WorldWideScience

Sample records for sulfur mustard-induced protein

  1. A Large-Scale Quantitative Proteomic Approach to Identifying Sulfur Mustard-Induced Protein Phosphorylation Cascades

    Science.gov (United States)

    2010-01-01

    snapshot of SM-induced toxicity. Over the past few years, innovations in systems biology and biotechnology have led to important advances in our under...perturbations. SILAC has been used to study tumor metastasis (3, 4), focal adhesion- associated proteins, growth factor signaling, and insulin regula- tion (5...stained with colloidal Coomassie blue. After it was destained, the gel lane was excised into six regions, and each region was cut into 1 mm cubes

  2. Sulfur mustard-induced poikiloderma: a case report.

    Science.gov (United States)

    Emadi, Seyed Naser; Kaffashi, Mohammad; Poursaleh, Zohreh; Akhavan-Moghaddam, Jamal; Soroush, Mohammad Reza; Emadi, Seyed Emad; Taghavi, Nez'hat-o-Sadat

    2011-06-01

    Sulfur mustard (SM) is a potent chemical warfare agent that was widely used during the First World War and the Iran-Iraq conflict. This vesicant agent causes several acute and chronic effects on the skin, eye, and respiratory system. We report the case of a 41-year-old man who was injured with SM in Iraq chemical attack in 1988. After exposure, he developed severe skin blisters on his upper trunk, dorsum of hands, and genitalia. Based on several clinical observations, such as atrophy, pigmentation, and vascular changes on genitalia with relevant findings in histopathological studies, persistent pigmentation, and damaged skin appendix in hand lesions, a diagnosis of "SM-induced poikiloderma" was postulated. The absence of any complication on the palmar aspect of hands is another remarkable finding in presented case, which suggests a plausible role of the palms as a vector for transporting SM to other sites of the skin.

  3. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  4. Characterization of sulfur mustard induced structural modifications in human hemoglobin by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Noort, D.; Verheij, E.R.; Hulst, A.G.; Jong, L.P.A. de; Benschop, H.P.

    1996-01-01

    In this paper we describe the use of tandem mass spectrometry to identify modified sites in human hemoglobin after in vitro exposure to bis(2- chloroethyl) sulfide (sulfur mustard). Globin isolated from human whole blood which had been exposed to sulfur mustard was degraded with trypsin, and the

  5. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway.

    Science.gov (United States)

    Kim, Shin; Jeong, Kwang-Joon; Cho, Sung Kweon; Park, Joo-Won; Park, Woo-Jae

    2016-11-01

    Sulfur mustard (SM) is an alkylating agent, which has been used as in chemical warfare in a number of conflicts. As the generation of reactive oxygen species (ROS), and adducts in DNA and proteins have been suggested as the mechanism underlying SM‑induced cytotoxicity, the present study screened several antioxidant candidates, including tannic acid, deferoxamine mesylate, trolox, vitamin C, ellagic acid and caffeic acid (CA) to assess their potential as therapeutic agents for SM‑induced cell death. Among several antioxidants, CA partially alleviated SM‑induced cell death in a dose‑dependent manner. Although CA treatment decreased the phosphorylation of p38 mitogen‑activated protein (MAP) kinase and p53, p38 MAP kinase inhibition by SB203580 did not affect SM‑induced cell death. As CA has also been reported as a 15‑lipoxygenase (15‑LOX) inhibitor, the role of 15‑LOX in SM‑induced cytotoxicity was also examined. Similar to the results observed with CA, treatment with PD146176, a specific 15‑LOX inhibitor, decreased SM‑induced cytotoxicity, accompanied by decreases in the production of tumor necrosis factor‑α and 15‑hydroxyeicosatetraenoic acid. Furthermore, the present study investigated the protective effects of two natural 15‑LOX inhibitors, morin hydrate and quercetin, in SM‑induced cytotoxicity. As expected, these inhibitors had similar protective effects against SM‑induced cytotoxicity. These antioxidants also reduced the generation of ROS and nitrate/nitrite. Therefore, the results of the present study indicated that the natural products, CA, quercetin and morin hydrate, offer potential as adjuvant therapeutic agents for SM‑induced toxicity, not only by reducing inflammation mediated by the p38 and LOX signaling pathways, but also by decreasing the generation of ROS and nitrate/nitrite.

  6. Study on Effectiveness of Low Dose Theophylline as Add-on to Inhaled Corticosteroid for Patients with Sulfur Mustard Induced Bronchiolitis

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-12-01

    , Saburi A, Shohrati M, Ghanei M. Study on Effectiveness of Low Dose Theophylline as Add-on to Inhaled Corticosteroid for Patients with Sulfur Mustard Induced Bronchiolitis. Asia Pac J Med Toxicol 2013;2:126-130.

  7. The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2015-10-01

    Full Text Available Sulfur mustard (SM is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH, which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA of Salvia miltiorrhiza and total flavonoids (TFA of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50 SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (p < 0.05 reversal in SM-induced GSH depletion. Gene expression profiles revealed that treatment with MSTF had a dramatic effect on gene expression changes caused by SM. Treatment with MSTF prevented SM-induced differential expression of 93.8% (973 genes of 1037 genes. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries.

  8. Synthetic inhibitors of matrix metalloproteinases prevent sulfur mustard-induced epidermal-dermal separation in human skin pieces

    NARCIS (Netherlands)

    Mol, M.A.E.; Alblas, S.W.; Hammer, A.; Benschop, H.P.

    2000-01-01

    Degradation of proteins of the basement membrane zone (BMZ) in the skin depends on the activity of proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases (MMPs). In the present study we have investigated the contribution of these enzymes to the epidermal-dermal

  9. Sulfur mustard induced mast cell degranulation in mouse skin is inhibited by a novel anti-inflammatory and anticholinergic bifunctional prodrug.

    Science.gov (United States)

    Joseph, Laurie B; Composto, Gabriella M; Perez, Roberto M; Kim, Hong-Duck; Casillas, Robert P; Heindel, Ned D; Young, Sherri C; Lacey, Carl J; Saxena, Jaya; Guillon, Christophe D; Croutch, Claire R; Laskin, Jeffrey D; Heck, Diane E

    2018-09-01

    Sulfur mustard (SM, bis(2-chloroethyl sulfide) is a potent vesicating agent known to cause skin inflammation, necrosis and blistering. Evidence suggests that inflammatory cells and mediators that they generate are important in the pathogenic responses to SM. In the present studies we investigated the role of mast cells in SM-induced skin injury using a murine vapor cup exposure model. Mast cells, identified by toluidine blue staining, were localized in the dermis, adjacent to dermal appendages and at the dermal/epidermal junction. In control mice, 48-61% of mast cells were degranulated. SM exposure (1.4g/m 3 in air for 6min) resulted in increased numbers of degranulated mast cells 1-14days post-exposure. Treatment of mice topically with an indomethacin choline bioisostere containing prodrug linked by an aromatic ester-carbonate that targets cyclooxygenases (COX) enzymes and acetylcholinesterase (1% in an ointment) 1-14days after SM reduced skin inflammation and injury and enhanced tissue repair. This was associated with a decrease in mast cell degranulation from 90% to 49% 1-3days post SM, and from 84% to 44% 7-14days post SM. These data suggest that reduced inflammation and injury in response to the bifunctional indomethacin prodrug may be due, at least in part, to abrogating mast cell degranulation. The use of inhibitors of mast cell degranulation may be an effective strategy for mitigating skin injury induced by SM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sulfur sources in protein supplements for ruminants

    Directory of Open Access Journals (Sweden)

    Cássio José da Silva

    2014-10-01

    Full Text Available The present study evaluates the efficiency of different sulfur sources for ruminant nutrition. The fiber digestibility and the amino acid profile were analyzed in the duodenal digesta of crossbred steers fed Brachiaria dictyoneurahay. The sources utilized were elemental sulfur (ES70S, elemental sulfur (ES98S; calcium sulfate in hydrated (HCS, CaSO4.2H2O, and anhydrous (ACS, CaSO4, forms; and ammonium sulfate (AS, (NH42SO4, keeping a nitrogen:sulfur ratio of 11:1. The iso-protein supplements had 50% of protein in the total dry matter (DM. Five Holstein × Zebu steers, which were fistulated in the rumen and abomasum, were distributed in a 5 × 5 Latin square. The different sulfur sources in the supplement did not affect any of the evaluated nutritional factors, such as intake of hay dry matter and protein supplement, crude protein (CP, neutral detergent fiber corrected for ash and protein (NDFap, organic matter (OM, non-fibrous carbohydrate (NFC, ether extract (EE, total digestible nutrients (TDN, NDFap and CP digestibility coefficients, ruminal pH, and ruminal ammonia concentration. The concentrations of amino acids available in the abomasal digesta did not differ significantly in the tested diets. The sulfur sources evaluated in the present study are suitable as supplement for cattle, and their employment may be important to avoid environmental contaminations.

  11. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  12. Sulfur in human nutrition - effects beyond protein synthesis

    NARCIS (Netherlands)

    Gertjan Schaafsma

    2008-01-01

    That sulfur is essential to humans is based on the requirement of S-animo acids for normal growth and maintenance of nitrogen balance and not on the optimization of metabolic proccesses involving the synthesis of non-protein sulphur containing compounds. This paper reviews the significance of sulfur

  13. Development of Protective Agent Against Sulfur Mustard-Induced Skin Lesions

    National Research Council Canada - National Science Library

    Wormser, Uri

    2001-01-01

    .... Toxicokinetic studies with male, fur-covered and hairless guinea pigs showed that SM disappeared from the skin 60 min after exposure whereas in the female, fur-covered guinea pig SM disappeared after 3 hours...

  14. Development of Protective Agent Against Sulfur Mustard-Induced Skin Lesions

    National Research Council Canada - National Science Library

    Wormser, Uri

    2002-01-01

    The present study is a final report of the project. During the project we developed iodine formulation proved to be efficacious against SM in the guinea pig skin model at intervals of 15 and 30 rain between exposure and treatment...

  15. Development of Protective Agent Against Sulfur Mustard-Induced Skin Lesions

    National Research Council Canada - National Science Library

    Wormser, Uri

    2002-01-01

    .... Incorporation of the antiinflammatory drug piroxicam and the steroidal antiinflamamtory agent clobetasol, caused the formulation to protect at intervals of 45 and 60 rain in the mouse ear swelling...

  16. Development of Protective Agent Against Sulfur Mustard-Induced Skin Lesions

    National Research Council Canada - National Science Library

    Wormser, Uri

    2001-01-01

    The present study is a continuation of two years project. During the third year of project we improved the iodine formulation by incorporating the antiinflammatory drug piroxicam and the anti H1 receptor diphehydramine...

  17. Studies on the sulfur metabolism of cows on protein-free and low-protein feed

    Directory of Open Access Journals (Sweden)

    Eino Matikkala

    1977-09-01

    Full Text Available The influence of purified, protein-free feed with urea and ammonium salts as nitrogen sources (0-feed and of non-purified, urea-rich, low-protein feeds (ULP-feed on the sulfur metabolism of cows has been studied by determining the contents of sulfur fractions in faeces, urine, milk, blood and rumen fluid. The sulfur of 0-feed was composed entirely of inorganic sulfate. During balance trials the N:S ratio in the feed varied from 6.1 to 9.5, and the sulfur content from 0.22 to 0.31 % of the dry matter. In every trial (seven with 0-feed and two with ULP-feed, of five or seven days duration, the cows were in high-positive sulfur balance. The 0-cows excreted a greater proportion of their total sulfur output via urine than the ULP-cows. The excretion of inorganic sulfate sulfur, as a proportion of the urinary and faecal sulfur, was greater for 0-cows than for ULP- or NorP-cows (cows on normal, protein-rich feed; the opposite was the case with regard to the excretion of ester sulfate sulfur and neutral sulfur. The sulfur contents of milk and blood showed only minor inter-feed differences. The sulfate content in the rumen fluid of the 0-cow rose rapidly after the commencement of feeding and then fell quite rapidly. We conclude tentatively that in the rumen of the 0-cow hydrogen sulfide is generated so quickly that the whole of it cannot be used for the synthesis of sulfur-containing compounds, a considerable proportion of it being lost in eructations or excreted as inorganic sulfates in the urine.

  18. A genetic electrophoretic variant of high-sulfur hair proteins for forensic hair comparisons. I. Characterization of variant high-sulfur proteins of human hair.

    Science.gov (United States)

    Miyake, B

    1989-02-01

    In a survey of the proteins from human hair, a genetic electrophoretic variant has been observed in the high-sulfur protein region. S-carboxymethylated proteins were examined by 15% polyacrylamide gel electrophoresis at pH 8.9. Out of 150 unrelated samples of Japanese head hairs analyzed, 107 showed 6 major high-sulfur protein bands (normal) and the remaining 43 samples showed an additional high-sulfur protein band (variant). Of 21 Caucasian samples analyzed only one variant sample was found. Characterization of the proteins by two-dimensional electrophoresis evidenced a variant protein spot which showed an apparent molecular weight of 30 k Da. Isoelectric points of the high-sulfur proteins ranged from 3.25-3.55 and that of variant protein band from 3.3-3.4. Family studies of 21 matings resulting in 49 children indicated that this variant was inherited in an autosomal fashion.

  19. Research field development ou iron-sulfur proteins by the Moessbauer spectroscopy and EPR

    International Nuclear Information System (INIS)

    Arsenio, T.P.; Taft, C.A.

    1984-01-01

    A research line on iron sulfides (chemical and structurally seemed with the iron-sulfur proteins), implanted and developed at CBPF-Brazil, using the same theoretical and experimental models used in the development of the research field on iron-sulfur proteins is reported. The techniques used are Moessbauer spectroscopy and EPR. (L.C.) [pt

  20. Effect of sulfur analogue of lysine on bacterial protein biosynthesis

    International Nuclear Information System (INIS)

    Tanaka, Hidehiko; Soda, Kenji.

    1976-01-01

    S-(beta-Aminoethyl)-L-cysteine, a sulfur analogue of lysine inhibited strongly growth of Escherichia coli A-19, and weakly that of Corynebacterium sp. isolated from soil, but did not inhibit growth of Aerobacter aerogenes. In Corynebacterium sp. the inhibitory effect was markedly enhanced in the presence of L-threonine. The inhibition of growth by S-(beta-aminoethyl)-L-cysteine was rapidly reversed by the addition of L-lysine. S-(beta-Aminoethyl)-L-cysteine inhibited protein synthesis and the activity of lysyl-tRNA synthetase from E. coli and A. aerogenes. All the other lysine analogues tested inhibited the activity of enzyme, but S-(beta-aminoethyl)-L-cysteine derivatives, S-(beta-N-acetyl-aminoethyl)-L-cysteine and S-(beta-aminoethyl)-alpha-N-acetyl-L-cysteine were not effective. (auth.)

  1. Protein Changes in Sulfur Mustard Exposure: Diagnostic and Therapeutic Implications

    International Nuclear Information System (INIS)

    Ray, P.; Jin, X.; Ray, R.

    2007-01-01

    Laminin-5, a heterotrimer of laminin α3, β3, and γ2 subunits, is a component of the skin basal epithelium. Laminin-5 functions as a ligand of the α3β1 and α6β4 integrins in epidermal keratinocytes to regulate cell adhesion, migration, morphogenesis, and assembly of basement membranes; thus it is essential for a stable attachment of the epidermis to the dermis and recovery of damaged skin. Sulfur mustard (SM), also known as mustard gas, is a vesicant chemical warfare and terrorism agent. Skin exposure to SM results in fluid-filled blisters; proposed mechanisms are inflammation, protease stimulation, basal cell death, and separation of the epidermis from the dermis apparently due to the degradation of attachment proteins like laminin-5. Therefore, we investigated the effects of SM exposure on the degradation of laminin-5 by exposing normal human epidermal keratinocytes (NHEK) to SM (0-300 μM, 1-24 hours). We found that SM degraded laminin-5 and its two subunits β3 and γ2, but not α3. Preincubation of cells with a serine protease inhibitor (PMSF), or a metalloprotease inhibitor (1, 10-phenanthroline) prior to SM exposure partially prevented SM-induced degradation of laminin-5 subunits, β3 and γ2. Regarding specificity, laminin-5 γ2 was degraded due to a bifunctional mustard compound like SM, but not due to the other alkylating agents tested. Our results support that laminin-5 degradation is an important mechanism of SM injury as well as a useful biomarker of SM exposure. This knowledge of the mechanism of laminin-5 degradation due to SM has potential application in developing cutaneous therapeutics against SM.(author)

  2. Regulation of dsr genes encoding proteins responsible for the oxidation of stored sulfur in Allochromatium vinosum.

    Science.gov (United States)

    Grimm, Frauke; Dobler, Nadine; Dahl, Christiane

    2010-03-01

    Sulfur globules are formed as obligatory intermediates during the oxidation of reduced sulfur compounds in many environmentally important photo- and chemolithoautotrophic bacteria. It is well established that the so-called Dsr proteins are essential for the oxidation of zero-valent sulfur accumulated in the globules; however, hardly anything is known about the regulation of dsr gene expression. Here, we present a closer look at the regulation of the dsr genes in the phototrophic sulfur bacterium Allochromatium vinosum. The dsr genes are expressed in a reduced sulfur compound-dependent manner and neither sulfite, the product of the reverse-acting dissimilatory sulfite reductase DsrAB, nor the alternative electron donor malate inhibit the gene expression. Moreover, we show the oxidation of sulfur to sulfite to be the rate-limiting step in the oxidation of sulfur to sulfate as sulfate production starts concomitantly with the upregulation of the expression of the dsr genes. Real-time RT-PCR experiments suggest that the genes dsrC and dsrS are additionally expressed from secondary internal promoters, pointing to a special function of the encoded proteins. Earlier structural analyses indicated the presence of a helix-turn-helix (HTH)-like motif in DsrC. We therefore assessed the DNA-binding capability of the protein and provide evidence for a possible regulatory function of DsrC.

  3. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiang Ming Xu

    2009-10-01

    Full Text Available Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria.In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase.Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.

  4. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  5. Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense.

    Science.gov (United States)

    Gao, Ruimin; Ng, Florence Kai Lin; Liu, Peng; Wong, Sek-Man

    2012-12-01

    In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.

  6. Studies on the protein and sulfur amino acid requirements of young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1977-01-01

    Four experiments were conducted with purified diets to examine the influence of protein level and to estimate the sulfur amino acid (S.A.A.) requirement of young Bobwhite quail (Colinus virginianus). These studies demonstrated (I) that 26% protein was sufficient for rapid growth when the diet was supplemented with methionine; (2) that diets containing higher levels of protein (29.3% and 31.3%) failed to support satisfactory growth unless they contained supplemental methionine; and (3) that young Bobwhite quail require no more than 1.0% sulfur-containing amino acids for optimal growth and efficiency of feed utilization. A fifth experiment was conducted to examine the protein and S.A.A. requirements of young Bobwhite quail using practical rations and to compare results with those obtained with purified diets. Diets containing 24%, 26% and 28% protein were supplied with and without supplemental methionine in a five week study. Results showed significant growth responses to protein and supplemental methionine. Responses showed that Bobwhite quail require no more than 26% protein for maximum growth and efficiency of feed utilization when the S.A.A. level of the diet was approximately 1.0%. The results were in close agreement with those obtained with purified diets. These findings define more precisely than had been known the quantitative requirements of young Bobwhite quail for protein and for the S.A.A. necessary for optimal growth.

  7. GERD related micro-aspiration in chronic mustard-induced pulmonary disorder

    Directory of Open Access Journals (Sweden)

    Rasoul Aliannejad

    2012-01-01

    Full Text Available Background and Aim: Bronchiolitis obliterans (BO is the main pulmonary involvement resulting from sulfur mustard (SM gas exposure that was used against Iranian civilians and military forces during the Iran-Iraq war. The present study aimed to investigate the prevalence of gastro-esophageal reflux (GER and gastric micro-aspiration in SM gas injured patients with chronic pulmonary diseases and recurrent episodes of exacerbations. Materials and Methods: This cross-sectional study was done at Baqiyatallah University of Medical Sciences, Tehran, Iran. Gastric micro-aspiration and GER were assessed in the enrolled patients by assessing bile acids, pepsin and trypsin in their bronchoalveolar lavage fluid. Results: Our result showed that bile acids were found to be high in 21.4% patients, and low in 53.6% of patients. Only in 16% patients, no bile was detected in the BALF. Trypsin and pepsin were detected in BAL fluid of all patients. Conclusion: Most of BO patients after exposure to SM suffer GER, while none the etiologic factors of GER in post lung transplant BO are present. It would be hypothesized that GER per se could be considered as an aggregative factor for exacerbations in patients. Further studies will provide more advances to better understanding of pathophysiological mechanism regarding GER and BO and treatment.

  8. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Orlicky, David J. [Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); White, Carl W. [Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@UCDenver.edu [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  9. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  10. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    Science.gov (United States)

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  11. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    Science.gov (United States)

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein.

    Science.gov (United States)

    Rosner, B M; Schink, B

    1995-10-01

    Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far.

  14. The Protective and Therapeutic Roles of Hexamethylenetetramine and N-Acetyl-Cysteine on Sulfur Mustard-Induced Oxidative Stress in Rat Serum

    Directory of Open Access Journals (Sweden)

    M Jafari

    2016-04-01

    Conclusion: The study findings revealed that SM induces oxidative stress in rat serum. HMT and NAC can ameliorate SM-induced oxidative stress by altering antioxidant defense system in serum. The protective effect of HMT against the toxicity of SM is higher than NAC.

  15. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase–rhodanese fusion protein functions in sulfur assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Nicole; Skiba, Meredith A.; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma

    2017-07-06

    Hydrogen sulfide (H2S) is a signaling molecule that is toxic at elevated concentrations. In eukaryotes, it is cleared via a mitochondrial sulfide oxidation pathway, which comprises sulfide quinone oxidoreductase, persulfide dioxygenase (PDO), rhodanese, and sulfite oxidase and converts H2S to thiosulfate and sulfate. Natural fusions between the non-heme iron containing PDO and rhodanese, a thiol sulfurtransferase, exist in some bacteria. However, little is known about the role of the PDO–rhodanese fusion (PRF) proteins in sulfur metabolism. Herein, we report the kinetic properties and the crystal structure of a PRF from the Gram-negative endophytic bacterium Burkholderia phytofirmans. The crystal structures of wild-type PRF and a sulfurtransferase-inactivated C314S mutant with and without glutathione were determined at 1.8, 2.4, and 2.7 Å resolution, respectively. We found that the two active sites are distant and do not show evidence of direct communication. The B. phytofirmans PRF exhibited robust PDO activity and preferentially catalyzed sulfur transfer in the direction of thiosulfate to sulfite and glutathione persulfide; sulfur transfer in the reverse direction was detectable only under limited turnover conditions. Together with the kinetic data, our bioinformatics analysis reveals that B. phytofirmans PRF is poised to metabolize thiosulfate to sulfite in a sulfur assimilation pathway rather than in sulfide stress response as seen, for example, with the Staphylococcus aureus PRF or sulfide oxidation and disposal as observed with the homologous mammalian proteins.

  16. Isolation, Characterization, and Functional Role of the High-Potential Iron-Sulfur Protein (HiPIP) from Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Hochkoeppler, A.; Kofod, P.; Ferro, G.

    1995-01-01

    A new high-potential iron-sulfur protein (HiPIP) has been isolated and purified to homogeneity from the soluble fraction obtained from light-grown cells of the facultative photoheterotrophic bacterium Rhodoferax fermentans. The new protein was identified as a HiPIP by virtue of its molecular...... other sources and, in particular, the iron content is consistent with the presence of one [Fe4S4] cubane cluster per molecule. The isoelectric pH values of the two redox forms are consistent with a basic protein. Kinetic studies of HiPIP oxidation, performed by monitoring the absorbance changes induced...

  17. Effect of Digestible Protein and Sulfur Amino Acids in Starter Diet on Performance and Small Intestinal (Jejunum Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Avisa Akhavan khaleghi

    2016-04-01

    Full Text Available Introduction Protein is an essential constituent of all tissues of animal body and has major effect on growth performance of the bird. A better understanding of the nutritional requirements of amino acids allows a more precise nutrition, offering the possibility for the formulator to optimize the requirement of at least minimum levels of crude protein by essential amino acids requirements, generating better result and lower costs for the producer. Methionine + Cystine (total sulfur amino acid = TSSA perform a number of functions in enzyme reactions and protein synthesis. Methionine is an essential amino acid for poultry and has an important role as a precursor of Cystine. Methionine is usually the first limiting amino acid in most of the practical diets for broiler chicken. The efficiency of utilization of dietary nutrients partly depends on the development of the gastro intestinal tract. Material and methods A 2×3 factorial arrangement in a CRD experiment was conducted to study the effect of digestible protein (DP and sulfur amino acids (DSAA during the starter period on performance and small intestinal (jejunum villous morphology. A total number of 300 day-old Ross 308 male broiler chicks were randomly distributed to 30 groups with 10 chicks each. Treatments consisted of two dietary levels of DP (19.5 and 21.5% and three dietary levels of DSAA (0.94, 1.02 and 1.1% that were fed for 10 days. For Each group and treatment, Feed Intake (FI, Weight Gain (WG and Feed Conversion Ratio (FCR were calculated and all the data were statistically analyzed by the SAS software. Results and Discussions The effects of different levels of protein and digestible sulfur amino acids on the mean feed intake, feed conversion ratio and daily weight gain are shown in the Table 3. Increase in the percentage of digestible sulfur amino acids, increased the levels of feed intake and feed conversion ratio in the starter period but, had no effect on the WG. Adding the DSAA

  18. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  19. Proteomic and transcriptomic analysis of Arabidopsis seeds: molecular evidence for successive processing of seed proteins and its implication in the stress response to sulfur nutrition.

    Science.gov (United States)

    Higashi, Yasuhiro; Hirai, Masami Yokota; Fujiwara, Toru; Naito, Satoshi; Noji, Masaaki; Saito, Kazuki

    2006-11-01

    Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Their composition changes according to nutritional conditions. Here, we report the precise molecular identification of seed proteins by proteomic analysis of wild-type Arabidopsis thaliana and methionine-over-accumulating mutant mto1-1 plants. The identities of 50 protein spots were determined in the protein extract of mature Arabidopsis seeds by two-dimensional (2D) gel electrophoresis and subsequent mass spectrometric analysis. Of these protein spots, 42 were identified as derived from 12S globulins or 2S albumins. These results indicate that approximately 84% of protein species in Arabidopsis seeds are derived from a few genes coding for 12S globulins and 2S albumins. Extensive mass spectrometric analysis of the 42 spots revealed that successive C-terminal degradation occurred on the 12S globulins. The feasibility of this C-terminal processing was rationalized by molecular modeling of the three-dimensional structure of 12S globulins. The C-terminal degradation at glutamic acid residues of the 12S globulin subunits was repressed under sulfur-deficient conditions. Transcriptome analysis was combined with proteomic analysis to elucidate the mechanism of changes in seed protein composition in response to sulfur deficiency. The results suggest that seed storage proteins in Arabidopsis undergo multi-layer regulation, with emphasis on post-translational modifications that enable the plant to respond to sulfur deficiency.

  20. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  1. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in E.coli.

    NARCIS (Netherlands)

    Loiseau, L.; Gerez, C.; Bekker, M.; Ollagnier-de Choudens, S.; Py, B.; Sanakis, Y.; Teixeira De Mattos, M.J.; Fontecave, M.; Barras, F.

    2007-01-01

    Understanding the biogenesis of iron-sulfur (Fe-S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe-S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli

  2. Sulfur Mustard Damage to Cornea: Preventive Studies

    National Research Council Canada - National Science Library

    Varma, Shambhu

    2004-01-01

    Studies are in progress to determine the efficacy and mechanism of a formulation containing anti-alkylating, antioxidants and metabolic accelerators present in VM against mustard induced skin toxicity...

  3. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  4. Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds.

    Science.gov (United States)

    Chagas, Ricardo; Laia, César A T; Ferreira, Ricardo B; Ferreira, Luísa M

    2018-09-01

    Aggregation of heat unstable wine proteins is responsible for the economically and technologically detrimental problem called wine protein haze. This is caused by the aggregation of thermally unfolded proteins that can precipitate in bottled wine. To study the influence of SO 2 in this phenomenon, wine proteins were isolated and thaumatins were identified has the most prone to aggregate in the presence of this compound. Isolated wine thaumatins aggregation was followed by dynamic light scattering (DLS), circular dichroism (CD), fluorescence spectroscopy and size exclusion chromatography (SEC). Our experimental results demonstrate that protein thermal unfolding after exposure of the protein to 70 °C does not present differences whether SO 2 is present or not. Conversely, when the protein solution is cooled to 15 °C (after heat stress) significant analytical changes can be observed between samples with and without SO 2 . A remarkable change of circular dichroism spectra in the region 220-230 nm is observed (which can be related to S-S torsion angles), as well as an increase in tryptophan fluorescence intensity (absence of fluorescence quenching by S-S bonds). Formation of covalently-linked dimeric and tetrameric protein species were also detected by SEC. The ability to dissolve the aggregates with 8 M urea seems to indicate that hydrophobic interactions are prevalent in the formed aggregates. Also, the reduction of these aggregates with tris (2-carboxyethyl) phosphine (TCEP) to only monomeric species reveals the presence of intermolecular S-S bonds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mutations in iron-sulfur cluster proteins that improve xylose utilization

    Science.gov (United States)

    Froehlich, Allan; Henningsen, Brooks; Covalla, Sean; Zelle, Rintze M.

    2018-03-20

    There is provided an engineered host cells comprising (a) one or more mutations in one or more endogenous genes encoding a protein associated with iron metabolism; and (b) at least one gene encoding a polypeptide having xylose isomerase activity, and methods of their use thereof.

  6. The Effect of Supplementation Urea and Sulfur in Mixed Cassava Waste Fermented and Soyabean Cake Waste on Digestibility of Protein and Blood Urea Male Sheep

    Directory of Open Access Journals (Sweden)

    M Bata

    1999-05-01

    Full Text Available Eighteen local male sheep were divided into 3 groups I,II and III based on the body weight 18.55±1.27, 15.79±0.67 and 13.14±1.33 kg respectively. Two level urea (2 and 3% and three levels Sulfur (0.02 and 0.3% as treatment, so pattern factorial 2x3 with Randomized Block Design used this experiment. All of the treatment get a same basal feed namely land-grass and concentrate with dry matter ratio 70:30.  The total intake of  dry matter was 4 % of body weight. The concentrate consist of cassava waste fermented  and soyabean cake waste with dry matter  ratio 77.50 : 22.50. Supplementation of urea and sulfur shown not significant interaction, but supplementation urea had effect high significantly (P<0.01 on digestibility of protein and sulfur only had effect significant  (P<0.05 on blood urea. These result had indication that enriched urea in the diet could increase protein digestibility and sulfur level 0.2% could prevent NH3 absorption from rumen. (Animal Production 1(2: 75-81 (1999   Key Words: cassava waste, soyabean cake waste, fermentation, digestibility, urea blood.

  7. Growth-promoting effect on iron-sulfur proteins on axenic cultures of Entamoeba dispar

    Directory of Open Access Journals (Sweden)

    Khalifa S.A.M.

    2006-03-01

    Full Text Available A growth-promoting factor (GPF that promotes the growth of Entamoeba dispar under axenic culture conditions was found in fractions of mitochondria (Mt, hydrogenosomes (Hg and chloroplasts (Cp obtained from cells of six different protozoan, mammalian and plant species. We were able to extract the GPF from the Cp-rich leaf cells of a plant (spiderwort: Commelina communis L. in an acetone-soluble fraction as a complex of chlorophyll with low molecular weight proteins (molecular weight [MW] approximately 4,600. We also found that on treatment with 0.6 % complexes of 2-mercapthoethanol (2ME, complexes of chlorophyll-a with iron-sulphur (Fe-S proteins (e.g., ferredoxins [Fd] from spinach and Clostridium pasteurianum and noncomplex rubredoxin (Rd from C. pasteurianum have a growth-promoting effect on E. dispar. These findings suggest that E. dispar may lack a sufficient quantity of some essential components of Fe-S proteins, such as Fe-S center.

  8. Rieske iron-sulfur protein of the cytochrome bc(1) complex: a potential target for fungicide discovery.

    Science.gov (United States)

    Yang, Wen-Chao; Li, Hui; Wang, Fu; Zhu, Xiao-Lei; Yang, Guang-Fu

    2012-07-23

    The cytochrome bc(1) complex (complex III, cyt bc(1)) is an essential component of cellular respiration. Cyt bc(1) has three core subunits that are required for its catalytic activity: cytochrome b, cytochrome c(1), and the Rieske iron-sulfur protein (ISP). Although most fungicides inhibit this enzyme by binding to the cytochrome b subunit, resistance to these fungicides has developed rapidly due to their widespread application. Resistance is mainly associated with mutations in cytochrome b, the only subunit encoded by mitochondrial DNA. Recently, the flexibility and motion of the ISP and its essential role in electron transfer have received intense attention; this leads us to propose a new classification of cyt bc(1) inhibitors (three types of Q(o) inhibitors) that mobilize, restrict, or fix the rotation of the ISP. Importantly, the strengths of the ISP-inhibitor interactions correlate with inhibitor activity and the development of resistance to Q(o) inhibitors, thereby offering clues for designing novel cyt bc(1) inhibitors with high potency and a low risk of resistance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli

    Science.gov (United States)

    Hoff, Kevin G.; Silberg, Jonathan J.; Vickery, Larry E.

    2000-01-01

    The iscU gene in bacteria is located in a gene cluster encoding proteins implicated in iron–sulfur cluster assembly and an hsc70-type (heat shock cognate) molecular chaperone system, iscSUA-hscBA. To investigate possible interactions between these systems, we have overproduced and purified the IscU protein from Escherichia coli and have studied its interactions with the hscA and hscB gene products Hsc66 and Hsc20. IscU and its iron–sulfur complex (IscU–Fe/S) stimulated the basal steady-state ATPase activity of Hsc66 weakly in the absence of Hsc20 but, in the presence of Hsc20, increased the ATPase activity up to 480-fold. Hsc20 also decreased the apparent Km for IscU stimulation of Hsc66 ATPase activity, and surface plasmon resonance studies revealed that Hsc20 enhances binding of IscU to Hsc66. Surface plasmon resonance and isothermal titration calorimetry further showed that IscU and Hsc20 form a complex, and Hsc20 may thereby aid in the targeting of IscU to Hsc66. These results establish a direct and specific role for the Hsc66/Hsc20 chaperone system in functioning with isc gene components for the assembly of iron–sulfur cluster proteins. PMID:10869428

  10. Influence of supplemental vitamin C on postmortem protein degradation and fatty acid profiles of the longissimus thoracis of steers fed varying concentrations of dietary sulfur.

    Science.gov (United States)

    Pogge, Danielle J; Lonergan, Steven M; Hansen, Stephanie L

    2014-02-01

    The objective was to examine the effects of supplemental vitamin C (VC) on postmortem protein degradation and fatty acid profiles of cattle receiving varying concentrations of dietary sulfur (S). A longissimus muscle was collected from 120 Angus-cross steers assigned to a 3 × 2 factorial, evaluating three concentrations of dietary S (0.22, 0.34, and 0.55%) and two concentrations of supplemental VC (0 or 10 g h(-1)d(-1)). Increasing dietary S and VC supplementation (Pdegradation (P = 0.07) and protein carbonylation (Pdegradation. © 2013.

  11. Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV

    DEFF Research Database (Denmark)

    Goulet, Adeline; Vestergaard, Gisle Alberg; Felisberto-Rodrigues, Catarina

    2010-01-01

    The structure of a 14 kDa structural protein from Acidianus two-tailed virus (ATV) was solved by single-wavelength anomalous diffraction (SAD) phasing using X-ray data collected at 2.0 A wavelength. Although the anomalous signal from methionine sulfurs was expected to suffice to solve the structu...... on intrinsic protein light atoms along with associated chloride ions from the solvent. In such cases, data collection at long wavelengths may be a time-efficient alternative to selenomethionine substitution and heavy-atom derivatization....

  12. To control and to be controlled – understanding the Arabidopsis SLIM1 function in sulfur deficiency through comprehensive investigation of the EIL protein family.

    Directory of Open Access Journals (Sweden)

    Anna eWawrzyńska

    2014-10-01

    Full Text Available SSLIM1, a member of the EIN3-like (EIL family of transcription factors in Arabidopsis, is the regulator of many sulfur-deficiency responsive genes. Among the five other proteins of the family, three regulate ethylene responses and two have unassigned functions. Contrary to the well-defined ethylene signaling, the pathway leading from sensing sulfate status to the activation of its acquisition via SLIM1 is completely unknown. SLIM1 binds to the 20 nt-long specific UPE-box sequence; however, it also recognizes the shorter TEIL sequence, unique for the whole EIL family. SLIM1 takes part in the upregulation and downregulation of various sulfur metabolism genes, but also it controls the degradation of glucosinolates under sulfur deficient conditions. Besides facilitating the increased flux through the sulfate assimilation pathway, SLIM1 induces microRNA395, specifically targeting ATP sulfurylases and a low-affinity sulfate transporter, SULTR2;1, thus affecting sulfate translocation to the shoot. Here, we briefly review the identification, structural characteristics and molecular function of SLIM1 from the perspective of the whole EIL protein family.

  13. Sulfur K-edge X-ray absorption spectroscopy as an experimental probe for S-nitroso proteins

    International Nuclear Information System (INIS)

    Szilagyi, Robert K.; Schwab, David E.

    2005-01-01

    X-ray absorption spectroscopy at the sulfur K-edge (2.4-2.6 keV) provides a sensitive and specific technique to identify S-nitroso compounds, which have significance in nitric oxide-based cell signaling. Unique spectral features clearly distinguish the S-nitroso-form of a cysteine residue from the sulfhydryl-form or from a methionine thioether. Comparison of the sulfur K-edge spectra of thiolate, thiol, thioether, and S-nitroso thiolate compounds indicates high sensitivity of energy positions and intensities of XAS pre-edge features as determined by the electronic environment of the sulfur absorber. A new experimental setup is being developed for reaching the in vivo concentration range of S-nitroso thiol levels in biological samples

  14. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    2010-04-01

    Full Text Available Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis.In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis.Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  15. Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet.

    Science.gov (United States)

    McSweeney, C S; Denman, S E

    2007-11-01

    To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.

  16. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  17. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  18. Efficacy of anti-inflammatory, antibiotic and pleiotropic agents in reversing nitrogen mustard-induced injury in ex vivo cultured rabbit cornea.

    Science.gov (United States)

    Goswami, Dinesh G; Kant, Rama; Tewari-Singh, Neera; Agarwal, Rajesh

    2018-09-01

    Vesicating agent, Sulfur mustard (SM), causes devastating eye injury; however, there are no effective antidotes available. Using nitrogen mustard (NM), a bi-functional analog of SM, we have earlier reported that NM-induced corneal injury in ex vivo rabbit cornea organ culture model parallels corneal injury reported with SM. Using this model, we have demonstrated the therapeutic efficacy of dexamethasone (DEX), doxycycline (DOX) and silibinin (SB) in reversing NM (2h exposure)-induced corneal injuries when added immediately after washing NM. In the present study, we further examined the efficacy of similar/higher doses of these agents when added immediately, 2, or 4h after washing NM following its 2h exposure. All three treatment agents caused a reversal in established NM-induced injury biomarkers when added immediately or 2h after washing NM following its 2h exposure; however, when treatments were carried out 4h after washing NM, there was no significant effect. Together, our results further show the beneficial effect of these agents in reversing NM-induced corneal injury and indicate the time window for effective treatment. This could be useful towards future development of targeted therapeutics against vesicant-induced ocular injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  20. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN.

    Science.gov (United States)

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K; Smith, Douglas Y; Söderberg, Christopher A G; Al-Karadaghi, Salam; Thompson, James R; Isaya, Grazia

    2016-05-06

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Prevention and treatment of respiratory consequences induced by sulfur mustard in Iranian casualties

    Directory of Open Access Journals (Sweden)

    Seyed M Razavi

    2013-01-01

    Full Text Available Background: About 100,000 Iranian have been exposed to chemical weapons during Iraq-Iran conflict (1980-88. After being spent of more than two decades, still about 30,000 of them are under follow-up treatment. The main aim of this study was to review various preventive and therapeutic methods for injured patients with sulfur mustard in different phases. Methods: For gathering information, we have used the electronic databases including Scopus, Medline, ISI, IranMedex, Irandoc sites. According to this search strategy, 104 published articles associated to respiratory problems and among them 50 articles related to prevention and treatment of respiratory problems were found and reviewed. Results: There is not any curative treatment for sulfur mustard induced lung injuries, but some valuable experienced measures for prevention and palliative treatments are available. Some useful measures in acute phase include: Symptomatic management, oxygen supplementation, tracheostomy in laryngospasm, use of moist air, respiratory physical therapy, mucolytic agents and bronchodilators. In the chronic phases, these measures include: Periodic clinical examinations, administration of inhaled corticosteroids alone or with long-acting beta 2 agonists, use of antioxidants, magnesium ions, long term oxygen supplement, therapeutic bronchoscopy, laser therapy, and use of respiratory tract stents. Conclusions: Most treatments are symptomatic but using preventive points immediately after exposure could improve following outcomes.

  2. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2016-02-01

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.

  3. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  4. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    Science.gov (United States)

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  6. Characterization of the photolyase-like iron sulfur protein PhrB from Agrobacterium tumefaciens by Mössbauer spectroscopy

    Science.gov (United States)

    Bauer, T. O.; Graf, D.; Lamparter, T.; Schünemann, V.

    2014-04-01

    High field Mössbauer spectroscopy has been used to characterize the [4Fe-4S] 2 +cluster of the protein PhrB from Agrobacterium tumefaciens which belongs to the cryptochrome/photolyase family (CPF) and which biological function has previously been shown to be DNA repair. Mössbauer spectra taken of the as prepared protein reveal δ = 0. 42 mms - 1, and Δ E Q = 1. 26 mms - 1as well as an asymmetry parameter of η = 0. 8. These parameters are characteristic for a ferredoxin-type [4Fe-4S] 2 +cluster. In order to investigate whether this cluster is involved in DNA-repair the protein has also been studied in its photoactivated state during DNA binding. The so obtained data sets exhibit essentially the same Mössbauer parameters as those of the non-activated PhrB. This indicates that during DNA repair the [4Fe-4S] 2 +cluster of PhrB has no significant amounts of transition states which have conformational changes compared to the resting state of the protein and which have life times of several seconds or longer.

  7. Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein and yield over nitrogen and sulfur

    Science.gov (United States)

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of N and S fertilizer rate, soil water, and atmospheric temperature on canola fatty acid (FA), total oil, protein and grain yield. Nitrogen and S were assessed in...

  8. Pengaruh Nisbah Energi-Protein, Nitrogen-Sulfur dan Kalsium-Fosfor Terhadap Produk Metabolisme Rumen dan Kecernaan Substrat

    Directory of Open Access Journals (Sweden)

    S.N.O. Suwandyastuti

    2013-10-01

    Full Text Available Influence of the ratio of energy-protein, nitrogen-sulphur, and calsium-phosphor upon rumen metabolism product and digestibility of substrat ABSTRACT. The Rumen microbes are capable to digest the glucosa polymer of plant waste for energy source and can used the Non Protein Nitrogen (NPN for body protein synthesis, if the other precussor (Sulphur, Phospor and Branch Chain of Carbon are available.  To know the effectivity of the utilization of plant waste for energy, an experiment have been conducted by in vitro method, used the Randomized Black Design, four replication, factorial 33.  The factors tested are : (1 three levels of energy : protein (E/P ratio : 4, 5 and 6; (2 three levels of Nitrogen : Sulphur (N/Sratio: 7.5, 10 and 12.5; (3 three levels of Calsium : Phospor (Ca/P ratio : 0.5, 1 and 2. The variables measured are : synthesis of protein microbes (SPM ; production of Volatile Fatty Acid (VFA and Nitrogen Ammonia (N-NH3; the digestibility of substrat. Based on the all variable measured, the experiment can be concluded : (1 the effectivity of the utilization of rice straw will be increased if it used is fortified with 50 percent TDN as energy source (E/P=4, 0.20 percent dry matter of sulphur (N/S=10 and 0.0625 - 0.125 percent dry matter (DM of phospor (Ca/P=1.0 – 2.0; (2 To stimulate the activity of cellulolytic microbes, its need the fortification of sulphur until reach the optimum level (must be investigated.

  9. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    Science.gov (United States)

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  10. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    Energy Technology Data Exchange (ETDEWEB)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob; Pfeffer, Rachel; Lipsh, Rosalie; Amitay, Moshe; Gonzalez, Daniel; Elias, Mikael (JCT-Israel); (UMM); (CNRS-UMR)

    2017-05-25

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.

  11. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    Science.gov (United States)

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  12. Investigation on the effects of dietary protein reduction with constant ratio of digestible sulfur amino acids and threonine to lysine on performance, egg quality and protein retention in two strains of laying hens

    Directory of Open Access Journals (Sweden)

    Farhad Foroudi

    2013-01-01

    Full Text Available An experiment was conducted to determine the possibility of using various levels of crude protein (CP by providing laying hens with constant levels of digestible sulfur amino acid, threonine and lysine to improve performance and egg quality. The experiment was conducted as a completely randomized block design in a factorial arrangement (4 × 2 with 8 replicates of 10 hens in each. Factors included 4 levels of CP (18.5%, 17.5%, 16.5% and 15.5% and 2 strains (LSL and Hy-Line W-36 of laying hens. Hens were fed experimental diets from 25 to 33 weeks of age. Production performance was measured for eight weeks and egg quality characteristics were determined at 29 and 33 weeks of age. Protein reduction decreased egg weight, egg mass and hen body weight linearly (P≤0.01. Egg production was not affected by protein reduction but feed efficiency, and average daily feed intake increased significantly (P≤0.01. Lohmann Selected Leghorn laying hens showed significantly higher egg production, egg weight, egg mass, weight gain, feed efficiency and feed intake compared to the W-36 laying hens (P≤0.01. Shell thickness increased linearly as protein levels decreased (P≤0.05. There were significant differences between two strains on the egg quality characteristics (P≤0.01. Significant (P≤0.05 CP × strain interactions were observed for hen weight, albumen height, Haugh units, yolk and shell percentage. Based on the results of this experiment, a reduction in dietary protein level (from 18.5% to 15.5%, without any alteration in digestible TSAA and Thr: Lys ratio, led to inferior egg mass and feed conversion ratio during the peak production period.

  13. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    Science.gov (United States)

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio

  14. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

    Science.gov (United States)

    Hoff, Kevin G; Ta, Dennis T; Tapley, Tim L; Silberg, Jonathan J; Vickery, Larry E

    2002-07-26

    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

  15. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  16. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU.

    Science.gov (United States)

    Silberg, Jonathan J; Tapley, Tim L; Hoff, Kevin G; Vickery, Larry E

    2004-12-24

    The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.

  17. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  18. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  19. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  20. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  1. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  2. Structure of a fatty acid-binding protein from Bacillus subtilis determined by sulfur-SAD phasing using in-house chromium radiation

    DEFF Research Database (Denmark)

    Nan, Jie; Zhou, Yanfeng; Yang, Cheng

    2009-01-01

    Sulfur single-wavelength anomalous dispersion (S-SAD) and halide-soaking methods are increasingly being used for ab initio phasing. With the introduction of in-house Cr X-ray sources, these methods benefit from the enhanced anomalous scattering of S and halide atoms, respectively. Here...... electron-density map was obtained after density modification. The model of BsDegV was built automatically and a palmitate was found tightly bound in the active site. Sequence alignment and comparisons with other known DegV structures provided further insight into the specificity of fatty-acid selection...

  3. The structure and properties of free radicals: An electron spin resonance study of radiation damage to nucleic acid and protein components and to some sulfur-substituted derivitives

    International Nuclear Information System (INIS)

    Sagstuen, E.

    1979-01-01

    When cellular systems are exposed to ionizing radiation the long-term effects may range from minor disturbances to such dramatic changes as mutations and cell death. The processes leading to these macroscopical injuries are primarily confined at the molecular level. In all models aimed at a description of the action of radiation at the molecular level the formation of free radicals (which are species containing unpaired electrons) is a central concept. The technique of ESR spectroscopy is uniquely suited to study free radicals, as it is based on resonance absorption of energy by unpaired electrons in a magnetic field. ESR spectroscopy makes it possible to detect free radicals and, in some cases, to identify them. In order to study free radicals by ESR it is necessary to build up a sufficient number of unpaired spins in the sample (approximately 10 11 or more, depending on the shape of the resonance). This may be different techniques have been used to trap the induced radicals or to attain a sufficient steady state concentration level. A procedure which seems to contain a large amount of information is to irradiate at low temperatures, and, by subsequent heat-treatment of the sample to study the reactions and fate of the induced radicals. In this thesis single crystal studies of aromatic amino acids and pyrimidine derivitives together with some substituted purine derivitives are presented, and the results are discussed in relation to the present knowledge about radical formation in these classes of compounds. Single crystal studies of some sulfur-containing aromatic compounds have been presented with the purpose of shedding light on the electronic structure of sulfur-centred radicals. (JIW)

  4. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  5. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation.

    Science.gov (United States)

    El-Sayed, Ashraf S A; Yassin, Marwa A; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.

  6. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced rhodobacter capsulatus cytochrome c(2) to the cytochrome bc(1) complex mediated by the conformation of the rieske iron-sulfur protein

    International Nuclear Information System (INIS)

    Devanathan, S.; Salamon, Z.; Tollin, G.; Fitch, J.C.; Meyer, T.E.; Berry, E.A.; Cusanovich, M.A.

    2007-01-01

    The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 M) but binds much more weakly to the oxidized form (Kd = 3.1 M). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 M. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 M) and reduced cytochrome c2 binds less strongly (Kd = 0.11 M) but ∼30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c

  7. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  8. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  9. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  10. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  11. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    Directory of Open Access Journals (Sweden)

    Yoon-Jung Moon

    2015-04-01

    Full Text Available The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins was found to be significantly up-regulated (≥1.5-fold under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.

  12. Proteomic Insights into Sulfur Metabolism in the Hydrogen-Producing Hyperthermophilic Archaeon Thermococcus onnurineus NA1

    Science.gov (United States)

    Moon, Yoon-Jung; Kwon, Joseph; Yun, Sung-Ho; Lim, Hye Li; Kim, Jonghyun; Kim, Soo Jung; Kang, Sung Gyun; Lee, Jung-Hyun; Kim, Seung Il; Chung, Young-Ho

    2015-01-01

    The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe–S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments. PMID:25915030

  13. ESI-MS studies of the reactions of novel platinum(II) complexes containing O,O'-chelated acetylacetonate and sulfur ligands with selected model proteins.

    Science.gov (United States)

    Marzo, Tiziano; De Pascali, Sandra A; Gabbiani, Chiara; Fanizzi, Francesco P; Messori, Luigi; Pratesi, Alessandro

    2017-08-01

    A group of mixed-ligand Pt(II) complexes bearing acetylacetonate and sulphur ligands were recently developed in the University of Lecce as a new class of prospective anticancer agents that manifested promising pharma-cological properties in preliminary in vitro and in vivo tests. Though modelled on the basis of cisplatin, these Pt(II) complexes turned out to exhibit a profoundly distinct mode of action as they were found to act mainly on non-genomic targets rather than on DNA. Accordingly, we have explored here their reactions with two representative model proteins through an established ESI-MS procedure with the aim to describe their general interaction mechanism with protein targets. A pronounced reactivity with the tested proteins was indeed documented; the nature of the resulting metallodrug-protein interactions could be characterised in depth in the various cases. Preferential binding to protein targets compared to DNA is supported by independent ICP-OES measurements. The implications of these findings are discussed.

  14. Axial Ligation and Redox Changes at the Cobalt Ion in Cobalamin Bound to Corrinoid Iron-Sulfur Protein (CoFeSP or in Solution Characterized by XAS and DFT.

    Directory of Open Access Journals (Sweden)

    Peer Schrapers

    Full Text Available A cobalamin (Cbl cofactor in corrinoid iron-sulfur protein (CoFeSP is the primary methyl group donor and acceptor in biological carbon oxide conversion along the reductive acetyl-CoA pathway. Changes of the axial coordination of the cobalt ion within the corrin macrocycle upon redox transitions in aqua-, methyl-, and cyano-Cbl bound to CoFeSP or in solution were studied using X-ray absorption spectroscopy (XAS at the Co K-edge in combination with density functional theory (DFT calculations, supported by metal content and cobalt redox level quantification with further spectroscopic methods. Calculation of the highly variable pre-edge X-ray absorption features due to core-to-valence (ctv electronic transitions, XANES shape analysis, and cobalt-ligand bond lengths determination from EXAFS has yielded models for the molecular and electronic structures of the cobalt sites. This suggested the absence of a ligand at cobalt in CoFeSP in α-position where the dimethylbenzimidazole (dmb base of the cofactor is bound in Cbl in solution. As main species, (dmbCoIII(OH2, (dmbCoII(OH2, and (dmbCoIII(CH3 sites for solution Cbl and CoIII(OH2, CoII(OH2, and CoIII(CH3 sites in CoFeSP-Cbl were identified. Our data support binding of a serine residue from the reductive-activator protein (RACo of CoFeSP to the cobalt ion in the CoFeSP-RACo protein complex that stabilizes Co(II. The absence of an α-ligand at cobalt not only tunes the redox potential of the cobalamin cofactor into the physiological range, but is also important for CoFeSP reactivation.

  15. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  16. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  17. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  18. Mechanism of the toxic action of sulfur dioxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Miroshnikova, A T; Firger, V V; Belokrylova, L M

    1975-01-01

    Experiments were performed to determine the effects of sulfur dioxide on U CO2 metabolism and photosynthesis in fescue and timothy grass and in maple and barberry branches. The free radical inhibitors, ascorbic acid and thiourea, were found to decrease the damaging effects of the sulfur dioxide. These results indicated that the processes involved are of the free-radical chain type. Even at low sulfur dioxide concentrations, photosphosphorylation and carbon dioxide assimilation were inhibited. In addition, starch and protein as well as the formation of polymeric substances were also inhibited.

  19. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography.

    Science.gov (United States)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-12-01

    Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  20. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  1. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  2. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  3. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  4. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  5. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  6. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  7. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  8. Levels of Sulfur as an Essential Nutrient Element in the Soil-Crop-Food System in Austria

    Directory of Open Access Journals (Sweden)

    Manfred Sager

    2012-01-01

    Full Text Available Total sulfur data of various agricultural and food items from the lab of the author, have been compiled to develop an understanding of sulfur levels and ecological cycling in Austria. As sulfur level is not an included factor among the quality criteria of soil and fertilizer composition, the database is rather small. Problems in analytical determinations of total sulfur, in particular digestions, are outlined. As a protein component, sulfur is enriched in matrices of animal origin, in particular in egg white. There is substantial excretion from animals and man via urine. Organic fertilizers (manures, composts might contribute significantly to the sulfur budget of soils, which is important for organic farming of crops with high sulfur needs. For soils, drainage is a main route of loss of soluble sulfate, thus pot experiments may yield unrealistic sulfur budgets.

  9. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  10. Sulfur dioxide content of the air and its influence on the plant

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, G; Reckendorfer, P; Beran, F

    1929-01-01

    Clover was exposed to concentrations of sulfur dioxide ranging from 5 to 50 ppm for periods of 1 to 4 hours. The higher concentrations caused an increase in sulfur content. Single exposures did not affect the digestible protein content of the plants. 10 tables, 3 figures.

  11. Sulfur mustard and respiratory diseases.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  12. EPR spectroscopy of complex biological iron-sulfur systems.

    Science.gov (United States)

    Hagen, Wilfred R

    2018-02-21

    From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.

  13. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  14. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  15. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  16. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  17. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  18. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  19. Influence of sulfur and nitrogen supply on the susceptibility of Pisum sativum to SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H; Jaeger, H J; Steubing, L

    1974-01-01

    The susceptibility of Pisum to SO/sub 2/ injury was examined in relation to the sulfur and nitrogen nutrition. The injury was measured by comparing the dry matter yield to control and treated plants. SO/sub 2/ effects on metabolism were established by determining the content of organic and inorganic sulfur and, indirectly, by measuring total nitrogen, amino acid nitrogen, and protein nitrogen. The plants grown in nutrient solutions deficient in sulfur or nitrogen showed a decreased sensitivity to SO/sub 2/ pollution compared to the control. The higher content of amino acid nitrogen and organic sulfur of the plants grown in a nitrogen-deficient solution suggests that an increased synthesis of sulfur containing amino acids occurs. The slighter injury of the plants deficient in sulfur may be explained by the delayed sulfur supply.

  20. Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation.

    Science.gov (United States)

    Steinbeck, Janina; Nikolova, Denitsa; Weingarten, Robert; Johnson, Xenie; Richaud, Pierre; Peltier, Gilles; Hermann, Marita; Magneschi, Leonardo; Hippler, Michael

    2015-01-01

    Continuous hydrogen photo-production under sulfur deprivation was studied in the Chlamydomonas reinhardtii pgr5 pgrl1 double mutant and respective single mutants. Under medium light conditions, the pgr5 exhibited the highest performance and produced about eight times more hydrogen than the wild type, making pgr5 one of the most efficient hydrogen producer reported so far. The pgr5 pgrl1 double mutant showed an increased hydrogen burst at the beginning of sulfur deprivation under high light conditions, but in this case the overall amount of hydrogen produced by pgr5 pgrl1 as well as pgr5 was diminished due to photo-inhibition and increased degradation of PSI. In contrast, the pgrl1 was effective in hydrogen production in both high and low light. Blocking photosynthetic electron transfer by DCMU stopped hydrogen production almost completely in the mutant strains, indicating that the main pathway of electrons toward enhanced hydrogen production is via linear electron transport. Indeed, PSII remained more active and stable in the pgr mutant strains as compared to the wild type. Since transition to anaerobiosis was faster and could be maintained due to an increased oxygen consumption capacity, this likely preserves PSII from photo-oxidative damage in the pgr mutants. Hence, we conclude that increased hydrogen production under sulfur deprivation in the pgr5 and pgrl1 mutants is caused by an increased stability of PSII permitting sustainable light-driven hydrogen production in Chlamydomonas reinhardtii.

  1. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  2. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol......]acetate incorporation was 0.4 nmol min(-1) mg of protein(-1), which is equal to the CO(2) fixation rate, and no (14)CO(2) production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells...

  3. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction.

    Science.gov (United States)

    Sekowska, A; Kung, H F; Danchin, A

    2000-04-01

    Living organisms are composed of macromolecules made of hydrogen, carbon, nitrogen, oxygen, phosphorus and sulfur. Much work has been devoted to the metabolism of the first five elements, but much remains to be understood about sulfur metabolism. We review here the situation in Escherichia coli and related bacteria, where more than one hundred genes involved in sulfur metabolism have already been discovered in this organism. Examination of the genome suggests that many more will be found, especially genes involved in regulation, scavenging of sulfur containing molecules and synthesis of coenzymes or prosthetic groups. Furthermore, the involvement of methionine as the universal start of proteins as well as that of its derivative S-adenosylmethionine in a vast variety of cell processes argue in favour of a major importance of sulfur metabolism in all organisms.

  4. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    Cainey, J.

    2001-01-01

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  5. Model Prebiotic Iron-Sulfur Peptides

    Science.gov (United States)

    Bonfio, C.; Scintilla, S.; Shah, S.; Evans, D. J.; Jin, L.; Szostak, J. W.; Sasselov, D. D.; Sutherland, J. D.; Mansy, S. S.

    2017-07-01

    Iron-sulfur clusters form easily in aqueous solution in the presence of thiolates and iron ions. Polymerization of short, iron-sulfur binding tripeptide sequences leads to ferredoxin-like ligand spacing and activity.

  6. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  7. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  8. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  9. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  10. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  11. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  12. Influence of supplementing vitamin C to yearling steers fed a high sulfur diet during the finishing period on meat color, tenderness and protein degradation, and fatty acid profile of the longissimus muscle.

    Science.gov (United States)

    Pogge, Danielle J; Lonergan, Steven M; Hansen, Stephanie L

    2014-08-01

    The objective was to determine the influence of vitamin C (VC) supplemented for approximately 102 d during the finishing period on color, tenderness, and fatty acid profile of longissimus thoracis (LT; n=136) from steers fed a 0.55% sulfur diet. Treatments included 4 supplemental VC concentrations: 1) 0 (CON), 2) 5 (5VC), 3) 10 (10VC), or 4) 20 (20VC) gVC·h(-1)∙d(-1) in a common diet. Increasing supplemental VC decreased (Pvitamin E and tended to increase (P≤0.07) calcium and iron content of steaks. No VC (P≥0.25) effect was noted for WBSF, calpain-1 autolysis, troponin T degradation, or most fatty acid profiles. A quadratic effect (P≤0.03) was observed for cholesterol and CLA content of LT. Under the conditions of our study, supplementing VC to steers fed a 0.55% sulfur diet late in the finishing period did not influence color or tenderness, but increased the vitamin E content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  14. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J.M.; García Alonso, J.I., E-mail: jiga@uniovi.es

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC–ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review. - Highlights: • Emphasis placed on the sulfur-specific detection by chromatographic techniques coupled on-line to ICP-MS. • Different instrumental approaches available for sulfur measurements by ICP-MS. • Quantification of proteins and the analysis of metalloproteins via sulfur by LC-ICP-MS. • Labelling procedures for metabolic applications are also included. • The measurement of natural variations in S isotope composition with multicollector ICP-MS.

  15. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  16. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  17. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  18. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    model experiment. Exposure of evaporite deposits having a high δ 34S may account for the source change, with a possible role for the Siberian Traps volcanism by magmatic remobilization of Cambrian rock salt. A high sulfur cycle turnover rate would have left the ocean system vulnerable to development......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... fractionation and point to a more universal control, i.e., contemporaneous seawater sulfate concentration.The MSR-trend transfer function yielded estimates of seawater sulfate of 0.6-2.8mM for the latest Permian to earliest Triassic, suggesting a balanced oceanic S-cycle with equal S inputs and outputs...

  19. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  20. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Silke Leimkühler

    2017-01-01

    Full Text Available Modifications of transfer RNA (tRNA have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT. Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.

  1. 21 CFR 184.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also...

  2. Determination of sulfur content in fuels

    International Nuclear Information System (INIS)

    Daucik, P.; Zidek, Z.; Kalab, P.

    1998-01-01

    The sulfur content in fuels, Diesel fuels, and in the solutions of dibutylsulfide in a white oil was determined by various methods. The results obtained by elemental analysis have shown that the method is not advisable for the determination of sulfur in fuels. A good agreement was found by comparing the results in the determination of the sulfur by Grote-Krekeler's and Hermann-Moritz's methods and by the energy-dispersive X-ray fluorescence analysis. The last method is the modern, comfortable, and timesaving method enabling the fast and precise determination of sulfur contents in the various types of samples. (authors)

  3. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  4. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  5. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  6. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  7. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Science.gov (United States)

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  8. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  9. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  10. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  11. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  12. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  13. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  14. Alkylation of human serum albumin by sulfur mustard in vitro and in vivo : Mass spectrometric analysis of a cysteine adduct as a sensitive biomarker of exposure

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jong, L.P.A. de; Benschop, H.P.

    1999-01-01

    To develop a mass spectrometric assay for the detection of sulfur mustard adducts with human serum albumin, the following steps were performed: quantitation of the binding of the agent to the protein by using [14C] sulfur mustard and analysis of acidic and tryptic digests of albumin from blood after

  15. RDP相同NFC及硫水平不同的日粮对人工奶牛瘤胃发酵影响%The effect of non-fiber carbohydrate and sulfur in diets with same level of ruminally degradable protein on in vitro fermentation

    Institute of Scientific and Technical Information of China (English)

    黄国欣; 刘大森; 杜江华; 李桂森; 王赛; 郑帅

    2017-01-01

    文章研究的目的是瘤胃降解蛋白(RDP)相同,非结构性碳水化合物(NFC)及硫水平不同的日粮对人工奶牛瘤胃发酵的影响.试验选择3头健康的荷斯坦奶牛提供瘤胃液,试验采用双因素试验设计[3×4:NFC与RDP比值分别为3.35、4和4.8,硫(S)的水平分别为0.15%、0.20%、0.25%和0.30%],试验结果表明,不同NFC/RDP水平的日粮体外发酵,pH值(2h除外)、产气量、丙酸、丁酸、菌体蛋白(MCP)差异显著(P<0.05);NH3-N浓度在8、12h和24 h差异显著(P<0.05);乙酸在2、4、8h和12h差异显著(P<0.05);干物质降解率(DMD)在2、4、8h和24 h差异显著(P<0.05).硫对pH值和NH3-N浓度在12 h和24 h的影响显著(P<0.05),而且产气量、丙酸、丁酸和菌体蛋白含量也有明显的影响(P<0.05);但对乙酸浓度的影响不显著.总的来说,当NFC/RDP值为4时,瘤胃pH值、产气量、乙酸、微生物粗蛋白含量和干物质降解率(DMD)增加,但NH3-N、丙酸和丁酸浓度降低,适当的补充硫(硫含量为0.25%),瘤胃pH值、产气量、丙酸、丁酸、MCP含量会增加,然而NH3-N浓度降低,同时两者之间存在这交互作用.综合各项指标表明日粮NFC/RDP值为4、硫水平为0.25%的日粮可明显改善瘤胃内环境、促进瘤胃发酵提高饲料各成分的降解率.%The objective of this thesis was to investigate the effects of non-fiber carbohydrate (NFC) and sulfur (S) in diets with same level of ruminally degradable protein (RDP) on in vitro rumen fermentation.Three Holstein cows were chosen to provide rumen fluid for in vitro rumen fermentation.An experimental design with two factors (3×4:3.35,4 and 4.8 ratios of NFC to RDP,0.15%,0.20%,0.25% and 0.30% S levels) were used.The results showed that the different NFC/RDP value influence on pH (except for 2 h),gas production,propionate,butyrate,Microbial crude protein (MCP) were significant (P<0.05).NH3-N concentration was changed in 8 h,12 h and 24 h

  16. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    Science.gov (United States)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  17. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  18. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  19. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Influence of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1872-01-01

    It has been determined that of the trees living in an atmosphere containing sulfurous oxide, the conifers suffer more injuries than ordinary foliaged trees. Experiments were conducted to find the causes of injuries and their relation in these two kinds of plants. Pine and alder were chosen as test plants. It was found that 1000 square centimeters of pine leaves had absorbed 1.6 c.c. of sulfurous oxide and the same surface area of alder leaves had accumulated 7.9 c.c. of sulfurous oxide. Experiments were also conducted to determine the effects of sulfurous oxide on transpiration in plants. Two similar twigs of a sycamore were arranged so that the water transpired could be weighed. Results indicate that the ratio between the total amount of water transpired by the leaves not acted on by the sulfurous oxide and those under its influence was 3.8:1. The author concludes that the amount of sulfurous oxide absorbed by pine leaves is smaller than that absorbed by trees with ordinary foliage for equal surfaces. Since its effect on transpiration is less in the case of pine, the cause of the greater injury to pine trees in nature must be due to the accumulation of sulfur. In trees annual leaves the damage to one year's foliage would have only an indirect influence on that of the following year.

  1. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  2. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  3. New insights into sulfur amino acids function in gut health and disease

    Science.gov (United States)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  4. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Ye, Huan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-01

    Highlights: • A cost-effective chemical activation method to prepare porous carbon nanospheres. • Carbon nanospheres with bimodal microporous structure show high specific area and large micropore volume. • The S/C composite cathodes with in-situformed S−C bond exhibit high sulfur activity with a reversible capacity of 1000 mA h g −1 . • S−C bond enables well confinement on sulfur and polysulfides. - Abstract: Lithium–sulfur batteries are highly desired because of their characteristics such as high energy density. However, the applications of Li-S batteries are limited because they exist dissolution of polysulfides into electrolytes. This study reports the preparation of sulfur cathodes by using bimodal microporous (0.5 nm and 0.8 nm to 2.0 nm) carbon spheres with high specific area (1992 m 2 g −1 ) and large micropore volume (1.2 g cm −1 ), as well as the encapsulation of polysulfides via formation of carbon–sulfur bonds in a sealed vacuum glass tube at high temperature. Given that sulfur and polysulfides are well confined by the S−C bond, the shuttle effect is effectively suppressed. The prepared S/C cathodes with a sulfur loading of up to 75% demonstrate high sulfur activity with reversible capacity of 1000 mA h g −1 at the current density of 0.1 A g −1 and good cycling stability (667 mA h g −1 after 100 cycles).

  5. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  6. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  7. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  8. Sulfur-Kβ /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Phillips, D.R.; Andermann, G.G.; Fujiwara, F.

    1986-01-01

    Sulfur-K/β /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/β /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  9. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...

  10. Study on the Influence of Sulfur Fumigation on Chemical ...

    African Journals Online (AJOL)

    Purpose: To study the influence of different sulfur fumigation time and ... after sulfur fumigation though sulfur fumigation time and dosage were at low levels – 2 h ... Conclusion: Sulfur fumigation is not a desirable method for field processing of ...

  11. 46 CFR 151.50-21 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity) (59.8...

  12. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  13. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  14. Efficient Electrolytes for Lithium–Sulfur Batteries

    International Nuclear Information System (INIS)

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  15. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  16. Efficient Electrolytes for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, Natarajan [Department of Materials Science and Engineering, Politecnico di Torino, Turin (Italy); Stephan, Arul Manuel, E-mail: arulmanuel@gmail.com [Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi (India)

    2015-05-21

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  17. Environmental behavior and analysis of agricultural sulfur.

    Science.gov (United States)

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. © 2015 Society of Chemical Industry.

  18. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  19. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  20. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Z. [Lab. de Chimie Physique, UMR, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS{sup .}, RSS{sup .}, RS{sup .+}, (RSSR){sup .+}] and their implications for biological systems. (author)

  1. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.

    2001-01-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS . , RSS . , RS .+ , (RSSR) .+ ] and their implications for biological systems. (author)

  2. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  3. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  4. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  6. Plutonium oxides analysis. Sulfur potentiometric analysis

    International Nuclear Information System (INIS)

    Anon.

    Total sulfur determination (sulfur, sulfates, sulfides ...) in plutonium oxides, suitable for sulfate ion content between 0.003 percent to 0.2 percent, by dissolution in nitric hydrofluoric acid, nitrates elimination, addition of hydrochloric acid and reduction in hydrogen sulfide which is carried by an inert gas and neutralized by sodium hydroxide. Sodium sulfide is titrated with mercuric acetate by constant intensity potentiometry [fr

  7. Ocular Effects of Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-06-01

    Full Text Available Purpose: To review current knowledge about ocular effects of sulfur mustard (SM and the associated histopathologic findings and clinical manifestationsMethods: Literature review of medical articles (human and animal studies was accomplished using PubMed, Scopus and ISI databases. A total of 274 relevant articles in English were retrieved and reviewed thoroughly.Results: Eyes are the most sensitive organs to local toxic effects of mustard gas. Ocular injuries are mediated through different toxic mechanisms including: biochemical damages, biomolecular and gene expression modification, induction of immunologic and inflammatory reactions, disturbing ultrastructural architecture of the cornea, and long-lasting corneal denervation. The resulting ocular injuries can roughly be categorized into acute or chronic complications. Most of the patients recover from acute injuries, but a minority of victims will suffer from chronic ocular complications. Mustard gas keratopathy (MGK is a devastating late complication of SM intoxication that proceeds from limbal stem cell deficiency (LSCD.Conclusion: SM induces several different damaging changes in case of ocular exposure; hence leading to a broad spectrum of ocular manifestations in terms of severity, timing and form. Unfortunately, no effective strategy has been introduced yet to inhibit or restore these damaging changes.

  8. Biotransformation and removal of sulfur from dibenzothiophene using improved bio catalytic methods

    International Nuclear Information System (INIS)

    La Rotta, C. E; Mora, A.L; Madero, A; Mogollon, L.I

    1998-01-01

    Three methods for the removal of sulfur from dibenzothiophene were evaluated using bio catalytic processes. The methods were a microbial, an enzymatic and a combined one that involves a previous enzymatic oxidation followed by microbial degradation. The bioconversion was evaluated over the molecular dibenzothiophene model, obtaining higher bioconversion percentages through the combined method. The microorganisms used in this study correspond to several Colombian indigenous strains isolated by direct methods from natural sources, and using a standard strain as positive control. All strains have shown sulfur removal capacity, and organic solvent tolerance. The enzyme used was a hemo protein with peroxidase activity, Cytochrome C, obtained from equine heart

  9. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  10. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    Energy Technology Data Exchange (ETDEWEB)

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  11. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome.

    Science.gov (United States)

    Ohtsuka, Hokuto; Takinami, Masahiro; Shimasaki, Takafumi; Hibi, Takahide; Murakami, Hiroshi; Aiba, Hirofumi

    2017-07-01

    Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1 + gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner. © 2017 John Wiley & Sons Ltd.

  12. Mapping of sulfur metabolic pathway by LC Orbitrap mass spectrometry

    International Nuclear Information System (INIS)

    Rao Yulan; McCooeye, Margaret; Mester, Zoltán

    2012-01-01

    Highlights: ► LCMS method for the determination of free, oxidized and protein bound thiols in yeast was developed. ► In freshly harvested yeast, most of the thiols were in the reduced forms. ► The stress response of yeast to H 2 O 2 , Cd and As was studied via changes in the thiol profiles. - Abstract: For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), γ-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1–12 nmol L −1 for standard solution (high femotomole, absolute), except AdoMet (116 nmol L −1 ), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.

  13. Mapping of sulfur metabolic pathway by LC Orbitrap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rao Yulan [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai 200032 (China); McCooeye, Margaret [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Mester, Zoltan, E-mail: zoltan.mester@nrc.ca [Institute for National Measurement Standard, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer LCMS method for the determination of free, oxidized and protein bound thiols in yeast was developed. Black-Right-Pointing-Pointer In freshly harvested yeast, most of the thiols were in the reduced forms. Black-Right-Pointing-Pointer The stress response of yeast to H{sub 2}O{sub 2}, Cd and As was studied via changes in the thiol profiles. - Abstract: For the first time a liquid chromatography method with high resolution mass spectrometric detection has been developed for the simultaneous determination all key metabolites of the sulfur pathway in yeast, including all thiolic (cysteine (Cys), homocysteine (HCys), glutathione (GSH), cysteinyl-glycine (Cys-Gly), {gamma}-glutamyl-cysteine (Glu-Cys)) and non-thiolic compounds (methionine (Met), s-adenosyl-methionine (AdoMet), s-adenosyl-homocysteine (AdoHcy), and cystathionine (Cysta)). The developed assay also permits the speciation and selective determination of reduced, oxidized and protein bound fractions of all of the five thiols. Iodoacetic acid (IAA) was chosen as the derivatizing reagent. Thiols were extracted from sub-mg quantities of yeast using hot 75% ethanol. The detection limits were in the range of 1-12 nmol L{sup -1} for standard solution (high femotomole, absolute), except AdoMet (116 nmol L{sup -1}), which was unstable. In freshly harvested yeast, most of the thiols were in the reduced forms and low levels of protein-bound GSH and Glu-Cys were found. In a selenium enriched yeast, the thiols were mainly in the oxidized forms, and a significant amount of protein-bound Cys, HCys, GSH, Cys-Gly and Glu-Cys were found. The method was also applied to the metabolic study of the adaptive response of Saccharomyces cerevisiae to hydrogen peroxide, cadmium, and arsenite, and the change in concentration of thiols in the sulfur pathway was monitored over a period of 4 h.

  14. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  15. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS

    National Research Council Canada - National Science Library

    Petrovykh, D. Y; Sullivan, J. M; Whitman, L. J

    2005-01-01

    .... The S-passivated InAs(001) surface can be modeled as a sulfur-indium-arsenic layer-cake structure, such that characterization requires quantification of both arsenic oxide and sulfur layers that are at most a few monolayers thick...

  17. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  18. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  19. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  20. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) utilize various combinations of sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for anaerobic photoautotrophic growth. Genome sequence data is currently available for 12 strains of GSB. We present here a genome-based survey of the distribution...... and phylogenies of genes involved in oxidation of sulfur compounds in these strains. Sulfide:quinone reductase, encoded by sqr, is the only known sulfur-oxidizing enzyme found in all strains. All sulfide-utilizing strains contain the dissimilatory sulfite reductase dsrABCEFHLNMKJOPT genes, which appear...... to be involved in elemental sulfur utilization. All thiosulfate-utilizing strains have an identical sox gene cluster (soxJXYZAKBW). The soxCD genes found in certain other thiosulfate-utilizing organisms like Paracoccus pantotrophus are absent from GSB. Genes encoding flavocytochrome c (fccAB), adenosine-5...

  1. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  2. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  3. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  4. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  5. Effects of duration of vitamin C supplementation during the finishing period on postmortem protein degradation, tenderness, and meat color of the longissimus muscle of calf-fed steers consuming a 0.31 or 0.59% sulfur diet.

    Science.gov (United States)

    Pogge, D J; Lonergan, S M; Hansen, S L

    2015-05-01

    High-S (HS) diets have been identified as a causative agent in the development of oxidative stress in cattle, which in postmortem muscle can negatively alter meat quality. Vitamin C (VC) is a potent antioxidant produced endogenously by cattle; however, exogenous supplementation of VC may be useful when HS diets are fed to cattle. The objective of this study was to examine the impact of duration of VC supplementation, for the first 56, 90, or 127 d, during the finishing period on meat color and tenderness of the longissimus thoracis (LT) collected from calf-fed steers consuming a 0.31 or 0.59% S diet. Angus steers ( n= 42) were stratified to pens by initial BW (304 ± 13 kg) and GeneMax marbling score (4.3 ± 0.12), and each pen was randomly assigned to 1 of 7 treatments (6 steers/pen, 1 pen/treatment), including HS (0.59% S, a combination of dried distillers grains plus solubles and sodium sulfate) control (HS CON), HS CON + 10 g VC·steer·(-1)d(-1) for the first 56 d (HS VC56), 90 d (HS VC90), or 127 d (HS VC127), low S (LS; 0.31% S) + 10 g VC·steer·(-1)d(-1) for the first 56 d (LS VC56), 90 d (LS VC90), or 127 d (LS VC127). Steers were harvested (n = 40) and, after a 24-h chill, rib sections (LT) were collected. pH was determined on each rib section before division into 3 sections for determination of 1) 7-d retail display and color and Warner-Bratzler shear force (WBSF), 2) 14-d WBSF determination, and 3) protein degradation and collagen content (2 d postmortem). Data were analyzed by ANOVA as a completely randomized design, with the fixed effect of treatment. Individual feed intake was recorded, and steer was the experimental unit. The HS steers had a greater and lesser percent of the 80- and 76-kDa subunits of calpain-1 (P ≤ 0.05), respectively, and tended to have less (P = 0.08) troponin T degradation (d2), and more (P = 0.02) collagen than LS steers. Increasing days of VC supplementation decreased (P = 0.05) the percentage of the 80 kDa subunit of

  6. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    Science.gov (United States)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  7. Self-assembled peptides for coating of active sulfur nanoparticles in lithium–sulfur battery

    International Nuclear Information System (INIS)

    Jewel, Yead; Yoo, Kisoo; Liu, Jin; Dutta, Prashanta

    2016-01-01

    Development of lithium–sulfur (Li–S) battery is hindered by poor cyclability due to the loss of sulfur, although Li–S battery can provide high energy density. Coating of sulfur nanoparticles can help maintain active sulfur in the cathode of Li–S battery, and hence increase the cyclability. Among myriad of coating materials, synthetic peptides are very attractive because of their spontaneous self-assembly as well as electrical conductive characteristics. In this study, we explored the use of various synthetic peptides as a coating material for sulfur nanoparticles. Atomistic simulations were carried out to identify optimal peptide structure and density for coating sulfur nanoparticles. Three different peptide models, poly-proline, poly(leucine–lysine) and poly-histidine, are selected for this study based on their peptide–peptide and peptide-sulfur interactions. Simulation results show that both poly-proline and poly(leucine–lysine) can form self-assembled coating on sulfur nanoparticles (2–20 nm) in pyrrolidinone, a commonly used solvent for cathode slurry. We also studied the structural integrity of these synthetic peptides in organic [dioxolane (DOL) and dimethoxyethane (DME)] electrolyte used in Li–S battery. Both peptides show stable structures in organic electrolyte (DOL/DME) used in Li–S battery. Furthermore, the dissolution of sulfur molecules in organic electrolyte is investigated in the absence and presence of these peptide coatings. It was found that only poly(leucine–lysine)-based peptide can most effectively suppress the sulfur loss in electrolyte, suggesting its potential applications in Li–S battery as a coating material.Graphical abstract

  8. Radioactive methionine: determination, and distribution of radioactivity in the sulfur, methyl and 4-carbon moieties

    International Nuclear Information System (INIS)

    Giovanelli, J.; Mudd, S.H.

    1985-01-01

    A simple and inexpensive method is described for isolation and determination of [ 14 C]methionine in the non-protein fraction of tissues extensively labeled with 14 C. The effectiveness of the method was demonstrated by isolation of non-protein [ 14 C]methionine (as the carboxymethylsulfonium salt) of proven radiopurity from the plant Lemna which had been grown for a number of generations on (U- 14 C]sucrose and contained a 2000-fold excess of 14 C in undefined non-protein compounds. An advantage is that the isolated methioninecarboxymethlysulfonium salt is readily degraded to permit separate determination of radioactivity in the 4-carbon, methyl and sulfur moieties of methionine. During this work, a facile labilization of 3 H attached to the (carboxy)methylene carbon of methioninecarboxymethylsulfonium salt was observed. This labilization is ascribed to formation of a sulfur ylid. (Auth.)

  9. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  10. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  11. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  12. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  13. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    Science.gov (United States)

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  14. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    Science.gov (United States)

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  15. Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Qu, Yaohui; Zhou, Chengkun; Wang, Xiwen; Li, Jie

    2014-01-01

    Highlights: • Metal organic framework @ reduced graphene oxide was applied for sulfur cathode. • MIL-101(Cr)@rGO/S composites are synthesized by a facile two-step liquid method. • Cycling stability of MIL-101(Cr)@rGO/S sulfur cathode was improved. -- Abstract: Mesoporous metal organic framework @ reduced graphene oxide (MIL-101(Cr)@rGO) materials have been used as a host material to prepare the multi-composite sulfur cathode through a facile and effective two-step liquid phase method successfully, which is different from the simple MIL-101(Cr)/S mixed preparation method. The successful reduced graphene oxide coating in the MIL-101(Cr)@rGO improve the electronic conductivity of meso-MOFs effectively. The discharge capacity and capacity retention rate of MIL-101(Cr)@rGO/S composite sulfur cathode are as high as 650 mAh g −1 and 66.6% at the 50th cycle at the current density of 335 mA g −1 . While the discharge capacity and capacity retention rate of MIL-101(Cr)/S mixed sulfur cathode is 458 mAh g −1 and 37.3%. Test results indicate that the MIL-101(Cr)@rGO is a promising host material for the sulfur cathode in the lithium–sulfur battery applications

  16. Extraction of sulfuric acid with TOPO

    International Nuclear Information System (INIS)

    Shuyun, Xue; Yonghui, Yang; Yanzhao, Yang; Sixiu, Sun; Borong, Bao

    1998-01-01

    A study on solvent extraction of sulfuric acid by tri-octylphosphine oxide (TOPO) in n-heptane has been made. Extraction coefficients of H 2 SO 4 as a function of H 2 SO 4 concentration in aqueous phase, and extractant concentrations in organic phase have been studied. The composition of extracted species, equilibrium constants of extraction reaction have been evaluated. These results are important for interpreting extraction equilibrium data of uranium(VI) or other metal ions with TOPO in sulfuric acid media. (author)

  17. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  18. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  19. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  20. Determination of sulfur dioxide by a radiorelease method

    Energy Technology Data Exchange (ETDEWEB)

    Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1983-04-13

    A radiorelease technique for the determination of sulfur dioxide using radiochlor /sup 36/Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined.

  1. Determination of sulfur dioxide by a radiorelease method

    International Nuclear Information System (INIS)

    Sriman Narayanan, S.; Rao, V.R.S.

    1983-01-01

    A radiorelease technique for the determination of sulfur dioxide using radiochlor 36 Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined. (author)

  2. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  3. Iron Sulfur Proteins and their Synthetic Analogues: Structure ...

    Indian Academy of Sciences (India)

    ... and functions at a molecular level through model system~ are described. .... analysis of this structure and the tri-iron cluster was corrected as having a non planar Fe3S4 .... couple has potentials of -300 m V difference from the corresponding ...

  4. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  6. Relationship between corrosion and the biological sulfur cycle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.I.; Pope, R.K.

    2000-04-01

    Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking, and stress-oriented hydrogen-induced cracking of susceptible metals and alloys. Even though the metabolic by-products of the biological sulfur cycle are extremely corrosive, there are no correlations between numbers and types of sulfur-related organisms and the probability or rate of corrosion, Determination of specific mechanisms for corrosion caused by microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by the variety of potential metabolic-energy sources and by-products; the coexistence of reduced and oxidized sulfur species; competing reactions with inorganic and organic compounds; and the versatility and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the environment. The complete sulfur cycle of oxidation and reduction reactions can take place in macroenvironments, including sewers and polluted harbors, or within the microenvironment of biofilms. In this review, reactions of sulfur and sulfur compounds resulting in corrosion were discussed in the context of environmental processes important to corrosion.

  7. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for...

  8. Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  9. Biologically produced sulfur particles and polysulfide ions

    NARCIS (Netherlands)

    Kleinjan, W.E.

    2005-01-01

    This thesis deals with the effects of particles of biologically produced sulfur (or 'biosulfur') on a biotechnological process for the removal of hydrogen sulfide from gas streams. Particular emphasis is given to the role of polysulfide ions in such a process. These

  10. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  11. Intestinal metabolism of sulfur amino acids

    Science.gov (United States)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  12. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    Science.gov (United States)

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The references considered for inclusion in or cited in the external review draft ISA are available at https://hero.epa.gov/hero/sulfur-oxides. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes an assessment of scientific research from atmospheric sciences, exposure sciences, dosimetry, mode of action, animal and human toxicology, and epidemiology. Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for sulfur oxides (SOx) are included; Annexes provide additional details supporting the ISA. Together, the ISA and Annexes serve to update and revise the last SOx ISA which was published in 2008.

  13. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  14. Methane oxidation in presence of sulfur dioxide

    International Nuclear Information System (INIS)

    Mantashyan, A.A.; Avetisyan, A.M.; Makaryan, E.M.; Wang, H.

    2006-01-01

    The emission of sulfurous gases including SO 2 from stationary power generation remains to be a serious environmental and ecological problem. Sulfurous gases are almost entirely produced from the combustion of sulfur-containing fuels. While fuel desulfurization and flue gas scrubbing is a viable solution, in the developing countries it remains to be an economical challenge to implement these SO x reduction technologies. The oxidation of methane in presence of sulfurous gas (SO 2 ) addition was studied experimentally. Te experiments were conducted in a static reactor at temperature of 728-786 K, and for mixture of C 4 /O 2 ≡ 1/2 at a pressure of 117 Torr with varying amount of SO 2 addition. It was observed that SO 2 addition accelerated the oxidation process, reduced the induction period and increased the extent of methane consumption. At the relatively short resident time (less than 50 sec) SO 3 was detected, but at longer residence time SO 3 was reduced spontaneously to SO 2

  15. Behaviour of organic sulfur compounds in HPLC

    International Nuclear Information System (INIS)

    Freyholdt, T.

    1982-01-01

    The retention behaviour of organic sulfur compounds in the reverse-bonded-phase chromatography is characterized by determining the retention indices according to Kovats. The results of these studies show that the solubility of organic compounds in the eluting agent and the molar sorption surfaces of the solutes are the main factors determining the retention behaviour. Knowledge of the retention indices of above-mentioned compounds allows a quick interpretation of chromatograms obtained through a product analysis of γ-irradiated aqueous solutions of organic sulfur compounds. Dithia compounds of the type CH 3 -S-(CH 2 )sub(n)-S-Ch 3 (1 1. 2,4-Dithiapentane (n = 1) however will yield primarily monothio-S-methyl formate as a stable end product. The formation of oxygenic reaction products proceeds via sulfur-centred radical kations. Spin trapping experiments with nitroxyl radicals show that it is possible to trap radiation-chemically produced radicals of sulfurous substrates, but the thus obtained adducts with half-life periods of 4-5 min. cannot be identified by means of NMR, IR or mass spectroscopy. (orig.) [de

  16. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  17. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  18. Helium and Sulfur Hexafluoride in Musical Instruments

    Science.gov (United States)

    Forinash, Kyle; Dixon, Cory L.

    2014-01-01

    The effects of inhaled helium on the human voice were investigated in a recent article in "The Physics Teacher." As mentioned in that article, demonstrations of the effect are a popular classroom activity. If the number of YouTube videos is any indication, the effects of sulfur hexafluoride on the human voice are equally popular.…

  19. Isotope effects of sulfur in chemical reactions

    International Nuclear Information System (INIS)

    Mikolajczuk, A.

    1999-01-01

    Sulfur is an important component of organic matter because it forms compounds with many elements. Due to high chemical activity of sulfur, it takes part in biological and geological processes in which isotope effects are occurring. It has been shown during last years research of isotope effects that we have take into account not only mass difference but also many other physical properties of nuclides e.g. even or odd number of neutrons in nuclei, shape and distribution of charge, turn of nuclear spin etc. The factor remains that new theoretical ideas have been formed on the base of data, being obtained in fractionation processes of heavy element isotope, particularly uranium. Now it is being well known that effects unconnected with vibration energy have also caused an effect on fractionation of considerably lighter elements like iron and magnesium. The important question is, if these effects would come to light during the separation of sulfur isotopes. Sulfur have three even isotopes M = (32, 34, 36) and one odd M 33). This problem is still open. (author)

  20. Annotated bibliography of methods for determining sulfur and forms of sulfur in coal and coal-related materials

    Energy Technology Data Exchange (ETDEWEB)

    Chriswell, C.D.; Norton, G.A.; Akhtar, S.S.; Straszheim, W.E.; Markuszewski, R.

    1993-01-01

    Over 400 published papers, presentations at scientific meetings, and reports relating to the determination of sulfur and sulfur forms in coal-related materials have been accumulated, classified, and an evaluation made of their content.

  1. Effects of elemental sulfur and sulfur-containing waste on nutrient ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... grown twice on the same soils to determine initial and residual effects of applied S. Results showed that applications of ... Key words: Calcareous soil, plant growth, plant nutrition, sulfur application. ...... Colombia. Can. J. Soil ...

  2. Damage caused to vegetation by sulfurous and sulfuric acids in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tatlock, R R; Thomson, R T

    1914-05-01

    This report, written in 1914, documents injuries to trees and shrubs in the United Kingdom which are attributed to sulfur compounds in air pollutions. Sampling, analytical and experimental procedures are discussed.

  3. Process for removing sulfur from sulfur-containing gases: high calcium fly-ash

    Science.gov (United States)

    Rochelle, Gary T.; Chang, John C. S.

    1991-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.

  4. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  5. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  6. Effects of sulfur oxides on eicosanoids

    International Nuclear Information System (INIS)

    Chen, L.C.; Miller, P.D.; Amdur, M.O.

    1989-01-01

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study

  7. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  8. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  9. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  10. Determining total sulfur content in coal by MSC radiometric sulfur meter

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T; Golebiowski, W

    1976-01-01

    The MSC radiometric sulfur meter is used to determine total sulfur content in brown and black coals. Sulfur content is determined by measuring intensity of radiation beam which has travelled through a coal sample with the optimum constant surface mass. Construction of the MSC, consisting of a measuring head and the electronic measuring system, is shown in a scheme. AM-241 (with activity of 50 mCi) is the source of radiation. Energy of 25.3 keV (tin disc) is selected as the optimum. The SSU-70 probe with NaJ/Tl crystal is the radiation detector. The black coal sample weighs 10 g and the brown coal sample weighs 18 g. Duration of sulfur determination is 10 min. Error of sulfur determination ranges from plus or minus 0.2% to 0.3%. The results of operational tests of MSC radiometric sulfur meters in black and brown coal mines are discussed. Accuracy of measurement is shown in 5 tables. (8 refs.)

  11. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  12. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    International Nuclear Information System (INIS)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans; Hernández, Mayra P.

    2014-01-01

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO 2 gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage

  13. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian [Laboratory of Computational and Theoretical Chemistry (LQCT), Faculty of Chemistry, Havana University, Havana 10400 (Cuba); Pujals, Daniel Codorniu [Higher Institute of Technologies and Applied Sciences (InSTEC), Havana 10400 (Cuba); Mikosch, Hans [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/E164-EC, 1060 Vienna (Austria); Hernández, Mayra P., E-mail: mayrap@imre.oc.uh.cu [Instituto de Ciencias y Tecnologías de Materiales (IMRE), Havana 10400 (Cuba)

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  14. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R; Kuhn, M; Petzold, A; Schroeder, F; Schumann, U [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S [Mainz Univ. (Germany); Hagen, D; Whitefield, Ph [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J [Stockholm Univ. (Sweden)

    1998-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  15. Experiments on contrail formation from fuels with different sulfur content

    Energy Technology Data Exchange (ETDEWEB)

    Busen, R.; Kuhn, M.; Petzold, A.; Schroeder, F.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany); Baumgardner, D. [National Center for Atmospheric Research, Boulder, CO (United States); Borrmann, S. [Mainz Univ. (Germany); Hagen, D.; Whitefield, Ph. [Missouri Univ., Rolla, MO (United States). Bureau of Mines; Stroem, J. [Stockholm Univ. (Sweden)

    1997-12-31

    A series of both flight tests and ground experiments has been performed to evaluate the role of the sulfur contained in kerosene in condensation trail (contrail) formation processes. The results of the first experiments are compiled briefly. The last SULFUR 4 experiment dealing with the influence of the fuel sulfur content and different appertaining conditions is described in detail. Different sulfur mass fractions lead to different particle size spectra. The number of ice particles in the contrail increases by about a factor of 2 for 3000 ppm instead of 6 ppm sulfur fuel content. (author) 10 refs.

  16. Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique”

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Daniel P.; Nicora, Carrie D.; Carini, Paul; Lipton, Mary S.; Norbeck, Angela D.; Smith, Richard D.; Giovannoni, Stephen J.; Wilmes, Paul

    2016-07-12

    The alphaproteobacterium “CandidatusPelagibacter ubique” strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all “Ca. Pelagibacter ubique” genes downstream from the previously confirmedS-adenosyl methionine (SAM) riboswitchesbhmT,mmuM, andmetY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the hemecshuttle-encoding geneccmCand two small genes of unknown function (SAR11_1163andSAR11_1164). This bacterium’s strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes,ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch.

  17. Involvement of a volatile metabolite during phosphoramide mustard-induced ovotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-15

    The finite ovarian follicle reserve can be negatively impacted by exposure to chemicals including the anti-neoplastic agent, cyclophosphamide (CPA). CPA requires bioactivation to phosphoramide mustard (PM) to elicit its therapeutic effects however; in addition to being the tumor-targeting metabolite, PM is also ovotoxic. In addition, PM can break down to a cytotoxic, volatile metabolite, chloroethylaziridine (CEZ). The aim of this study was initially to characterize PM-induced ovotoxicity in growing follicles. Using PND4 Fisher 344 rats, ovaries were cultured for 4 days before being exposed once to PM (10 or 30 μM). Following eight additional days in culture, relative to control (1% DMSO), PM had no impact on primordial, small primary or large primary follicle number, but both PM concentrations induced secondary follicle depletion (P < 0.05). Interestingly, a reduction in follicle number in the control-treated ovaries was observed. Thus, the involvement of a volatile, cytotoxic PM metabolite (VC) in PM-induced ovotoxicity was explored in cultured rat ovaries, with control ovaries physically separated from PM-treated ovaries during culture. Direct PM (60 μM) exposure destroyed all stage follicles after 4 days (P < 0.05). VC from nearby wells depleted primordial follicles after 4 days (P < 0.05), temporarily reduced secondary follicle number after 2 days, and did not impact other stage follicles at any other time point. VC was determined to spontaneously liberate from PM, which could contribute to degradation of PM during storage. Taken together, this study demonstrates that PM and VC are ovotoxicants, with different follicular targets, and that the VC may be a major player during PM-induced ovotoxicity observed in cancer survivors. - Highlights: • PM depletes all stage ovarian follicles in a temporal pattern. • A volatile ovotoxic compound is liberated from PM. • The volatile metabolite depletes primordial follicles.

  18. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds

    Science.gov (United States)

    Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.

    1997-11-01

    Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.

  19. Inhalation and Percutaneous Toxicokinetics of Sulfur Mustard and Its Adducts in Hairless Guinea Pigs and Marmosets. Efficacy of Naval Scavengers

    Science.gov (United States)

    2005-08-01

    activity ca. 40 units/mg protein) from Boehringer (Mannheim, Germany); RNase A, and Tween 20 from Sigma Chemical Co. (St. Louis, MO, USA); and skimmed milk ...al. 1997). This hypothesis is still awaiting falsification . Measurement of the concentration-time course of the adduct of sulfur mustard to hemoglobin

  20. Sulfur containing nanoporous materials, nanoparticles, methods and applications

    Science.gov (United States)

    Archer, Lynden A.; Navaneedhakrishnan, Jayaprakash

    2018-01-30

    Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or "bulk" shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.

  1. Flow injection gas chromatography with sulfur chemiluminescence detection for the analysis of total sulfur in complex hydrocarbon matrixes.

    Science.gov (United States)

    Hua, Yujuan; Hawryluk, Myron; Gras, Ronda; Shearer, Randall; Luong, Jim

    2018-01-01

    A fast and reliable analytical technique for the determination of total sulfur levels in complex hydrocarbon matrices is introduced. The method employed flow injection technique using a gas chromatograph as a sample introduction device and a gas phase dual-plasma sulfur chemiluminescence detector for sulfur quantification. Using the technique described, total sulfur measurement in challenging hydrocarbon matrices can be achieved in less than 10 s with sample-to-sample time ideal for fast analysis or trace sulfur analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Layered sulfur/PEDOT:PSS nano composite electrodes for lithium sulfur cell applications

    Science.gov (United States)

    Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S.

    2018-06-01

    Lithium-Sulfur (Li-S) cells are emerging as the next generation energy storage devices owing to their impressive electrochemical properties with high theoretical specific capacity of 1675 mAh/g. Lack of electronic conductivity of sulfur, its volume expansion during high lithium intake and the shuttling effect due to the formation of soluble polysulfides are the main limitations, delaying the commercialization of this technology. To address these challenges, in the present work, the conducting polymer PEDOT:PSS is used as the covering matrix over the sulfur particles to improve their Li storage properties. The sulfur/PEDOT:PSS nanocomposite is synthesised using the hydrothermal process and its formation with the polymer coating over sulfur nanoparticles is established from the XRD, Raman spectroscopy, FE-SEM and TEM studies. The electrochemical studies show that the cells assembled using the sulfur/PEDOT:PSS nanocomposite as the cathode, with the components taken in the weight ratio of 9:1, offer a reversible capacity of 1191 mAh g-1 at 0.1C rate. These cells display stable electrochemical capacities over 200 cycles at gradually increasing current rates. The polymer layer facilitates electronic conduction and suppresses the polysulfide formation and the volume expansion of sulfur. A reversible capacity of 664 mAh g-1 is observed after 200 cycles at 1C rate with the capacity retention of 75 % of the initial stable capacity. The highlight of the present work is the possibility to achieve high discharge capacities at high C rates and the retention of a good percentage of the initial capacity over 200 cycles, for these Li-S cells.

  3. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W. (Eastern Illinois University, Charleston, IL (USA). Chemistry Dept.)

    1990-01-01

    Hot tetrachloroethene (perchloroethylen PCE) extracts significant amounts of elemental sulfur (S{sup o}) from weathered coals but not from pristine coals. The objective of this study was to determine whether S{sup o} extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted S{sup o} was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The S{sup o} was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, S{sup o} and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. 21 refs., 2 tabs.

  4. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Science.gov (United States)

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  5. Sulfur dioxide: foe or friend for life?

    Science.gov (United States)

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  6. Volatile sulfur compounds in tropical fruits

    Directory of Open Access Journals (Sweden)

    Robert J. Cannon

    2018-04-01

    Full Text Available Global production and demand for tropical fruits continues to grow each year as consumers are enticed by the exotic flavors and potential health benefits that these fruits possess. Volatile sulfur compounds (VSCs are often responsible for the juicy, fresh aroma of tropical fruits. This poses a challenge for analytical chemists to identify these compounds as most often VSCs are found at low concentrations in most tropical fruits. The aim of this review is to discuss the extraction methods, enrichment techniques, and instrumentation utilized to identify and quantify VSCs in natural products. This will be followed by a discussion of the VSCs reported in tropical and subtropical fruits, with particular attention to the odor and taste attributes of each compound. Finally, the biogenesis and enzymatic formation of specific VSCs in tropical fruits will be highlighted along with the contribution each possesses to the aroma of their respective fruit. Keywords: Tropical fruits, Volatile sulfur compounds, Extraction methods

  7. Mixed total screening for sulfur isotope

    International Nuclear Information System (INIS)

    Cui Bin; Zhao Lei; Zhan Zhaoyang; He Zhijun

    2003-01-01

    The research on modern economic geology indicates that most ore deposits formed with characters of multi-origin, multi-stage and multi-genesis. Quantificational research of Sulfur isotope origin is a difficult problem that puzzles Geochemists all along. So the formation process of an ore deposit can be taken as the mix or the superposition of multi totals, which can be described by the mathematics model of mixed total screening. In the study of mid-down Yangtze River and Dongpo ore field in Hunan province, the authors successfully applied the mathematics model of mixed total screening, quantificationally resolved the problem of Sulfur isotope origin and mineralizing matter origin, and found out the mineralizing mechanism. This is very valuable. (authors)

  8. Global Sulfur Emissions in the 1990s

    OpenAIRE

    David I. Stern

    2003-01-01

    This paper provides global and individual country estimates of sulfur emissions from 1991-2000. Raw estimates are obtained in two ways. For countries and years with published data I compile that data from the available sources. For the remaining countries and for missing years for countries with some published data, I use either the decomposition model estimated by Stern (2002), the first differences environmental Kuznets curve model estimated by Stern and Common (2001), or a simple extrapola...

  9. A composite of hollow carbon nanospheres and sulfur-rich polymers for lithium-sulfur batteries

    Science.gov (United States)

    Zeng, Shao-Zhong; Yao, Yuechao; Zeng, Xierong; He, Qianjun; Zheng, Xianfeng; Chen, Shuangshuang; Tu, Wenxuan; Zou, Jizhao

    2017-07-01

    Lithium-sulfur batteries are the most promising candidates for future high-energy applications because of the unparalleled capacity of sulfur (1675 mAh g-1). However, lithium-sulfur batteries have limited cycle life and rate capability due to the dissolution of polysulfides and the extremely low electronic conductivity of sulfur. To solve these issues, various porous carbons including hollow carbon nanospheres (HCNs) have been used for improving the conductivity. However, these methods still suffer from polysulfides dissolution/loss owing to their weak physical adsorption to polysulfides. Herein, we introduced a covalent grafting route to composite the HCNs and the vulcanized trithiocyanuric acid (TTCA). The composite exhibits a high loading of the vulcanized TTCA by the HCNs with high surface area and large pore volume, and covalent bonds to sulfur, effectively depressing the dissolution of polysulfides. The first discharge capacity of the composite reaches 1430 mAh g-1 at 0.1 C and 1227 mAh g-1 at 0.2 C.

  10. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  11. Formation of CuxS Layers on Polypropylene Sulfurized by Molten Sulfur

    Directory of Open Access Journals (Sweden)

    Rasa ALABURDAITĖ

    2011-11-01

    Full Text Available The processes of formation of electrically conductive layers of copper sulfides CuxS by the sorption-diffusion method on polypropylene (PP using molten sulfur as sulfurizing agent was investigated. The amount of sorbed sulfur increased with the increase of the duration of treatment. Copper sulfide layers were formed on the surface of polypropylene after the treatment of sulfurized polymer with Cu(II/I salt solution. The amount of copper sulfide in layer increased with the increase of treatment duration in copper salt solution. XRD spectra of PP films treated for 3 min with molten sulfur and then with Cu(II/I salt solution for the different time showed that the copper sulfide phases, mostly digenite, Cu2-xS and a-chalcocite, Cu2S were formed in the layers. Electromotive force measurement results confirmed the composition of formed CuxS layers on PP. The phase composition of layers also changed after the annealing. The value of electrical resistance of copper sulfide layers on PP varied from 20 W/cm2 to 80 W/cm2 and after annealing at 80 °C - in the interval of 10 W/cm2 - 60 W/cm2.http://dx.doi.org/10.5755/j01.ms.17.4.776

  12. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  13. Growth of Thiobacillus ferrooxidans on elemental sulfur

    International Nuclear Information System (INIS)

    Espejo, R.T.; Romero, P.

    1987-01-01

    Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-live of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day -1 , both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources

  14. Biological effects data: Fluoride and sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    McMechan, K.J. (ed.); Holton, R.L.; Ulbricht, R.J.; Morgan , J.B.

    1975-04-01

    The Alumax Pacific Aluminum Corporation has proposed construction of an aluminum reduction facility near Youngs Bay at Warrenton, Oregon. This report comprises one part of the final report to Alumax on a research project entitled, Physical, Chemical and Biological Studies of Youngs Bay.'' It presents data pertaining to the potential biological effects of fluoride and sulfur dioxide, two potentially hazardous plant-stack emissions, on selected aquatic species of the area. Companion volumes provide a description of the physical characteristics the geochemistry, and the aquatic animals present in Youngs Bay and adjacent ecosystems. An introductory volume provides general information and maps of the area, and summarizes the conclusions of all four studies. The data from the two phases of the experimental program are included in this report: lethal studies on the effects of selected levels of fluoride and sulfur dioxide on the survival rate of eleven Youngs Bay faunal species from four phyla, and sublethal studies on the effects of fluoride and sulfur dioxide on the rate of primary production of phytoplankton. 44 refs., 18 figs., 38 tabs.

  15. Sulfur status in long distance runners

    International Nuclear Information System (INIS)

    Kovacs, L; Zamboni, C; Lourenço, T; Macedo, D

    2015-01-01

    In sports medicine, sulfur plays an important role and its deficiency can cause muscle injury affecting the performance of the athletes. However, its evaluation is unusual in conventional clinical practice. In this study the sulfur levels were determined in Brazilian amateur athlete's blood using Neutron Activation Analyses (NAA) technique. Twenty six male amateur runners, age 18 to 36 years, participated of this study. The athletes had a balanced diet, without multivitamin/mineral supplements. The blood collection was performed at LABEX (Laboratoriode Bioquimica do Exercicio, UNICAMP-SP) and the samples were irradiated for 300 seconds in a pneumatic station in the nuclear reactor (IEA-R1, 3-4.5MW, pool type) at IPEN/CNEN-SP. The results were compared with the control group (subjects of same age but not involved with physical activities) and showed that the sulfur concentration was 44% higher in amateurs athletes than control group. These data can be considered for preparation of balanced diet, as well as contributing for proposing new protocols of clinical evaluation. (paper)

  16. Sulfur status in long distance runners

    Science.gov (United States)

    Kovacs, L.; Zamboni, C.; Lourenço, T.; Macedo, D.

    2015-07-01

    In sports medicine, sulfur plays an important role and its deficiency can cause muscle injury affecting the performance of the athletes. However, its evaluation is unusual in conventional clinical practice. In this study the sulfur levels were determined in Brazilian amateur athlete's blood using Neutron Activation Analyses (NAA) technique. Twenty six male amateur runners, age 18 to 36 years, participated of this study. The athletes had a balanced diet, without multivitamin/mineral supplements. The blood collection was performed at LABEX (Laboratoriode Bioquimica do Exercicio, UNICAMP-SP) and the samples were irradiated for 300 seconds in a pneumatic station in the nuclear reactor (IEA-R1, 3-4.5MW, pool type) at IPEN/CNEN-SP. The results were compared with the control group (subjects of same age but not involved with physical activities) and showed that the sulfur concentration was 44% higher in amateurs athletes than control group. These data can be considered for preparation of balanced diet, as well as contributing for proposing new protocols of clinical evaluation.

  17. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  18. Action of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1873-01-01

    In order to ascertain which trees best withstand the action of sulfurous oxide, and are, therefore, best suited for planting in neighborhoods where this gas is given off, young trees of various kinds growing in the open ground, were exposed under glass shades to air containing quantities of sulfurous oxide, varying from 1/10,000 to 1/70,000, under circumstances most favorable to its action, viz., in direct sunlight and after having been watered. The sensitiveness of the leaves was carefully noticed, and also the power which the trees possessed of compensating for injury by the reproduction of leaves; this was found to vary considerably in different trees, as did also the resisting power in the first case. Alder, sycamore, ash, and especially maple, are recommended for growth where exposed to smoke containing sulfurous oxide; next follow birch, hornbeam, and oak, and last, beech. The pines did not give constant results, but in nature they suffer more than other trees, and this is owing to the fact that, although their sensitiveness at first is less than that of other trees, their power of restoring lost leaves is much less.

  19. Global sulfur emissions from 1850 to 2000.

    Science.gov (United States)

    Stern, David I

    2005-01-01

    The ASL database provides continuous time-series of sulfur emissions for most countries in the World from 1850 to 1990, but academic and official estimates for the 1990s either do not cover all years or countries. This paper develops continuous time series of sulfur emissions by country for the period 1850-2000 with a particular focus on developments in the 1990s. Global estimates for 1996-2000 are the first that are based on actual observed data. Raw estimates are obtained in two ways. For countries and years with existing published data I compile and integrate that data. Previously published data covers the majority of emissions and almost all countries have published emissions for at least 1995. For the remaining countries and for missing years for countries with some published data, I interpolate or extrapolate estimates using either an econometric emissions frontier model, an environmental Kuznets curve model, or a simple extrapolation, depending on the availability of data. Finally, I discuss the main movements in global and regional emissions in the 1990s and earlier decades and compare the results to other studies. Global emissions peaked in 1989 and declined rapidly thereafter. The locus of emissions shifted towards East and South Asia, but even this region peaked in 1996. My estimates for the 1990s show a much more rapid decline than other global studies, reflecting the view that technological progress in reducing sulfur based pollution has been rapid and is beginning to diffuse worldwide.

  20. 2010 IRON-SULFUR ENZYMES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Ryan Gray

    2010-06-11

    Iron-sulfur (FeS) centers are essential for biology and inspirational in chemistry. These protein cofactors are broadly defined as active sites in which Fe is coordinated by S-donor ligands, often in combination with extra non-protein components, for example, additional metal atoms such as Mo and Ni, and soft ligands such as CN{sup -} and CO. Iron-sulfur centers are inherently air sensitive: they are found in essentially all organisms and it is possible that they were integral components of the earliest forms of life, well before oxygen (O{sub 2}) appeared. Proteins containing FeS cofactors perform a variety of biological functions ranging across electron transfer, acid-base catalysis, and sensing where they are agents for cell regulation through transcription (DNA) or translation (RNA). They are redox catalysts for radical-based reactions and the activation of H{sub 2}, N{sub 2} and CO{sub 2}, processes that offer scientific and economic challenges for industry. Iron-sulfur centers provide the focus for fundamental investigations of chemical bonding, spectroscopy and paramagnetism, and their functions have numerous implications for health and medicine and applications for technology, including renewable energy. The 2010 Iron-Sulfur Enzymes GRC will bring together researchers from different disciplines for in-depth discussions and presentations of the latest developments. There will be sessions on structural and functional analogues of FeS centers, advances in physical methods, roles of FeS centers in energy and technology, catalysis (including radical-based rearrangements and the activation of nitrogen, hydrogen and carbon), long-range electron transfer, FeS centers in health and disease, cellular regulation, cofactor assembly, their relevance in industry, and experiments and hypotheses relating to the origins of life.

  1. In situ tribochemical sulfurization of molybdenum oxide nanotubes.

    Science.gov (United States)

    Rodríguez Ripoll, Manel; Tomala, Agnieszka; Gabler, Christoph; DraŽić, Goran; Pirker, Luka; Remškar, Maja

    2018-02-15

    MoS 2 nanoparticles are typically obtained by high temperature sulfurization of organic and inorganic precursors under a S rich atmosphere and have excellent friction reduction properties. We present a novel approach for making the sulfurization unnecessary for MoO 3 nanotubes during the synthesis process for friction and wear reduction applications while simultaneously achieving a superb tribological performance. To this end, we report the first in situ sulfurization of MoO 3 nanotubes during sliding contact in the presence of sulfur-containing lubricant additives. The sulfurization leads to the tribo-chemical formation of a MoS 2 -rich low-friction tribofilm as verified using Raman spectroscopy and can be achieved both during sliding contact and under extreme pressure conditions. Under sliding contact conditions, MoO 3 nanotubes in synergy with sulfurized olefin polysulfide and pre-formed zinc dialkyl dithiophosphate tribofilms achieve an excellent friction performance. Under these conditions, the tribochemical sulfurization of MoO 3 nanotubes leads to a similar coefficient of friction to the one obtained using a model nanolubricant containing MoS 2 nanotubes. Under extreme pressure conditions, the in situ sulfurization of MoO 3 nanotubes using sulfurized olefin polysulfide results in a superb load carrying capacity capable of outperforming MoS 2 nanotubes. The reason is that while MoO 3 nanotubes are able to continuously sulfurize during sliding contact conditions, MoS 2 nanotubes progressively degrade by oxidation thus losing lubricity.

  2. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  3. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  4. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent......, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through...... reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly...

  5. Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries

    Science.gov (United States)

    Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei

    2017-10-01

    Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.

  6. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  7. Carbon/Sulfur Composite Cathodes for Flexible Lithium/Sulfur Batteries: Status and Prospects

    International Nuclear Information System (INIS)

    Zhao, Yan; Zhang, Yongguang; Bakenova, Zagipa; Bakenov, Zhumabay

    2015-01-01

    High specific energy and low cost flexible lithium/sulfur batteries have attracted significant attention as a promising power source to enable future flexible and wearable electronic devices. Here, we review recent progress in the development of free-standing sulfur composite cathodes, with special emphasis on electrode material selectivity and battery structural design. The mini-review is organized based on the dimensionality of different scaffold materials, namely one-dimensional carbon nanotube (CNT), two-dimensional graphene, and three-dimensional CNT/graphene composite, respectively. Finally, the opportunities and perspectives of the future research directions are discussed.

  8. Effects on the forest of sulfur dioxide from a sulfur fire near Edson, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, D

    1975-01-01

    Sulfur was burnt in a sanitary landfill during August 9 and 10, 1974. Resulting sulfur dioxide impinged on the surrounding mixed forest for 29 h. About 4 ha of forest displayed visible injury symptoms of varying intensity soon after. However, only .4 ha remained permanently injured the next season. Here, white spruce (Picea glauca (Moench) Voss) and scattered individuals of balsam poplar (Populus balsamifera L.), alder (Alnus tenuifolia Nutt.), and trembling aspen (Populus tremuloides Michx.) were killed. This report describes the extent of injury, relative sensitivities of affected plant species, and recovery in the spring in 1975.

  9. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  10. Sulfurized activated carbon for high energy density supercapacitors

    Science.gov (United States)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  11. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly.

    Science.gov (United States)

    Urbina, H D; Silberg, J J; Hoff, K G; Vickery, L E

    2001-11-30

    The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.

  12. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster.

    Science.gov (United States)

    Landry, Aaron P; Ding, Huangen

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of -248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  13. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    Directory of Open Access Journals (Sweden)

    Aaron P. Landry

    2014-01-01

    Full Text Available Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0. The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss and double-stranded (ds DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  14. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  15. Estimation of sulfur in coal by fast neutron activation

    International Nuclear Information System (INIS)

    Das, G.C.; Bhattacharyya, P.K.

    1995-01-01

    A simple method is described for estimation of sulfur in coal using fast neutron activation of sulfur, i.e. 32 S(n,p) 32 P and subsequent measurement of 32 P β-activity (1.72 MeV) by a Geiger-Mueller counter. Since the sulfur content of Indian coal ranges from 0.25 to 3%, simulated samples of coal containing sulfur in the range from 0.25 to 3% and common impurities like oxides of aluminium, calcium, iron and silicon have been used to establish the method. (author). 6 refs., 2 figs., 1 tab

  16. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  17. Single and multiple ionization of sulfur atoms by electron impact

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1982-01-01

    Laboratory measurements of the cross sections for single, double, triple, and quadruple ionization of sulfur atoms by electron impact are presented for collision energies from threshold to 500 eV. The cross sections for single ionization of sulfur are measured relative to those of several elements whose absolute cross sections for single ionization are known. Cross sections for each multiple ionization process are then measured relative to those for single ionization. The configuration and operation of the apparatus for these measurements are described. The possible effects of excited sulfur reactants are examined, and the reported cross sections are felt to be characteristic of ground state sulfur atoms

  18. Sub-aqueous sulfur volcanos at Waiotapu, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, S.; Rickard, D. [University of Wales, Cardiff (United Kingdom). Dept. of Earth Sciences; Browne, P.; Simmons, S. [University of Auckland (New Zealand). Geothermal Institute and Geology Dept.; Jull, T. [University of Arizona, Tucson (United States). AMS Facility

    1999-12-01

    Exhumed, sub-aqueous sulfur mounds occur in the Waiotapu geothermal area, New Zealand. The extinct mounds are < 2 m high and composed of small (< 0.5 cm) hollow spheres, and occasional teardrop-shaped globules. They are located within a drained valley that until recently was connected to Lake Whangioterangi. They were formed a maximum of 820 {+-} 80 years BP as a result of the rapid sub-aqueous deposition of sulfur globules, formed when fumarolic gases discharged through molten sulfur pools. Similar globules are now being formed by the discharge of fumarolic gases through a sub-aqueous molten sulfur pool in Lake Whangioterangi. (author)

  19. Effects of Different Level and Source of Sulfur Supplement in Close-up diets of Dairy Cows on Blood Metabolites, Colostrums Composition and Liver Performance

    Directory of Open Access Journals (Sweden)

    E Manidari

    2012-01-01

    Full Text Available The 24 maltiparous Holstein dairy cows were allocated in a completely randomized design to study the effects of different level and source of sulfur supplement in close-up diets on blood metabolites, colostrums composition and liver performance. The mean body weight of the cows was 687.9 kg and the mean days until expected calving date was 21.8 d. The first treatment (T1 has contained 0.21% sulfur (DM basis, the second treatment (T2 has contained 0.41% sulfur which supplied entirely through magnesium sulfate and the third treatment (T3 has contained 0.41% sulfur which supplied through a combination of magnesium sulfate and an organic source of sulfur (Mepran. The DMI for pre-calving (P < 0.001 was affected by treatments and T2 showed the lowest DMI among treatments. Colostrums yield, protein, DM and ash significantly decreased in inorganic sulfur supplemented treatment (P < 0.05. Among the blood metabolites, calcium, copper and glucose were decreased in T2 compared with two other treatments (P < 0.05. However, BHBA, NEFA and urea were increased in T2 (P < 0.05. Urine pH was affected with different treatments (P < 0.0001. The both liver enzymes (i.e. AST and CPK were increased supplementing inorganic sulfur showing that inorganic sulfur has potential to decrease liver performance in dairy cows. The results of the present study indicate that although magnesium sulfate (inorganic source has negative effect on dairy cow health and performance, a combination of magnesium sulfate and organic source of sulfur could have positive effects on dry matter intake, blood metabolites and liver health in dairy cows.

  20. Sulfur based electrode materials for secondary batteries

    Science.gov (United States)

    Hao, Yong

    Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes

  1. Advanced Rechargeable Lithium Sulfur Dioxide Cell

    Science.gov (United States)

    1991-11-01

    AD-A274 908IIIIlIIIE McDonald , P. Harris, F. Goebel, S. Hossi ierra, M. Guentert, C. Todino 7 ad r nse TECHNICAL PRODUCTS INCY DTIC ELECTE JAN26 1994...Pawcatuck, CT 06379 94-02298 1425 Best Available Copy I ADVANCED RECHARGEABLE LITHIUM SULFUR DIOXIDE CELL I R.C. McDonald , P. Harris, F. Goebel, S. Hossain...20 minutes. The electrochemical measurements were carried out using a I Starbuck 20-station cycler system which is connected to a computer to monitor

  2. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  3. Reduced graphene oxide encapsulated sulfur spheres for the lithium-sulfur battery cathode

    Directory of Open Access Journals (Sweden)

    Feiyan Liu

    Full Text Available Reduced graphene oxide (rGO encapsulated sulfur spheres for the Li-S batteries were prepared via the redox reaction between sodium polysulfide. XRD spectra showed that the diffraction peak of graphite oxide (GO at 10° disappeared, while the relatively weak diffraction peak at 27° belongs to graphene emerged. FT-IR spectra showed that the vibrations of the functional groups of GO, such as 3603 cm−1, 1723 cm−1and 1619 cm−1 which contributed from OH, COC and CO respectively, disappeared when compared to the spectra of GSC. SEM observations indicated that the optimum experimental condition followed as: mass ratio of GO and S was 1:1, 10% NaOH was used to adjust the pH. EDX analysis showed that the sulfur content reached at 68.8% of the composite material. The resultant electric resistance was nearly less than GO’s resistance in three orders of magnitude under same condition. Further electrochemical performance tests showed a coulombic efficiency was 96% from the first cycle capacity was 827 mAh g−1, to 388 mAh g−1 in the 100 cycles. This study carries substantial significance to the development of Li-S battery cathode materials. Keywords: Lithium-sulfur battery, Graphene, Sulfur spheres, Cathode material

  4. Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries

    Science.gov (United States)

    Yan, Jianhua; Liu, Xingbo

    2016-01-01

    Rechargeable lithium–sulfur (Li–S) batteries are receiving ever‐increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S‐cathodes include low electrical conductivity of S and sulfides, precipitation of nonconductive Li2S2 and Li2S, and poly‐shuttle effects. To determine these degradation factors, a comprehensive study of sulfur cathodes with different amounts of electrolytes is presented here. A survey of the fundamentals of Li–S chemistry with respect to capacity fade is first conducted; then, the parameters obtained through electrochemical performance and characterization are used to determine the key causes of capacity fade in Li–S batteries. It is confirmed that the formation and accumulation of nonconductive Li2S2/Li2S films on sulfur cathode surfaces are the major parameters contributing to the rapid capacity fade of Li–S batteries. PMID:27981001

  5. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g(-1) at 1 C after 100 cycles, and 791 mA h g(-1) at 0.5 C and 551 mA h g(-1) at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g(-1) at 5 C.

  6. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    Science.gov (United States)

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  7. In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content

    Science.gov (United States)

    Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong

    2018-02-01

    SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.

  8. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  9. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  10. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD and Germanium detector (GeD, were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP and particulate matter of less than 10 millionths of a meter (PM10 collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA and principal component analysis (PCA has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD from typical marine sediments (TMS.

  11. A Foldable Lithium-Sulfur Battery.

    Science.gov (United States)

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  12. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD.

    Science.gov (United States)

    Gorgel, Manuela; Bøggild, Andreas; Ulstrup, Jakob Jensen; Weiss, Manfred S; Müller, Uwe; Nissen, Poul; Boesen, Thomas

    2015-05-01

    Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.

  13. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    Science.gov (United States)

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS

  14. Cell Concepts of Metal-Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications.

    Science.gov (United States)

    Medenbach, Lukas; Adelhelm, Philipp

    2017-09-29

    There is great interest in using sulfur as active component in rechargeable batteries thanks to its low cost and high specific charge (1672 mAh/g). The electrochemistry of sulfur, however, is complex and cell concepts are required, which differ from conventional designs. This review summarizes different strategies for utilizing sulfur in rechargeable batteries among membrane concepts, polysulfide concepts, all-solid-state concepts as well as high-temperature systems. Among the more popular lithium-sulfur and sodium-sulfur batteries, we also comment on recent results on potassium-sulfur and magnesium-sulfur batteries. Moreover, specific properties related to the type of light metal are discussed.

  15. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  16. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  17. Using lichens as physiological indicators of sulfurous pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sundstroem, K R; Haellgren, J E

    1973-01-01

    Lichens are known to be extremely sensitive to sulfurous pollutants and have thus disappeared from the regions around urban areas. The authors give the physiological background to this sensitivity and an outline for a test system for sulfurous pollutants based on lichens.

  18. Seed production and dispersal of sulfur cinquefoil in northeast Oregon

    Science.gov (United States)

    Kathleen A. Dwire; Catherine G. Parks; Michael L. McInnis; Bridgett J. Naylor

    2006-01-01

    Sulfur cinquefoil (family Rosaceae) is an invasive, herbaceous perennial, native to Eurasia. It has wide ecological amplitude and has become established throughout North America in numerous habitat types. Sulfur cinquefoil reproduces only by seed (achenes); however, little is known about its regenerative strategy or reproductive biology. To improve understanding of the...

  19. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Lichtenberg, Henning

    2008-07-01

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H 2 S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  20. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Science.gov (United States)

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  1. 40 CFR 52.724 - Control strategy: Sulfur dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur dioxide. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Illinois> § 52.724 Control strategy: Sulfur... Energy Incorporated. This disapproval does not in and of itself result in the growth restrictions of...

  2. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  3. Sulfur pollution: an environmental study of Welland, Ontario

    Science.gov (United States)

    Michael R. Moss

    1977-01-01

    The distribution of sulfur as an environmental pollutant is analysed in the vicinity of Welland, Ontario. A biogeochemical-cycle approach enables areas of excess accumulation to be compared among all linked ecosystem components. Although the patterns of distribution are similar, the amounts of sulfur accumulated in different ecosystems, grassland and woodland, show...

  4. 46 CFR 151.50-55 - Sulfur (molten).

    Science.gov (United States)

    2010-10-01

    ... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-55 Sulfur (molten). (a.... Heat transfer media shall be steam, and alternate media will require specific approval of the... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfur (molten). 151.50-55 Section 151.50-55 Shipping...

  5. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  6. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store...

  7. Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge

    International Nuclear Information System (INIS)

    Wang You; Huang Yaqin; Wang Weikun; Huang Chongjun; Yu Zhongbao; Zhang, Hao; Sun Jing; Wang Anbang; Yuan Keguo

    2009-01-01

    The structural change of the porous sulfur cathode using gelatin as a binder was studied by means of scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The original sulfur cathode exhibited a homogenous distribution of sulfur, carbon and pores. During the discharge process, the pores and elemental sulfur disappeared gradually. However, those changes were reversed and elemental sulfur was reformed after the charge process, which improved the electrochemical performance of lithium-sulfur batteries.

  8. Identification of major planktonic sulfur oxidizers in stratified freshwater lake.

    Directory of Open Access Journals (Sweden)

    Hisaya Kojima

    Full Text Available Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.

  9. Environmental aspects of the combustion of sulfur-bearing fuels

    International Nuclear Information System (INIS)

    Manowitz, B.; Lipfert, F.W.

    1990-01-01

    This paper describes the origins of sulfur in fossil fuels and the consequences of its release into the environment after combustion, with emphasis on the United States. Typical sulfur contents of fuels are given, together with fuel uses and the resulting air concentrations of sulfur air pollutants. Atmospheric transformation and pollutant removal processes are described, as they affect the pathways of sulfur through the environment. The environmental effects discussed include impacts on human health, degradation of materials, acidification of ecosystems, and effects on vegetation and atmospheric visibility. The paper concludes with a recommendation for the use of risk assessment to assess the need for regulations which may require the removal of sulfur from fuels or their combustion products

  10. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    Science.gov (United States)

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  11. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  12. Sulfur impacts on forest health in west-central Alberta

    International Nuclear Information System (INIS)

    Maynard, D.G.; Stadt, J.J.; Mallett, K.I.; Volney, W.J.A.

    1994-01-01

    A study was conducted to evaluate forest health and tree growth in relation to sulfur deposition in mature and immature lodgepole pine and mature trembling aspen. Soil samples were taken in forests near two sour gas processing plants in west-central Alberta. The soil sample sites were classified into high, medium and low deposition classes. The impact of sulfur deposition on soil and foliar chemistry, tree growth, and forest health was evaluated. The analysis of tree growth, using radial increments, revealed no impact associated with the sulfur deposition class. The only indicators of extensive sulfur impacts on major forest communities detected to date are elevated sulfur concentrations in the surface organic horizon and foliage, the proportion of healthy lodgepole pines, and a depression in the annual specific volume increment. No evidence of widespread forest decline has been found. 42 refs., 35 tabs., 29 figs

  13. Effect of sulfur removal on scale adhesion to PWA 1480

    International Nuclear Information System (INIS)

    Smialek, J.L.; Tubbs, B.K.

    1995-01-01

    A commercial superalloy, PWA 1480, was annealed in hydrogen at 1,000 C to 1,300 C in order to remove a 10 ppmw sulfur impurity. This treatment was very successful above 1,200 C, resulting in residual sulfur contents below 0.1 ppmw. The degree of scale adhesion in subsequent 1,100 C cyclic oxidation tests was inversely related to residual sulfur content. Control of adhesion by desulfurization in the absence of reactive elements supports an adhesion mechanism based on oxide-metal bonding weakened by sulfur segregation. Attempts at sulfur purging and improving adhesion by repeated oxidation/polishing were not successful, in contrast to previous studies on NiCrAl

  14. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  15. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  16. Sulfur in zircons: A new window into melt chemistry

    Science.gov (United States)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  17. [Sulfur dioxide limit standard and residues in Chinese medicinal materials].

    Science.gov (United States)

    Kang, Chuan-Zhi; Yang, Wan-Zhen; Mo, Ge; Zhou, Li; Jiang, Jing-Yi; Lv, Chao-Geng; Wang, Sheng; Zhou, Tao; Yang, Ye; Guo, Lan-Ping

    2018-01-01

    The traditional sulfur fumigation processing method has been widely used in the initial processing and storage of traditional Chinese medicinal materials due to its economy, efficiency, convenience, high operability and effect on mold and insect prevention. However, excessive sulfur fumigation of traditional Chinese medicinal materials would lead to the changes in chemical compositions, and even endanger human health. This study showed that traditional Chinese medicinal materials were sulfur fumigated directly after being harvested for quick drying, or fumigated after being weted in the storage process for preventing mold and insects. We found that the sulfur dioxide limits for traditional Chinese medicinal materials were stricter than those for foods. Based on the existing limit standards, we obtained the data of sulfur dioxide residues for 35 types of traditional Chinese medicinal materials in a total of 862 batches. According to the limit standard in the Chinese Pharmacopoeia (150, 400 mg·kg⁻¹), the average over-standard rate of sulfur dioxide was as high as 52.43%, but it was reduced to 29.47% if calculated based on the limit for vegetable additive standard (500 mg·kg⁻¹). Sulfur fumigation issue shall be considered correctly: sulfur dioxide is a type of low toxic substance and less dangerous than aflatoxin and other highly toxic substances, and a small amount of residue would not increase the toxicity of traditional Chinese medicinal materials. However, sulfur fumigation might change the content of chemical substances and affect the quality of traditional Chinese medicinal materials. Furthermore, the exposure hazards of toxic substances are comprehensively correlated with exposure cycle, exposure frequency, and application method. In conclusion, it is suggested to strengthen the studies on the limit standard of traditional Chinese medicinal materials, formulate practical and feasible limit standard for sulfur dioxide residues in traditional Chinese

  18. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  19. Biogeochemistry of the sulfur oxidizer Thiomicrospira thermophila

    Science.gov (United States)

    Houghton, J.; Fike, D. A.; Wills, E.; Foustoukos, D.

    2013-12-01

    Near-seafloor hydrothermal environments such as diffuse flow venting or subsurface mixing are characterized by rapidly changing conditions and steep chemical and thermal gradients. Microorganisms living in these environments can take advantage of these changes by switching among metabolic pathways rather than specializing. We present reaction stoichiometry and rates for T. thermophila grown in a closed system both at ambient and elevated pressure (50 bars) that demonstrate substantial metabolic flexibility, shifting between up to 5 different sulfur cycling reactions over a 24 hour period. Based on the stoichiometry between S2O3 consumed and SO4 produced, three reactions are sulfur oxidation and two are disproportionation, which has not previously been demonstrated for Thiomicrospira strains. Reactants include S2O3, elemental S (both polymeric S chains and S8 rings), HS-, and O2, while products include polymeric elemental S, SO4, HS-, and polysulfides. The presence of μmolal concentrations of HS- has been confirmed during the time series only when stoichiometry predicts disproportionation. Production of HS- in the presence of elemental S results in abiotic conversion to polysulfides, keeping the sulfide concentrations low in solution. The transition from oxidation to disproportionation appears to be triggered by a depletion in dissolved oxygen and the rate of reaction is a second order function of S2O3 and O2 concentrations. Growth was tested at conditions spanning their pH tolerance (5.0 - 8.0) using a citrate buffer (pH 5.0), unbuffered media (initial pH 7.0), and Tris buffer (pH 8.0). The highest rates are observed at pH 8.0 with rates decreasing as a function of pH. The lowest rate occurs at pH 5.0 and exhibits pseudo-first order behavior over a 24 hour period, likely due to a long lag and very slow growth. Repeat injections after the culture is acclimated to the experimental conditions result in very high pseudo-first order rates due to rapid consumption of

  20. Neoproterozoic sulfur-isotope variation in Australia

    International Nuclear Information System (INIS)

    Gorjan, P.; Walter, M.R.

    2000-01-01

    A number of stages are apparent in sulfur-isotope geochemistry throughout the Neoproterozoic. Prior to the Sturtian glaciation (840-700 Ma) δ 34 S sulfate varied little (19 to 17.5 per mil), and δ 34 S sulfide ranged from -20 to +23 per mil. In the Bitter Springs Formation δ 34 S sulfide is greater in the non-marine portion compared to the marine portion. This can be explained by a paucity of sulfate in the non-marine waters, and is consistent with mineralogical evidence (Southgate, 1991). In the Sturtian glacial sediments δ 34 S sulfide starts below 0 per mil and rises to >30 per mil at the top of the glacial sediments. After the Sturtian glaciation δ 34 S sulfide averages ∼30 per mil (and 34 per mil for δ 34 S organic ) for the extent of silt deposition. This increase in δ 34 S sulfide also appears in China, Canada and Namibia (Gorjan et al., 2000). δ 34 S sulfate also rises but is lower than the average δ 34 S sulfate (5 sulfate nodules in the Tapley Hill Formation average 26 per mil). However, the sulfate nodules may not be preserving the original seawater δ 34 S sulfate 34 S enrichment in sulfides usually occurs in freshwater or euxinic settings, but all evidence points to a sulfate-rich and non-euxinic environment in the Sturtian post-glacial deposits (linear %C vs. %S plots; high FeS 2 :FeS ratios; low degree of pyritisation; Gorjan et al. 2000, Gorjan, 1998). Such a situation points to sulfides being formed from extremely 34 S enriched sulfate (perhaps up to 45 per mil). This global rise in δ 34 S of both sulfur fractions in the Sturtian postglacial has led us to speculate that 34 S enriched sulfate was formed beneath a stagnant, ice-covered ocean, an environment postulated by Hoffman (1998), during the Sturtian glaciation and was brought to shallower waters in an ocean-upwelling event. Sulfide depleted in 34 S may have been deposited on abyssal plains. δ 34 S sulfide and δ 34 S sulfate falls sharply at the conclusion of siltstone deposition

  1. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds.

    Science.gov (United States)

    Finster, Kai Waldemar; Kjeldsen, Kasper Urup; Kube, Michael; Reinhardt, Richard; Mussmann, Marc; Amann, Rudolf; Schreiber, Lars

    2013-04-15

    Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.

  2. Garlic Sulfur Compounds Suppress Cancerogenesis and Oxidative Stress: a Review

    Directory of Open Access Journals (Sweden)

    Dvořáková M.

    2015-06-01

    Full Text Available Garlic has long been considered a food with many health benefits. Several studies have confirmed that sulfur compounds are responsible for the positive effects of garlic on organisms. Garlic acts as an antioxidant by increasing antioxidant enzyme activity, reducing reactive oxygen species generation, and protecting proteins and lipids from oxidation. Garlic suppresses carcinogenesis through several mechanisms: (1 it reduces oxidative stress, and therefore, prevents damage to DNA; (2 it induces apoptosis or cell cycle arrest in cancer cells; and (3 it modifies gene expression through histon acetylation. The positive effects of garlic could be mediated by several mechanisms. It influences signalling pathways of gasotransmitters such as hydrogen sulfide. Garlic enhances hydrogen sulfide production both through its direct release and through an increase in activity of enzymes which produce hydrogen sulfide. Hydrogen sulfide acts as a signalling molecule in various tissues and participates in the regulation of many physiological processes. We can presume that garlic, which is able to release hydrogen sulfide, exhibits effects similar to those of this gasotransmitter.

  3. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Icpyo [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo; Ahn, Jou-Hyeon [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Ryu, Ho-Suk [Department of Material and Energy Engineering, Gyeongwoon University, 730, Gangdong-ro, Sandong-myeon, Gumi, Gyeongbuk, 39160 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-10-15

    Highlights: • The sulfur/activated carbon composite is fabricated using commercial activated carbons. • The sulfur/activated carbon composite with coal shows the best performance. • The Li/S battery has capacities of 1240 mAh g{sup −1} at 1 C and 567 mAh g{sup −1} at 10 C. - Abstract: We prepared sulfur/active carbon composites via a simple solution-based process using the following commercial activated carbon-based materials: coal, coconut shells, and sawdust. Although elemental sulfur was not detected in any of the sulfur/activated carbon composites based on Thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy, Energy-dispersive X-ray spectroscopy results confirmed its presence in the activated carbon. These results indicate that sulfur was successfully impregnated in the activated carbon and that all of the activated carbons acted as sulfur reservoirs. The sulfur/activated carbon composite cathode using coal exhibited the highest discharge capacity and best rate capability. The first discharge capacity at 1 C (1.672 A g{sup −1}) was 1240 mAh g{sup −1}, and a large reversible capacity of 567 mAh g{sup −1} was observed at 10 C (16.72 A g{sup −1}).

  4. MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES

    NARCIS (Netherlands)

    DEWIT, R; VANDENENDE, FP; VANGEMERDEN, H

    A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur

  5. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

    Directory of Open Access Journals (Sweden)

    Lijing Jiang

    2017-12-01

    Full Text Available Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C, alkaline pH (optimal pH 8.0, microaerobic conditions (optimal 4% O2, and reduced sulfur compounds (e.g., sulfide, optimal 100 μM. Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep

  6. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains...... product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two...... in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic...

  7. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  8. Níveis de proteína bruta e de aminoácidos sulfurados totais sobre o desempenho, a qualidade dos ovos e a excreção de nitrogênio de poedeiras de ovos marrons Levels of protein and sulfur amino acids on performance, egg quality and nitrogen excretion of brown egg laying hens

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Pavan

    2005-04-01

    Full Text Available O experimento foi conduzido com o objetivo de maximizar a produção e a qualidade dos ovos e minimizar a excreção de nitrogênio nas excretas de poedeiras no final do primeiro ciclo de produção, por meio do fornecimento de aporte adequado de proteína bruta (PB e aminoácidos sulfurados totais (AAST na dieta. Foram utilizadas 432 poedeiras Isa Brown, com 52 semanas de idade, distribuídas em delineamento inteiramente casualizado, em esquema fatorial 3 x 3 (PB e AAST e nove tratamentos (14 e 0,57; 14 e 0,64; 14 e 0,71; 15,5 e 0,57; 15,5 e 0,64; 15,5 e 0,71; 17 e 0,57; 17 e 0,64; 17 e 0,71 % de PB e AAST, respectivamente, com seis repetições de oito aves cada. A duração do experimento foi de 140 dias. Foram avaliadas as características de desempenho, qualidade dos ovos e excreção de nitrogênio nas excretas. A única característica de desempenho influenciada pelos tratamentos foi o peso dos ovos, que apresentou os maiores valores para as combinações de 15,5 e 0,71; 17 e 0,71; 15,5 e 0,64; 14 e 0,71 e 17 e 0,64% de PB e AAST, respectivamente. Não foram observadas diferenças significativas para consumo de ração, porcentagem de postura e de ovos quebrados, massa de ovos, conversão alimentar por dúzia e por massa de ovos e mortalidade. Para os parâmetros de qualidade dos ovos, foram observadas diferenças significativas apenas para as porcentagens de gema e de albúmem. A excreção de nitrogênio foi maior nas aves alimentadas com as rações contendo 17% de PB. Pode-se sugerir que a ração contendo 14% de PB e 0,57% de AAST pode ser utilizada, sem prejuízos no desempenho e na qualidade dos ovos, e ainda contribui para a redução da excreção de nitrogênio no ambiente e do custo da ração.The aim of the study was to maximize the egg production and quality and minimize nitrogen excretion of laying hens in the end of the first production cycle through the supply of adequate levels of crude protein (CP and total sulfur amino

  9. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery

    Science.gov (United States)

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K.; Smith, Douglas Y.; Söderberg, Christopher A. G.; Al-Karadaghi, Salam; Thompson, James R.; Isaya, Grazia

    2016-01-01

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. PMID:26941001

  10. Degradation and dielectric properties of sulfur hexafluoride

    International Nuclear Information System (INIS)

    Fluck, Eric

    1985-01-01

    Sparking potential of sulfur hexafluoride is studied as a function of its decomposition by electrical discharges. The analysis of the gas is performed by mass spectrometry. The quantity of products resulting from spark discharges as a function of charge transported is plotted for SO_2F_2, SiF_4, SOF_4; it shows a linear increase with charge transported. Production rates of fluoride gases strongly increase with quantity of water vapor present at the beginning of the spark discharges. Decomposition of the gas, even at high levels (20%) does not exhibit measurable variations of sparking potential (at constant pressure). Production of SiF_4 by degradation of glass walls by hydrofluoric acid produced by discharges shows the important role played by this acid in the decomposition of the gas. It is necessary to use a gas containing water impurities at a level as small as possible. (author)

  11. Volatile Sulfur Compounds from Livestock Production

    DEFF Research Database (Denmark)

    Kasper, Pernille

    . Presently, the development of abatement technologies is limited by the lack of an accurate and reliable method for quantifying the effect on odor. To measure the impact of air cleaning techniques on perceived odor, common practice in Europe is to store odor samples in sample bags and quantify them......Volatile sulfur compounds, i.e. hydrogen sulfide, methanethiol and dimethyl sulfide have been identified as key odorants in livestock production due to their high concentration levels and low odor threshold values. At the same time their removal with abatement technologies based on mass transfer...... from a gas phase to a liquid phase, e.g. biotrickling filters, is decelerated due to their low partitioning coefficients. This can significantly limit the odor reduction obtained with these technologies. The present study examines the possibility of adding metal catalysts to enhance the mass transfer...

  12. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  13. Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies

    International Nuclear Information System (INIS)

    Ganesan, Aswathi; Varzi, Alberto; Passerini, Stefano; Shaijumon, Manikoth M.

    2016-01-01

    Highlights: • Graphene-derived carbon (GDC) with distinctive porosity characteristics are prepared. • Effect of micro-/mesoporosity of GDC for improved Li-S battery performance is studied. • Impedance studies reveal insights into Li-S redox reactions and capacity fading phenomena. - Abstract: Sulfur nanocomposites are prepared by using graphene derived carbon (GDC), with controlled porosity characteristics, as confining matrix and are studied as efficient cathodes for lithium-sulfur (Li-S) batteries. To understand the effect of micro-/mesoporosity in porous carbon for the effective encapsulation of sulfur and polysulfides towards improved Li-S battery performance, two different GDC samples with controlled porosity characteristics, one with predominantly micropores (GDC-1) and a surface area of 1970 m 2 g −1 and the other with a surface area of 3239 m 2 g −1 , having more or less equal contribution of micro- and mesopores (GDC-2), are used to synthesize nanocomposite sulfur electrodes following melt diffusion process. Electrochemical studies are carried out by using cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). EIS spectra collected at different depth of discharge (DOD) in the first cycle as well as upon cycling give valuable insights into the Li-S redox reactions and capacity fading phenomena in these electrodes. The impedance response of GDC-S electrodes suggests a detrimental effect of the mesopores, where insoluble reaction products can easily accumulate, resulting in the loss of active material leading to capacity fading of Li-S cells.

  14. A neogene seawater sulfur isotope age curve from calcareous pelagic microfossils

    International Nuclear Information System (INIS)

    Burdett, J.W.; Arthur, M.A.; Richardson, M.

    1989-01-01

    Until now, our knowledge of the sulfur isotopic composition of seawater through geologic time has depended on stable isotopic analysis of sulfate from evaporites. Owing to the sporadic occurrence of evaporites through time, the secular sulfur isotope age curve contains many gaps with little or no data. In order to fill in some of these gaps, particularly the Neogene, we have analyzed the sulfur isotopic composition of carbonate-associated sulfate in carbonate tests of planktonic foraminifera. Other investigators have shown that sulfate may occur in biogenic calcites either lattice-bound, as micro-fluid inclusions, in adsorbed phases, or as protein polysaccharides. Whatever the origin, the sulfur isotopic composition of this sulfate appears to be representative of that of the water in which the organism lived, as shown by results on recent calcareous foraminifera and macrofossils. Using this approach for study of Miocene to Recent pelagic marine sediments supplemented by new data for Miocene marine evaporites from the Gulf of Suez, we have found that the δ 34 S of seawater has decreased about 2.5per mille over the past 25 m.y. and that most of the decrease has occurred over the past 5 m.y., paralleling a decrease in the δ 13 C of dissolved oceanic bicarbonate from the same interval. Sedimentary redox models based on isotope records suggest that organic carbon and sulfide burial have both decreased over the past 5 m.y. Alternatively, an increase in weathering rates over the past 5 m.y. would not require a decrease in organic carbon or sulfide burial as long as the isotopic effect of the increased river input exceeds the isotopic effect of the burial of the reduced species. In either case, the net result would be a decrease in atmospheric p O2 . (orig.)

  15. Nitrogen-doped graphene nanosheets/sulfur composite as lithium–sulfur batteries cathode

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yong [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States); Li, Xifei; Sun, Xueliang [Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, Western University, London, Ontario N6A 5B9 (Canada); Energy and Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Wang, Chunlei, E-mail: wangc@fiu.edu [Department of Mechanical and Materials Engineering, Florida International University, 10555 W. Flagler Street, Miami, FL 33174 (United States)

    2016-11-15

    Highlights: • NGNSs are synthesized with amino-N and pyridine-N-oxide groups. • NGNSs provide a matrix with high surface area and conductivity. • N groups facilitate immobilization of polysulfides for Li–S batteries. - Abstract: Lithium–sulfur batteries have been receiving unprecedented attentions in recent years due to their exceptional high theoretical capacity and energy density, low cost and environmental friendliness. Yet their practical applications are still hindered by short cycle life, low efficiency and poor conductivity which are mainly caused by the insulating nature of sulfur and dissolution of polysulfides. Here, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs was employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g{sup −1} and a reversible capacity of 319.3 mAh g{sup −1} at 0.1 C with good recoverable rate capability.

  16. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2018-01-01

    Full Text Available A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide aerogel (S/AC/GA cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V.

  17. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries

    Science.gov (United States)

    Li, Haipeng; Sun, Liancheng; Wang, Zhuo; Zhang, Yongguang; Tan, Taizhe; Wang, Gongkai

    2018-01-01

    A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V. PMID:29373525

  18. Advanced biotherapy for the treatment of sulfur mustard poisoning.

    Science.gov (United States)

    Sun, Mingxue; Yang, Yuyan; Meng, Wenqi; Xu, Qingqiang; Lin, Fengwu; Chen, Yongchun; Zhao, Jie; Xiao, Kai

    2018-04-25

    Sulfur mustard (SM), a bifunctional alkylating agent, can react with a variety of biochemical molecules (DNA, RNA, proteins and other cell components) to cause a series of serious health issues or even death. Although a plethora of research has been done, the pathogenesis of SM poisoning has yet to be fully understood due to its high complexity. As a consequence, a specific antidote has not yet been developed and the treatment of SM poisoning remains a medical challenge. In recent years, various biological products and cell transplantation in the treatment of SM poisoning offered a significant clinical treatment progress. By highlighting these and other research studies, we hereby summarize the progress in this field in an effort to provide useful information on the clinical treatment of SM poisoning. This review summarizes the major advances of SM poisoning therapy by means of biological products (peptide and protein drugs, polysaccharides drugs, nucleic acid drugs, etc.), and cell transplantation (e.g., bone marrow, limbal stem cells, mesenchymal stem cells), as well as other relevant biotherapeutic approaches. We searched the database PubMed for published domestic and international articles using web based resources for information on histological, immunochemical, ultrastructural, and treatment features of SM-induced manifestations in both animal models and human tissues. To this end, we applied keywords containing mustard gas, chemical warfare, SM, eye, lung and skin. Our review provides a comprehensive understanding of the advances of available biotherapies in SM poisoning, and its potential for the treatment of SM-induced injuries. Potentially, our review will provide new insights for future research studies in this field. Copyright © 2018. Published by Elsevier B.V.

  19. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea.

    Science.gov (United States)

    Kletzin, Arnulf; Urich, Tim; Müller, Fabian; Bandeiras, Tiago M; Gomes, Cláudio M

    2004-02-01

    The oxidation and reduction of elemental sulfur and reduced inorganic sulfur species are some of the most important energy-yielding reactions for microorganisms living in volcanic hot springs, solfataras, and submarine hydrothermal vents, including both heterotrophic, mixotrophic, and chemolithoautotrophic, carbon dioxide-fixing species. Elemental sulfur is the electron donor in aerobic archaea like Acidianus and Sulfolobus. It is oxidized via sulfite and thiosulfate in a pathway involving both soluble and membrane-bound enzymes. This pathway was recently found to be coupled to the aerobic respiratory chain, eliciting a link between sulfur oxidation and oxygen reduction at the level of the respiratory heme copper oxidase. In contrast, elemental sulfur is the electron acceptor in a short electron transport chain consisting of a membrane-bound hydrogenase and a sulfur reductase in (facultatively) anaerobic chemolithotrophic archaea Acidianus and Pyrodictium species. It is also the electron acceptor in organoheterotrophic anaerobic species like Pyrococcus and Thermococcus, however, an electron transport chain has not been described as yet. The current knowledge on the composition and properties of the aerobic and anaerobic pathways of dissimilatory elemental sulfur metabolism in thermophilic archaea is summarized in this contribution.

  20. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  1. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  2. Sulfur degassing due to contact metamorphism during flood basalt eruptions

    Science.gov (United States)

    Yallup, Christine; Edmonds, Marie; Turchyn, Alexandra V.

    2013-11-01

    We present a study aimed at quantifying the potential for generating sulfur-rich gas emissions from the devolatilization of sediments accompanying sill emplacement during flood basalt eruptions. The potential contribution of sulfur-rich gases from sediments might augment substantially the magma-derived sulfur gases and hence impact regional and global climate. We demonstrate, from a detailed outcrop-scale study, that sulfur and total organic carbon have been devolatilized from shales immediately surrounding a 3-m thick dolerite sill on the Isle of Skye, Scotland. Localized partial melting occurred within a few centimetres of the contact in the shale, generating melt-filled cracks. Pyrite decomposed on heating within 80 cm of the contact, generating sulfur-rich gases (a mixture of H2S and SO2) and pyrrhotite. The pyrrhotite shows 32S enrichment, due to loss of 34S-enriched SO2. Further decomposition and oxidation of pyrrhotite resulted in hematite and/or magnetite within a few cm of the contact. Iron sulfates were produced during retrogressive cooling and oxidation within 20 cm of the contact. Decarbonation of the sediments due to heating is also observed, particularly along the upper contact of the sill, where increasing δ13C is consistent with loss of methane gas. The geochemical and mineralogical features observed in the shales are consistent with a short-lived intrusion, emplaced in desulfurization, as well as decarbonation, of shales adjacent to an igneous intrusion. The liberated fluids, rich in sulfur and carbon, are likely to be focused along regions of low pore fluid pressure along the margins of the sill. The sulfur gases liberated from the sediments would have augmented the sulfur dioxide (and hydrogen sulfide) yield of the eruption substantially, had they reached the surface. This enhancement of the magmatic sulfur budget has important implications for the climate impact of large flood basalt eruptions that erupt through thick, volatile-rich sedimentary

  3. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  4. Non-mass-dependent fractionation of sulfur and oxygen isotopes during UV photolysis of sulfur dioxide

    Science.gov (United States)

    Pen, Aranh

    Since the discovery of anomalous sulfur isotope abundance in the geological record in sulfate and sulfide minerals (Farquhar et al., 2000), much effort has been put into understanding their origin to provide new insights into the environmental conditions on the early Earth (Farquhar et al., 2001; Pavlov and Kasting, 2002; Ono et al., 2003; Zahnle et al., 2006; Farquhar et al., 2007; Lyons, 2007; Lyons, 2008). This discovery gained immense interest because of its implications for both the lack of oxygen in the atmosphere during the Archean era 2.5-3.8 Gya (billion years ago), and for rise of oxygen, or the "Great Oxidation Event", that occurred 2.2-2.4 Gya (Holland, 2002). These signatures are believed to be produced in an anticorrelation to oxygen abundance in the early atmosphere, which will aid in quantifying the rate of oxygenation during the "Great Oxidation Event". According to Farquhar et al. (2000), the non-mass-dependent (NMD), or anomalous, fractionation signatures were produced by photochemical reactions of volcanic sulfur species in Earth's early atmosphere (> 2.3 Gya) due to the lack of an oxygen and ozone shield, resulting in an atmosphere transparent to solar ultraviolet (UV) radiation (Farquhar et al., 2001). Interpretation of the anomalous rock records, though, depends on the identification of (1) chemical reactions that can produce the NMD signature (Farquhar and Wing, 2003); and (2) conditions necessary for conversion of the gas-phase products into solid minerals (Pavlov and Kasting, 2002). The focus of my research addresses the first step, which is to determine whether the chemical reactions that occurred in Earth's early atmosphere, resulting in NMD fractionation of sulfur isotopes, were due to broadband UV photochemistry, and to test isotopic self-shielding as the possible underlying mechanism. In this project, our goals were to test isotopic self-shielding during UV photolysis as a possible underlying mechanism for anomalous sulfur isotopic

  5. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    Science.gov (United States)

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  6. Biological activity of soils strongly polluted with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Krol, M; Maliszewska, W; Siuta, J

    1972-01-01

    Studies were carried out on soils strongly polluted with sulfur and acidified (to pH 1.4). The soils were subjected to an intensive liming. In field and pot experiments, the authors determined: the total quantity of bacteria, actinomycetes, fungi, azotobacter, nitrifiers, proteolytic activity of microorganisms, activity of ammonifiers and the number of sulfur-oxidizing and sulfate-reducing bacteria. It was found that intensive liming of sulfur-affected soils restored their biological activity. 8 references, 5 figures, 1 table.

  7. Morphological study of silver corrosion in highly aggressive sulfur environments

    DEFF Research Database (Denmark)

    Minzari, Daniel; Jellesen, Morten Stendahl; Møller, Per

    2011-01-01

    A silicone coated power module, having silver conducting lines, showed severe corrosion, after prolonged use as part of an electronic device in a pig farm environment, where sulfur containing corrosive gasses are known to exist in high amounts. Permeation of sulfur gasses and humidity through...... the silicone coating to the interface has resulted in three corrosion types namely: uniform corrosion, conductive anodic filament type of Ag2S growth, and silver migration with subsequent formation of sulfur compounds. Detailed morphological investigation of new and corroded power modules was carried out...

  8. Release of Chlorine and Sulfur during Biomass Torrefaction and Pyrolysis

    DEFF Research Database (Denmark)

    Saleh, Suriyati Binti; Flensborg, Julie Pauline; Shoulaifar, Tooran Khazraie

    2014-01-01

    The release of chlorine (Cl) and sulfur (S) during biomass torrefaction and pyrolysis has been investigated via experiments in two laboratory-scale reactors: a rotating reactor and a fixed bed reactor. Six biomasses with different chemical compositions covering a wide range of ash content and ash...... reporting that biomasses with a lower chlorine content release a higher fraction of chlorine during the pyrolysis process. A significant sulfur release (about 60%) was observed from the six biomasses investigated at 350 degrees C. The initial sulfur content in the biomass did not influence the fraction...

  9. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  10. Sulfur mobilization in cyanobacteria: the catalytic mechanism of L-cystine C-S lyase (C-DES) from synechocystis.

    Science.gov (United States)

    Campanini, Barbara; Schiaretti, Francesca; Abbruzzetti, Stefania; Kessler, Dorothea; Mozzarelli, Andrea

    2006-12-15

    Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.

  11. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  12. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    Science.gov (United States)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  13. Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS.

    Science.gov (United States)

    Tengölics, Roland; Mészáros, Lívia; Győri, E; Doffkay, Zsolt; Kovács, Kornél L; Rákhely, Gábor

    2014-10-01

    Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. High Mass-Loading of Sulfur-Based Cathode Composites and Polysulfides Stabilization for Rechargeable Lithium/Sulfur Batteries

    International Nuclear Information System (INIS)

    Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay

    2015-01-01

    Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).

  15. 40 CFR 80.200 - What gasoline is subject to the sulfur standards and requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What gasoline is subject to the sulfur... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.200 What gasoline is subject to the sulfur standards and requirements? For the purpose of...

  16. Bioleaching of metals from soils or sediments using the microbial sulfur cycle

    NARCIS (Netherlands)

    Tichy, R.

    1998-01-01

    Reduced inorganic sulfur species like elemental sulfur or sulfide are sensitive to changes in oxidative environments. Generally, inorganic reduced sulfur exists in natural environments in a solid phase, whereas its oxidation leads to sulfur solubilization and a production of acidity. This

  17. Multiphysics Modelling of Sodium Sulfur Battery

    Science.gov (United States)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that

  18. Induction of ovoviviparity in Rhabditis by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J T; Tsui, R K

    1968-01-01

    While investigating the influence of atmospheric pollutants on soil and plant microbiotas, ovoviviparity was observed in the saprophagous nematode, Rhabditis sp., after exposure to various concentrations of sulfur dioxide.

  19. Preliminary study of varietal susceptibility to sulfur dioxide

    International Nuclear Information System (INIS)

    Miller, J.E.; Xerikos, P.B.

    1976-01-01

    The injury response of plants to air pollutants, such as sulfur dioxide, is known to vary in severity and type for different varieties or cultivars of a species. Differences in the susceptibility of soybean varieties to sulfur dioxide have previously been noted, but sufficient information is not available concerning the sulfur dioxide resistance of varieties commonly grown in the Midwest. Results are reported from preliminary experiments concerning acute sulfur dioxide effects on 12 soybean varieties. The injury symptoms ranged from cream colored necrotic lesions (generally on younger leaves) to a reddish brown necrotic stipling (on older leaves). Differences in the severity of symptom development for the varieties was evident on both the younger and older leaves. No injury was apparent with three of the varieties

  20. Sulfur and octane trade off in FCC naphta conventional hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Badra, C. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Perez, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Salazar, J.A. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Cabrera, L. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion; Gracia, W. [INTEVEP S.A. Research and Technological Support Center of Petroleos de Venzuela, Caracas (Venezuela). Dept. de Refinacion

    1997-06-01

    A model to predict the change of octane numbers expected in an FCC naphtha hydrotreating process as a function of the hydroprocessing severity (degree of sulfur removal) and the type of naphtha (expressed as the sulfur content and bromine number in the feedstock) is presented. When considering hydrotreating as an option for processing their catalytic naphthas, refiners search for the proper balance between the desired reduction of sulfur and olefins and the resulting undesired reduction of octane (RON and MON). In doing so, refiners should study the possibility of performing the hydrotreating at mild severities and/or the possibility of fractionating FCC naphthas to just treat a specific cut. This paper provides simple tools to study and analyze these study cases and to assess the sulfur-octane trade offs. (orig.)

  1. Nanomaterials: Science and applications in the lithium–sulfur battery

    KAUST Repository

    Ma, Lin; Hendrickson, Kenville E.; Wei, Shuya; Archer, Lynden A.

    2015-01-01

    of electricity from intermittent sources. Among the various electrochemical energy storage options under consideration, rechargeable lithium-sulfur (Li-S) batteries remain the most promising platform for reversibly storing large amounts of electrical energy

  2. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg -1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The production of sulfur targets for gamma-ray spectroscopy

    CERN Document Server

    Greene, J P

    2002-01-01

    The production of thin sulfur targets for nuclear physics, either in elemental or in compound form, is problematic, due to low melting points, high vapor pressures and high dissociation rates. Many sulfur compounds have been tried in the past without great success. In this paper, we report the use of spray coating molybdenum disulfide onto a thin carbon backing. The targets were of thickness 750 mu g/cm sup 2 (approx 300 mu g/cm sup 2 of sulfur) on 15 mu g/cm sup 2 carbon backings, and withstood 4 pnA (approx 10 mW/cm sup 2) of deposited beam power for several days without apparent loss of sulfur content.

  4. New treating processes for sulfur-containing natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Kislenko, N.; Aphanasiev, A.; Nabokov, S.; Ismailova, H. [VNIIGAS, Moscow (Russian Federation)

    1996-12-31

    The traditional method of removing H{sub 2}S from sour natural gases is first to treat the gas with a solvent and then to recover the H{sub 2}S from the sour stream in a Claus plant. This method recovers up to 97% of the sulfur when a three-stage Claus unit is employed. Amine/Claus units have operating difficulties for small sulfur capacities (up to 5 tons/day) because the operation of the fired equipment (reaction furnace) is much more difficult. Therefore, for small scale sulfur recovery plants redox processes which exhibit a significant reduction in investment and operating costs are normally used. Many different factors influence the choice of gas desulfurization technology--composition and gas flow, environmental sulfur recovery requirements and CO{sub 2}/H{sub 2}S ratio.

  5. Structure and Characterization of Proteins and Enzymes Involved in Nucleotide Metabolism and Iron-Sulfur Proteins

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Ooi, Bee Lean

    , a program named MyCrystals has been developed to keep track of crystallization trials and results. The program combines pictures with crystallization conditions and is able to sort the pictures based on selected conditions. MyCrystals was used extensively throughout this work and allows for an overview...

  6. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    Science.gov (United States)

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  7. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  8. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  9. Tillandsia recurvata L. as a bioindicator of sulfur atmospheric pollution

    OpenAIRE

    Graciano, Corina; Fernández, L V; Caldiz, D O

    2003-01-01

    Tillandsia recurvata L. is an epiphyte that absorbs nutrients from the air, so it could be used as a bioindicator of atmospheric sulfur pollution. In order to test this idea, Tillandsia recurvata samples were seasonally collected for two years at three sites of La Plata, Buenos Aires Province, Argentina, in a suburban park and in a rural area 60 km away from the city. Macro- and microscopic observations were carried out and chlorophyll and sulfur concentrations of the tissue were measured to ...

  10. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  11. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    Science.gov (United States)

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  12. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  13. Effects of sulfur dioxide on conifers

    Energy Technology Data Exchange (ETDEWEB)

    Govi, G.; Tagliani, F.; Cimino, A.

    1974-01-01

    Trials on the resistance of several conifer and oak species to the effects of sulfur dioxide at different concentrations and moisture levels were conducted. 72 combinations were experimented. The damages began to appear under the following conditions: Abies alba: 0.3 ppm, 25/sup 0/C, 70% ur after 24 hours; Picea excelsa: 0.3 ppm, 15/sup 0/C, 70-95% ur after 24 hours; Cedrus deodara: 0.3 ppm, 15/sup 0/C, 95% ur after 48 hours; Pinus pinea: 0.3 ppm, 15/sup 0/C, 70-95% after 72 hours; Pinus strobus 0.3 ppm, 25/sup 0/C, 70-95%, after 48 hours; Pinus pinaster: similar to the former; Pinus nigra: 2 ppm, 25/sup 0/C, 70-95%, ur after 5 days; Cupressus arizonica and C. semperivirens: 2 ppm, 25%/sup 0/C, 90% ur after 72 hours; Quercus robur: 5 ppm, 25/sup 0/C, 90% ur, after 10 days. 6 references, 3 figures, 1 table.

  14. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  15. Recent advances in lithium-sulfur batteries

    Science.gov (United States)

    Chen, Lin; Shaw, Leon L.

    2014-12-01

    Lithium-sulfur (Li-S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg-1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li-S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li-S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li-S cells, but also we cover some of our proposals for engineering of Li-S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li-S batteries in the near future.

  16. Sensing Free Sulfur Dioxide in Wine

    Science.gov (United States)

    Monro, Tanya M.; Moore, Rachel L.; Nguyen, Mai-Chi; Ebendorff-Heidepriem, Heike; Skouroumounis, George K.; Elsey, Gordon M.; Taylor, Dennis K.

    2012-01-01

    Sulfur dioxide (SO2) is important in the winemaking process as it aids in preventing microbial growth and the oxidation of wine. These processes and others consume the SO2 over time, resulting in wines with little SO2 protection. Furthermore, SO2 and sulfiting agents are known to be allergens to many individuals and for that reason their levels need to be monitored and regulated in final wine products. Many of the current techniques for monitoring SO2 in wine require the SO2 to be separated from the wine prior to analysis. This investigation demonstrates a technique capable of measuring free sulfite concentrations in low volume liquid samples in white wine. This approach adapts a known colorimetric reaction to a suspended core optical fiber sensing platform, and exploits the interaction between guided light located within the fiber voids and a mixture of the wine sample and a colorimetric analyte. We have shown that this technique enables measurements to be made without dilution of the wine samples, thus paving the way towards real time in situ wine monitoring. PMID:23112627

  17. Sulfur dioxide emissions and sectorial contributions to sulfur deposition in Asia

    Science.gov (United States)

    Arndt, Richard L.; Carmichael, Gregory R.; Streets, David G.; Bhatti, Neeloo

    Anthropogenic and volcanic emissions of SO 2 in Asia for 1987-1988 are estimated on a 1° × 1° grid. Anthropogenic sources are estimated to be 31.6 Tg of SO 2 with the regions' volcanoes emitting an additional 3.8 Tg. For Southeast Asia and the Indian sub-continent, the emissions are further partitioned into biomass, industrial, utilities, and non-specific sources. In these regions emissions from biomass, utilities and industrial sources account for 16.7, 21.7, and 12.2%, respectively. In Bangladesh, ˜ 90% of the SO 2 emissions result from biomass burning and nearly 20% of India's 5 Tg of SO 2 emissions are due to biomass burning. Malaysia and Singapore's emissions are dominated by the utilities with 42 and 62% of their respective emissions coming from that sector. The spatial distribution of sulfur deposition resulting from these emissions is calculated using an atmospheric transport and deposition model. Sulfur deposition in excess of 2 g m -2 yr -1 is predicted in vast regions of east Asia, India, Thailand, Malaysia, Taiwan, and Indonesia with deposition in excess of 5 g m -2 yr -1 predicted in southern China. For the Indian sub-continent and Southeast Asia the contribution of biomass burning, industrial activities, and utilities to total sulfur emissions and deposition patterns are evaluated. Biomass burning is found to be a major source of sulfur deposition throughout southeast Asia. Deposition in Bangladesh and northern India is dominated by this emissions sector. Deposition in Thailand, the Malay Peninsula and the island of Sumatra is heavily influenced by emissions from utilities. The ecological impact of the deposition, in 1988 and in the year 2020, is also estimated using critical loads data developed in the RAINS-ASIA projects. Much of eastern China, the Korean Peninsula, Japan, Thailand, and large regions of India, Nepal, Bangladesh, Taiwan, the Philippines, Malaysia, Indonesia, and sections of Vietnam are at risk due to deposition in excess of their

  18. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2013-03-15

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed.

  19. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    International Nuclear Information System (INIS)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Park, Young-Kwon

    2013-01-01

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed

  20. Sulfur and Its Role In Modern Materials Science.

    Science.gov (United States)

    Boyd, Darryl A

    2016-12-12

    Although well-known and studied for centuries, sulfur continues to be at the center of an extensive array of scientific research topics. As one of the most abundant elements in the Universe, a major by-product of oil refinery processes, and as a common reaction site within biological systems, research involving sulfur is both broad in scope and incredibly important to our daily lives. Indeed, there has been renewed interest in sulfur-based reactions in just the past ten years. Sulfur research spans the spectrum of topics within the physical sciences including research on improving energy efficiency, environmentally friendly uses for oil refinery waste products, development of polymers with unique optical and mechanical properties, and materials produced for biological applications. This Review focuses on some of the latest exciting ways in which sulfur and sulfur-based reactions are being utilized to produce materials for application in energy, environmental, and other practical areas. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  2. Standard practice for preparing sulfur prints for macrostructural evaluation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice provides information required to prepare sulfur prints (also referred to as Baumann Prints) of most ferrous alloys to reveal the distribution of sulfide inclusions. 1.2 The sulfur print reveals the distribution of sulfides in steels with bulk sulfur contents between about 0.010 and 0.40 weight percent. 1.3 Certain steels contain complex sulfides that do not respond to the test solutions, for example, steels containing titanium sulfides or chromium sulfides. 1.4 The sulfur print test is a qualitative test. The density of the print image should not be used to assess the sulfur content of a steel. Under carefully controlled conditions, it is possible to compare print image intensities if the images are formed only by manganese sulfides. 1.5 The sulfur print image will reveal details of the solidification pattern or metal flow from hot or cold working on appropriately chosen and prepared test specimens. 1.6 This practice does not address acceptance criteria based on the use of the method. ...

  3. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  4. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  5. Experimental Evidence for Abiotic Sulfurization of Marine Dissolved Organic Matter

    Directory of Open Access Journals (Sweden)

    Anika M. Pohlabeln

    2017-11-01

    Full Text Available Dissolved organic sulfur (DOS is the largest pool of organic sulfur in the oceans, and as such it is an important component of the global sulfur cycle. DOS in the ocean is resistant against microbial degradation and turns over on a millennium time scale. However, sources and mechanisms behind its stability are largely unknown. Here, we hypothesize that in sulfate-reducing sediments sulfur is abiotically incorporated into dissolved organic matter (DOM and released to the ocean. We exposed natural seawater and the filtrate of a plankton culture to sulfidic conditions. Already after 1-h at 20°C, DOS concentrations had increased 4-fold in these experiments, and 14-fold after 4 weeks at 50°C, indicating that organic matter does not need long residence times in natural sulfidic environments to be affected by sulfurization. Molecular analysis via ultrahigh-resolution mass spectrometry showed that sulfur was covalently and unselectively bound to DOM. Experimentally produced and natural DOS from sediments were highly similar on a molecular and structural level. By combining our data with published benthic DOC fluxes we estimate that 30–200 Tg DOS are annually transported from anaerobic and sulfate reducing sediments to the oceans. Uncertainties in this first speculative assessment are large. However, this first attempt illustrates that benthic DOS flux is potentially one order of magnitude larger than that via rivers indicating that this could balance the estimated global net removal of refractory DOS.

  6. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes.

    Science.gov (United States)

    Poser, Alexander; Lohmayer, Regina; Vogt, Carsten; Knoeller, Kay; Planer-Friedrich, Britta; Sorokin, Dimitry; Richnow, Hans-H; Finster, Kai

    2013-11-01

    Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.

  7. Transnitrosation of alicyclic N-nitrosamines containing a sulfur atom.

    Science.gov (United States)

    Inami, Keiko; Kondo, Sonoe; Ono, Yuta; Saso, Chiharu; Mochizuki, Masataka

    2013-12-15

    Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  9. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  10. COMPONENT DEVELOPMENT NEEDS FOR THE HYBRID SULFUR ELECTROLYZER

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

    2008-05-30

    Fiscal year 2008 studies in electrolyzer component development have focused on the characterization of membrane electrode assemblies (MEA) after performance tests in the single cell electrolyzer, evaluation of electrocatalysts and membranes using a small scale electrolyzer and evaluating the contribution of individual cell components to the overall electrochemical performance. Scanning electron microscopic (SEM) studies of samples taken from MEAs testing in the SRNL single cell electrolyzer test station indicates a sulfur-rich layer forms between the cathode catalyst layer and the membrane. Based on a review of operating conditions for each of the MEAs evaluated, we conclude that the formation of the layer results from the reduction of sulfur dioxide as it passes through the MEA and reaches the catalyst layer at the cathode-membrane interface. Formation of the sulfur rich layer results in partial delamination of the cathode catalyst layer leading to diminished performance. Furthermore we believe that operating the electrolyzer at elevated pressure significantly increases the rate of formation due to increased adsorption of hydrogen on the internal catalyst surface. Thus, identification of a membrane that exhibits much lower transport of sulfur dioxide is needed to reduce the quantity of sulfur dioxide that reaches the cathode catalyst and is reduced to produce the sulfur-rich layer. Three candidate membranes are currently being evaluated that have shown promise from preliminary studies, (1) modified Nafion{reg_sign}, (2) polybenzimidazole (PBI), and (3) sulfonated Diels Alder polyphenylene (SDAPP). Testing examined the activity for the sulfur dioxide oxidation of platinum (Pt) and platinum-alloy catalysts in 30 wt% sulfuric acid solution. Linear sweep voltammetry showed an increase in activity when catalysts in which Pt is alloyed with non-noble transition metals such as cobalt and chromium. However when Pt is alloyed with noble metals, such as iridium or ruthenium

  11. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

    Science.gov (United States)

    Kargel, J.S.; Delmelle, P.; Nash, D.B.

    1999-01-01

    The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found

  12. Method for rendering harmless sulfur dioxide-carrying gases and sulfur-carrying waste water from pyrolysis of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Aspegren, O E.A.; Eklund, A J

    1951-03-15

    A method is described for rendering harmless sulfur dioxide-carrying gases, which are formed in processes for the manufacture of solid, liquid, or gaseous products by pyrolysis of oil shale, and thereby to extract valuable products, characterized in that the sulfur dioxide-carrying gases are washed with a solution or sludge obtained by leaching wholly or partly burned-out residues from the pyrolysis.

  13. Metabolomic profiling of the purple sulfur bacterium Allochromatium vinosum during growth on different reduced sulfur compounds and malate

    OpenAIRE

    Weissgerber, Thomas; Watanabe, Mutsumi; Hoefgen, Rainer; Dahl, Christiane

    2014-01-01

    Environmental fluctuations require rapid adjustment of the physiology of bacteria. Anoxygenic phototrophic purple sulfur bacteria, like Allochromatium vinosum, thrive in environments that are characterized by steep gradients of important nutrients for these organisms, i.e., reduced sulfur compounds, light, oxygen and carbon sources. Changing conditions necessitate changes on every level of the underlying cellular and molecular network. Thus far, two global analyses of A. vinosum responses to ...

  14. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions

    Science.gov (United States)

    Couturier, Jérémy; Touraine, Brigitte; Briat, Jean-François; Gaymard, Frédéric; Rouhier, Nicolas

    2013-01-01

    Many metabolic pathways and cellular processes occurring in most sub-cellular compartments depend on the functioning of iron-sulfur (Fe-S) proteins, whose cofactors are assembled through dedicated protein machineries. Recent advances have been made in the knowledge of the functions of individual components through a combination of genetic, biochemical and structural approaches, primarily in prokaryotes and non-plant eukaryotes. Whereas most of the components of these machineries are conserved between kingdoms, their complexity is likely increased in plants owing to the presence of additional assembly proteins and to the existence of expanded families for several assembly proteins. This review focuses on the new actors discovered in the past few years, such as glutaredoxin, BOLA and NEET proteins as well as MIP18, MMS19, TAH18, DRE2 for the cytosolic machinery, which are integrated into a model for the plant Fe-S cluster biogenesis systems. It also discusses a few issues currently subjected to an intense debate such as the role of the mitochondrial frataxin and of glutaredoxins, the functional separation between scaffold, carrier and iron-delivery proteins and the crosstalk existing between different organelles. PMID:23898337

  15. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant.

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui

    2005-07-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  16. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant

    Energy Technology Data Exchange (ETDEWEB)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui [Michigan

    2010-07-13

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  17. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron–sulfur cluster in an Escherichia coli thioredoxin mutant

    Science.gov (United States)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui

    2005-01-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron–sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron–sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Å for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron–sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended α-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron–sulfur cofactor at its active site, and thus a new activity and mechanism of action. PMID:15987909

  18. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, S.H.; Wang, X.H.; Xia, X.H.; Wang, Y.D.; Wang, X.L.; Tu, J.P.

    2017-01-01

    Tailored design/construction of high-quality sulfur/carbon composite cathode is critical for development of advanced lithium-sulfur batteries. We report a powerful strategy for integrated fabrication of sulfur impregnated into three-dimensional (3D) multileveled carbon nanoflake-nanosphere networks (CNNNs) by means of sacrificial ZnO template plus glucose carbonization. The multileveled CNNNs are not only utilized as large-area host/backbone for sulfur forming an integrated S/CNNNs composite electrode, but also serve as multiple carbon blocking barriers (nanoflake infrastructure andnanosphere superstructure) to physically confine polysulfides at the cathode. The designedself-supported S/CNNNs composite cathodes exhibit superior electrochemical performances with high capacities (1395 mAh g −1 at 0.1C, and 769 mAh g −1 at 5.0C after 200 cycles) and noticeable cycling performance (81.6% retention after 200 cycles). Our results build a new bridge between sulfur and carbon networks with multiple blocking effects for polysulfides, and provide references for construction of other high-performance sulfur cathodes.

  19. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chen, Manfang; Jiang, Shouxin; Huang, Cheng; Wang, Xianyou; Cai, Siyu; Xiang, Kaixiong; Zhang, Yapeng; Xue, Jiaxi

    2017-04-22

    Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon/sulfur composites (NSHPC/S) are successfully fabricated for high energy density lithium-sulfur batteries. The effects of nitrogen, sulfur dual-doping on the structures and properties of the NSHPC/S composites are investigated in detail by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and charge/discharge tests. The results show that N, S dual-doping not only introduces strong chemical adsorption and provides more active sites but also significantly enhances the electronic conductivity and hydrophilic properties of hierarchical porous biomass-derived carbon, thereby significantly enhancing the utilization of sulfur and immobilizing the notorious polysulfide shuttle effect. Especially, the as-synthesized NSHPC-7/S exhibits high initial discharge capacity of 1204 mA h g -1 at 1.0 C and large reversible capacity of 952 mA h g -1 after 300 cycles at 0.5 C with an ultralow capacity fading rate of 0.08 % per cycle even at high sulfur content (85 wt %) and high active material areal mass loading (2.8 mg cm -2 ) for the application of high energy density Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices.

    Science.gov (United States)

    Luong, J; Gras, R; Shellie, R A; Cortes, H J

    2013-07-05

    The detection of sulfur compounds in different hydrocarbon matrices, from light hydrocarbon feedstocks to medium synthetic crude oil feeds provides meaningful information for optimization of refining processes as well as demonstration of compliance with petroleum product specifications. With the incorporation of planar microfluidic devices in a novel chromatographic configuration, sulfur compounds from hydrogen sulfide to alkyl dibenzothiophenes and heavier distributions of sulfur compounds over a wide range of matrices spanning across a boiling point range of more than 650°C can be characterized, using one single analytical configuration in less than 25min. In tandem with a sulfur chemiluminescence detector for sulfur analysis is a flame ionization detector. The flame ionization detector can be used to establish the boiling point range of the sulfur compounds in various hydrocarbon fractions for elemental specific simulated distillation analysis as well as profiling the hydrocarbon matrices for process optimization. Repeatability of less than 3% RSD (n=20) over a range of 0.5-1000 parts per million (v/v) was obtained with a limit of detection of 50 parts per billion and a linear range of 0.5-1000 parts per million with a correlation co-efficient of 0.998. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  2. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time......% of the total S-35 was recovered in the SIGMA-HS- pool in less than 1.5 h. With no detectable SIGMA-HS- (less than 1-mu-M) in the slurry, 58% of the total S-35 was observed in the pyrite pool within 1.5 h. The FeS pool received up to 31% of all S-35 added. The rapid S-35 incorporation from S-35-degrees...... into SIGMA-HS- and FeS pools was explained by isotope exchange reactions. In contrast, there was evidence that the radioactivity observed in the 'pyrite pool' was caused by adhesion of the added S-35-degrees to the FeS2 grains. In all S-35-degrees-labeled experiments we also observed oxidation...

  3. Sulfur isotope variability of oceanic DMSP generation and its contributions to marine biogenic sulfur emissions.

    Science.gov (United States)

    Oduro, Harry; Van Alstyne, Kathryn L; Farquhar, James

    2012-06-05

    Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and non-seasalt sulfate (NSS-SO(4)(2-)) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ(34)S) of DMSP are depleted in (34)S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ(34)S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO(4)(2-)), carrying implications for the interpretation of variability in δ(34)S of MSA and NSS-SO(4)(2-) that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.

  4. Nutrition Research Progress of Sulfur in Ruminant%硫在反刍动物中的营养研究进展

    Institute of Scientific and Technical Information of China (English)

    郑帅; 刘大森

    2011-01-01

    Sulfur is one of the mineral essential elements for the ruminant animal and also the essential element for bacterial protein synthesis. This paper reviewed the distribution and metabolism of sulfur in ruminant animals, the relationship between the sulfur and other nutrients and requirements in the production.%硫是反刍动物必需矿物元素之一,也是合成菌体蛋白的必需元素。文章就硫在反刍动物体内的分布、代谢、和其他营养成分的关系及在生产中的需要量等方面进行了综述。

  5. Magnetic properties of sulfur-doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); Park, H. [Department of Physics, The Ohio State University, Columbus, OH (United States); Podila, R., E-mail: rpodila@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States); Wadehra, A. [Department of Physics, The Ohio State University, Columbus, OH (United States); Ayala, P. [Faculty of Physics, University of Vienna, Vienna (Austria); Oliveira, L.; He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Zakhidov, A.A.; Howard, A. [Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX (United States); Wilkins, J. [Department of Physics, The Ohio State University, Columbus, OH (United States); Rao, A.M., E-mail: arao@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States)

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples. - Highlights: • Magnetic properties of pristine and S-doped graphene were investigated. • Pristine graphene with intrinsic defects exhibits a non-zero magnetic moment. • The addition of S-dopants was found to quench the magnetic ordering. • DFT calculations confirmed that magnetization in graphene arises from defects. • DFT calculations show S-dopants quench local magnetic moment of defect structures.

  6. Novel Molecular Strategies Against Sulfur Mustard Toxicity

    Directory of Open Access Journals (Sweden)

    Zeki Ilker Kunak

    2012-04-01

    Full Text Available Among the available chemical warfare agents, sulfur mustard (SM, also known as mustard gas, has been widely used chemical weapon. In our laboratory, we have shown that, acute toxicity of SM is related to reactive oxygen and nitrogen species, DNA damage, poly(ADP-ribose polymerase activation and energy depletion within the affected cell. In spite of the knowledge about acute SM-induced cellular toxicity, unfortunately, it is not clear how mustard gas causes severe multi-organ damage years after even a single exposure. A variety of treatment modalities including antioxidants, anti-inflammatory drugs and others have resulted no promising results. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. The term epigenetic describes the study of inheritable alterations in gene expression that occur in the absence of changes in genome sequence. Therefore, epigenetic gene regulation requires molecular mechanisms that encode information in addition to the DNA base sequence and can be propagated through mitosis and meiosis. Our current understanding of epigenetic regulation of gene expression involves basically two classes of molecular mechanisms: histone modifications and DNA methylation. Preliminary evidence obtained from our laboratory reveals that exposure to mustards may not only cause nitro-oxidative stress and DNA (genetic damage, but epigenetic perturbations as well. Epigenetic therapy is a new and rapidly developing field in pharmacology. Epigenetic drugs alone or in combination with conventional drugs may prove to be a significant advance over the conventional drugs used to treat both acute and delayed SM toxicity. Future studies are urgently needed to clarify the mechanism of delayed SM-induced toxicity and novel treatment modalities. [TAF Prev Med Bull 2012; 11(2.000: 231-236

  7. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery*

    Science.gov (United States)

    Gakh, Oleksandr; Ranatunga, Wasantha; Smith, Douglas Y.; Ahlgren, Eva-Christina; Al-Karadaghi, Salam; Thompson, James R.; Isaya, Grazia

    2016-01-01

    Fe-S clusters, essential cofactors needed for the activity of many different enzymes, are assembled by conserved protein machineries inside bacteria and mitochondria. As the architecture of the human machinery remains undefined, we co-expressed in Escherichia coli the following four proteins involved in the initial step of Fe-S cluster synthesis: FXN42–210 (iron donor); [NFS1]·[ISD11] (sulfur donor); and ISCU (scaffold upon which new clusters are assembled). We purified a stable, active complex consisting of all four proteins with 1:1:1:1 stoichiometry. Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional model of the complex with ∼14 Å resolution. Molecular dynamics flexible fitting of protein structures docked into the EM map of the model revealed a [FXN42–210]24·[NFS1]24·[ISD11]24·[ISCU]24 complex, consistent with the measured 1:1:1:1 stoichiometry of its four components. The complex structure fulfills distance constraints obtained from chemical cross-linking of the complex at multiple recurring interfaces, involving hydrogen bonds, salt bridges, or hydrophobic interactions between conserved residues. The complex consists of a central roughly cubic [FXN42–210]24·[ISCU]24 sub-complex with one symmetric ISCU trimer bound on top of one symmetric FXN42–210 trimer at each of its eight vertices. Binding of 12 [NFS1]2·[ISD11]2 sub-complexes to the surface results in a globular macromolecule with a diameter of ∼15 nm and creates 24 Fe-S cluster assembly centers. The organization of each center recapitulates a previously proposed conserved mechanism for sulfur donation from NFS1 to ISCU and reveals, for the first time, a path for iron donation from FXN42–210 to ISCU. PMID:27519411

  8. Comparative architecture of octahedral protein cages. I. Indexed enclosing forms

    Science.gov (United States)

    Janner, A.

    2008-07-01

    The architecture of four protein cages (bacterio ferritin, human mitochondrial ferritin, sulfur oxygenase reductase and small heat-shock protein) are compared top-to-bottom, starting from polyhedra with vertices at cubic lattice points enclosing the cage down to indexed polyhedral forms of single monomers.

  9. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  10. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu; Hu, Pengfei; Zhao, Bing

    2015-01-01

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g −1 after 50 cycles at 100 mA g −1 . • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g −1 after 50 cycles at a current density of 100 mA g −1 and reversible capacity of 517.9 mA h g −1 at 1 A g −1 . The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems

  11. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Hu, Pengfei [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Zhao, Bing, E-mail: bzhao@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2015-10-05

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g{sup −1} after 50 cycles at 100 mA g{sup −1}. • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g{sup −1} after 50 cycles at a current density of 100 mA g{sup −1} and reversible capacity of 517.9 mA h g{sup −1} at 1 A g{sup −1}. The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems.

  12. Evaluation of haloalkaliphilic sulfur-oxidizing microorganisms with potential application in the effluent treatment of the petroleum industry.

    Science.gov (United States)

    Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S

    2011-02-01

    Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.

  13. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  14. Improving rubber concrete by waste organic sulfur compounds.

    Science.gov (United States)

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  15. Investigation of rare earths sorption from sulfuric- and hydrochloric media

    International Nuclear Information System (INIS)

    Nikonov, V.N.; Mikhlin, E.B.; Norina, T.M.; Afonina, T.A.

    1978-01-01

    A rate of equilibrium attainment has been studied during REE sorption from sulfuric and hydrochloric acid solutions and pulps. It has been shown that equilibrium upon sorption from hydrochloric acid solutions is attained faster than from sulfuric acid solutions. Equilibrium upon sorption from pulps is attained considerably slower than upon sorption from solutions. In all cases REM of cerium subgroup are sorbed better. An effect has been studied of the medium acidity on sorbability of REM and elements of iron and calcium impurities. It has been established that sorbability of these elements decreases with increasing acid concentration. Selectivity of REM sorption from sulfuric acid solutions decreases with a rise in H 2 SO 4 concentration in the solution. For hydrochloric acid solutions it remains constant in a wide range of HCl concentrations. Sorption leaching of REM from concentrates and cakes of sulfuric and hydrochloric acids in the presence of KU-2 leads to high technical and economic indexes: extraction with respect to the total amount of REM and yttrium into a commercial product is 76-86% for sulfuric acid solutions and 81-90% for hydrochloric solutions

  16. Lower detectable limit of sulfur by fast neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shani, G; Cohen, D [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Nuclear Engineering

    1976-07-01

    For the purpose of air pollution research, the possibility of fast neutron activation analysis of sulfur was investigated. The only reaction that can be used for this purpose is S/sup 34/(n, p)P/sup 34/. A rabbit system was installed, synchronized with a 150 kV D-T neutron generator and an electronic analysing system. The whole system was operated so that the sample was irradiated for 10 sec and the 2.13 MeV ..gamma..-ray was counted for 10 sec. 5 samples were prepared containing sulfur from 0.5 to 0.1 g. Each measurement lasted 30 min and the activity was plotted as a function of sulfur weight. The relative error is increased very much when the amount of sulfur is below 0.1 g. This is what sets the lower detectable limit. Collection of more than 0.1 g of sulfur even during a long collection time means a very high SO/sub 2/ concentration in the air.

  17. Sulfur dioxide leaching of spent zinc-carbon-battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Avraamides, J.; Senanayake, G.; Clegg, R. [A.J. Parker Cooperative Research Centre for Hydrometallurgy, Murdoch University, Perth, WA 6150 (Australia)

    2006-09-22

    Zinc-carbon batteries, which contain around 20% zinc, 35% manganese oxides and 10% steel, are currently disposed after use as land fill or reprocessed to recover metals or oxides. Crushed material is subjected to magnetic separation followed by hydrometallurgical treatment of the non-magnetic material to recover zinc metal and manganese oxides. The leaching with 2M sulfuric acid in the presence of hydrogen peroxide recovers 93% Zn and 82% Mn at 25{sup o}C. Alkaline leaching with 6M NaOH recovers 80% zinc. The present study shows that over 90% zinc and manganese can be leached in 20-30min at 30{sup o}C using 0.1-1.0M sulfuric acid in the presence of sulfur dioxide. The iron extraction is sensitive to both acid concentration and sulfur dioxide flow rate. The effect of reagent concentration and particle size on the extraction of zinc, manganese and iron are reported. It is shown that the iron and manganese leaching follow a shrinking core kinetic model due to the formation of insoluble metal salts/oxides on the solid surface. This is supported by (i) the decrease in iron and manganese extraction from synthetic Fe(III)-Mn(IV)-Zn(II) oxide mixtures with increase in acid concentration from 1M to 2M, and (ii) the low iron dissolution and re-precipitation of dissolved manganese and zinc during prolonged leaching of battery scrap with low sulfur dioxide. (author)

  18. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  19. Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus*

    Science.gov (United States)

    Grossoehme, Nicholas; Kehl-Fie, Thomas E.; Ma, Zhen; Adams, Keith W.; Cowart, Darin M.; Scott, Robert A.; Skaar, Eric P.; Giedroc, David P.

    2011-01-01

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027–0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes. PMID:21339296

  20. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus.

    Science.gov (United States)

    Grossoehme, Nicholas; Kehl-Fie, Thomas E; Ma, Zhen; Adams, Keith W; Cowart, Darin M; Scott, Robert A; Skaar, Eric P; Giedroc, David P

    2011-04-15

    All strains of Staphylococcus aureus encode a putative copper-sensitive operon repressor (CsoR) and one other CsoR-like protein of unknown function. We show here that NWMN_1991 encodes a bona fide Cu(I)-inducible CsoR of a genetically unlinked copA-copZ copper resistance operon in S. aureus strain Newman. In contrast, an unannotated open reading frame found between NWMN_0027 and NWMN_0026 (denoted NWMN_0026.5) encodes a CsoR-like regulator that represses expression of adjacent genes by binding specifically to a pair of canonical operator sites positioned in the NWMN_0027-0026.5 intergenic region. Inspection of these regulated genes suggests a role in assimilation of inorganic sulfur from thiosulfate and vectorial sulfur transfer, and we designate NWMN_0026.5 as CstR (CsoR-like sulfur transferase repressor). Expression analysis demonstrates that CsoR and CstR control their respective regulons in response to distinct stimuli with no overlap in vivo. Unlike CsoR, CstR does not form a stable complex with Cu(I); operator binding is instead inhibited by oxidation of the intersubunit cysteine pair to a mixture of disulfide and trisulfide linkages by a likely metabolite of thiosulfate assimilation, sulfite. CsoR is unreactive toward sulfite under the same conditions. We conclude that CsoR and CstR are paralogs in S. aureus that function in the same cytoplasm to control distinct physiological processes.

  1. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  2. Process and system for removing sulfur from sulfur-containing gaseous streams

    Science.gov (United States)

    Basu, Arunabha; Meyer, Howard S.; Lynn, Scott; Leppin, Dennis; Wangerow, James R.

    2012-08-14

    A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H.sub.2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO.sub.2 mode at a first amount of SO.sub.2, producing an effluent gas having a reduced amount of SO.sub.2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H.sub.2S mode, producing a product gas having an amount of H.sub.2S less than said first amount of H.sub.2S.

  3. Hybrid polyacrylamide/carbon coating on sulfur cathode for advanced lithium sulfur battery

    International Nuclear Information System (INIS)

    Li, Tao; Yuan, Yan; Hong, Bo; Cao, Huawei; Zhang, Kai; Lai, Yanqing; Liu, Yexiang; Huang, Zixin

    2017-01-01

    Commercialized conductive slurry consisting of polyacrylamide (PAM) and two kinds of carbon black was coated on the surface of sulfur cathode. The hybrid PAM/C coating not only physically blocks but also chemically anchors polysulfides within the cathode, confining their out-diffusion and shuttle. Besides, the flexible and highly-conductive coating layer buffers volume change of the cathode during discharge-charge process and reduces charge transfer resistance. A specific capacity of as high as ∼900 mAh g −1 after 300 cycles is demonstrated for the PAM/C coated cathode, which is a significant improvement of reversible capacity and cycle capability compared to uncoated or conventional PVDF/C coated cathode.

  4. Milestones in plant sulfur research on sulfur-induced-resistance (SIR in Europe

    Directory of Open Access Journals (Sweden)

    Elke eBloem

    2015-01-01

    Full Text Available Until the 1970´s of the last century sulfur (S was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980´s SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer fertilized indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990´s and the concept of sulfur-induced-resistance (SIR was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals.The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed.

  5. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  6. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    Science.gov (United States)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  7. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  8. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  9. Thermal Behavior and Heat Generation Modeling of Lithium Sulfur Batteries

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence of the tempe......Lithium Sulfur batteries are receiving a lot of research interest because of their intrinsic characteristics, such as very high energy density and increased safety, which make them a suitable solution for zero-emission vehicles and space application. This paper analyses the influence...... of the temperature on the performance parameters of a 3.4 Ah Lithium-Sulfur battery cell. Furthermore, the values of the internal resistance and entropic heat coefficient, which are necessary for the parametrization of a heat generation model, are determined experimentally....

  10. Analysis of sulfur in dried fruits using NAA

    International Nuclear Information System (INIS)

    Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de

    2011-01-01

    In this study the amount of elemental sulfur in some dried fruits, available commercially, was analyzed using INAA. Apple, apricot and raisin (dried fruits) were investigated due the application of sulfur dioxide for keeping the color and to protect the flavor from oxidation. The samples of dried fruits (apple, apricot and raisin) that are consumed by local population were obtained from the supermarket of Sao Paulo city (SP, Brazil). The sulfur concentration values for apple (0.32 ± 0.04 gkg -1 ) and raisin (0.30 ± 0.08 gkg -1 ) are similar but they are significantly lower when compared with the apricot (1.55 ± 0.12 gkg -1 ). This analysis is important due to an increase in the consumption of dried fruit by Brazilian population and also for its nutritional relevancy. (author)

  11. Study of sulfur and vanadium in heavy petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, J.M.

    1982-10-01

    Sulfur compounds in heavy oil fractions (>450/sup 0/C) are studied in the first part of this work. After chemical oxidation by metachloroperbenzoic acid to obtain sulfones, sulfur compounds are analyzed by infrared spectroscopy for their qualitative and quantitative repartition. The method can be applied for the study of sulfur containing molecules before and after structural modifications of petroleum fractions by any chemical refining processes. In a second part vanadium is characterized in asphalt by physicochemical and chemical methods. 80% of the vanadium in a Boscan asphalt is under the form of porphyrins. Different associations are evidenced in petroleum fractions and metalloporphyrins, but the liaison between the vanadyl group and heterocondensate from asphalts is the more frequent.

  12. Analysis of sulfur in dried fruits using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, Cibele B.; Medeiros, Ilca M.M.A., E-mail: czamboni@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Medeiros, Jose A.G. de [Universidade Cidade de Sao Paulo, UNICID, Sao Paulo, SP (Brazil)

    2011-07-01

    In this study the amount of elemental sulfur in some dried fruits, available commercially, was analyzed using INAA. Apple, apricot and raisin (dried fruits) were investigated due the application of sulfur dioxide for keeping the color and to protect the flavor from oxidation. The samples of dried fruits (apple, apricot and raisin) that are consumed by local population were obtained from the supermarket of Sao Paulo city (SP, Brazil). The sulfur concentration values for apple (0.32 {+-} 0.04 gkg{sup -1}) and raisin (0.30 {+-} 0.08 gkg{sup -1}) are similar but they are significantly lower when compared with the apricot (1.55 {+-} 0.12 gkg{sup -1}). This analysis is important due to an increase in the consumption of dried fruit by Brazilian population and also for its nutritional relevancy. (author)

  13. Dynamics of a Novel Class of Polymers: Polymerized Sulfur

    Science.gov (United States)

    Masser, Kevin; Kim, Jenny; Oleshko, Vladimir; Griebel, Jared; Chung, Woo; Simmons, Adam; Pyun, Jeff; Soles, Christopher

    2013-03-01

    In this study we investigate the dynamics of a new type of polymer, consisting mainly of sulfur. Room-temperature stable polymerized sulfur samples were prepared by crosslinking the well-known living sulfur polymers formed at elevated temperatures by the addition of a crosslinking agent. This reverse vulcanization process was used to create a series of samples with different amounts of crosslinking agent. These polymers show great promise for use in advanced batteries as cathode materials. Each system exhibits a glassy-state beta relaxation, with the intensity of this relaxation proportional to the crosslinking content. A dynamic glass transition is also observed for each system, and the glass transition temperature/segmental relaxation moves to higher temperatures with increased crosslink content as is typically observed in crosslinked systems. As is typical of polymers, ion motion in these systems is closely coupled to the backbone motion of the host polymer. National Research Council Postdoctoral Fellowship

  14. Sulfur availability regulates plant growth via glucose-TOR signaling.

    Science.gov (United States)

    Dong, Yihan; Silbermann, Marleen; Speiser, Anna; Forieri, Ilaria; Linster, Eric; Poschet, Gernot; Allboje Samami, Arman; Wanatabe, Mutsumi; Sticht, Carsten; Teleman, Aurelio A; Deragon, Jean-Marc; Saito, Kazuki; Hell, Rüdiger; Wirtz, Markus

    2017-10-27

    Growth of eukaryotic cells is regulated by the target of rapamycin (TOR). The strongest activator of TOR in metazoa is amino acid availability. The established transducers of amino acid sensing to TOR in metazoa are absent in plants. Hence, a fundamental question is how amino acid sensing is achieved in photo-autotrophic organisms. Here we demonstrate that the plant Arabidopsis does not sense the sulfur-containing amino acid cysteine itself, but its biosynthetic precursors. We identify the kinase GCN2 as a sensor of the carbon/nitrogen precursor availability, whereas limitation of the sulfur precursor is transduced to TOR by downregulation of glucose metabolism. The downregulated TOR activity caused decreased translation, lowered meristematic activity, and elevated autophagy. Our results uncover a plant-specific adaptation of TOR function. In concert with GCN2, TOR allows photo-autotrophic eukaryotes to coordinate the fluxes of carbon, nitrogen, and sulfur for efficient cysteine biosynthesis under varying external nutrient supply.

  15. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  16. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renjie, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Zhao, Teng [Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081 (China); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Tian, Tian; Fairen-Jimenez, David [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Cao, Shuai; Coxon, Paul R.; Xi, Kai, E-mail: kx210@cam.ac.uk, E-mail: chenrj@bit.edu.cn; Vasant Kumar, R.; Cheetham, Anthony K. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-12-01

    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/C{sub ZIF8-D}) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/C{sub ZIF8-D}) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/C{sub ZIF8-D} sample, Li-S batteries with the GS-S/C{sub ZIF8-D} composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  17. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Directory of Open Access Journals (Sweden)

    Renjie Chen

    2014-12-01

    Full Text Available A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D composite for use in a cathode for a lithium sulfur (Li-S battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8, a typical zinc-containing metal organic framework (MOF, which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.

  18. The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase.

    Science.gov (United States)

    Camire, Eric J; Grossman, John D; Thole, Grace J; Fleischman, Nicholas M; Perlstein, Deborah L

    2015-09-25

    Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2'/3'-O-(N'-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 μM and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  20. Method for the treatment of mining gangue containing sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Minnick, L J; Smith, C L; Webster, W C

    1976-07-01

    Mining gangue is often heaped up on large, open-air dumps. By means of extraction and oxidation of the sulfuric elements contained, the environment is being negatively influenced, due to the sulfuric acids occuring. The method described converts the gangue into an ecologically agreeable material which can be used even in road construction. This is achieved by mixing the gangue with lime, a pozzolane active material and water, and by hardening the gangue at atmospheric pressure for several days. This method can be very cost-effective if fly ash is used as pozzolane-active material.

  1. Epiphytic lichens as indicators of air pollution by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, G; Rose, F

    1973-01-01

    Epiphytic lichens show specific differential responses to sulfur dioxide in the air, and it has been possible to construct a scale of SO/sub 2/ pollution based upon lichen communities present upon trees. Maps of pollution zones have now been prepared for England, Wales and Northern France. It has proved possible to correlate these zones with mean winter levels of sulfur dioxide measured instrumentally. Laboratory studies indicate the essential validity of this approach. An interesting correlation between air pollution and topography can be demonstrated in much of south-east England.

  2. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  3. Relationship of sulfur content of soils and plants

    Energy Technology Data Exchange (ETDEWEB)

    Hengl, F; Reckendorfer, P

    1928-01-01

    Crops were fertilized with fertilizers which contained chloride and sulfate in order to examine how the sulfur content of a plant may be affected by that of the soil. At the time of flowering the respective chlorine or sulfate content of the plants was considerably above that of the controls; differences were less, however, when the plants were fully mature. Sulfate, in particular, was little different. In field observations, little correlation was noted between sulfate content of plants and soils. Natural variations in the sulfur content of plants were greater than the increases attributable to smoke air pollution. 2 tables.

  4. Transferring the Incremental Capacity Analysis to Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Kalogiannis, Theodoros; Purkayastha, Rajlakshmi

    2017-01-01

    In order to investigate the battery degradation and to estimate their health, various techniques can be applied. One of them, which is widely used for Lithium-ion batteries, is the incremental capacity analysis (ICA). In this work, we apply the ICA to Lithium-Sulfur batteries, which differ in many...... aspects from Lithium-ion batteries and possess unique behavior. One of the challenges of applying the ICA to Lithium-Sulfur batteries is the representation of the IC curves, as their voltage profiles are often non-monotonic, resulting in more complex IC curves. The ICA is at first applied to charge...

  5. Enantioselctive Syntheses of Sulfur Analogues of Flavan-3-Ols

    Directory of Open Access Journals (Sweden)

    Richard Lombardy

    2010-08-01

    Full Text Available The first enantioselective syntheses of sulfur flavan-3-ol analogues 1–8 have been accomplished, whereby the oxygen atom of the pyran ring has been replaced by a sulfur atom. The key steps were: (a Pd(0 catalyzed introduction of –S t-butyl group, (b Sharpless enantioselective dihydroxylation of the alkene, (c acid catalyzed ring closure to produce the thiopyran ring, and (d removal of benzyl groups using N,N-dimethylaniline and AlCl3. The compounds were isolated in high chemical and optical purity.

  6. Durability of solid oxide fuel cells using sulfur containing fuels

    DEFF Research Database (Denmark)

    Hagen, Anke; Rasmussen, Jens Foldager Bregnballe; Thydén, Karl Tor Sune

    2011-01-01

    The usability of hydrogen and also carbon containing fuels is one of the important advantages of solid oxide fuel cells (SOFCs), which opens the possibility to use fuels derived from conventional sources such as natural gas and from renewable sources such as biogas. Impurities like sulfur compounds...... are critical in this respect. State-of-the-art Ni/YSZ SOFC anodes suffer from being rather sensitive towards sulfur impurities. In the current study, anode supported SOFCs with Ni/YSZ or Ni/ScYSZ anodes were exposed to H2S in the ppm range both for short periods of 24h and for a few hundred hours. In a fuel...

  7. Identification of vital and dispensable sulfur utilization factors in the Plasmodium apicoplast.

    Directory of Open Access Journals (Sweden)

    Joana M Haussig

    Full Text Available Iron-sulfur [Fe-S] clusters are ubiquitous and critical cofactors in diverse biochemical processes. They are assembled by distinct [Fe-S] cluster biosynthesis pathways, typically in organelles of endosymbiotic origin. Apicomplexan parasites, including Plasmodium, the causative agent of malaria, harbor two separate [Fe-S] cluster biosynthesis pathways in the their mitochondrion and apicoplast. In this study, we systematically targeted the five nuclear-encoded sulfur utilization factors (SUF of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria model parasite Plasmodium berghei. We show that four SUFs, namely SUFC, D, E, and S are refractory to targeted gene deletion, validating them as potential targets for antimalarial drug development. We achieved targeted deletion of SUFA, which encodes a potential [Fe-S] transfer protein, indicative of a dispensable role during asexual blood stage growth in vivo. Furthermore, no abnormalities were observed during Plasmodium life cycle progression in the insect and mammalian hosts. Fusion of a fluorescent tag to the endogenous P. berghei SUFs demonstrated that all loci were accessible to genetic modification and that all five tagged SUFs localize to the apicoplast. Together, our experimental genetics analysis identifies the key components of the SUF [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite and shows that absence of SUFC, D, E, or S is incompatible with Plasmodium blood infection in vivo.

  8. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbios

    Directory of Open Access Journals (Sweden)

    Daniel eWipf

    2014-12-01

    Full Text Available Sulfur plays an essential role in plants’ growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate. It is part of amino acids, glutathione (GSH, thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM interaction improves N, P and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis.Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.

  9. Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide.

    Science.gov (United States)

    Crack, Jason C; Green, Jeffrey; Thomson, Andrew J; Le Brun, Nick E

    2014-10-21

    Iron-sulfur cluster proteins exhibit a range of physicochemical properties that underpin their functional diversity in biology, which includes roles in electron transfer, catalysis, and gene regulation. Transcriptional regulators that utilize iron-sulfur clusters are a growing group that exploit the redox and coordination properties of the clusters to act as sensors of environmental conditions including O2, oxidative and nitrosative stress, and metabolic nutritional status. To understand the mechanism by which a cluster detects such analytes and then generates modulation of DNA-binding affinity, we have undertaken a combined strategy of in vivo and in vitro studies of a range of regulators. In vitro studies of iron-sulfur cluster proteins are particularly challenging because of the inherent reactivity and fragility of the cluster, often necessitating strict anaerobic conditions for all manipulations. Nevertheless, and as discussed in this Account, significant progress has been made over the past decade in studies of O2-sensing by the fumarate and nitrate reduction (FNR) regulator and, more recently, nitric oxide (NO)-sensing by WhiB-like (Wbl) and FNR proteins. Escherichia coli FNR binds a [4Fe-4S] cluster under anaerobic conditions leading to a DNA-binding dimeric form. Exposure to O2 converts the cluster to a [2Fe-2S] form, leading to protein monomerization and hence loss of DNA binding ability. Spectroscopic and kinetic studies have shown that the conversion proceeds via at least two steps and involves a [3Fe-4S](1+) intermediate. The second step involves the release of two bridging sulfide ions from the cluster that, unusually, are not released into solution but rather undergo oxidation to sulfane (S(0)) subsequently forming cysteine persulfides that then coordinate the [2Fe-2S] cluster. Studies of other [4Fe-4S] cluster proteins that undergo oxidative cluster conversion indicate that persulfide formation and coordination may be more common than previously

  10. The Quantitation of Sulfur Mustard By-Products, Sulfur-Containing Herbicides, and Organophosphonates in Soil and Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.A., Sega, G.A. [Oak Ridge National Lab., TN (United States)], Macnaughton, S.J. [Microbial Insights, Inc., Rockford, TN (United States)

    1997-12-31

    Over the past fifty years, the facilities at Rocky Mountain Arsenal have been used for the manufacturing, bottling, and shipping sulfur- containing herbicides, sulfur mustard, and Sarin. There is a need for analytical methods capable of determining these constituents quickly to determine exactly how specific waste structural materials should be handled, treated, and landfilled.These species are extracted rapidly from heated samples of soil or crushed concrete using acetonitrile at elevated pressure, then analyzed using a gas chromatograph equipped with a flame photometric detector. Thiodiglycol, the major hydrolysis product of sulfur mustard, must be converted to a silylated derivative prior to quantitation. Detection limits, calculated using two statistically-unbiased protocols, ranged between 2-13 micrograms analyte/g soil or concrete.

  11. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Qiu Linlin; Zhang Shichao; Zhang Lan; Sun, Mingming; Wang Weikun

    2010-01-01

    Poly(pyrrole-co-aniline) (PPyA) copolymer nanofibers were prepared by chemical oxidation method with cetyltrimethyl ammonium chloride (CTAC) as template, and the nano-sulfur/poly(pyrrole-co-aniline) (S/PPyA) composite material in lithium batteries was achieved via co-heating the mixture of PPyA and sublimed sulfur at 160 deg. C for 24 h. The component and structure of the materials were characterized by FTIR, Raman, XRD, and SEM. PPyA with nanofiber network structure was employed as a conductive matrix, adsorbing agent and firm reaction chamber for the sulfur cathode materials. The nano-dispersed composite exhibited a specific capacity up to 1285 mAh g -1 in the initial cycle and remained 866 mAh g -1 after 40 cycles.

  12. Dramatic reduction of sulfur dioxide emission in Northeastern China in the last decade

    Science.gov (United States)

    Yuan, J.

    2017-12-01

    Analysis of spatial and temporal variations of sulfur dioxide concentration in planetary boundary layer were conducted. The data were generated by NASA satellite daily from October of 2004 and were obtained through NASA Giovanni. The global monthly mean spatial distribution of sulfur dioxide showed several hot spots including: several spots on some islands in the Pacific Ocean, several spots in central America, and central Africa. Most of these hot spots of sulfur dioxide are related to known active volcanos. The biggest hot spot of sulfur dioxide were observed in Northeastern China. While high concentration sulfur dioxide was still observed in Northeastern China in 2017. The area averaged concentration of sulfur dioxide declined dramatically since its peak in 2008. This temporal trend indicates that sulfur reduction effort has been effective in the last decade or post 2008 financial crisis recovery lead an industry less sulfur dioxide emission.

  13. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  14. Genetics Home Reference: myopathy with deficiency of iron-sulfur cluster assembly enzyme

    Science.gov (United States)

    ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme Printable PDF Open All Close All Enable Javascript ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme is an inherited disorder that primarily affects muscles ...

  15. Unifying principles in homodimeric type I photosynthetic reaction centers: properties of PscB and the FA, FB and FX iron-sulfur clusters in green sulfur bacteria.

    Science.gov (United States)

    Jagannathan, Bharat; Golbeck, John H

    2008-12-01

    The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. Mössbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.

  16. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease

    Science.gov (United States)

    Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid

    2017-01-01

    Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324

  17. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    Science.gov (United States)

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  18. Sulfur impregnated in tunable porous N-doped carbon as sulfur cathode: effect of pore size distribution

    International Nuclear Information System (INIS)

    Wang, Sha; Zhao, Zhenxia; Xu, Hui; Deng, Yuanfu; Li, Zhong; Chen, Guohua

    2015-01-01

    Highlights: •Effects of pore size were investigated on electrochemistry for S cathode. •Activation energy of sulfur desorption from the PDA-C was estimated. •Strong interaction was formed between sulfur and porous N-doped carbon. •PDA-C@S showed good cycling performance of 608 mA h g −1 at 2 C over 300 cycles. •PDA-C@S showed good rate stability and high rate capacity. -- Abstract: A novel porous N-doped carbon microsphere (polymer-dopamine derived carbon, PDA-C) with high specific surface area was synthesized as sulfur host for high performance of lithium-sulfur batteries. We used KOH to adjust the pore size and surface area of the PDA-C materials, and then impregnated sulfur into the PDA-C samples by vapor-melting diffusion method. Effects of pore size of the PDA-C samples on the electrochemical performance of the PDA-C@sulfur cathodes were systematically investigated. Raman spectra indicated an enhanced trend of the degree of graphitization of the PDA-C samples with increasing calcination temperature. The surface area of the PDA-C samples increases with amount of the KOH in the pore-creating process. The graphitized porous N-doped carbon provides the high electronic conductive network. Meanwhile, the PDA-C with high surface area and uniform micropores ensures a high interaction toward sulfur as well as the high dispersion of nanoscale sulfur layer on it. The microporous PDA-C@S cathode material exhibits the excellent high rate discharge capability (636 mA h g −1 at 2.0 C) and good low/high-rate cycling stability (893 mA h g −1 (0.5 C) and 608 mA h g −1 (2.0 C) over 100 and 300 cycles). Cyclic voltammogram curves and electrochemical impedance plots show that both the impedance and polarization of the cells increase with decreasing pore size

  19. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  20. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    Science.gov (United States)

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  1. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    (ICP-MS) combined to anion exchange showed that very high concentrated spike material could be produced with [small mu ]mol amounts of proteinogenic sulfur containing amino acids per g cell dry weight. An enrichment of 34S to 96.3 +/- 0.4% (n = 3) and 98.5 +/- 0.4% (n = 3) for cysteic acid...... with the concept of species specific isotope dilution analysis (IDA). The method relies on the determination of the two sulfur containing amino acids, cysteine and methionine by sulfur speciation analysis and is hence applicable to any protein containing sulfur. In vivo synthesis using 34S as sulfur source...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  2. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies

    Directory of Open Access Journals (Sweden)

    Wanxi Peng

    2017-01-01

    Full Text Available Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5 may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO43 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  3. 40 CFR 80.395 - Who is liable for violations under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.395 Section 80.395 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.395 Who is liable for violations under the gasoline sulfur program? (a) Persons liable for...

  4. 40 CFR 80.385 - What acts are prohibited under the gasoline sulfur program?

    Science.gov (United States)

    2010-07-01

    ... gasoline sulfur program? 80.385 Section 80.385 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Violation Provisions § 80.385 What acts are prohibited under the gasoline sulfur program? No person shall: (a...

  5. 40 CFR 180.1232 - Lime-sulfur; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Lime-sulfur; exemption from the... Exemptions From Tolerances § 180.1232 Lime-sulfur; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of lime-sulfur. [70 FR 33363, June...

  6. 40 CFR 80.580 - What are the sampling and testing methods for sulfur?

    Science.gov (United States)

    2010-07-01

    ... [email protected] from the ASTM Web site of http://www.astm.org. (i) ASTM standard method D2622-05 (“ASTM... methods for sulfur? 80.580 Section 80.580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... the sampling and testing methods for sulfur? The sulfur content of diesel fuel and diesel fuel...

  7. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  8. Study by neutron diffusion of local order liquid sulfur around the polymerization transition

    International Nuclear Information System (INIS)

    Descotes, L.

    1994-05-01

    We studied the liquid sulfur according to the temperature. The sulfur is one of the most complicated elementary liquid. We experimented the neutron diffusion by the powder orthorhombic sulfur. The complexity at the polymerization transition are only accompanied by weak local structural transfer. 231 refs., 48 figs., 8 tabs., 3 annexes

  9. Impact of atmospheric H2S, salinity and anoxia on sulfur metabolism in Zea mays

    NARCIS (Netherlands)

    Ausma, Ties; Parmar, S.; Hawkesford, M.J.; De Kok, L.J.; De Kok, L.J.; Hawkesford, M.J.; Haneklaus, S.H.; Schnug, E.

    2017-01-01

    Plants in coastal salt marshes have to deal with salinity, anoxia and excessive reduced sulfur at the same time. Sulfur metabolism is presumed to have significance in plant stress-tolerance. In order to obtain more insight into the physiological significance of sulfur metabolism in plant responses

  10. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    Science.gov (United States)

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 40 CFR 80.290 - How does a refiner apply for a sulfur baseline?

    Science.gov (United States)

    2010-07-01

    ... baseline? 80.290 Section 80.290 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... (abt) Program-General Information § 80.290 How does a refiner apply for a sulfur baseline? (a) The... accordance with § 80.217. (b) The sulfur baseline request must be sent to: U.S. EPA, Attn: Sulfur Program...

  12. 40 CFR 80.245 - How does a small refiner apply for a sulfur baseline?

    Science.gov (United States)

    2010-07-01

    ... sulfur baseline? 80.245 Section 80.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Provisions § 80.245 How does a small refiner apply for a sulfur baseline? (a) Any refiner seeking small refiner status must apply for a refinery sulfur baseline by the deadline under § 80.235 for each of the...

  13. Physiology and application of sulfur-reducing microorganisms from acidic environments

    NARCIS (Netherlands)

    Florentino, Anna Patrícya

    2017-01-01

    Sulfur cycle is one of the main geochemical cycles on Earth. Oxidation and reduction reactions of sulfur are mostly biotic and performed by microorganisms. In anaerobic conditions – marine and some freshwater systems, dissimilatory sulfur- and sulfate-reducing bacteria and archaea are key players

  14. Sulfur isotope ratios and the origins of the aerosols and cloud droplets in California stratus

    International Nuclear Information System (INIS)

    Ludwig, F.L.

    1976-01-01

    Marine aerosols often have sulfur-to-chloride ratios greater than that found in seawater. Sulfur isotope ratios ( 34 S/ 32 S) were measured in aerosol and cloud droplet samples collected in the San Francisco Bay Area in an attempt to understand the processes that produce the observed sulfur-to-chloride ratios. Seawater sulfur usually has very high sulfur isotope ratios: fossil fuel sulfur tends to have smaller isotope ratios and sulfur of bacteriogenic origin still smaller. Samples collected in unpolluted marine air over the hills south of San Francisco had sulfur ratios that were significantly lower than the values for samples collected in nearby areas that were subject to urban pollution. The highest sulfur isotope ratios were found in the offshore seawater. The results suggest bacteriogenic origins, of the marine air sulfur aerosol material. The low isotope ratios in the marine air cannot be explained as a mixture of seawater sulfur and pollutant sulfur, because both tend to have higher isotope ratios. (Auth.)

  15. Workshop on sulfur chemistry in flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, W.E. Jr.

    1980-05-01

    The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

  16. Composition of atmospheric precipitation. II. Sulfur, chloride, iodine compounds. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, E

    1952-01-01

    Atmospheric precipitation invariably contains insoluble substances of different origin. A large scale study was conducted to determine the content of sulfur, chloride, and iodine in rainwater from various places around the world. The origin of these elements in rainwater is discussed. Several meteorological factors influence the Cl-content of rainwater. They include: rainfall, wind direction and wind strength, altitude, and seasonal variation.

  17. Solubility of sulfur in Fe-Cr-Ni alloys

    International Nuclear Information System (INIS)

    Bogolyubskij, S.D.; Petrova, E.F.; Rogov, A.I.; Shvartsman, L.A.

    1979-01-01

    The solubility of 35 S was determined in Fe-Cr-Ni alloys in the range of temperatures between 910 and 1050 deg C by the method of radiometric analysis. It was found that the solubility of sulfur increases with the concentration of chromium in alloys with 20% Ni

  18. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  19. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  20. Responses of Forest Ecosystems to Changing Sulfur Inputs

    Science.gov (United States)

    Dale W. Johnson; Myron J. Mitchell

    1998-01-01

    There was little information on sulfur (S) cycling in forests compared with that of other nutrients (especially N) until the past two decades. Interest in S nutrition and cycling in forests was heightened with the discovery of deficiencies in some unpolluted regions (Kelly and Lambert, 1972; Humphreys et al., 1975; Turner et al., 1977, 1980) and excesses associated...