corrosion in the presence of SRB was almost three times higher than in their absence. (author)

  6. Surface Analysis of Marine Sulphate-Reducing Bacteria Exo polymers on Steel During Bio corrosion Using X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The aim of this study was to determine the surface chemistry during bio corrosion process on growth and on the production of exo polymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p 3/2 ) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p 3/2 ) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with mono sulphide and disulphide. (author)

  7. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure.

    Science.gov (United States)

    Fernández, M L; Granados-Chinchilla, F; Rodríguez, C

    2015-08-01

    Although feed medicated with antibiotics is widely used in animal production to prevent and treat bacterial infections, the effect of these drugs on nontarget anaerobic bacteria is unknown. We aimed to clarify whether a single exposure of sulphate-reducing bacteria (SRB) from a tilapia pond to oxytetracycline (OTC) concentrations relevant to aquaculture impacts their function, abundance and community structure. To demonstrate changes in SO4(2-) content, SRB abundance, dsrB copy number and SRB diversity, sediment mesocosms were spiked with 5, 25, 50 and 75 mg OTC kg(-1) and examined for 30 days by means of ion chromatography, qPCR, cultivation and fluorescent in situ hybridization (FISH). On day 3, we measured higher SO4(2-) concentrations (ca. two-fold) and a reduction in dsrB copy numbers of approximately 50% in the treatments compared to the controls. After 30 days, a subtle yet measurable enrichment of bacteria from the order Desulfovibrionales occurred in mesocosms receiving ≥ 50 mg OTC kg(-1), notwithstanding that SRB counts decreased two orders of magnitude. OTC was dynamically and reversibly converted into 4-epioxytetracycline and other related compounds in a dose-dependent manner during the experiment. A single exposure to rather high OTC concentrations triggered functional and structural changes in a SRB community that manifested quickly and persisted for a month. This study improves our limited knowledge on the ecotoxicology of antibiotics in anaerobic environments. © 2015 The Society for Applied Microbiology.

  8. Inhibition of bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    SRB) and Iron oxidizing bacteria (IOB) using Aloe vera (Aloe barbadensis) extract was tested. The water sample revealed a heterotrophic bacterial count of 1.7x103 cfu/ml for the sulphate reducing bacteria and 4.1x103 cfu/ml for the Iron oxidizing ...

  9. Inhibition of Bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Inhibition of Bio corrosion of steel coupon by sulphate reducing bacteria and Iron oxidizing bacteria using .... Ethanol for 24 h. The extract was ... with distilled water to get a zero reading from the meter before .... Ethanol extract of musa species peels as a green corrosion ... Eco friendly extract of banana peel as corrosion ...

  10. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Iwona B. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)], E-mail: iwona.beech@port.ac.uk; Campbell, Sheelagh A. [Applied Microbiology and Electrochemistry Group, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom)

    2008-12-01

    Investigations were undertaken to elucidate causes of accelerated low water corrosion (ALWC) of steel piling in a harbour in Southern England. Visual inspection revealed features characteristic of ALWC such as the presence of poorly adherent, thick corrosion products of varying morphology, often seen as large blisters randomly located on sections of the structure at the low water mark. Upon the removal of blisters, a bright surface covered with shallow pits was exposed. Representative samples of the corrosion products were collected from the structure and water and sediment specimens were retrieved from selected areas in the harbour for microbiological, chemical and microscopy testing. In the laboratory, field samples were enriched to detect and enumerate communities of sulphur-oxidising bacteria (SOB) and sulphate-reducing bacteria (SRB). Biofilms, comprising SRB and SOB populations isolated from a sediment sample were grown under static conditions on surfaces of electrodes manufactured from steel piling material. Linear polarisation resistance (LPR) measurements revealed that the corrosion rate of steel with biofilms (0.518 mm y{sup -1}) was higher than that recorded in sterile seawater alone (0.054 mm y{sup -1}) and in sterile seawater to which nutrient was added (0.218 mm y{sup -1}). Scanning electron microscopy (SEM) imaging demonstrated enhanced pitting under biofilms. The results of our investigation revealed for the first time that the attack on steel piling in the presence of sediment SRB and SOB populations was characteristic of ALWC.

  11. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment

    International Nuclear Information System (INIS)

    Beech, Iwona B.; Campbell, Sheelagh A.

    2008-01-01

    Investigations were undertaken to elucidate causes of accelerated low water corrosion (ALWC) of steel piling in a harbour in Southern England. Visual inspection revealed features characteristic of ALWC such as the presence of poorly adherent, thick corrosion products of varying morphology, often seen as large blisters randomly located on sections of the structure at the low water mark. Upon the removal of blisters, a bright surface covered with shallow pits was exposed. Representative samples of the corrosion products were collected from the structure and water and sediment specimens were retrieved from selected areas in the harbour for microbiological, chemical and microscopy testing. In the laboratory, field samples were enriched to detect and enumerate communities of sulphur-oxidising bacteria (SOB) and sulphate-reducing bacteria (SRB). Biofilms, comprising SRB and SOB populations isolated from a sediment sample were grown under static conditions on surfaces of electrodes manufactured from steel piling material. Linear polarisation resistance (LPR) measurements revealed that the corrosion rate of steel with biofilms (0.518 mm y -1 ) was higher than that recorded in sterile seawater alone (0.054 mm y -1 ) and in sterile seawater to which nutrient was added (0.218 mm y -1 ). Scanning electron microscopy (SEM) imaging demonstrated enhanced pitting under biofilms. The results of our investigation revealed for the first time that the attack on steel piling in the presence of sediment SRB and SOB populations was characteristic of ALWC

  12. Removal of Sulphate and Manganese on Synthetic Wastewater in Sulphate Reducing Bioreactor Using Indonesian Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Endah Retnaningrum

    2017-07-01

    Full Text Available The present research was conducted to investigate sulphate and manganese removal from synthetic wastewater. The continuous laboratory scale of down-flow fluidized-bed reactor (DFBR using sulphate reducing bacteria (SRB consortium and Indonesian natural zeolite as a bacterial support material was designed. At 9 days operation, maximum sulphate and manganese removal was observed to be 23% and 15.4%, respectively. The pH values were also changed to neutral. The population of SRB increased which effect on the raising of their activity for removing sulphate and manganese. Using the scanning electronic microscopy (SEM, it was observed that natural zeolite possesses excellent physical characteristics as a bacterial support material in DFBR. The imaging SEM result of SRB consortium on zeolite surface clearly showed the developed SRB biofilm on that particle. Analysis result of EDX confirmed that manganese was precipitated as manganese–sulfides.

  13. The reducibility of sulphuric acid and sulphate in aqueous solution

    International Nuclear Information System (INIS)

    Grauer, R.

    1991-07-01

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100 o C. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300 o C. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130 o C, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  14. Detection of sulphate reducer bacteria in effluents and sediment from uranium mine; Deteccao de bacterias redutoras de sulfato em efluente e sedimento em mina de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Sheila Kenia de

    2005-07-01

    One of the most serious environmental problems created by the mining industry is acid mine drainage. In one plant of Nuclear Industries of Brazil - INB, this problem is a matter of concern. The presence of iron sulfites, such as pyrite, generates water with acidity above the levels allowed by the legislation and therefore, inappropriate for releasing straight into the environment. The industry maintain a high cost treatment in acid water from mines and waste disposal which consists in neutralizing and precipitating heavy metals. The treatment of acid water sing SR B (sulfate-reducing bacteria) has been used in other countries with quite good technical results as well as economical advantages and thus, the object of this research. The use Sulfate Reducing Bacteria takes to a decreasing of the acidity by reducing sulfate to sulfite and precipitating the stable metals as sulfides. A seasonal study was carried out on the sulfate-reducing bacteria present in the liquid effluent discharged from two wastes disposal of the uranium mine, in phase of decommission, in Caldas/MG, Brazil. This study shows the presence of SRB in the analyzed environmental, as well as some factors that are related with the amount of SRB presents, such as: dissolved oxygen, pH and organic matter. SRB was presented in water samples with high concentrations of heavy metals and low pH values, as well as in samples with high oxygen levels. The sediment samples were the preferential place for SRB occurrence and site BF8 presented the highest values of SRB. (author)

  15. The effect of sulphate-reducing bacteria biofilm on passivity and development of pitting on 2205 duplex stainless steel

    International Nuclear Information System (INIS)

    Dec, Weronika; Mosiałek, Michał; Socha, Robert P.; Jaworska-Kik, Marzena; Simka, Wojciech; Michalska, Joanna

    2016-01-01

    Results on biofilm formation and microbiologically influenced corrosion induced by pure D. desulfuricans strain on 2205 duplex stainless steel (DSS) are presented. Biofilm development stimulated by DSM642 standard strain was evaluated with reference to their metabolic activity and to the surface characterization including the structure and configuration of the biofilm. Electrochemical techniques (open circuit potential, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves) and X-ray photoelectron spectroscopy (XPS) were carried out to determine the effect of bacteria on the passivity and corrosion resistance of 2205 DSS. The electrochemical results showed that the DSS corrosion resistance was affected in the presence of DSM642 biofilm. This statement was based on the significant decrease in the charge transfer resistance (R_1) obtained from EIS and the increase in the measured current densities obtained from potentiodynamic polarization curves. Although the breakdown potentials (E_b) were still high, SEM observations revealed micropits as well as signs of crevice attack on the steel surface. Significant sulphidation of the passive film affected the nature of cathodic behaviour of steel and helped to impede micropit growth. XPS analysis revealed the layered structure of the biofilm. Accumulation of sulphides and hydroxides was proved in the outermost layer, while the increasing contents of disulphides, organometallic and C−N bonds were detected along the biofilm thickness in the XPS analysis.

  16. Biological treatment of acid mine water: selection of a biomass population enriched in sulphate-reducing bacteria; Tratamiento biologico de aguas acidas de mineria: seleccion de una poblacion bacteriana enriquecida en bacterias sulfatoreductoras

    Energy Technology Data Exchange (ETDEWEB)

    Duran Barrantes, M. M.; Jimenez Rodriguez, A. M.; Martel Villagran, F. J.

    2001-07-01

    The purpose of this work is to study the biological sulphate reduction. AYESA (Aguas y Estructuras, S. A.) is developing the technical attendance. This study is being demonstrated under the Acid Water Treatment Program, conducted by the Consejeria del Medio Ambiente (Junta de Andalucia). Acid mine drainage is one of the most serious environmental problems facing the metal mining industry. This wastewater is formed when sulphide ores undergo chemical and biological oxidation processes and is characterized by low pH-values and high levels of sulphate and metals. The effect of stimuling bacteria sulphate reduction in such systems in order to improve water quality was examined in a laboratory scale experiment, in 250 mL, magnetically stirred, batch, anaerobic reactors, to 25 degree centigree. (Author) 11 refs.

  17. The reducibility of sulphuric acid and sulphate in aqueous solution (translated from German)

    International Nuclear Information System (INIS)

    Grauer, R.

    1990-07-01

    In connection with the Swedish project for the final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister without the intervention of sulphate-reducing bacteria. A simple reaction between copper and sulphate is thermodynamically impossible. On the other hand, copper can react to give copper sulphide if an additional electron donor such as iron is available. Because little specific information is available about this subject the problem was extended to the much more general question of the reducibility of sulphur in dilute aqueous solution. It is a part of the general knowledge of chemistry, and there is also unanimity about it in the geochemical literature, that purely chemical reduction of sulphate does not take place in dilute solution at temperatures below 100 degrees C. This fact is, however, poorly documented and it was therefore necessary to substantiate it by drawing on numerous individual findings from different areas of pure and applied chemistry. The investigation confirms that sulphur in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be ruled out with a probability verging on certainty. (85 refs.)

  18. Sulphate reducing bacteria in wastewater treatment

    NARCIS (Netherlands)

    Van den Brand, T.P.H.

    2014-01-01

    The depletion of fresh water sources forces to design innovative integral solutions for the urban water cycle. Usual practice in most cities is to use drinking water to transport waste outside the city via sewer system. For toilet flushing the water quality is less important and seawater could be

  19. Quantitation and identification of methanogens and sulphate reducers in Olkiluoto groundwater

    International Nuclear Information System (INIS)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M.

    2010-08-01

    The GEOFUNC Project focuses on the microbiology connected to safety and risk assessment of the final disposal of high radioactive nuclear waste. Methanogenic archaea and sulphate reducing bacteria are significant groups of microorganisms in anaerobic environments, and are of crucial concern for the safe long term storage of nuclear waste in deep bedrock. The sulphate reducing bacteria are able to produce sulphide which may cause corrosion of the copper in the radioactive waste storage capsules. Methanogens, on the other hand, may produce quantities of methane from various organic carbon compounds, CO 2 and H 2 . Methane may both serve as carbon source for methanotrophic microbial groups, and may also cause mobilization of radionuclides, as a result of gas discharge through fractures in the bedrock. The transition zones between the sulphate rich and methane rich waters are locations for microbial processes where the methane may serve as carbon source for sulphate reducing bacteria, which in turn would produce corrosive sulphides. It has been estimated that only 1-10 % of all the microorganisms present in the environment can be isolated and cultivated. Uncultured microorganisms can be identified and their numbers in the environment quantified by identification of specific marker genes that are essential for their functions by use of molecular methods. Methanogens, for example, can be identified by their genes for methyl coenzyme M reductase (mcrA), which is an essential enzyme involved in the production of methane. The mcrA is specifically present only in methanogenic archaea. Sulphate reducers are identified by their dissimilatory sulphite reductase genes (dsrB), which are present in and essential for all microorganisms performing dissimilatory sulphate reducing. In the GEOFUNC project, a quantitative PCR method (qPCR) was developed for the detection of methanogens and sulphate reducers. This method is based on specific quantitative detection of marker genes

  20. Efeito da aplicação de nitrato na redução biogênica de sulfeto sob diferentes concentrações iniciais de bactérias redutoras de nitrato e sulfato Effect of nitrate application on reduction of biogenic sulphide under different initial concentrations of nitrate and sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kally Alves de Sousa

    2010-01-01

    Full Text Available The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1 was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4 MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.

  1. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.

    Science.gov (United States)

    Matias, Pedro M; Pereira, Inês A C; Soares, Cláudio M; Carrondo, Maria Arménia

    2005-11-01

    Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.

  2. Spatial and temporal changes in sulphate-reducing groundwater bacterial community structure in response to Managed Aquifer Recharge.

    Science.gov (United States)

    Reed, D A; Toze, S; Chang, B

    2008-01-01

    The population dynamics of bacterial able to be cultured under sulphate reducing condition was studied in conjunction with changes in aquifer geochemistry using multivariate statistics for two contrasting Managed Aquifer Recharge (MAR) techniques at two different geographical locations (Perth, Western Australia and Adelaide, South Australia). Principal component analysis (PCA) was used to investigate spatial and temporal changes in the overall chemical signature of the aquifers using an array of chemical analytes which demonstrated a migrating geochemical plume. Denaturing Gradient Gel Electrophoresis (DGGE) using DNA from sulphate-reducing bacteria cultures was used to detect spatial and temporal changes in population dynamics. Bacterial and geochemical evidence suggested that groundwater at greatest distance from the nutrient source was least affected by treated effluent recharge. The results suggested that bacterial populations that were able to be cultured in sulphate reducing media responded to the migrating chemical gradient and to the changes in aquifer geochemistry. Most noticeably, sulphate-reducing bacterial populations associated with the infiltration galleries were stable in community structure over time. Additionally, the biodiversity of these culturable bacteria was restored when aquifer geochemistry returned to ambient conditions during the recovery phase at the Adelaide Aquifer Storage and Recovery site. Copyright CSIRO 2008.

  3. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    Science.gov (United States)

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Sulphate reduction in the Aespoe HRL tunnel

    International Nuclear Information System (INIS)

    Gustafson, G.; Pedersen, K.; Tullborg, E.L.; Wallin, B.; Wikberg, P.

    1995-12-01

    Evidence and indications of sulphate reduction based on geological, hydrogeological, groundwater, isotope and microbial data gathered in and around the Aespoe Hard Rock Laboratory tunnel have been evaluated. This integrated investigation showed that sulphate reduction had taken place in the past but is most likely also an ongoing process. Anaerobic sulphate-reducing bacteria can live in marine sediments, in the tunnel sections under the sea and in deep groundwaters, since there is no access to oxygen. The sulphate-reducing bacteria seem to thrive when the Cl - concentration of the groundwater is 4000-6000 mg/l. Sulphate reduction is an in situ process but the resulting hydrogen-sulphide rich water can be transported to other locations. A more vigorous sulphate reduction takes place when the organic content in the groundwater is high (>10 mg/l DOC) which is the case in the sediments and in the groundwaters under the sea. Some bacteria use hydrogen as an electron donor instead of organic carbon and can therefore live in deep environments where access to organic material is limited. The sulphate-reducing bacteria seem to adapt to changing flow situations caused by the tunnel construction relatively fast. Sulphate reduction seems to have occurred and will probably occur where conditions are favourable for the sulphate-reducing bacteria such as anaerobic brackish groundwater with dissolved sulphate and organic carbon or hydrogen. 59 refs, 37 figs, 6 tabs

  5. Sulphur-oxidising and Sulphate-reducing Communities in Brazilian Mangrove Sediments

    NARCIS (Netherlands)

    Varon-Lopez, Maryeimy; Dias, A.C.F; Fasanella, C.C.; Durrer, A.; Melo, I.S.; Kuramae, E.E.; Andreote, F.D.

    2014-01-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of

  6. Comparison of methods for the determination of reduced inorganic sulphur in acid sulphate soils

    International Nuclear Information System (INIS)

    Santomartino, S.L.

    1999-01-01

    Full text: The management of acid sulphate soils requires analytical methods that provide accurate data on the quantity of reduced inorganic sulphur within a soil, as it is this fraction that produces acid upon oxidation. This study uses sulphidic Coode Island Silt samples to compare common analytical methods including POCAS (Peroxide Oxidation-Combined Acidity and Sulphate) which consists of TSA (Total Sulphidic Acidity), S pos (Peroxide Oxidisable Sulphur), TOS (Total Oxidisable Sulphur) and chromium-reducible sulphur. The determination of total sulphur by Leco sulphur is strongly correlated with, but slightly less than, that analysed by XRF. Comparison of soil sulphide content by chromium-reducible sulphur, TSA and TOS methods indicates that TOS values are substantially higher than both other methods. The problem with the TOS method lies in the sulphate extraction procedure. Hot distilled water and HCI are commonly used as extractants, however hot distilled water fails to remove organic sulphur, thereby overestimating the sulphide content of the soil. Leco carbon analyses verify that a substantial proportion of organic matter exists within the samples. The HCI extraction process, which uses Ion Chromatography to analyse for sulphate, produces highly inaccurate results due to the interference of the sulphate peak by the chloride peak during analysis. An alternative method involving HCI extraction and XRF analysis of the soil residue is currently being undertaken. The use of KCI to extract sulphate generally produces values similar to the hot distilled water method. The sulphidic content measured by TSA is strongly correlated with, but slightly higher than that determined by the chromium-reducible sulphur method. This is attributed to the use of hydrogen peroxide in the TSA method, which oxidises organic matter to organic acids in addition to oxidising sulphides. These preliminary findings indicate that the chromium-reducible sulphur method is the most suitable

  7. CHRONIC Cd TOXICITY OF BEAN PLANTS CAN BE PARTIALLY REDUCED BY SUPPLY OF AMMONIUM SULPHATE

    Directory of Open Access Journals (Sweden)

    Andon VASSILEV

    2006-05-01

    Full Text Available The effect of ammonium sulphate supply on plant Cd uptake, growth and photosynthesis of bean plants (cv. Limburgse vroege grown in Cd-contaminated artifi cial soil was studied. The experiments were performed at controlled conditions in absence or presence of Cd (0 or 50 mg Cd kg-1 soil and with or without supply of ammonium sulphate [0 or 0.687 g (NH42SO4 kg-1]. Cadmium inhibited both growth and photosynthetic activity of bean plants. The supply of ammonium sulphate had no signifi cant effect on plant Cd uptake and growth inhibition, but to some extend, reduced Cd-induced stress and its negative impact on the photosynthetic performance.

  8. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  9. Evaluación del molibdato y nitrato sobre bacterias sulfato-reductoras asociadas a procesos de corrosión en sistemas industriales Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems

    Directory of Open Access Journals (Sweden)

    J. R. Torrado Rincón

    2008-03-01

    Full Text Available Se estudió la cinética de crecimiento de bacterias sulfato-reductoras (BSR y la biotransformación de sulfato a sulfuro de hidrógeno bajo condiciones de laboratorio, para establecer el efecto inhibitorio de sales de molibdato y nitrato de sodio. Los microorganismos estudiados fueron aislados del agua de producción contenida en un sistema de transporte de gas natural, donde se encontraban relacionados con procesos de corrosión influenciada microbiológicamente. Con 5 mM de molibdato se obtuvo una reducción de células libres a niveles no detectables y de seis órdenes de magnitud en las biopelículas, con una disminución del sulfuro de alrededor del 100%. Con 75 mM de nitrato se observó una reducción de cuatro y dos órdenes de magnitud en las células libres y en las adheridas en forma de biopelículas, respectivamente, con una disminución del sulfuro de alrededor del 80%. La reducción de la tasa de corrosión observada sustenta la posibilidad de emplear estas sales como biocidas no convencionales no contaminantes del medio ambiente, para el control y mitigación efectiva de los procesos de biocorrosión interna de tanques de almacenamiento y de líneas de transporte en sistemas industriales de gas natural y petróleo.The sulfate-reducing bacteria growth kinetics and the biotransformation of sulfate into hydrogen sulfide were studied under laboratory conditions, using batch and continuous assays to determine the effect of molybdate and nitrate as metabolic inhibitors. The microorganisms were isolated from water coming from a natural gas dehydration plant, where they were associated with Microbiologically Influenced Corrosion (MIC processes, and later cultured in planktonic and sessile states. The addition of 5 mM molybdate showed a growth reduction to levels of non - detectable floating cells and a six order of magnitude reduction in biofilms, concomitant with a sulfide decrease of around 100% in all cultures inhibited by this

  10. Characterization of (per)chlorate-reducing bacteria

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains

  11. Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2015-07-01

    Full Text Available Drainage from metal-sulphide rich rocks may cause considerable environmental stress in the form of elevated sulphate and heavy metal contamination of the environment. Mine draining effects from closed mines may be abated using indigenous and introduced microbial communities for sulphate reduction and metal precipitation at the mining site. Here we characterized the general and sulphate reducing bacterial (SRB community of Kotalahti Mine (Finland. The mine was flooded after closure and sulphate reduction and metal precipitation was induced by addition of pig manure sludge into the Vehkankuilu shaft. Water was sampled from Vehkankuilu and Ollinkuilu shafts from depths −10, −30, −70 and −100 m 15 years after the treatment. The water in the shafts differed from each other biologically and geochemically. The shafts are not directly connected except by some fracture zones, and the Ollinkuilu shaft is used as a reference for environmental monitoring. The detected bacterial communities from both shafts contained methylotrophic γ-Proteobacteria, hydrogenotrophic and methylotrophic β-Proteobacteria and fermenting bacterial clades. The concentration of SRB was low, at most 4.0 × 103 dsrB genes·mL−1, and the SRB affiliated with Desulfobulbus and Thermoanaerobacteriales clades. Despite the obvious success of the mine as an in situ bioreactor for increasing water pH and removing sulphate and heavy metals by induced sulphate reduction under suboptimal temperature, only a small portion, less than 0.5%, of the bacterial population in the mine water was SRB.

  12. Decolourisation and degradation of textile dyes using a sulphate ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... Full Length Research Paper ... and microflora that augmented a sulphate reducing bacteria (SRB) consortium. ... and degradation of aromatic compounds from the deco- ... ed that aromatic amines are toxic, carcinogenic and.

  13. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  14. Fundamental Studies on the Electrochemical Behaviour of Carbon Steel Exposed in Sulphide and Sulphate-Reducing Environments

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...

  15. Modelling the competition between sulphate reducers and methanogens in a thermophilic methanol-fed bioreactor

    NARCIS (Netherlands)

    Spanjers, H.; Weijma, J.; Abusam, A.

    2002-01-01

    Sulphate can be removed from wastewater by means of biological anaerobic reduction to sulphide. The reduction requires the presence of a substrate that can serve as an electron donor. Methanol a suitable electron donor for sulphate reduction under thermophilic conditions. In an anaerobic system

  16. Copper (II) Removal In Anaerobic Continuous Column Reactor System By Using Sulfate Reducing Bacteria

    Science.gov (United States)

    Bilgin, A.; Jaffe, P. R.

    2017-12-01

    Copper is an essential element for the synthesis of the number of electrons carrying proteins and the enzymes. However, it has a high level of toxicity. In this study; it is aimed to treat copper heavy metal in anaerobic environment by using anaerobic continuous column reactor. Sulfate reducing bacteria culture was obtained in anaerobic medium using enrichment culture method. The column reactor experiments were carried out with bacterial culture obtained from soil by culture enrichment method. The system is operated with continuous feeding and as parallel. In the first rector, only sand was used as packing material. The first column reactor was only fed with the bacteria nutrient media. The same solution was passed through the second reactor, and copper solution removal was investigated by continuously feeding 15-600 mg/L of copper solution at the feeding inlet in the second reactor. When the experiment was carried out by adding the 10 mg/L of initial copper concentration, copper removal in the rate of 45-75% was obtained. In order to determine the use of carbon source during copper removal of mixed bacterial cultures in anaerobic conditions, total organic carbon TOC analysis was used to calculate the change in carbon content, and it was calculated to be between 28% and 75%. When the amount of sulphate is examined, it was observed that it changed between 28-46%. During the copper removal, the amounts of sulphate and carbon moles were equalized and more sulfate was added by changing the nutrient media in order to determine the consumption of sulphate or carbon. Accordingly, when the concentration of added sulphate is increased, it is calculated that between 35-57% of sulphate is spent. In this system, copper concentration of up to 15-600 mg / L were studied.

  17. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  18. Sulphate in Pregnancy

    Directory of Open Access Journals (Sweden)

    Paul A. Dawson

    2015-03-01

    Full Text Available Sulphate is an obligate nutrient for healthy growth and development. Sulphate conjugation (sulphonation of proteoglycans maintains the structure and function of tissues. Sulphonation also regulates the bioactivity of steroids, thyroid hormone, bile acids, catecholamines and cholecystokinin, and detoxifies certain xenobiotics and pharmacological drugs. In adults and children, sulphate is obtained from the diet and from the intracellular metabolism of sulphur-containing amino acids. Dietary sulphate intake can vary greatly and is dependent on the type of food consumed and source of drinking water. Once ingested, sulphate is absorbed into circulation where its level is maintained at approximately 300 μmol/L, making sulphate the fourth most abundant anion in plasma. In pregnant women, circulating sulphate concentrations increase by twofold with levels peaking in late gestation. This increased sulphataemia, which is mediated by up-regulation of sulphate reabsorption in the maternal kidneys, provides a reservoir of sulphate to meet the gestational needs of the developing foetus. The foetus has negligible capacity to generate sulphate and thereby, is completely reliant on sulphate supply from the maternal circulation. Maternal hyposulphataemia leads to foetal sulphate deficiency and late gestational foetal death in mice. In humans, reduced sulphonation capacity has been linked to skeletal dysplasias, ranging from the mildest form, multiple epiphyseal dysplasia, to achondrogenesis Type IB, which results in severe skeletal underdevelopment and death in utero or shortly after birth. Despite being essential for numerous cellular and metabolic functions, the nutrient sulphate is largely unappreciated in clinical settings. This article will review the physiological roles and regulation of sulphate during pregnancy, with a particular focus on animal models of disturbed sulphate homeostasis and links to human pathophysiology.

  19. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    Science.gov (United States)

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  20. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Sathe, V.; Chandramohan, D.

    to the bacteria is greatly reduced. As inhibition was observed even with low concentrations, it can be safely said that the environment has not been influenced by much metal contamination. ACKNOWLEDGEMENTS The authors wish to thank the Director, B. N. Desai... stream_size 26780 stream_content_type text/plain stream_name Environ_Pollut_67_361p.pdf.txt stream_source_info Environ_Pollut_67_361p.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Environmental...

  1. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  2. Optimizing substrate for sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Chang, L.K.; Updegraff, D.M.; Wildeman, T.R.

    1991-01-01

    Microbial sulfate reduction followed by sulfide precipitation effectively removes heavy metals from wastewaters. The substrate in the anaerobic zone in a constructed wetland can be designed to emphasize this removal process. This group of bacteria requires CH 2 O, P, N, and SO 4 =, reducing conditions, and pH range of 5-9 (pH=7 is optimum). The objective of this study was to find an inexpensive source of nutrients that would give the best initial production of sulfide and make a good wetland substrate. All tested materials contain sufficient P and N; mine drainage provides sulfate. Thus, tests focused on finding organic material that provides the proper nutrients and does not cause the culture to fall below pH of 5. Among chemical nutrients, sodium lactate combined with (NH 4 ) 2 HPO 4 were the only compounds that produced sulfide after 11 days. Among complex nutrients, only cow manure produced sulfide after 26 days. Among complex carbohydrates, cracked corn and raw rice produced sulfide after 10 days. Most substrates failed to produce sulfide because anaerobic fermentation reduced the pH below 5. Presently, cracked corn is the best candidate for a substrate. Five grams of cow manure produced 0.14 millimole of sulfide whereas 0.1 g of cracked corn produced 0.22 millimole

  3. Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator

    Science.gov (United States)

    Qi, Shiyue; Zhang, Mi; Guo, Xingming; Yue, Lei; Wang, Jia; Shao, Ziqiang; Xin, Baoping

    2017-06-01

    Metal sulphide quantum dots (QDs) have broad applications. Sulphate-reducing bacteria (SRB) have been recognized as synthesizers of metal sulphides, with the characteristics of a high-production efficiency and easy product harvest. However, SRB are incapable of synthesizing metal sulphide QDs. In the present study, cheap hydroxypropyl starch (HPS) was used to assist SRB in manufacturing the ZnS QDs. The results exhibited that the HPS accelerated the growth of SRB and reduction of SO4 2+ into S2-, while it blocked the precipitation between S2- and Zn2+ to control the nucleation and growth of ZnS, resulting in the formation of ZnS QDs. When the HPS concentration increased from 0.2 to 1.6 g/L, the average crystal size (ACS) of ZnS QDs dropped from 5.95 to 3.34 nm, demonstrating the controlled biosynthesis of ZnS QDs. The ZnS QDs were coated or adhered to by both HPS and proteins, which played an important role in the controlled biosynthesis of ZnS QDs. The remarkable blue shift of the narrow UV absorption peak was due to the quantum confinement effect. The sequential variation in the colour of the photoluminescence spectrum (PL) from red to yellow suggested a tunable PL of the ZnS QDs. The current work demonstrated that SRB can fabricate the formation of ZnS QDs with a controlled size and tunable PL at a high-production rate of approximately 8.7 g/(L × week) through the simple mediation of HPS, with the yield being 7.46 times the highest yield in previously reported studies. The current work is of great importance to the commercialization of the biosynthesis of ZnS QDs.

  4. Metabolic Flexibility of Sulfate Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Caroline M. Plugge

    2011-05-01

    Full Text Available Dissimilatory sulfate-reducing prokaryotes (SRB are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas methanogenic Archaea would be expected to succeed in the deeper sulfate-depleted layers of the sediment. Where sediments are high in organic matter, sulfate is depleted at shallow sediment depths, and biogenic methane production will occur. In the absence of sulfate, many SRB ferment organic acids and alcohols, producing hydrogen, acetate, and carbon dioxide, and may even rely on hydrogen- and acetate-scavenging methanogens to convert organic compounds to methane. SRB can establish two different life styles, and these can be termed as sulfidogenic and acetogenic, hydrogenogenic metabolism. The advantage of having different metabolic capabilities is that it raises the chance of survival in environments when electron acceptors become depleted. In marine sediments, SRB and methanogens do not compete but rather complement each other in the degradation of organic matter.Also in freshwater ecosystems with sulfate concentrations of only 10-200 μM, sulfate is consumed efficiently within the top several cm of the sediments. Here, many of the δ-Proteobacteria present have the genetic machinery to perform dissimilatory sulfate reduction, yet they have an acetogenic, hydrogenogenic way of life.In this review we evaluate the physiology and metabolic mode of SRB in relation with their environment.

  5. Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor.

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Duran, Robert

    2015-10-01

    The behaviour of sulphate-reducing microbial community was investigated at the oxic-anoxic interface (0-2 cm) of marine sediments when submitted to oil and enhanced bioturbation activities by the addition of Hediste diversicolor. Although total hydrocarbon removal was not improved by the addition of H. diversicolor, terminal restriction fragment length polymorphism (T-RFLP) analyses based on dsrAB (dissimilatory sulphite reductase) genes and transcripts showed different patterns according to the presence of H. diversicolor which favoured the abundance of dsrB genes during the early stages of incubation. Complementary DNA (cDNA) dsrAB libraries revealed that in presence of H. diversicolor, most dsrAB sequences belonged to hydrocarbonoclastic Desulfobacteraceae, suggesting that sulphate-reducing microorganisms (SRMs) may play an active role in hydrocarbon biodegradation in sediments where the reworking activity is enhanced. Furthermore, the presence of dsrAB sequences related to sequences found associated to environments with high dinitrogen fixation activity suggested potential N2 fixation by SRMs in bioturbated-polluted sediments.

  6. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer.

    Science.gov (United States)

    Kuppardt, Anke; Kleinsteuber, Sabine; Vogt, Carsten; Lüders, Tillmann; Harms, Hauke; Chatzinotas, Antonis

    2014-08-01

    Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  8. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  9. Reducing gas content of coal deposits by means of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Lipowa, A A; Kozlowski, B

    1981-07-01

    This paper discusses the results of experiments carried out in Poland under laboratory conditions on efficiency of methane control using bacteria from Methanosarcina and Methanomonas groups. Malashenko and Whittenburry culture mediums were used. Bacteria growth in an atmosphere of air and methane (48.2%, 8.6% and 5.21%) was observed. Temperature ranged from 19 to 20 C. Investigations show that the bacteria are characterized by high oxidation activity. Depending on methane concentration in the air the bacteria consume from 75% to 100% of methane during biosynthesis. The bacteria reduce methane and oxygen content and increase carbon dioxide content in the air. Using bacteria methane concentration in the air was reduced from 48.2% to 12.3%, from 8.6% to 0.0% and from 5.21% to 0.01%. (7 refs.) (In Polish)

  10. Mesophilic and thermophilic anaerobic digestion of sulphate-containing wastewaters.

    Science.gov (United States)

    Colleran, E; Pender, S

    2002-01-01

    The effect of sulphate at an influent chemical oxygen demand (COD):sulphate ratio of 4 on the operational performance of anaerobic hybrid reactors treating molasses wastewater was investigated under mesophilic and thermophilic conditions in a long-term laboratory-scale study over a 1,081 day period. The presence of sulphate reduced the COD removal efficiency under both mesophilic and thermophilic conditions. At 55 degrees C, effluent acetate levels were consistently greater than 4000 mg l(-1) indicating that thermophilic acetate-utilising methane-producing bacteria (MPB) or sulphate-reducing bacteria (SRB) had not developed in the reactor under the conditions applied. At 37 degrees C, acetate was exclusively utilised by acetoclastic methanogens, whereas H2-utilising SRB predominated over H2-utilising MPB in the competition for hydrogen. By contrast, hydrogenotrophic MPB were shown to outcompete H2-utilising SRB during long-term thermophilic operation. 16SrDNA analysis of the seed sludge and reactor biomass on conclusion of the 37 degrees C and 55 degrees C trials illustrated that the dominant methanogen present on conclusion of the thermophilic trial in the absence of influent sulphate was related to Methanocorpusculum parvuum, and was capable of growth on both acetate and hydrogen. By contrast, an organism closely related to Methanobacterium thermoautotrophicum was the dominant methanogen present in the sulphate-fed reactor on completion of the thermophilic trial.

  11. Bio-corrosion of water pipeline by sulphate-reducing bacteria in a ...

    African Journals Online (AJOL)

    This study investigates the presence of SRB in water, in a water pipeline and in the soil near the pipeline at a mining operation, under conditions that would be expected to be stable toward corrosion. Samples of water in pipes showed a high frequency of SRB. Cast iron coupons placed in pipes gave positive results for SRB ...

  12. Electrochemical Evaluation of Extremely-Low Frequency Magnetic Field Effects on Sulphate-Reducing Bacteria

    Czech Academy of Sciences Publication Activity Database

    Fojt, Lukáš; Vetterl, Vladimír

    2012-01-01

    Roč. 58, č. 1 (2012), s. 44-48 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : RAT-BRAIN CELLS * HZ ELECTROMAGNETIC-FIELDS * STRAND DNA BREAKS Subject RIV: BO - Biophysics Impact factor: 1.219, year: 2012

  13. Focus on CSIR research in pollution and waste: High sulphide Concentrations tolerated by sulphate reducing bacteria

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available to the reactor consisted of AMD which was supplemented with macronutrients (25 mg/ℓ ammonia-N and 5 mg/ℓ PO4-P and 3 mg/ℓ Fe). Initially, Sodium bicarbonate was added to maintain a pH of higher than 7.0. This procedure was terminated once sufficient...

  14. 137Cs sorption onto Fullers' Earth (calcium montmorillonite) -the influence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    West, J.M.; Haigh, D.G.; Hooker, P.J.; Rowe, E.J.

    1987-12-01

    The influences of Desulfovibrio desulfuricans on the sorption of 137 Cs onto Fullers' Earth (Calcium montmorillonite) has been studied using batch sorption methods. Results were expressed as distributions ratios (Rd) and as Freundlich and Dubinin-Radushkevich isotherms. They show that microbes present naturally in the Fullers' Earth did not influence sorption data, however the addition of microbes in the aqueous phase alters the sorption properties in a complex manner. (author)

  15. Decolourisation and degradation of textile dyes using a sulphate ...

    African Journals Online (AJOL)

    Successful decolourisation and degradation of textile dyes was achieved in a biosulphidogenic batch reactor using biodigester sludge from a local municipality waste treatment plant as a source of carbon and microflora that augmented a sulphate reducing bacteria (SRB) consortium. Orange II (O II) was decolourised by ...

  16. Decolourisation and degradation of reactive blue 2 by sulphate ...

    African Journals Online (AJOL)

    This work was performed to determine the influence of heat treatment on sewage sludge and addition of zero valent iron (ZVI) on the degradation and decolourisation of an anthraquinone dye, reactive blue 2 (RB 2). A consortium of sulphate reducing bacteria (SRB) in a biosulphidogenic batch reactor with biodigester ...

  17. Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor

    International Nuclear Information System (INIS)

    Remoundaki, Emmanouela; Kousi, Pavlina; Joulian, Catherine; Battaglia-Brunet, Fabienne; Hatzikioseyian, Artin; Tsezos, Marios

    2008-01-01

    The characteristics of the biofilm and the solids formed during the operation of a sulphate-reducing fixed-bed reactor, fed with a moderately acidic synthetic effluent containing zinc and iron, are presented. A diverse population of δ-Proteobacteria SRB, affiliated to four distinct genera, colonized the system. The morphology, mineralogy and surface chemistry of the precipitates were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The XRD patterns observed are characteristic of amorphous solid phases. Peaks corresponding to crystalline iron sulphide, marcasite, sphalerite and wurtzite were also identified. SEM-EDX results confirm the predominance of amorphous phases appearing as a cloudy haze. EDX spectra of spots on the surface of these amorphous phases reveal the predominance of iron, zinc and sulphur indicating the formation of iron and zinc sulphides. The predominance of these amorphous phases and the formation of very fine particles, during the operation of the SRB column, are in agreement and can be explained by the formation pathways of metal sulphides at ambient temperature, alkaline pH and reducing conditions. Solids are precipitated either as (i) amorphous phases deposited on the bed material, as well as on surface of crystals, e.g. Mg 3 (PO 4 ) 2 and (ii) as rod-shaped solids characterized by a rough hazy surface, indicating the encapsulation of bacterial cells by amorphous metal sulphides

  18. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Science.gov (United States)

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  19. How Fitness Reduced, Antimicrobial Resistant Bacteria Survive and Spread

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Nielsen, Søren Saxmose; Toft, Nils

    2014-01-01

    More than 30% of E. coli strains sampled from pig farms in Denmark over the last five years were resistant to the commonly used antimicrobial tetracycline. This raises a number of questions: How is this high level sustained if resistant bacteria have reduced growth rates? Given that there are mul...

  20. Preliminary investigation of microbiological effect for radioactive waste disposal system. 1. Experimental investigation of tolerance of some bacterias under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Mihara, Morihiro; Fukunaga, Sakae; Asano, Hidekazu.

    1995-01-01

    Activities and tolerance of some bacteria were investigated under alkaline and reducing conditions for geological disposal. A fermenter was used to control pH and Eh with a liquid culture inoculated with sulphate-reducing bacteria (SRB), methane-producing bacteria (MPB) and sulphur-oxidizing bacteria (SOB). Growth of SRB was obtained at maximum pH 8.6 (Eh -340 mV) or maximum Eh -100 mV (pH 7). Ranges of Eh for the growth of MPB and SOB were estimated to be less than -210 mV at pH8, and more than +240 mV at pH 7.5, respectively. Activity for SOB was not observed in the pH range more than 8. (author)

  1. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  2. Are high rates of sulphate reduction associated with anaerobic oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Devol, A H; Ahmed, S I

    1981-01-01

    Classical models of sulphur diagenesis in marine sediments are based on the assumption that the rate of sulphate reduction is first order with respect to oxidizable particulate organic carbon (POC). This assumption requires that oxidizable POC, sulphate concentration and the sulphate reduction rate be highest at the top of the sulphate reduction zone and decrease exponentially with increasing sediment depth. However, to explain recent observations of concave upwards methane distributions, the anaerobic consumption of methane has been proposed. Furthermore, it has been proposed that this consumption takes place near the bottom of the sulphate reducing zone where sulphate concentrations are low. Thus, if sulphate reducing bacteria are associated with the anaerobic oxidation of methane, a peak in sulphate reduction rate might be expected in this deep consumption zone. The importance of the process in sedimentary sulphur diagenesis is indicated by calculations estimating that 30 to 75% of the downward sulphate flux at depth may be consumed by methane oxidation within this zone. We present here profiles of sulphate reduction rate in anoxic sediments that show distinct local maxima at the depth where the anaerobic oxidation of methane would be expected. Our measurements were made during July and August 1978 in Saanich Inlet, an anoxic fjord located on the south-east of Vancouver Island, British Columbia. The inlet has a shallow sill (approx 70 m) which restricts circulation of the deeper water (maximum depth 225 m) inside the basin to the extent that for about 8 months of the year the bottom waters contain hydrogen sulphide, the inlet is an ideal location for studying sedimentary sulphate reduction because reactions with oxygen and the effects of burrowing organisms can be neglected.

  3. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Wang Aijie; Ren Nanqi; Wang Xu; Lee Duujong

    2008-01-01

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO 4 2- ) ratios. At a critical COD/SO 4 2- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO 4 2- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  4. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  5. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    Science.gov (United States)

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The

  6. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    Science.gov (United States)

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  9. Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows.

    Science.gov (United States)

    Nielsen, L B; Finster, K; Welsh, D T; Donelly, A; Herbert, R A; de Wit, R; Lomstein, B A

    2001-01-01

    Sulphate reduction rates (SRR) and nitrogen fixation rates (NFR) associated with isolated roots, rhizomes and sediment from the rhizosphere of the marine macrophytes Zostera noltii and Spartina maritima, and the presence and distribution of Bacteria on the roots and rhizomes, were investigated. Between 1% and 3% of the surface area of the roots and rhizomes of both macrophytes were colonized by Bacteria. Bacteria on the surfaces of S. maritima roots and rhizomes were evenly distributed, while the distribution of Bacteria on Z. noltii roots and rhizomes was patchy. Root- and rhizome-associated SRR and NFR were always higher than rates in the bulk sediment. In particular, nitrogen fixation associated with the roots and rhizomes was 41-650-fold higher than in the bulk sediment. Despite the fact that sulphate reduction was elevated on roots and rhizomes compared with bulk sediment, the contribution of plant-associated sulphate reduction to overall sulphate reduction was small (< or =11%). In contrast, nitrogen fixation associated with the roots and rhizomes accounted for 31% and 91% of the nitrogen fixed in the rhizosphere of Z. noltii and S. maritima respectively. In addition, plant-associated nitrogen fixation could supply 37-1,613% of the nitrogen needed by the sulphate-reducing community. Sucrose stimulated nitrogen fixation and sulphate reduction significantly in the root and rhizome compartments of both macrophytes, but not in the bulk sediment.

  10. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  11. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  12. The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways

    Directory of Open Access Journals (Sweden)

    Jenčárová Jana

    2015-06-01

    Full Text Available Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB. Other studied process was metal sorption by prepared biogenic sorbent. Mine drainage waters from Slovak localities Banská Štiavnica and Smolník were used to the pollution removal examination. In Banská Štiavnica water, sulphates decreased below the legislative limit. The elimination of zinc by sorption experiments achieved 84 % and 65 %, respectively.

  13. Effect of bactericides on sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, T A; Gareyshina, A Z; Limanov, V Ye; Neizvestnoya, R G; Yalymova, A G

    1980-01-01

    A study was made of the effect on sulfate-reducing bacteria (SRD) of different bactericides under laboratory conditions. The tests were conducted according to the technique developed in the VNIISPTneft'. A total of 36 chemical reagents were checked. The majority of them completely suppressed the growth of the accumulating culture of the SRD with different concentration of bactericide. The reagents which have good bactericidal action were verified for anticorrosion properties and were tested on field water from well 520 and 6334 of the Aznakayevskiy UKPN. The study results indicated that in selecting the dosing of bactericides on the accumulation culture of the SRD, the bactericidal effect is observed with lower concentration than the SRD collected from the near-face well zones.

  14. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  15. Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens

    Directory of Open Access Journals (Sweden)

    Maryam Rezadehbashi

    2018-02-01

    Full Text Available Biochemical reactors (BCRs based on the stimulation of sulphate-reducing microorganisms (SRM are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.

  16. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  17. Focus on CSIR research in pollution and waste: Biological sulphate removal technology

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available stream_source_info Godfrey_2007.Stockholm.pdf.txt stream_content_type text/plain stream_size 3297 Content-Encoding UTF-8 stream_name Godfrey_2007.Stockholm.pdf.txt Content-Type text/plain; charset=UTF-8 Biological.... This treatment process relies on many species of degrading bacteria including the sulphate reducing bacteria (SRB). Fermentation microorganisms using cattle rumen fluid The rumen is a highly cellulytic ecosystem with a complex microbial population...

  18. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  19. High motility reduces grazing mortality of planktonic bacteria

    DEFF Research Database (Denmark)

    Matz, Carsten; Jurgens, K.

    2005-01-01

    We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated...... size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 mum(3). Grazing mortality was lowest for cells of >0.5 mum(3) and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (less than or equal to0.1 mum......(3), >50 mum s(-1)) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing....

  20. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  1. Metals in proteins from sulphate-reducing bacteria: adenylate kinase and ATP sulfurylase. Proteins containing cobalt, zinc, iron (II) ions

    OpenAIRE

    Kladova, Anna Vadymivna

    2009-01-01

    A Thesis submitted at the Faculty Science and Technology of the New University of Lisbon for a degree in Doctor of Philosophy in Biochemistry with specialization in Physical Biochemistry (fellowship BD SFRH/BD/24744/05)- Foundation for Science and Technology

  2. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  3. Isolation of a nitrate-reducing bacteria strain from oil field brine and ...

    African Journals Online (AJOL)

    A nitrate-reducing bacteria (NRB) strain with vigorous growth, strong nitrate reduction ability, strain B9 2-1, was isolated from Suizhong36-1 oilfield, its routine identification and analysis of 16S rRNA and also the competitive inhibition experiments with the enrichment of sulfate-reducing bacteria (SRB) were carried out.

  4. Sulphate chemistry under pressurized oxidizing, reducing and fluctuating conditions; Sulfatkemi under trycksatta oxiderande, reducerande och fluktuerande foerhaallanden

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Yrjas, P.; Backman, P. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In the literature it has been reported that sulfur capture with limestone (CaCO{sub 3}) under atmospheric fluidized bed combustion conditions reaches a maximum at about 850 deg C. Previously, the maximum has been attributed to the sintering of sorbent particles which decreases the reactive surface area. Lately, also another explanation has been reported. In this case the sulfur capture decrease at higher temperatures was concluded to be due to fluctuating oxidizing/reducing conditions in the atmospheric combustor. In this work the influence of alternating oxidizing/reducing conditions on SO{sub 2} capture at atmospheric and elevated pressure (15 bar) has been studied. In the pressurized case, the CO{sub 2} partial pressure was kept high enough to prevent CaCO{sub 3} from calcining and therefore the CaSO{sub 4} would not form CaO but CaCO{sub 3} under reducing conditions. The experiments were done with a pressurized TGA by periodically changing the gas environment between oxidizing (O{sub 2}. SO{sub 2}, CO{sub 2} and N{sub 2}) and slightly reducing (CO, SO{sub 2}, CO{sub 2} and N{sub 2}) gas mixtures at different temperatures. The results from the experiments showed that under normal pressure and slightly reducing conditions CaO formation from CaSO{sub 4} increased with temperature as expected. However, no significant amounts of CaCO{sub 3} were formed from CaSO{sub 4} at elevated pressure. It was also concluded that since the formation of CaO from CaSO{sub 4} was relatively slow it could not explain the sharp sulfur capture maximum at about 850 deg C. Therefore, it was assumed that the strongly reducing zones, where CaS thermodynamically is the stable compound, play a more important role concerning the sulfur capture in fluidized bed combustors. (orig.)

  5. Behavior of plutonium interacting with bentonite and sulfate-reducing anaerobic bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Zheng, J.; Cayer, I.; Fujikawa, Y.; Yoshikawa, H.; Ito, M.

    1997-01-01

    The interactions between sulfate reducing anaerobic bacteria and plutonium, with or without bentonite present, were investigated using distribution coefficients [Kd (ml/g)] as an index of the radionuclide behavior. Plutonium Kds for living bacteria varied within a large range, from 1,804 to 112,952, depending on the pH, while the Kds ranged from 1,180 to 5,931 for dead bacteria. In general, living bacteria had higher plutonium Kds than dead bacteria. Furthermore, the higher Kd values of 39,677 to 106,915 for living bacteria were obtained for a pH range between 6.83 and 8.25, while no visible pH effect was observed for dead bacteria. These Kd values were obtained using tracers for both 236 Pu and 239 Pu, which can check the experimental procedures and mass balance. Another comparison was conducted for plutonium Kd values of mixtures of living bacteria with bentonite and sterilized bacteria with bentonite. The range of Kd values for the non-sterilized bacteria with bentonite were 1,194 to 83,648 while Kd values for the sterilized bacteria with bentonite were from 624 to 17,236. Again, the Kd values for the living bacteria with bentonite were higher than those of sterilized bacteria with bentonite. In other words, the presence of living anaerobic bacteria with bentonite increased, by roughly 50 times, the Kd values of 239 Pu when compared to the mixture of dead bacteria with bentonite. The results indicate that the effects of anaerobic bacteria within the engineered barrier system (in this case bentonite) will play a significant role in the behavior of plutonium in geologic repositories

  6. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  7. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column.

    Science.gov (United States)

    Ommedal, Hege; Torsvik, Terje

    2007-12-01

    A Gram-negative, sulphate-reducing bacterium (strain H3(T)) was isolated from an oil-reservoir model column. The new isolate was able to oxidize toluene coupled to hydrogen sulphide production. For growth, the optimum salt concentration was 1.5 % (w/v), the optimum pH was 7.2 and the optimum temperature was 34 degrees C. The cells were straight to slightly curved rods, 0.6-1.0 microm in diameter and 1.4-2.5 microm in length. The predominant fatty acids were C(16 : 0), C(16 : 1)omega7c and C(17 : 0) cyclo, and the cells also contained dimethylacetals. Cloning and sequencing of a 1505 bp long fragment of the 16S rRNA gene showed that strain H3(T) is a member of the Deltaproteobacteria and is related closely to Desulfotignum balticum DSM 7044(T). The G+C content of the DNA was 52.0 mol% and the DNA-DNA similarity to D. balticum DSM 7044(T) was 56.1 %. Based on differences in DNA sequence and the unique property of toluene degradation, it is proposed that strain H3(T) should be designated a member of a novel species within the genus Desulfotignum, for which the name Desulfotignum toluenicum sp. nov. is proposed. The type strain is H3(T) (=DSM 18732(T)=ATCC BAA-1460(T)).

  8. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kalabegishvili, T.L.; Murusidze, I.G.; Mosulishvili, L.M.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Holman, H.Y.

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  9. Modeling of Solar Radiation Management: A Comparison of Simulations Using Reduced Solar Constant and Stratospheric Sulphate Aerosols

    Science.gov (United States)

    Bala, G.; Kalidindi, S.; Modak, A.; Caldeira, K.

    2014-12-01

    Several climate modelling studies in the past have used reduction in solar constant to simulate the climatic effects of Solar Radiation Management (SRM) geoengineering. This is most likely valid only for space-based mirrors/reflectors but not for SRM methods that rely on stratospheric aerosols. In this study, we use a climate model to evaluate the differences in climate response to SRM by uniform solar constant reduction and stratospheric aerosols. The experiments are designed such that global mean warming from a doubling of atmospheric CO2 concentration (2xCO2) is nearly cancelled in each case. In such a scenario, the residual climate effects are similar when important surface and tropospheric climate variables such as temperature and precipitation are considered. However, there are significant differences in stratospheric temperature response and diffuse and direct radiation reaching the surface. A difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods, with warming in the aerosol scheme and a slight cooling for sunshades. While the global mean surface diffuse radiation increases by ~23% and direct radiation decreases by about 9% in the case of aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 8%) and NPP (~3%) relative to 2xCO2, indicating the negligible effect of the fractional changes in direct/diffuse radiation on the overall plant productivity. Based on our modelling study, we conclude that the climate states produced by a

  10. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  11. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  12. Bacterial sulphate reduction and the development of alkalinity. II. Laboratory experiments with soils

    Energy Technology Data Exchange (ETDEWEB)

    Abd-El-Malek, Y; Rizk, S G

    1963-01-01

    In waterlogged soils sulphate reduction was characterized by increases in counts of sulphate reducers, and increase in titratable alkalinity, insoluble carbonate, and soluble sulphides, and a decrease in soluble Ca/sup 2 +/ + Mg/sup 2 +/. Presence of organic matter greatly enhanced sulphate reduction. A linear relationship between the amount of sulphate reduced and increases in titratable alkalinity and insoluble carbonate were apparent. The potential effects of sulphate reduction on soil fertility through the development of alkalinity are discussed.

  13. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  14. Sulphate reduction experiment: SURE-1

    International Nuclear Information System (INIS)

    Pedersen, K.; Arlinger, J.; Bengtsson, A.; Edlund, J.; Eriksson, L.; Hallbeck, L.; Johansson, J.; Paeaejaervi, A.; Rabe, L.

    2013-11-01

    It was previously concluded that opposing gradients of sulphate and methane, observations of 16S rDNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea, and a peak in sulphide concentration in groundwater from a depth of 250-350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research (SURE-1), pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas, and hydrochemical conditions of groundwater station ONKPVA6. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mM methane, 11 mM methane plus 10 mM H 2 , or 2.1 mM O 2 plus 7.9 mM N 2 (i.e., air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and E h , ATP, numbers of cultivable microorganisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 d. The system containing H 2 and methane displayed microbial reduction of 0.7 mM sulphate to sulphide, while the system containing only methane produced 0.2 mM reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H 2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears possible that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250-350 m in Olkiluoto, but clear evidence of such an AOM process was not obtained. (orig.)

  15. Sulphate reduction experiment: SURE-1

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K.; Arlinger, J.; Bengtsson, A.; Edlund, J.; Eriksson, L.; Hallbeck, L.; Johansson, J.; Paeaejaervi, A.; Rabe, L. [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2013-11-15

    It was previously concluded that opposing gradients of sulphate and methane, observations of 16S rDNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea, and a peak in sulphide concentration in groundwater from a depth of 250-350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research (SURE-1), pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas, and hydrochemical conditions of groundwater station ONKPVA6. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mM methane, 11 mM methane plus 10 mM H{sub 2}, or 2.1 mM O{sub 2} plus 7.9 mM N{sub 2} (i.e., air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and E{sub h}, ATP, numbers of cultivable microorganisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 d. The system containing H{sub 2} and methane displayed microbial reduction of 0.7 mM sulphate to sulphide, while the system containing only methane produced 0.2 mM reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H{sub 2} and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears possible that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250-350 m in Olkiluoto, but clear evidence of such an AOM process was not obtained. (orig.)

  16. Mercury and lead tolerance in hypersaline sulfate-reducing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Harithsa, S.; Kerkar, S.; LokaBharathi, P.A.

    -sporulating, non-motile rods lacking in desulfoviridin and cytochromes. Examination of these isolates for heavy metal tolerance and response studies in terms of growth and sulfate-reducing activity (SRA) were carried out using HgCl sub(2) and Pb(NO sub(3)) sub(2...

  17. Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation

    NARCIS (Netherlands)

    vandenEnde, FP; Meier, J; vanGemerden, H

    Stable co-cultures of the sulfate-reducing bacterium Desulfovibrio desulfuricans PA2805 and the colorless sulfur bacterium Thiobacillus thioparus T5 were obtained in continuous cultures supplied with limiting amounts of lactate and oxygen while sulfate was present in excess. Neither species could

  18. Bacterial sulphate reduction and the development of alkalinity. I. Experiments with synthetic media

    Energy Technology Data Exchange (ETDEWEB)

    Abd-El-Malek, Y; Rizk, S G

    1963-01-01

    In liquid cultures of desulphovibrio desulphuricans the effects of the following on sulphate reduction were determined: The type of cation (ca++ or na+) attached to the sulphate ion; the presence of calcium carbonate alone and with sodium chloride; the concentration of sodium sulphate, sodium lactate and sodium chloride; and the initial pH. The titratable alkalinity formed as a result of sulphate reduction was found to be quantitatively related to the sulphate reduced, and apparently unaffected by strain variation or energy source.

  19. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao

    2000-07-01

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  20. Toxicology studies of primycin-sulphate using a three-dimensional (3D) in vitro human liver aggregate model.

    Science.gov (United States)

    Pénzes, Ágota; Mahmud Abdelwahab, Elhusseiny Mohamed; Rapp, Judit; Péteri, Zsanett A; Bovári-Biri, Judit; Fekete, Csaba; Miskei, György; Kvell, Krisztián; Pongrácz, Judit E

    2017-11-05

    Primycin-sulphate is a highly effective compound against Gram (G) positive bacteria. It has a potentially synergistic effect with vancomycin and statins which makes primycin-sulphate a potentially very effective preparation. Primycin-sulphate is currently used exclusively in topical preparations. In vitro animal hepatocyte and neuromuscular junction studies (in mice, rats, snakes, frogs) as well as in in vitro human red blood cell experiments were used to test toxicity. During these studies, the use of primycin-sulphate resulted in reduced cellular membrane integrity and modified ion channel activity. Additionally, parenteral administration of primycin-sulphate to mice, dogs, cats, rabbits and guinea pigs indicated high level of acute toxicity. The objective of this study was to reveal the cytotoxic and gene expression modifying effects of primycin-sulphate in a human system using an in vitro, three dimensional (3D) human hepatic model system. Within the 3D model, primycin-sulphate presented no acute cytotoxicity at concentrations 1μg/ml and below. However, even at low concentrations, primycin-sulphate affected gene expressions by up-regulating inflammatory cytokines (e.g., IL6), chemokines (e.g., CXCL5) and by down-regulating molecules of the lipid metabolism (e.g., peroxisome proliferator receptor (PPAR) alpha, gamma, etc). Down-regulation of PPAR alpha cannot just disrupt lipid production but can also affect cytochrome P450 metabolic enzyme (CYP) 3A4 expression, highlighting the need for extensive drug-drug interaction (DDI) studies before human oral or parenteral preparations can be developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    NARCIS (Netherlands)

    Ozuolmez, D.; Na, H.; Lever, M.A.; Kjeldsen, K.U.; Jørgensen, B.B.; Plugge, C.M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and

  2. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis.

    LENUS (Irish Health Repository)

    Duffy, M

    2012-02-03

    PURPOSE: Ileal pouch-anal anastomosis remains the "gold standard" in surgical treatment of ulcerative colitis and familial adenomatous polyposis. Pouchitis occurs mainly in patients with a background of ulcerative colitis, although the reasons for this are unknown. The aim of this study was to characterize differences in pouch bacterial populations between ulcerative colitis and familial adenomatous pouches. METHODS: After ethical approval was obtained, fresh stool samples were collected from patients with ulcerative colitis pouches (n = 10), familial adenomatous polyposis (n = 7) pouches, and ulcerative colitis ileostomies (n = 8). Quantitative measurements of aerobic and anaerobic bacteria were performed. RESULTS: Sulfate-reducing bacteria were isolated from 80 percent (n = 8) of ulcerative colitis pouches. Sulfate-reducing bacteria were absent from familial adenomatous polyposis pouches and also from ulcerative colitis ileostomy effluent. Pouch Lactobacilli, Bifidobacterium, Bacteroides sp, and Clostridium perfringens counts were increased relative to ileostomy counts in patients with ulcerative colitis. Total pouch enterococci and coliform counts were also increased relative to ileostomy levels. There were no significant quantitative or qualitative differences between pouch types when these bacteria were evaluated. CONCLUSIONS: Sulfate-reducing bacteria are exclusive to patients with a background of ulcerative colitis. Not all ulcerative colitis pouches harbor sulfate-reducing bacteria because two ulcerative colitis pouches in this study were free of the latter. They are not present in familial adenomatous polyposis pouches or in ileostomy effluent collected from patients with ulcerative colitis. Total bacterial counts increase in ulcerative colitis pouches after stoma closure. Levels of Lactobacilli, Bifidobacterium, Bacteroides sp, Clostridium perfringens, enterococci, and coliforms were similar in both pouch groups. Because sulfate-reducing bacteria are

  3. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  4. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  5. One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    NARCIS (Netherlands)

    Visser, M.

    2015-01-01

    ABSTRACT

    One-carbon metabolism in acetogenic and sulfate-reducing bacteria

    Life on earth is sustained by the constant cycling of six essential elements: oxygen, hydrogen, nitrogen,

  6. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    Science.gov (United States)

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  7. Sulfate-reducing bacteria inhabiting natural corrosion depostis from marine steel structures

    NARCIS (Netherlands)

    Païssé, S.; Ghiglione, J.-F.; Marty, F.; Abbas, B.; Gueuné, H.; Sanchez Amaya, J.; Muyzer, G.; Quillet, L.

    2013-01-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically

  8. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...

  9. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    Science.gov (United States)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  10. 16S RRNA Gene Analysis of Chlorate Reducing Thermophilic Bacteria From Local Hot Spring

    OpenAIRE

    Aminin, Agustina L. N; Katulistiwasari, Puri; Mulyani, Nies Suci

    2011-01-01

    Chlorates waste remediation by biological processes has been the object of current research. Strain CR, the chlorate reducing bacteria was isolated from Gedongsongo hot spring using minimal medium broth containing chlorates and acetate at 55oC. The determination of chlorate reduction from medium was carried out using turbidimetric method. CR isolate showed reducing ability 18% after four days of incubation. The phenotypic character of CR isolate including rod-shaped cells, gram-positive bacte...

  11. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  12. Post traumatic tetanus and role magnesium sulphate

    International Nuclear Information System (INIS)

    Sikendr, R.I.; Samad, B.U.; Memon, M.I.

    2009-01-01

    Tetanus is a life threatening disease. Reported mortality for tetanus is 15-39%. Conventional treatment includes heavy sedation and artificial ventilation. Complications resulting from long term heavy sedation and artificial ventilation contribute to 60% of the total mortality caused by tetanus. In this study magnesium sulphate was used to reduce the need for sedation and artificial ventilation. Objectives of this prospective study were to determine the role of magnesium sulphate in post traumatic tetanus. The study was carried out in surgical Intensive Care at Pakistan Institute of Medical Sciences (PIMS), Islamabad from Jan 2004 to Dec 2007. Forty-four patients presented during this period and 33 patients were included in the study. All patients had tracheostomy done within 48 hours. Every patient was started Magnesium Sulphate therapy for control of spasms after sending baseline investigations. Patients were given ventilatory support when needed. All data was entered in well structured proforma. SPSS-10 was used to analyse data. Thirty-three patients were included in the study and all patients were given magnesium sulphate. Out of these, 45.5% cases were grade 4 tetanus, 73.6% and 63.3% cases did not require artificial ventilation and additional sedation respectively, 51.1% patients remained free of complications of tetanus. Overall mortality was 30.3%. Use of Magnesium Sulphate is safe and reduces the need for sedation and artificial ventilation in high grade tetanus thus contributing to survival benefit in adult post-traumatic tetanus cases. (author)

  13. Thermometric titration of sulphate.

    Science.gov (United States)

    Williams, M B; Janata, J

    1970-06-01

    Direct thermometric titration of sulphate with a solution of barium perchlorate is proposed. The stoichiometry of the titration is shown to be critically dependent on the concentration of ethanol in the titration medium. The titration is rapid and suffers from only a few interferences.

  14. Removal of radium from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    Weir, D.R.; Masters, J.T.; Neven, M.

    1983-01-01

    Radium is often present in ores and an aqueous solution associated with the ore may consequently contain dissolved radium. It is frequently necessary to remove radium from such solutions to reduce the total radium content to a prescribed low level before the solution can be returned to the environment. The present invention is based on the discovery that the total radium content can be reduced to a satisfactory level within a reasonable time by adding a soluble barium salt to a radium-containing sulphate solution which also contains dissolved magnesium at a pH not greater than about 0 to precipitate radium as barium radium sulphate, raising the pH to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate, and separating substantially all of the precipitates from the solution

  15. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  16. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  17. Osteopontin Reduces the Adhesion Force of Dental Bacteria Without Blocking Bacterial Cell Surface Glycoconjugates

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Zeng, Guanghong; Neu, Thomas R.

    2017-01-01

    . paracasei, and lectins VGA and WGA to S. mitis. Immobilized bacteria were incubated with these lectins in the presence and absence of OPN. For each combination, 12 confocal images were acquired with fixed microscope settings, and average fluorescence intensities were determined. Experiments were performed......The bovine milk protein osteopontin (OPN) has been shown to reduce the adhesion of oral bacteria to saliva-coated surfaces, which reduces biofilm formation and may contribute to caries control. We now quantified the effect of OPN (Lacprodan OPN-10) treatment on the adhesion force of Lactobacillus...... and after OPN treatment. Adhesion energy was found to be reduced by 94% for L. paracasei and 61% for A. naeslundii (pbacteria was screened. Lectins BanLec, ConA, VGA and WGA bound well to A. naeslundii, lectins ABA and HPA to L...

  18. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  19. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  20. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    Science.gov (United States)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  1. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  2. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  3. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth...... of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction, The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments, The results frorn sediment incubations were...... compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain Itk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28 degrees C in short-term incubations, even though it could not grow at temperatures above 24 degrees...

  4. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Boopathy, R. [Argonne National Lab., IL (United States); Kulpa, C.F. [Notre Dame Univ., IN (United States). Dept. of Biological Sciences

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  5. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    International Nuclear Information System (INIS)

    Boopathy, R.; Kulpa, C.F.

    1994-01-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO 2 . Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions

  6. Minocycline HCl microspheres reduce red-complex bacteria in periodontal disease therapy.

    Science.gov (United States)

    Goodson, J Max; Gunsolley, John C; Grossi, Sara G; Bland, Paul S; Otomo-Corgel, Joan; Doherty, Frances; Comiskey, Judy

    2007-08-01

    The objective of this trial was to measure the antimicrobial effects of a minocycline HCl microsphere (MM) local drug-delivery system when used as an adjunct to scaling and root planing (SRP). DNA probe analysis for 40 bacteria was used to evaluate the oral bacteria of 127 subjects with moderate to advanced chronic periodontitis. Subjects were randomly assigned to either SRP alone (N = 65) or MM + SRP (N = 62). The primary endpoints of this study were changes in numbers and proportions of the red-complex bacteria (RCB) and the sum of Porphyromonas gingivalis, Tannerella forsythia (formally T. forsythensis), and Treponema denticola relative to 40 oral bacteria at each test site from baseline to day 30. Numbers of RCB from the five test sites were averaged to provide a value for each subject. MM + SRP reduced the proportion of RCB by 6.49% and the numbers by 9.4 x 10(5). The reduction in RCB proportions and numbers by SRP alone (5.03% and 5.1 x 10(5), respectively) was significantly less. In addition, MM + SRP reduced probing depth by 1.38 mm (compared to 1.01 mm by SRP alone), bleeding on probing was reduced by 25.2% (compared to 13.8% by SRP alone), and a clinical attachment level gain of 1.16 mm (compared to 0.80 mm by SRP alone) was achieved. These observations support the hypothesis that RCBs are responsible for periodontal disease and that local antimicrobial therapy using MM + SRP effectively reduces numbers of RCBs and their proportions to a greater extent than SRP alone.

  7. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  8. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    OpenAIRE

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously...

  9. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Liu, H.; Hu, Y.; Zhou, L.; Zheng, B. [Department of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15

    Sulfate-reducing bacteria (SRB) have been identified as the main corrosive microorganisms causing unpredictable failure of materials. In this present work, a strain of thermophile SRB isolated from Bohai oilfield of China has been characterized and preliminarily identified. Furthermore, its effects on carbon steel at 60 C in SRB culture media were studied by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), and weight loss measurements. The results show that the bacteria belong to Desulfotomaculum. The optimum growth temperature and pH of the bacteria were 60 C and 7.0, respectively. Weight loss measurements suggested that the corrosion rate of carbon steel in the culture media inoculated with thermophile SRB at 60 C was 2.2 times less than that at 37 C. At 60 C, SRB shifted the freely corroding potential of carbon steel toward a more positive value in the first 10 days, which later change to a negative value. Results obtained from potentiodynamic polarization and EIS were in good agreement. The changes in biofilm structure with increase in bacteria supply offers some kind of protection to the base material in the early culture days at 60 C. Subsequently, it accelerated corrosion. Energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods indicate that corrosion products such as iron sulfides (FeS{sub x}) in biofilm play an important role in the biocorrosion process. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. EFFICACY OF ENDOPHYTIC BACTERIA IN REDUCING PLANT PARASITIC NEMATODE Pratylenchus brachyurus

    Directory of Open Access Journals (Sweden)

    Rita Harni

    2014-04-01

    Full Text Available Pratylenchus brachyurus is a major parasitic nematode on patchouli that reduces plant production up to 85%. The use of endophytic bacteria is promising for controlling nematode and promoting plant growth through production of phytohormones and enhancing the availability of soil nutrients. The objective of the study was to evaluate the efficacy of endophytic bacteria to control P. brachyurus on patchouli plant and its influence on plant productions (plant fresh weight and patchouli oil. The study was conducted at Cimanggu Experimental Garden and Laboratory of the Indonesian Spice and Medicinal Crops Research Institute (ISMECRI, Bogor, West Java. The experi-ment was designed in a randomized block with seven treatments and eight replications; each replication consisted of 10 plants. The treatments evaluated were five isolates of endophytic bacteria (Achromobacter xylosoxidans TT2, Alcaligenes faecalis NJ16, Pseudomonas putida EH11, Bacillus cereus MSK and Bacillus subtilis NJ57, synthetic nematicide as a reference, and non-treated plant as a control.  Four-week old patchouli plants of cv. Sidikalang were treated by soaking the roots in suspension of endophytic bacteria (109 cfu  ml-1 for one hour before trans-planting to the field. At one month after planting, the plants were drenched with the bacterial suspension as much as 100 ml per plant. The results showed that applications of the endophytic bacteria could suppress the nematode populations (52.8-80% and increased plant weight (23.62-57.48% compared to the control. The isolate of endophytic bacterium Achromobacter xylosoxidans TT2 was the best and comparable with carbofuran.

  11. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  12. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    Science.gov (United States)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  13. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  14. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Science.gov (United States)

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A; Kjeldsen, Kasper U; Jørgensen, Bo B; Plugge, Caroline M

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  15. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    Directory of Open Access Journals (Sweden)

    Derya eOzuolmez

    2015-05-01

    Full Text Available Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744, a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria.

  16. Differences in the behavior of 233Pa, 237Np and 239 Pu in bentonite contaminated by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Kudo, A.; Fujikawa, Y.; Takigami, H.; Zheng, J.; Asano, H.; Arai, K.; Yoshikawa, H.; Ito, M.

    1998-01-01

    The behaviors of 233 Pa, 237 Np and 239 Pu in high level radioactive wastes from nuclear fuel reprocessing were investigated by a laboratory experiment. Radioactive wastes are glassified and disposed of in geological repositories encased in bentonite as an additional artificial barrier to protect the environment. There is, however, the possibility that some anaerobic bacteria, especially sulfate-reducing bacteria, may flourish within the bentonite during the long disposal period (more than a century). The effects of sulfate-reducing bacteria on the behavior of the radionuclides within bentonite were investigated using the distribution coefficient (Kd) of 233 Pa, 237 Np and 239 Pu. The Kd was obtained with a 0.22 m membrane filter separating radionuclide contents in solid and liquid phases. The anaerobic bacteria, including sulfate-reducing bacteria, used for this investigation originated from the anaerobic treatment of pulp and paper waste and operated for more than one year at Eh around -85 mV. The bentonite used for this study was produced in Japan. The active anaerobic bacteria clearly accumulates considerable amounts of 233 Pa and 239 Pu by producing high Kd values of nearly 100,000, while Kds of 233 Pa and 239 Pu for the sterilized anaerobic bacteria were less than 10,000. In other words, live anaerobic bacteria can hold considerably higher amounts of the radionuclides compared to dead bacteria. Furthermore, high Kd values were obtained for anaerobic bacteria at pH 5-9. In contrast, Kd values for the radionuclide 237 Np were not influenced by the anaerobic bacteria but were controlled by chemical environmental conditions such as like pH. Another comparison was conducted for the radionuclides for mixtures of non-sterilized bacteria with bentonite. (author)

  17. Initial cytotoxicity assays of media for sulfate-reducing bacteria: An endodontic biopharmaceutical product under development.

    Science.gov (United States)

    Heggendorn, Fabiano Luiz; Silva, Gabriela Cristina de Carvalho; Cardoso, Elisama Azevedo; Castro, Helena Carla; Gonçalves, Lúcio Souza; Dias, Eliane Pedra; Lione, Viviane de Oliveira Freitas; Lutterbach, Márcia Teresa Soares

    2016-01-01

    This study assessed the cell viability of the inoculation vehicle of BACCOR (a combination of sulfate-reducing bacteria plus a culture media for bacteria), a biopharmaceutical product under development for dental use as aid in fractured endodontic file removal from the root canal. Different culture media for bacteria were evaluated: modified Postgate E (MCP-E mod), Modified Postgate E without Agar-agar (MCP-E w/Ag), Postgate C with Agar-agar (MCP-C Ag) and Postgate C without Agar-agar (MCP-C w/Ag). Cytotoxicity was quantified by the MTT test, exposing L929 and Vero cell lines to the vehicles over 24 h. The exposure of L929 cell line to MCP-E w/Ag resulted in biocompatibility (52% cell viability), while the exposure of the Vero kidney line revealed only MCP-E mod as cytotoxic. When diluted, all the vehicles showed biocompatibility with both cell lines. MCP-E w/Ag was the vehicle chosen for BACCOR, because of its biocompatibility with the cells used.

  18. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  19. Reduction and precipitation of neptunium(V) by sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Banaszak, J. E.; Rittmann, B. E.; Reed, D. T.

    1999-01-01

    Migration of neptunium, as NpO 2 + , has been identified as a potentially important pathway for actinide release at nuclear waste repositories and existing sites of subsurface contamination. Reduction of Np(V) to Np(IV) will likely reduce its volubility, resulting in lowered subsurface migration. The ability of sulfate-reducing bacteria (SRB) to utilize Np(V) as an electron acceptor was investigated, because these bacteria are active in many anaerobic aquifers and are known to facilitate the reduction of metals and radionuclides. Pure and mixed cultures of SRB were able to precipitate neptunium during utilization of pyruvate, lactate, and hydrogen as electron donors in the presence and absence of sulfate. The neptunium in the precipitate was identified as Np(IV) using X-ray absorption near edge spectroscopy (XANES) analysis. In mixed-culture studies, the addition of hydrogen to consortia grown by pyruvate fermentation stimulated neptunium reduction and precipitation. Experiments with pure cultures of Desulfovibrio vulgaris, growing by lactate fermentation in the absence of sulfate or by sulfate reduction, confirm that the organism is active in neptunium reduction and precipitation. Based on our results, the activity of SRB in the subsurface may have a significant, and potentially beneficial, impact on actinide mobility by reducing neptunium volubility

  20. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    Science.gov (United States)

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  1. Molecular Characterization of Sulfate-Reducing Bacteria in the Guaymas Basin†

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing. PMID:12732547

  2. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin

    Science.gov (United States)

    Dhillon, Ashita; Teske, Andreas; Dillon, Jesse; Stahl, David A.; Sogin, Mitchell L.

    2003-01-01

    The Guaymas Basin (Gulf of California) is a hydrothermal vent site where thermal alteration of deposited planktonic and terrestrial organic matter forms petroliferous material which supports diverse sulfate-reducing bacteria. We explored the phylogenetic and functional diversity of the sulfate-reducing bacteria by characterizing PCR-amplified dissimilatory sulfite reductase (dsrAB) and 16S rRNA genes from the upper 4 cm of the Guaymas sediment. The dsrAB sequences revealed that there was a major clade closely related to the acetate-oxidizing delta-proteobacterial genus Desulfobacter and a clade of novel, deeply branching dsr sequences related to environmental dsr sequences from marine sediments in Aarhus Bay and Kysing Fjord (Denmark). Other dsr clones were affiliated with gram-positive thermophilic sulfate reducers (genus Desulfotomaculum) and the delta-proteobacterial species Desulforhabdus amnigena and Thermodesulforhabdus norvegica. Phylogenetic analysis of 16S rRNAs from the same environmental samples resulted in identification of four clones affiliated with Desulfobacterium niacini, a member of the acetate-oxidizing, nutritionally versatile genus Desulfobacterium, and one clone related to Desulfobacula toluolica and Desulfotignum balticum. Other bacterial 16S rRNA bacterial phylotypes were represented by non-sulfate reducers and uncultured lineages with unknown physiology, like OP9, OP8, as well as a group with no clear affiliation. In summary, analyses of both 16S rRNA and dsrAB clone libraries resulted in identification of members of the Desulfobacteriales in the Guaymas sediments. In addition, the dsrAB sequencing approach revealed a novel group of sulfate-reducing prokaryotes that could not be identified by 16S rRNA sequencing.

  3. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  4. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  5. Seasonal variations of nitrate reducing and denitrifying bacteria utilizing hexadecane in Mandovi estuary, Goa, West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sousa, T.D.; Ingole, B.; Sousa, S.D.; Bhosle, S.

    > cfu/ml on minimal media containing hexadecane as the sole carbon source. Highest bacterial counts were obtained during the monsoons. 22% of bacteria capable of hexadecane utilization were nitrate reducing and 12% were denitrifying. 29...

  6. Experimental investigation on the active range of sulfate-reducing bacteria for geological disposal

    International Nuclear Information System (INIS)

    Fukunaga, S.; Fujiki, K.; Asano, H.; Yoshikawa, H.

    1995-01-01

    The active range of Desulfovibrio desulfuricans, a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels. SRB activity was estimated at 35 C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely. A chart was obtained showing the active range of Desulfovibrio desulfuricans in terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified

  7. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  8. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    Science.gov (United States)

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  9. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    sulphate-reducing bacteria (SRB) and groundwater mixing from shallow marine and deeper, older groundwater sources during tunnel construction. These isotope changes were likely induced by the up-coning of deeper saline water and the inflow of Baltic Sea water to an intermediate depth (e.g., 200-400 m) at Aspo. The increase in δ 34 S isotope values of dissolved SO 4 2- , peaking at +28 per mille CDT (probably due to position of the tunnel below the Baltic Sea), was accompanied by a decrease in sulphate concentration in many places and, in some samples, also by changes in bicarbonate concentration, all of which are evidence of microbial sulphate reduction

  10. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    Science.gov (United States)

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously reported strains, the nine new strains did not require cholesterol and an alkenyl ether lipid (e.g., plasmalogen) for growth; however, only two strains reduced cholesterol in the absence of the plasmalogen. These two strains also produced succinate as an end product. Carbohydrate fermentation was variable; some strains produced weak acid (pH 5.5 to 6.0) from only a few carbohydrates, whereas other strains produced strong acid reactions (pH less than or equal to 5.5) from a wide variety of carbohydrates.

  11. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines

    Directory of Open Access Journals (Sweden)

    Renxing eLiang

    2014-03-01

    Full Text Available Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55 oC. Most-probable number (MPN analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy, while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm2, while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  12. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines.

    Science.gov (United States)

    Liang, Renxing; Grizzle, Robert S; Duncan, Kathleen E; McInerney, Michael J; Suflita, Joseph M

    2014-01-01

    Thermophilic sulfide-producing microorganisms from an oil pipeline network were enumerated with different sulfur oxyanions as electron acceptors at 55°C. Most-probable number (MPN) analysis showed that thiosulfate-reducing bacteria were the most numerous sulfidogenic microorganisms in pipeline inspection gauge (PIG) scrapings. Thiosulfate-reducing and methanogenic enrichments were obtained from the MPN cultures that were able to use yeast extract as the electron donor. Molecular analysis revealed that both enrichments harbored the same dominant bacterium, which belonged to the genus Anaerobaculum. The dominant archaeon in the methanogenic enrichment was affiliated with the genus Methanothermobacter. With yeast extract as the electron donor, the general corrosion rate by the thiosulfate-reducing enrichment (8.43 ± 1.40 milli-inch per year, abbreviated as mpy) was about 5.5 times greater than the abiotic control (1.49 ± 0.15 mpy), while the comparable measures for the methanogenic culture were 2.03 ± 0.49 mpy and 0.62 ± 0.07 mpy, respectively. Total iron analysis in the cultures largely accounted for the mass loss of iron measured in the weight loss determinations. Profilometry analysis of polished steel coupons incubated in the presence of the thiosulfate-reducing enrichment revealed 59 pits over an area of 71.16 mm(2), while only 6 pits were evident in the corresponding methanogenic incubations. The results show the importance of thiosulfate-utilizing, sulfide-producing fermentative bacteria such as Anaerobaculum sp. in the corrosion of carbon steel, but also suggest that Anaerobaculum sp. are of far less concern when growing syntrophically with methanogens.

  13. Effectiveness of a pre-procedural mouthwash in reducing bacteria in dental aerosols: randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Belén RETAMAL-VALDES

    2017-03-01

    Full Text Available Abstract The aim of this randomized, single blinded clinical trial was to evaluate the effect of a pre-procedural mouthwash containing cetylpyridinium chloride (CPC, zinc lactate (Zn and sodium fluoride (F in the reduction of viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler. Sixty systemically healthy volunteers receiving dental prophylaxis were randomly assigned to one of the following experimental groups (15 per group: (i rinsing with 0.075% CPC, 0.28% Zn and 0.05% F (CPC+Zn+F, (ii water or (iii 0.12% chlorhexidine digluconate (CHX, and (iv no rinsing. Viable bacteria were collected from different locations in the dental office on enriched TSA plates and anaerobically incubated for 72 hours. The colonies were counted and species were then identified by Checkerboard DNA–DNA Hybridization. The total number of colony-forming units (CFUs detected in the aerosols from volunteers who rinsed with CPC+Zn+F or CHX was statistically significantly (p<0.05 lower than of those subjects who did not rinse or who rinsed with water. When all locations were considered together, the aerosols from the CPC+Zn+F and CHX groups showed, respectively, 70% and 77% fewer CFUs than those from the No Rinsing group and 61% and 70% than those from the Water group. The mean proportions of bacterial species from the orange complex were statistically significantly (p<0.05 lower in aerosols from the CPC+Zn+F and CHX groups compared with the others two groups. In conclusion, the mouthwash containing CPC+Zn+F, is effective in reducing viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler.

  14. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  15. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  16. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    Science.gov (United States)

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  17. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment

    International Nuclear Information System (INIS)

    Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R.

    2016-01-01

    Highlights: • The present study demonstrated the high reductive capacity of both strains: the collection S. oneidensis and the wild strain Geobacter spp. (soil isolate). • The experimental strains were successful in Fe 3+ reduction for both states: soluble and crystalline (originally prepared from rust). • Rust dissolution can be improved by: addition of AFC at low concentration (0.2 g/l), increasing bacterial initial inoculum and rust reactive surface. • Both experimental IRB strains were able to completely remove previously formed rust on carbon steel coupons. • Additional results (not showed) revealed that culture S. oneidensis and the environmental isolate Geobacter spp., apparently have a different mechanism of iron reduction that requires further study. - Abstract: Iron reducing bacteria (IRB), to be used in rust dissolution and removal, have been isolated and enriched from different environmental sources. Comparative measurements revealed that a soil isolate (Geobacter sulfurreducens sp.) had the highest reductive activity equivalent to Shewanella oneidensis (strain CIP 106686, pure culture). Both reductive microorganisms can use Fe 3+ ions as electron acceptors from soluble as well as from crystalline sources. In nutrient medium containing soluble Fe 3+ , the highest reductive activity obtained for G. sulfurreducens sp. and S. oneidensis was 93 and 97% respectively. Successful removal of rust from carbon steel coupons has been achieved with both experimental bacteria.

  19. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    Science.gov (United States)

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  20. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    Science.gov (United States)

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  1. Corrosion of 2205 Duplex Stainless Steel Weldment in Chloride Medium Containing Sulfate-Reducing Bacteria

    Science.gov (United States)

    Antony, P. J.; Singh Raman, R. K.; Kumar, Pradeep; Raman, R.

    2008-11-01

    Influence of changes in microstructure caused due to welding on microbiologically influenced corrosion of a duplex stainless steel was studied by exposing the weldment and parent metal to chloride medium containing sulfate-reducing bacteria (SRB). Identically prepared coupons (same area and surface finish) exposed to sterile medium were used as the control. Etching-type attack was observed in the presence of SRB, which was predominant in the heat-affected zone (HAZ) of the weldment. The anodic polarization studies indicated an increase in current density for coupon exposed to SRB-containing medium as compared to that obtained for coupon exposed to sterile medium. The scanning electron microscopy (SEM) observations after anodic polarization revealed that the attack was preferentially in the ferrite phase of HAZ of the weldment, whereas it was restricted to the austenite phase of the parent metal.

  2. G model revisited: Seasonal changes in the kinetics of sulphate-reducing activity in the salterns of Ribander,Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, S.; LokaBharathi, P.A.

    . Antonie van Leeuwenhoek. J. Microbial Serol 302:225- 238. Schubert C, Ferdelman TG, Strotmann B. 2000. Organic matter compostion and sulfate reducing rates in sediments off Chile. Organic Geochem 31: 351-361. Skyring GW. 1987. Sulfate reduction...

  3. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.

    Science.gov (United States)

    Paulo, Ana M S; Aydin, Rozelin; Dimitrov, Mauricio R; Vreeling, Harm; Cavaleiro, Ana J; García-Encina, Pedro A; Stams, Alfons J M; Plugge, Caroline M

    2017-06-01

    The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L -1 , to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A 2 /O) concept. In the 50 mg L -1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L -1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L -1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L -1 . Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L -1 . The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.

  4. Quicklime treatment and stirring of different poultry litter substrates for reducing pathogenic bacteria counts.

    Science.gov (United States)

    Lopes, M; Roll, V F B; Leite, F L; Dai Prá, M A; Xavier, E G; Heres, T; Valente, B S

    2013-03-01

    Testing different management practices can help to identify conditions that decrease or even eliminate pathogenic bacteria in poultry litter. A trial was conducted to evaluate the effects of daily manual stirring (rotation of the litter with a pitchfork) for the first 14 d of a bird's life (WDR), in 3 types of poultry litter substrates and quicklime treatment (CaO) during layout time between flocks on pathogenic bacteria occurrence (cfu). A total of 216 male Cobb broilers were randomly allotted to 18 pens with new litter (experimental unit). A split-plot design, with 6 treatments allotted to the main plots, was used: 1) wood shavings (WS) + WDR, 2) WS without stirring up to 14 d (WODR), 3) rice hulls (RIH) + WDR, 4) RIH + WODR, 5) mixture of 50% RIH and WS + WDR, and 6) mixture of 50% RIH and WS + WODR. Two treatments were allotted to the subplots: 0 and 300 g of CaO•m(-2) litter. After depopulation, litter samples were collected, and CaO was incorporated into the litter in the designated half of each pen. The cfu from litter samples after 7 d of the quicklime treatment were counted on Chapman agar, brain heart infusion media, and MacConkey agar. The data were analyzed using ANOVA, and the means were compared by least squares means (P litter efficiently reduced the cfu observed on brain heart infusion, Chapman agar, and MacConkey agar media by 57.2, 66.9, and 92.1%, respectively, compared with control (6.4, 17.9, and 46.1%; P litter reduces the cfu, regardless of the substrate and stirring performed.

  5. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    Science.gov (United States)

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  6. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  8. CHROMIUM(VI REDUCTION BY A MIXED CULTURE OF SULFATE REDUCING BACTERIA DEVELOPED IN COLUMN REACTOR

    Directory of Open Access Journals (Sweden)

    Cynthia Henny

    2008-03-01

    Full Text Available A lactate enriched mixed sulfate reducing bacteria (SRB culture was examined for the reduction of Cr(VI in a continuous flow system. The influent was mineral salts media added with lactate and sulfate with amounts of 8 and 6 mM respectively as electron donor and electron acceptor. The SRB culture was allowed to stabilize in the column before adding the Cr(VI to the influent. Chromium and sulfate reduction and lactate oxidation were examined by measuring the concentrations of Cr(Vl, sulfate and lactate in the influent and the effluent over time. The experiment was discontinued when Cr(VI concentration in the effiuent was breakthrough. In the absence of Cr(VI, sulfate was not completely reduced in the column, although lactate was completely oxidized and acetate as an intermediate product was not often detected. Almost all of Cr(VI loaded was reduced in the column seeded with the SRB culture at influent Cr(VI concentrations of 192,385 and769 mM. There was no significant Cr(VI loss in the control column, indicating that Cr(VI removal was due to the reduction of Cr(VI to Cr (lll by the SRB culture. The instantaneous Cr(VI removal decreased to a minimum of 32%, 24 days after the influent Cr(VI concentration was increased to 1540 mM, ancl sulfate removal efficiency decreased to a minimum of 17%. The SRB population in the column decreased 100 days after C(VI was added to the column. The total mass of Cr(VI reduced was approximately 878 mmol out of 881 mmol of Cr(Vl loaded in 116 days. The results clearly show that our developed SRB culture could reduced Cr(Vl considerably.

  9. Treatment with magnesium sulphate in pre-term birth

    DEFF Research Database (Denmark)

    Wolf, Hans; Hegaard, H K; Greisen, G

    2012-01-01

    Premature birth increases a child's risk of cerebral palsy and death. The aim of this work is to investigate the association between treatment with magnesium sulphate during premature deliveries and infants' cerebral palsy and mortality through a meta-analysis of observational studies....... A comprehensive search of the Cochrane Library, EMBASE and the PubMed database from their inceptions to 1 October, 2010 using the keywords 'magnesium sulphate, children/infant/pre-term/premature and cerebral palsy/mortality/morbidity/adverse effects/outcome' identified 11 reports of observational studies. Two...... authors working independently extracted the data. A meta-analysis of the data found an association between magnesium sulphate treatment and a significantly reduced risk of mortality (RR 0.73; 95% CI 0.61-0.89) and cerebral palsy (OR 0.64; 95% CI 0.47-0.89). Antenatal treatment with magnesium sulphate...

  10. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  11. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm.

    Science.gov (United States)

    Guo, Zhiling; Xie, Changjian; Zhang, Peng; Zhang, Junzhe; Wang, Guohua; He, Xiao; Ma, Yuhui; Zhao, Bin; Zhang, Zhiyong

    2017-02-15

    Impact of graphene based material (GNMs) on bacteria biofilm has not been well understood yet. In this study, we compared the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on biofilm formation and development in Luria-Bertani (LB) medium using Escherichia coli and Staphylococcus aureus as models. GO significantly enhanced the cell growth, biofilm formation, and biofilm development even up to a concentration of 500mg/L. In contrast, rGO (≥50mg/L) strongly inhibited cell growth and biofilm formation. However, the inhibitory effects of rGO (50mg/L and 100mg/L) were attenuated in the mature phase (>24h) and eliminated at 48h. GO at 250mg/L decreased the reactive oxygen species (ROS) levels in biofilm and extracellular region at mature phase. ROS levels were significantly increased by rGO at early phase, while they returned to the same levels as control at mature phase. These results suggest that oxidative stress contributed to the inhibitory effect of rGO on bacterial biofilm. We further found that supplement of extracellular polymeric substances (EPS) in the growth medium attenuated the inhibitory effect of rGO on the growth of developed biofilm. XPS results showed that rGO were oxidized to GO which can enhance the bacterial growth. We deduced that the elimination of the toxicity of rGO at mature phase was contributed by EPS protection and the oxidation of rGO. This study provides new insights into the interaction of GNMs with bacteria biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  13. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  14. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    Science.gov (United States)

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  15. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arnauld Vinçon-Laugier

    2017-08-01

    Full Text Available The occurrence of non-isoprenoid alkyl glycerol ether lipids in Bacteria and natural environments is increasingly being reported and the specificity and diagenetic stability of these lipids make them powerful biomarkers for biogeochemical and environmental studies. Yet the environmental controls on the biosynthesis of these peculiar membrane lipids remain poorly documented. Here, the lipid content of two mesophilic (Desulfatibacillum aliphaticivorans and Desulfatibacillum alkenivorans and one thermophilic (Thermodesulfobacterium commune sulfate-reducing bacteria—whose membranes are mostly composed of ether lipids—was investigated as a function of growth temperature (20–40°C and 54–84°C, respectively. For all strains, the cellular lipid content was lower at sub- or supra-optimal growth temperature, but the relative proportions of dialkyl glycerols, monoalkyl glycerols and fatty acids remained remarkably stable whatever the growth temperature. Rather than changing the proportions of the different lipid classes, the three strains responded to temperature changes by modifying the average structural composition of the alkyl and acyl chains constitutive of their membrane lipids. Major adaptive mechanisms concerned modifications of the level of branching and of the proportions of the different methyl branched lipids. Specifically, an increase in temperature induced mesophilic strains to produce less dimethyl branched dialkyl glycerols and 10-methyl branched lipids relative to linear structures, and the thermophilic strain to decrease the proportion of anteiso relative to iso methyl branched compounds. These modifications were in agreement with a regulation of the membrane fluidity. In one mesophilic and the thermophilic strains, a modification of the growth temperature further induced changes in the relative proportions of sn-2 vs sn-1 monoalkyl glycerols, suggesting an unprecedented mechanism of homeoviscous adaptation in Bacteria. Strong

  16. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  17. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  18. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. Lovley

    2012-03-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  19. Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol

    Directory of Open Access Journals (Sweden)

    Clementina Cueto

    2012-03-01

    Full Text Available Daily consumption of probiotics reduce levels of serum cholesterol by up to 3%, which is significant to prevent hypercholesterolemia, a risk factor for cardiovascular disease and cause of mortality. The genus Lactobacillus is used in industry as a probiotic and some species reduce serum cholesterol by two mechanisms, the adsorption of cholesterol and the production of the enzyme bile salt hydrolase, which vary according to species. The aim of the study was to assess the ability of probiotic bacteria group isolated from coast serum. 53 strains were isolated from nine coastal serum sample; the sensitivity to cefoxitin and vancomycin, and the tolerance to pH 2.0 and 0.3% bile salts were evaluated to determine its probiotic potential. Five microorganisms were selected and molecularly identified as Lactobacillus fermentum. The ability to absorb cholesterol measured by the method of Kimoto, showed a reduction of 53.06 ± 2.69 µg.mL-1 for strain K73 and 7.23 ± 2.69 µg. mL-1 for K75. These same strains showed the highest total and specific activity of the enzyme. The results didn´t show a relationship between the production of enzyme and adsorption of cholesterol. The strain with the greatest probiotic potential was K73. This hypocholesterolemic property will give strains added value to start the search for food matrices that allow decreasing serum cholesterol levels.

  20. Potential effects of bacteria on radionuclide transport from a Swedish high level nuclear waste repository

    International Nuclear Information System (INIS)

    Pedersen, K.

    1990-01-01

    Microorganisms can influence radionuclide migration if their concentration are high in comparison with other organic particles. Data on the numbers of microorganisms in undisturbed ground-water have been collected. The average number of cells in the samples from 17 levels in 5 boreholes was 3.0 x 10 5 cells ml -1 . A biofilm experiment indicated an active microbial rock surface population. Radiographic uptake experiments suggest inactive bulk water populations. The bulk water microbial cells in deep ground water might then be inactive cells detached from active biofilms. Enrichment cultures for anaerobic bacteria demonstrated the presence of anaerobic bacteria capable of growth on C-1 compounds with hydrogen and carbon dioxide, presumably methanogenic bacteria. Further, growth in enrichment cultures with sulphate as electron-acceptor and lactate as carbon source proved dissimilatory sulphate reducing bacteria to be present. (author)

  1. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Wang, Peng; Lu, Zhou; Zhang, Dun

    2015-01-01

    Highlights: • Slippery liquid-infused porous surfaces (SLIPS) were fabricated over aluminum. • SLIPS depress the adherence of sulfate reducing bacteria in static seawater. • SLIPS inhibit the microbiological corrosion of aluminum in static seawater. • The possible microbiological corrosion protection mechanism of SLIPS is proposed. - Abstract: Microbiological corrosion induced by sulfate reducing bacteria (SRB) is one of the main threatens to the safety of marine structure. To reduce microbiological corrosion, slippery liquid infused porous surfaces (SLIPS) were designed and fabricated on aluminum substrate by constructing rough aluminum oxide layer, followed by fluorination of the rough layer and infiltration with lubricant. The as-fabricated SLIPS were characterized with wettability measurement, SEM and XPS. Their resistances to microbiological corrosion induced by SRB were evaluated with fluorescence microscopy and electrochemical measurement. It was demonstrated that they present high resistance to bacteria adherence and the resultant microbiological corrosion in static seawater

  2. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  3. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  4. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  5. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    Science.gov (United States)

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  6. Sulphate in Liquid Nuclear Waste: from Production to Containment

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, M.; Grandjean, A.; Ledieu, A.; Dussossoy, J.L.; Cau Dit Coumes, C.; Barre, Y.; Tronche, E. [CEA Marcoule, DEN/DTCD/SECM/LDMC, Batiment 208 BP17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    Nuclear industry produces a wide range of low and intermediate level liquid radioactive wastes which can include different radionuclides such as {sup 90}Sr. In La Hague reprocessing plant and in the nuclear research centers of CEA (Commissariat a l'Energie Atomique), the coprecipitation of strontium with barium sulphate is the technique used to treat selectively these contaminated streams with the best efficiency. After the decontamination process, low and intermediate level activity wastes incorporating significant quantities of sulphate are obtained. The challenge is to find a matrix easy to form and with a good chemical durability which is able to confine this kind of nuclear waste. The current process used to contain sulphate-rich nuclear wastes is bituminization. However, in order to improve properties of containment matrices and simplify the process, CEA has chosen to supervise researches on other materials such as cements or glasses. Indeed, cements are widely used for the immobilization of a variety of wastes (low and intermediate level wastes) and they may be an alternative matrix to bitumen. Even if Portland cement, which is extensively used in the nuclear industry, presents some disadvantages for the containment of sulphate-rich nuclear wastes (risk of swelling and cracking due to delayed ettringite formation), other cement systems, such as calcium sulfo-aluminate binders, may be valuable candidates. Another matrix to confine sulphate-rich waste could be the glass. One of the advantages of this material is that it could also immobilize sulphate containing high level nuclear waste which is present in some countries. This waste comes from the use of ferrous sulfamate as a reducing agent for the conversion of Pu{sup 4+} to Pu{sup 3+} in the partitioning stage of the actinides during reprocessing. Sulphate solubility in borosilicate glasses has already been studied in CEA at laboratory and pilot scales. At a pilot scale, low level liquid waste has been

  7. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments. Final Report

    International Nuclear Information System (INIS)

    Lee Krumholz Jimmy Ballard

    2005-01-01

    The proposed effort will identify genes and ultimately physiological mechanisms and pathways that are expressed under in situ conditions and are critical to functioning of aquifer dwelling anaerobic bacteria living in contaminated systems. The main objectives are: (1) Determine which Metal-reducer specific genes are important for activities in normal and contaminated subsurface sediment. To achieve these goals, we have generated a library of chromosomal mutants. These are introduced into contaminated sediments, incubated, allowed to grow, and then reisolated. A negative selection process allows us to determine which mutants have been selected against in sediments and thereby identify genes required for survival in subsurface sediments. (2) Delineate the function of these genes through GeneBank and Clusters of Orthologous Groups (COGs) comparisons and analyze other sediment microorganisms to determine if similar genes are present in these populations. After determining the sequence of the genes identified through the previous objectives, we delineate the role of those specific genes in the physiology of G20, MR-1 and perhaps other microorganisms. (3) Determine the loss in function of a select group of mutants. Cells with mutations in known genes with testable functions are assayed for the loss of that function if specific assays are available. Mutants with unknown loss of function and other mutants are run through a series of tests including motility, attachment, and rate of sulfate or iron reduction. These tests allow us to categorize mutants for subsequent more detailed study

  8. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  9. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Directory of Open Access Journals (Sweden)

    Furukawa Yoko

    2005-10-01

    Full Text Available Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O2, rather than Fe(III, was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III species even in the systems in which Fe(III was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III in our laboratory systems proceeded through the following: (1 alteration of NAu-1 and concurrent release of Fe(III from the octahedral sheets of NAu-1; and (2 subsequent microbial respiration of Fe(III.

  11. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.

    Science.gov (United States)

    Ben-Dov, Eitan; Kushmaro, Ariel; Brenner, Asher

    2009-02-18

    Abundance and seasonal dynamics of sulfate-reducing bacteria (SRB), in general, and of extreme halophilic SRB (belonging to Desulfocella halophila) in particular, were examined in highly saline industrial wastewater evaporation ponds over a forty one month period. Industrial wastewater was sampled and the presence of SRB was determined by quantitative real-time PCR (qPCR) with a set of primers designed to amplify the dissimilatory sulfite reductase (dsrA) gene. SRB displayed higher abundance during the summer (10(6)-10(8) targets ml(-1)) and lower abundance from the autumn-spring (10(3)-10(5) targets ml(-1)). However, addition of concentrated dissolved organic matter into the evaporation ponds during winter immediately resulted in a proliferation of SRB, despite the lower wastewater temperature (12-14 degrees C). These results indicate that the qPCR approach can be used for rapid measurement of SRB to provide valuable information about the abundance of SRB in harsh environments, such as highly saline industrial wastewaters. Low level of H2S has been maintained over five years, which indicates a possible inhibition of SRB activity, following artificial salination (approximately 16% w/v of NaCl) of wastewater evaporation ponds, despite SRB reproduction being detected by qPCR.

  12. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    Science.gov (United States)

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  13. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

    2011-06-01

    Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

  14. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  16. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, R. Garcia [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico); Departamento de lngenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Olivares, G. Zavala; Gayosso, M.J. Hernandez; Trejo, A. Gayosso [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico)

    2011-01-15

    The effect of sulfate reducing bacteria (SRB) upon the cathodic protection of XL 52 steel was determined, in order to identify if the potential value of -0.950 V versus copper/copper sulfate electrode is good enough to protect the metal surface. During the experiments, different operational parameters were monitored: hydrogen sulfide production, iron concentration, electrolyte alkalinity, microorganisms' population, as well as the metal surface damage. At the same time, the corrosion rate was determined using two electrochemical techniques: polarization resistance (PR) and electrochemical impedance spectroscopy (EIS). According to the results, it was observed that the protection potential of -0.950 V versus copper/copper sulfate electrode is not enough to control the microbiologically induced corrosion. This situation is reinforced by the fact that significant iron concentration was found in the electrolyte. The microbiological activity is not affected by the protection potential. On the contrary, the population growth is slightly strengthened. The alkalinity generated by the applied potential did not stop the SRB growth. A type of localized corrosion was developed during the experiments with microorganisms, even when the protection potential was applied to the system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  18. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice

    Science.gov (United States)

    Chen, Lei; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2016-01-01

    Saponins derived from medicinal plants have raised considerable interest for their preventive roles in various diseases. Here, we investigated the impacts of triterpenoid saponins isolated from Gynostemma pentaphyllum (GpS) on gut microbiome, mucosal environment, and the preventive effect on tumor growth. Six-week old ApcMin/+ mice and their wild-type littermates were fed either with vehicle or GpS daily for the duration of 8 weeks. The fecal microbiome was analyzed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and 16S rRNA gene pyrosequencing. Study showed that GpS treatment significantly reduced the number of intestinal polyps in a preventive mode. More importantly, GpS feeding strikingly reduced the sulfate-reducing bacteria lineage, which are known to produce hydrogen sulfide and contribute to damage the intestinal epithelium or even promote cancer progression. Meanwhile, GpS also boosted the beneficial microbes. In the gut barrier of the ApcMin/+ mice, GpS treatment increased Paneth and goblet cells, up-regulated E-cadherin and down-regulated N-cadherin. In addition, GpS decreased the pro-oncogenic β-catenin, p-Src and the p-STAT3. Furthermore, GpS might also improve the inflamed gut epithelium of the ApcMin/+ mice by upregulating the anti-inflammatory cytokine IL-4, while downregulating pro-inflammatory cytokines TNF-β, IL-1β and IL-18. Intriguingly, GpS markedly stimulated M2 and suppressed M1 macrophage markers, indicating that GpS altered mucosal cytokine profile in favor of the M1 to M2 macrophages switching, facilitating intestinal tissue repair. In conclusion, GpS might reverse the host's inflammatory phenotype by increasing beneficial bacteria, decreasing sulfate-reducing bacteria, and alleviating intestinal inflammatory gut environment, which might contribute to its cancer preventive effects. PMID:27121311

  19. Bacteria killing nanotechnology Bio-Kil effectively reduces bacterial burden in intensive care units.

    Science.gov (United States)

    Hsueh, P-R; Huang, H-C; Young, T-G; Su, C-Y; Liu, C-S; Yen, M-Y

    2014-04-01

    A contaminated hospital environment has been identified as an important reservoir of pathogens causing healthcare-associated infections. This study is to evaluate the efficacy of bacteria killing nanotechnology Bio-Kil on reducing bacterial counts in an intensive care unit (ICU). Two single-bed rooms (S-19 and S-20) in the ICU were selected from 7 April to 27 May 2011. Ten sets of new textiles (pillow cases, bed sheets, duvet cover, and patient clothing) used by patients in the two single-bed rooms were provided by the sponsors. In the room S-20, the 10 sets of new textiles were washed with Bio-Kil; the room walls, ceiling, and air-conditioning filters were treated with Bio-Kil; and the surfaces of instruments (respirator, telephone, and computer) were covered with Bio-Kil-embedded silicon pads. Room S-19 served as the control. We compared the bacterial count on textiles and environment surfaces as well as air samples between the two rooms. A total of 1,364 samples from 22 different sites in each room were collected. The mean bacterial count on textiles and environmental surfaces in room S-20 was significantly lower than that in room S-19 (10.4 vs 49.6 colony-forming units [CFU]/100 cm(2); P < 0.001). Room S-20 had lower bacterial counts in air samples than room S-19 (33.4-37.6 vs 21.6-25.7 CFU/hour/plate; P < 0.001). The density of microbial isolations was significantly greater among patients admitted to room S-19 than those to room S-20 (9.15 vs 5.88 isolates per 100 patient-days, P < 0.05). Bio-Kil can significantly reduce bacterial burden in the environment of the ICU.

  20. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  1. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  2. Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors.

    Science.gov (United States)

    Pender, Seán; Toomey, Margaret; Carton, Micheál; Eardly, Dónal; Patching, John W; Colleran, Emer; O'Flaherty, Vincent

    2004-02-01

    The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of acetate at 55 degrees C was

  3. The Effect of Biofertilizer on The Diversity of N2O Reducing Bacteria in Paddy Fields of Sukabumi, Indonesia

    Directory of Open Access Journals (Sweden)

    Alfan Cahyadi

    2017-12-01

    Full Text Available Some of the methanotrophic bacteria and N2O reducing bacteria have been proven to be able to support the plant growth and increase the productivity of paddy. However effect of the methanotrophic and N2O reducing bacteria application as a biofertilizer to indigenous N2O reducing bacteria is still not well known yet. The aim of this study was to analyze the diversity of N2O reducing bacteria in lowland paddy soil based on a nosZ gene. Soil samples were taken from lowland paddy soils in Pelabuhan Ratu Sukabumi, West Java, Indonesia. There were two treatments for the paddy field soil, ie. biofertilizer-treated field 20% fertilizer (50 kg/ha with the addition of biofertilizer and 100% fertilizer. PCR amplification of nosZ gene was successfully conducted using nosZF and nosZR primer pair. Denaturing Gradient Gel Electrophoresis (DGGE process was conducted at 150 V for 5.5h. There were three differences nosZ bands were sequenced. The phylogenetic analysis showed that they were close to uncultured bacteria. Microbial diversity in the biofertilizer-treated field was higher than that of in the 100% fertilizer-treated field. The biofertilizer treatment has higher in microbial diversity than that of applied non-biofertilizer paddy fields. This research might have impact in the application of biofertilizers due to the emission of N2O as a green house gas from paddy fields farming activity. The biofertilizer has great potential application in sustainable environmental friendly agriculture systems.

  4. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders.

    Science.gov (United States)

    Morrell, J M; Wallgren, M

    2011-01-01

    There is considerable interest world-wide in reducing the use of antibiotics to stem the development of antibiotic-resistant strains of bacteria. An alternative to the routine addition of antibiotics to semen extenders in livestock breeding would be to separate the spermatozoa from bacterial contaminants in the semen immediately after collection. The present study was designed to determine whether such separation was possible by Single Layer Centrifugation (SLC) using the colloid Androcoll™-P. The results showed that complete removal (6 out of 10 samples), or considerable reduction of bacterial contaminants (4 out of 10 samples) was possible with this method. The type of bacteria and/or the length of time between collection and SLC-processing affected the removal of bacteria, with motile flagellated bacteria being more likely to be present after SLC than non-flagellated bacteria. Although further studies are necessary, these preliminary results suggest that the use of SLC when processing boar semen for AI doses might enable antibiotic usage in semen extenders to be reduced. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    Science.gov (United States)

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  6. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  7. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    Science.gov (United States)

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  8. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    with Alphaproteobacteria but also including Beta- and Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The diversity of the isolates was compared to the cultivation-independent diversity of nitrate-reducing and denitrifying bacteria based on narG and nosZ as functional marker genes. Growth experiments...

  9. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  10. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Science.gov (United States)

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  11. Sulphate solubility and sulphate diffusion in oxide glasses: implications for the containment of sulphate-bearing nuclear wastes

    International Nuclear Information System (INIS)

    Lenoir, M.

    2009-09-01

    The thesis deals with sulphate solubility and sulphate diffusion in oxide glasses, in order to control sulphate incorporation and sulphate volatilization in nuclear waste glasses. It was conducted on simplified compositions, in the SiO 2 -B 2 O 3 -R 2 O (R = Li, Na, K, Cs), SiO 2 -B 2 O 3 -BaO and V 2 O 5 -B 2 O 3 -BaO systems. These compositions allowed us to study the influence of the nature of network-modifying ions (Li + , Na + , K + , Cs + or Ba 2+ ) and also of former elements (Si, B, V), on structure and properties of glasses. Sulphate volatility is studied in sodium borosilicate melts using an innovative technique of sulphate quantitation with Raman spectroscopy. This technique is useful to obtain kinetic curves of sulphate volatilization. The establishment of a model to fit these curves leads to the determination of diffusion coefficients of sulphate. These diffusion coefficients can thus be compared to diffusion coefficients of other species, determined by other techniques and presented in the literature. They are also linked to diffusion coefficients in relation with the viscosity of the melts. Concerning sulphate solubility in glasses, it depends on glass composition and on the nature of sulphate incorporated. Sulphate incorporation in alkali borosilicate glasses leads to the formation of a sulphate layer floating on top of the melt. Sulphate incorporation in barium borosilicate and boro-vanadate glasses leads to the crystallization of sulphate species inside the vitreous matrix. Moreover, sulphate solubility is higher in these glasses than in alkali borosilicates. Finally, exchanges between cations present in glasses and cations present in the sulphate phase are also studied. (author)

  12. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site

    International Nuclear Information System (INIS)

    Chang, Yun-Juan; Peacock, A D.; Long, Philip E.; Stephen, John R.; McKinley, James P.; Mcnaughton, Sarah J.; Hussain, A K M A.; Saxton, A M.; White, D C.

    2000-01-01

    Microbially mediated reduction and immobilization of U(VI) to U(TV) plays a role in both natural attenuation and accelerated bioremediation of uranium contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex,, was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from F-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least,52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0, Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within F-Proteobacteria were mainly recovered from low-uranium (less than or equal to 302 ppb) samples. One Desulfotomaculum like sequence cluster overwhelmingly dominated high-U (> 1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P= 0.0001), This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research

  13. Copper sulfate pentahydrate reduced epithelial cytotoxicity induced by lipopolysaccharide from enterogenic bacteria.

    Science.gov (United States)

    Feyzi, Adel; Delkhosh, Aref; Nasrabadi, Hamid Tayefi; Cheraghi, Omid; Khakpour, Mansour; Barekati-Mowahed, Mazyar; Soltani, Sina; Mohammadi, Seyede Momeneh; Kazemi, Masoumeh; Hassanpour, Mehdi; Rezabakhsh, Aysa; Maleki-Dizaji, Nasrin; Rahbarghazi, Reza; Namdarian, Reza

    2017-05-01

    The over usage of multiple antibiotics contributes to the emergence of a whole range of antibiotic-resistant strains of bacteria causing enterogenic infections in poultry science. Therefore, finding an appropriate alternative natural substance carrying an antibacterial capacity would be immensely beneficial. It has been previously discovered that the different types of cupric salts, especially copper sulfate pentahydrate (CuSO 4 ·5H 2 O), to carry a potent bactericidal capacity. We investigated the neutralizing effect of CuSO 4 ·5H 2 O (6.25μg/ml) on the reactive oxygen species generation, and expression of MyD88, an essential adaptor protein of Toll-like receptor, and NF-κB in three intestinal epithelial cell lines exposed to 50ng/ml lipopolysaccharide. In order to find the optimal cupric sulfate concentration without enteritis-inducing toxicity, broiler chickens were initially fed with water containing 0.4, 0.5, and 1mg/l during a period of 4days. After determination of appropriate dosage, two broiler chickens and turkey flocks with enteritis were fed with cupric compound for 4days. We found that cupric sulfate can lessen the cytotoxic effect of lipopolysaccharide by reducing the reactive oxygen species content (psulfate. The copper sulfate in doses lower than 0.4mg/ml expressed no cytotoxic effect on the liver, kidney, and the intestinal tract while a concentration of 0.5 and 1mg/ml contributed to a moderate to severe tissue injuries. Pearson Chi-Square analysis revealed the copper cation significantly diminished the rate of mortality during 4-day feeding of broiler chicken and turkey with enteritis (p=0.000). Thus, the results briefed above all confirm the potent anti-bactericidal feature of cupric sulfate during the course of enteritis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong [University of Oklahoma; He, Zhili [University of Oklahoma

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  15. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Alawi, Mashal; Lerm, Stephanie; Wuerdemann, Hilke [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Internationales Geothermiezentrum, Potsdam (Germany); Vetter, Alexandra [Helmholtz-Zentrum Potsdam, GFZ Deutsches GeoForschungsZentrum, Organische Geochemie, Potsdam (Germany); Wolfgramm, Markus [Geothermie Neubrandenburg GmbH (GTN), Neubrandenburg (Germany); Seibt, Andrea [BWG Geochemische Beratung GbR, Neubrandenburg (Germany)

    2011-06-15

    Abstract Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61 C to 103 C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems. (orig.) [German] Die Verbesserung des Prozessverstaendnisses ist eine grundlegende Voraussetzung fuer eine Optimierung der Betriebssicherheit und der Oekonomie geothermischer Anlagen in Bezug auf die Partikelbildung und Korrosion. Daher wurden Prozessfluide einer Anlage im Molassebecken unter mikrobiologischen, geochemischen und mineralogischen Gesichtspunkten untersucht. Die Fluidtemperatur der vor und nach dem Waermetauscher entnommenen Fluide betrug zwischen 103 C und 61 C. Die Salinitaet variierte zwischen 600 und 900 mg/l und der geloeste organische Kohlenstoff (DOC) lag zwischen 6,4 und 19,3 mg C/l. Die mikrobielle Lebensgemeinschaft in der Anlage wurde mithilfe einer genetischen Fingerprinting-Methode charakterisiert. Hierzu wurde das 16S rRNA Gen sowie die fuer sulfatreduzierende Bakterien (SRB) spezifische dissimilatorische Sulfitreduktase untersucht. In allen

  16. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  17. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice.

    Science.gov (United States)

    Ritz, N L; Lin, D M; Wilson, M R; Barton, L L; Lin, H C

    2017-01-01

    Hydrogen sulfide (H 2 S) serves as a mammalian cell-derived gaseous neurotransmitter. The intestines are exposed to a second source of this gas by sulfate-reducing bacteria (SRB). Bismuth subsalicylate binds H 2 S rendering it insoluble. The aim of this study was to test the hypothesis that SRB may slow intestinal transit in a bismuth-reversible fashion. Eighty mice were randomized to five groups consisting of Live SRB, Killed SRB, SRB+Bismuth, Bismuth, and Saline. Desulfovibrio vulgaris, a common strain of SRB, was administered by gavage at the dose of 1.0 × 10 9 cells along with rhodamine, a fluorescent dye. Intestinal transit was measured 50 minutes after gavage by euthanizing the animals, removing the small intestine between the pyloric sphincter and the ileocecal valve and visualizing the distribution of rhodamine across the intestine using an imaging system (IVIS, Perkin-Elmer). Intestinal transit (n=50) was compared using geometric center (1=minimal movement, 100=maximal movement). H 2 S concentration (n=30) was also measured when small intestinal luminal content was allowed to generate this gas. The Live SRB group had slower intestinal transit as represented by a geometric center score of 40.2 ± 5.7 when compared to Saline: 73.6 ± 5.7, Killed SRB: 77.9 ± 6.9, SRB+Bismuth: 81.0 ± 2.0, and Bismuth: 73.3 ± 4.2 (Pfashion in mice. Our results demonstrate that intestinal transit is slowed by SRB and this effect could be abolished by H 2 S-binding bismuth. © 2016 John Wiley & Sons Ltd.

  18. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice.

    Science.gov (United States)

    Kangawa, Yumi; Yoshida, Toshinori; Abe, Hajime; Seto, Yoshiki; Miyashita, Taishi; Nakamura, Michi; Kihara, Tohru; Hayashi, Shim-Mo; Shibutani, Makoto

    2017-04-04

    Developing effective treatments and preventing inflammatory bowel disease (IBD) are urgent challenges in improving patients' health. It has been suggested that platelet activation and reactive oxidative species generation are involved in the pathogenesis of IBD. We examined the inhibitory effects of a selective phosphodiesterase-3 inhibitor, cilostazol (CZ), and two antioxidants, enzymatically modified isoquercitrin (EMIQ) and α-lipoic acid (ALA), against dextran sulphate sodium (DSS)-induced colitis. BALB/c mice were treated with 0.3% CZ, 1.5% EMIQ, and 0.2% ALA in their feed. Colitis was induced by administering 5% DSS in drinking water for 8days. The inhibitory effects of these substances were evaluated by measuring relevant clinical symptoms (faecal blood, diarrhoea, and body weight loss), colon length, plasma cytokine and chemokine levels, whole genome gene expression, and histopathology. Diarrhoea was suppressed by each treatment, while CZ prevented shortening of the colon length. All treatment groups exhibited decreased plasma levels of interleukin (IL)-6 and tumour necrosis factor (TNF)-α compared with the DSS group. Microarray analysis showed that cell adhesion, cytoskeleton regulation, cell proliferation, and apoptosis, which might be related to inflammatory cell infiltration and mucosal healing, were affected in all the groups. DSS-induced mucosal injuries such as mucosal loss, submucosal oedema, and inflammatory cell infiltration in the distal colon were prevented by CZ or antioxidant treatment. These results suggest that anti-inflammatory effects of these agents reduced DSS-induced mucosal injuries in mice and, therefore, may provide therapeutic benefits in IBD. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.

    Science.gov (United States)

    Chen, Guocun

    The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0

  20. Biocorrosion of Endodontic Files through the Action of Two Species of Sulfate-reducing Bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis.

    Science.gov (United States)

    Heggendorn, Fabiano Luiz; Gonçalves, Lucio Souza; Dias, Eliane Pedra; de Oliveira Freitas Lione, Viviane; Lutterbach, Márcia Teresa Soares

    2015-08-01

    This study assessed the biocorrosive capacity of two bacteria: Desulfovibrio desulfuricans and Desulfovibrio fairfieldensis on endodontic files, as a preliminary step in the development of a biopharmaceutical, to facilitate the removal of endodontic file fragments from root canals. In the first stage, the corrosive potential of the artificial saliva medium (ASM), modified Postgate E medium (MPEM), 2.5 % sodium hypochlorite (NaOCl) solution and white medium (WM), without the inoculation of bacteria was assessed by immersion assays. In the second stage, test samples were inoculated with the two species of sulphur-reducing bacteria (SRB) on ASM and modified artificial saliva medium (MASM). In the third stage, test samples were inoculated with the same species on MPEM, ASM and MASM. All test samples were viewed under an infinite focus Alicona microscope. No test sample became corroded when immersed only in media, without bacteria. With the exception of one test sample between those inoculated with bacteria in ASM and MASM, there was no evidence of corrosion. Fifty percent of the test samples demonstrated a greater intensity of biocorrosion when compared with the initial assays. Desulfovibrio desulfuricans and D. fairfieldensis are capable of promoting biocorrosion of the steel constituent of endodontic files. This study describes the initial development of a biopharmaceutical to facilitate the removal of endodontic file fragments from root canals, which can be successfully implicated in endodontic therapy in order to avoiding parendodontic surgery or even tooth loss in such events.

  1. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  2. Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage

    Directory of Open Access Journals (Sweden)

    Alena Luptakova

    2012-12-01

    Full Text Available The impacts of AMD pollution on biological systems are mostly severe and the problem may persist from many decadesto thousands of years. Consequently AMD prior to being released into the environment must be treated to meet government standardsfor the amount of metal and non-metal ions contained in the water. One of the best available technologies for the removal of metals fromAMD is precipitation as metal sulphides. SRB applications for AMD treatment involve a few principal stages. The first stageis the cultivation of SRB i.e. the bacterial sulphate reduction. At the laboratory conditions the sodium lactate is the energetic substratefor the growth of bacteria. Its price is not economic for the application in the practice and is needed investigate the alternativesubstitutes. The aim of this work was the cultivation of SRB using the selected energetic substrates such as: calcium lactate, ethanol,saccharose, glucose and whey. Experimental studies confirm that in the regard to the amount of reduced sulphates the calcium lactateand ethanol are the best alternative substrates for the bacterial sulphate-reduction.

  3. Agrochemicals indirectly increase survival of E. coli O157:H7 and indicator bacteria by reducing ecosystem services.

    Science.gov (United States)

    Staley, Zachery R; Rohr, Jason R; Senkbeil, Jacob K; Harwood, Valerie J

    Storm water and agricultural runoff frequently contain agrochemicals, fecal indicator bacteria (FIB), and zoonotic pathogens. Entry of such contaminants into aquatic ecosystems may affect ecology and human health. This study tested the hypothesis that the herbicide atrazine and the fungicide chlorothalonil indirectly affect the survival of FIB (Escherichia coli and Enterococcus faecalis) and a pathogen (E. coli O157:H7) by altering densities of protozoan predators or by altering competition from autochthonous bacteria. Streptomycin-resistant E. coli, En. faecalis, and E. coli O157:H7 were added to microcosms composed of Florida river water containing natural protozoan and bacterial populations. FIB, pathogen, and protozoan densities were monitored over six days. Known metabolic inhibitors, cycloheximide and streptomycin, were used to inhibit autochthonous protozoa or bacteria, respectively. The inhibitors made it possible to isolate the effects of predation or competition on survival of allochthonous bacteria, and each treatment increased the survival of FIB and pathogens. Chlorothalonil's effect was similar to that of cycloheximide, significantly reducing protozoan densities and elevating densities of FIB and pathogens relative to the control. Atrazine treatment did not affect protozoan densities, but, through an effect on competition, resulted in significantly greater densities of En. faecalis and E. coli O157:H7. Hence, by reducing predaceous protozoa and bacterial competitors that facilitate purifying water bodies of FIBs and human pathogens, chlorothalonil and atrazine indirectly diminished an ecosystem service of fresh water.

  4. Complete sulphate removal from neutralised acidic mine drainage with barium carbonate

    CSIR Research Space (South Africa)

    Swanepoel, H

    2012-03-01

    Full Text Available -barium-calcium) Desalination process which uses barium salts to further reduce the sulphate concentration to acceptable levels with the added advantage that sulphate removal can be controlled due to the low solubility of BaSO4. This paper reports on the results...

  5. Radioprotective effects of dextran sulphate in mice

    International Nuclear Information System (INIS)

    Vacek, A.; Bartonickova, A.; Rotkovska, D.; Palyga, G.F.; Zhukova, N.A.

    1981-01-01

    Influence of a single i.p. injection of dextran sulphate on radiosensitivity of mice was investigated. The administration of dextran sulphate 24, 48 and 72 hours prior to irradiation increased formation of endogenous colonies of the hemopoietic tissue on the surface of the spleen. DRF calculated from an equieffective exposure for 5 colonies was 1.96 when dextran sulphate was administered 24 hours before irradiation, and 2.25 when dextran sulphate was administered 72 hours before irradiation. The radioprotective effects of dextran sulphate were manifested also in the survival of animals exposed to lethal doses of short-termed as well as long-termed gamma radiation. (orig.) [de

  6. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  7. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    Science.gov (United States)

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  8. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    Science.gov (United States)

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  9. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    OpenAIRE

    Abdullah, Arman; Yahaya, Nordin; Md Noor, Norhazilan; Mohd Rasol, Rosilawati

    2014-01-01

    Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were i...

  10. Magnesium sulphate for fetal neuroprotection

    DEFF Research Database (Denmark)

    Bickford, Celeste D; Magee, Laura A; Mitton, Craig

    2013-01-01

    of cerebral palsy (CP) averted and quality-adjusted life years (QALYs). RESULTS: From a health system and a societal perspective, respectively, a savings of $2,242 and $112,602 is obtained for each QALY gained and a savings of $30,942 and $1,554,198 is obtained for each case of CP averted when magnesium......BACKGROUND: The aim of this study was to assess the cost-effectiveness of administering magnesium sulphate to patients in whom preterm birth at ... sensitivity analyses were used to compare the administration of magnesium sulphate with the alternative of no treatment. Two separate cost perspectives were utilized in this series of analyses: a health system and a societal perspective. In addition, two separate measures of effectiveness were utilized: cases...

  11. Sulphate removal from uraniferous liquors

    International Nuclear Information System (INIS)

    Berger, B.

    1983-01-01

    A process for the recovery of uranium from liquor resulting from the attack of sulphur containing uraniferous ores by an alkaline solution of sodium carbonate and/or sodium bicarbonate is claimed. An ion exchange resin is used to separate the uranium from the solution of sodium carbonate and/or bicarbonate and sodium sulphate. The ion exchange resin is then eluted with a solution of ammonium carbonate and/or bicarbonate to provide an eluate containing ammonium uranyl tricarbonate, ammonium carbonate and/or bicarbonate and ammonium sulphate. The eluate is heated to boiling to convert the ammonium uranyl tricarbonate to ammonium uranate and/or diuranate. Ammonia, carbon dioxide and water vapor are released. The precipitated ammonium uranate and/or diuranate is separated from the remaining liquor and calcined to give uranium trioxide

  12. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia,81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor DarulTa’zim (Malaysia)

    2013-06-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO{sub 4}{sup 2−}) into hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6−x}(SO{sub 4}){sub x}(OH){sub 2−x}) lattice via ion exchange process with phosphate group. Concentration of SO{sub 4}{sup 2−} ions was varied between X = 0.05–0.5, using (Ca (NO{sub 3}){sub 2}·4H{sub 2}O), ((NH{sub 4}){sub 2}HPO{sub 4}) and (Na{sub 2}SO{sub 4}) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO{sub 4}{sup 2−} ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure.

  13. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite

    International Nuclear Information System (INIS)

    Alshemary, Ammar Z.; Goh, Yi-Fan; Akram, Muhammad; Razali, Ili Rabihah; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat

    2013-01-01

    Highlights: ► Phase pure nano-sized sulphur doped hydroxyapatite has been synthesized. ► TEM analysis confirmed formation of needle shaped structure. ► Lattice parameters and cell volume increased with increase in sulphate doping. ► Crystallite size decreased as sulphate content inside the structure increased. ► Degree of crystallinity decreased with increase in sulphate substitution. - Abstract: Inorganic sulphate is required by all mammalian cells to function properly, it is the fourth most abundant anion in the human plasma. Sulphate ions are the major source of sulphur which is considered an important element for sustenance of life as it is present in the essential amino and is required by cells to function properly. In this study we have successfully substituted sulphate ions (SO 4 2− ) into hydroxyapatite (Ca 10 (PO 4 ) 6−x (SO 4 ) x (OH) 2−x ) lattice via ion exchange process with phosphate group. Concentration of SO 4 2− ions was varied between X = 0.05–0.5, using (Ca (NO 3 ) 2 ·4H 2 O), ((NH 4 ) 2 HPO 4 ) and (Na 2 SO 4 ) as starting materials. X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), showed that the substitution of SO 4 2− ions into the lattice resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. Transmission electron microscopy (TEM) and field emission electron microscopy (FESEM) analysis confirmed the formation of needle shaped particles of 41 nm size with homogenous and uniform distribution of element within the HA structure

  14. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens

    Science.gov (United States)

    Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R.

    2014-01-01

    The human microbiome is influenced by a number of factors, including environmental exposure to microbes. Because many humans spend a large amount of time in built environments, it can be expected that the microbial ecology of these environments will influence the human microbiome. In an attempt to further understand the microbial ecology of built environments, the microbiota of car interiors was analyzed using culture dependent and culture independent methods. While it was found that the number and type of bacteria varied widely among the cars and sites tested, Staphylococcus and Propionibacterium were nearly always the dominant genera found at the locations sampled. Because Staphylococcus is of particular concern to human health, the characteristics of this genus found in car interiors were investigated. Staphylococcus epidermidis, S. aureus, and S. warnerii were the most prevalent staphylococcal species found, and 22.6% of S. aureus strains isolated from shared community vehicles were resistant to methicillin. The reduction in the prevalence of pathogenic bacteria in cars by using silver-based antimicrobial surface coatings was also evaluated. Coatings containing 5% silver ion additives were applied to steering wheels, placed in cars for five months and were found to eliminate the presence of culturable pathogenic bacteria recovered from these sites relative to controls. Together, these results provide new insight into the microbiota found in an important built environment, the automobile, and potential strategies for controlling the presence of human pathogens. PMID:24564823

  15. Intoxication experiments with beryllium sulphate

    International Nuclear Information System (INIS)

    Bucurescu, I.; Stan, T.

    1990-01-01

    The changes in the particular number of animals in two groups of 40 rats each subjected to intoxication experiments with beryllium sulphate was investigated. The two investigations had very different characteristics. In the case of chronic intoxication there was a marked lethality over given time intervals. In the case of subacute intoxication the number of animals decreased with time. It was found empirically that this change can be described by an exponential relationship which lends itself to statistical interpretation. (author)

  16. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  17. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  18. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  19. Thermodynamic analysis of dust sulphation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A.

    1997-12-31

    Sulphation reactions of metal oxides with SO{sub 2} and O. or SO{sub 3} play significant roles in sulphation roasting of sulphide and oxide minerals as well as in desulphurisation process of combustion gases. In metallurgical waste-heat boilers for sulphide smelting, the sulphation of the oxidic flue dust in the atmosphere containing sulphur oxides is an unavoidable process, and the sulphation reactions have to be guided in a controlled way in the proper parts of the gas handling equipment. In this report, some thermodynamic analyses were conducted for the oxide sulphation reactions in relation to sulphide smelting processes. The phase stability of Me-S-O systems especially for oxides - sulphates equilibrium was studied under different thermodynamic conditions of gas compositions and temperatures. The sulphate stability was analysed for an example of gas compositions in the copper flash smelter of Outokumpu Harjavalta Metals Oy, in relation to temperature. In the report, most of the information was from literature. Moreover, a number of thermodynamic computations were carried out with the HSC program, and the constructed phase stability diagrams were compared with those from the literature whenever possible. The maximum temperatures for stable sulphates under normal operating conditions of the waste-heat boilers in sulphide smelting processes were obtained. This report will serve as the basis for the kinetic studies of the sulphation reactions and the sulphation reaction modelling in pyrometallurgical processes. (orig.) SULA 2 Programme. 36 refs.

  20. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Proteolytic Activity in Reduced-Fat Cheddar Cheese Made with Lactic Acid Bacteria and Camel Chymosin

    DEFF Research Database (Denmark)

    Børsting, Mette Winther

    be the need of an extended ripening period to reach a similar cheese structure as in cheeses produced with BC. The aim of this project was to compensate for the lower proteolytic activity in cheese produced with CC compared to BC. Selection of dairy lactic acid bacteria (LAB) for cheese production with high....... lactis subsp lactis, 10 thermophilic Lactobacillus strains and 15 frozen direct vat set strains of thermopholic Lactobacillus) to hydrolyse αS1-CN, candidates were selected for cheese-making experiments. None of the selected proteolytic strains contributed significantly to softening the cheese structure...

  2. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    Science.gov (United States)

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  3. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    Science.gov (United States)

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  4. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    International Nuclear Information System (INIS)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-01-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  5. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue, E-mail: cmingxue@126.com

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200 mg/L), Zn (1800 mg/L) and Pb (1200 mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3 mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains + 3 mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd

  6. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  7. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    Daniela Franco Carvalho Jacobucci

    2009-08-01

    Full Text Available Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as the height (cm of the emulsion layers formed. The 72 h incubation experiment resulted in a COD (Chemical Oxygen Demand reduction of 76% with Planococcus citreus strain and 70% with Pantoea agglomerans.The COD reduction with bacterial biosurfactants was over 50% in 24 h of incubation. The COD reduction showed that these strains and the surfactants produced could be used in bioremediation processes.Duas bactérias isoladas de solo contaminado com derivados de petróleo, Pantoea agglomerans e Planococcus citreus, produzem biosurfactantes utilizando respectivamente 1.5% de querosene e óleo de oliva como únicas fontes de carbono. As bactérias e os biosurfactantes produzidos foram adicionados a um efluente oleoso obtido de uma indústria nacional de sabão e margarina. As atividades de emulsificação foram determinadas pelo aumento da absorbância das emulsões óleo em água a 610 nm, enquanto que as emulsões do tipo água em óleo foram expressas em centímetros, pela altura do halo de espumas formado. A redução da demanda química de oxigênio (COD mostra que as linhagens e os biosurfactantes produzidos podem ser utilizados em processos de biorremediação.

  8. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    International Nuclear Information System (INIS)

    Payne, Rayford B.; Ringbauer, Joseph A. Jr.; Wall, Judy D.

    2006-01-01

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  9. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  10. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    of proteins with similar molecular weight based in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in several extracts that reduced adhesion but also extracts not containing this protein reduced bacterial adhesion, indicating that several molecular species may be involved in the phenomenon....... It is a common perception that food materials facilitate bacterial adhesion to surfaces; however, this study demonstrates that aqueous coatings of food origin may actually reduce bacterial adhesion. Compounds from food extracts may potentially be used as nontoxic coatings to reduce bacterial attachment to inert...

  11. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  12. In-Situ Survival Mechanisms of U and Tc Reducing Bacteria in Contaminated Sediments

    International Nuclear Information System (INIS)

    Krumholz, Lee R.

    2005-01-01

    Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 are model subsurface organisms for studying genes involving in situ radionuclide transformation and sediment survival. Our research objective for this project has been to develop a signature-tagged mutagenesis (STM) procedure and use it to identify mutants in genes of these subsurface bacteria involved in sediment survival and radionuclide reduction. The mutant genes identified in these studies allow us for the first time to describe at the genetic level microbial processes that are actually being used by environmental bacteria while growing in their natural ecosystems. Identification of these genes revealed facets of microbial physiology and ecology that are not accessible through laboratory studies. Ultimately, this information may be used to optimize bioremediation or other engineered microbial processes. Furthermore, the identification of a mutant in a gene conferring multidrug resistance in strain MR-1 shows that this widespread mechanism of antibiotic resistance, likely has its origins as a mechanism of bacterial defense against naturally occurring toxins. Studies with D. desulfuricans G20: The STM procedure first involved generating a library of 5760 G20 mutants and screening for potential non-survivors in subsurface sediment microcosms. After two rounds of screening, a total of 117 mutants were confirmed to be true non-survivors. 97 transposon insertion regions have been sequenced to date. Upon further analysis of these mutants, we classified the sediment survival genes into COG functional categories. STM mutant insertions were located in genes encoding proteins related to metabolism (33%), cellular processes (42%), and information storage and processing (17%). We also noted 8% of STM mutants identified had insertions in genes for hypothetical proteins or unknown functions. Interestingly, at least 64 of these genes encode cytoplasmic proteins, 46 encode inner membrane proteins, and only 7 encode

  13. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples

    International Nuclear Information System (INIS)

    Voordouw, G.; Voordouw, J.K.; Karkhoff-Schweizer, R.R.; Fedorak, P.M.; Westlake, D.W.S.

    1991-01-01

    A novel method for identification of bacteria in environmental samples by DNA hybridization is presented. It is based on the fact that, even within a genus, the genomes of different bacteria may have little overall sequence homology. This allows the use of the labeled genomic DNA of a given bacterium (referred to as a standard) to probe for its presence and that of bacteria with highly homologous genomes in total DNA obtained from an environmental sample. Alternatively, total DNA extracted from the sample can be labeled and used to probe filters on which denatured chromosomal DNA from relevant bacterial standards has been spotted. The latter technique is referred to as reverse sample genome probing, since it is the reverse of the usual practice of deriving probes from reference bacteria for analyzing a DNA sample. Reverse sample genome probing allows identification of bacteria in a sample in a single step once a master filter with suitable standards has been developed. Application of reverse sample genome probing to the identification of sulfate-reducing bacteria in 31 samples obtained primarily from oil fields in the province of Alberta has indicated that there are at least 20 genotypically different sulfate-reducing bacteria in these samples

  14. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Roi; Torres, Enrique, E-mail: torres@udc.es; Abalde, Julio

    2014-03-01

    Highlights: • Sulphate effect on cadmium toxicity in the microalga Chlamydomonas moewusii Gerloff. • Cadmium increases the sulphur requirements in Chlamydomonas moewusii. • Kinetic coefficients for sulphate utilization and cadmium effect on them. • Sulphate and cadmium influence on the biosynthesis of low-molecular mass thiols. • Cadmium toxicity reduction by sulphate due to higher biosynthesis of thiols. - Abstract: Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu–Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1 mM sulphate. The maximum EC{sub 50} value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1 m

  16. Evaluation of probiotic potential of lactic acid bacteria to reduce in vitro cholesterol

    OpenAIRE

    Clementina Cueto; Stephania Aragón

    2012-01-01

    Daily consumption of probiotics reduce levels of serum cholesterol by up to 3%, which is significant to prevent hypercholesterolemia, a risk factor for cardiovascular disease and cause of mortality. The genus Lactobacillus is used in industry as a probiotic and some species reduce serum cholesterol by two mechanisms, the adsorption of cholesterol and the production of the enzyme bile salt hydrolase, which vary according to species. The aim of the study was to assess the ability of probiotic b...

  17. THE WIDESPREAD OF Fe(III)-REDUCING BACTERIA IN NATURAL ECOSYSTEMS OF ECUADOR.

    Science.gov (United States)

    Tashyrev, O B; Govorukha, V M

    2015-01-01

    The widespread of Fe(III)-reducing microorganisms in natural ecosystems of Ecuador of La Favorita, Tungurahua volcano and Papallacta areas was experimentally proved. High efficiency of microbial precipitation of soluble iron compounds was also demonstrated. Obtained results indicate the potential ability of Fe(III)-reducing microorganisms to influence the formation of carbon and iron vector fluxes in ecosystems, as well as development of effective biotechnologies of water purification from iron compounds.

  18. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria.

    Science.gov (United States)

    de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina

    2018-04-01

    Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.

  19. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria

    Directory of Open Access Journals (Sweden)

    Letícia Paiva de Matos

    2018-04-01

    Full Text Available Data presented here are related to the original paper “Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB mixed culture and alternative low-cost carbon sources” published by same authors (Matos et al., 2018 [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L−1. Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format.Refers to https://doi.org/10.1016/j.cej.2017.11.035 Keywords: Arsenite, Sulfate reduction, Bioremediation, Immobilized cells, Acid pH

  20. Biodegradation of ortho-Cresol by a Mixed Culture of Nitrate-Reducing Bacteria Growing On Toluene

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Jørgensen, Claus; Arvin, Erik

    1993-01-01

    A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o-cresol st......A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o...... of toluene metabolized, with an average yield of 0.47 mg of o-cresol degraded per mg of toluene metabolized. Experiments with (ring-U-14C)o-cresol indicated that about 73% of the carbon from degraded o-cresol was mineralized to CO-2 and about 23% was assimilated into biomass after the transient accumulation...

  1. Metabolic primers for detection of (Per)chlorate-reducing bacteria in the environment and phylogenetic analysis of cld gene sequences.

    Science.gov (United States)

    Bender, Kelly S; Rice, Melissa R; Fugate, William H; Coates, John D; Achenbach, Laurie A

    2004-09-01

    Natural attenuation of the environmental contaminant perchlorate is a cost-effective alternative to current removal methods. The success of natural perchlorate remediation is dependent on the presence and activity of dissimilatory (per)chlorate-reducing bacteria (DPRB) within a target site. To detect DPRB in the environment, two degenerate primer sets targeting the chlorite dismutase (cld) gene were developed and optimized. A nested PCR approach was used in conjunction with these primer sets to increase the sensitivity of the molecular detection method. Screening of environmental samples indicated that all products amplified by this method were cld gene sequences. These sequences were obtained from pristine sites as well as contaminated sites from which DPRB were isolated. More than one cld phylotype was also identified from some samples, indicating the presence of more than one DPRB strain at those sites. The use of these primer sets represents a direct and sensitive molecular method for the qualitative detection of (per)chlorate-reducing bacteria in the environment, thus offering another tool for monitoring natural attenuation. Sequences of cld genes isolated in the course of this project were also generated from various DPRB and provided the first opportunity for a phylogenetic treatment of this metabolic gene. Comparisons of the cld and 16S ribosomal DNA (rDNA) gene trees indicated that the cld gene does not track 16S rDNA phylogeny, further implicating the possible role of horizontal transfer in the evolution of (per)chlorate respiration.

  2. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  3. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  4. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Giantommaso Scarascia

    2016-12-01

    Full Text Available Sulfate-reducing bacteria (SRB are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  5. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso; Wang, Tiannyu; Hong, Pei-Ying

    2016-01-01

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  6. Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2016-12-15

    Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.

  7. Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria.

    Science.gov (United States)

    Liu, Cindy M; Hungate, Bruce A; Tobian, Aaron A R; Serwadda, David; Ravel, Jacques; Lester, Richard; Kigozi, Godfrey; Aziz, Maliha; Galiwango, Ronald M; Nalugoda, Fred; Contente-Cuomo, Tania L; Wawer, Maria J; Keim, Paul; Gray, Ronald H; Price, Lance B

    2013-04-16

    Male circumcision reduces female-to-male HIV transmission. Hypothesized mechanisms for this protective effect include decreased HIV target cell recruitment and activation due to changes in the penis microbiome. We compared the coronal sulcus microbiota of men from a group of uncircumcised controls (n = 77) and from a circumcised intervention group (n = 79) at enrollment and year 1 follow-up in a randomized circumcision trial in Rakai, Uganda. We characterized microbiota using16S rRNA gene-based quantitative PCR (qPCR) and pyrosequencing, log response ratio (LRR), Bayesian classification, nonmetric multidimensional scaling (nMDS), and permutational multivariate analysis of variance (PerMANOVA). At baseline, men in both study arms had comparable coronal sulcus microbiota; however, by year 1, circumcision decreased the total bacterial load and reduced microbiota biodiversity. Specifically, the prevalence and absolute abundance of 12 anaerobic bacterial taxa decreased significantly in the circumcised men. While aerobic bacterial taxa also increased postcircumcision, these gains were minor. The reduction in anaerobes may partly account for the effects of circumcision on reduced HIV acquisition. The bacterial changes identified in this study may play an important role in the HIV risk reduction conferred by male circumcision. Decreasing the load of specific anaerobes could reduce HIV target cell recruitment to the foreskin. Understanding the mechanisms that underlie the benefits of male circumcision could help to identify new intervention strategies for decreasing HIV transmission, applicable to populations with high HIV prevalence where male circumcision is culturally less acceptable.

  8. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.

    Science.gov (United States)

    Lin, Xiaoyan; Mou, Renxiang; Cao, Zhaoyun; Xu, Ping; Wu, Xiaoliang; Zhu, Zhiwei; Chen, Mingxue

    2016-11-01

    Cadmium (Cd) pollution is a serious widespread environmental problem that not only destroys the microbial ecology of soil and decreases crop production, but also poses a serious risk to human health. Many methods have been used for the remediation of Cd pollution but none of these is totally satisfactory. Microbial remediation strategies have attracted increasing interest since they are environmentally friendly and cost-effective. In the present study, three Cd-resistant bacteria were isolated and evaluated for potential application in Cd bioremediation. Based on their morphological, physiological and biochemical characteristics, together with 16S rDNA gene sequence analyses, bacteria were identified as Stenotrophomonas acidaminiphila (2#), Pseudomonas aeruginosa (9#) and Delftia tsuruhatensis (12#). Pseudomonas aeruginosa showed very high tolerance to metals, especially Cd (2200mg/L), Zn (1800mg/L) and Pb (1200mg/L), and is thought to be a multi-metal-resistant bacterium. Pseudomonas aeruginosa was also sensitive to 13 different antibiotics. The effects of the bacterial strains on the growth of rice plants and their ability to reduce Cd accumulation from Cd-contaminated soils in pot experiments were also evaluated. For Oryza sativa L. A grown in contaminated soil (3mg/kg Cd), the accumulation of Cd was decreased by 31.2 and 25.5% in brown rice and polished rice, respectively, by strain 9#; Pseudomonas aeruginosa was more effective in reducing Cd accumulation in rice grains than a mixture of strains. For Oryza sativa L. B, a mixture of strains acting synergistically was more effective than a single strain in reducing Cd accumulation; treatment with mixed strains (strains+3mg/kg Cd) resulted in 41.3, 35.9, and 32.6% reductions in Cd accumulation in unhulled rice, brown rice and polished rice, respectively. Although different results were obtained for two rice varieties, it can still be concluded that Cd-resistant bacteria are suitable for reducing Cd accumulation in

  9. Extraction of sulphates by long chain amines

    International Nuclear Information System (INIS)

    Boirie, Ch.

    1959-05-01

    The extraction of sulphuric acid by long chain amines in organic solution has been studied with a view to determining the value of the stability constants of the amine sulphates and bi-sulphates formed. We have concentrated chiefly on uranium sulphate and thorium sulphate. The formulae of the complexes extractable with amines have been established, as well as the corresponding dissociation constants. We have observed that for uranium sulphate the formula of the complex depends only on the nature of the amine, whereas for thorium this formula varies with the amine structure. From the formulae determined and the value of the constants calculated, we have been able to establish the best conditions for uranium and thorium extraction and also for a separation of these two elements. Finally we propose an application of this study to the determination of uranium in ores, where the separation of uranium by this method is particularly easy and complete. (author) [fr

  10. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  11. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils.

    Science.gov (United States)

    Souza, Pamella Macedo de; Goulart, Fátima Regina de Vasconcelos; Marques, Joana Montezano; Bizzo, Humberto Ribeiro; Blank, Arie Fitzgerald; Groposo, Claudia; Sousa, Maíra Paula de; Vólaro, Vanessa; Alviano, Celuta Sales; Moreno, Daniela Sales Alviano; Seldin, Lucy

    2017-04-19

    Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium , Geotoga petraea , and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans . EO obtained from Citrus aurantifolia , Lippia alba LA44 and Cymbopogon citratus , as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  12. Growth Inhibition of Sulfate-Reducing Bacteria in Produced Water from the Petroleum Industry Using Essential Oils

    Directory of Open Access Journals (Sweden)

    Pamella Macedo de Souza

    2017-04-01

    Full Text Available Strategies for the control of sulfate-reducing bacteria (SRB in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC = 78 µg/mL the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral and with pure citral. These findings may help to control detrimental bacteria in the oil industry.

  13. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.

    Science.gov (United States)

    Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.

  14. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  15. Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments.

    Directory of Open Access Journals (Sweden)

    Thomas eAullo

    2013-12-01

    Full Text Available Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2 and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

  16. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D.

    2003-06-01

    Surprising results were obtained following an attempt to induce or derepress the machinery for U(VI) reduction by growing Desulfovibrio desulfuricans G20 in the presence of 1 mM uranyl acetate. G20 cells grown on lactate-sulfate medium amended with U(VI) reduced uranium at a slower rate than cells grown in the absence of this metal. When periplasmic extracts of these cells were prepared, Western analysis of the proteins revealed that the cytochrome c3 was absent. This observation has been further investigated.

  17. Isolation of Sulfur Reducing and Oxidizing Bacteria Found in Contaminated Drywall

    Directory of Open Access Journals (Sweden)

    Frederick T. Guilford

    2010-02-01

    Full Text Available Drywall from China has been reported to release sulfur producing products which are corrosive to metals, result in noxious odors, and represent a significant health risk. It has been reported that these emissions produce medical symptoms such as respiratory or asthma type problems, sinusitis, gastrointestinal disorders, and vision problems in home owners and their household pets. We report here a method of identifying a causative agent for these emissions by sampling affected gypsum wallboard and subjecting those samples to Real Time Polymerase Chain Reaction [RT-PCR] studies. Specific DNA probes and primers have been designed and patented that detect a specific iron and sulfur reducing bacterium (i.e., Thiobacillus ferrooxidans. One hundred percent of affected drywall samples obtained from homes located in the southeastern United States tested positive for the presence of T. ferrooxidans. All negative controls consisting of unaffected wallboard and internal controls, Geotrichum sp., tested negative within our limits of detection.

  18. Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weimin [Arizona State University; Gentry, Terry J [ORNL; Mehlhorn, Tonia L [ORNL; Carroll, Sue L [ORNL; Jardine, Philip M [ORNL; Zhou, Jizhong [University of Oklahoma, Norman

    2010-01-01

    The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based on colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future

  19. Bacterial sulphate reduction and the development of alklinity. III. Experiments under natural conditions in the Wadi Natrun

    Energy Technology Data Exchange (ETDEWEB)

    Abd-El-Malek, Y; Rizk, S G

    1963-01-01

    Evidence that microbial sulphate reduction is mainly responsible for the formation of the natron (hydrated Na/sub 2/CO/sub 3/) deposits in Wadi Natrun is presented. The sulphate in the infiltrating water is reduced during passage through the surrounding waterlogged soil and the bicarbonate formed is later concentrated by evaporation in the lakes.

  20. A mathematical model for the interactive behavior of sulfate-reducing bacteria and methanogens during anaerobic digestion.

    Science.gov (United States)

    Ahammad, S Ziauddin; Gomes, James; Sreekrishnan, T R

    2011-09-01

    Anaerobic degradation of waste involves different classes of microorganisms, and there are different types of interactions among them for substrates, terminal electron acceptors, and so on. A mathematical model is developed based on the mass balance of different substrates, products, and microbes present in the system to study the interaction between methanogens and sulfate-reducing bacteria (SRB). The performance of major microbial consortia present in the system, such as propionate-utilizing acetogens, butyrate-utilizing acetogens, acetoclastic methanogens, hydrogen-utilizing methanogens, and SRB were considered and analyzed in the model. Different substrates consumed and products formed during the process also were considered in the model. The experimental observations and model predictions showed very good prediction capabilities of the model. Model prediction was validated statistically. It was observed that the model-predicted values matched the experimental data very closely, with an average error of 3.9%.

  1. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  2. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  3. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment

    DEFF Research Database (Denmark)

    Poulsen, Morten; W. V. Kofoed, Michael; H. Larsen, Lone

    2014-01-01

    , respectively, which was mostly due to stimulation of sedimentary denitrification; incomplete denitrification in the guts accounted for up to 20% of the N2O efflux. Phylotype richness of the nitrate reductase gene narG was significantly higher in sediment with than without larvae. In the gut, 47 narG phylotypes...... were found expressed, which may contribute to higher phylotype richness in colonized sediment. In contrast, phylotype richness of the nitrous oxide reductase gene nosZ was unaffected by the presence of larvae and very few nosZ phylotypes were expressed in the gut. Gene abundance of neither narG, nor...... nosZ wasdifferent in sediments with and without larvae. Hence, C. plumosus increases activity and diversity, but not overall abundance of nitrate-reducing bacteria, probably by providing additional ecological niches in its burrow and gut....

  4. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  5. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.

    Science.gov (United States)

    Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong

    2017-11-15

    Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  7. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite

    Science.gov (United States)

    Picard, Aude; Gartman, Amy; Clarke, David R.; Girguis, Peter R.

    2018-01-01

    Sedimentary iron sulfide minerals play a key role in maintaining the oxygenation of Earth's atmosphere over geological timescales; they also record critical geochemical information that can be used to reconstruct paleo-environments. On modern Earth, sedimentary iron sulfide mineral formation takes places in low-temperature environments and requires the production of free sulfide by sulfate-reducing microorganisms (SRM) under anoxic conditions. Yet, most of our knowledge on the properties and formation pathways of iron sulfide minerals, including pyrite, derives from experimental studies performed in abiotic conditions, and as such the role of biotic processes in the formation of sedimentary iron sulfide minerals is poorly understood. Here we investigate the role of SRM in the nucleation and growth of iron sulfide minerals in laboratory experiments. We set out to test the hypothesis that SRM can influence Fe-S mineralization in ways other than providing sulfide through the comparison of the physical properties of iron sulfide minerals precipitated in the presence and in the absence of the sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13 under well-controlled conditions. X-ray diffraction and microscopy analyses reveal that iron sulfide minerals produced in the presence of SRM exhibit unique morphology and aggregate differently than abiotic minerals formed in media without cells. Specifically, mackinawite growth is favored in the presence of both live and dead SRM, when compared to the abiotic treatments tested. The cell surface of live and dead SRM, and the extracellular polymers produced by live cells, provide templates for the nucleation of mackinawite and favor mineral growth. The morphology of minerals is however different when live and dead cells are provided. The transformation of greigite from mackinawite occurred after several months of incubation only in the presence of live SRM, suggesting that SRM might accelerate the kinetics of greigite

  8. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  9. Susceptibility of salmonid fish to poisons under estuarine conditions. I. Zinc sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, D W.M.; Wakeford, A C

    1964-01-01

    The resistance of yearling rainbow trout and Atlantic salmon smolts to zinc sulphate increases with salinity up to 30-40 percent sea water, in which these species can withstand for 2 days respectively 15 and 13 times as much zinc sulphate as on fresh water. Further increase in salinity to 72 percent sea water reduces tolerance for the zinc salt. Salmon smolts were more susceptible to zinc poisoning than trout in fresh water and at all salinities tested.

  10. Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2009-08-01

    This study investigated 2 different homogenization techniques for reducing the size of calcium alginate beads during the microencapsulation process of 8 probiotic bacteria strains, namely, Lactobacillus rhamnosus, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, Bifidobacterium longum, B. lactis type Bi-04, and B. lactis type Bi-07. Two different homogenization techniques were used, namely, ultra-turrax benchtop homogenizer and Microfluidics microfluidizer. Various settings on the homogenization equipment were studied such as the number of passes, speed (rpm), duration (min), and pressure (psi). The traditional mixing method using a magnetic stirrer was used as a control. The size of microcapsules resulting from the homogenization technique, and the various settings were measured using a light microscope and a stage micrometer. The smallest capsules measuring (31.2 microm) were created with the microfluidizer using 26 passes at 1200 psi for 40 min. The greatest loss in viability of 3.21 log CFU/mL was observed when using the ultra-turrax benchtop homogenizer with a speed of 1300 rpm for 5 min. Overall, both homogenization techniques reduced capsule sizes; however, homogenization settings at high rpm also greatly reduced the viability of probiotic organisms.

  11. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment.

    Science.gov (United States)

    Castillo, Julio; Pérez-López, Rafael; Caraballo, Manuel A; Nieto, José M; Martins, Mónica; Costa, M Clara; Olías, Manuel; Cerón, Juan C; Tucoulou, Rémi

    2012-04-15

    Several experiments were conducted to evaluate zinc-tolerance of sulfate-reducing bacteria (SRB) obtained from three environmental samples, two inocula from sulfide-mining districts and another inoculum from a wastewater treatment plant. The populations of SRB resisted zinc concentrations of 260 mg/L for 42 days in a sulfate-rich medium. During the experiments, sulfate was reduced to sulfide and concentrations in solution decreased. Zinc concentrations also decreased from 260 mg/L to values below detection limit. Both decreases were consistent with the precipitation of newly-formed sphalerite and wurtzite, two polymorphs of ZnS, forming <2.5-μm-diameter spherical aggregates identified by microscopy and synchrotron-μ-XRD. Sulfate and zinc are present in high concentrations in acid mine drainage (AMD) even after passive treatments based on limestone dissolution. The implementation of a SRB-based zinc removal step in these systems could completely reduce the mobility of all metals, which would improve the quality of stream sediments, water and soils in AMD-affected landscapes. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    Science.gov (United States)

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  13. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate‐reducing bacteria: A randomised crossover study

    Science.gov (United States)

    Kellingray, Lee; Tapp, Henri S.; Saha, Shikha; Doleman, Joanne F.; Narbad, Arjan

    2017-01-01

    Scope We examined whether a Brassica‐rich diet was associated with an increase in the relative abundance of intestinal lactobacilli and sulphate‐reducing bacteria (SRB), or alteration to the composition of the gut microbiota, in healthy adults. Methods and results A randomised crossover study was performed with ten healthy adults who were fed a high‐ and a low‐Brassica diet for 2‐wk periods, with a 2‐wk washout phase separating the diets. The high‐Brassica diet consisted of six 84 g portions of broccoli, six 84 g portions of cauliflower and six 300 g portions of a broccoli and sweet potato soup. The low‐Brassica diet consisted of one 84 g portion of broccoli and one 84 g portion of cauliflower. Faecal microbiota composition was measured in samples collected following 2‐wk Brassica‐free periods (consumption of all Brassica prohibited), and after each diet, whereby the only Brassica consumed was that supplied by the study team. No significant changes to the relative abundance of lactobacilli were observed (p = 0.8019). The increased consumption of Brassica was associated with a reduction in the relative abundance of SRB (p = 0.0215), and members of the Rikenellaceae, Ruminococcaceae, Mogibacteriaceae, Clostridium and unclassified Clostridiales (p Brassica vegetables was linked to a reduced relative abundance of SRB, and therefore may be potentially beneficial to gastrointestinal health. PMID:28296348

  14. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  15. Sulphate deposition by precipitation into Lake Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R W; Whelpdale, D M

    1973-01-01

    Measurements of sulphate concentration in precipitation from individual snow storms of several hours duration in the western Lake Ontario region indicate that approximately 9-66 mg/M/sub 2/ of SO/sub 4//sup 2 -/ is being deposited into the lake per storm. This amount is up to several times more than daily average values over long periods found by other workers. Using a mean sulphate concentration of 4 mg/l and an annual accumulation of precipitation of 760 mm, the yearly sulphate deposition by precipitation is about 0.1% of the total mass of sulphate in the lake; however, more significantly, it is of the same order of magnitude as that discharged directly into the lake by industry.

  16. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce.

    Science.gov (United States)

    Duan, Manli; Li, Haichao; Gu, Jie; Tuo, Xiaxia; Sun, Wei; Qian, Xun; Wang, Xiaojuan

    2017-05-01

    Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of ferrous ions on the metabolism of sulfate-reducing bacteria; Ryusan`en kangenkin no taisha ni oyobosu tetsu ion no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan). Technology and Engineering Lab.]: Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School

    1995-11-15

    The grave damages due to microorganisms occur occasionally to the ironic piping and the like when river water is used as industrial water. In the present researches, the effects of Fe{sup 2+} on the amount and activity of sulfate-reducing bacteria in the culture medium with the concentration of Fe{sup 2+} changed by stages from 3.6{times}10{sup -4} M to 0.7M are examined. Further, the relations between the activity of the bacteria and the amount of FeS generated in the medium are investigated as an in-site means to observe the activity of the bacteria in the medium wherein the produced S{sup 2-} is converted into FeS once it is generated. The following conclusions are drawn therefrom. In the initial medium with the Fe{sup 2+} concentration from 3.6{times}10{sup -4} M to 0.7M, the growth of the bacteria is maximum at the concentration of 1.0{times}10{sup -2}. Over this concentration the growth is weakened due to the osmotic pressure, lowering of nutriment and the deposit of waste, and the bacteria are extirpated due to the direct effect of osmotic press when the concentration is 0.7M. The total amount of FeS produced due to the bacteria is in conformity with the tendency of growth of bacteria till 30 hours of culture. 18 refs., 6 figs., 2 tabs.

  18. Differential inhibition of polymorphonuclear leukocyte recruitment in vivo by dextran sulphate and fucoidan

    Directory of Open Access Journals (Sweden)

    N. Van Osselaer

    1996-01-01

    Full Text Available The selectin-mediated rolling of leukocytes along the endothelial cells is a prerequisite step followed by firm adhesion and extravasation into the inflamed tissue. This initial contact can be suppressed by sulphated polysaccharides. We have studied the effect of sulphated polysaccharides on the ultimate polymorphonuclear leukocyte (PMN recruitment and plasma leakage in rabbit skin in response to intradermal injection of various inflammatory mediators. PMN infiltration evoked by various PMN chemoattractants (FMLP, C5a desArg, LTB4 and IL-8 was significantly inhibited after intravenous injection of dextran sulphate (25 mg/kg, heparin (2 × 90 mg/kg or fucoidan (1 mg/kg. PMN-dependent plasma leakage was equally well reduced by the different sulphated polymers. Vascular permeability induced by histamine or thrombin acting via a PMN-independent mechanism was not reduced. Fucoidan was the only polysaccharide able to suppress IL-1-induced PMN infiltration for 60–70%. Local administration of dextran sulphate had no effect on PMN-dependent plasma leakage. Differential inhibition of PMN recruitment was determined after injection of dextran sulphate or fucoidan depending on the type of insult. Therefore, these results suggest that different adhesion pathways are utilized during PMN recruitment in vivo in response to chemoattractants and IL-1.

  19. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-09-01

    If it is widely accepted that the presence of sulfate-reducing bacteria can increase the aqueous corrosion of steels, the induced mechanisms are still not definitively established. The aim of this work is to specify the roles, for corrosion, of the presence of bacteria (D. Vulgaris) in one part and of chemical parameters as the composition of the material and the accumulation of sulfides in another part. The use of experimental techniques coming from microbiology, electrochemistry or chemical analysis has revealed the interdependence which exists between the bacteria and the material, and the importance of the steel composition towards the adhesion of microorganisms and the generalized corrosion. The bacteria and the dissolved sulfides do not seem to influence remarkably the generalized corrosion. Nevertheless, the alterations of the surface state they induce could be the cause of localized corrosion phenomena. (O.M.)

  20. Bacteria can form interconnected microcolonies when a self-excreted product reduces their surface motility: evidence from individual-based model simulations

    DEFF Research Database (Denmark)

    Mabrouk, Nabil; Deffuant, Guillaume; Tolker-Nielsen, Tim

    2010-01-01

    Recent experimental observations of Pseudomonas aeruginosa, a model bacterium in biofilm research, reveal that, under specific growth conditions, bacterial cells form patterns of interconnected microcolonies. In the present work, we use an individual-based model to assess the involvement of bacte......Recent experimental observations of Pseudomonas aeruginosa, a model bacterium in biofilm research, reveal that, under specific growth conditions, bacterial cells form patterns of interconnected microcolonies. In the present work, we use an individual-based model to assess the involvement...... of bacteria motility and self-produced extracellular substance in the formation of these patterns. In our simulations, the pattern of interconnected microcolonies appears only when bacteria motility is reduced by excreted extracellular macromolecules. Immotile bacteria form isolated microcolonies...... and constantly motile bacteria form flat biofilms. Based on experimental data and computer simulations, we suggest a mechanism that could be responsible for these interconnected microcolonies....

  1. Identification of Bacteria and the Effect on Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Anneza L. H.

    2016-01-01

    Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.

  2. Optimisation of the two-phase dry-thermophilic anaerobic digestion process of sulphate-containing municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-11-01

    Microbial population dynamics and anaerobic digestion (AD) process to eight different hydraulic retention times (HRTs) (from 25d to 3.5d) in two-phase dry-thermophilic AD from sulphate-containing solid waste were investigated. Maximum values of gas production (1.9 ± 0.2 l H2/l/d; 5.4 ± 0.3 l CH4/l/d and 82 ± 9 ml H2S/l/d) and microbial activities were obtained at 4.5d HRT; where basically comprised hydrolysis step in the first phase (HRT=1.5d) and acidogenic step finished in the second phase as well as acetogenic-methanogenic steps (HRT=3d). In the first phase, hydrolytic-acidogenic bacteria (HABs) was the main group (44-77%) and Archaea, acetogens and sulphate-reducing bacteria (SRBs) contents were not significant; in the second phase (except to 2d HRT), microbial population was able to adapt to change in substrate and HRTs to ensure the proper functioning of the system and both acetogens and Archaea were dominated over SRBs. Decreasing HRT resulted in an increase in microbial activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    Science.gov (United States)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  4. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  5. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria

    Directory of Open Access Journals (Sweden)

    Arman Abdullah

    2014-01-01

    Full Text Available Various cases of accidents involving microbiology influenced corrosion (MIC were reported by the oil and gas industry. Sulfate reducing bacteria (SRB have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP, and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr for Desulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.

  6. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    Science.gov (United States)

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  7. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: a case study on crude oil sample.

    Science.gov (United States)

    Mohd Ali, Muhammad Khairool Fahmy Bin; Abu Bakar, Akrima; Md Noor, Norhazilan; Yahaya, Nordin; Ismail, Mardhiah; Rashid, Ahmad Safuan

    2017-10-01

    Microbiologically influenced corrosion (MIC) is among the common corrosion types for buried and deep-water pipelines that result in costly repair and pipeline failure. Sulfate-reducing bacteria (SRB) are commonly known as the culprit of MIC. The aim of this work is to investigate the performance of combination of ultrasound (US) irradiation and ultraviolet (UV) radiation (known as Hybrid soliwave technique, HyST) at pilot scale to inactivate SRB. The influence of different reaction times with respect to US irradiation and UV radiation and synergistic effect toward SRB consortium was tested and discussed. In this research, the effect of HyST treatment toward SRB extermination and corrosion studies of carbon steel coupon upon SRB activity before and after the treatment were performed using weight loss method. The carbon steel coupons immersed in SRB sample were exposed to HyST treatment at different time of exposure. Additionally, Field Emission Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy were used to investigate the corrosion morphology in verifying the end product of SRB activity and corrosion formation after treatment. Results have shown that the US irradiation treatment gives a synergistic effect when combined with UV radiation in mitigating the SRB consortium.

  8. Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    H.S. El-Sheshtawy

    2015-06-01

    Full Text Available In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria. Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.

  9. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  10. Influence of four antimicrobials on methane-producing archaea and sulfate-reducing bacteria in anaerobic granular sludge.

    Science.gov (United States)

    Du, Jingru; Hu, Yong; Qi, Weikang; Zhang, Yanlong; Jing, Zhaoqian; Norton, Michael; Li, Yu-You

    2015-12-01

    The influence of Cephalexin (CLX), Tetracycline (TC), Erythromycin (ERY) and Sulfathiazole (ST) on methane-producing archaea (MPA) and sulfate-reducing bacteria (SRB) in anaerobic sludge was investigated using acetate or ethanol as substrate. With antimicrobial concentrations below 400mgL(-1), the relative specific methanogenic activity (SMA) was above 50%, so that the antimicrobials exerted slight effects on archaea. However ERY and ST at 400mgL(-1) caused a 74.5% and 57.6% inhibition to specific sulfidogenic activity (SSA) when the sludge granules were disrupted and ethanol used as substrate. After disruption, microbial tolerance to antimicrobials decreased, but the rate at which MPA utilized acetate and ethanol increased from 0.95gCOD·(gVSS⋅d)(-1) to 1.45gCOD·(gVSS⋅d)(-1) and 0.90gCOD·(gVSS⋅d)(-1) to 1.15gCOD·(gVSS⋅d)(-1) respectively. The ethanol utilization rate for SRB also increased after disruption from 0.35gCOD·(gVSS⋅d)(-1) to 0.46gCOD·(gVSS⋅d)(-1). Removal rates for CLX approaching 20.0% and 25.0% were obtained used acetate and ethanol respectively. The disintegration of granules improved the CLX removal rate to 65% and 78%, but ST was not removed during this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Influence of sulfate-reducing bacteria on the corrosion of steel in seawater: laboratory and in situ study

    International Nuclear Information System (INIS)

    Benbouzid-Rollet, N.

    1993-01-01

    A fouling reactor was designed to study, the influence of a mixed bio-film on AISI 316 L stainless steel. The bio-film was formed on the steel surface by the fermentative bacterium Vibrio natriegens. The sulfate-reducing bacterium Desulfovibrio vulgaris was then introduced in the reactor and colonized the surface, constituting approximately 5 % of the total population. The settlement of an anaerobic bacterium in the bio-film shows in it the existence of anaerobic micro-niches. Stainless steel electrochemical behavior was analyzed using open circuit potential and potentiodynamic polarization curves. Growth of the bio-film does not induce corrosion, but seems to change the cathodic oxygen reduction kinetics, diminishing the corrosion hazard. This effect increases when D. vulgaris grows in the bio-film. An ennobling of the open circuit potential was observed, similar to field cases already described. A case of drilling corrosion of carbon steel in a harbour area showed the characteristics of anaerobic corrosion related to sulfate-reducing bacteria. The total cultivatable SRB population was quantified and metabolic types were enumerated using specific electron donors. A maximum cell density of 1,1 x 10 8 cells/ cm 2 was estimated, revealing a very important growth of SRB on surfaces. Population structure was different in corroded and non-corroded areas. In corroded area, SRB utilizing benzoate and propionate were more abundant. A strain belonging to the sporulating genus Desulfotomaculum was isolated using these substrates, suggesting a partial aeration in the area of hole appearance. However, in vitro corrosion assays showed that the bacterial population sampled in this area induced a consequent weight loss of steel coupons, in the absence of oxygen. This was observed only with a diversified population, similar to that present in situ. It could not be reproduced with a mixed culture of two purified strains. (author)

  12. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  13. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen....... Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  14. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  15. Weed-Suppressive Soil Bacteria to Reduce Cheatgrass and Improve Vegetation Diversity on ITD Rights-of-Way

    Science.gov (United States)

    2017-06-01

    Transportation departments are challenged by the invasion of downy brome (cheatgrass) and medusahead. The reduction of downy brome (cheat grass) by Weed Suppressive Bacteria (WSB) Pseudomonas fluorescens strain ACK55 was evaluated on roadsides of I-8...

  16. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  17. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields.

    Science.gov (United States)

    Priha, Outi; Nyyssönen, Mari; Bomberg, Malin; Laitila, Arja; Simell, Jaakko; Kapanen, Anu; Juvonen, Riikka

    2013-09-01

    Sulfate-reducing bacteria (SRB) participate in microbially induced corrosion (MIC) of equipment and H2S-driven reservoir souring in oil field sites. Successful management of industrial processes requires methods that allow robust monitoring of microbial communities. This study investigated the applicability of denaturing high-performance liquid chromatography (DHPLC) targeting the dissimilatory sulfite reductase ß-subunit (dsrB) gene for monitoring SRB communities in oil field samples from the North Sea, the United States, and Brazil. Fifteen of the 28 screened samples gave a positive result in real-time PCR assays, containing 9 × 10(1) to 6 × 10(5) dsrB gene copies ml(-1). DHPLC and denaturing gradient gel electrophoresis (DGGE) community profiles of the PCR-positive samples shared an overall similarity; both methods revealed the same samples to have the lowest and highest diversity. The SRB communities were diverse, and different dsrB compositions were detected at different geographical locations. The identified dsrB gene sequences belonged to several phylogenetic groups, such as Desulfovibrio, Desulfococcus, Desulfomicrobium, Desulfobulbus, Desulfotignum, Desulfonatronovibrio, and Desulfonauticus. DHPLC showed an advantage over DGGE in that the community profiles were very reproducible from run to run, and the resolved gene fragments could be collected using an automated fraction collector and sequenced without a further purification step. DGGE, on the other hand, included casting of gradient gels, and several rounds of rerunning, excising, and reamplification of bands were needed for successful sequencing. In summary, DHPLC proved to be a suitable tool for routine monitoring of the diversity of SRB communities in oil field samples.

  18. Role of aqueous sulfide and sulfate-reducing bacteria in the kinetics and mechanisms of the reduction of uranyl ion

    International Nuclear Information System (INIS)

    Mohagheghi, A.

    1985-01-01

    Formation of sedimentary rock-hosted uranium ore deposits is thought to have resulted from the reduction by aqueous sulfide species of relatively soluble uranyl ion (U(VI)) to insoluble uranium(IV) oxides and silicates. The origin of this H 2 S in such deposits can be either biogenic or abiogenic. Therefore, the kinetics and mechanism of uranyl ion reduction by aqueous sulfide, and the effect of several key variables on the reduction process in non-bacterial (sterile) systems was studied. The role of both pure and mixed cultures of sulfate-reducing bacteria on the reduction process was also investigated. In sterile systems the reduction reaction generally occurred by a two step reaction sequence. Uranium(V) (as UO 2 + ) and U(IV) (as UO 2 the mineral uraninite) were the intermediate and final products, respectively. The initial concentration of uranyl ion required for reaction initiation had a minimum value of 0.8 ppm at pH 7, and was higher at pH values less than or greater than 7. An induction period was observed in all experiments. No reduction was observed after 8 hours at pH 8. Although increasing ionic strength increased the length of the induction period, it also increased the rate of the reduction of UO 2 + in the second step. No reaction was observed under any experimental conditions with initial UO 2 2+ concentration less than 0.1 ppm, which is thought to be typical for ore forming solutions. However, by absorbing uranyl ion onto kaolinite, the reduction by H 2 S occurred at lower UO 2 2+ concentrations (∼ 0.1 ppm) in that in the homogeneous system. Thus, adsorption may play a significant role in the reduction and therefore in the formation of ore deposits

  19. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  20. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  1. Thermal decomposition of uranyl sulphate hydrate

    International Nuclear Information System (INIS)

    Sato, T.; Ozawa, F.; Ikoma, S.

    1980-01-01

    The thermal decomposition of uranyl sulphate hydrate (UO 2 SO 4 .3H 2 O) has been investigated by thermogravimetry, differential thermal analysis, X-ray diffraction and infrared spectrophotometry. As a result, it is concluded that uranyl sulphate hydrate decomposes thermally: UO 2 SO 4 .3H 2 O → UO 2 SO 4 .xH 2 O(2.5 = 2 SO 4 . 2H 2 O → UO 2 SO 4 .H 2 O → UO 2 SO 4 → α-UO 2 SO 4 → β-UO 2 SO 4 → U 3 O 8 . (author)

  2. The roles of the micro-organisms and chromium content in the corrosion of iron-chromium steels in the presence of sulfate-reducing bacteria

    International Nuclear Information System (INIS)

    Ferrante, V.

    1991-12-01

    Although the ability of sulfate-reducing bacteria to enhance the corrosion of steel is now widely accepted, the actual processes involved in such phenomena are still discussed. This work is dedicated to the study of the exact roles played in corrosion processes firstly, by the presence of D. vulgaris cells and, secondly, by chemical factors such as the material composition and the accumulation of sulfide ions in the solution. The use of microbiological, electrochemical and analytical experimental techniques lead to results that show the interdependence of the bacteria and the material as well as the importance of the steel composition in the adhesion of the micro-organisms and the general corrosion rates. The bacteria cells and dissolved sulfide ions do not markedly influence the general corrosion rates. They however induce surface state modifications that can result in localized corrosion phenomena

  3. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  4. Computerised analysis of sulphate action on model concrete piles

    Digital Repository Service at National Institute of Oceanography (India)

    Deshmukh, A.M.; Balasubramanian, S.; Venugopal, C.

    Sulphate action severely affects the durability of marine structures. It is imperative to study precisely the effects of magnesium sulphate on pile foundations in the marine environment. In the present paper an attempt is made to assess and analyse...

  5. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Korenblum Elisa

    2012-11-01

    Full Text Available Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1 that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS. It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml. Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential

  6. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria

    Science.gov (United States)

    2012-01-01

    Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the

  7. Characterisation of community structure of bacteria in parallel mesophilic and thermophilic pilot scale anaerobe sludge digesters.

    Science.gov (United States)

    Tauber, T; Berta, Brigitta; Székely, Anna J; Gyarmati, I; Kékesi, Katalin; Márialigeti, K; Tóth, Erika M

    2007-03-01

    The aim of the present work was to compare the microbial communities of a mesophilic and a thermophilic pilot scale anaerobe sludge digester. For studying the communities cultivation independent chemotaxonomical methods (RQ and PLFA analyses) and T-RFLP were applied. Microbial communities of the mesophilic and thermophilic pilot digesters showed considerable differences, both concerning the species present, and their abundance. A Methanosarcina sp. dominated the thermophilic, while a Methanosaeta sp. the mesophilic digester among Archaea. Species diversity of Bacteria was reduced in the thermophilic digester. Based on the quinone patterns in both digesters the dominance of sulphate reducing respiratory bacteria could be detected. The PLFA profiles of the digester communities were similar though in minor components characteristic differences were shown. Level of branched chain fatty acids is slightly lower in the thermophilic digester that reports less Gram positive bacteria. The relative ratio of fatty acids characteristic to Enterobacteriaceae, Bacteroidetes and Clostridia shows differences between the two digesters: their importance generally decreased under thermophilic conditions. The sulphate reducer marker (15:1 and 17:1) fatty acids are present in low quantity in both digesters.

  8. Controlling Barium Sulphate Scale Deposition Problems in an unbleached Kraft Paper Mill

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2015-06-01

    Full Text Available Troubleshooting of scale deposits and defects in paper samples showed that the problem was caused by barium sulphate and calcium sulphate scales. However, it was ascertained that barium sulphate was more of a concern than calcium sulphate...

  9. Formulation and evaluation and terbutaline sulphate and ...

    African Journals Online (AJOL)

    We report the use of low rugosity lactose, product of controlled crystallization of this carrier, in the formulation of terbutaline sulphate and beclomethasone dipropionate dry powder inhalers. The deposition patterns obtained with inhalation mixtures consisting of the modified lactose and each of the micronised drugs ...

  10. Unintended consequences of atmospheric injection of sulphate aerosols.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the

  11. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  12. Sulphate content of the Muntimpa dam water and its impact on water quality

    International Nuclear Information System (INIS)

    Tembo, F; Shitumbanuma, V; Simukanga, S; Mudenda, G; Chileshe, P; Mulenga, S; Phiri, Y

    2004-01-01

    This article presents results of a study of the quality of water from Muntimpa Dam, a reservior of waste mine water released from the processing of copper and cobalt ores by Konkola Copper Mines(KCM) Plc in Chingola. The mine water is discharged into the local Muntimpa stream, a possible source of drinking and domestic water for the local population. The purpose of the study was to determine levels of sulphate in the dam and stream water and recommend possible methods of partial sulphate removal to levels below the recommended statutory limits and secondly, to assess the impact of high sulphate levels on water quality. Study methods included the sampling of water from the Muntimpa dam and catchment area. Stream water samples were collected about 5m from the stream banks while water samples from the dam were randomly collected from the near the centre of the dam at a depth of 50cm. Laboratory methods involved the determination of physical and chemical properties of the water using standard analytical techniques. Results of the study indicate that both total (2470mg/l) and available (1965mg/l) sulphate concentrations are higher than the recommended statutory limit for the discharge of sulphates into natural streams of 1500mg/l. From the study it is concluded that water in Muntimpa dam and stream is not suitable for drinking and other domestic use due to the high sulphate levels. From theorectical considerations, it was established that sulphate reduction could be achieved by addition of lime, which however had the consquence of increasing the pH of the water in excess of the recommended Zambian statutory value of nine, and would thus require an additional process to reduce the pH. (author)

  13. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    Science.gov (United States)

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  14. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Mussmann, Marc; Niemann, Helge

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112T and 102T) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  15. Desulfuromonas svalbardensis sp nov and Desulfuromusa ferrireducens sp nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Mussmann, M.; Niemann, Hans Henrik

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112(T) and 102(T)) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  16. Focus on CSIR research in pollution waste: Cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. cut grass, is a sustainable source of energy when cellulose is utilised in the anaerobic degradation to produce...

  17. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    OpenAIRE

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remedi...

  18. Corrosion by sulfate-reducing bacteria in a HP gas line under a detached weld cladding; Korrosion durch sulfatreduzierende Bakterien an einer Hochdruckgasleitung unter abgeloester Schweissnahtnachumhuellung

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Ulrich [Technische Akademie Wuppertal (Germany)

    2011-07-01

    Intelligent pig measurements detected several points of corrosion in a HP gas pipeline in northern Germany. Corrosion occurred in a pipe section buried in clay soil, under detached weld claddings. It was not detected in regular measurements and additional intensive measurements. When the pipes were dug up, sulfate-reducing bacteria were found as the cause of corrosion. Due to the location of the corrosion processes, cathodic protection was impossible, and IFO measurements were ineffective in the low-ohmic soil.

  19. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    International Nuclear Information System (INIS)

    Jang, Gyoung Gug; Datskos, Panos G; Jacobs, Christopher B; Ivanov, Ilia N; Joshi, Pooran C; Meyer, Harry M III; Armstrong, Beth L; Kidder, Michelle; Graham, David E; Moon, Ji-Won

    2015-01-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm. (paper)

  20. Investigating the Changes of Sulphate in Potabale Water of Yasuj City and preparing it's Qualitative Plan by Means of GIS Tools

    International Nuclear Information System (INIS)

    Pasereh, F.; Hasani, A.; Hoseini, N.; Javid, A.

    2016-01-01

    Water has always some soluble salts, such as sulphate. Sulphate enters the water through different resources such as, dissolved gypsum, waste water of industrial factories and automobiles smoke, dissolved in rain. Presence of sulphate in potable water has an enormous role in creating constant hardness.On the other hand Presence of sulphate with high density in drinking water, causes changes in taste and it's combination with Calcium and Magnesium anions has laxative effect. The goal of this study is to assess the amount of existing sulphate in Yasuj city potable ground water, and determining the procedure of changes in chemical parameters of sulphate and recognizing effective factors on these parameters and preparing qualitative plan for water resources for sulphate parameter by means of GIS tools. Method: In the study described above, 42 specimens in the 7 early months of the year 1387 were acquired and tested. Sulphate tests were done based on the measuring method of the instrument of Filter photometer (Model: 7000). For analysing the results, Excel software and for preparing qualitative plan, GIS software was used. Findings: This study showed that sulfate levels in water resources by reducing water level in summer and autumn and with a water level of under ground water resources increases. Discussion and Conclusion: Decrease of ground water resources of Yasuj city, causes the sulphate density to increase.

  1. Enhanced biotic and abiotic transformation of Cr(vi) by quinone-reducing bacteria/dissolved organic matter/Fe(iii) in anaerobic environment.

    Science.gov (United States)

    Huang, Bin; Gu, Lipeng; He, Huan; Xu, Zhixiang; Pan, Xuejun

    2016-09-14

    This study investigated the simultaneous transformation of Cr(vi) via a closely coupled biotic and abiotic pathway in an anaerobic system of quinone-reducing bacteria/dissolved organic matters (DOM)/Fe(iii). Batch studies were conducted with quinone-reducing bacteria to assess the influences of sodium formate (NaFc), electron shuttling compounds (DOM) and the Fe(iii) on Cr(vi) reduction rates as these chemical species are likely to be present in the environment during in situ bioremediation. Results indicated that the concentration of sodium formate and anthraquinone-2-sodium sulfonate (AQS) had apparently an effect on Cr(vi) reduction. The fastest decrease in rate for incubation supplemented with 5 mM sodium formate and 0.8 mM AQS showed that Fe(iii)/DOM significantly promoted the reduction of Cr(vi). Presumably due to the presence of more easily utilizable sodium formate, DOM and Fe(iii) have indirect Cr(vi) reduction capability. The coexisting cycles of Fe(ii)/Fe(iii) and DOM(ox)/DOM(red) exhibited a higher redox function than the individual cycle, and their abiotic coupling action can significantly enhance Cr(vi) reduction by quinone-reducing bacteria.

  2. Effect of clonidine and magnesium sulphate on anaesthetic consumption, haemodynamics and postoperative recovery: A comparative study

    Directory of Open Access Journals (Sweden)

    Manjushree Ray

    2010-01-01

    Full Text Available This randomised, placebo-controlled, double-blind study was designed to assess the effect of intravenous clonidine and magnesium sulphate on intraoperative haemodynamics, anaesthetic consumption and postoperative recovery. Seventy five patients undergoing elective upper limb orthopaedic surgery were randomised into three groups. Group C received clonidine 3 μg/kg as a bolus before induction and 1μg/kg/hour by infusion intraopertively. Group M received magnesium sulphate 30 mg/kg as a bolus before induction and 10 mg/kg/hour by infusion. Group P received same volume of isotonic saline. Anaesthesia was induced and maintained with fentanyl citrate and propofol. Muscular relaxation was achieved by vecuronium bromide. Induction time, recovery time and consumption of propofol as well as fentanyl citrate were recorded. Induction of anaesthesia was rapid with both clonidine and magnesium sulphate. Time of bispectral index (BIS to reach 60 was significantly lower in Group C and Group M (P < 0.0001. Requirements of propofol and fentanyl were significantly less in Group C and Group M (P < 0.001. Postoperative recovery was slower in Group M compared with other two groups (P < 0.001. Perioperative use of both clonidine and magnesium sulphate significantly reduced the consumption of propofol and fentanyl citrate. Magnesium sulphate caused a delayed recovery.

  3. The effectiveness of 0.5–0.7% tetracycline gel to reduced subgingival plaque bacteria

    Directory of Open Access Journals (Sweden)

    Ernie Maduratna Setiawati

    2008-09-01

    Full Text Available Background: The tetracycline was an antimicrobial agent, that a broad spectrum. In addition to the antimicrobial effects, their efficacy was also anticollagenase and removal of the smear layer on the root surface. Purpose: The aim of the study was to evaluate effectiveness tetracycline gel 0.5–0.7% to reduction subgingival plaque bacteria. Method: A laboratory experimental study was conducted to investigate the effectiveness tetracycline gel 0.5–0.7%. Samples were divided into 5 groups with different concentration. The antimicrobial effect was performed using spectrophotometer. The statistical test was used One-Way ANOVA with significant difference 5% and subsequently Tukey-HSD test. Result: The study showed that tetracycline gel 0.5% has the highest antimicrobial has the highest antimicrobial effect. Conclusion: Tetracycline gel with 0.5% concentration is effective in inhibiting the growth of subgingival plaque bacteria.

  4. Low-intensity laser coupled with photosensitizer to reduce bacteria in root canals compared to chemical control

    International Nuclear Information System (INIS)

    Garcez Segundo, Aguinaldo Silva

    2002-01-01

    The photodynamic therapy is a process in which a dye is associate with an appropriate wavelength of light and this dye goes to an excited state. The excited reacts with oxygen to form the highly reactive compound singlet oxygen, and this compound can kill bacteria and tumor cells. The purpose of this study was to evaluate the bactericidal reduction in root canal contaminated with E. Faecalis. Thirty teeth with their root canals prepared were contaminated with E. faecalis. The teeth have received the chemical substance sodium hypochlorite for 30 minutes; ten teeth have received the azulene dye paste for 5 minutes and have been irradiated with a diode laser, output power 10 mW and λ= 685 nm for 3 minutes. Ten teeth have not received treatment (control group). The bacterial reduction was significantly higher for laser group when compared to chemical and control groups. These results indicate photodynamic therapy as an effective method to kill bacteria. (author)

  5. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Directory of Open Access Journals (Sweden)

    A. B. Moldes

    2013-01-01

    Full Text Available The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-. The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage, as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  6. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    Science.gov (United States)

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  7. Decline in Performance of Biochemical Reactors for Sulphate Removal from Mine-Influenced Water is Accompanied by Changes in Organic Matter Characteristics and Microbial Population Composition

    Directory of Open Access Journals (Sweden)

    Parissa Mirjafari

    2016-03-01

    Full Text Available Successful long-term bioremediation of mining-influenced water using complex organic matter and naturally-occurring microorganisms in sub-surface flow constructed wetlands requires a balance between easily and more slowly degrading material. This can be achieved by combining different types of organic materials. To provide guidance on what mixture combinations to use, information is needed on how the ratio of labile to recalcitrant components affects the degradation rate and the types of microbial populations supported. To investigate this, different ratios of wood and hay were used in up-flow column bioreactors treating selenium- and sulphate-containing synthetic mine-influenced water. The degradation rates of crude fibre components appeared to be similar regardless of the relative amounts of wood and hay. However, the nature of the degradation products might have differed in that those produced in the hay-rich bioreactors were more biodegradable and supported high sulphate-reduction rates. Microorganisms in the sulphate-reducing and cellulose-degrading inocula persisted in the bioreactors indicating that bio-augmentation was effective. There was a shift in microbial community composition over time suggesting that different microbial groups were involved in decomposition of more recalcitrant material. When dissolved organic carbon (DOC was over-supplied, the relative abundance of sulphate-reducers was low even through high sulphate-reduction rates were achieved. As DOC diminished, sulphate-reducers become more prevalent and their relative abundance correlated with sulphate concentrations rather than sulphate-reduction rate.

  8. Possibilities of Sulphate Elimination from Mine Water

    Directory of Open Access Journals (Sweden)

    Heviánková Silvie

    2004-12-01

    Full Text Available The issue of „acid water“ (or AMD is well known in the world for some centuries. In the Eastern Slovakia, the most acid surface water occurs in the area of old mine Smolník, which is closed and submerged for 15 years. The submitted contribution deals with the sulphate-elimination from this locality. Recently, several methods of sulphate-elimination from the mine water are applied. The best-known methods are biological, physical-chemical and chemical precipitation. The method described in this contribution consists of chemical precipitation by sodium aluminate and calcium hydrate. Under application of this method very interesting results were obtained. The amount of SO42- anions decreased to almost zero-value, using optimal doses of the chemical reagents.

  9. Decontamination of acid mine water from Ronneburg/Thueringen which is high in sulfates and metals using sulfate-reducing bacteria. Final report of the preliminary phase

    International Nuclear Information System (INIS)

    Hard, B.; Friedrich, S.

    1995-01-01

    The mining in Eastern Europe, particularly in East-Germany, is a major source of pollution to the surrounding areas of the mines. With the end of the cold war the demand for uranium has drastically declined. Many of the pits have therefore been closed down or are in the process of closure such as the uranium mine in Ronneburg in Thueringen. One major problem is the safe-making of the pits and dumps as they are highly radioactive through naturally occurring uranium and other radioactive elements. Because of the leaching process through bacteria, drainage water is very acidic, with pH-values between 1-2. The water is very rich in magnesium, iron and aluminium sulfate. Here the application of a microbial process to decontaminate acid mine drainage was investigated. Decontamination of the water includes: - Increase in pH - decrease in sulfate concentrations - minimization of the metal and radionuclide load. Sulfate-reducing bacteria seem suitable for this process. In order for such a microbial process to be economically viable a cheap and widely available electron donar has to be used eg. methanol. The work carried out reports on the isolation, characterization and physiology of sulfate-reducing methylotrophic bacteria and their suitability for a decontamination process of sulfuric acid uranium mine water. (orig.) [de

  10. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria

    International Nuclear Information System (INIS)

    Rao, A. Gangagni; Ravichandra, P.; Joseph, Johny; Jetty, Annapurna; Sarma, P.N.

    2007-01-01

    Mixed cultures of sulfate reducing bacteria (SRB) were isolated from anaerobic cultures and enriched with SRB media. Studies on batch and continuous reactors for the removal of SO 2 with bulk drug industry wastewater as an organic source using isolated mixed cultures of SRB revealed that isolation and enrichment methodology adopted in the present study were apt to suppress the undesirable growth of anaerobic bacteria other than SRB. Studies on anaerobic reactors showed that process was sustainable at COD/S ratio of 2.2 and above with optimum sulfur loading rate (SLR) of 5.46 kg S/(m 3 day), organic loading rate (OLR) of 12.63 kg COD/(m 3 day) and at hydraulic residence time (HRT) of 8 h. Free sulfide (FS) concentration in the range of 300-390 mg FS/l was found to be inhibitory to mixed cultures of SRB used in the present studies

  11. The Sulphate Effect on Lijiaxia Concrete Dam (China Gallery

    Directory of Open Access Journals (Sweden)

    Xufen Zhu

    2017-01-01

    Full Text Available The concrete degradation is one of the most serious problems for a dam construct during the normal operation, which determines the dam service life. Hence, it is very important to reduce the extent of the dam concrete degradation for the safety of the dam normal operation. Here, Lijiaxia hydroelectric station is taken as an example, and a comprehensive method to assess the sulphate effect on dam gallery is proposed. Eleven samples in total were taken from three difference locations by the drill bore. The microstructural investigations including X-ray fluorescence spectrometry (XRF, X-ray diffraction (XRD, scanning electron microscope (SEM, and energy dispersive spectroscopy (EDS were conducted to assess the sulphate attack and the degradation degree. Meanwhile, the water chemical analysis was applied to reveal the mechanism of concrete degradation. The experimental and analysis results indicate that the concrete degradation degree varies with the location of the samples. The components of the concrete change and the content of SO3 increase dramatically during degradation. Moreover, the mineral facies of the concrete change correspondingly, with the cement paste substituted by the calcite, calcium vitriol, and gypsum. The reinforcement and precaution measures are suggested based on the results of the degradation assessment.

  12. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  13. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  14. Analgesic effect of intra-articular magnesium sulphate compared with bupivacaine after knee arthroscopic menisectomy

    Directory of Open Access Journals (Sweden)

    Yasser A. Radwan

    2013-07-01

    Full Text Available This work aimed to evaluate the analgesic efficacy of intra-articular injection of magnesium sulphate (4% compared with equivalent volume of bupivacaine (0.5% after outpatient knee arthroscopic meniscectomy. Forty patients were randomly assigned to two groups. Group M (n = 20 received intra-articular magnesium sulphate 4%, group B (n = 20 received bupivacaine (0.5%. Analgesic effect was evaluated by analgesic duration, and by measuring pain intensity at 1, 2, 4, 6, 12, 24 h both at rest and on knee movement to 90°. The primary outcome variable was pain intensity on the VAS at 1, 2, 4, 6, 12, 24 h post arthroscopy at rest and on movement (flexion of knee to 90°, although the magnesium group had lower time weighted averages (TWAs at rest and on movement, these TWAs were not statistically significant. The median duration of postoperative analgesia was significantly longer in the patients treated with magnesium sulphate (528 min than in the bupivacaine group (317 min (p < 0.0001, with less number of patients needing supplementary analgesia in magnesium group (8/20 than those of the bupivacaine group (16/20 (p < 0.022. Also analgesic consumption was significantly lower in the magnesium sulphate group (p < 0.002. We concluded that the use of magnesium sulphate is rational and effective in reducing pain, and is more physiological and shortens convalescence after outpatient arthroscopic meniscectomy, however our hypotheses that analgesic efficacy of intra-articular isotonic magnesium sulphate would be superior to intra-articular local anaesthetic cannot be supported with this study.

  15. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

    Science.gov (United States)

    Arshad, Arslan; Dalcin Martins, Paula; Frank, Jeroen; Jetten, Mike S M; Op den Camp, Huub J M; Welte, Cornelia U

    2017-12-01

    Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  17. Optimization of experimental conditions for the installation of an infrared spectra library for the characterization of sulfato and thio-sulfato-reducing bacteria

    International Nuclear Information System (INIS)

    Boudaud, N.; Carayon, A.; Amiel, C.; Mariey, L.; Travert, J.

    2005-01-01

    The presence of particular bacteria strains in bio-films can accelerate corrosion process or induce auspicious corrosion conditions. Bacteria most often described to be aggressive against metallic materials are Sulfato and Thio-sulfato Reducing Bacteria (SRB and TRB). Preliminary studies showed the potentialities of Fourier Transform InfraRed (FTIR) Spectroscopy for the discrimination of these two groups. The realization of a reference spectra library requires the working out of common standardized culture conditions for the whole flora studied. A first spectra library including 6 SRB and 6 TRB collection strains was achieved. Hierarchical cluster analysis of the spectra of these twelve strains allows to obtain three distinct clusters (SRB, TRB and mixed cluster), and to discriminate these strains at the genus level (11 out of 12) and at the species level (12 out of 12). Ten strains isolated from the environment were tested on this spectra library. The enrichment of the database will enable us to carry on the identification of higher number of wild SRB and TRB strains. (authors)

  18. Lipids rich in phosphatidylethanolamine from natural gas-utilizing bacteria reduce plasma cholesterol and classes of phospholipids

    DEFF Research Database (Denmark)

    Müller, H.; Hellgren, Lars; Olsen, E.

    2004-01-01

    -utilizing bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet for which the lipid content was 100% soybean oil. The total cholesterol, LDL cholesterol, and HDL cholesterol of animals consuming a diet with 67% LNGB (67LNGB-diet), were significantly lowered by 35, 49, and 29%, respectively......, and unesterified cholesterol increased by 17% compared with the animals fed a diet of 100% lipids from soybean oil (SB-diet). In addition, the ratio of LDL cholesterol to HDL cholesterol was 27% lower in mink fed the 67LNGB-diet than those fed the S13-cliet. When the mink were fed the 67LNGB-diet, plasma PC, total...... phospholipids, lysoPC, and PI were lowered significantly compared with the mink fed a SB-diet. Plasma total cholesterol was correlated with total phospholipids as well as with PC (R = 0.8, P

  19. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  20. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue

    2015-11-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  1. Diversity of methanogens and sulfate-reducing bacteria in the interfaces of five deep-sea anoxic brines of the Red Sea

    KAUST Repository

    Guan, Yue; Hikmawan, Tyas; Antunes, Andre; Ngugi, David; Stingl, Ulrich

    2015-01-01

    Oceanic deep hypersaline anoxic basins (DHABs) are characterized by drastic changes in physico-chemical conditions in the transition from overlaying seawater to brine body. Brine-seawater interfaces (BSIs) of several DHABs across the Mediterranean Sea have been shown to possess methanogenic and sulfate-reducing activities, yet no systematic studies have been conducted to address the potential functional diversity of methanogenic and sulfate-reducing communities in the Red Sea DHABs. Here, we evaluated the relative abundance of Bacteria and Archaea using quantitative PCR and conducted phylogenetic analyses of nearly full-length 16S rRNA genes as well as functional marker genes encoding the alpha subunits of methyl-coenzyme M reductase (mcrA) and dissimilatory sulfite reductase (dsrA). Bacteria predominated over Archaea in most locations, the majority of which were affiliated with Deltaproteobacteria, while Thaumarchaeota were the most prevalent Archaea in all sampled locations. The upper convective layers of Atlantis II Deep, which bear increasingly harsh environmental conditions, were dominated by members of the class Thermoplasmata (Marine Benthic Group E and Mediterranean Sea Brine Lakes Group 1). Our study revealed unique microbial compositions, the presence of niche-specific groups, and collectively, a higher diversity of sulfate-reducing communities compared to methanogenic communities in all five studied locations. © 2015 Institut Pasteur.

  2. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  3. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    Directory of Open Access Journals (Sweden)

    Corina Gravila

    2014-05-01

    Full Text Available The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO43. The rats were divided in one control group (C and 7 experimental groups (E. The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for 3 months; : E3 group – melatonin, daily, for 3 months; : E4 group – aluminum sulphate with Sempervivum tectorum, daily, for 3 months; : E5 group – aluminum sulphate with melatonin, daily, for 3 months; E6 group – aluminum sulphate, daily, for 3 months, and thereafter with Sempervivum tectorum for 1 month; E7 group – aluminum sulphate, daily, for 3 month, and thereafter with melatonin for 1 month. This study showed that Aluminum toxicity induced lower GSH. The oxidative stress caused by aluminum, given individual, is more pronounced than in the case in which aluminum is administered simultaneously with Sempervivum tectorum or melatonin. Decreasing GSH value is very small if Sempervivum tectorum or melatonin is given for one month, three months after the administration of aluminum. Effect induced by melatonin is more favorable than that of Sempervivum tectorum.

  4. Constant current chronopotentiometric stripping of sulphated polysaccharides

    Czech Academy of Sciences Publication Activity Database

    Strmečki, S.; Plavšić, M.; Ćosović, B.; Ostatná, Veronika; Paleček, Emil

    2009-01-01

    Roč. 11, č. 10 (2009), s. 2032-2035 ISSN 1388-2481 R&D Projects: GA ČR(CZ) GA301/07/0490; GA ČR(CZ) GP202/07/P497; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sulphated polysaccharides * ióta-carrageenan * catalysis of hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2009

  5. Structure of sodium alkyl sulphate micelles

    International Nuclear Information System (INIS)

    Vass, Sz.

    1990-05-01

    Micellar aggregation numbers of aggregated sodium octyl, decyl, dodecyl and tetradecyl sulphate molecules obtained from small-angle neutron scattering (SANS) measurements are reported. The surfactant concentration and solution temperature were varied systematically. A survey of the physical models and evaluation algorithms applied for SANS are presented. By utilizing a new least square fitting algorithm, the formation and annihilation parameters of orthopositronium in the micellar pseudophase and in the aqueous solvent is deduced by evaluating positron lifetime spectra measured by conventional technqiues. (R.P.) 157 refs.; 10 figs

  6. Influence of Gamma Radiation on the Treatment of Sulfate Reducing Bacteria in the Injection Water Used for the Enhanced Oil Recovery

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.; Ramzi, M.; Farag, R.M.

    2014-01-01

    The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method

  7. Synergistic effects of sodium hypochlorite and ultraviolet radiation in reducing the levels of selected foodborne pathogenic bacteria.

    Science.gov (United States)

    Ha, Ji-Hyoung; Ha, Sang-Do

    2011-05-01

    The purpose of this study was to determine whether combined treatment would produce synergistic effects to facilitate the sterilization of food products during production relative to single treatment. To assess this hypothesis, we investigated the bactericidal effects of ultraviolet (UV) irradiation and a commercial chemical disinfectant, sodium hypochlorite (NaClO), on Bacillus cereus F4810/72, Cronobacter sakazakii KCTC 2949, Staphylococcus aureus ATCC 35556, Escherichia coli ATCC 10536, and Salmonella Typhimurium novobiocin/nalidixic acid in vitro. Various concentrations of NaClO (20, 60, 100, and 200 ppm NaClO) were tested along with exposure to UV radiation at various doses (6, 96, 216, 360, and 504 mW s/cm(2)). The combined NaClO/UV treatments resulted in greater reductions in bacterial counts than either treatment alone. The synergy values against B. cereus, C. sakazakii, S. aureus, Salmonella Typhimurium, and E. coli were 0.25-1.17, 0.33-1.97, 0.42-1.72, 0.02-1.44, and 0.01-0.85 log(10) CFU/mL, respectively. The results of this study suggest that a significant synergistic benefit results from combined NaClO/UV processing against food-borne pathogenic bacteria in vitro.

  8. Effectivness of dexametasone vs. Magnesium sulphate in postoperative analgesia: Dexametasone vs. Magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Dautaj Brikena

    2016-01-01

    Full Text Available Introduction: Preoperative use of additive substances may be very helpful in perioperative acute pain management. Intravenous administration of dexametasone in preoperative period prevents postoperative nausea and vomiting but also provides better pain relief. It is also well known that magnesium sulphate (the NMDA receptor's antagonist by its central mechanism of action may be effective in postoperative pain control. Aim: The purpose of this study was to evaluate the effect of dexametasone and magnesium sulphate on postoperative pain management in patients undergoing abdominal surgery (open cholecystectomy. Methods: Seventy eight patients scheduled for elective surgery (open cholecystectomy were included in this study. This was the prospective cohort randomized placebo- controlled study. A total of 78 patients were randomized into three groups. Each group had twenty six patients. The group D, received dexametasone 0.1 mg/ kg iv 30 minutes before surgery. The group M received magnesium sulphate 3 mg/kg iv 30 minutes before surgery. The third group S was placebo group and patients in this group received saline in the same volume for each patient. For pain control after surgery all patients received tramadol 0.9-1.2 mg/kg and diklophenac 1.76 mg/kg. When necessary (VAS ≥ 7, morphine sulphate in dose 0.15 mg/kg was administred subcutaneously For treatment of emetic episodes metoclopramid 10 mg iv. was used. The patients were observed for intensity of pain measured VAS 0-10, pain relief and satisfaction with therapy, sedation, adverse events, emetic episodes and hemodynamic parameters. Results: There was no difference between groups regarding demographic data (age, gender, body weight, ASA score, comorbidity, duration of surgery and anesthesia and amount of fentanyl received during surgery. In group D 11.54% of patients received additional analgesia (morphine sulphate 0.15 mg/kg sc in the first 4 hours and 27% of patients in the first 24 hours

  9. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  10. Identification of nitrates and sulphates with dynamic SIMS

    International Nuclear Information System (INIS)

    Fichtner, M.; Goschnick, J.; Ache, H.J.

    1994-01-01

    Sputter conditions are outlined for the identification of chemically sensitive salt compounds, such as nitrates or sulphates, in multicomponent samples of environmental origin using dynamic SIMS for depth-profiling with nanoscale resolution. Sputtering with 1 keV Xe + has been found to be appropriate to enable both the emission of decisive molecular ions with enough intensity as well as substantial erosion for depth-profiling. The use of heavy projectiles reduces the destruction of chemical compounds in the surface of the solid and enhances sensitivity and identification power of SIMS. The method was applied to the analysis of urban outdoor aerosol particles to investigate the conversion of NaCl into Na 2 SO 4 or NaNO 3 by the interaction of sea salt aerosol with the atmospheric pollutants NO x and SO x . Only NaNO 3 was found in the sea salt fraction. (orig.)

  11. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  12. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery.

    Science.gov (United States)

    Zhao, Feng; Zhou, Ji-Dong; Ma, Fang; Shi, Rong-Jiu; Han, Si-Qin; Zhang, Jie; Zhang, Ying

    2016-05-01

    Sulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated. Strain Rhl can simultaneously remove S(2-) (>92%) and produce rhamnolipid (>136mg/l) under S(2-) stress below 33.3mg/l. Rhl reduced the SRB numbers from 10(9) to 10(5)cells/ml, and the production of H2S was delayed and decreased to below 2mg/l. Rhl also produced rhamnolipid and removed S(2-) under laboratory simulated oil reservoir conditions. High-throughput sequencing data demonstrated that addition of strain Rhl significantly changed the original microbial communities of oilfield production water and decreased the species and abundance of SRB. Bioaugmentation of strain Rhl in oilfield is promising for simultaneous control of SRB, removal of S(2-) and enhance oil recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Inactivation of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 on tomatoes using sodium dodecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ademola Ijabadeniyi

    2017-04-01

    Full Text Available The effectiveness of sodium dodecyl sulphate (SDS, sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05 among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  14. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks.

    Science.gov (United States)

    Do, P H; Tran, P V; Bahry, M A; Yang, H; Han, G; Tsuchiya, A; Asami, Y; Furuse, M; Chowdhury, V S

    2017-10-01

    1. The aim of this study was to investigate the effects on the rectal temperature of young chicks of the oral administration of a medium that contained both live bacteria that produce D-aspartate (D-Asp) and D-Asp. 2. In Experiment 1, chicks were subjected to chronic oral administration of either the medium (containing live bacteria and 2.46 μmol D-Asp) or water from 7 to 14 d of age. Plasma-free amino acids as well as mitochondrial biogenic gene expression in the breast muscle were analysed. In Experiment 2, 7-d-old chicks were subjected to acute oral administration of the above medium or of an equimolar amount of D-Asp to examine their effect on changes in rectal temperature. In Experiment 3, after 1 week of chronic oral administration of the medium, 14-d-old chicks were exposed to either high ambient temperature (HT; 40 ± 1°C, 3 h) or control thermoneutral temperature (CT; 30 ± 1°C, 3 h) to monitor the changes in rectal temperature. 3. Chronic, but not acute, oral administration of the medium significantly reduced rectal temperature in chicks, and a chronic effect also appeared under HT conditions. 4. Chronic oral administration of the medium significantly reduced the mRNA abundance of the avian uncoupling protein (avUCP) in the breast muscle, but led to a significant increase in avian adenine nucleotide translocator (avANT) mRNA in the same muscle. 5. (a) These results indicate that the medium can reduce body temperature through the decline in avUCP mRNA expression in the breast muscle that may be involved in reduced mitochondrial proton leaks and heat production. (b) The increase in avANT further suggests a possible enhancement of adenosine triphosphate (ATP) synthesis.

  15. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    Science.gov (United States)

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance. British Veterinary Association.

  16. Study of Factors Influencing Oxygen-18 Isotopic Contents of Dissolved Sulphate in the Shallow Groundwater In Karawang Area

    International Nuclear Information System (INIS)

    Ristin Pujiindiyati, E.; Bungkus Pratikno

    2010-01-01

    The study was conducted to investigate the factors influencing oxygen-18 isotopic contents of dissolved sulphate in shallow groundwater from Karawang area. The δ 18 O is a relative abundance of O-18 compared to O-16 in CO 2 gas. CO 2 gas was released from the equilibrium between water samples and CO 2 gas, and from the reduction of sulphate samples with graphite. From this investigation, the δ 18 O (H 2 O) values were in the range of -3.21 0 / 00 to 6.25 0 / 00 whereas the δ 18 O (SO 4 2- ) values were 9.64 0 / 00 to 20.72 0 / 00 . The wide variation of δ 18 O (SO 4 2- ) values might be result due to inhomogeneity of sulphate sources in groundwater where the groundwater sulphates were generally derived from the dissolution of marine evaporites rocks. The groundwaters and Citarum River near waters to Johar site showed lowering of δ 18 O (SO 4 2- ) values. It might be related to the present of the traditional market in this location. The lowering of these values might be due to the increase of the sulphate reduction process caused by anaerobic bacteria growth in organic garbage deposition. Plotting between δ 18 O (SO 4 2- ) and δ 18 O (H 2 O) exhibited that the oxygen contribution from H 2 O to form sulphate was less than 25%. This indicated that the shallow groundwater in Karawang is located in a non-saturated zone and had a biotic condition. (author)

  17. Metabolism of pure sulfate-reducing bacteria in the presence of ferrous ions and environmental chages of the medium; Tetsu ion sonzaika ni okeru junsuina ryusan`en kangenkin no taisha to baichi no kankyo henka

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this study, the pure sulfate-reducing bacteria were cultured in the medium with different Fe{sup 2+} concentration; shape and activity of the bacteria, the evolution amount of hydrogen sulfide directly related to the breath of the sulfuric acid and the change of the pH value in the medium were investigated during every time interval; and influence on the metabolism of the sulfate-reducing bacteria with Fe{sup 2+} was examined. As a result, the conclusions were obtained as follows: in the case of a medium with high Fe{sup 2+} concentration containing Fe{sup 2+} of 1.0{times}10{sup -2} molkg{sup -1}, the colloidal substance in which the main composition was considered as Fe(OH)2 were present, and they provided a comfortable place for the bacteria to grow. Correspondingly, in the case of a medium with low Fe{sup 2+} concentration containing Fe{sup 2+} of 3.6{times}10{sup -4} molkg{sup -1}, the colloidal substance was small and the number of bacteria was also few. The four kinds of shape of bacteria coexisted in the medium with increasing the culturing time. The hydrogen sulfide was mainly evolved by the bacteria with the comma like shape. During a period that this comma like bacteria actively moved, the hydrogen sulfide evolution increased. 13 refs., 6 figs., 1 tab.

  18. Differential responses of freshwater wetland soils to sulphate pollution

    NARCIS (Netherlands)

    Lamers, L.P.M.; Dolle, ten G.E.; Berg, van den S.T.G.; Delft, van S.P.J.; Roelofs, J.G.M.

    2001-01-01

    Sulphate (SO42-) reduction rates are generally low in freshwater wetlands and are regulated by the scarce availability of the ion. Increased concentrations of this electron acceptor due to sulphur (S) pollution of groundwater and surface water may, however, lead to high sulphate reduction rates now

  19. Safety and efficacy of Bolus administration of magnesium sulphate ...

    African Journals Online (AJOL)

    Safety and efficacy of Bolus administration of magnesium sulphate for preeclampsia. ... On-going research is addressing its administration in terms of dosage, duration and safety. Objective: We evaluated a ... Keywords: safety, efficacy, bolus magnesium sulphate, preeclampsia, University of Benin Teaching Hospital

  20. Kinetics and mechanism of protection of thymine from sulphate ...

    Indian Academy of Sciences (India)

    Unknown

    The rate constant of sulphate radical anion with caffeic acid has been ... transfer of radical sites from base moiety to sugar moiety. Strand ... titrated with a standard ceric ammonium sulphate solution as reported by Kapoor et al.7. At room ...

  1. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    Science.gov (United States)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  2. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  3. Sulphate rocks as an arena for karst development

    Directory of Open Access Journals (Sweden)

    Andrejchuk V.

    1996-01-01

    Full Text Available The rocks in which karst systems develop are most commonly composed of carbonate sulphate and chloride minerals. The sulphate minerals are quite numerous, but only gypsum and anhydrite form extensive masses in sedimentary sequences. Other minerals, which represent sulphates of K, Mg and Na, normally occur as minor beds (0.1-5.0 m, or as inclusions associated with chloride rocks. However some minerals precipitated in salt-generating basins, such as mirabilite and glauberite (typically formed in the Kara-Bogaz-Gol Gulf, salt lakes of Siberia and in China, form sequences up to 5-10 m thick where karst may develop. Due to the very high solubility of Na -sulphates, karst processes and features occurring in these rocks resemble salt karst. Thus, the term sulphate karst, although not strictly correct, is used mainly to indicate karst developed in gypsum and anhydrite.

  4. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: Considering the pH and coexisting nitrate.

    Science.gov (United States)

    Shang, Yanan; Wang, Ziyang; Xu, Xing; Gao, Baoyu; Ren, Zhongfei

    2018-08-01

    Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar)

    OpenAIRE

    Hannesson, Kirsten O.; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; B?verfjord, Grete; Pedersen, Mona E.

    2015-01-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400?d? was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were add...

  6. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  7. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate...

  8. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  9. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps.

    Science.gov (United States)

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-05-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.

  10. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Yerba mate enhances probiotic bacteria growth in vitro but as a feed additive does not reduce Salmonella Enteritidis colonization in vivo.

    Science.gov (United States)

    Gonzalez-Gil, Francisco; Diaz-Sanchez, Sandra; Pendleton, Sean; Andino, Ana; Zhang, Nan; Yard, Carrie; Crilly, Nate; Harte, Federico; Hanning, Irene

    2014-02-01

    Yerba mate (Ilex paraguariensis) is a tea known to have beneficial effects on human health and antimicrobial activity against some foodborne pathogens. Thus, the application of yerba mate as a feed additive for broiler chickens to reduce Salmonella colonization was evaluated. The first in vitro evaluation was conducted by suspending Salmonella Enteritidis and lactic acid bacteria (LAB) in yerba mate extract. The in vivo evaluations were conducted using preventative and horizontal transmission experiments. In all experiments, day-of-hatch chicks were treated with one of the following 1) no treatment (control); 2) ground yerba mate in feed; 3) probiotic treatment (Lactobacillus acidophilus and Pediococcus; 9:1 administered once on day of hatch by gavage); or 4) both yerba mate and probiotic treatments. At d 3, all chicks were challenged with Salmonella Enteritidis (preventative experiment) or 5 of 20 chicks (horizontal transmission experiment). At d 10, all birds were euthanized, weighed, and cecal contents enumerated for Salmonella. For the in vitro evaluation, antimicrobial activity was observed against Salmonella and the same treatment enhanced growth of LAB. For in vivo evaluations, none of the yerba mate treatments significantly reduced Salmonella Enteritidis colonization, whereas the probiotic treatment significantly reduced Salmonella colonization in the horizontal transmission experiment. Yerba mate decreased chicken BW and decreased the performance of the probiotic treatment when used in combination. In conclusion, yerba mate had antimicrobial activity against foodborne pathogens and enhanced the growth of LAB in vitro, but in vivo yerba mate did not decrease Salmonella Enteritidis colonization.

  12. Study of the sulphate expansion phenomenon in concrete: behaviour of the cemented radioactive wastes containing sulphate

    International Nuclear Information System (INIS)

    Li, Guanshu

    1994-01-01

    Sulphate attack is one of the major degradation processes of concrete. It is especially important in storing cemented radioactive wastes containing sulphate. In this thesis, we have thoroughly investigated the degradation mechanisms of cemented radioactive wastes by sulphate. The CaO-Al 2 O 3 -SO 3 -H 2 O systems with and without alkalis are studied. For the system without alkalis, experimental results show that it is the formation of a secondary ettringite under external water supply by steric effect that causes the expansion. For the system with alkalis, the ettringite does not appear while a new mineral called 'U', a sodium-substituted AFm phase is detected. This phase is shown to be responsible for the expansion and destruction of the specimens. The conditions for the formation, the product of solubility and many means of its synthesis are discussed, and a complete list of the inter-reticular distances file is given. The behaviour of the different types of cemented wastes containing sulphate are then studied with a special focus on the U phase on entity which was heretofore very little understood. The following three hypothetical mechanisms of sulphate expansion are proposed: the formation of the secondary U phase, the transformation of the U phase to the ettringite and the topochemical hydration of thenardite into mirabilite. Experiments on a simplified system have demonstrated clearly that the formation of the secondary U phase can induce enormous expansion by steric effect, this justifying the first assumption. Simulation by the mass and volume balances is carried out thereafter and enables us to estimate the expansion induced by the formation of the secondary U phase in the cemented wastes. The second assumption is also well verified by a series of leaching tests in different solutions on mixtures containing the U phase. On the basis of the analysis of the specimens under leaching, it has been assumed that the expansion is associated with the

  13. Magnesium sulphate and other anticonvulsants for women with pre-eclampsia.

    Science.gov (United States)

    Duley, Lelia; Gülmezoglu, A Metin; Henderson-Smart, David J; Chou, Doris

    2010-11-10

    Eclampsia, the occurrence of a seizure (fit) in association with pre-eclampsia, is rare but potentially life-threatening. Magnesium sulphate is the drug of choice for treating eclampsia. This review assesses its use for preventing eclampsia. To assess the effects of magnesium sulphate, and other anticonvulsants, for prevention of eclampsia. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (4 June 2010), and the Cochrane Central Register of Controlled Trials Register (The Cochrane Library 2010, Issue 3). Randomised trials comparing anticonvulsants with placebo or no anticonvulsant, or comparisons of different drugs, for pre-eclampsia. Two authors assessed trial quality and extracted data independently. We included 15 trials. Six (11,444 women) compared magnesium sulphate with placebo or no anticonvulsant: magnesium sulphate more than a halved the risk of eclampsia (risk ratio (RR) 0.41, 95% confidence interval (CI) 0.29 to 0.58; number needed to treat for an additional beneficial outcome (NNTB) 100, 95% CI 50 to 100), with a non-significant reduction in maternal death (RR 0.54, 95% CI 0.26 to 1.10) but no clear difference in serious maternal morbidity (RR 1.08, 95% CI 0.89 to 1.32). It reduced the risk of placental abruption (RR 0.64, 95% CI 0.50 to 0.83; NNTB 100, 95% CI 50 to 1000), and increased caesarean section (RR 1.05, 95% CI 1.01 to 1.10). There was no clear difference in stillbirth or neonatal death (RR 1.04, 95% CI 0.93 to 1.15). Side effects, primarily flushing, were more common with magnesium sulphate (24% versus 5%; RR 5.26, 95% CI 4.59 to 6.03; number need to treat for an additional harmful outcome (NNTH) 6, 95% CI 5 to 6).Follow-up was reported by one trial comparing magnesium sulphate with placebo: for 3375 women there was no clear difference in death (RR 1.79, 95% CI 0.71 to 4.53) or morbidity potentially related to pre-eclampsia (RR 0.84, 95% CI 0.55 to 1.26) (median follow-up 26 months); for 3283 children exposed in utero

  14. Sulphate Incorporation in Borosilicate Glasses and Melts: a Kinetic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, M. [CEA, DEN, Laboratoire d' etude et de Developpement de Matrices de Conditionnement, Centre de Marcoule, 30207 Bagnols-sur-Ceze (France); Physique des Mineraux et Magmas, UMR 7047, CNRS- Institut de Physique du Globe de Paris, 7 place Jussieu, 75252 Paris 05 (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR 5257, Laboratoire des Nanomateriaux Autoreparants, Marcoule, 30207 Bagnols-sur-Ceze (France); Dussossoy, J.L. [CEA, DEN, Laboratoire d' etude et de Developpement de Matrices de Conditionnement, Centre de Marcoule, 30207 Bagnols-sur-Ceze (France); Neuville, D.R. [Physique des Mineraux et Magmas, UMR 7047, CNRS- Institut de Physique du Globe de Paris, 7 place Jussieu, 75252 Paris 05 (France)

    2008-07-01

    The kinetics of sulphate departure in a sodium borosilicate melt were studied using in situ Raman spectroscopy. This technique allows the quantification of the amount of sulphate dissolved in a borosilicate glass as a function of heating time by comparison with measurements obtained by microprobe wavelength dispersive spectrometry. To quantify the sulphate content obtained with Raman spectroscopy, the integrated intensity of the sulphate band at 990 cm{sup -1} was scaled to the sum of the integrated bands between 800 and 1200 cm{sup -1}, bands that are assigned to Qn silica units on the basis of previous literature. Calibration curves were then determined for two different samples. An evaluation of the kinetics of departure of sulphate could thus be made as a function of the viscosity of the borosilicate glass, showing that the kinetics were controlled by the diffusion of sulphate and its volatilization from the melt. This experimental method allows in situ measurements of sulphate content at high temperature which cannot be obtained by any other simple technique. (authors)

  15. Isotopic evolution of aqueous sulphate in northern Chile water

    International Nuclear Information System (INIS)

    Aravena, R.; Suzuki, O.; Fritz, P.; Pena, H.; Rauert, W.

    1987-01-01

    Full text: The extremely arid condition of northern Chile is the main obstacle to the present and future development of urban centres and economic activities in the region. The existing water resources are scarce. During the last decade, isotope techniques have been applied to investigate aspects such as the origin and residence time of the groundwater, these being extremely important for water development and water management. This paper presents 18 O and 34 S data in aqueous sulphate, as well as 18 O, 2 H, and 3 H from springs, rivers and groundwater samples of the Pampa del Tamarugal and Salar de Llamara basins. The principal aim of this study was to investigate the isotope evolution of the sulphate, the origin of the sulphur, the groundwater flow path, and the possibility of using the 18 O of the sulphate as a tracer for estimation of the residence time of the groundwater. Springs that have their recharge area in the high Altiplano (Salar del Huasco basin) show δ values between +5.0 per mille and +6.0 per mille for the 18 O and +5.0 per mille and +9.0 per mille for the 34 S isotope. Springs from lower altitude, show an isotope content between + 8.6 per mille and + 10.6 per mille for 18 O and +7.4 per mille and + 11.7 per mille for 34 S. The groundwaters in the Pampa aquifers, based on their hydrogen and oxygen isotope composition, are associated with different recharge areas. However, these waters show an isotope range for the sulphate similar to .he one of the springs, and no clear relationships are observed between isotope content, flow path and residence time. This pattern could be related to the poorly defined aquifer systems present in the Pampa. The Llamara groundwaters have a uniform isotope content and are the most enriched in the region (δ 18 O = -6.0 per mille and δ 2 H = -50 per mille). The isotope composition of their sulphate compares well with the Pampa groundwater, indicating a similar sulphate source. The isotope composition of gypsum

  16. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  17. Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis

    Science.gov (United States)

    Čanković, Milan; Petrić, Ines; Marguš, Marija; Ciglenečki, Irena

    2017-08-01

    Highly eutrophic and euxinic seawater system of Rogoznica Lake (Croatia) was used as a study site for investigation of distribution, diversity and abundance of sulfate-reducing bacteria (SRB) during stratified conditions in the summer and winter season, by targeting 6 phylogenetic subgroups of SRB. 16S rRNA gene sequences indicated that community cannot be directly related to cultured SRB species but rather that Rogoznica Lake harbors habitat-specific SRB populations associated to bacteria belonging to δ-Proteobacteria with few Firmicutes and Verrucomicrobium-related populations. Clear spatial-temporal shifts in the SRB community structure were observed. Results implied existence of distinct SRB populations between the water column and sediment, as well as higher diversity of the SRB occupying water layer then the ones found in the sediment. Likewise, seasonal variations in populations were observed. While SRB community was more diverse in the winter compared to the summer season in the water layer, situation was opposite in the sediment. Water layer communities seem to be more susceptible to changes of physico-chemical parameters, while those in the sediment have prorogated response to these changes. Results indicate that SRB diversity is still highly underestimated in natural environments, especially in specific habitats such as Rogoznica Lake. Presented data show a complex SRB diversity and distribution supporting the idea that habitat-specific SRB communities are important part of the anaerobic food chain in degradation of organic matter as well as cycling of sulfur and carbon species in the Lake and similar anoxic environment.

  18. Vancomycin-functionalised Ag-TiO{sub 2} phototoxicity for bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yi [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Zhang Dun, E-mail: zhangdun@ms.qdio.ac.cn [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Wang Yi; Qi Peng; Wu Jiajia; Hou Baorong [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China)

    2011-02-15

    Research highlights: {yields} A multivalent interaction between Van-Ag-TiO{sub 2} and SRB. {yields} Van-Ag-TiO{sub 2} allow for selective photokilling of pathogen. {yields} Van-Ag-TiO{sub 2} show certain bactericidal property in dark. - Abstract: This study reports on the synthesis of vancomycin (Van)-functionalised Ag-TiO{sub 2} nanoparticles and their enhanced bactericidal activities. Van-Ag-TiO{sub 2} nanoparticles were prepared by nanoparticle deposition and chemical cross-linking reactions. The catalysts showed high efficiency for the degradation of methylene blue under ultraviolet (UV) illumination. The photocatalytic inactivation of the sulphate-reducing bacteria, Desulfotomaculum, was also studied under UV light irradiation and in the dark using aqueous mixtures of Ag, Ag-SiO{sub 2}, Ag-TiO{sub 2}, and Van-Ag-TiO{sub 2}. The Van-Ag-TiO{sub 2} nanoparticles showed a capacity to target Van-sensitive bacteria. They also effectively prevented bacterial cell growth through the functionalised nanoparticles under UV irradiation for 1 h. To investigate the specificity of the catalyst phototoxicity, a Van-resistant bacteria, Vibrio anguillarum, was used as the negative control. The results indicated that Van-Ag-TiO{sub 2} nanoparticles had a higher selective phototoxicity for Van-sensitive bacteria. Therefore, the antibiotic molecule-functionalised core-shell nanoparticles allow for selective photokilling of pathogenic bacteria.

  19. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  20. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  1. Study on the influence of Sempervivum tectorum and Melatonin on Glutathion protective effects in rats blood exposed to Aluminum sulphate

    OpenAIRE

    Corina Gravila; Florin Muselin; Camelia Tulcan; Mirela Ahmadi – Khoie; Ariana- Bianca Velciov; Georgeta- Sofia Pintilie

    2014-01-01

    The present study was carried out to investigate the influence of Sempervivum tectorum aqueous extract and melatonin on reduced glutathione (GSH) protective effect in Wistar albino rat blood exposed to aluminium sulphate- Al2(SO4)3. The rats were divided in one control group (C) and 7 experimental groups (E). The control group received tap water. The experimental rats were feed the following way: E1 group – aluminum sulphate, daily, for 3 months; : E2 group – Sempervivum tectorum, daily, for ...

  2. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    Science.gov (United States)

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    Science.gov (United States)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14

  4. Metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium; Renzoku baiyo baichichu ni okeru ryusan`en kangen no taisha to tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Seo, M. [Hokkaido University, Sapporo (Japan)

    1997-08-25

    Investigations were made on metabolism of sulfate-reducing bacteria and corrosion behavior of carbon steel in the continuous culturing medium. Sulfate-reducing bacteria were cultured for 50 days by supplying the culturing medium prepared to a prescribed chemical composition (containing Fe {sup 2+} at 0.01 mol/kg) at a rate of 10 cm {sup 3}/h, and drawing them out at the same rate. Test carbon steel pieces were immersed into this culturing medium. As a result, the following matters were clarified: the number of bacteria is maintained at more than 10 {sup 10}/cm{sup 3} after several days since inauguration of the immersion, with the bacteria stably producing H2S and FeS until the culturing is finished; comma-shaped bacteria which move actively and rod-shaped bacteria which do not move very actively exist in the culturing medium; a black film has been produced on surface of the test pieces throughout the culturing period, and satin-like corrosion was found underneath the surface; and weight increase of this film and weight decrease of the lower layer progress as the time lapses (the weight decrease of the lower layer has reached 40 mg/cm{sup 2} in 50 days). 28 refs., 8 figs., 1 tab.

  5. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  6. Effects of agmatine sulphate on facial nerve injuries.

    Science.gov (United States)

    Surmelioglu, O; Sencar, L; Ozdemir, S; Tarkan, O; Dagkiran, M; Surmelioglu, N; Tuncer, U; Polat, S

    2017-03-01

    To evaluate the effect of agmatine sulphate on facial nerve regeneration after facial nerve injury using electron and light microscopy. The study was performed on 30 male Wistar albino rats split into: a control group, a sham-treated group, a study control group, an anastomosis group, and an anastomosis plus agmatine sulphate treatment group. The mandibular branch of the facial nerve was dissected, and a piece was removed for histological and electron microscopic examination. Regeneration was better in the anastomosis group than in the study control group. However, the best regeneration findings were seen in the agmatine sulphate treatment group. There was a significant difference between the agmatine group and the others in terms of median axon numbers (p Agmatine sulphate treatment with anastomosis in traumatic facial paralysis may enhance nerve regeneration.

  7. Short communication: Use of calcium sulphate dihydrate as an ...

    African Journals Online (AJOL)

    flocculant alternative to the conventional use of aluminium sulphate in the primary treatment of wastewater was evaluated using a jar test apparatus. Samples from the State Water Commission (CEA) in Queretaro, Mexico, were collected for the ...

  8. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  9. Sulphate solubility and sulphate diffusion in oxide glasses: implications for the containment of sulphate-bearing nuclear wastes; Solubilite et cinetiques de diffusion des sulfates dans differents verres d'oxydes: application au conditionnement des dechets nucleaires sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Lenoir, M.

    2009-09-15

    The thesis deals with sulphate solubility and sulphate diffusion in oxide glasses, in order to control sulphate incorporation and sulphate volatilization in nuclear waste glasses. It was conducted on simplified compositions, in the SiO{sub 2}-B{sub 2}O{sub 3}-R{sub 2}O (R = Li, Na, K, Cs), SiO{sub 2}-B{sub 2}O{sub 3}-BaO and V{sub 2}O{sub 5}-B{sub 2}O{sub 3}-BaO systems. These compositions allowed us to study the influence of the nature of network-modifying ions (Li{sup +}, Na{sup +}, K{sup +}, Cs{sup +} or Ba{sup 2+}) and also of former elements (Si, B, V), on structure and properties of glasses. Sulphate volatility is studied in sodium borosilicate melts using an innovative technique of sulphate quantitation with Raman spectroscopy. This technique is useful to obtain kinetic curves of sulphate volatilization. The establishment of a model to fit these curves leads to the determination of diffusion coefficients of sulphate. These diffusion coefficients can thus be compared to diffusion coefficients of other species, determined by other techniques and presented in the literature. They are also linked to diffusion coefficients in relation with the viscosity of the melts. Concerning sulphate solubility in glasses, it depends on glass composition and on the nature of sulphate incorporated. Sulphate incorporation in alkali borosilicate glasses leads to the formation of a sulphate layer floating on top of the melt. Sulphate incorporation in barium borosilicate and boro-vanadate glasses leads to the crystallization of sulphate species inside the vitreous matrix. Moreover, sulphate solubility is higher in these glasses than in alkali borosilicates. Finally, exchanges between cations present in glasses and cations present in the sulphate phase are also studied. (author)

  10. Abiotic nitrate and sulphate reduction by hydrogen: a comparative experimental study

    International Nuclear Information System (INIS)

    Truche, L.; Berger, G.; Albrecht, A.; Giffaut, E.

    2010-01-01

    Hastelloy C-276 reactors at 150, 200 and 250 deg. C and one run conducted in a pure Titanium reactor. In the Hastelloy reactor, the nitrate reduction occurs only when H 2 is present and the modelled nitrate half-life would be 4000 yr at 90 deg. C (thermal peak of the geological waste storage). In the Titanium reactor no reaction is observed (or extremely slow) even at high H2 partial pressure. Based on these observations, we concluded that under the chosen experimental conditions sulphate are more sorely reduced than nitrate, likely because of the symmetrical configuration of the molecule, and that the reaction requires a co-sorption of H 2 and SO 4 2- leading to hydrogen radicals and weakened S-O bond at the same place (and time). This reaction can be compared to a Langmuir- Hinshelwood mechanism observed in gas-solid systems. By contrast, the catalysed reduction of nitrate does not require the sorption of NO 3 - (no pH neither saturation effect) and is more likely related to the Eley-Rideal mechanism encountered in gas-solid systems. (authors)

  11. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.

    Science.gov (United States)

    Utgikar, V P; Chen, B Y; Chaudhary, N; Tabak, H H; Haines, J R; Govind, R

    2001-12-01

    Acid mine drainage from abandoned mines and acid mine pit lakes is an important environmental concern and usually contains appreciable concentrations of heavy metals. Because sulfate-reducing bacteria (SRB) are involved in the treatment of acid mine drainage, knowledge of acute metal toxicity levels for SRB is essential for the proper functioning of the treatment system for acid mine drainage. Quantification of heavy metal toxicity to mixed cultures of SRB is complicated by the confounding effects of metal hydroxide and sulfide precipitation, biosorption, and complexation with the constituents of the reaction matrix. The objective of this paper was to demonstrate that measurements of dissolved metal concentrations could be used to determine the toxicity parameters for mixed cultures of sulfate-reducing bacteria. The effective concentration, 100% (EC100), the lowest initial dissolved metal concentrations at which no sulfate reduction is observed, and the effective concentration, 50% (EC50), the initial dissolved metal concentrations resulting in a 50% decrease in sulfate reduction, for copper and zinc were determined in the present study by means of nondestructive, rapid physical and chemical analytical techniques. The reaction medium used in the experiments was designed specifically (in terms of pH and chemical composition) to provide the nutrients necessary for the sulfidogenic activity of the SRB and to preclude chemical precipitation of the metals under investigation. The toxicity-mitigating effects of biosorption of dissolved metals were also quantified. Anaerobic Hungate tubes were set up (at least in triplicate) and monitored for sulfate-reduction activity. The onset of SRB activity was detected by the blackening of the reaction mixture because of formation of insoluble ferrous sulfide. The EC100 values were found to be 12 mg/L for copper and 20 mg/L for zinc. The dissolved metal concentration measurements were effective as the indicators of the effect of the

  12. Development of melt compositions for sulphate bearing high level waste

    International Nuclear Information System (INIS)

    Jahagirdar, P.B.; Wattal, P.K.

    1997-09-01

    The report deals with the development and characterization of vitreous matrices for sulphate bearing high level waste. Studies were conducted in sodium borosilicate and lead borosilicate systems with the introduction of CaO, BaO, MgO etc. Lead borosilicate system was found to be compatible with sulphate bearing high level wastes. Detailed product evaluation carried on selected formulations is also described. (author)

  13. Accelerating the transit time of barium sulphate suspensions in small bowel examinations

    International Nuclear Information System (INIS)

    Summers, David S.; Roger, Mark D.; Allan, Paul L.; Murchison, John T.

    2007-01-01

    Purpose: To determine whether hyperosmolar and effervescent agents proven individually to accelerate transit time in the barium small bowel examination have an additive effect when combined, surpassing that of either agent alone. Materials and methods: One hundred and forty-nine patients were randomised to four groups. Three hundred milliliters of barium sulphate alone was given to the first group. Fifteen milliliters of iodinated hyperosmolar contrast agent (Gastrografin, meglumine/sodium diatrizoate, Schering) was given in addition to barium sulphate to the second group while six packets of effervescent granules (Carbex, Ferring) were added for the third group. The final group was given a combination of both additives and barium sulphate. The time taken following ingestion for the contrast column to reach the caecum, as assessed by frequent interval fluoroscopy, was recorded. A subgroup of 32 patients were selected randomly from the four groups, 8 from each and assessed for quality of examination. Statistical assessments were made using Kruskal-Wallis and Mann-Whitney tests. Results: One hundred and nineteen patients were analysed after exclusions. The addition of accelerant to barium sulphate, both individually and in combination significantly reduced the small bowel transit time (p < 0.001). No significant difference existed between the additives when used with barium alone. The combined group had significantly faster transit times compared to the hyperosmolar group (p = 0.02). Differences between combined and effervescent groups tended towards significance (p = 0.09). No significant difference existed between groups when examination quality was assessed. Conclusion: These results suggest that the addition of combined effervescent and hyperosmolar agents to the barium suspension may significantly shorten the small bowel transit time without adversely affecting examination quality. This has implications for patient acceptability of the examination as well as

  14. Anthropogenic influence on the distribution of tropospheric sulphate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J; Rodhe, H; Crutzen, P J; Zimmermann, P [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    1992-10-22

    Human activities have increased global emissions of sulphur gases by about a factor of three during the past century, leading to increased sulphate aerosol concentrations, mainly in the Northern Hemisphere. Sulphate aerosols can affect the climate directly, by increasing the backscattering of solar radiation in cloud-free air, and indirectly, by providing additional cloud condensation nuclei. Here a global transport-chemistry model is used to estimate the changes in the distribution of tropospheric sulphate aerosol and deposition of non-seasalt sulphur that have occurred since pre-industrial times. The increase in sulphate aerosol concentration is small over the Southern Hemisphere oceans, but reaches a factor of 100 over northern Europe in winter. Calculations indicate, however, that at most 6% of the anthropogenic sulphur emissions is available for the formation of new aerosol particles. This is because about one-half of the sulphur dioxide is deposited on the Earth's surface, and most of the remainder is oxidized in cloud droplets so that the sulphate becomes associated with pre-existing particles. Even so, the rate of formation of new sulphate particles may have doubled since pre-industrial times. 18 refs., 3 figs.

  15. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  16. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...... correlated well (r = 0.90) with the concentrations obtained with a traditional KS-ELISA that uses purified aggrecan as standard and coating antigen, and KS in both serum and synovial fluid could be measured with sufficient linearity....

  17. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis.

    Science.gov (United States)

    O'Neill, Katherine; Bradley, Judy M; Johnston, Elinor; McGrath, Stephanie; McIlreavey, Leanne; Rowan, Stephen; Reid, Alastair; Bradbury, Ian; Einarsson, Gisli; Elborn, J Stuart; Tunney, Michael M

    2015-01-01

    Anaerobic bacteria have been identified in abundance in the airways of cystic fibrosis (CF) subjects. The impact their presence and abundance has on lung function and inflammation is unclear. The aim of this study was to investigate the relationship between the colony count of aerobic and anaerobic bacteria, lung clearance index (LCI), spirometry and C-Reactive Protein (CRP) in patients with CF. Sputum and blood were collected from CF patients at a single cross-sectional visit when clinically stable. Community composition and bacterial colony counts were analysed using extended aerobic and anaerobic culture. Patients completed spirometry and a multiple breath washout (MBW) test to obtain LCI. An inverse correlation between colony count of aerobic bacteria (n = 41, r = -0.35; p = 0.02), anaerobic bacteria (n = 41, r = -0.44, p = 0.004) and LCI was observed. There was an inverse correlation between colony count of anaerobic bacteria and CRP (n = 25, r = -0.44, p = 0.03) only. The results of this study demonstrate that a lower colony count of aerobic and anaerobic bacteria correlated with a worse LCI. A lower colony count of anaerobic bacteria also correlated with higher CRP levels. These results indicate that lower abundance of aerobic and anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

  18. Synthesis and Antibacterial Activity of Metal(loid Nanostructures by Environmental Multi-Metal(loid Resistant Bacteria and Metal(loid-Reducing Flavoproteins

    Directory of Open Access Journals (Sweden)

    Maximiliano Figueroa

    2018-05-01

    Full Text Available Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS, which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loids. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32- and tetrachloro aurate (AuCl4- reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32- and silver (Ag+ reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude

  19. Detecting the global and regional effects of sulphate aerosol geoengineering

    Science.gov (United States)

    Lo, Eunice; Charlton-Perez, Andrew; Highwood, Ellie

    2017-04-01

    Climate warming is unequivocal. In addition to carbon dioxide emission mitigation, some geoengineering ideas have been proposed to reduce future surface temperature rise. One of these proposals involves injecting sulphate aerosols into the stratosphere to increase the planet's albedo. Monitoring the effectiveness of sulphate aerosol injection (SAI) would require us to be able to distinguish and detect its cooling effect from the climate system's internal variability and other externally forced temperature changes. This research uses optimal fingerprinting techniques together with simulations from the GeoMIP data base to estimate the number of years of observations that would be needed to detect SAI's cooling signal in near-surface air temperature, should 5 Tg of sulphur dioxide be injected into the stratosphere per year on top of RCP4.5 from 2020-2070. The first part of the research compares the application of two detection methods that have different null hypotheses to SAI detection in global mean near-surface temperature. The first method assumes climate noise to be dominated by unforced climate variability and attempts to detect the SAI cooling signal and greenhouse gas driven warming signal in the "observations" simultaneously against this noise. The second method considers greenhouse gas driven warming to be a non-stationary background climate and attempts to detect the net cooling effect of SAI against this background. Results from this part of the research show that the conventional multi-variate detection method that has been extensively used to attribute climate warming to anthropogenic sources could also be applied for geoengineering detection. The second part of the research investigates detection of geoengineering effects on the regional scale. The globe is divided into various sub-continental scale regions and the cooling effect of SAI is looked for in the temperature time series in each of these regions using total least squares multi

  20. Effects of bacterially produced precipitates on the metabolism of sulfate reducing bacteria during the bio-treatment process of copper-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A large volume of bacterially produced precipitates are generated during the bio-treatment of heavy metal wastewater.The composition of the bacterially produced precipitates and its effects on sulfate reducing bacteria (SRB) in copper-containing waste stream were evaluated in this study.The elemental composition of the microbial precipitate was studied using electrodispersive X-ray spectroscopy (EDX),and it was found that the ratio of S:Cu was 1.12.Combining with the results of copper distribution in the SRB metabolism culture,which was analyzed by the sequential extraction procedure,copper in the precipitates was determined as covellite (CuS).The bacterially produced precipitates caused a decrease of the sulfate reduction rate,and the more precipitates were generated,the lower the sulfate reduction rate was.The particle sizes of bacterially generated covellite were ranging from 0.03 to 2 m by particles size distribution (PSD) analysis,which was smaller than that of the SRB cells.Transmission electron microscopy (TEM) analysis showed that the microbial covellite was deposited on the surface of the cell.The effects of the microbial precipitate on SRB metabolism were found to be weakened by increasing the precipitation time and adding microbial polymeric substances in later experiments.These results provided direct evidence that the SRB activity was inhibited by the bacterially produced covellite,which enveloped the bacterium and thus affected the metabolism of SRB on mass transfer.

  1. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery.

    Science.gov (United States)

    Dhumal, Ravindra S; Biradar, Shailesh V; Paradkar, Anant R; York, Peter

    2009-02-23

    The aim of present work was to produce fine elongated crystals of salbutamol sulphate (SS) by sonocrystallization for pulmonary delivery and compare with micronized and spray dried SS (SDSS) for in vitro aerosolization behavior. Application of ultrasound during anti-solvent crystallization resulted in fine elongated crystals (sonocrystallized SS; SCSS) compared to aggregates of large irregular crystals obtained without sonication. Higher sonication amplitude, time, concentration and lower processing temperatures favored formation of smaller crystals with narrow particle size distribution (PSD). SCSS was separated from dispersion by spray drying in the form of loose aggregates (SD-SCSS). The fine particle fraction (FPF) of formulations with coarse lactose carrier in cascade impactor increased from 16.66% for micronized SS to 31.12% for SDSS (obtained by spray drying aqueous SS solution) and 44.21% for SD-SCSS, due to reduced cohesive/adhesive forces and aerodynamic size by virtue of elongated shape of crystals. SD-SCSS was stable without any change in crystallinity and aerodynamic behavior for 3 months at 40 degrees C/75% RH, but amorphous SDSS showed recrystallization with poor aerosolization performance on storage. Sonocrystallization, a rapid and simple technique is reported for production of SS crystals suitable for inhalation delivery.

  3. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat.

    Science.gov (United States)

    Qaiser, M Zeeshan; Dolman, Diana E M; Begley, David J; Abbott, N Joan; Cazacu-Davidescu, Mihaela; Corol, Delia I; Fry, Jonathan P

    2017-09-01

    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found 3 H-PregS to enter more rapidly than 3 H-DHEAS and both to undergo extensive (> 50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of 3 H-DHEAS and 3 H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the 3 H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. © 2017 International Society for Neurochemistry.

  4. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  5. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  6. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H2S production during anaerobic digestion of animal slurry.

    Science.gov (United States)

    St-Pierre, Benoit; Wright, André-Denis G

    2017-07-01

    Biogas produced from the anaerobic digestion of animal slurry consists mainly of methane (CH 4 ) and carbon dioxide (CO 2 ), but also includes other minor gases, such as hydrogen sulfide (H 2 S). Since it can act as a potent corrosive agent and presents a health hazard even at low concentrations, H 2 S is considered an undesirable by-product of anaerobic digestion. Sulfate-reducing bacteria (SRBs) have been identified as the main biological source of H 2 S in a number of natural, biological, and human-made habitats, and thus represent likely candidate microorganisms responsible for the production of H 2 S in anaerobic manure digesters. Phylogenetically, SRBs form a divergent group of bacteria that share a common anaerobic respiration pathway that allows them to use sulfate as a terminal electron acceptor. While the composition and activity of SRBs have been well documented in other environments, their metabolic potential remains largely uncharacterized and their populations poorly defined in anaerobic manure digesters. In this context, a combination of in vitro culture-based studies and DNA-based approaches, respectively, were used to gain further insight. Unexpectedly, only low to nondetectable levels of H 2 S were produced by digestate collected from a manure biogas plant documented to have persistently high concentrations of H 2 S in its biogas (2000-3000 ppm). In contrast, combining digestate with untreated manure (a substrate with comparatively lower sulfate and SRB cell densities than digestate) was found to produce elevated H 2 S levels in culture. While a 16S rRNA gene-based community composition approach did not reveal likely candidate SRBs in digestate or untreated manure, the use of the dsrAB gene as a phylogenetic marker provided more insight. In digestate, the predominant SRBs were found to be uncharacterized species likely belonging to the genus Desulfosporosinus (Peptococcaceae, Clostridiales, Firmicutes), while Desulfovibrio-related SRBs

  7. Impact of elevated CO_2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO_2 sequestration

    International Nuclear Information System (INIS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.

    2017-01-01

    Interest in anthropogenic CO_2 release and associated global climatic change has prompted numerous laboratory-scale and commercial efforts focused on capturing, sequestering or utilizing CO_2 in the subsurface. Known carbonate mineral precipitating microorganisms, such as the anaerobic sulfate-reducing bacteria (SRB), could enhance the rate of conversion of CO_2 into solid minerals and thereby improve long-term storage of captured gasses. The ability of SRB to induce carbonate mineral precipitation, when exposed to atmospheric and elevated pCO_2, was investigated in laboratory scale tests with bacteria from organic-rich sediments collected from hypersaline Lake Estancia, New Mexico. The enriched SRB culture was inoculated in continuous gas flow and batch reactors under variable headspace pCO_2 (0.0059 psi to 20 psi). Solution pH, redox conditions, sulfide, calcium and magnesium concentrations were monitored in the reactors. Those reactors containing SRB that were exposed to pCO_2 of 14.7 psi or less showed Mg-calcite precipitation. Reactors exposed to 20 psi pCO_2 did not exhibit any carbonate mineralization, likely due to the inhibition of bacterial metabolism caused by the high levels of CO_2. Hydrogen, lactate and formate served as suitable electron donors for the SRB metabolism and related carbonate mineralization. Carbon isotopic studies confirmed that ∼53% of carbon in the precipitated carbonate minerals was derived from the CO_2 headspace, with the remaining carbon being derived from the organic electron donors, and the bicarbonate ions available in the liquid medium. The ability of halotolerant SRB to induce the precipitation of carbonate minerals can potentially be applied to the long-term storage of anthropogenic CO_2 in saline aquifers and other ideal subsurface rock units by converting the gas into solid immobile phases. - Highlights: • SRB under study are capable of precipitating calcite up to 14.7 psi pCO_2. • At 20 psi pCO_2, bacterial activity

  8. New Sulphated Flavonoids from Tamarix africana and Biological Activities of Its Polar Extract.

    Science.gov (United States)

    Karker, Manel; De Tommasi, Nunziatina; Smaoui, Abderrazak; Abdelly, Chedly; Ksouri, Riadh; Braca, Alessandra

    2016-10-01

    The phytochemical investigation of Tamarix africana Poir. (Tamaricaceae) shoot polar extract afforded three new sulphated flavonoids, (2 S ,4 R )-5,7,4'-trihydroxyflavan-4-ol 5,7-disulphate ( 1 ), (2 S )-5,7,4'-trihydroxyflavan 7- O -sulphate ( 2 ), and (2 S )-naringenin 4'- O -sulphate ( 3 ), together with ten known compounds. Their structures were determined by spectroscopic methods including 1D and 2D NMR analysis and HRMS. Biological activities of the polar extract of T. africana shoots related to its phenolic content were also investigated. A high total phenolic content (151.1 mg GAE/g) was found in the methanol shoot extract, which exhibits strong antioxidant activities using the oxygen radical absorbance capacity method and a skin cell-based assay. Moreover, the shoot extract showed significant anti-inflammatory activity, reducing nitric oxide release by 53.5 % at 160 µg/mL in lipopolysaccharide-stimulated RAW 264.7 macrophages. Finally, T. africana shoot extract inhibited the growth of A-549 lung carcinoma cells, with an IC 50 value of 34 µg/mL. Georg Thieme Verlag KG Stuttgart · New York.

  9. The impact of sulphate and magnesium on chloride binding in Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway); SINTEF Building and Infrastructure, Trondheim (Norway); Orsáková, D. [Department of Civil Engineering, Technical University of Brno, Brno (Czech Republic); Geiker, M.R. [Department of Structural Engineering, Norwegian University of science and Technology, Trondheim (Norway)

    2014-11-15

    The effect of magnesium and sulphate present in sea water on chloride binding in Portland cement paste was investigated. Ground well hydrated cement paste was exposed to MgCl{sub 2}, NaCl, NaCl + MgCl{sub 2}, MgSO{sub 4} + MgCl{sub 2} and artificial sea water solutions with a range of concentrations at 20 °C. Chloride binding isotherms are determined and pH of the solutions were measured. A selection of samples was examined by SEM-EDS to identify phase changes upon exposure. The experimental data were compared with calculations of a thermodynamic model. Chloride binding from sea water was similar to chloride binding for NaCl solutions. The magnesium content in the sea water lead to a slight decrease in pH, but this did not result in a notable increase in chloride binding. The sulphate present in sea water reduces both chloride binding in C–S–H and AFm phases, as the C–S–H incorporates more sulphates instead of chlorides, and part of the AFm phases converts to ettringite.

  10. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    Document available in extended abstract form only. The safe disposal of nuclear waste is a major concern for the nuclear energy industry. The high-level long-lived waste (HLNW) should be maintained for millions of years in clay formations at 500 metres depth in order to prevent the migration of radionuclides. Thence, different kinds of materials such as, carbon steel, stainless steel, concrete, clay, etc., are chosen aiming to last as long as possible and to preserve the radioactivity properties. In contrast, the anoxic corrosion of the different metallic envelopes is an expected phenomenon due to the changes on the environmental conditions (such as re-saturation) within HLNW repositories. In this context, corrosion products like iron oxides (i.e. magnetite, Fe 3 O 4 ), and hydrogen will be also expected. On the one hand, hydrogen poses a significant threat to the nuclear waste repository when it is accumulated for a long time in the surrounding clay - such hydrogen production may damage the barrier properties of the geological formation, affecting the safety of the repository. On the other hand, hydrogen production represents a new energy source for bacterial growth, especially in such environments with low content of biodegradable organic matter. Moreover, some hydrogeno-trophic bacteria can also use Fe 3+ as an electron acceptor for their development. Therefore, the biological activity and biofilm formation could interfere in the metal corrosion behaviour. This phenomenon is widely known by MIC (Microbiologically Influenced Corrosion), which can represent a huge problem when promoting local corrosion. The objective of this study is to better understand the influence of local hydrogen formation in the carbon steel bio-corrosion process in the presence of Shewanella oneidensis MR-1, a model of Iron Reducing Bacteria (IRB), in order to evaluate the impact of the bacterial activity in terms of long term behaviour of geological disposal materials. In this study

  11. Oral zinc sulphate in treatment of patients with thallium poisoning: A clinical therapeutic trial

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Mohammadi

    2011-06-01

    Full Text Available Thallium poisoning is usually associated with typical dermatological features simulating that of zinc deficiency. The aim of this study was to evaluate the role of oral zinc sulphate in the treatment of patients with thallium poisoning.Materials and methods: This clinical therapeutic trial study was conducted in Departments of Dermatology of Baghdad and Basrah Teaching Hospitals from February 2008 - February 2010, where a total of 37 patients with thallium poisoning were enrolled.A detailed history was taken from all patients and complete clinical examination was performed. All patients received zinc sulphate in a dose of 5 mg/kg three times a day few days before confirming the diagnosis of thallium poisoning. Thallium in urine had been measured using the colorimetric method and was positive in all patients. After confirming the diagnosis of thallium poisoning, thallium antidotes Prussian blue was given to 32 patients.Results: Age range of 37 patients was 5-33 (24±5.3 years. The dermatological findings were mainly: anagen hair loss affected the scalp and limbs. Also, dusky ecchymotic red dermatitis like rash was observed on the face and dorsum of hands and legs, while neurological manifestations were mainly of peripheral neuropathy, were reported in 21 (55% patients. All patients but two responded promptly to a trial of zinc sulphate within few days.Conclusion: Oral Zinc sulphate appears to be an effective and safe treatment for thallium poisoning particularly for skin and hair features and in reducing its lethal progression and complications. J Clin Exp Invest 2011;2(2:133-7

  12. Inactivation of Listeria monocytogenes ATCC 7644 on tomatoes using sodium docecyl sulphate, levulinic acid and sodium hypochlorite solution

    Directory of Open Access Journals (Sweden)

    E. Mnyandu

    2015-06-01

    Full Text Available The human pathogen Listeria monocytogenes poses a serious threat to public health. A study was carried out to evaluate the effectiveness of four sanitizers, used individually or combined, against L. monocytogenes ATCC 7644. The contact times for bacteria and sanitizer were varied to 1, 3 and 5 minutes. Levulinic acid, sodium dodecyl sulphate (SDS, sodium hypochlorite solution (chlorine and a combination of SDS and levulinic acid (mixture were tested. Results revealed that 0.5% levulinic acid, when used individually, is capable of reducing the surviving colonies by 3.63 log CFU/mL, 4.05 log CFU/mL, 6.71 log CFU/mL after exposure for 1, 3 and 5 minutes respectively.SDS resulted in an 8 log CFU/mL reduction after 1, 3 and 5 minutes. A combination of 0.5% levulinic acid and 0.05% SDS caused a 3.69 log CFU /mL reduction, 4.4 log CFU/mL reduction, 7.97 log CFU/mL reduction for 1, 3 and 5 minutes respectively. Chlorine was the least effective with 2.93 log CFU/mL reduction, 3.16 log CFU/ mL reduction and 4.53 log CFU/ mL reduction respectively. When stored for up to 72 hours at 4°C, the surviving colonies remained viable and decreased in number significantly P < 0.05 = 0.001. The titratable acidity of samples treated with levulinic acid and samples treated with SDS/Lev mixture was lowered significantly compared to the control sample. No significant differences were noted in these same parameters for samples treated with chlorine or SDS. The application of SDS in the fresh produce industry as a sanitizing agent may be successful in eradicating or reducing the viability of L. monocytogenes on fresh produce, thereby replacing the routine chlorine washing.

  13. Uranium and sulphate values from carbonate leach process

    International Nuclear Information System (INIS)

    Berger, B.

    1983-01-01

    The process concerns the recovery of uraniferous and sulphur values from liquor resulting from the attack of sulphur containing uraniferous ores by an alkaline solution of sodium carbonate and/or bicarbonate. Ammonia is introduced into the liquor to convert any HCO 3 - to CO 3 2- . The neutralised liquor from this step is then contacted with an anion exchange resin to fix the uranium and sulphate ions, leaving a liquor containing ammonia, sodium carbonate and/or bicarbonate in solution. Uranium and sulphate ions are eluted with an ammonia carbonate and/or bicarbonate solution to yield a solution of ammonium uranyl carbonate complex and ammonium sulphate. The solution is subjected to thermal treatment until a suspension of precipitated ammonium uranate and/or diuranate is obtained in a solution of the ammonium sulphate. Carbon dioxide, ammonia and water vapor are driven off. The precipitated ammonium uranate and/or diuranate is then separated from the solution of ammonium sulphate and the precipitate is calcined to yield uranium trioxide and ammonia

  14. Relationship between sulphate and sulphur dioxide in the air

    Energy Technology Data Exchange (ETDEWEB)

    Fugas, M; Gentilizza, M

    1978-01-01

    The relationship between the sulphate in suspended particulates and sulphur dioxide in the air was studied in various urban and industrial areas. The relationship is best described by the equation y = ax/sup b/, where y is the percentage of the sulphate S in the total S (sulphate and sulphur dioxide) and x is the concentration of the total S in the air. The regression coefficients a and b seem to be characteristics of the area. In urban areas studied so far a was between 316 and 378 and b between -0.74 and -0.83. In industrial areas polluted by dust which contains elevated concentrations of metals a was between 91 and 107 and b between -0.35 and -0.49. In the area polluted by cement dust there was practically no correlation between the sulphate S (%) and the total S, but a relatively high correlation between absolute amounts of the sulphate S and the total S. The relations indicate that the limitation of SO/sub 2/ conversion is influenced by aerosol composition. Aerosols containing certain metals may promote the conversion by a catalytic effect while alkaline substances by increasing the pH. Whether this can only happen in the plume or in the air as well remains to be clarified.

  15. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  16. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters

    Directory of Open Access Journals (Sweden)

    Jennyfer Serrano

    2017-12-01

    Full Text Available Fluvial sediments, soils, and natural waters in northern Chile are characterized by high arsenic (As content. Mining operations in this area are potential sources of As and other metal contaminants, due to acid mine drainage (AMD generation. Sulfate Reducing Bacteria (SRB has been used for the treatment of AMD, as they allow for the reduction of sulfate, the generation of alkalinity, and the removal of dissolved heavy metals and metalloids by precipitation as insoluble metal sulfides. Thus, SRB could be used to remove As and other heavy metals from AMD, however the tolerance of SRB to high metal concentrations and low pH is limited. The present study aimed to quantify the impact of SRB in As removal under acidic and As-Fe-rich conditions. Our results show that SRB tolerate low pH (up to 3.5 and high concentrations of As (~3.6 mg·L−1. Batch experiments showed As removal of up to 73%, Iron (Fe removal higher than 78% and a neutralization of pH from acidic to circum-neutral conditions (pH 6–8. In addition, XRD analysis showed the dominance of amorphous minerals, while Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy (SEM-EDX analysis showed associations between As, Fe, and sulfur, indicating the presence of Fe-S-As compounds or interaction of As species with amorphous and/or nanocrystalline phases by sorption processes. These results indicate that the As removal was mediated by acid/metal-tolerant SRB and open the potential for the application of new strains of acid/metal-tolerant SRB for the remediation of high-As acid mine waters.

  17. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  18. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10"-"4 mol s"-"1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  19. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    OpenAIRE

    Axel eSchippers; Anna eBlazejak

    2011-01-01

    A quantitative, real-time PCR (Q-PCR) assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA) of sulfate-reducing bacteria (SRB) was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA) and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf)) and the Black Sea (0 – 6 mbsf). Clone libraries of aprA show that all isolated sequences originate from SRB...

  20. Partial Purification Characterization and Application of Bacteriocin from Bacteria Isolated Parkia biglobosa Seeds

    OpenAIRE

    Olorunjuwon, O. Bello; Olubukola, O. Babalola; Mobolaji, Adegboye; Muibat, O. Fashola; Temitope, K. Bello

    2018-01-01

    Bacteriocins are proteinaceous toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strains. Fermented Parkia biglobosa seeds (African locust bean) were screened for bacteriocin-producing lactic acid bacteria (LAB) with the characterization of putative bacteriocins. Bacteriocin-producing lactic acid bacteria (LAB) were identified by 16s rDNA sequencing. Molecular sizes of the bacteriocins were determined using the tricine-sodium dodecyl sulphate-polyacryla...

  1. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    Directory of Open Access Journals (Sweden)

    Elizabeth Trembath-Reichert

    2016-04-01

    Full Text Available Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM. This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME and sulfate-reducing bacteria (SRB. These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag. Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP iTAG primers introduced bias in some common methane seep microbial taxa that reduced the abili