WorldWideScience

Sample records for sulindac

  1. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  2. Compound list: sulindac [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available sulindac SUL 00100 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_...vitro/sulindac.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/...sulindac.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Sin...gle/sulindac.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open

  3. Diverse amide analogs of sulindac for cancer treatment and prevention.

    Science.gov (United States)

    Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C

    2017-10-15

    Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  5. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    2009-06-01

    Full Text Available Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  6. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sandeep C.; Singh, Tripti; Kapur, Puneet; Weng, Zhiping; Arumugam, Aadithya; Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd, Suite 2114, Bethesda, MD 20892 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, 1530 3rd Avenue South, VH509, Birmingham, AL 35294-0019 (United States)

    2013-05-01

    Nitric oxide (NO)-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) which have been synthesized to reduce gastro-intestinal and cardiovascular toxicities of NSAIDs, possess anti-proliferative, pro-apoptotic and anti-cancer activities. Here, we show that NO-sulindac inhibited UVB-induced skin tumorigenesis in SKH-1 hairless mice. Topical application of NO-sulindac reduced tumor incidence, number (p < 0.05) and volume (p < 0.005) as compared to UVB (alone)-irradiated vehicle-treated mice. An increase in TUNEL-positive cells in skin lesions was accompanied by the enhanced Bax:Bcl-2 ratio. The expression of pro-apoptotic Bax was increased whereas anti-apoptotic Bcl-2 reduced. However, proliferation was identified as the major target of NO-sulindac in this study. A reduced expression of PCNA and cyclin D1 associated with the dampening of cell cycle progression was observed. The mechanism of this inhibition was related to the reduction in UVB-induced Notch signaling pathway. UVB-induced inflammatory responses were diminished by NO-sulindac as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases Erk1/2, p38 and JNK1/2. In this regard, NO-sulindac also inhibited NFκB by enhancing IκBα as evidenced by the reduced expression of iNOS and COX-2, the direct NFκB transcription target proteins. NO-sulindac significantly diminished the progression of benign lesions to invasive carcinomas by suppressing the tumor aggressiveness and retarding epithelial–mesenchymal transition. A marked decrease in the expression of mesenchymal markers such as Fibronectin, N-cadherin, SNAI, Slug and Twist and an increase in epithelial cell polarity marker E-cadherin were noted in NO-sulindac-treated tumors. Our data suggest that NO-sulindac is a potent inhibitor of UVB-induced skin carcinogenesis and acts by targeting proliferation-regulatory pathways. - Highlights: ► NO-sulindac is a potent chemopreventive agent for UVB-induced skin cancer. ► NO-sulindac

  7. Effect of sulindac sulfide on metallohydrolases in the human colon cancer cell line HT-29.

    Directory of Open Access Journals (Sweden)

    Hector Guillen-Ahlers

    Full Text Available Matrix metalloproteinase 7 (MMP7, a metallohydrolase involved in the development of several cancers, is downregulated in the Apc(Min/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases.

  8. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice

    Directory of Open Access Journals (Sweden)

    Bi Xiuli

    2013-01-01

    Full Text Available Abstract Background Both selenium and non-steroidal anti-inflammatory drug (NSAID sulindac are effective in cancer prevention, but their effects are affected by several factors including epigenetic alterations and gene expression. The current study was designed to determine the effects of the combination of selenium and sulindac on tumor inhibition and the underlying mechanisms. Results We fed the intestinal tumor model Apc/p21 mice with selenium- and sulindac-supplemented diet for 24 weeks, and found that the combination of selenium and sulindac significantly inhibited intestinal tumorigenesis, in terms of reducing tumor incidence by 52% and tumor multiplicities by 80% (p Conclusions The selenium is synergistic with sulindac to exert maximal effects on tumor inhibition. This finding provides an important chemopreventive strategy using combination of anti-cancer agents, which has a great impact on cancer prevention and has a promising translational potential.

  9. Differential effects of sulindac and indomethacin on blood pressure in treated essential hypertensive subjects.

    Science.gov (United States)

    Puddey, I B; Beilin, L J; Vandongen, R; Banks, R; Rouse, I

    1985-09-01

    Attenuation of the effectiveness of antihypertensive therapy by non-steroidal anti-inflammatory (NSAI) drugs has been attributed to inhibition of systemic or renal vasodilator prostaglandin synthesis, or a combination of both. Indomethacin is a NSAI drug with both renal and extrarenal cyclo-oxygenase inhibition properties. Sulindac is a relatively selective cyclo-oxygenase inhibitor said not to affect urinary prostaglandin excretion. This study examines the relative effect on blood pressure of 4 weeks' treatment, with indomethacin 25 mg three times daily and sulindac 200 mg twice daily, in a randomized placebo controlled trial in 26 hypertensive subjects. In nine patients treated with indomethacin, supine blood pressure rose 11 mmHg systolic and 4 mmHg diastolic by the end of the first week, whereas nine subjects treated with sulindac showed a fall in blood pressure similar to the trend seen in placebo-treated subjects. Indomethacin treatment inhibited renal cyclo-oxygenase with a 78% reduction in urinary prostaglandin E2 excretion and 89% suppression of plasma renin activity. Neither measurement was affected by sulindac. Extrarenal cyclo-oxygenase activity was inhibited by both indomethacin and sulindac with serum thromboxane B2 decreasing by 96% and 69% respectively. The results suggest that the pressor effect of NSAI drugs is predominantly related to renal cyclo-oxygenase inhibition. the lack of effect of sulindac on blood pressure may make it a safer therapeutic option if NSAI drug therapy is necessary in the hypertensive patient.

  10. Exploring the mechanism of interaction between sulindac and human serum albumin: Spectroscopic and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Ping; Hou, Ya-He [Department of Material Engineering, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu 221140 (China); Wang, Li [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Zhang, Ye-Zhong, E-mail: zhangfluorescence@126.com [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Liu, Yi, E-mail: prof.liuyi@263.net [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2013-06-15

    In the present study, a combination of fluorescence, molecular modeling and circular dichroism (CD) approaches had been employed to investigate the interaction between sulindac and human serum albumin (HSA). Results of mechanism discussion demonstrated that the fluorescence quenching of HSA by sulindac was a static quenching procedure. Binding parameters calculated from the modified Stern–Volmer equation showed that sulindac bound to HSA with the binding affinities in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−18.58 kJ mol{sup −1}; ΔS=37.26 J mol{sup −1} K{sup −1}) obtained by the van′t Hoff equation revealed that hydrophobic forces played a leading role in the formation of sulindac–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments revealed a displacement of warfarin by sulindac, which indicated that the binding site of sulindac to HSA located in the sub-domain IIA (Sudlow′s site I). The molecular docking study confirmed the specific binding mode and binding site obtained by fluorescence and site marker competitive experiments. CD and three-dimensional fluorescence spectroscopy were used to investigate the changes of HSA secondary structure and microenvironment in the presence of sulindac. Alterations of HSA conformation were observed with the reduction of α-helix from 60.1% (free HSA) to 57.3%, manifesting a slight unfolding of the polypeptides of protein. -- Highlights: ► The quenching mechanism between sulindac and HSA is a static process. ► The binding of sulindac to HSA takes place in sub-domain IIA (Sudlow′s site I). ► The binding is spontaneous and hydrophobic force plays major role in stabilizing the complex. ► CD and 3-D fluorescence spectra prove the change of the microenvironment and conformation of HSA.

  11. Photoprotective effects of sulindac against ultraviolet B-induced phototoxicity in the skin of SKH-1 hairless mice

    International Nuclear Information System (INIS)

    Athar, Mohammad; An, Kathy P.; Tang Xiuwei; Morel, Kimberly D.; Kim, Arianna L.; Kopelovich, Levy; Bickers, David R.

    2004-01-01

    Sulindac is a nonsteroidal anti-inflammatory drug with demonstrated potency as a chemopreventive agent in animal models of carcinogenesis and in patients with familial adenomatous polyposis. Because tumor promotion is generally associated with exposure to pro-inflammatory stimuli, it is likely that anti-inflammatory agents may have potent antitumor effects. In human skin, sulindac reduces bradykinin-induced edema. In this study, we tested the hypothesis that the cyclooxygenase inhibitor sulindac can protect against ultraviolet (UVB)-induced injury that is crucial for the induction of cancer. Exposure of SKH-1 hairless mice to two consecutive doses of UVB (230 mJ/cm 2 ) induces various inflammatory responses including erythema, edema, epidermal hyperplasia, infiltration of polymorphonuclear leukocytes, etc. Topical application of sulindac (1.25-5.0 mg/0.2 ml acetone) to the dorsal skin of SKH-1 hairless mice either 1 h before or immediately after UVB exposure substantially inhibited these inflammatory responses in a dose-dependent manner. Oral administration of sulindac in drinking water (160 ppm) for 15 days before and during UVB irradiation similarly reduced these inflammatory responses. These potent anti-inflammatory effects of sulindac suggested the possibility that the drug could inhibit signaling processes that relate to carcinogenic insult by UVB. Accordingly, studies were conducted to assess the efficacy of sulindac in attenuating the expression of UVB-induced early surrogate molecular markers of photodamage and carcinogenesis. UVB exposure enhanced the expression of p53, c-fos, cyclins D1 and A, and PCNA 24 h after irradiation. Treatment of animals with either topical or oral administration of sulindac largely abrogated the expression of these UVB-induced surrogate markers. These results indicate that the cyclooxygenase inhibitor sulindac is effective in reducing UVB-induced events relevant to carcinogenesis and that this category of topically applied or

  12. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  13. Preparation and characterization of a sulindac sensor based on PVC/TOA-SUL membrane.

    Science.gov (United States)

    Lenik, Joanna

    2014-04-01

    A potentiometric sulindac sensitive sensor based on tetraoctylammonium (Z)-5-fluoro-2-methyl-1-[[p-(methylsulfinyl)phenyl]methylene]-1H-indene-3-acetate (TOA-SUL) was described. The electrode responded with sensitivity of 57.5±1.6mV decade(-1) over the linear range 5×10(-5)-1×10(-2)mol L(-1) at pH6.0-9.0. It had the limit of detection 1.4×10(-5)mol L(-1), a fast response time of 13s and showed clear discrimination of sulindac ions from several inorganic and organic compounds and also amino acids. This electrode did not contain any inner solutions, so it was easy and comfortable to use. The proposed sensor was used to determine sulindac in clear solution and in urine sample solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Sulindac treatment in hereditary non-pollyposis colorectal cancer

    NARCIS (Netherlands)

    Rijcken, Fleur E. M.; Hollema, Harry; van der Zee, Ate G. J.; van der Sluis, Tineke; Ek, Wytske Boersma-van; Kleibeuker, Jan H.

    Non-steroidal anti-inflammatory drugs, e.g. sulindac have been extensively studied for chemoprevention in familial adenomatous polyposis, but not in hereditary non-polyposis colorectal cancer (HNPCC). We evaluated these effects in HNPCC using surrogate end-points for cancer risk. In a randomised

  15. Nutrient Availability Alters the Effect of Autophagy on Sulindac Sulfide-Induced Colon Cancer Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Shiun-Kwei Chiou

    2012-01-01

    Full Text Available Autophagy is a catabolic process by which a cell degrades its intracellular materials to replenish itself. Induction of autophagy under various cellular stress stimuli can lead to either cell survival or cell death via apoptotic and/or autophagic (nonapoptotic pathways. The NSAID sulindac sulfide induces apoptosis in colon cancer cells. Here, we show that inhibition of autophagy under serum-deprived conditions resulted in significant reductions of sulindac sulfide-induced apoptosis in HT-29 colon cancer cells. In contrast, inhibition of autophagy under conditions where serum is available significantly increased sulindac sulfide-induced apoptosis in HT-29 cells. We previously showed that the apoptosis inhibitor, survivin, plays a role in regulating NSAID-induced apoptosis and autophagic cell death. Here, we show that survivin protein half-life is increased in the presence of autophagy inhibitors under serum-deprived conditions, but not under conditions when serum is available. Thus, the increased levels of survivin may be a factor contributing to inhibition of sulindac sulfide-induced apoptosis under serum-deprived conditions. These results suggest that whether a cell lives or dies due to autophagy induction depends on the balance of factors that regulate both autophagic and apoptotic processes.

  16. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    Science.gov (United States)

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  17. [Long-term therapy of osteoarthritis of the hip and the knee by sulindac (a cooperative trial in general practice) (author's transl)].

    Science.gov (United States)

    Maestracci, D; Sarre, J

    Long-term trial of sulindac (in general practice): 2,040 patients with osteoarthritis of the hip or of the knee been treated, 86,5% of them have been following the treatment for one year. This trial let us pointing out the non-improverishment of effectiveness of sulindac and the keepint of its good tolerance for long term. Some epidemiological data have been collected, among which: the importance of ponderal overload in patients studied and the prevalence of the right joints diseases on the left one's.

  18. Structural Mechanism of the Interaction of Alzheimer Disease Aβ Fibrils with the Non-steroidal Anti-inflammatory Drug (NSAID) Sulindac Sulfide.

    Science.gov (United States)

    Prade, Elke; Bittner, Heiko J; Sarkar, Riddhiman; Lopez Del Amo, Juan Miguel; Althoff-Ospelt, Gerhard; Multhaup, Gerd; Hildebrand, Peter W; Reif, Bernd

    2015-11-27

    Alzheimer disease is the most severe neurodegenerative disease worldwide. In the past years, a plethora of small molecules interfering with amyloid-β (Aβ) aggregation has been reported. However, their mode of interaction with amyloid fibers is not understood. Non-steroidal anti-inflammatory drugs (NSAIDs) are known γ-secretase modulators; they influence Aβ populations. It has been suggested that NSAIDs are pleiotrophic and can interact with more than one pathomechanism. Here we present a magic angle spinning solid-state NMR study demonstrating that the NSAID sulindac sulfide interacts specifically with Alzheimer disease Aβ fibrils. We find that sulindac sulfide does not induce drastic architectural changes in the fibrillar structure but intercalates between the two β-strands of the amyloid fibril and binds to hydrophobic cavities, which are found consistently in all analyzed structures. The characteristic Asp(23)-Lys(28) salt bridge is not affected upon interacting with sulindac sulfide. The primary binding site is located in the vicinity of residue Gly(33), a residue involved in Met(35) oxidation. The results presented here will assist the search for pharmacologically active molecules that can potentially be employed as lead structures to guide the design of small molecules for the treatment of Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Genotoxicity of the cyclo-oxygenase-inhibitor sulindac sulfide in the filamentous fungus Aspergillus nidulans Genotoxicidade de sulfeto de sulindaco em Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Claudinéia Conationi da Silva Franco

    2007-09-01

    Full Text Available Sulindac sulfide is a non-steroidal anti-inflammatory drug (NSAID with chemopreventive effect on human cancer cells. Due to the involvement of the somatic recombination in the carcinogenic process, sulindac sulfide's recombinogenic potential was evaluated by the Homozygotization Index (HI in the filamentous fungus Aspergillus nidulans. The drug's recombinogenic potential was evaluated by its capacity to induce homozygosis of recessive genes from heterozygous diploid cells. Sulindac sulfide at 175 and 350 µM concentrations induced mitotic recombination in A. nidulans diploid cells, with HI values for genetic markers higher than 2.0, and significantly different from control HI values. The recombinogenic effect of NSAID was related to the induction of DNA strand breaks and cell cycle alterations. Sulindac sulfide's carcinogenic potential was also discussed.Sulfeto de sulindaco é um antiinflamatório não-esteroidal com efeitos quimiopreventivos em cânceres humanos. O presente estudo teve como objetivo avaliar o potencial recombinagênico do sulfeto de sulindaco em células diplóides de Aspergillus nidulans. O efeito recombinagênico da droga foi demonstrado através da homozigotização de genes recessivos, previamente presentes em heterozigose. Os valores de HI (Índice de Homozigotização para diferentes marcadores genéticos apresentaram-se maiores do que 2,0 e significativamente diferentes dos valores obtidos em sulfeto de sulindaco ausência da droga (controle. O potencial recombinagênico do sulfeto de sulindaco foi associado à indução de quebras na molécula do DNA e a alterações no ciclo celular. O potencial carcinogênico do sulfeto de sulindaco foi discutido no presente trabalho.

  20. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a Children's Oncology Group (COG) phase II study.

    Science.gov (United States)

    Skapek, Stephen X; Anderson, James R; Hill, D Ashley; Henry, David; Spunt, Sheri L; Meyer, William; Kao, Simon; Hoffer, Fredric A; Grier, Holcombe E; Hawkins, Douglas S; Raney, R Beverly

    2013-07-01

    Desmoid fibromatosis (desmoid tumor, DT) is a soft tissue neoplasm prone to recurrence despite complete surgical resection. Numerous small retrospective reports suggest that non-cytotoxic chemotherapy using tamoxifen and sulindac may be effective for DT. We evaluated the safety and efficacy of tamoxifen and sulindac in a prospective phase II study within the Children's Oncology Group. Eligible patients were <19 years of age who had measurable DT that was recurrent or not amenable to surgery or radiation. The primary objective was to estimate progression-free survival (PFS). Patients received tamoxifen and sulindac daily for 12 months or until disease progression or intolerable toxicity occurred. Response was assessed by magnetic resonance imaging. Fifty-nine eligible patients were enrolled from 2004 to 2009; 78% were 10-18 years old. Twenty-two (38%) were previously untreated; 15 (41%) of the remaining 37 enrolling with recurrent DT had prior systemic chemotherapy and six (16%) had prior radiation. No life-threatening toxicity was reported. Twelve (40%) of 30 females developed ovarian cysts, which were asymptomatic in 11 cases. Ten patients completed therapy without disease progression or discontinuing treatment. Responses included four partial and one complete (5/59, 8%). The estimated 2-year PFS and survival rates were 36% (95% confidence interval: 0.23-0.48) and 96%, respectively. All three deaths were due to progressive DT. Tamoxifen and sulindac caused few serious side effects in children with DT, although ovarian cysts were common. However, the combination showed relatively little activity as measured by response and PFS rates. Copyright © 2012 Wiley Periodicals, Inc.

  1. Safety and Efficacy of High-Dose Tamoxifen and Sulindac for Desmoid Tumor in Children: Results of a Children’s Oncology Group (COG) Phase II Study

    Science.gov (United States)

    Skapek, Stephen X.; Anderson, James R.; Hill, D. Ashley; Henry, David; Spunt, Sheri L.; Meyer, William; Kao, Simon; Hoffer, Fredric A.; Grier, Holcombe E.; Hawkins, Douglas S.; Raney, R. Beverly

    2015-01-01

    Background Desmoid fibromatosis (desmoid tumor, DT) is a soft tissue neoplasm prone to recurrence despite complete surgical resection. Numerous small retrospective reports suggest that non-cytotoxic chemotherapy using tamoxifen and sulindac may be effective for DT. We evaluated the safety and efficacy of tamoxifen and sulindac in a prospective phase II study within the Children’s Oncology Group. Procedures Eligible patients were <19 years of age who had measurable DT that was recurrent or not amenable to surgery or radiation. The primary objective was to estimate progression-free survival (PFS). Patients received tamoxifen and sulindac daily for 12 months or until disease progression or intolerable toxicity occurred. Response was assessed by magnetic resonance imaging. Results Fifty-nine eligible patients were enrolled from 2004 to 2009; 78% were 10–18 years old. Twenty-two (38%) were previously untreated; 15 (41%) of the remaining 37 enrolling with recurrent DT had prior systemic chemotherapy and six (16%) had prior radiation. No life-threatening toxicity was reported. Twelve (40%) of 30 females developed ovarian cysts, which were asymptomatic in 11 cases. Ten patients completed therapy without disease progression or discontinuing treatment. Responses included four partial and one complete (5/59, 8%). The estimated 2-year PFS and survival rates were 36% (95% confidence interval: 0.23–0.48) and 96%, respectively. All three deaths were due to progressive DT. Conclusions Tamoxifen and sulindac caused few serious side effects in children with DT, although ovarian cysts were common. However, the combination showed relatively little activity as measured by response and PFS rates. PMID:23281268

  2. HIF1α deficiency reduces inflammation in a mouse model of proximal colon cancer

    Directory of Open Access Journals (Sweden)

    Dessislava N. Mladenova

    2015-09-01

    Full Text Available Hypoxia-inducible factor 1α (HIF1α is a transcription factor that regulates the adaptation of cells to hypoxic microenvironments, for example inside solid tumours. Stabilisation of HIF1α can also occur in normoxic conditions in inflamed tissue or as a result of inactivating mutations in negative regulators of HIF1α. Aberrant overexpression of HIF1α in many different cancers has led to intensive efforts to develop HIF1α-targeted therapies. However, the role of HIF1α is still poorly understood in chronic inflammation that predisposes the colon to carcinogenesis. We have previously reported that the transcription of HIF1α is upregulated and that the protein is stabilised in inflammatory lesions that are caused by the non-steroidal anti-inflammatory drug (NSAID sulindac in the mouse proximal colon. Here, we exploited this side effect of long-term sulindac administration to analyse the role of HIF1α in colon inflammation using mice with a Villin-Cre-induced deletion of Hif1α exon 2 in the intestinal epithelium (Hif1αΔIEC. We also analysed the effect of sulindac sulfide on the aryl hydrocarbon receptor (AHR pathway in vitro in colon cancer cells. Most sulindac-treated mice developed visible lesions, resembling the appearance of flat adenomas in the human colon, surrounded by macroscopically normal mucosa. Hif1αΔIEC mice still developed lesions but they were smaller than in the Hif1α-floxed siblings (Hif1αF/F. Microscopically, Hif1αΔIEC mice had significantly less severe colon inflammation than Hif1αF/F mice. Molecular analysis showed reduced MIF expression and increased E-cadherin mRNA expression in the colon of sulindac-treated Hif1αΔIEC mice. However, immunohistochemistry analysis revealed a defect of E-cadherin protein expression in sulindac-treated Hif1αΔIEC mice. Sulindac sulfide treatment in vitro upregulated Hif1α, c-JUN and IL8 expression through the AHR pathway. Taken together, HIF1α expression augments inflammation

  3. Sulindac

    Science.gov (United States)

    ... inflammation of the tissue that connects muscle to bone). It is also used to relieve gouty arthritis ( ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  4. Preventing Second Cancers in Colon Cancer Survivors

    Science.gov (United States)

    In this phase III trial, people who have had curative surgery for colon cancer will be randomly assigned to take sulindac and a placebo, eflornithine and a placebo, both sulindac and eflornithine, or two placebo pills for 36 months.

  5. Potential for drug interactions mediated by polymorphic flavin-containing monooxygenase 3 in human livers.

    Science.gov (United States)

    Shimizu, Makiko; Shiraishi, Arisa; Sato, Ayumi; Nagashima, Satomi; Yamazaki, Hiroshi

    2015-02-01

    Human flavin-containing monooxygenase 3 (FMO3) in the liver catalyzes a variety of oxygenations of nitrogen- and sulfur-containing medicines and xenobiotic substances. Because of growing interest in drug interactions mediated by polymorphic FMO3, benzydamine N-oxygenation by human FMO3 was investigated as a model reaction. Among the 41 compounds tested, trimethylamine, methimazole, itopride, and tozasertib (50 μM) suppressed benzydamine N-oxygenation at a substrate concentration of 50 μM by approximately 50% after co-incubation. Suppression of N-oxygenation of benzydamine, trimethylamine, itopride, and tozasertib and S-oxygenation of methimazole and sulindac sulfide after co-incubation with the other five of these six substrates was compared using FMO3 proteins recombinantly expressed in bacterial membranes. Apparent competitive inhibition by methimazole (0-50 μM) of sulindac sulfide S-oxygenation was observed with FMO3 proteins. Sulindac sulfide S-oxygenation activity of Arg205Cys variant FMO3 protein was likely to be suppressed more by methimazole than wild-type or Val257Met variant FMO3 protein was. These results suggest that genetic polymorphism in the human FMO3 gene may lead to changes of drug interactions for N- or S-oxygenations of xenobiotics and endogenous substances and that a probe battery system of benzydamine N-oxygenation and sulindac sulfide S-oxygenation activities is recommended to clarify the drug interactions mediated by FMO3. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells

    OpenAIRE

    Moody, Terry W.; Switzer, Christopher; Santana-Flores, Wilmarie; Ridnour, Lisa A.; Berna, Marc; Thill, Michelle; Jensen, Robert T.; Sparatore, Anna; Del Soldato, Piero; Yeh, Grace C; Roberts, David D.; Giaccone, Giuseppe; Wink, David A.

    2009-01-01

    The effects of dithiolethione-modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 μg/ml concentrations significantly reduced prostaglandin (PG)E2 levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 μg/ml, respectively. Using the MTT assay, 10...

  7. Drug Combo Decreases Colorectal Polyps in People with FAP

    Science.gov (United States)

    In people with familial adenomatous polyposis, or FAP, a combination treatment of erlotinib (Tarceva) and sulindac (Aflodac) decreased the number of precancerous colorectal polyps, according to recently published clinical trial results.

  8. Aspirin and Extended-Release Dipyridamole

    Science.gov (United States)

    ... Mobic), nabumetone (Relafen), naproxen (Aleve, Naprosyn), oxaprozin (Daypro), piroxicam (Feldene), rofecoxib (Vioxx) (no longer available in the ... Mobic), nabumetone (Relafen), naproxen (Aleve, Naprosyn), oxaprozin (Daypro), piroxicam (Feldene), sulindac (Clinoril), and tolmetin (Tolectin); phenytoin (Dilantin); ...

  9. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Moody, Terry W; Switzer, Christopher; Santana-Flores, Wilmarie; Ridnour, Lisa A; Berna, Marc; Thill, Michelle; Jensen, Robert T; Sparatore, Anna; Del Soldato, Piero; Yeh, Grace C; Roberts, David D; Giaccone, Giuseppe; Wink, David A

    2010-05-01

    The effects of dithiolethione modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 microg/ml concentrations significantly reduced prostaglandin (PG)E(2) levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 microg/ml, respectively. Using the MTT assay, 10 microg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE(2) levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC. Published by Elsevier Ireland Ltd.

  10. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    Energy Technology Data Exchange (ETDEWEB)

    Nadanaciva, Sashi [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States); Aleo, Michael D. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Strock, Christopher J. [Cyprotex US, Watertown, MA 02472 (United States); Stedman, Donald B. [Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340 (United States); Wang, Huijun [Computational Sciences, Pfizer Inc., Groton, CT 06340 (United States); Will, Yvonne, E-mail: yvonne.will@pfizer.com [Compound Safety Prediction, Worldwide Medicinal Chemistry, Pfizer, Inc., Groton, CT 06340 (United States)

    2013-10-15

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.

  11. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    International Nuclear Information System (INIS)

    Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.; Stedman, Donald B.; Wang, Huijun; Will, Yvonne

    2013-01-01

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary

  12. A Molecular docking study to predict enantioseparation of some chiral carboxylic acid derivatives by methyl-β-cyclodextrin

    Science.gov (United States)

    Nurhidayah, E. S.; Ivansyah, A. L.; Martoprawiro, M. A.; Zulfikar, M. A.

    2018-05-01

    A molecular docking study, using molecular mechanics calculations with Arguslab, was used to help predict the enantioseparation of some guest molecules of chiral carboxylic acid derivatives by heptakis-2,6-di-O-methyl-β-cyclodextrin (DIMEB) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TRIMEB) as host molecules. The small differences in the binding free energy values (ΔΔG) obtained from Arguslab did not indicate any significant enantioseparation. From the molecular docking simulation results, it is predicted that in the case of DIMEB as host molecule, R-enantiomer of Etodolac, Fenoprofen, Indoprofen, Ketorolac, and Naproxen will be eluted first than S-enantiomer; However, S-enantiomer of Carprofen, Flurbiprofen, Ketoprofen, Pirprofen, Proglumide, Sulindac, Surprofen, and Zaltoprofen will be eluted first than R-enantiomer by DIMEB as host molecule. When TRIMEB is used as a host molecule, R-enantiomer of Carprofen, Flurbiprofen, Indoprofen, Ketoprofen, Naproxen, Pirprofen, and Surprofen will be eluted first than S-enantiomer; However, S-enantiomer of Etodolac, Fenoprofen, Ketorolac, Proglumide, Sulindac and Zaltoprofen will be eluted first than R-enantiomer by TRIMEB as host molecule.

  13. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  14. Studies on the preparation of low-carrier Se-73,75 tracers for in vivo examinations

    International Nuclear Information System (INIS)

    Helfer, Andreas

    2013-01-01

    With the growing importance of positron emission tomography (PET) for in vivo imaging in diagnostic medicine there is great interest of developing new labelling methods for the positron emitter selenium-73. As attractive application an examination of a no-carrier-added (n.c.a.) preparation of the analogous tracer Sulindac Selenid and of the selenium containing compound Ebselen was examined with 73,75 Se. First of all a labelling strategy for Sulindac Selenid based on a protected precursor was developed. This precursor should further be transformed into the corresponding standard compound for chomatographic identification of the n.c.a. product. This, however, was not possible. An alternative synthesis method also did not result in a product. Thus, a radioactive labelling in case of Sulindac Selenid was not indicated in spite of a successful synthesis of a precursor. The preparation of Ebselen was performed as earlier described by a sequential one-pot synthesis with a yield of 46 %. An adaption of the reaction parameters to a radiosynthesis with 75 Se failed on the n.c.a. state and also after adding carrier to the reaction mixture. The desired product could, however, be prepared in a copper catalysed one-pot radiosynthesis for the first time under carrier-added conditions. Here, optimized conditions resulted in radiochemical yields of 60 ± 18 %. A no-carrier-added product could finally be achieved using sulphur as nonisotopic carrier in the reaction mixture. After optimisation of reaction parameters n.c.a. [ 75 Se]Ebselen could be synthesized with radiochemical yields of 55 ± 7 % within 4 h. Furthermore the desired product could be separated by RHPL-chromatography from its co-produced sulfur-analogue. After transferring the conditions to radiosyntheses with the positron emitter 73 Se, n.c.a. [ 73 Se]Ebselen could be achieved with a radiochemical yield of 22 ± 1 % and can now be used as a potential radiotracer in preclinical evaluation studies with respect to

  15. Novel High-Fidelity Screening of Environmental Chemicals and Carcinogens and Mechanisms in Colorectal Cancer.

    Science.gov (United States)

    2016-09-01

    function of the mebendazole concentration in a dose response manner. An 11-point 3-fold serial dilution of each test compound was prepared in 100% DMSO... serial dilution starting at a lower starting concentration. Binding constants (Kd) were calculated with a standard dose-response curve (drug dose (x...signaling pathway, VEGF signaling pathway, Natural killer cell mediated cytotoxicity, Pathways in cancer, Renal cell carcinoma Sulindac D00120 VEGF

  16. A multipumping flow system for in vitro screening of peroxynitrite scavengers.

    Science.gov (United States)

    Ribeiro, Marta F T; Dias, Ana C B; Santos, João L M; Fernandes, Eduarda; Lima, José L F C; Zagatto, Elias A G

    2007-09-01

    Peroxynitrite anion is a reactive nitrogen species formed in vivo by the rapid, controlled diffusion reaction between nitric oxide and superoxide radicals. By reacting with several biological molecules, peroxynitrite may cause important cellular and tissue deleterious effects, which have been associated with many diseases. In this work, an automated flow-based procedure for the in vitro generation of peroxynitrite and subsequent screening of the scavenging activity of selected compounds is developed. This procedure involves a multipumping flow system (MPFS) and exploits the ability of compounds such as lipoic acid, dihydrolipoic acid, cysteine, reduced glutathione, oxidized glutathione, sulindac, and sulindac sulfone to inhibit the chemiluminescent reaction of luminol with peroxynitrite under physiological simulated conditions. Peroxynitrite was generated in the MPFS by the online reaction of acidified hydrogen peroxide with nitrite, followed by a subsequent stabilization by merging with a sodium hydroxide solution to rapidly quench the developing reaction. The pulsed flow and the timed synchronized insertion of sample and reagent solutions provided by the MPFS ensure the establishment of the reaction zone only inside the flow cell, thus allowing maximum chemiluminescence emission detection. The results obtained for the assayed compounds show that, with the exception of oxidized glutathione, all are highly potent scavengers of peroxynitrite at the studied concentrations.

  17. Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Endogenously formed prostacyclin (PGI2 and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7 and a human T-cell leukemia cell line (CCRF-CEM. PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P=0.038; n=193. Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.

  18. The effect of pentoxifylline on L-1 sarcoma tumor growth and angiogenesis in Balb/c mice

    Directory of Open Access Journals (Sweden)

    Barbara Joanna Bałan

    2017-07-01

    Full Text Available Methyloxantines are present in many herbs and vegetal foods, among them in tea, coffee and chocolate. Previous studies revealed that theophylline and theobromine have anti-angiogenic properties. Anti-tumor properties of theobromine were also described. Pentoxifylline (3,7-dimethyl-1-(5-oxohexylxanthine, PTX is a synthetic xanthine derivative. It is a phosphodiesterase inhibitor and has various anti-inflammatory abilities. Pentoxifylline is widely used in therapy of inflammatory arterial diseases such as intermittent claudication of upper and lower limbs as well as in coronary heart disease. The aim of our research was to evaluate the effect of pentoxifylline (individually and in combination with non-steroidal anti-inflammatory drug sulindac, on L-1 sarcoma angiogenic activity and tumor formation in syngeneic Balb/c mice. Pre-incubation of tumor cells for 90 min with various PTX concentrations resulted in dose-dependent decrease of their ability to induce newly-formed blood vessels after transplantation into the skin of recipient mice. Administration of PTX to mice, recipients of tumor cells, slows tumor growth and reduces its volume. Synergistic inhibitory effect of PTX and sulindac, expressed as % of tumors sixth and thirteen day after subcutaneous grafting of L-1 sarcoma into syngeneic Balb/c mice, was observed.

  19. Studies on the preparation of low-carrier Se-73,75 tracers for in vivo examinations; Untersuchungen zur Darstellung traegerarm 73,75Se-markierter Tracer fuer in vivo Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Helfer, Andreas

    2013-04-03

    With the growing importance of positron emission tomography (PET) for in vivo imaging in diagnostic medicine there is great interest of developing new labelling methods for the positron emitter selenium-73. As attractive application an examination of a no-carrier-added (n.c.a.) preparation of the analogous tracer Sulindac Selenid and of the selenium containing compound Ebselen was examined with {sup 73,75}Se. First of all a labelling strategy for Sulindac Selenid based on a protected precursor was developed. This precursor should further be transformed into the corresponding standard compound for chomatographic identification of the n.c.a. product. This, however, was not possible. An alternative synthesis method also did not result in a product. Thus, a radioactive labelling in case of Sulindac Selenid was not indicated in spite of a successful synthesis of a precursor. The preparation of Ebselen was performed as earlier described by a sequential one-pot synthesis with a yield of 46 %. An adaption of the reaction parameters to a radiosynthesis with {sup 75}Se failed on the n.c.a. state and also after adding carrier to the reaction mixture. The desired product could, however, be prepared in a copper catalysed one-pot radiosynthesis for the first time under carrier-added conditions. Here, optimized conditions resulted in radiochemical yields of 60 ± 18 %. A no-carrier-added product could finally be achieved using sulphur as nonisotopic carrier in the reaction mixture. After optimisation of reaction parameters n.c.a. [{sup 75}Se]Ebselen could be synthesized with radiochemical yields of 55 ± 7 % within 4 h. Furthermore the desired product could be separated by RHPL-chromatography from its co-produced sulfur-analogue. After transferring the conditions to radiosyntheses with the positron emitter {sup 73}Se, n.c.a. [{sup 73}Se]Ebselen could be achieved with a radiochemical yield of 22 ± 1 % and can now be used as a potential radiotracer in preclinical evaluation

  20. Occult progression by Apc-deficient intestinal crypts as a target for chemoprevention

    Science.gov (United States)

    Liskay, R.Michael

    2014-01-01

    Although Apc mutation is widely considered an initiating event in colorectal cancer, little is known about the earliest stages of tumorigenesis following sporadic Apc loss. Therefore, we have utilized a novel mouse model that facilitates the sporadic inactivation of Apc via frameshift reversion of Cre in single, isolated cells and subsequently tracks the fates of Apc-deficient intestinal cells. Our results suggest that consistent with Apc being a ‘gatekeeper’, loss of Apc early in life during intestinal growth leads to adenomas or increased crypt fission, manifested by fields of mutant but otherwise normal-appearing crypts. In contrast, Apc loss occurring later in life has minimal consequences, with mutant crypts being less prone to either increased crypt fission or adenoma formation. Using the stem cell-specific Lgr5-CreER mouse, we generated different sized fields of Apc-deficient crypts via independent recombination events and found that field size correlates with progression to adenoma. To evaluate this early stage prior to adenoma formation as a therapeutic target, we examined the chemopreventive effects of sulindac on Apc-deficient occult crypt fission. We found that sulindac treatment started early in life inhibits the morphologically occult spread of Apc-deficient crypts and thus reduces adenoma numbers. Taken together these results suggest that: (i) earlier Apc loss promotes increased crypt fission, (ii) a field of Apc-deficient crypts, which can form via occult crypt fission or independent neighboring events, is an important intermediate between loss of Apc and adenoma formation and (iii) normal-appearing Apc-deficient crypts are potential unappreciated targets for cancer screening and chemoprevention. PMID:23996931

  1. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3.

    Directory of Open Access Journals (Sweden)

    Jack U Flanagan

    Full Text Available Aldo-keto reductase 1C3 (AKR1C3 catalyses the NADPH dependent reduction of carbonyl groups in a number of important steroid and prostanoid molecules. The enzyme is also over-expressed in prostate and breast cancer and its expression is correlated with the aggressiveness of the disease. The steroid products of AKR1C3 catalysis are important in proliferative signalling of hormone-responsive cells, while the prostanoid products promote prostaglandin-dependent proliferative pathways. In these ways, AKR1C3 contributes to tumour development and maintenance, and suggest that inhibition of AKR1C3 activity is an attractive target for the development of new anti-cancer therapies. Non-steroidal anti-inflammatory drugs (NSAIDs are one well-known class of compounds that inhibits AKR1C3, yet crystal structures have only been determined for this enzyme with flufenamic acid, indomethacin, and closely related analogues bound. While the flufenamic acid and indomethacin structures have been used to design novel inhibitors, they provide only limited coverage of the NSAIDs that inhibit AKR1C3 and that may be used for the development of new AKR1C3 targeted drugs. To understand how other NSAIDs bind to AKR1C3, we have determined ten crystal structures of AKR1C3 complexes that cover three different classes of NSAID, N-phenylanthranilic acids (meclofenamic acid, mefenamic acid, arylpropionic acids (flurbiprofen, ibuprofen, naproxen, and indomethacin analogues (indomethacin, sulindac, zomepirac. The N-phenylanthranilic and arylpropionic acids bind to common sites including the enzyme catalytic centre and a constitutive active site pocket, with the arylpropionic acids probing the constitutive pocket more effectively. By contrast, indomethacin and the indomethacin analogues sulindac and zomepirac, display three distinctly different binding modes that explain their relative inhibition of the AKR1C family members. This new data from ten crystal structures greatly broadens

  2. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan

    2016-11-01

    A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC

  3. The effect of soy isoflavones on the development of intestinal neoplasia in Apc(Min) mouse

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, Eva; Mortensen, Alicja

    1998-01-01

    Data from epidemiological studies suggest that isoflavones in soy may have a protective effect on the development of colon cancer in humans. Therefore, we have investigated whether soy isoflavones will inhibit intestinal tumour development in Apc(Min) mice. The mice were fed a Western-type high...... risk diet (high fat, low fibre and calcium) containing two different isolates of soy protein as a protein source. For the control and test groups this resulted in the administration of about 16 and 475 mg of total isoflavones per kg diet, respectively. As a positive control, a third group of mice...... was administered a low isoflavone diet supplemented with 300 ppm sulindac. No significant differences in the incidence, multiplicity, size and distribution of intestinal tumours were observed between Min mice fed low and high isoflavone-containing diets. However, a clear reduction in the number of small intestinal...

  4. Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene

    International Nuclear Information System (INIS)

    Kim, Kyung-Su; Yoon, Joo-Heon; Kim, Jin Kook; Baek, Seung Joon; Eling, Thomas E.; Lee, Won Jae; Ryu, Ji-Hwan; Lee, Jeung Gweon; Lee, Joo-Hwan; Yoo, Jong-Bum

    2004-01-01

    We have investigated whether NAG-1 is induced in oral cavity cancer cells by various NSAIDs and if apoptosis induced by NSAIDs can be linked directly with the induction of NAG-1. NAG-1 expression was increased by diclofenac, aceclofenac, indomethacin, ibuprofen, and sulindac sulfide, in the order of NAG-1 induction, but not by acetaminophen, piroxicam or NS-398. Diclofenac was the most effective NAG-1 inducer. Incubation with diclofenac inhibited cell proliferation and induced apoptosis. The expression of NAG-1 was observed in advance of the induction of apoptosis. Conditioned medium from NAG-1-overexpressing Drosophila cells inhibited SCC 1483 cells proliferation and induced apoptosis. In summary, some NSAIDs induce NAG-1 expression in oral cavity cancer cells and the induced NAG-1 protein appears to mediate apoptosis. Therefore, NSAIDs may be considered as a possible chemopreventive agent against oral cavity cancer

  5. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Directory of Open Access Journals (Sweden)

    Sara Sanz-Blasco

    Full Text Available Dysregulation of intracellular Ca(2+ homeostasis may underlie amyloid beta peptide (Abeta toxicity in Alzheimer's Disease (AD but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+ in neurons and promote mitochondrial Ca(2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+ overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i mitochondrial Ca(2+ overload underlies the neurotoxicity induced by Abeta oligomers and ii inhibition of mitochondrial Ca(2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  6. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Science.gov (United States)

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  7. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats

    NARCIS (Netherlands)

    Bolder, U.; Trang, N. V.; Hagey, L. R.; Schteingart, C. D.; Ton-Nu, H. T.; Cerrè, C.; Elferink, R. P.; Hofmann, A. F.

    1999-01-01

    BACKGROUND & AIMS: Dihydroxy bile acids induce a bicarbonate-rich hypercholeresis when secreted into canalicular bile in unconjugated form; the mechanism is cholehepatic shunting. The aim of this study was to identify a xenobiotic that induces hypercholeresis by a similar mechanism. METHODS: Five

  8. Detection of site-specific binding and co-binding of ligands to macromolecules using 19F NMR

    International Nuclear Information System (INIS)

    Jenkins, B.G.

    1991-01-01

    Study of ligand-macromolecular interactions by 19 F nuclear magnetic resonance (NMR) spectroscopy affords many opportunities for obtaining molecular biochemical and pharmaceutical information. This is due to the absence of a background fluorine signal, as well as the relatively high sensitivity of 19 F NMR. Use of fluorine-labeled ligands enables one to probe not only binding and co-binding phenomena to macromolecules, but also can provide data on binding constants, stoichiometries, kinetics, and conformational properties of these complexes. Under conditions of slow exchange and macromolecule-induced chemical shifts, multiple 19 F NMR resonances can be observed for free and bound ligands. These shifted resonances are a direct correlate of the concentration of ligand bound in a specific state rather than the global concentrations of bound or free ligand which are usually determined using other techniques such as absorption spectroscopy or equilibrium dialysis. Examples of these interactions are demonstrated both from the literature and from interactions of 5-fluorotryptophan, 5-fluorosalicylic acid, flurbiprofen, and sulindac sulfide with human serum albumin. Other applications of 19 F NMR to study of these interactions in vivo, as well for receptor binding and metabolic tracing of fluorinated drugs and proteins are discussed

  9. Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

    Science.gov (United States)

    Dashwood, Roderick H.

    2008-01-01

    Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and gptΔ transgenics, XPA−/−, XPC−/−, Msh2+/−, Msh2−/− and p53+/− knock-outs, Apc mutant mice (ApcΔ716, Apc1638N, Apcmin), and A33ΔNβ-cat knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac. PMID:12542973

  10. Complex formation of p65/RelA with nuclear Akt1 for enhanced transcriptional activation of NF-κB

    International Nuclear Information System (INIS)

    Kwon, Osong; Kim, Kyung A; He, Long; Jung, Mira; Jeong, Sook Jung; Ahn, Jong Seog; Kim, Bo Yeon

    2008-01-01

    Akt1 was revealed to interact with Ki-Ras in the cytoplasm of Ki-Ras-transformed human prostate epithelial cells, 267B1/K-ras. Moreover, p65/RelA in the nucleus was found to interact with both Ki-Ras and Akt1, suggesting the nuclear translocation of Akt1:Ki-Ras complex for NF- κB activation. In support of this, compared with wild type Akt1, the dominant negative Akt1 mutant was decreased in its nuclear expression, reducing the Ki-Ras-induced NF-κB transcriptional activation. Moreover, inhibitors of Ras (sulindac sulfide and farnesyltransferase inhibitor I) or PI3K/Akt (wortmannin), reduced the amounts of Akt1 and Ki-Ras in the nucleus as well as partial NF-κB activity. The complete inhibition of Ki-Ras-induced NF-κB activation, however, could only be obtained by combined treatment with wortmannin and proteasome inhibitor-1. Accordingly, clonogenic assay showed Akt1 contribution to IκBα-mediated NF-κB activation for oncogenic cell growth by Ki-Ras. Our data suggest a crucial role of Ki-Ras:Akt1 complex in NF-κB transcriptional activation and enhancement of cell survival

  11. Consumo de antiinflamatorios no esteroideos en atención primaria en Costa Rica: evolución y variabilidad geográfica Consumption of nonsteroidal anti-inflammatory agents in primary care in Costa Rica: changing patterns and geographical variability

    Directory of Open Access Journals (Sweden)

    Melvin Morera Salas

    2007-12-01

    Full Text Available Objetivo: Conocer la evolución y la variabilidad en el consumo de los antiinflamarios no esteroideos clásicos (AINE en las áreas de salud de Costa Rica durante el período 2000-2005. Métodos: Se estudiaron los siguientes medicamentos: ibuprofeno, indometacina, penicilamina, sulindaco, tenoxican y diclofenaco sódico. Se utilizó como medida de consumo la dosis diaria definida por 1.000 habitantes y día (DHD, y en el análisis de variabilidad el coeficiente de variación ponderado por el tamaño de población (CVw, el rango extremo, el rango interpercentil, los gráficos de puntos y los mapas con categorías de consumo. Resultados: En el período 2000-2005 el consumo de los AINE creció un 48% y el coste anual se incrementó un 184%. Los medicamentos de mayor consumo y participación en el gasto fueron sulindaco e indometacina. El consumo de los AINE varió entre 0,1 y 60,39 DHD según las áreas de salud, con un CVw del 66,38%. Los medicamento con mayor variabilidad fueron penicilamina (CVw del 449,89% y tenoxican (CVw del 315,26%. Conclusiones: Hay un patrón geográfico diferenciado en el consumo de AINE en el país, y tasas muy diferentes dentro de una misma región. Dos posibles factores asociados a esta variabilidad, según los resultados obtenidos, son la oferta de servicios médicos y el porcentaje de población mayor de 65 años adscrita al área de salud.Objective: To determine changing patterns and variability in consumption of classic nonsteroidal anti-inflammatory drugs (NSAIDs among the health areas in Costa Rica between 2000 and 2005. Methods: The drugs studied were ibuprofen, indomethacin, penicillamine, sulindac, tenoxicam, and diclofenac sodium. To measure consumption, we used the defined daily dose per 1,000 inhabitants per day (DID. To analyze variability, the coefficient of variation weighed by the population size (CVw, extremal ratio, interquartile ratio, dot plot and map graphs were used. Results: From 2000-2005, NSAID

  12. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    Science.gov (United States)

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  13. [Effect of Environmental Factors on the Ecotoxicity of Pharmaceuticals and Personal Care Products].

    Science.gov (United States)

    Sugihara, Kazumi

    2018-01-01

     In recent years, pharmaceuticals and personal care products (PPCPs) have emerged as significant pollutants of aquatic environments and have been detected at levels in the range of ng/L to μg/L. The source of PPCPs is humans and livestock that have been administered pharmaceuticals and subsequently excreted them via urine and feces. Unlike agricultural chemicals, the environmental dynamics of PPCPs is not examined and they would undergo structural transformation by environmental factors, e.g., sunlight, microorganisms and treatments in sewage treatment plants (STPs). Processing at STPs can remove various PPCPs; however, they are not removed completely and some persist in the effluents. In this study, we examined the degradation of 9 pharmaceuticals (acetaminophen, amiodarone, dapsone, dexamethasone, indomethacin, raloxifene, phenytoin, naproxen, and sulindac) by sunlight or UV, and investigated the ecotoxicological variation of degradation products. Sunlight (UVA and UVB) degraded most pharmaceuticals, except acetaminophen and phenytoin. Similar results were obtained with UVB and UVA. All the pharmaceuticals were photodegraded by UVC, which is used for sterilization in STPs. Ecotoxicity assay using the luminescent bacteria test (ISO11348) indicated that UVC irradiation increased the toxicity of acetaminophen and phenytoin significantly. The photodegraded product of acetaminophen was identified as 1-(2-amino-5-hydroxyphenyl)ethanone and that of phenytoin as benzophenone, and the authentic compounds showed high toxicity. Photodegraded products of PPCPs are a concern in ecotoxicology.

  14. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer's disease: an investigation by docking, molecular dynamics, and DFT studies.

    Science.gov (United States)

    Azam, Faizul; Alabdullah, Nada Hussin; Ehmedat, Hadeel Mohammed; Abulifa, Abdullah Ramadan; Taban, Ismail; Upadhyayula, Sreedevi

    2018-06-01

    Aggregation of amyloid beta (Aβ) protein considered as one of contributors in development of Alzheimer's disease (AD). Several investigations have identified the importance of non-steroidal anti-inflammatory drugs (NSAIDs) as Aβ aggregation inhibitors. Here, we have examined the binding interactions of 24 NSAIDs belonging to eight different classes, with Aβ fibrils by exploiting docking and molecular dynamics studies. Minimum energy conformation of the docked NSAIDs were further optimized by density functional theory (DFT) employing Becke's three-parameter hybrid model, Lee-Yang-Parr (B3LYP) correlation functional method. DFT-based global reactivity descriptors, such as electron affinity, hardness, softness, chemical potential, electronegativity, and electrophilicity index were calculated to inspect the expediency of these descriptors for understanding the reactive nature and sites of the molecules. Few selected NSAID-Aβ fibrils complexes were subjected to molecular dynamics simulation to illustrate the stability of these complexes and the most prominent interactions during the simulated trajectory. All of the NSAIDs exhibited potential activity against Aβ fibrils in terms of predicted binding affinity. Sulindac was found to be the most active compound underscoring the contribution of indene methylene substitution, whereas acetaminophen was observed as least active NSAID. General structural requirements for interaction of NSAIDs with Aβ fibril include: aryl/heteroaryl aromatic moiety connected through a linker of 1-2 atoms to a distal aromatic group. Considering these structural requirements and electronic features, new potent agents can be designed and developed as potential Aβ fibril inhibitors for the treatment of AD.

  15. Determining the Molecular Pathways Underlying the Protective Effect of Non-Steroidal Anti-Inflammatory Drugs for Alzheimer's Disease: A Bioinformatics Approach

    Directory of Open Access Journals (Sweden)

    Alejo J Nevado-Holgado

    Full Text Available Alzheimer's disease (AD represents a substantial unmet need, due to increasing prevalence in an ageing society and the absence of a disease modifying therapy. Epidemiological evidence shows a protective effect of non steroidal anti inflammatory (NSAID drugs, and genome wide association studies (GWAS show consistent linkage to inflammatory pathways; both observations suggesting anti-inflammatory compounds might be effective in AD therapy although clinical trials to date have not been positive.In this study, we use pathway enrichment and fuzzy logic to identify pathways (KEGG database simultaneously affected in both AD and by NSAIDs (Sulindac, Piroxicam, Paracetamol, Naproxen, Nabumetone, Ketoprofen, Diclofenac and Aspirin. Gene expression signatures were derived for disease from both blood (n = 344 and post-mortem brain (n = 690, and for drugs from immortalised human cell lines exposed to drugs of interest as part of the Connectivity Map platform. Using this novel approach to combine datasets we find striking overlap between AD gene expression in blood and NSAID induced changes in KEGG pathways of Ribosome and Oxidative Phosphorylation. No overlap was found in non NSAID comparison drugs. In brain we find little such overlap, although Oxidative Phosphorylation approaches our pre-specified significance level.These findings suggest that NSAIDs might have a mode of action beyond inflammation and moreover that their therapeutic effects might be mediated in particular by alteration of Oxidative Phosphorylation and possibly the Ribosome pathway. Mining of such datasets might prove increasingly productive as they increase in size and richness. Keywords: Alzheimer's disease, NSAID, Inflammation, Fuzzy logic, Ribosome

  16. Second generation γ-secretase modulators exhibit different modulation of Notch β and Aβ production.

    Science.gov (United States)

    Wanngren, Johanna; Ottervald, Jan; Parpal, Santiago; Portelius, Erik; Strömberg, Kia; Borgegård, Tomas; Klintenberg, Rebecka; Juréus, Anders; Blomqvist, Jenny; Blennow, Kaj; Zetterberg, Henrik; Lundkvist, Johan; Rosqvist, Susanne; Karlström, Helena

    2012-09-21

    The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.

  17. Sulindac targets nuclear beta-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines

    NARCIS (Netherlands)

    Boon, E. M. J.; Keller, J. J.; Wormhoudt, T. A. M.; Giardiello, F. M.; Offerhaus, G. J. A.; van der Neut, R.; Pals, S. T.

    2004-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have chemopreventive potential against colorectal carcinomas (CRCs). Inhibition of cyclooxygenase (COX)-2 underlies part of this effect, although COX-2-independent mechanisms may also exist. Nonsteroidal anti-inflammatory drugs appear to inhibit the

  18. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy.

    Directory of Open Access Journals (Sweden)

    Luiz F Zerbini

    Full Text Available Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24 is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.

  19. Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Angelique; Nie, Alex; Brandon Parker, J.; Sawant, Sharmilee; Piechta, Leigh-Anne; Kelley, Michael F., E-mail: mkelley2@its.jnj.com; Mark Kao, L.; Jim Proctor, S.; Verheyen, Geert; Johnson, Mark D.; Lord, Peter G.; McMillian, Michael K.

    2014-03-15

    Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit to the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds—chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates. - Highlights: • 28 of 97 drugs gave a positive OS/RM gene expression signature in rat liver. • The specificity of the signature for human idiosyncratic hepatotoxicants was 98%. • The sensitivity of the signature for human idiosyncratic hepatotoxicants was 75%. • The signature can help eliminate hepatotoxicants from drug development.

  20. [Desmoid tumors in three patients].

    Science.gov (United States)

    Mohos, E; Kovács, T; Brittig, F; Nagy, A

    2001-12-01

    Desmoids are rare tumors of the connective tissue. It develops about 1:1000 times more in patients with familial adenomatous polyposis (FAP, Gardner syndrome) compared to normal population. It has been shown in molecular genetic examinations, that different mutations of the APC gene are responsible for desmoid tumors in FAP. It means, that this disease is one of the extraintestinal manifestations of Gardner syndrome. This tumor has high recurrence rate and is growing rapidly, and as a result it is the second most common cause of death in FAP patients. That is why genetic examination for FAP patients is advised to decide if the patient has higher risk for desmoid formation. If the result of the genetic test is positive, it is advisable to try to slow the progression of polyposis with medical treatment, and so to delay the date of the colectomy because the surgical intervention--and connective tissue damage--can induce desmoid formation in these patients. At the same time it is reasonable to examine and regularly control patients with sporadic desmoid tumors searching for other manifestations of Gardner syndrome (colon, stomach and duodenum polyposis, tumor of papilla Vateri, retinopathy, etc.). Palliative surgery is not indicated in patients with inoperable intraabdominal desmoid tumors, because partial resections (R1, R2, debulking) result in further tumor progression. In these patients medical treatment (sulindac, tamoxifen), chemotherapy (doxorubicin, dacarbazin) and radiotherapy or combination of them can result tumor remission. We describe our three patients (an abdominal wall desmoid four years following Cesarean section; a desmoid tumor in the retroperitoneum and in the pelvis diagnosed three years after total colectomy; and a retroperitoneal and abdominal wall desmoid one year after total colectomy) and etiology, diagnosis and therapy of desmoid tumors are discussed.

  1. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    Science.gov (United States)

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model

    Science.gov (United States)

    Bista, Rajan K.; Uttam, Shikhar; Hartman, Douglas J.; Qiu, Wei; Yu, Jian; Zhang, Lin; Brand, Randall E.; Liu, Yang

    2012-06-01

    The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and

  3. Non-steroidal anti-inflammatory drugs and gastroprotection with proton pump inhibitors: a focus on ketoprofen/omeprazole.

    Science.gov (United States)

    Gigante, Antonio; Tagarro, Ignacio

    2012-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most commonly prescribed agents for rheumatic disorders such as osteoarthritis (OA), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Despite the known association between NSAID use and gastropathy, however, only around one-third of patients at risk of NSAID-induced gastrointestinal toxicity receive adequate gastroprotection, and as many as 44% of these patients are non-adherent. We review the co-prescription of proton pump inhibitors (PPIs) for the prevention of NSAID-induced gastropathy, with a particular focus on the first fixed-dose NSAID/PPI formulation: ketoprofen/omeprazole modified-release capsules. The ketoprofen/omeprazole fixed-dose combination is available in doses of 100 mg/20 mg, 150 mg/20 mg or 200 mg/20 mg as a single capsule for once-daily administration. Ketoprofen monotherapy has been shown to be generally equivalent to other NSAIDs when used in the treatment of OA. In RA, ketoprofen has demonstrated equivalent efficacy to diclofenac, indometacin, piroxicam, aceclofenac, phenylbutazone, naproxen and flurbiprofen. Studies comparing ketoprofen with ibuprofen and sulindac in patients with RA have, in general, favoured ketoprofen. Studies in AS have generally reported similar efficacy between ketoprofen and phenylbutazone and pirprofen. Prophylaxis with omeprazole is effective for the prevention of gastroduodenal ulcers, maintenance of remission and alleviation of dyspeptic symptoms in NSAID recipients. Omeprazole is well tolerated, and adverse events are generally gastrointestinal in nature. The fixed-dose combination of ketoprofen and omeprazole has demonstrated bioequivalence to the respective monotherapies. The incidence of digestive symptoms and the need for dose reduction was reported to be lower with the combination than with its components. Ketoprofen/omeprazole modified-release capsules are the first fixed-dose NSAID/PPI formulation to be approved. This formulation

  4. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  5. ABC gene-ranking for prediction of drug-induced cholestasis in rats

    Directory of Open Access Journals (Sweden)

    Yauheniya Cherkas

    Full Text Available As legacy toxicogenomics databases have become available, improved data mining approaches are now key to extracting and visualizing subtle relationships between toxicants and gene expression. In the present study, a novel “aggregating bundles of clusters” (ABC procedure was applied to separate cholestatic from non-cholestatic drugs and model toxicants in the Johnson & Johnson (Janssen rat liver toxicogenomics database [3]. Drug-induced cholestasis is an important issue, particularly when a new compound enters the market with this liability, with standard preclinical models often mispredicting this toxicity. Three well-characterized cholestasis-responsive genes (Cyp7a1, Mrp3 and Bsep were chosen from a previous in-house Janssen gene expression signature; these three genes show differing, non-redundant responses across the 90+ paradigm compounds in our database. Using the ABC procedure, extraneous contributions were minimized in comparisons of compound gene responses. All genes were assigned weights proportional to their correlations with Cyp7a1, Mrp3 and Bsep, and a resampling technique was used to derive a stable measure of compound similarity. The compounds that were known to be associated with rat cholestasis generally had small values of this measure relative to each other but also had large values of this measure relative to non-cholestatic compounds. Visualization of the data with the ABC-derived signature showed a very tight, essentially identically behaving cluster of robust human cholestatic drugs and experimental cholestatic toxicants (ethinyl estradiol, LPS, ANIT and methylene dianiline, disulfiram, naltrexone, methapyrilene, phenacetin, alpha-methyl dopa, flutamide, the NSAIDs–—indomethacin, flurbiprofen, diclofenac, flufenamic acid, sulindac, and nimesulide, butylated hydroxytoluene, piperonyl butoxide, and bromobenzene, some slightly less active compounds (3′-acetamidofluorene, amsacrine, hydralazine, tannic acid, some

  6. Modulation of cigarette smoke-related end-points in mutagenesis and carcinogenesis

    International Nuclear Information System (INIS)

    De Flora, Silvio; D'Agostini, Francesco; Balansky, Roumen; Camoirano, Anna; Bennicelli, Carlo; Bagnasco, Maria; Cartiglia, Cristina; Tampa, Elena; Longobardi, Maria Grazia; Lubet, Ronald A.; Izzotti, Alberto

    2003-01-01

    The epidemic of lung cancer and the increase of other tumours and chronic degenerative diseases associated with tobacco smoking have represented one of the most dramatic catastrophes of the 20th century. The control of this plague is one of the major challenges of preventive medicine for the next decades. The imperative goal is to refrain from smoking. However, chemoprevention by dietary and/or pharmacological agents provides a complementary strategy, which can be targeted not only to current smokers but also to former smokers and passive smokers. This article summarises the results of studies performed in our laboratories during the last 10 years, and provides new data generated in vitro, in experimental animals and in humans. We compared the ability of 63 putative chemopreventive agents to inhibit the bacterial mutagenicity of mainstream cigarette smoke. Modulation by ethanol and the mechanisms involved were also investigated both in vitro and in vivo. Several studies evaluated the effects of dietary chemopreventive agents towards smoke-related intermediate biomarkers in various cells, tissues and organs of rodents. The investigated end-points included metabolic parameters, adducts to haemoglobin, bulky adducts to nuclear DNA, oxidative DNA damage, adducts to mitochondrial DNA, apoptosis, cytogenetic damage in alveolar macrophages, bone marrow and peripheral blood erytrocytes, proliferation markers, and histopathological alterations. The agents tested in vivo included N-acetyl-L-cysteine, 1,2-dithiole-3-thione, oltipraz, phenethyl isothiocyanate, 5,6-benzoflavone, and sulindac. We started applying multigene expression analysis to chemoprevention research, and postulated that an optimal agent should not excessively alter per se the physiological background of gene expression but should be able to attenuate the alterations produced by cigarette smoke or other carcinogens. We are working to develop an animal model for the induction of lung tumours following exposure

  7. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.

    Science.gov (United States)

    De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini

    2017-01-10

    The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by