WorldWideScience

Sample records for sulfonic acid esters

  1. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  2. Preparation and study of novel poly(sulfone-ester-amide)s

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, M. [Institute of Macromolecular Chemistry, Isai (Romania)], Mercer, F. [Raychem Corporation, Menlo Park, CA (United States); Gronewald, S. [Southwest Texas State Univ., San Marcos, TX (United States)] [and others

    1995-12-31

    A series of novel poly(ester-amide)s containing sulfone groups in the main chain have been prepared and compared with related polymers which do not have sulfone bridges. Incorporation of sulfone moieties into the polymer backbone improved the solubility of these polymers without significant loss of their high thermal stability, and provided a large {open_quotes}window{close_quotes} between T{sub g} and decomposition temperature. Solutions of poly(sulfone-ester-amide)s in NMP have been cast into flexible films, having low dielectric constant. The synthesis and characterization of these new polymers will be presented.

  3. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani [MNR Post Graduate College, Kukatpally, Hyderabad (India). Dept. of Chemistry]. E-mail: sarbani277@yahoo.com

    2008-07-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  4. Derivatization of enolic OH of piroxicam: a comparative study on esters and sulfonates

    International Nuclear Information System (INIS)

    Jayaselli, J.; Cheemala, J. Manila Sagar; Geetha Rani, D.P.; Pal, Sarbani

    2008-01-01

    A number of ester and sulfonate derivatives of piroxicam were prepared via acylation/sulfonation of the enolic OH of piroxicam. All the compounds were evaluated for their chemical stability and cyclooxygenase inhibiting properties. Data suggested that esters could be useful for the development of potential prodrugs. The sulfonate derivatives prepared for the first time were found to be stable. One of them showed a moderately selective COX-2 inhibition over COX-1 and would have lower gastrointestinal side effects than piroxicam due to the masked enolic OH group. A plausible mechanism for the acylation/sulfonation process has been proposed that involves participation of the pyridine moiety of piroxicam. Molecular structure of one of the ester was established for the first time by the crystal structure analysis from X-ray powder data. (author)

  5. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    Science.gov (United States)

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups

    International Nuclear Information System (INIS)

    Lim, Youngdon; Seo, Dongwan; Hossain, Md. Awlad; Lee, Soonho; Lim, Jinseong; Jang, Hohyoun; Hong, Taehoon; Kim,; Kim, Whangi

    2014-01-01

    Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1 H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion

  7. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    Science.gov (United States)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  8. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Science.gov (United States)

    2010-04-01

    ...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.395 Trifluoromethane sulfonic acid. Trifluoromethane sulfonic acid... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2...

  9. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    Science.gov (United States)

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  10. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-06-07

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  11. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  12. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  13. Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)

    2010-11-15

    The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)

  14. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  15. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  16. Synthesis of methyl ester sulphonate by sulfonation of soybean oil methyl ester for chemical flooding application

    International Nuclear Information System (INIS)

    Richie Adi Putra; Renisa Ismayanti; Agam Duma Kalista W

    2018-01-01

    This research has accomplished the synthesis of Surfactant Methyl Ester Sulphonate from Methyl Soyate and Sodium Bisulfite as sulfonating agent. The Steps of the synthesis were reaction, purification, neutralization, and separation. The reaction done by several variated condition such as Reaction Temperature (100, 110, 120)°C, Reaction time (210, 270, 330)minute, and the mole ratio between Methyl Soyate and NaHSO 3 (1:1, 1:1.5, 1:2) with 1.5 % of Al 2 O 3 as catalyst of sulfonation reaction. The purification process was conducted at 55 °C and 60 minute by adding Methanol 35 % v/v. The neutralization done was conducted by 20 % of NaOH until pH 6-8. And the rest of the methanol are separated from MES using rotary evaporator. MES which is pass the compatibility Test is MES at the condition of reaction (100 °C, 210 minute and 1 : 2 mole ratio).This MES has tested by FT - IR to see the existence of the Sulphonate group.The FT-IR test result has shown the existence of the Sulphonate group at wave length between 1000 until 1300 cm -1 . Which is the highest peak at 1176 cm-1. From the qualitative test above, then the MES performed by IFT Test with light oil of X- field as comparison. The IFT results has shown a decrease of the interfacial tensions between 12,000 ppm of brine water and the light oil with addition of 0.3 % (v/v) MES, from 3.36 dyne/cm 2 to 1.54 dyne/cm 2 . (author)

  17. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  18. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  19. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  20. Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.

    Science.gov (United States)

    Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok

    2014-10-01

    Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.

  1. Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues

    Directory of Open Access Journals (Sweden)

    Eva Heřmánková-Vavříková

    2017-05-01

    Full Text Available Isoquercitrin, (IQ, quercetin-3-O-β-d-glucopyranoside is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of IQ derivatives at the C-6″. IQ benzoate, phenylacetate, phenylpropanoate and cinnamate were prepared from respective vinyl esters using Novozym 435 (Lipase B from Candida antarctica immobilized on acrylic resin. The enzymatic procedure gave no products with “hydroxyaromatic” acids, their vinyl esters nor with their benzyl-protected forms. A chemical protection/deprotection method using Steglich reaction yielded IQ 4-hydroxybenzoate, vanillate and gallate. In case of p-coumaric, caffeic, and ferulic acid, the deprotection lead to the saturation of the double bonds at the phenylpropanoic moiety and yielded 4-hydroxy-, 3,4-dihydroxy- and 3-methoxy-4-hydroxy-phenylpropanoates. Reducing capacity of the cinnamate, gallate and 4-hydroxyphenylpropanoate towards Folin-Ciocalteau reagent was significantly lower than that of IQ, while other derivatives displayed slightly better or comparable capacity. Compared to isoquercitrin, most derivatives were less active in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging, but they showed significantly better 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, ABTS scavenging activity and were substantially more active in the inhibition of tert-butylhydroperoxide induced lipid peroxidation of rat liver microsomes. The most active compounds were the hydroxyphenylpropanoates.

  2. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  3. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  4. Anticholinesterase activity of fluorochloronitroacetic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu.Ya.; Brel, V.K. Martynov, I.V.

    1984-11-01

    Results are presented from pharmacologic and biochemical experiments leading to the conclusion that fluorochloronitroacetic acid esters have anticholinesterase activity. Since the esters caused muscular weakness in mice, experiments were performed on isolated tissue preparation. The biochemical experiments consisted of finding the biomolecular constants of irreversible inhibition of acetylcholinesterase by the esters, using acetylcholinesterase from human erythrocytes, as well as horse serum cholinesterase. The ethyl and n-propyl esters of halogen nitroacetic acid were used in all experiments. It was found that the propyl ester caused an increase in the force of individual contractions in the isolated muscle specimens, plus an inability of the muscle to retain tetanus. The substances were determined to have an anticholinesterase effect. The mechanism of cholinesterase inhibition is not yet known. It is probable that the substances acylate the serine hydroxyl of the esterase center of the cholinestersase. 7 references, 1 figure.

  5. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available , was developed simultaneously by Hart- wig and Buchwald.5 Typically the tert-butyl ester of propionic acid is treated with an aryl halide (bromide or chloride) in the presence of a strong base, palladium and a bulky phosphine ligand or a bulky imidazolinium CO2t... novel palladium- catalysed conditions for the arylation of acetoacetate esters resulting in the formation of 2-arylacetic acid esters. When we attempted the arylation of tert-butyl aceto- acetate 1a with bromobenzene 2a using mild reaction conditions (K3...

  6. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  7. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  8. 21 CFR 573.640 - Methyl esters of higher fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl esters of higher fatty acids. 573.640... ANIMALS Food Additive Listing § 573.640 Methyl esters of higher fatty acids. The food additive methyl esters of higher fatty acids may be safely used in animal feeds in accordance with the following...

  9. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  10. Structure and properties of compositions based on petroleum sulfonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tutorskii, I.A.; Sultanova, A.S.; Belkina, E.V.; Fomin, A.G. [Lomonosov Academy of Fine Chemical Technology, Moscow (Russian Federation)

    1995-03-01

    Colloidal characteristics of compositions based on petroleum sulfonic acids were studied. Neutralized heavy oil residue exhibits surface-active properties and contains an ultradisperse filler. Analysis of the compositions by size-exclusion-chromatography shows deep structural changes in the heavy acid residue upon neutralization with calcium carbonate.

  11. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Origin of estradiol fatty acid esters in human ovarian follicular fluid.

    Science.gov (United States)

    Pahuja, S L; Kim, A H; Lee, G; Hochberg, R B

    1995-03-01

    The estradiol fatty acid esters are the most potent of the naturally occurring steroidal estrogens. These esters are present predominantly in fat, where they are sequestered until they are hydrolyzed by esterases. Thus they act as a preformed reservoir of estradiol. We have previously shown that ovarian follicular fluid from patients undergoing gonadotropin stimulation contains very high amounts of estradiol fatty acid esters (approximately 10(-7) M). The source of these esters is unknown. They can be formed by esterification of estradiol in the follicular fluid by lecithin:cholesterol acyltransferase (LCAT), or in the ovary by an acyl coenzyme A:acyltransferase. In order to determine which of these enzymatic processes is the source of the estradiol esters in the follicular fluid, we incubated [3H]estradiol with follicular fluid and cells isolated from human ovarian follicular fluid and characterized the fatty acid composition of the [3H]estradiol esters biosynthesized in each. In addition, we characterized the endogenous estradiol fatty acid esters in the follicular fluid and compared them to the biosynthetic esters. The fatty acid composition of the endogenous esters was different than those synthesized by the cellular acyl coenzyme A:acyltransferase, and the same as the esters synthesized by LCAT, demonstrating that the esters are produced in situ in the follicular fluid. Although the role of these estradiol esters in the ovary is not known, given their remarkable estrogenic potency it is highly probable that they have an important physiological role.

  13. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  14. Synthesis and properties of sulfonated poly(phenylene sulfone)s without ether linkage by Diels–Alder reaction for PEMFC application

    International Nuclear Information System (INIS)

    Lim, Youngdon; Lee, Hyunchul; Lee, Soonho; Jang, Hohyoun; Hossain, Md. Awlad; Cho, Younggil; Kim, Taeho; Hong, Youngtaik; Kim, Whangi

    2014-01-01

    A new sulfonated poly(phenylene sulfone) polymer (SPPS) was synthesized by Diels-Alder polymerization from 1,4-bis(2,4,5-triphenylcyclopentadienone)benzene (BTPCPB) and 4,4′-diethynylphenylsulfone, and followed by sulfonation reaction with chlorosulfuric acid. A series of sulfonated poly(phenylene sulfone)s (SPPS) with different degrees of sulfonation was prepared in a controllable manner with chlorosulfuric acid. These polymers showed good solubility in aprotic polar solvents, dimethyl acetamide (DMAC) and dimethyl sulfoxide (DMSO). Three different polymer membranes were studied by 1 H NMR spectroscopy, and thermogravimetric analysis (TGA). The ion exchange capacity (IEC) and proton conductivity of SPPS were evaluated according to the degrees of sulfonation. The water uptake (WU) of the synthesized SPPS membranes ranged from 38%∼75%, compared with 32% for Nafion 211 ® at 80 °C. The SPPS membranes exhibited proton conductivities (at 80 °C under 90% RH) of 110.2 mS/cm compared with 102.7 mS/cm for Nafion 211 ® . Power density was performed by single cell and showed similar to Nafion value

  15. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  16. Method for separating mono- and di-octylphenyl phosphoric acid esters

    International Nuclear Information System (INIS)

    Arnold, W.D. Jr.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters

  17. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  18. SYNTHESIS OF FATTY ACID ETHYL ESTER FROM CHICKEN FAT ...

    African Journals Online (AJOL)

    eobe

    synthesis of fatty acid ethyl ester from chicken fat waste using ZnO/SiO fatty acid ethyl ester ... obtained in the range of 56−88%and a second order quadratic polynomial regression model that established the ... Transesterification is a chemical.

  19. Bis-sulfonic Acid Ionic Liquids for the Conversion of Fructose to 5-Hydroxymethyl-2-furfural

    Directory of Open Access Journals (Sweden)

    Sangho Koo

    2012-10-01

    Full Text Available Homogenous bis-sulfonic acid ionic liquids (1 mol equiv. in DMSO (10 mol equiv. at 100 °C efficiently mediated the conversion of D-fructose into 5-hydroxymethyl-2-furfural in 75% isolated yield, which was roughly a 10% increment compared to the case of the mono-sulfonic acid ionic liquids.

  20. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    Science.gov (United States)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  1. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  2. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  3. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  4. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems.

  5. Uptake and utilization of sulfonic acids in the cyanobacterial strains Anabaena variabilis and Plectonema 73110

    International Nuclear Information System (INIS)

    Biedlingmaier, S.; Schmidt, A.

    1987-01-01

    Growth of several cyanobacteria was examined on ethane sulfonate and taurine as only sulfur source. Comparing two strains with differential utilization of sulfonic acids (Anabaena variabilis and Synechococcus 6301) demonstrated that actual growth was coupled to the presence of an active sulfonate transport system due to species specific properties and nutritional conditions. Sulfonate uptake in Anabaena variabilis was characterized by a pH optimum of 6.5, a structural specificity for sulfonates, missing Na + dependence, and phosphate stimulation. Radiolabeled ethane sulfonate and taurine was metabolized to products of normal sulfur metabolism. Also considerable amounts of 35 S-labeled volatiles (mercaptanes and sulfide) could be detected, suggesting a degradation mechanism via reduction to mercaptanes and cleavage of the C-S bond. (orig.)

  6. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    International Nuclear Information System (INIS)

    Zhang Zhiming; Wei Zhixiang; Zhang Lijuan; Wan Meixiang

    2005-01-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with α-naphthalene sulfonic acid (α-NSA), β-naphthalene sulfonic acid (β-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO 3 H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act in a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including π-π interactions, hydrogen and ionic bonds

  7. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  8. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fatty acid methyl esters production: chemical process variables

    Directory of Open Access Journals (Sweden)

    Paulo César Narváez Rincón

    2004-05-01

    Full Text Available The advantages of fatty acid methyl esters as basic oleochemicals over fatty acids, the seventies world energy crisis and the use of those oleochemicals as fuels, have increased research interest on fats and oils trans-esterification. In this document, a review about basic aspects, uses, process variables and problems associated to the production process of fatty acid methyl esters is presented. A global view of recent researches, most of them focused in finding a new catalyst with same activity as the alcohol-soluble hydroxides (NaOH, KOH, and suitable to be used in transforming fats and oils with high levels of free fatty acids and water avoiding separation problems and reducing process costs, is also discussed.

  10. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  11. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  12. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature.

    Science.gov (United States)

    Bhunia, Subhajit; Banerjee, Biplab; Bhaumik, Asim

    2015-03-25

    We have designed a new hypercrosslinked supermicroporous polymer (HMP-1) with a BET surface area of 913 m(2) g(-1) by FeCl3 via a catalyzed Friedel-Crafts alkylation reaction between carbazole and α,α'-dibromo-p-xylene. Upon sulfonation HMP-1 yielded a very efficient solid acid catalyst for the production of biodiesels via esterification/transesterification of free fatty acids (FFA)/esters at room temperature.

  13. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  14. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  15. PROCESS FOR HYDROGENOLYSIS OF ALPHA-HYDROXY ESTERS OR ACIDS USING A HETEROGENEOUS CATALYST

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for hydrogenolysis of alpha-hydroxy esters or acids, comprising reacting the alpha-hydroxy ester or acid in the presence of a heterogeneous catalyst. The present invention also relates to a method for producing propionic acid ester, and the use of any...

  16. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  17. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS

    NARCIS (Netherlands)

    Esperza, X.; Moyano, E.; de Boer, J.; Galceran, M.T.; van Leeuwen, S.P.J.

    2011-01-01

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases.

  18. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  19. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  20. Zeolite-catalysed preparation of alpha-hydroxy carboxylic acids and esters thereof

    DEFF Research Database (Denmark)

    2010-01-01

    A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst.......A process for the production of lactic acid and 2-hydroxy-3-butenoic acid or esters thereof by conversion of glucose, fructose, sucrose, xylose and glycolaldehyde dissolved in a solvent in presence of a solid Lewis acidic catalyst....

  1. Three new fatty acid esters from the mushroom Boletus pseudocalopus.

    Science.gov (United States)

    Kim, Ki Hyun; Choi, Sang Un; Lee, Kang Ro

    2012-06-01

    A bioassay-guided fractionation and chemical investigation of a MeOH extract of the Korean wild mushroom Boletus pseudocalopus resulted in the identification of three new fatty acid esters, named calopusins A-C (1-3), along with two known fatty acid methyl esters (4-5). These new compounds are structurally unique fatty acid esters with a 2,3-butanediol moiety. Their structures were elucidated through 1D- and 2D-NMR spectroscopic data and GC-MS analysis as well as a modified Mosher's method. The new compounds 1-3 showed significant inhibitory activity against the proliferation of the tested cancer cell lines with IC(50) values in the range 2.77-12.51 μM.

  2. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  3. Convenient synthesis of 6-nor-9,10-dihydrolysergic acid methyl ester.

    Science.gov (United States)

    Crider, A M; Grubb, R; Bachmann, K A; Rawat, A K

    1981-12-01

    6-Nor-9,10-dihydrolysergic acid methyl ester (IV) was prepared by demethylation of 9,10-dihydrolysergic acid methyl ester (II) with 2,2,2-trichloroethyl chloroformate, followed by reduction of the intermediate carbamate (III) with zinc in acetic acid. The 6-ethyl-V and 6-n-propyl-VI derivatives were prepared by alkylation of IV with the appropriate halide. All of the ergoline derivatives were evaluated for stereotyped behavior in rats, with 6-nor-6-ethyl-9,10-dihydrolysergic acid methyl ester (V) being active but much less potent than apomorphine. Compound VI was evaluated for its effect on blood pressure; at a dose of 30 mg/kg ip, it significantly lowered, diastolic pressure in normotensive rats.

  4. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  5. Patterning of electrically conductive poly(aniline-co-aniline sulfonic acid) and its application in the immobilization of cytochrome c

    International Nuclear Information System (INIS)

    Oh, Se Young; Oh, Il Soo; Choi, Jeong-Woo

    2004-01-01

    We have synthesized poly(aniline-co-aniline sulfonic acid) and then investigated the feasibility of application as a specific and electrically conductive binding template for biomolecules. Poly(aniline-co-aniline sulfonic acid)s were prepared by oxidation polymerization of aniline and aniline sulfonic acid under various ratios. A fine pattern of the conducting copolyaniline was obtained by using a deep UV lithographic technique. Cytochrome c was immobilized onto the photochemically patterned conducting copolyaniline with a self-assembly method. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were studied from atomic force microscopy and cyclic voltammetry. The self-assembled cytochrome c monolayer immobilized onto the copolyaniline with a high electrical conductivity showed a high electrochemical activity

  6. Side-chain sulfonated poly(ether sulfone)s for PEM applications

    Energy Technology Data Exchange (ETDEWEB)

    Meier-Haack, J.; Butwilowski, W.; Quetschke, A.; Vogel, C. [Leibniz Institute of Polymer Research Dresden, Dresden (Germany)

    2010-07-01

    Copoly(arylene ether sulfone)s from bis-(4-fluoro phenyl)sulfone (DFDPhS), bis(4-trimethylsiloxy phenyl)sulfone (DHDPhS), and 2,5-diphenylhydroquinone trimethylsilylether (Bis-TMS-DPhHQ) were obtained by nucleophilic displacement polycondensation with high molecular weights (M{sub n} up to 70,000 g/mol; {eta}{sub inh} up to 0.93 dl/g) and narrow molecular weight distributions (2.1 - 2.9). All copolymers showed a single glass-transition temperature (T{sub g}) around 230 C. Upon sulfonation with concentrated sulfuric acid, the T{sub g}s (from samples in the protonated form) were shifted to higher temperatures (+ 35 {+-} 5 C). NMR spectra and the determined ion-exchange capacities (IEC; 1.46 - 2.05 mmol/g), which were close to the theoretical values, indicating that only the pendant phenyl rings of the 2,5- diphenylhydroquinone moieties in the polymer backbone were sulfonated. Membranes prepared from N-methyl- 2-pyrrolidone (NMP) solutions were transparent and soft. The water-uptake at room temperature increased from 30% to 80% with increasing IEC. Samples from random copolymers with an IEC {>=} 1.8 mmol/g were soluble in water at 90 C. While the proton conductivity of the low IEC samples (random copolymer) (1.46 mmol/g) was lower than that of Nafion {sup registered}, the conductivities of the high IEC samples were superior to Nafion {sup registered}. In general membranes from blockcopolymers showed lower water-uptake, higher dimensional stability and higher proton conductivities as compared to samples from random copolymers with similar monomer composition and ion-exchange capacities. (orig.)

  7. Analysis of chemical signatures of alkaliphiles using fatty acid methyl ester analysis

    Directory of Open Access Journals (Sweden)

    Basha Sreenivasulu

    2017-01-01

    Full Text Available Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic.

  8. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    OpenAIRE

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant E...

  9. Synthesis of new fatty acids amides from aminolysis of fatty acid methyl esters (FAMEs)

    International Nuclear Information System (INIS)

    Lopes, Carolina R.; Montes D'Oca, Caroline da Ros; Duarte, Rodrigo da C.; Kurz, Marcia H.S.; Primel, Ednei G.; Clementin, Rosilene M.; Villarreyes, Joaquin Ariel M.; Montes D'Oca, Marcelo G.

    2010-01-01

    Recent biochemical and pharmacological studies have led to the characterization of different fatty acid amides as a new family of biologically active lipids. Here, we describe the synthesis of new amides from C16:0, 18:0, 18:1 and 18:1, OH fatty acids (FFA) families with cyclic and acyclic amines and demonstrate for the first time that these compounds produce cytotoxic effects. Application of this method to the synthesis of fatty acid amides was performed using the esters aminolysis as a key step and various carboxylic amides were prepared in good yield from fatty acid methyl esters (FAMEs). (author)

  10. Gamma-aminobutyric acid esters. 1. Synthesis, brain uptake, and pharmacological studies of aliphatic and steroid esters of gamma-aminobutyric acid

    International Nuclear Information System (INIS)

    Shashoua, V.E.; Jacob, J.N.; Ridge, R.; Campbell, A.; Baldessarini, R.J.

    1984-01-01

    Labeled and unlabeled aliphatic and steroid esters of gamma-amino[U- 14 C]butyric acid (GABA) were synthesized and tested for their capacity to penetrate the blood-brain barrier and for evidence of central neuropharmacological activity in rodents. The uptake of the labeled 9,12,15-octadecatrienyl (linolenyl), 3-cholesteryl, 1-butyl, and the 9-fluoro-11 beta,17-dihydroxy-16 alpha-methyl-3,20-dioxopregna -1,4-dien-21-yl (dexamethasone) esters of GABA into mouse brain increased 2-, 25-, 74-, and 81-fold over GABA, respectively. The cholesteryl ester of GABA depressed the general motor activity of mice and rats in a dose-dependent manner, whereas the 1-butyl, linolenyl, and dexamethasone esters were inactive by this test. Studies of the rates of hydrolysis, GABA receptor binding capacity, and octanol/water partition coefficients indicated that pharmacological activity of the esters after entry into the central nervous system (CNS) was dependent on their capacity to release GABA by enzymatic hydrolysis and their lipid solubility

  11. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  12. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    Science.gov (United States)

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-07

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. This journal is © The Royal Society of Chemistry 2012

  14. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    Science.gov (United States)

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  15. Preparation of esters of gallic acid with higher primary alcohols

    NARCIS (Netherlands)

    Kerk, G.J.M. van der; Verbeek, J.H.; Cleton, J.C.F.

    1951-01-01

    The esters of gallic acid and higher primary alcohols, especially fatty alcohols, have recently gained considerable interest as possible antioxidants for fats. Two independent methods for the preparation of these esters are described. In the first method the hitherto unknown compound galloyl

  16. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Polystyrene was grafted on carbon foam with a melted polypropylene film predeposited on the surface. Polystyrene was subsequently sulfonated by chlorosulfonic acid. The effect of the temperature, time of grafting and concentration of radical initiator was studied. The materials were characterized by

  17. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  18. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids.

    Science.gov (United States)

    Eignerova, Barbara; Tichy, Michal; Krasulova, Jana; Kvasnica, Miroslav; Rarova, Lucie; Christova, Romana; Urban, Milan; Bednarczyk-Cwynar, Barbara; Hajduch, Marian; Sarek, Jan

    2017-11-10

    To improve the properties of cytotoxic triterpenoid acids 1-5, a large set of hydrophilic esters was synthesized. We choose betulinic acid (1), dihydrobetulinic acid (2), 21-oxoacid 3 along with highly active des-E lupane acids 4 and 5 as a model set of compounds for esterification of which the properties needed to be improved. As ester moieties were used - methoxyethanol and 2-(2-methoxyethoxy)ethanol and glycolic unit (type a-d), pyrrolidinoethanol, piperidinoethanol and morpholinoethanol (type f-h), and monosaccharide groups (type i-l). As a result, 56 triterpenic esters (49 new compounds) were obtained and their cytotoxicity on four cancer cell lines and normal human fibroblasts was tested. All new compounds were fully soluble at all tested concentrations, which used to be a problem of the parent compounds 1 and 2. 16 compounds had IC 50  acids 1-5. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima; Callens, Emmanuel; Talbi, Karima; Basset, Jean-Marie

    2015-01-01

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate

  20. Aspergillus niger whole-cell catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids.

    Science.gov (United States)

    Rajapriya, Govindaraju; Morya, Vivek Kumar; Mai, Ngoc Lan; Koo, Yoon-Mo

    2018-04-01

    Synthesis of caffeic acid ester essentially requires an efficient esterification process to produce various kinds of medicinally important ester derivatives. In the present study, a comprehensive and comparative analysis of whole-cell catalyzed caffeic acid esters production in ionic liquids (ILs) media was performed. Olive oil induced mycelial mass of halotolerant Aspergillus niger (A.niger) EXF 4321 was freeze dried and used as a catalyst. To ensure maximum solubilization of caffeic acid for highest substrate loading several ILs were screened and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf 2 N]) was found to have the maximum solubility and favoured for enzymatic activity of freeze dried mycelia. The whole-cell catalyzed synthesis of caffeic acid phenethyl ester (CAPE) conditions were optimized and bioconversion up to 84% was achieved at a substrate molar ratio of 1:20 (caffeic acid:2-phenyl ethanol), 30°C for 12h. Results obtained during this study were encouraging and helpful to design a bioreactor system to produce caffeic acid derived esters. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Treating shale oil to obtain sulfonates

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, H

    1921-01-21

    The process shows as its principal characteristics: (1) treating the oil with chlorsulfonic acid at a temperature of about 100/sup 0/C; (2) the transformation of the sulfonic acid obtained into salts; (3) as new industrial products, the sulfonates obtained and their industrial application as disinfectants for hides and wood.

  2. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  3. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    International Nuclear Information System (INIS)

    Barroso-Bujans, F.; Verdejo, R.; Lozano, A.; Fierro, J.L.G.; Lopez-Manchado, M.A.

    2008-01-01

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy

  4. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Arumugham Suresh

    2014-09-01

    Full Text Available Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp., Candida sp., and Aspergillus niger and Aspergillus flavus. The FAME profiles were determined through gas chromatography with a flame ionization detector. Results: The FAME was found to be radial effective in inhibiting the radial growth of both bacterial and fungal pathogens. The FAME extracts exhibited the antibacterial activity against three clinical pathogens, namely, Escherichia coli, Salmonella typhi and Enterobacter sp. with the maximum zone of inhibition of 12.0 mm, 12.0 mm and 11.0 mm, respectively. The FAME showed moderate antifungal activity against Cryptococcus sp. (11.8 mm, Aspergillus niger (10.5 mm, Candida sp. (11.8 mm and Fusarium sp. (10.4 mm. Gas chromatography-flame ionization detector analysis revealed about 30 different FAMEs. Conclusions: We assume that the observed antimicrobial potency may be due to the abundance of erucic acid methyl ester (C22:0, arachidic acid methyl ester (C20:0, palmitic acid methyl ester (C16:0, cis-11-eicosenoicmethyl ester (C20:1, cis-11, 14-eicosadienoic acid methyl ester (C20:2 and linolenic acid methyl ester (C18:3 in FAMEs which appears to be promising to treat microbial diseases.

  5. CFD simulation of fatty acid methyl ester production in bubble column reactor

    Science.gov (United States)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  6. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  7. Effect of sugar fatty acid esters on rumen fermentation in vitro.

    Science.gov (United States)

    Wakita, M; Hoshino, S

    1987-11-01

    1. The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro. 2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate:propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent propionate enhancer and rumen gas depressor, the effective dose being as low as 1 g/l in a final concentration. Fatty acid esters other than SFEs had little, if any, effect on rumen VFA production and their molar proportions. 3. Approximately 50% of laurate sugar ester was hydrolysed by in vitro incubation with rumen fluid for 2 h. The addition of fatty acids and sucrose was also effective in the alterations of rumen VFA and gas production. However, the effect of SFEs on in vitro rumen fermentation was significantly greater than that of their constituent fatty acids or sucrose, or both. Accordingly, the effect appeared to be ascribed to the complex action of SFE itself and to its constituents, free fatty acids and sucrose. 4. SFEs, at the level of 4 g/l, reduced substantially the froth formation (ingesta volume increase) and seemed to be effective for the prevention of bloat.

  8. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  9. Microstructures of the Sulfonic Acid-Functionalized Ionic Liquid/Sulfuric Acid and Their Interactions: A Perspective from the Isobutane Alkylation.

    Science.gov (United States)

    Zheng, Weizhong; Huang, Chizhou; Sun, Weizhen; Zhao, Ling

    2018-02-01

    The all-atom force field for concentrated sulfuric acid (98.30 wt %) was developed in this work based on ab initio calculations. The structural and dynamical properties of sulfuric acid and the mixing behaviors of sulfuric acid with ionic liquids (ILs), i.e., SFIL (1-methyl-3-(propyl-3-sulfonate) imidazolium bisulfate ([PSMim][HSO 4 ])) and non-SFIL (1-methyl-3-propyl imidazolium bisulfate ([PMim][HSO 4 ])), were investigated using a molecular dynamics simulation. For sulfuric acid, most H 3 O + ions were found beside HSO 4 - ions, forming a contact ion pair with the HSO 4 - ions, and three-dimensional hydrogen-bonding networks existed in the sulfuric acid. Analyses indicate that both ILs could be miscible with sulfuric acid with a strong exothermic character. The new strong interaction site between the sulfonic acid group of SFIL and an H 2 SO 4 molecule through a strong hydrogen-bonding interaction was observed, which was beneficial to the catalytic activity and stability of the sulfuric acid. This observation is in good agreement with the experimental results that indicate SFILs could enhance the reusability of sulfuric acid for the isobutane alkylation about 4-fold compared to that of non-SFILs. Hopefully this work will provide insights into the screening and designing of new isobutane alkylation catalysts based on sulfuric acid and SFILs.

  10. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.

    Science.gov (United States)

    Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus

    2018-04-17

    Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.

  11. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis.

    Science.gov (United States)

    Tokiwa, Yutaka; Kitagawa, Masaru; Raku, Takao; Yanagitani, Shusaku; Yoshino, Kenji

    2007-06-01

    Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.

  13. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance

    OpenAIRE

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N.

    2015-01-01

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercapto...

  14. 21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.

    Science.gov (United States)

    2010-04-01

    ... (C9-C15) benzene-sulfonate. Sodium dioctyl sulfosuccinate. Sodium distearyl phosphate. Sodium lauryl sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols... hydroxide (soaps). Propanol (esters). Propylene glycol (esters). Propylene oxide (esters). Sodium hydroxide...

  15. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    Science.gov (United States)

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  16. Chromatographic, Spectrometric and NMR Characterization of a New Set of Glucuronic Acid Esters Synthesized by Lipase

    Directory of Open Access Journals (Sweden)

    Michel Marlier

    2007-01-01

    Full Text Available An enzymatic synthesis was developed on a new set of D-glucuronic acid esters and particularly the tetradecyl-D-glucopyranosiduronate also named tetradecyl D-glucuronate. Chromatographic analyses revealed the presence of the ester as a mixture of anomeric forms for carbon chain lengths superior to 12. TOF/MS and MS/MS studies confirmed the synthesis of glucuronic acid ester. The NMR study also confirmed the structure of glucuronic acid esters and clearly revealed an anomeric (α/β ratio equivalent to 3/2

  17. 75 FR 20785 - Polyglyceryl Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a...

    Science.gov (United States)

    2010-04-21

    ... Phthalate Ester of Coconut Oil Fatty Acids; Exemption from the Requirement of a Tolerance; Technical... ester of coconut oil fatty acids; exemption from the requirement of a tolerance. This document is being... requirement of a tolerance for ``polyglyceryl phthalate ester of coconut oil fatty acids'' pursuant to a...

  18. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  19. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    Science.gov (United States)

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of sugar fatty acid esters on rumen fermentation in vitro

    OpenAIRE

    Wakita, M.; Hoshino, S.

    1987-01-01

    1.The effect of sugar fatty acid esters (SFEs; currently used as food additives for human consumption) on rumen volatile fatty acids (VFA) and gas production was studied with sheep rumen contents in vitro.2. Some SFEs having monoester contents of more than 70% increased the molar proportion of propionate in conjunction with reduction in the acetate: propionate ratio when the individual SFE was added to rumen contents in a final concentration of 4 g/l. Laurate sugar ester was the most potent p...

  2. Synthesis of TMP-ester biolubricant basestock from palm stearin fatty acids

    Science.gov (United States)

    Fadzel, Fatimatuzzahraa Mohd; Salimon, Jumat; Derawi, Darfizzi

    2018-04-01

    A potential biolubricant; TMP-ester was produced via esterification of fatty acids (FA) from palm stearin (PS) with trimethylolpropane (TMP). The synthesis was conducted at four conditions; temperature, time, molar ratio of FA:TMP and H2SO4 as catalyst (by percent based on the weight of FA and TMP) that are 150 °C, 2 hours, 4:1 and 1% of H2SO4 respectively. The composition of ester produced was determined using gas chromatography (GC-FID). The presence of ester group was confirmed by the means of FTIR by the existence of strong carboxyl band of ester, v(C=O) at 1746cm-1 and 1H and 13C NMR spectroscopy shows the chemical shift, δ of ester, C=O at 2.27-2.31 ppm and 173.45 ppm accordingly. From the esterification reaction, 95% product of TMP-ester was formed. The thermal and oxidative stability of TMP-ester is 200°C.

  3. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  4. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  6. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    International Nuclear Information System (INIS)

    Uranga, Carla C.; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D.; Hernández-Martínez, Rufina

    2016-01-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  7. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Uranga, Carla C., E-mail: curanga@cicese.edu.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico); Beld, Joris, E-mail: joris.beld@drexelmed.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Mrse, Anthony, E-mail: amrse@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Córdova-Guerrero, Iván, E-mail: icordova@uabc.edu.mx [Universidad Autónoma de Baja California (UABC), Calzada Universidad 14418 Parque Industrial Internacional Tijuana, Tijuana, B.C. 22390 (Mexico); Burkart, Michael D., E-mail: mburkart@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Hernández-Martínez, Rufina, E-mail: ruhernan@cicese.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico)

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  8. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash; Schieda, Mauricio; Shahi, Vinod Kumar; Nunes, Suzana Pereira

    2011-01-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  9. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  10. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  11. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  13. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  14. Determination of 4-Chloroindole-3-Acetic Acid Methyl Ester in Lathyrus Vicia and Pisum by Gas Chromatography - Mass Spectrometry

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Egsgaard, Helge; Larsen, Elfinn

    1980-01-01

    4-Chloroindole-3-acetic acid methyl ester was identified unequivocally in Lathyrus latifolius L., Vicia faba L. and Pisum sativum L. by thin layer chromatography, gas chromatography and mass spectrometry. The gas chromatographic system was able to separate underivatized chloroindole-3-acetic acid...... methyl ester isomers. The quantitative determination of 4-chloroindole-3-acetic acid methyl ester in immature seeds of these three species was performed by gas chromatography – mass spectrometry using deuterium labelled 4-chloro-indole-3-acetic acid methyl ester as an internal standard. P. sativum...

  15. Use of citric acid esters as alternative fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Georg; Thuneke, Klaus; Remmele, Edgar [Technologie- und Foerderzentrum, Straubing (Germany); Schieder, Doris [Technische Univ. Muenchen, Straubing (Germany). Lehrstuhl fuer Chemie Biogener Rohstoffe

    2013-06-01

    Common fuels for (adapted) diesel engines are fossil diesel fuel, fatty acid methyl ester (FAME or biodiesel) or vegetable oils. Furthermore the citric acid esters tributylcitrate (TBC) and triethylcitrate (TEC) are expected to be a possible diesel substitute. Their use as fuel was applied for a patent in Germany in 2010. According to the patent applicant the advantages are low soot combustion, independence of energy imports due to the possibility of local production and a broad raw material base. Their fuel properties have been analysed in the laboratory and compared with the relevant fuel standards. Only some of the determined values are meeting the specifications, but on the other hand few rapeseed oil characteristics (e. g. oxidation stability and viscosity) can be improved if the citric acid esters are used as a blend component. The operating and emission behaviour of a vegetable oil compatible CHP unit fuelled with various rapeseed oil and TBC blends were investigated and a trouble free and soot emission reduced engine operation due to the high molecularly bound oxygen content was observed. Long term test runs are necessary for an entire technical validation. (orig.)

  16. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  17. Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil.

    Science.gov (United States)

    Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa

    2018-04-01

    In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

  18. Sulfonated 1,3-bis(4-pyridylpropane

    Directory of Open Access Journals (Sweden)

    Ore Kuyinu

    2011-06-01

    Full Text Available In the title compound, 4-[3-(3-sulfonatopyridin-1-ium-4-ylpropyl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7°, and this results in the molecule having a chiral conformation and packing. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition, there are weaker intermolecular C—H...O interactions.

  19. Impact of thermooxidation of phytosteryl and phytostanyl fatty acid esters on cholesterol micellarization in vitro.

    Science.gov (United States)

    Scholz, Birgit; Weiherer, Renate; Engel, Karl-Heinz

    2017-09-01

    The effects of thermooxidation of a phytosteryl/-stanyl and a phytostanyl fatty acid ester mixture on cholesterol micellarization were investigated using an in vitro digestion model simulating enzymatic hydrolysis by cholesterol esterase and subsequent competition of the liberated phytosterols/-stanols with cholesterol for incorporation into mixed micelles. As a first step, relationships between different doses of the ester mixtures and the resulting micellarized cholesterol were established. Subsequent subjection of the thermooxidized ester mixtures to the in vitro digestion model resulted in three principal observations: (i) thermal treatment of the ester mixtures led to substantial decreases of the intact esters, (ii) in vitro digestion of cholesterol in the presence of the thermooxidized ester mixtures resulted in significant increases of cholesterol micellarization, and (iii) the extents of the observed effects on cholesterol micellarization were strongly associated to the remaining contents of intact esters. The loss of efficacy to inhibit cholesterol micellarization due to thermally induced losses of intact esters corresponded to a loss of efficacy that would have been induced by an actual removal of these amounts of esters prior to the in vitro digestion. The obtained results suggest that in particular oxidative modifications of the fatty acid moieties might be responsible for the observed increases of cholesterol micellarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sulfonic acid-functionalized golf nanoparticles: A colloid-bound catalyst for soft lithographic application on self-assembled monolayers

    NARCIS (Netherlands)

    Li, X.; Paraschiv, V.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    In this report, we present a new lithographic approach to prepare patterned surfaces. Self-assembled monolayers (SAMs) of the acid-labile trimethylsilyl ether (TMS-OC11H22S)2 (TMS adsorbate) was formed on gold. 5-Mercapto-2-benzimidazole sulfonic acid sodium salt (MBS-Na+) was used as a ligand for

  1. In vitro pharmacokinetics of anti-psoriatic fumaric acid esters

    NARCIS (Netherlands)

    N.H.R. Litjens (Nicolle); E. van Strijen (Elizabeth); C. van Gulpen (Co); H. Mattie (Herman); J.T. van Dissel (Jaap); H.B. Thio (Bing); P.H. Nibbering (Peter)

    2004-01-01

    textabstractBackground: Psoriasis is a chronic inflammatory skin disease that can be successfully treated with a mixture of fumaric acid esters (FAE) formulated as enteric-coated tablets for oral use. These tablets consist of dimethylfumarate (DMF) and salts of monoethylfumarate (MEF) and its main

  2. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  3. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  4. Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks

    Science.gov (United States)

    Nor, Nurazira Mohd; Derawi, Darfizzi; Salimon, Jumat

    2018-04-01

    RBD palm oil become one of the interesting renewable resources in biolubricant application. However, palm oil cannot be used directly as lubricant due to some performance limitations such as thermal and oxidative stability. This drawback can be overcome by chemical modification through esterification with polyhydric alcohol such as trimethylolpropane (TMP). The synthesis of ester was carried out via esterification of palm oil fatty acid (POFA) with TMP in the presence of 2% sulphuric acid as catalyst at 150 °C for 5 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage composition of POTMP ester. The structure confirmation of POTMP ester was proven by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The result showed that POTMP ester has successfully synthesized with 97.7% composition of triesters (TE), proved by GC chromatogram. Presence of ester group also evidenced by 1H NMR at 2.27-2.30 ppm and 13C NMR at 173.52-173.54 ppm. The percentage yield of POTMP ester produced was 82% and exist in liquid form at room temperature.

  5. Reaction of acid esters of methylenebis(phosphonous acid) with carbonyl compounds

    International Nuclear Information System (INIS)

    Novikova, Z.S.; Odinets, I.L.; Lutsenko, I.F.

    1987-01-01

    The reaction of methylenebis(phosphonites) containing two hydrophosphoryl groupings with aliphatic and aromatic aldehydes and ketones in the presence of alkali metal fluorides leads to methylenebis(α-hydroxyalkylphosphinates). The reaction of methylenebis(phosphonites) containing one hydrophosphoryl groupings with carbonyl compounds in the presence of alkali metal fluorides proceeds with the formation of a new type of heterocyclic phosphorus compound, viz., 1,2λ 3 ,4λ 5 -oxadiphospholanes. The reaction of acid esters of methylenebis(phosphonous) acid with carbonyl compounds in the presence of alkali metal alkoxides or a tertiary amine is accompanied by phosphinate-phosphonate rearrangement of the intermediately formed α-hydroxylalkylphosphinates

  6. Electrooxidative Tandem Cyclization of Activated Alkynes with Sulfinic Acids To Access Sulfonated Indenones

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jiangwei [The; Center; Shi, Wenyan [The; Zhang, Fan [The; Liu, Dong [The; Tang, Shan [The; Wang, Huamin [The; Lin, Xiao-Min [Center; Lei, Aiwen [The

    2017-05-25

    An,electrooxidative direct arylsulfonlylation of yones sulfintc acids via a radical tandem cyclization strategy has been developed for the construction of sulfonated ilicIenones:under oxidant, free conditions. This method provides a simple and efficient approach to prepare various sulfonylindenones in good to,excellent:Tyidds,, demonstrating the tremendous prospect of utilizing electrocatalysis in oxidative coupling, Notably, this reaction could Be easily scaled up with good, efficiency.

  7. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  8. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  9. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    NARCIS (Netherlands)

    Jusko, T.A.; Oktapodas, M.; Palkovičová Murinová, L.; Babjaková, J.; Verner, M.A.; DeWitt, J.C.; Babinská, K.; Thevenet-Morrison, K.; Čonka, K.; Drobná, B.; Thurston, S.W.; Lawrence, B.P.; Dozier, A.M.; Jarvinen-Seppo, K.M.; Patayová, H.; Trnovec, T.; Legler, J.; Hertz-Picciotto, I.; Lamoree, M.H.

    2016-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184

  10. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of a novel insulinotropic agent, succinic acid monoethyl ester ...

    Indian Academy of Sciences (India)

    Madhu

    index (AAI) (ratio of HDL-C to total cholesterol) were studied. ... ester; FFA, free falty acids; HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol; ..... and impaired catabolism of triglyceride-rich particles. The.

  12. Radiolytical Preparation of a Poly(Vinylbenzyl Sulfonic Acid)-Grafted FEP Membrane and Characterization as Polymer Electrolytes for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y -C; Shin, J; Sohn, J -Y; Fei, G [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-09-15

    In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP-g-PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study performed with Fenton's reagent (3% H{sub 2}O{sub 2} solution containing 4 ppm of Fe{sup 2+}) at 70 deg. C revealed that FEP-g-PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). An EDX analysis was also used to observe the cross-sectional distribution behaviors of the hydrophilic sulfonic acid groups and hydrophobic fluorine groups. The characteristics of an ion-exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton conductivity as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes with different degrees of grafting (36-102%) were measured to be in the range of 0.8-1.62 meq/g, and 10-30%, respectively. When the degree of grafting reached 60% the proton conductivity was higher than that of a Nafion (registered) 212 membrane (6.1E-02 S/cm). The methanol permeability and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the Nafion (registered) 212 membrane, and even the degree of grafting reached 102%. (author)

  13. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  14. Green Synthesis of Acid Esters from Furfural via Stobbe Condensation

    Directory of Open Access Journals (Sweden)

    Shubhra Banerjee

    2013-01-01

    Full Text Available Solvent-free Stobbe condensation of furfural 1 with dimethyl succinate 2 under anhydrous conditions at room temperature using dry-solid potassium tertiary butoxide gave 3-carbomethoxy, 4-furyl-3-butenoic acid 3, which upon methylation followed by Stobbe condensation reaction with different aldehydes and/or ketones under anhydrous conditions at room temperature afforded substituted carbomethoxy acids 5a–f. These acid ester products were saponified to the corresponding dicarboxylic acids 6a–f which are useful in the synthesis of photochromic fulgides.

  15. Proton-transfer compounds of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron) with 4-chloroaniline and 4-bromoaniline.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D; Healy, Peter C

    2007-07-01

    The crystal structures of the proton-transfer compounds of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid) with 4-chloroaniline and 4-bromoaniline, namely 4-chloroanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)ClN(+) x C(9)H(5)INO(4)S(-) x H(2)O, and 4-bromoanilinium 8-hydroxy-7-iodoquinoline-5-sulfonate monohydrate, C(6)H(7)BrN(+) x C(9)H(5)INO(4)S(-) x H(2)O, have been determined. The compounds are isomorphous and comprise sheets of hydrogen-bonded cations, anions and water molecules which are extended into a three-dimensional framework structure through centrosymmetric R(2)(2)(10) O-H...N hydrogen-bonded ferron dimer interactions.

  16. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Yasar, Abdulkadir; Guerue, Metin; Altiparmak, Duran

    2010-01-01

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO x emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO 2 emissions did not vary with the blend fuels significantly.

  17. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali; Yasar, Abdulkadir [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2010-12-15

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO{sub x} emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO{sub 2} emissions did not vary with the blend fuels significantly. (author)

  18. Changes of lipid and fatty acid absorption induced by high dose of citric acid ester and lecithin emulsifiers.

    Science.gov (United States)

    Sadouki, Mohamed; Bouchoucha, Michel

    2014-09-01

    To describe the effect of two food emulsifiers, lecithin (E322) and citric acid esters of mono-and diglycerides of fatty acids (E472c), on the intestinal absorption of lipids. The experiment was conducted on 24 male Wistar rats randomly assigned in three groups. For two groups of six rats, 30% of the lipid intake was replaced with lecithin (L) or citric acid ester of mono and diglycerides, (E); the remaining 12 rats were the control group (C). Diet and fecal fat analysis was used to determine the apparent lipid absorption (ALA) and fatty acids. ALA was significantly lower in the group E than in the groups C and L (p acids decreased while the length of the carbon chains increased, and this decrease was higher in the group E. E472c emulsifier decreased the intestinal absorption of lipids.

  19. 40 CFR 721.3100 - Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oligomeric silicic acid ester compound with a hy-droxyl-al-kyla-mine. 721.3100 Section 721.3100 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.3100 Oligomeric silicic acid ester compound with a...

  20. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids

    Czech Academy of Sciences Publication Activity Database

    Eignerová, Barbara; Tichý, Michal; Krasulová, Jana; Kvasnica, Miroslav; Rárová, L.; Christová, R.; Urban, M.; Bednarczyk-Cwynar, B.; Hajdúch, M.; Šarek, J.

    2017-01-01

    Roč. 140, Nov 10 (2017), s. 403-420 ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:61389030 Keywords : cytotoxicity * triterpenic acids * betulinic acid * hydrophilic ester * prodrug Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 4.519, year: 2016

  1. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  2. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    Science.gov (United States)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation

  3. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  4. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  5. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  6. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  7. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  8. Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Unveren, Elif Erdal; Erdogan, Tuba; Inan, Tulay Y. [Chemistry Institute, TUBITAK Marmara Research Center, 41470, Gebze, Kocaeli (Turkey); Celebi, Serdar S. [Professor Emeritus, Chemical Engineering Department, Hacettepe University, 06800, Beytepe, Ankara (Turkey)

    2010-04-15

    Commercially available poly(ether ether sulfone), PEES, was directly sulfonated using concentrated sulfuric acid at low temperatures by minimizing degradation during sulfonation. The sulfonation reaction was performed in the temperature range of 5-25 C. Sulfonated polymers were characterized by FTIR, {sup 1}H NMR spectroscopy and ion exchange capacity (IEC) measurements. Degradation during sulfonation was investigated by measuring intrinsic viscosity, glass transition temperature and thermal decomposition temperature of sulfonated polymers. Sulfonated PEES, SPEES, membranes were prepared by solvent casting method and characterized in terms of IEC, proton conductivity and water uptake. The effect of sulfonation conditions on chemical stability of membranes was also investigated via Fenton test. Optimum sulfonation condition was determined to be 10 C with conc. H{sub 2}SO{sub 4} based on the characteristics of sulfonated polymers and also the chemical stability of their membranes. SPEES membranes exhibited proton conductivity up to 185.8 mS cm{sup -1} which is higher than that of Nafion 117 (133.3 mS cm{sup -1}) measured at 80 C and relative humidity 100%. (author)

  9. Clinical application analysis of andrographolide total ester sulfonate injection, a traditional Chinese medicine licensed in China.

    Science.gov (United States)

    Zhao, Ying; Huang, Pu; Chen, Zhe; Zheng, Si-Wei; Yu, Jin-Yang; Shi, Chen

    2017-04-01

    Andrographolide total ester sulfonate (ATES) injection is one of the products of traditional Chinese medicine (TCM) currently used against viral infection in China. ATES injection was approved for manufacturing and marketing in January 2002. It is indicated for acute respiratory infections, tonsillitis, chronic obstructive pulmonary disease, influenza, foot and mouth disease, bronchiolitis, herpangina, mumps, infectious mononucleosis and psychosis. However, its usage also carries risk. We investigated the use of ATES at the Wuhan Union Hospital from January 2014 to December 2014 and evaluated its real-world clinical application using the hospital centralized monitoring method. A total of 848 cases were enrolled in this study. In these cases, it was mainly used for postoperative anti-inflammation and treating upper respiratory infection, pneumonia and bronchitis. Among them, 39.86% were contraindicated. Irregular medication of adults and children accounted for 1.91% and 23.38%, respectively. Improper choice of solvent accounted for 3.18%. The choice of intravenous drip versus aerosol inhalation was reasonable. A case of adverse events (AEs) was observed in the monitoring period, and the incidence of adverse drug reaction (ADR) of ATES injection was 0.12%. ATES injection in our hospital is relatively safe with a low incidence of adverse reactions. The study assesses the clinical usage and adverse reactions of ATES injection, and provides suggestions for rational use in clinical practice.

  10. A new, direct analytical method using LC-MS/MS for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD esters) in edible oils.

    Science.gov (United States)

    Yamazaki, K; Ogiso, M; Isagawa, S; Urushiyama, T; Ukena, T; Kibune, N

    2013-01-01

    A new, direct analytical method for the determination of 3-chloro-1,2-propanediol fatty acid esters (3-MCPD esters) was developed. The targeted 3-MCPD esters included five types of monoester and 25 [corrected] types of diester. Samples (oils and fats) were dissolved in a mixture of tert-butyl methyl ether and ethyl acetate (4:1), purified using two solid-phase extraction (SPE) cartridges (C(18) and silica), then analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Five monoesters and five diesters with the same fatty acid group could be separated and quantified. Pairs of 3-MCPD diesters carrying the same two different fatty acid groups, but at reversed positions (sn-1 and sn-2), could not be separated and so were expressed as a sum of both compounds. The limits of quantification (LOQs) were estimated to be between 0.02 to 0.08 mg kg(-1), depending on the types of 3-MCPD ester. Repeatability expressed as relative standard deviation (RSD(r)%) varied from 5.5% to 25.5%. The new method was shown to be applicable to various commercial edible oils and showed levels of 3-MCPD esters varying from 0.58 to 25.35 mg kg(-1). The levels of mono- and diesters ranged from 0.10 to 0.69 mg kg(-1) and from 0.06 to 16 mg kg(-1), respectively.

  11. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    Science.gov (United States)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.; Bernius, Mark T.

    2017-11-14

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  12. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    LENUS (Irish Health Repository)

    Deegan, Alexander Paul

    2012-02-01

    INTRODUCTION: We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm(R); Biogen Idec GmbH, Ismaning, Germany) for 6 months. METHODS: Report of a case. RESULTS: His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP). CONCLUSIONS: Therapy with oral prednisolone (40 mg\\/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

  13. The use of fatty acid esters to enhance free acid sophorolipid synthesis.

    Science.gov (United States)

    Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A

    2006-02-01

    Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.

  14. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  15. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Iurii S. Bodachivskyi

    2016-12-01

    Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.

  16. Aryl sulfonate based anticancer alkylating agents.

    Science.gov (United States)

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  17. [Development of the determination methods of fatty acid esters of chloropropanediols in fat-rich foods].

    Science.gov (United States)

    Yan, Xiaobo; Wu, Shaoming; Li, Nan; Lü, Huadong; Fu, Wusheng

    2013-02-01

    Fatty acid esters of chloropropanediols are a kinds of newly emerged food contaminants, especially 3-monochloropropane-1,2-diol (3-MCPD) esters that have been detected in many foodstuffs such as infant formula and edible oils at relatively high levels. Based on the Tolerable Dose Intake (TDI) of 3-MCPD, the intake of 3-MCPD from 3-MCPD esters may cause the health risk to human beings. The researches for the analysis of 3-MCPD esters have been carried out in some institutes abroad, but there were only a few in China. This paper reviews the methods for the determination of 3-MCPD esters in fat-rich foods, including the extraction, hydrolysis, the derivatization of 3-MCPD esters, the total amount of 3-MCPD esters and the amounts of monoesters and diesters of 3-MCPD.

  18. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel ...

    African Journals Online (AJOL)

    Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the. Seeds Oil of Curcubita ... Gas chromatograph coupled with mass spectrophotometer (GC-MS). The results indicate ..... Chemical and physical properties of ...

  19. Occurrence of fatty acid short-chain-alkyl esters in fruits of Celastraceae plants.

    Science.gov (United States)

    Sidorov, Roman A; Zhukov, Anatoly V; Pchelkin, Vasily P; Vereshchagin, Andrei G; Tsydendambaev, Vladimir D

    2013-06-01

    Small amounts of a mixture of fatty acid short-chain-alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C₁₄-C₂₄ saturated, mono-, di-, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α-linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Synthesis of esters of morpholino-4-carbothionothiolic acid as compounds of potential radioprotective action

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1979-01-01

    The compounds of the group of dithiocarbaminianes as complexing compounds are of importance in radioprotection. Present paper concerns the synthesis of 19, as yet undescribed dithiocarbaminianes esters of morpholino-4-carbothionothiolic acid. They were obtained in the reaction of the potassium salt of the mentioned acid with adequate alkyl or alkyloaryl halogenatas. Potassium salt of the morpholino-4-carbothionothiolic acid was obtained in the reaction of morpholine with carbon disulphite in the presence of potassium hydroxide. Obtaining of the pure potassium salt of the mentioned acid enabled the accurate calculation of the used substarate in further reactions and conduction of reaction in different solvents. Phenyloalkyl, phenacyl and morpholino-4-carbonyloalkyl esters were obtained. Their chemical structure was confirmed by elementary and spectral infrared analysis.

  1. Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

    Directory of Open Access Journals (Sweden)

    Prasad E FUNDE

    2008-12-01

    Full Text Available (FAME Fatty acid methyl ester is made virgin or used vegetable oils (both edible and non-edible and animal fats. Fatty acid methyl ester operates in compression ignition engines like petro-diesel. Fatty acid methyl ester can be blended in any ratio with petroleum diesel fuels. It can be stored just like the petroleum diesel fuel. Petrodiesel can be replaced by biodiesel due to its superiority. It has various advantages. The seeds of Capparis deciduas are found to contain non-edible oil in the range of about 63.75 %. The percentage of biodiesel yield increases with concentration of KOH as a catalyst. The aim of this article is to demonstrate the cost effective new source of energy by single step reaction i.e. production of oil by combining extraction and reaction of extract with the mixture of alcohols. In this article the effect of catalyst concentration, time, water content and temperature on in-situ transesterification is studied to obtain optimum yield and Fatty acid methyl ester (Biodiesel Fuel characterization tests show the striking similarity of various physical & chemical properties and campers to ASTM standards.

  2. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    Science.gov (United States)

    Deegan, Alexander Paul; Kirby, Brian; Rogers, Sarah; Crotty, Tom Bernard; McDonnell, Timonthy John

    2010-10-01

      We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm®; Biogen Idec GmbH, Ismaning, Germany) for 6 months.   Report of a case.   His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP).   Therapy with oral prednisolone (40 mg/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis. © 2010 Blackwell Publishing Ltd.

  3. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. 4-[(2-Hydroxy-4-pentadecyl-benzylidene-amino]-benzoic Acid Methyl Ester

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2013-11-01

    Full Text Available A new Schiff base, 4-[(2-hydroxy-4-pentadecyl-benzylidene-amino]-benzoic acid methyl ester was synthesized and its UV, IR, 1H-NMR, 13C-NMR and ESI-MS spectroscopic data are presented.

  5. Tribological study of a highly hydrolytically stable phenylboronic acid ester containing benzothiazolyl in mineral oil

    International Nuclear Information System (INIS)

    Li, Zhipeng; Li, Xiufeng; Zhang, Yawen; Ren, Tianhui; Zhao, Yidong; Zeng, Xiangqiong; Heide, E. van der

    2014-01-01

    A novel long chain alkyl phenylboronic acid ester containing heterocyclic compound, bis (1-(benzothiazol-2-ylthio) propan-2-yl)-4-dodecylphenylboronic acid ester (DBBMT), was synthesized and characterized. The hydrolytic stability of the DBBMT was evaluated and the results show that DBBMT is of outstanding hydrolytic stability compared with normal borate esters, which indicates that the designed molecular structure, by introducing benzene ring to conjugate with the electron-deficient boron and the benzothiazole as a hinder group, is effective on obtaining a hydrolytically stable long chain alkyl phenylboronic acid ester. The tribological properties of DBBMT and ZDDP in mineral base oil were evaluated using a four-ball tribometer, which suggests that the DBBMT possesses comprehensive tribological properties and could be a potential candidate for the replacement of ZDDP. Furthermore, in order to understand the tribological behaviors, the worn surface was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy. The results indicate that the elements S, B, O and Fe perform complicated tribochemical reactions to form the compact tribological film composed of B 2 O 3 , FeS, Fe 3 O 4 and FeSO 4 .

  6. Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume

    Energy Technology Data Exchange (ETDEWEB)

    Litt, Morton [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-01-21

    Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volume was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the polymer

  7. On the Importance of Purification of Sodium Polystyrene Sulfonate

    OpenAIRE

    Sen, Akhil K.; Roy, Sandip; Juvekar, Vinay A.

    2012-01-01

    Ion exchange is commonly employed for purification of sodium polystyrene sulfonate (NaPSS), a molecule widely used as a model polyelectrolyte. However, the present work demonstrates that the ion exchange process itself may introduce some extraneous species into NaPSS samples by two possible mechanisms: (i) chemical transformation of polystyrene sulfonic acid (HPSS), a relatively unstable intermediate formed during ion exchange and (ii) release of small amount of “condensed” acid from cationic...

  8. Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains

    DEFF Research Database (Denmark)

    Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...

  9. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  10. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    Science.gov (United States)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  11. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Science.gov (United States)

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C.

    2008-01-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways. Electronic supplementary material The online version of this article (doi:10.1007/s00122-008-0734-2) contains supplementary material, which is available to authorized users. PMID:18335203

  13. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance.

    Science.gov (United States)

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercaptopropionate-based thiol-ene or thiol-Michael networks. For polymers with no hydrolytically degradable esters, glass transition temperatures (T g 's) as high as 100 °C were achieved. Importantly, solvent resistance tests demonstrated enhanced stability of ester-free formulations over PETMP-based polymers, especially in concentrated basic solutions. Kinetic analysis showed that glassy step-growth polymers are readily formed at ambient conditions with conversions reaching 80% and higher.

  14. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  15. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  16. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  17. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Science.gov (United States)

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  18. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    Energy Technology Data Exchange (ETDEWEB)

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M. [Central Arid Zone Research Institute, Jodhpur 342003 (India)

    2005-10-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel. (author)

  19. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India

    International Nuclear Information System (INIS)

    Mohibbe Azam, M.; Waris, Amtul; Nahar, N.M.

    2005-01-01

    Fatty acid profiles of seed oils of 75 plant species having 30% or more fixed oil in their seed/kernel were examined. Saponification number (SN), iodine value (IV) and cetane number (CN) of fatty acid methyl esters of oils were empirically determined and they varied from 169.2 to 312.5, 4.8 to 212 and 20.56 to 67.47, respectively. Fatty acid compositions, IV and CN were used to predict the quality of fatty acid methyl esters of oil for use as biodiesel. Fatty acid methyl ester of oils of 26 species including Azadirachta indica, Calophyllum inophyllum, Jatropha curcas and Pongamia pinnata were found most suitable for use as biodiesel and they meet the major specification of biodiesel standards of USA, Germany and European Standard Organization. The fatty acid methyl esters of another 11 species meet the specification of biodiesel standard of USA only. These selected plants have great potential for biodiesel

  20. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Science.gov (United States)

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Orally administered glycidol and its fatty acid esters as well as 3-MCPD fatty acid esters are metabolized to 3-MCPD in the F344 rat.

    Science.gov (United States)

    Onami, Saeko; Cho, Young-Man; Toyoda, Takeshi; Akagi, Jun-ichi; Fujiwara, Satoshi; Ochiai, Ryosuke; Tsujino, Kazushige; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2015-12-01

    IARC has classified glycidol and 3-monochloropropane-1,2-diol (3-MCPD) as group 2A and 2B, respectively. Their esters are generated in foodstuffs during processing and there are concerns that they may be hydrolyzed to the carcinogenic forms in vivo. Thus, we conducted two studies. In the first, we administered glycidol and 3-MCPD and associated esters (glycidol oleate: GO, glycidol linoleate: GL, 3-MCPD dipalmitate: CDP, 3-MCPD monopalmitate: CMP, 3-MCPD dioleate: CDO) to male F344 rats by single oral gavage. After 30 min, 3-MCPD was detected in serum from all groups. Glycidol was detected in serum from the rats given glycidol or GL and CDP and CDO in serum from rats given these compounds. In the second, we examined if metabolism occurs on simple reaction with rat intestinal contents (gastric, duodenal and cecal contents) from male F344 gpt delta rats. Newly produced 3-MCPD was detected in all gut contents incubated with the three 3-MCPD fatty acid esters and in gastric and duodenal contents incubated with glycidol and in duodenal and cecal contents incubated with GO. Although our observation was performed at 1 time point, the results showed that not only 3-MCPD esters but also glycidol and glycidol esters are metabolized into 3-MCPD in the rat. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  3. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice.

    Science.gov (United States)

    Sheng, Nan; Zhou, Xiujuan; Zheng, Fei; Pan, Yitao; Guo, Xuejiang; Guo, Yong; Sun, Yan; Dai, Jiayin

    2017-08-01

    Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

  4. Simultaneous determination of oxalic, citric, nitrilotriacetic and ethylenediamenetetraacetic acids by gas liquid chromatography of their methyl esters

    International Nuclear Information System (INIS)

    Eskell, C.J.; Pick, M.E.

    1980-04-01

    A procedure for simultaneous determination of ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), citric acid and oxalic acid by gas liquid chromatography is described. The involatile acids are first concerted to their volatile methyl ester derivatives by reaction with boron trifluoride in methanol. Transition metal ions (Fe 3+ , Cr 3+ and Ni 2+ ) which will be present in decontamination liquors from nuclear reactors, and form strong chelates with the acids, have been shown to cause no interference to the esterification reaction. The esters were separated by temperature programming on a 3.5 metre capillary column packed with 3% OV1 on Diatomite CQ and were detected by flame ionisation. (author)

  5. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  6. Mutagenic and Cytotoxic Properties of 6-Thioguanine, S6-Methylthioguanine, and Guanine-S6-sulfonic Acid*S⃞

    OpenAIRE

    Yuan, Bifeng; Wang, Yinsheng

    2008-01-01

    Thiopurine drugs, including 6-thioguanine (SG), 6-mercaptopurine, and azathioprine, are widely employed anticancer agents and immunosuppressants. The formation of SG nucleotides from the thiopurine prodrugs and their subsequent incorporation into nucleic acids are important for the drugs to exert their cytotoxic effects. SG in DNA can be methylated by S-adenosyl-l-methionine to give S6-methylthioguanine (S6mG) and oxidized by UVA light to render guanine-S6-sulfonic acid ...

  7. Alcohol consumption and synthesis of ethyl esters of fatty acids in adipose tissue

    NARCIS (Netherlands)

    Björntorp, P; Depergola, G; Sjöberg, C; Pettersson-Kymmer, U.; Hallgren, P; Boström, K; Helander, K G; Seidell, J

    1990-01-01

    Ethyl esters of fatty acids (EEFA) have been found to be formed during ethanol metabolism. Human adipose tissue contains high concentrations of free fatty acids, the substrate for EEFA synthesis, and might therefore be a tissue with great potential for EEFA formation. In order to explore their

  8. Stereochemistry of Endogenous Palmitic Acid Ester of 9-Hydroxystearic Acid and Relevance of Absolute Configuration to Regulation.

    Science.gov (United States)

    Nelson, Andrew T; Kolar, Matthew J; Chu, Qian; Syed, Ismail; Kahn, Barbara B; Saghatelian, Alan; Siegel, Dionicio

    2017-04-05

    Lipids have fundamental roles in the structure, energetics, and signaling of cells and organisms. The recent discovery of fatty acid esters of hydroxy fatty acids (FAHFAs), lipids with potent antidiabetic and anti-inflammatory activities, indicates that our understanding of the composition of lipidome and the function of lipids is incomplete. The ability to synthesize and test FAHFAs was critical in elucidating the roles of these lipids, but these studies were performed with racemic mixtures, and the role of stereochemistry remains unexplored. Here, we synthesized the R- and S- palmitic acid ester of 9-hydroxystearic acid (R-9-PAHSA, S-9-PAHSA). Access to highly enantioenriched PAHSAs enabled the development of a liquid chromatography-mass spectrometry (LC-MS) method to separate and quantify R- and S-9-PAHSA, and this approach identified R-9-PAHSA as the predominant stereoisomer that accumulates in adipose tissues from transgenic mice where FAHFAs were first discovered. Furthermore, biochemical analysis of 9-PAHSA biosynthesis and degradation indicate that the enzymes and pathways for PAHSA production are stereospecific, with cell lines favoring the production of R-9-PAHSA and carboxyl ester lipase (CEL), a PAHSA degradative enzyme, selectively hydrolyzing S-9-PAHSA. These studies highlight the role of stereochemistry in the production and degradation of PAHSAs and define the endogenous stereochemistry of 9-PAHSA in adipose tissue. This information will be useful in the identification and characterization of the pathway responsible for PAHSA biosynthesis, and access to enantiopure PAHSAs will elucidate the role of stereochemistry in PAHSA activity and metabolism in vivo.

  9. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    International Nuclear Information System (INIS)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A.; Silveira, F.Z.

    2010-01-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  10. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  11. Controlled sulfonation of poly(ether sulfone using phthalic anhydride as catalyst and its membrane performance for fuel cell application

    Directory of Open Access Journals (Sweden)

    Seikh Jiyaur Rahaman

    2016-09-01

    Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.

  12. Amino acids and glycine ethyl ester as new crystallization reagents for lysozyme

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    During the past two decades, amino acids and amino-acid derivatives have been applied in various fields of protein chemistry. The potential use of amino acids and their derivatives as new precipitating agents is described. Several amino acids and their derivatives are prominent additives in the field of protein chemistry. This study reports the use of charged amino acids and glycine ethyl ester as precipitants in protein crystallization, using hen egg-white lysozyme (HEWL) as a model. A discussion of the crystallization of HEWL using these reagents as precipitating agents is given

  13. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    Science.gov (United States)

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  14. Radiation curable coatings containing hydroxy functional polyethers and polyesters of monoethylenic acids or hydroxy esters thereof

    International Nuclear Information System (INIS)

    Kaufman, M.L.

    1978-01-01

    Relatively water insoluble hydroxy functional monoethylenic polyethers or polyesters of monoethylenic carboxylic acids or hydroxy alkyl esters thereof are formed by adducting the monoethylenic acid or its hydroxy ester with an anhydride selected from monoepoxides, lactones, or mixtures thereof in the presence of a Lewis acid catalyst, such as BF 3 etherate, at a temperature below that at which the unsaturation is consumed, typically about 30 to 70 0 C. These adducts are of low volatility and of low toxicity and can be radiation cured in admixture with polyacrylates to form coatings having improved resistance to elevated temperature exposure

  15. Hydroxycinnamic acids are ester-linked directly to glucosyl moieties within the lignan macromolecule from flaxseed hulls

    NARCIS (Netherlands)

    Struijs, K.; Vincken, J.P.; Verhoef, R.P.; Voragen, A.G.J.; Gruppen, H.

    2008-01-01

    In flaxseed hulls, lignans are present in an oligomeric structure. Secoisolariciresinol diglucoside (SDG), ester-linked to hydroxy-methyl-glutaric acid (HMGA), forms the backbone of this lignan macromolecule. The hydroxycinnamic acids p-coumaric acid glucoside (CouAG) and ferulic acid glucoside

  16. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  17. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  18. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells.

    Science.gov (United States)

    Buhrke, Thorsten; Frenzel, Falko; Kuhlmann, Jan; Lampen, Alfonso

    2015-12-01

    The food contaminants 3-chloro-1,2-propanediol (3-MCPD) and 3-MCPD fatty acid esters have attracted considerable attention in the past few years due to their toxic properties and their occurrence in numerous foods. Recently, significant amounts of the isomeric compounds 2-chloro-1,3-propanediol (2-MCPD) fatty acid esters have been detected in refined oils. Beside the interrogation which toxic effects might be related to the core compound 2-MCPD, the key question from the risk assessment perspective is again-as it was discussed for 3-MCPD fatty acid esters before-to which degree these esters are hydrolyzed in the gut, thereby releasing free 2-MCPD. Here, we show that free 2-MCPD but not 2-MCPD fatty acid esters were able to cross a monolayer of differentiated Caco-2 cells as an in vitro model for the human intestinal barrier. Instead, the esters were hydrolyzed by the cells, thereby releasing free 2-MCPD which was neither absorbed nor metabolized by the cells. Cytotoxicity assays revealed that free 2-MCPD as well as free 3-MCPD was not toxic to Caco-2 cells up to a level of 1 mM, whereas cellular viability was slightly decreased in the presence of a few 2-MCPD and 3-MCPD fatty acid esters at concentrations above 10 µM. The observed cytotoxic effects correlated well with the induction of caspase activity and might be attributed to the induction of apoptosis by free fatty acids which were released from the esters in the presence of Caco-2 cells.

  19. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  20. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    Science.gov (United States)

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  1. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Science.gov (United States)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  2. Contribution to the analysis of the essential oil of Helichrysum italicum (Roth) G. Don. Determination of ester bonded acids and phenols.

    Science.gov (United States)

    Mastelić, Josip; Politeo, Olivera; Jerković, Igor

    2008-04-07

    The essential oil of Helichrysum italicum (Roth) G. Don (everlasting or Immortelle essential oil) was isolated by hydrodistillation and analysed by GC and GCMS. Forty four compounds were identified. The main components were alpha-pinene(12.8%), 2-methyl-cyclohexyl pentanoate (11.1 %), neryl acetate (10.4%), 1,7-di-epi-alpha-cedrene (6.8%) and other compounds. The oil was fractionated and ester-containing fraction was hydrolysed with KOH/H(2)SO(4). The liberated volatiles were analysed by GC and GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C(2)-C(5)), 15% C(10)-C(12) acids and 15% other acids]. The main acids were acetic acid (24.3%) propanoic acid (17.2%), 2-methylpropanoic acid (11.4%),dodecanoic acid (8.7%), 2-methylbutanoic acid (8.3%), (Z)-2-methylbutenoic acid(5.1%) and decanoic acid (4.6%). With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity was probably larger due to different possible combinations of alcohols with acids to form esters. On the other hand, only six main esters were identified in the oil before fractionation and hydrolysis.

  3. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    Science.gov (United States)

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Wadumesthrige, Kapila; Salley, Steven O.; Ng, K.Y. Simon [Department of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI 48202 (United States)

    2009-10-15

    The properties of biodiesel depend on the chemical structure of individual fatty acid methyl esters (FAME). In this work the chemical structure of fatty acid chains was modified by catalytic hydrogenation, epoxidation and hydroxylation under controlled conditions. Hydrolysis of ester functionality or oxidation of fatty acid chain was not observed during these reactions. The properties of hydrogenated FAME strongly depend on the hydrogenation time. The total saturated fatty acid (SFA) percentage increased from 29.3% to 76.2% after 2 h of hydrogenation. This hydrogenated FAME showed higher oxidation stability and higher cetane number but poor cold flow properties. Formation of trans FAME was observed during hydrogenation. Both hydroxylation and epoxidation resulted in a decrease of unsaturated fatty acid methyl ester (UFA) fraction. The percentages of total unsaturated FAME decreased 39% in the epoxidation reaction and 44% in the hydroxylation reaction. The addition of hydroxyl groups to the unsaturated regions of the fatty acid chain yields biodiesel with better cold flow properties, increased lubricity and slightly increased oxidative stability. However, epoxy FAME shows some interesting properties such as higher oxidation stability, higher cetane number and acceptable cold flow properties, which met the limits of ASTM D6751 biodiesel specifications. (author)

  5. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  6. Structural study of bis(triorganotin(IV)) esters of 4-ketopimelic acid

    Czech Academy of Sciences Publication Activity Database

    Chalupa, J.; Handlíř, K.; Císařová, I.; Jirásko, R.; Brus, Jiří; Lyčka, A.; Růžička, A.; Holeček, J.

    2006-01-01

    Roč. 691, č. 12 (2006), s. 2631-2640 ISSN 0022-328X R&D Projects: GA ČR GA203/03/1118 Institutional research plan: CEZ:AV0Z40500505 Keywords : triorganotin(IV) esters * ketopimelic acid * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.332, year: 2006

  7. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland)

    2016-12-01

    The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8 kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8 kJ/mol). - Graphical abstract: Modeling of boldine adsorption onto unmodified and propyl-sulfonic acid-modified mesoporous adsorbents. - Highlights: • The process of boldine adsorption onto SBA-15, SBA-16 and MCF silicas was examined. • Siliceous adsorbents were functionalized with propyl-sulfonic acid groups. • The equilibrium adsorption data were analyzed using several isotherm models. • Both linear regression and nonlinear fitting analysis were carried out.

  8. Synergic extraction of some lanthanide and actinide elements by a mixture of bis(2-ethyl hexyl) phosphoric acid and dinonylnapthalene - sulfonic acid in aromatic diluents

    International Nuclear Information System (INIS)

    Raieh, M.A.; El-Dessouky, M.M.

    1985-01-01

    Extraction of lanthanides and actinides were found to be synergetically enhanced by a mixture of bis(2-ethyl hexyl) phosphoric acid (HA) and dinonylnaphthalene sulfonic acid (HD) in aromatic diluents covering a wide range of dielectric constants. The main extracted species is found to be MAsub(2)Hsub(m-1)Dsub(m). Experimental results indicate that the extraxtion mechanism is governed by the extraction of HD in the organic phase. (author)

  9. Enzymatic Synthesis of Glyserol-Coconut Oil Fatty Acid and Glycerol-Decanoic Acis Ester as Emulsifier and Antimicrobial Agents Using Candida rugosa Lipase EC 3.1.1.3

    Science.gov (United States)

    Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi

    2018-01-01

    In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.

  10. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows

    DEFF Research Database (Denmark)

    Dalbach, Kristine Foged; Larsen, Mogens; Raun, Birgitte Marie Løvendahl

    2011-01-01

    The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated by differ......The present study aimed to investigate the effects of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester (HMBi) supplementation on splanchnic AA metabolism, essential AA (EAA) mobilization, and plasma AA status in postpartum transition dairy cows. The EAA mobilization was calculated...

  11. Repellent activity of monoterpenoid esters with neurotransmitter amino acids against yellow fever mosquito, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Nesterkina Mariia

    2018-03-01

    Full Text Available Repellent activity of monoterpenoid esters (1-6 with neurotransmitter amino acids (GABA and glycine was investigated against Aedes aegypti by using a “cloth-patch” assay and compared to reference standard N,N-diethyl-3-methylbenzamide (DEET. Monoterpenoid esters showed repellent activity with minimum effective dosages (MED in the range of 0.031-0.469 mg/cm2. The carvacrol ester of GABA (2, MED of 0.031 ± 0.008 mg/cm2 exhibited the highest repellency of six monoterpenoid esters tested in comparison to the standard repellent DEET (MED of 0.009 ± 0.002 mg/cm2; however, the repellent activity of carvacrol-glycine ester (5 decreased 4-fold compared to the carvacrol-GABA derivative (2. The repellent activities of menthol GABA (1, MED= 0.375 ± 0.000 mg/cm2 and glycine ester (4, MED=0.312 ± 0.063 mg/cm2 were similar The guaiacol-glycine ester (6 was 3.75-fold more efficacious than the guaiacol ester of GABA (3. In the present study, we report repellent efficacy of prolonged exposure to GABA and glycine esters of menthol, carvacrol, guaiacol (1-6 as compared to the repellent activities of their monoterpene moieties alone.

  12. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    Science.gov (United States)

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  13. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    Science.gov (United States)

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  14. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae)

    OpenAIRE

    Zheoat, Ahmed M.; Gray, Alexander I.; Igoli, John O.; Kennedy, Alan R.; Ferro, Valerie A.

    2017-01-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carb?oxy?lic acid dimethyl sulfoxide monosolvate], C6H6O7?C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carboxyl?ate], C8H10O7, (II). Compound (I) forms a layered structure with alternating laye...

  15. Tropanol esters of metallocene carboxylic acids. Syntheses, labelling with 103Ru and sup(103m)Rh and organ distribution

    International Nuclear Information System (INIS)

    Wenzel, M.; Wu, Y.

    1988-01-01

    The tropanol esters of the carboxylic acids of ferrocene, 103 Ru-ruthenocene and sup(103m)Rh-rhodocinium were synthezised. The organ distribution of the 103 Ru or sup(103m)Rh labelled tropanol-esters were investigated. Only the 103 Ru labelled ester showed a high heart/blood ratio. (author)

  16. Synthesis and Structural Characterization of 1- and 2-Substituted Indazoles: Ester and Carboxylic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Isabel Bento

    2006-11-01

    Full Text Available A series of indazoles substituted at the N-1 and N-2 positions with ester-containing side chains -(CH2nCO2R of different lengths (n = 0-6, 9, 10 are described.Nucleophilic substitution reactions on halo esters (X(CH2nCO2R by 1H-indazole inalkaline solution lead to mixtures of N-1 and N-2 isomers, in which the N-1 isomerpredominates. Basic hydrolysis of the ester derivatives allowed the synthesis of thecorresponding indazole carboxylic acids. All compounds were fully characterised bymultinuclear NMR and IR spectroscopies, MS spectrometry and elemental analysis; theNMR spectroscopic data were used for structural assignment of the N-1 and N-2 isomers.The molecular structure of indazol-2-yl-acetic acid (5b was determined by X-raydiffraction, which shows a supramolecular architecture involving O2-H...N1intermolecular hydrogen bonds.

  17. Dietary exposure of Hong Kong adults to fatty acid esters of 3-monochloropropane-1,2-diol.

    Science.gov (United States)

    Chung, H Y; Chung, Stephen W C; Chan, B T P; Ho, Yuk Yin; Xiao, Ying

    2013-01-01

    A total of 290 individual food samples were collected in Hong Kong, China, for 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters analysis. Most samples were processed food and in ready-to-eat form. The results show that the levels of 3-MCPD fatty acid esters were high in biscuits, fats and oils, snacks and Chinese pastry with mean bound 3-MCPD levels of 440, 390, 270 and 270 μg kg⁻¹, respectively. The dietary exposures to bound 3-MCPD of average and high adult consumers were estimated to be 0.20 and 0.53 μg kg bw⁻¹ day⁻¹, respectively. The primary toxicological concern of 3-MCPD fatty acid esters is its potential to release 3-MCPD in vivo during digestion in the gastrointestinal tract. 3-MCPD would affect the kidney, the central nervous system and the male reproductive system of rats. Assuming that 100% of the 3-MCPD was released from 3-MCPD fatty acid esters by hydrolysis in the digestive system, the dietary exposures to 3-MCPD for average and high adult consumers were only 10% and 26% of the provisional maximum tolerable daily intake (PMTDI) of 3-MCPD established by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA) (2 μg kg bw⁻¹ day⁻¹), respectively. The results suggest that both average and high adult consumers are unlikely to experience major toxicological effects of 3-MCPD.

  18. Synthesis, Purification, and Quantification of Fatty Acid Ethyl Esters After trans-Esterification of Large Batches of Tobacco Seed Oil

    Directory of Open Access Journals (Sweden)

    Ashraf-Khorassani Mehdi

    2015-03-01

    Full Text Available L'objectif de la présente étude était de quantifier les esters éthyliques d'acides gras (FAEE produits à partir de deux grands lots d'huile de graines de tabac soumis à une transéstérification éthanolique en présence d'un catalyseur d'acide sulfurique. La purification des produits combinés de la réaction des esters éthyliques visait la suppression, autant que faire se peut, de la couleur et de l'odeur du produit final et fut accomplie via une chromatographie sur colonne conventionnelle avec silice sublimée et une élution en tandem de l'hexane, dans un premier temps et de l'alcool éthylique, dans un deuxième temps, en guise de phase mobile. La chromatographie en phase gazeuse fut utilisée afin de quantifier les esters éthyliques des acides gras spécifiques dans la matière purifiée. Le pourcentage d'esters éthyliques d'acides gras purs récupérés dans le lot n°1 s'éleva à près de 87% tandis que le pourcentage d'esters éthyliques d'acides gras purs récupérés dans le lot n°2 fut supérieur à 89% avec des rendements à la préparation supérieurs à 400 g d'esters éthyliques par essai d'estérification. Les esters éthyliques d'acides gras ne possédaient pas d'arome détectable et ne présentaient qu'une légère coloration jaune à l'issue de ce traitement chromatographique. Pour caractériser la pureté de chaque lot d'esters éthyliques d'acides gras produits, une chromatographie en phase supercritique dont la phase mobile était un fluide composé de dioxyde de carbone modifié au méthanol/acétonitrile et une phase fixe composée d'une silice greffée avec groupement fonctionnel octadécyle furent utilisées. Aucune impureté liée au glycérol ou à des acides gras libres ne fut détectée dans le produit transestérifié purifié. Notre article est le premier rapport décrivant la transestérification optimisée de l'huile de graines de tabac à une échelle relativement grande, ladite transest

  19. Enzymatic synthesis of hydrophilic undecylenic acid sugar esters and their biodegradability.

    Science.gov (United States)

    Raku, Takao; Kitagawa, Masaru; Shimakawa, Hiromi; Tokiwa, Yutaka

    2003-01-01

    To enhance water solubility of 10-undecylenic acid, which has anti-fungus, anti-bacterial and anti-virus activity, D-glucose, trehalose and sucrose were regioselectively esterified with vinyl 10-undecylenic acid ester in dimethyl formamide by a commercial protease, Bioprase conc., from Bacillus subtilis. 6-O-(10-Undecylenoyl) D-glucose, 6-O-(10-undecylenoyl) trehalose and 1'-O-(10-undecylenoyl) sucrose were obtained. The influence of structural variation by changing the sugar moiety was analyzed the surface tension and biodegradability.

  20. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  1. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  2. The occurrence of 2-hydroxy-6-methoxybenzoic acid methyl ester in Securidaca longepedunculata Fresen root bark

    Directory of Open Access Journals (Sweden)

    Lognay G.

    2000-01-01

    Full Text Available As part of our ongoing search for natural fumigants from Senegalese plants, we have investigated Securicicidaca longepedunculata root barks and demonstrated that 2-hydroxy-benzoic acid methyl ester (methyl salicylate, I is responsible of their biocide effect against stored grain insects. A second unknown apparented product, II has been systematically observed in all analyzed samples. The present paper describes the identification of this molecule. The analytical investigations including GCMS, GLC and 1H-NMR. spectrometry led to the conclusion that II corresponds to the 2-hydroxy-6-methoxybenzoic acid methyl ester.

  3. High-throughput and sensitive analysis of 3-monochloropropane-1,2-diol fatty acid esters in edible oils by supercritical fluid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Hori, Katsuhito; Matsubara, Atsuki; Uchikata, Takato; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-08-10

    We have established a high-throughput and sensitive analytical method based on supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry (QqQ MS) for 3-monochloropropane-1,2-diol (3-MCPD) fatty acid esters in edible oils. All analytes were successfully separated within 9 min without sample purification. The system was precise and sensitive, with a limit of detection less than 0.063 mg/kg. The recovery rate of 3-MCPD fatty acid esters spiked into oil samples was in the range of 62.68-115.23%. Furthermore, several edible oils were tested for analyzing 3-MCPD fatty acid ester profiles. This is the first report on the analysis of 3-MCPD fatty acid esters by SFC/QqQ MS. The developed method will be a powerful tool for investigating 3-MCPD fatty acid esters in edible oils. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  5. Asymmetric Meerwein–Ponndorf–Verley reduction of long chain keto alkanoic acid methyl esters

    Directory of Open Access Journals (Sweden)

    AYE YUSUFOGLU

    2007-05-01

    Full Text Available 3-, 7- and 13-Monoketo tetradecanoic acid methyl esters carrying a ketogroup at the ends and at the middle of the chain with 14 carbon atoms were reduced by a Meerwein–Ponndorf–Verley reaction in the presence of R-(+-1,1'-binaphthalene-2,2'-diol, 1,2:5,6-D-di-O-isopropylidene-D-mannitol and L-(–-menthol. The highest enantiomeric purity of 65% ee was found for 13-hydroxy ester isomer. The enantiomeric excess was determined by 1H-NMR shift with Eu(tfc3 and by optical rotation.

  6. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on mushroom tyrosinase.

    Science.gov (United States)

    Tokiwa, Y; Kitagawa, M; Raku, T

    2007-03-01

    A novel tyrosinase inhibitor, an arbutin derivative having undecylenic acid at the 6-position of its glucose moiety, was enzymatically synthesized. Its inhibitory activity was studied in vitro by using catechol and phenol as substrates. The IC(50) value of the arbutin ester on tyrosinase using catechol (4 x 10(-4) M) was 1% of that when arbutin (4 x 10(-2) M) was used. Using phenol, IC(50) of the arbutin ester (3 x 10(-4) M) as substrate was 10% of that of arbutin (3 x 10(-3) M). These results suggest that the arbutin ester inhibits the latter part of the tyrosinase reaction, which consists of hydroxylation and oxidation.

  7. Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production

    International Nuclear Information System (INIS)

    Voll, Fernando A.P.; Silva, Camila da; Rossi, Carla C.R.S.; Guirardello, Reginaldo; Castilhos, Fernanda de; Oliveira, J. Vladimir; Cardozo-Filho, Lucio

    2011-01-01

    The development of renewable energy source alternatives has become a planet need because of the unavoidable fossil fuel scarcity and for that reason biodiesel production has attracted growing interest over the last decade. The reaction yield for obtaining fatty acid alkyl esters varies significantly according to the operating conditions such as temperature and the feed reactants ratio and thus investigation of the thermodynamics involved in such reactional systems may afford important knowledge on the effects of process variables on biodiesel production. The present work reports a thermodynamic analysis of fatty acid esterification reaction at low pressure. For this purpose, Gibbs free energy minimization was employed with UNIFAC and modified Wilson thermodynamic models through a nonlinear programming model implementation. The methodology employed is shown to reproduce the most relevant investigations involving experimental studies and thermodynamic analysis.

  8. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  9. Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column.

    Science.gov (United States)

    Chen, Sha; Li, Xiao-Xin; Feng, Fan; Li, Sumei; Han, Jia-Hui; Jia, Zi-Yi; Shu, Lun; Somsundaran, P; Li, Jian-Rong

    2018-04-16

    In this study, the baseline separations of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column were achieved, respectively. The high selectivity for xylene isomers and phthalate acid esters was obtained with the increase of temperature and decrease of the retention time. The hydrophobicity of xylene isomers and phthalate acid esters caused the different separation time on the DUT-67(Zr) packed column. The relative standard deviation values of retention time, peak area, peak height and half peak width for five repeat separation of the xylene isomers were 0.26-0.35, 2.11-2.26, 1.51-2.03, and 0.29-0.77%, and the values of the phthalate acid esters on DUT-67(Zr) column were 0.1-0.4, 4.4-5.2, 3.9-6.3, and 0.6-2.1%, respectively. The thermodynamic properties indicated that the separation of xylene isomers was controlled by ΔH and ΔS, but the separation of phthalate acid esters was mainly controlled by ΔS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    Science.gov (United States)

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  11. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Science.gov (United States)

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  12. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Science.gov (United States)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  13. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  14. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2010-01-01

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g -1 . The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm 2 s -1 (40 o C), and 14.6 h (110 o C). The cold filter plugging and pour points were -15 o C and -19 o C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  15. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  16. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  17. Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family

    DEFF Research Database (Denmark)

    Holt, Sylvester; Kankipati, Harish; De Graeve, Stijn

    2017-01-01

    Sulfate is a well-established sulfur source for fungi; however, in soils sulfonates and sulfate esters, especially choline sulfate, are often much more prominent. Here we show that Saccharomyces cerevisiae YIL166C(SOA1) encodes an inorganic sulfur (sulfate, sulfite and thiosulfate) transporter...... that also catalyses sulfonate and choline sulfate uptake. Phylogenetic analysis of fungal SOA1 orthologues and expression of 20 members in the sul1 Delta sul2 Delta soa1 Delta strain, which is deficient in inorganic and organic sulfur compound uptake, reveals that these transporters have diverse substrate...... preferences for sulfur compounds. We further show that SOA2, a S. cerevisiae SOA1 paralogue found in S. uvarum, S. eubayanus and S. arboricola is likely to be an evolutionary remnant of the uncharacterized open reading frames YOL163W and YOL162W. Our work highlights the importance of sulfonates and choline...

  18. Synthesis of 2-(6-Acetamidobenzothiazolethioacetic Acid Esters as Photosynthesis Inhibitors

    Directory of Open Access Journals (Sweden)

    Dusan Loos

    1998-04-01

    Full Text Available The synthesis and photosynthesis-inhibiting activity of 13 new 2-(6-acetamidobenzothiazolethioacetic acid esters are reported. The new compounds were prepared by acetylation of 2-(alkoxycarbonylmethylthio-6-aminobenzothiazoles with acetic anhydride. The structure of the compounds was verified by 1H NMR spectra. The compounds inhibit photosynthetic electron transfer in spinach chloroplasts. The structure - activity relation was studied. Lipophilicity was found to influence substantially photosynthetic electron transfer.

  19. Studies of reaction difference between γ-ray and glow discharge on hydrogenation of unsaturated fatty acid esters

    International Nuclear Information System (INIS)

    Sakoda, Tatsuya; Nieda, Hiroshi; Kitahara, Kazuta; Ando, Kiyomi

    2000-01-01

    Hydrogenation of unsaturated fatty acid esters using an inductively coupled plasma at low pressure was performed, and electron temperature and density were measured using a double-probe in order to investigate the reaction difference between γ-ray and glow discharge on hydrogenation. In this experiment, unsaturated fatty acid esters were partly hydrogenated by the hydrogen plasma that had electron temperature of 3.5 eV, which was more efficient than γ-ray irradiation method. As a result, it was found that the plasma can effectively supply electrons that had the optimum energy for hydrogenation at the interface of fatty acids as well as excited atoms and ions. Also, the plasma generated at low pressure would be possible to convert unsaturated fatty acids into saturated fatty acids without breaking the starting monomer. (author)

  20. Occurrence of 3-MCPD fatty acid esters in human breast milk.

    Science.gov (United States)

    Zelinková, Z; Novotný, O; Schůrek, J; Velísek, J; Hajslová, J; Dolezal, M

    2008-06-01

    A series of twelve breast milk samples were analysed by gas chromatography-mass spectrometry (GC/MS) operated in selected ion monitoring mode for 3-chloropropane-1,2-diol (3-MCPD). Whilst none of the samples contained 3-MCPD above the limit of detection of 3 microg kg(-1) milk, all contained high amounts of 3-MCPD esterified with higher fatty acids. The levels of 3-MCPD released by hydrolysis of these esters (bound 3-MCPD) ranged from the limit of detection (300 microg kg(-1), expressed on a fat basis) to 2195 microg kg(-1); with a mean level of bound 3-MCPD of 1014 microg kg(-1), which corresponded to 35.5 microg kg(-1) milk. The presence of bound 3-MCPD was confirmed using orthogonal gas chromatography coupled with high-speed time-of-flight mass spectrometry analysis for four randomly selected breast milk samples. Six breast milks collected from one of the nursing mothers 14-76 days after childbirth contained bound 3-MCPD within the range of 328-2078 microg kg(-1) fat (mean 930 microg kg(-1) fat). The calculated bound 3-MCPD content of these samples was within the range of 6 and 19 microg kg(-1) milk (mean of 12 microg kg(-1) milk). The major types of 3-MCPD esters were the symmetric diesters with lauric, palmitic, and oleic acids, and asymmetric diesters with palmitic acid/oleic acid among which 3-chloro-1,2-propanediol 1,2-dioleate prevailed.

  1. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    Science.gov (United States)

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  2. Quantiifcation of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nasimullah Qureshi; Fazal Wajid; Inayat-ur-Rahman

    2015-01-01

    Objective:To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima) using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results:A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6) and linolenic acid (ω-3) were obtained in appreciable amount as 16.98%and 14.80%respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  3. Quantification of methyl esters of fatty acids in the oil of Physalis minima by GC-MS

    Directory of Open Access Journals (Sweden)

    Muhammad Nasimullah Qureshi

    2015-02-01

    Full Text Available Objective: To investigate quantification of methyl esters of fatty acids in the oil extracted from Physalis minima (P. minima using gas chromatography-mass spectrometer. Methods: Oil was extracted from the shade dried plant with n-hexane through Soxhlet extraction. Fatty acids that present in the oil were derivatized to fatty acid methyl esters and analysed through gas chromatography-mass spectrometer. Results: A total of nine fatty acids were detected in quantifiable amount in the oil. Both the saturated fatty acids and unsaturated fatty acids were identified. Palmitic acid was found in the highest concentration as 46.83%. Linoleic acid (ω-6 and linolenic acid (ω-3 were obtained in appreciable amount as 16.98% and 14.80% respectively among the unsaturated fatty acids in the oil under study. From the literature review, it appeared that fatty acids were determined for the first time in the oil of P. minima. Conclusions: Presence of these important fatty acids in high amount makes P. minima oil beneficial for health, which can be used in the preparation of phytopharmaceutical or pharmaceutical preparations. Moreover, the results of this study are useful for the phytopharmaceutical industries to establish their quality control profile.

  4. One-pot conversion of biomass-derived xylose and furfural into levulinate esters via acid catalysis.

    Science.gov (United States)

    Hu, Xun; Jiang, Shengjuan; Wu, Liping; Wang, Shuai; Li, Chun-Zhu

    2017-03-07

    Direct conversion of biomass-derived xylose and furfural into levulinic acid, a platform molecule, via acid-catalysis has been accomplished for the first time in dimethoxymethane/methanol. Dimethoxymethane acted as an electrophile to transform furfural into 5-hydroxymethylfurfural (HMF). Methanol suppressed both the polymerisation of the sugars/furans and the Aldol condensation of levulinic acid/ester.

  5. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    Science.gov (United States)

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.

  6. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  7. Effect of acid catalysts and accelerated aging on the reaction of methanol with hydroxy-acetaldehyde in bio-oil

    Directory of Open Access Journals (Sweden)

    Bhattacharya, P.

    2010-05-01

    Full Text Available Bio-oil is a promising alternative source of energy produced from fast pyrolysis of biomass. Increasing the viscosity of bio-oil during storage is a major problem that can be controlled by the addition of methanol or other alcohols. This paper reports the results of our investigation of the reactions of short chain alcohols with aldehydes and acids in bio-oil. The reaction of methanol with hydroxyacetaldehyde (HA to form the acetal was catalyzed by the addition of 7 x 10-4 M strong acids such as sulfuric, hydrochloric, p-toluene sulfonic acid, and methanesulfonic acid. HA formed 2,2-dimethoxyethanol (DME, and at 60 oC the equilibrium was reached in less than one hour. Smaller amounts of DME were formed in the absence of strong acid. HA, acetaldehyde, and propanal formed their corresponding acetals when reacted with methanol, ethanol, 1-propanol or 1-butanol. Esters of acetic acid and hydroxyacetic acid were observed from reactions with these same four alcohols. Other acetals and esters were observed by GC/MS analysis of the reaction products. The results from accelerated aging experiments at 90 oC suggest that the presence of methanol slows polymerization by formation of acetals and esters from low molecular weight aldehydes and organic acids.

  8. Liquid chromatography-tandem mass spectrometry analysis of perfluorooctane sulfonate and perfluorooctanoic Acid in fish fillet samples.

    Science.gov (United States)

    Paiano, Viviana; Fattore, Elena; Carrà, Andrea; Generoso, Caterina; Fanelli, Roberto; Bagnati, Renzo

    2012-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic (PFOA) acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV) of the method ranged from 8% to 20%. Limits of detection (LOD) were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  9. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Fish Fillet Samples

    Directory of Open Access Journals (Sweden)

    Viviana Paiano

    2012-01-01

    Full Text Available Perfluorooctane sulfonate (PFOS and perfluorooctanoic (PFOA acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV of the method ranged from 8% to 20%. Limits of detection (LOD were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  10. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    Science.gov (United States)

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  11. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  12. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    International Nuclear Information System (INIS)

    Cho, C. H.; Byun, M. W.; Jeong, I. Y.; Kim, D. H.

    2006-01-01

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals

  13. Asymmetric synthesis of α-amino acids by reduction of N-tert-butanesulfinyl ketimine esters.

    Science.gov (United States)

    Reddy, Leleti Rajender; Gupta, Aditya P; Liu, Yugang

    2011-05-06

    A highly regio- and diastereoselective reduction of various N-tert-butanesulfinyl ketimine esters with L-Selectride resulting in the formation of α-amino acids is reported. This method is quite general and also practical for the preparation of both enantiomers of aryl or aliphatic α-amino acids in high yields. © 2011 American Chemical Society

  14. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Science.gov (United States)

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  15. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  16. FATTY ACID ETHYL ESTERS FROM MICROALGAE OF Scenedesmus ecornis BY ENZYMATIC AND ACID CATALYSIS

    Directory of Open Access Journals (Sweden)

    Gabryelle F. de Almeida

    Full Text Available Microalgae are an indispensable food source for the various growth stages of mollusks, crustaceans, and several fish species. Using a microalgae biomass present in the Amazonian ecosystem (Macapá-AP, we study extraction methods for fatty acid such as solvent extraction (magnetic stirring and/or Soxhlet and/or hydrolysis (acid and/or enzymatic catalysis followed by esterification and/or direct transesterification. Extraction of crude triacylglycerides by mechanical stirring at room temperature was more efficient than continuous reflux (Soxhlet. Subsequently, the lipid extract was subject to transesterification with ethanol and CAL-B as a biocatalyst, leading to production of fatty acid ethyl esters (FAEE. Additionally, FAEEs were prepared by hydrolysis of crude triacylglycerides followed by acid-mediated esterification or enzymatic catalysis (lipase. In this case, the type of catalyst did not significantly influence FAEE yields. In the lipid extract, we identified palmitic, linoleic, oleic, and stearic acids with palmitic acid being the most abundant. Our results suggest that enzymatic catalysis is a viable method for the extraction of lipids in the microalga, Scenedesmus ecornis.

  17. High-Throughput Analysis of Sucrose Fatty Acid Esters by Supercritical Fluid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Hori, Katsuhito; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-01-01

    Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated. PMID:26819875

  18. Enchansing the Ionic Purity of Hydrophilic Channels by Blending Fully Sulfonated Graft Copolymers with PVDF Homopolymer

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  19. Evaluation of sulfonated carbon as catalyst in reactive distillation

    International Nuclear Information System (INIS)

    Orjuela, Alvaro; Civetta, Nicolas; Rivera, Jairo; Boyaca, Alejandro; Diaz, Jesus

    2004-01-01

    A packed bed using sulfonated coal catalytic pellets was prepared using a Colombian anthracitic coal. Such pellets were introduced in a semi batch distillation column to which acetic acid and ethanol were fed in order to determine experimentally the feasibility of obtaining ethyl acetate by reactive distillation operation. The carbonaceous catalytic packing was characterized by total exchange capacity, potentiometric titration and BET area. Experimental tests were carried out using three acid/alcohol ratios. Results of such process are shown by reaction conversion and concentration in distillate and bottom products. The sulfonated coal showed catalytic activity in this esterification reaction, with conversions between 29-45%

  20. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    Solubility switching of polymers is very useful in thin layer processing of conjugated polymers, as it allows for multilayer processing and increases the stability of the polymer. Acid catalyzed thermocleavage of ester groups from thiophene polymers carrying primary, secondary, and tertiary subst...

  1. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    Science.gov (United States)

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  2. Perfluorooctanoic acid and perfluorooctane sulfonate in Michigan and New York waters

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, E.; Kannan, K. [Wadsworth Center, Albany, NY (United States); Taniyasu, Sachi; Yamashita, Nobuyoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Perfluorooctane sulfonate (PFOS), a perfluorinated organic contaminant, has become the subject of many recent investigations. PFOS and its precursor compounds have been used in a wide variety of consumer and industrial products. Other related perfluorinated compounds have also been reported to occur in the environment. For example, perfluorohexane sulfonate (PFHxS) is an impurity associated with PFOS. Perfluorooctanoic acid (PFOA) has found widespread use as an emulsifier for polymerization of fluoropolymers. These perfluorinated alkylated substances (PASs) are known to be resistant to degradation. Water analysis of PFOS and PFOA has been carried out with several methods. The most commonly used methods involve solid phase extraction (SPE) followed by HPLC-MS-MS. Method detection limits for PFOS and PFOA varied between 5 and 17 ng/L and 9 and 25 ng/L respectively. Generally PFOS and PFOA concentrations in ambient waters, with no point source of pollution, are less than 5 ng/L. We have developed a method using the Oasis HLB solid phase cartridge to achieve the required method detection limits. We have measured PFOS and PFOA concentration in surface waters collected from Michigan and New York. PFOS and PFOA have been detected in the blood and liver of fish at {mu}g/L concentrations both in Japan and the USA. The current ion-pairing, liquid/liquid extraction method is suitable for these concentrations and we have measured PFOS and PFOA in the livers of fish from Michigan and New York waters. We have compared the data for fish and water concentrations and calculated bioaccumulation factors.

  3. Synthesis and Antiradical/Antioxidant Activities of Caffeic Acid Phenethyl Ester and Its Related Propionic, Acetic, and Benzoic Acid Analoguesc

    Directory of Open Access Journals (Sweden)

    Mohamed Touaibia

    2012-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is a bioactive component isolated from propolis. A series of CAPE analogues was synthesized and their antiradical/antioxidant effects analyzed. The effect of the presence of the double bond and of the conjugated system on the antioxidant effect is evaluated with the analogues obtained from 3-(3,4-dihydroxyphenyl propanoic acid. Those obtained from 2-(3,4-dihydroxyphenyl acetic acid and 3,4-dihydroxybenzoic acid allow the evaluation of the effect of the presence of two carbons between the carbonyl and aromatic system.

  4. Cytotoxicity of Endoperoxides from the Caribbean Sponge Plakortis halichondrioides towards Sensitive and Multidrug-Resistant Leukemia Cells: Acids vs. Esters Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Tanja Schirmeister

    2017-03-01

    Full Text Available The 6-epimer of the plakortide H acid (1, along with the endoperoxides plakortide E (2, plakortin (3, and dihydroplakortin (4 have been isolated from a sample of the Caribbean sponge Plakortis halichondrioides. To perform a comparative study on the cytotoxicity towards the drug-sensitive leukemia CCRF-CEM cell line and its multi-drug resistant subline CEM/ADR5000, the acid of plakortin, namely plakortic acid (5, as well as the esters plakortide E methyl ester (6 and 6-epi-plakortide H (7 were synthesized by hydrolysis and Steglich esterification, respectively. The data obtained showed that the acids (1, 2, 5 exhibited potent cytotoxicity towards both cell lines, whereas the esters showed no activity (6, 7 or weaker activity (3, 4 compared to their corresponding acids. Plakortic acid (5 was the most promising derivative with half maximal inhibitory concentration (IC50 values of ca. 0.20 µM for both cell lines.

  5. Saponification of esters of chiral alpha-amino acids anchored through their amine function on solid support.

    Science.gov (United States)

    Cantel, Sonia; Desgranges, Stéphane; Martinez, Jean; Fehrentz, Jean-Alain

    2004-06-01

    Anchoring an alpha-amino acid residue by its amine function onto a solid support is an alternative to develop chemistry on its carboxylic function. This strategy can involve the use of amino-acid esters as precursors of the carboxylic function. A complete study on the Wang-resin was performed to determine the non racemizing saponification conditions of anchored alpha-amino esters. The use of LiOH, NaOH, NaOSi(Me)3, various solvents and temperatures were tested for this reaction. After saponification and cleavage from the support, samples were examined through their Marfey's derivatives by reversed phase HPLC to evaluate the percentage of racemization.

  6. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  7. Radiation sensitivity and EPR dosimetric potential of gallic acid and its esters

    International Nuclear Information System (INIS)

    Tuner, Hasan; Oktay Bal, M.; Polat, Mustafa

    2015-01-01

    In the preset work the radiation sensitivities of Gallic Acid anhydrous and monohydrate, Octyl, Lauryl, and Ethyl Gallate (GA, GAm, OG, LG, and EG) were investigated in the intermediate (0.5–20 kGy) and low radiation (<10 Gy) dose range using Electron Paramagnetic Resonance (EPR) spectroscopy. While OG, LG, and EG are presented a singlet EPR spectra, their radiation sensitivity found to be very different in the intermediate dose range. At low radiation dose range (<10 Gy) only LG is found to be present a signal that easily distinguished from the noise signals. The intermediate and low dose range radiation sensitivities are compared using well known EPR dosimeter alanine. The radiation yields (G) of the interested material were found to be 1.34×10 −2 , 1.48×10 −2 , 4.14×10 −2 , and 6.03×10 −2 , 9.44×10 −2 for EG, GA, GAm, OG, and LG, respectively at the intermediate dose range. It is found that the simple EPR spectra and the noticeable EPR signal of LG make it a promising dosimetric material to be used below 10 Gy of radiation dose. - Highlights: • Radiation sensitivity of gallic acid and its esters were studied in intermediate and low radiation dose range using EPR. • While the irradiated samples of GA were presented complex EPR spectra the esters presented singlet ESR spectra. • Samples were compared to alanine in terms of the dosimetric point of view. • The radiation sensitivities of the investigated materials were very low at intermediate doses. • Lauryl ester of gallic acid was found to present a good sensitivity below 10 Gy

  8. Fatty Acid Methyl Esters and Solutol HS 15 Confer Neuroprotection After Focal and Global Cerebral Ischemia

    OpenAIRE

    Lin, Hung Wen; Saul, Isabel; Gresia, Victoria L.; Neumann, Jake T.; Dave, Kunjan R.; Perez-Pinzon, Miguel A.

    2013-01-01

    We previously showed that palmitic methyl ester (PAME) and stearic acid methyl ester (SAME) are simultaneously released from the sympathetic ganglion and PAME possesses potent vasodilatory properties which may be important in cerebral ischemia. Since PAME is a potent vasodilator simultaneously released with SAME, our hypothesis was that PAME/SAME confers neuroprotection in rat models of focal/global cerebral ischemia. We also examined the neuroprotective properties of Soluto...

  9. Sucrose fatty esters from underutilized seed oil of Terminalia catappa as potential steel corrosion inhibitor in acidic medium

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2016-12-01

    Full Text Available Corrosion of metals is a common problem which requires definite attention. In response to this, the oil was extracted from the seed of Terminalia catappa and used to synthesize sucrose fatty esters via simple reaction mechanism which was considered eco-friendly and sustainable. The corrosion inhibition capacity of sucrose fatty esters for mild steel in 1 M HCl was studied using the weight loss method. It was shown that sucrose fatty ester inhibited corrosion process of mild steel and obeyed Langmuir isotherm. Corrosion rate and inhibition efficiency of sucrose fatty esters were found to reduce with increase of immersion time. The study presented sucrose fatty ester as a promising inhibitor of mild steel corrosion in acidic medium.

  10. Enhanced antifouling and antibacterial properties of poly (ether sulfone) membrane modified through blending with sulfonated poly (aryl ether sulfone) and copper nanoparticles

    Science.gov (United States)

    Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun

    2018-03-01

    A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.

  11. GC-MS ANALYSIS OF THE FATTY ACID METHYL ESTER IN JAPANESE QUAIL FAT

    Directory of Open Access Journals (Sweden)

    Ion Dragalin

    2015-12-01

    Full Text Available The accumulated as production waste fat from Faraon quail breeds has been investigated for the first time by using GC-MS technique, preventively converting it via methanolysis to fatty acid methyl esters. The test results, regarding the content of unsaturated fatty acids having a favorable to human body cis-configuration (77.8%, confirm their nutritional value and the possibility of using this fat in cosmetic, pharmaceutical and food industries.

  12. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  13. Carbohydrate fatty acid monosulphate esters are safe and effective adjuvants for humoral responses

    NARCIS (Netherlands)

    Hilgers, L.A.T.; Platenburg, P.; Bajramovic, J.; Veth, J.; Sauerwein, R.; Roeffen, W.; Pohl, M.; Amerongen, G. van; Stittelaar, K.J.; Bosch, J.F. van den

    2017-01-01

    Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In

  14. Avocado and olive oil methyl esters

    International Nuclear Information System (INIS)

    Knothe, Gerhard

    2013-01-01

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, including commodity oils, however, the methyl esters of avocado and olive oil would likely be suitable as biodiesel fuel. In order to expand the database and comprehensive evaluation of the properties of vegetable oil esters, in this work the fuel-related properties of avocado and olive oil methyl esters, which exhibit similar fatty acid profiles including high oleic acid content, are determined. The cetane numbers of avocado oil methyl esters and olive oil methyl esters are relatively high, determined as 59.2 and 62.5, respectively, due to their elevated content of methyl oleate. Other properties are well within the ranges specified in biodiesel standards. The cloud points of both esters are slightly above 0 °C due to their content of saturated esters, especially methyl palmitate. Overall, avocado and olive oil yield methyl esters with fuel properties comparable to methyl esters from other commodity vegetable oils. The 1 H and 13 C NMR spectra of avocado and olive oil methyl esters are reported. -- Highlights: • Methyl esters of avocado and olive oil meet biodiesel fuel standards. • Provides comparison for methyl esters of other vegetable oils with high oleic content. • Discusses and compares present results with prior literature

  15. Identification of tocopherols, tocotrienols, and their fatty acid esters in residues and distillates of structured lipids purified by short-path distillation.

    Science.gov (United States)

    Zou, Long; Akoh, Casimir C

    2013-01-09

    The fate of endogenous vitamin E isomers during production and purification of structured lipids (SLs) was investigated. Two SLs involving tripalmitin, stearidonic acid soybean oil, and docosahexaenoic acid were synthesized by transesterification catalyzed by Novozym 435 (NSL) and acidolysis by Lipozyme TL IM (LDHA) and purified by short-path distillation (SPD). The electron impact and chemical ionization mass spectra of tocopheryl and tocotrienyl fatty acid esters in the distillates measured by GC-MS in synchronous scan/SIM mode demonstrated that these esters were formed during acidolysis as well as transesterification. The predominant esters were tocopheryl palmitate, tocopheryl oleate, and tocopheryl linoleate homologues, and no tocopheryl or tocotrienyl linolenate, stearidonate, or docosahexaenoate was found. Meanwhile, none of these esters were detected in the residues for either NSL or LDHA. Less than 50% of vitamin E isomers were present in residues after SPD. This loss played a major role in the rapid oxidative deterioration of SLs from previous studies with less contribution from the formation of tocopheryl and tocotrienyl esters. The lost tocopherols and tocotrienols present at high concentration in the distillates may be recovered and used to improve the oxidative stability of SLs.

  16. Intricate Conformational Tunneling in Carbonic Acid Monomethyl Ester.

    Science.gov (United States)

    Linden, Michael M; Wagner, J Philipp; Bernhardt, Bastian; Bartlett, Marcus A; Allen, Wesley D; Schreiner, Peter R

    2018-04-05

    Disentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material. The methyl group increases the effective half life (τ eff ) of the energetically disfavored s- trans-conformer from 3-5 h for 3 to 11-13 h for 1. Methyl group deuteration slows the rotamerization further (τ eff ≈ 35 h). CCSD(T)/cc-pVQZ//MP2/aug-cc-pVTZ computations of the tunneling probability suggest that the rate should be almost unaffected by methyl substitution or its deuteration. Thus the observed relative rates are puzzling, and they disagree with previous explanations involving fast vibrational relaxation after the tunneling event facilitated by the alkyl rotor.

  17. Separation of transition-metal and 8-hydroxyquinoline-5-sulfonic acid complexes using ion-pair liquid chromatography

    International Nuclear Information System (INIS)

    Basova, E.M.; Demurov, L.M.; Shpigun, O.A.; Van Iyuchun'

    1994-01-01

    The retention of chelates of Fe(3), Cu(2), Co(2), Ni(2), Zn(2), Cd(2), Hg(2), and Pb)(2) with 8-hydroxyquinoline-5-sulfonic acid depending on the concentration of cetyltrimethylammonium bromide, acetonitrile, and pH of the mobile phase was investigated using the ion-pair reversed-phase high-performance liquid chromatography on separon C 18 . Under the optimum conditions, the separation of mixtures of Fe(3), Co(2) and Ni(2) is performed within 8 to 12 min

  18. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity

    OpenAIRE

    Arumugham Suresh; Ramasamy Praveenkumar; Ramasamy Thangaraj; Felix Lewis Oscar; Edachery Baldev; Dharumadurai Dhanasekaran; Nooruddin Thajuddin

    2014-01-01

    Objective: To evaluate fatty acid composition and the antimicrobial activity of the major fraction of fatty acid methyl ester (FAME) extracts from three microalgae collected from freshwater lakes in Theni District, Tamil Nadu, India. Methods: Antimicrobial study was carried out by well diffusion method against bacterial as well as fungal pathogens such as Escherichia coli, Staphylococcus aureus, Enterobacter sp., Klebsiella sp., Salmonella typhi, Fusarium sp., Cryptococcus sp.,...

  19. Substituted thiobenzoic acid S-benzyl esters as potential inhibitors of a snake venom phospholipase A2: Synthesis, spectroscopic and computational studies

    Science.gov (United States)

    Henao Castañeda, I. C.; Pereañez, J. A.; Jios, J. L.

    2012-11-01

    4-Chlorothiobenzoic acid S-benzyl ester (I), 3-nitrothiobenzoic acid S-benzyl ester (II), 4-nitrothiobenzoic acid S-benzyl ester (III) and 4-methylthiobenzoic acid S-benzyl ester (IV) were prepared and characterized by 1H and 13C NMR, Mass spectrometry and IR spectroscopy. Quantum chemical calculations were performed with Gaussian 09 to calculate the geometric parameters and vibrational spectra. Phospholipase A2 (PLA2) was purified from Crotalus durissus cumanensis venom by molecular exclusion chromatography, followed by reverse phase-high performance liquid chromatography. Two studies of the inhibition of phospholipase A2 activity were performed using phosphatidilcholine and 4-nitro-3-octanoyloxybenzoic acid as substrates, in both cases compound II showed the best inhibitory ability, with 74.89% and 69.91% of inhibition, respectively. Average percentage of inhibition was 52.49%. Molecular docking was carried out with Autodock Vina using as ligands the minimized structures of compounds (I-IV) and as protein PLA2 (PDB code 2QOG). The results suggest that compounds I-IV could interact with His48 at the active site of PLA2. In addition, all compounds showed Van der Waals interactions with residues from hydrophobic channel of the enzyme. This interaction would impede normal catalysis cycle of the PLA2.

  20. Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study.

    Science.gov (United States)

    Dabadie, Henry; Peuchant, Evelyne; Bernard, Mireille; LeRuyet, Pascale; Mendy, François

    2005-06-01

    Among the saturated fatty acids (SFA), myristic acid is known to be one of the most atherogenic when consumed at high levels. Our purpose was to compare the effects of two moderate intakes of myristic acid on plasma lipids in an interventional study. Twenty-five male monks without dyslipidemia were given two isocaloric diets for 5 weeks each. In diet 1, 30% of the calories came from fat (8% SFA, 0.6% myristic acid) and provided 200 mg cholesterol/day. Calories of diet 2 were 34% fat (11% SFA, 1.2% myristic acid) with the same levels of oleate, linoleate, alpha-linolenate and cholesterol. A baseline diet was provided before each diet. In comparison with baseline, diets 1 and 2 induced a decrease in total cholesterol, LDL-cholesterol and triglycerides (Pdiet 2 than after diet 1 whereas HDL-cholesterol was higher (Pdiet 2 vs. baseline (Pdiet 1 (Pdiets were associated with an increase in alpha-linolenate of cholesteryl esters (Pdiet 2 was associated with an increase in DHA of cholesteryl esters (Pdiet 2, myristic acid intake was positively correlated with myristic acid of phospholipids, and alpha-linolenic acid intake was correlated with alpha-linolenic acid of cholesteryl esters. Moderate intake (1.2% of total calories) of myristic acid has beneficial lipidic effects and enhances DHA of cholesteryl esters.

  1. Scalable preparation of high purity rutin fatty acid esters following enzymatic synthesis

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Investigations into expanded uses of modified flavonoids are often limited by the availability of these high purity compounds. As such, a simple, effective and relatively fast method for isolation of gram quantities of both long and medium chain fatty acid esters of rutin following scaled......-up biosynthesis reactions was established. Acylation reactions of rutin and palmitic or lauric acids were efficient in systems containing dried acetone and molecular sieves, yielding from 70–77% bioconversion after 96 h. Thereafter, high purity isolates (>97%) were easily obtained in significant quantities...

  2. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-01-01

    Full Text Available Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H with a pore size of 6 nm was proven to be an efficient heterogeneous nanoporous solid acid catalyst in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones from the reaction of aromatic aldehydes with 3-amino-1,2,4-triazole (or 2-aminobenzimidazole and dimedone under solvent free conditions.

  3. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    Science.gov (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  5. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat; Emwas, Abdul-Hamid M.; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2016-01-01

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  6. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Aug 10, 2007 ... Preparation and Characterization of Sulfonated Poly (ether ... Currently perfluori- ... with phosphoric acid solution according to the method described earlier.11,12 ... where A is the membrane area available for diffusion; CA is.

  7. Continuous production of fatty acid ethyl esters from soybean oil at supercritical conditions - doi: 10.4025/actascitechnol.v34i2.11255

    Directory of Open Access Journals (Sweden)

    Camila da Silva

    2012-03-01

    Full Text Available This work reports the production of fatty acid ethyl esters (FAEE from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a tubular reactor in one-step reaction and experimentally simulating two reactors, one operated in series and the other a recycle reactor. The reaction products were analyzed for their content of residual triglycerides, glycerol, monoglycerides, diglycerides, ethyl esters and decomposition. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to their fatty acid ethyl esters derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (< 5.0 wt%.

  8. Data from mass spectrometry, NMR spectra, GC–MS of fatty acid esters produced by Lasiodiplodia theobromae

    Directory of Open Access Journals (Sweden)

    Carla C. Uranga

    2016-09-01

    Full Text Available The data described herein is related to the article with the title “Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings” C.C. Uranga, J. Beld, A. Mrse, I. Cordova-Guerrero, M.D. Burkart, R. Hernandez-Martinez (2016 [1]. Data includes nuclear magnetic resonance spectroscopy and GC–MS data used for the identification and characterization of fatty acid esters produced by L. theobromae. GC–MS traces are also shown for incubations in defined substrate, consisting in Vogel׳s salts supplemented with either 5% grapeseed oil or 5% glucose, the two combined, or 5% fructose. Traces for incubations in the combination of 5% grapeseed oil and 5% glucose for different fungal species are also included. Images of mycelium morphology when grown in 5% glucose with or without 5% grapeseed oil are shown due to the stark difference in mycelial pigmentation in the presence of triglycerides. High concentration gradient data for the plant model Nicotiana tabacum germinated in ethyl stearate (SAEE and ethyl linoleate (LAEE is included to show the transition between growth inhibition and growth induction in N. tabacum by these compounds. Keywords: NMR, GC–MS, Fatty acid esters, Ethyl stearate, Ethyl linoleate, Growth inhibition, Growth induction

  9. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Dong Cai

    2015-09-01

    Full Text Available A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H2SO4. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  10. Parallel Synthesis of a Library of Symmetrically- and Dissymmetrically-disubstituted Imidazole-4,5-dicarboxamides Bearing Amino Acid Esters

    Directory of Open Access Journals (Sweden)

    Rosanna Solinas

    2009-01-01

    Full Text Available The imidazole-4,5-dicarboxylic acid scaffold is readily derivatized with amino acid esters to afford symmetrically- and dissymmetrically-disubstituted imidazole-4,5-dicarboxamides with intramolecularly hydrogen bonded conformations that predispose the presentation of amino acid pharmacophores. In this work, a total of 45 imidazole-4,5-dicarboxamides bearing amino acid esters were prepared by parallel synthesis. The library members were purified by column chromatography on silica gel and the purified compounds characterized by LC-MS with LC detection at 214 nm. A selection of the final compounds was also analyzed by 1H-NMR spectroscopy. The analytically pure final products have been submitted to the Molecular Library Small Molecule Repository (MLSMR for screening in the Molecular Library Screening Center Network (MLSCN as part of the NIH Roadmap.

  11. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  12. Preparation of five 3-MCPD fatty acid esters, and the effects of their chemical structures on acute oral toxicity in Swiss mice.

    Science.gov (United States)

    Liu, Man; Liu, Jie; Wu, Yizhen; Gao, Boyan; Wu, Pingping; Shi, Haiming; Sun, Xiangjun; Huang, Haiqiu; Wang, Thomas Ty; Yu, Liangli Lucy

    2017-02-01

    3-monochloro-1, 2-propanediol fatty acid esters (3-MCPDEs) comprise a group of food toxicants formed during food processing. 3-MCPDEs have received increasing attention concerning their potential negative effects on human health. However, reports on the toxicity of 3-MCPD esters are still limited. To determine the effects of fatty acid substitutions on the toxicity of their esters, 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters of 3-MCPD were synthesized and evaluated with respect to their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and fatty acid chlorides, and their purities and structures were characterized by ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), infrared, 1 H and 13 C spectroscopic analyses. Medial lethal doses of 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters were 2973.8, 2081.4, 2016.3, 5000 and > 5000 mg kg -1 body weight. For the first time, 3-MCPDEs were observed for their toxic effects in the thymus and lung. In addition, major histopathological changes, as well as blood urea nitrogen and creatinine, were examined for mice fed the five 3-MCPDEs. The results from the present study suggest that the degree of unsaturation, chain length, number of substitution and relative substitution locations of fatty acids might alter the toxicity of 3-MCPDEs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers

    International Nuclear Information System (INIS)

    Tsuneda, Satoshi; Saito, Kyoichi; Furusaki, Shintaro; Sugo, Takanobu; Makuuchi, Keizo

    1993-01-01

    The sulfonic acid (SO 3 H) group was readily introduced into a polyethylene (PE) membrane by radiation-induced cografting of sodium styrenesulfonate (SSS) with hydrophilic monomers such as acrylic acid (AAc) and hydroxyethyl methacrylate (HEMA). The density of SSS grafted onto the PE membrane was determined as a function of molar ratio of hydrophilic monomer to SSS in the monomer mixture. Immersion of the electron-beam-irradiated PE membrane into the mixture of SSS and HEMA for 5 h at 323 K provided to the SO 3 H density of 2.5 mol/kg of the H-type product

  14. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  15. A novel isoindoline, porritoxin sulfonic acid, from Alternaria porri and the structure-phytotoxicity correlation of its related compounds.

    Science.gov (United States)

    Horiuchi, Masayuki; Ohnishi, Keiichiro; Iwase, Noriyasu; Nakajima, Yoshikazu; Tounai, Kenji; Yamashita, Masakazu; Yamada, Yasumasa

    2003-07-01

    Novel zinniol-related compound 3, named porritoxin sulfonic acid, with an isoindoline skeleton was isolated from the culture liquid of Alternaria porri. The structure was determined to be 2-(2"-sulfoethyl)-4-methoxy-5-methyl-6-(3'-methyl-2'-butenyloxy)-2,3-dihydro-1H-isoindol-1-one. The phytotoxic activities of three isoindolines (1-3) were evaluated in a seedling-growth assay against stone leek and lettuce.

  16. Synthesis of Amide and Ester Derivatives of Cinnamic Acid and Its Analogs: Evaluation of Their Free Radical Scavenging and Monoamine Oxidase and Cholinesterase Inhibitory Activities.

    Science.gov (United States)

    Takao, Koichi; Toda, Kazuhiro; Saito, Takayuki; Sugita, Yoshiaki

    2017-01-01

    A series of cinnamic acid derivatives, amides (1-12) and esters (13-22), were synthesized, and structure-activity relationships for antioxidant activity, and monoamine oxidases (MAO) A and B, acetylcholinesterase, and butyrylcholinesterase (BChE) inhibitory activities were analyzed. Among the synthesized compounds, compounds 1-10, 12-18, and rosmarinic acid (23), which contained catechol, o-methoxyphenol or 5-hydroxyindole moieties, showed potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Compounds 9-11, 15, 17-22 showed potent and selective MAO-B inhibitory activity. Compound 20 was the most potent inhibitor of MAO-B. Compounds 18 and 21 showed moderate BChE inhibitory activity. In addition, compound 18 showed potent antioxidant activity and MAO-B inhibitory activity. In a comparison of the cinnamic acid amides and esters, the amides exhibited more potent DPPH free radical scavenging activity, while the esters showed stronger inhibitory activities against MAO-B and BChE. These results suggested that cinnamic acid derivatives such as compound 18, p-coumaric acid 3,4-dihydroxyphenethyl ester, and compound 20, p-coumaric acid phenethyl ester, may serve as lead compounds for the development of novel MAO-B inhibitors and candidate lead compounds for the prevention or treatment of Alzheimer's disease.

  17. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  18. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  19. Lipase immobilization on hyper-cross-linked polymer-coated silica for biocatalytic synthesis of phytosterol esters with controllable fatty acid composition.

    Science.gov (United States)

    Zheng, Ming-Ming; Lu, Yong; Huang, Feng-Hong; Wang, Lian; Guo, Ping-Mei; Feng, Yu-Qi; Deng, Qian-Chun

    2013-01-09

    In this study, a novel mixed-mode composite material, SiO(2)@P(MAA-co-VBC-co-DVB), was prepared via the hyper-cross-linking of its precursor, which was produced via suspension polymerization in the presence of SiO(2) particles. Candida rugosa lipase (CRL) was immobilized on the SiO(2)@P(MAA-co-VBC-co-DVB) particles via hydrophobic and weak cation-exchange interaction. The resulting immobilized CRL showed much better thermal stability and reusability in comparison to free CRL. On the basis of the excellent biocatalyst prepared, a method for high-efficiency enzymatic esterification of phytosterols with different fatty acids to produce the corresponding phytosterol esters was developed. Six phytosterol esters with conversions above 92.1% and controllable fatty acid composition were obtained under the optimized conditions: 80 μmol/mL phytosterols, 160 μmol/mL linolenic acid, and 15 mg/mL CRL@HPCS at 300 rpm and 50 °C for 7 h in 30 mL of isooctane. The prepared phytosterol esters possessed a low acid value (≤0.86 mg of KOH/g), peroxide value (≤3.3 mequiv/kg), and conjugated diene value (≤1.74 mmol/kg) and high purity (≥97.8%) and fatty solubility (≥28.9 g/100 mL). All the characteristics favored the wide application of phytosterol esters with controllable fatty acid composition in different fields of functional food.

  20. Synthesis of Estolide 2-ethylhexyl Ester from Ricinus communis

    International Nuclear Information System (INIS)

    Nazrizawati Ahmad Tajuddin; Nor Habibah Rosli

    2013-01-01

    Estolide 2-ethylhexyl ester synthesized through condensation reaction between ricinoleic acid from castor oil (Ricinus communis) and lauric acid, and then capped with 2-ethylhexyl alcohol. The reaction was continuously conducted under vacuum for 24 hours. Product of 2-ethylhexyl ester was characterized by using Fourier Transform Infrared (FTIR) to determine functional group and Nuclear Magnetic Resonans (NMR) for structure's determination. The presence of ester group at 1738.23 cm -1 wavenumber indicates that the formation of estolide ester has occurred. The vibration peak of C-O at 1174.60 cm -1 and 1117.10 cm -1 support the formation of ester. The presence of CH 2 bending indicated the long-chain compound. The ester methine signal at 3.8669 ppm indicated the estolide linkage in the 1 H-NMR spectrum while the 13 C-NMR showed two carbonyl signals at 173.41 ppm for acid and 173.56 ppm for ester. (author)

  1. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  2. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  3. Determination of trace elements by neutron activation analysis using dinonylnaphtalene sulfonic acid as a preconcentrating agent

    International Nuclear Information System (INIS)

    Yang, M.H.; Chen, P.Y.; Tseng, C.L.; Yeh, S.J.; Weng, P.S.

    1977-01-01

    Dinonylnaphthalene sulfonic acid (HD) has been used as a preconcentrating agent to enrich trace metal ions and to separate the interfering elements such as Na, K, Cl and Br, which normally exist in the natural aqueous systems. Experiments were performed by extracting the ions in the aqueous medium with HD in n-hexane and subsequently backextracted into a minimal volume of acid solution. Factors influencing the extraction efficiency of the ions of interest were investigated. The preconcentration technique has been successfully applied to the determination by neutron activation analysis of trace elements in natural water and biological materials. Both short-lived nuclides (Mg, Al, Ca, Mn) and long-lived nuclides (Sm, Eu, Zn, La, Cr, Sc, Fe, Co) in the ppb-level concentrations were determined. (T.G.)

  4. Rapid NIR determination of alkyl esters in virgin olive oil

    International Nuclear Information System (INIS)

    Cayuela, J.A.

    2017-01-01

    The regulation of The European Union for olive oil and olive pomace established the limit of 35 mg·kg-1 for fatty acids ethyl ester contents in extra virgin olive oils, from grinding seasons after 2016. In this work, predictive models have been established for measuring fatty acid ethyl and methyl esters and to measure the total fatty acid alkyl esters based on near infrared spectroscopy (NIRS), and used successfully for this purpose. The correlation coefficients from the external validation exercises carried out with these predictive models ranged from 0.84 to 0.91. Different classification tests using the same models for the thresholds 35 mg·kg-1 for fatty acid ethyl esters and 75 mg·kg-1 for fatty acid alkyl esters provided success percentages from 75.0% to 95.2%. [es

  5. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    Science.gov (United States)

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  6. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  7. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  8. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. 721.3130 Section 721.3130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... significant new uses are: (i) Industrial, commercial, and consumer activities. Requirements as specified in...

  9. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  10. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Carretta, N.; Tricoli, V.; Picchioni, F.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  11. Spectroscopic studies of the quality of WCO (Waste Cooking Oil fatty acid methyl esters

    Directory of Open Access Journals (Sweden)

    Matwijczuk Arkadiusz

    2018-01-01

    Full Text Available Different kinds of biodiesel fuels become more and more attractive form of fuel due to their unique characteristics such as: biodegradability, replenishability, and what is more a very low level of toxicity in terms of using them as a fuel. The test on the quality of diesel fuel is becoming a very important issue mainly due to the fact that its high quality may play an important role in the process of commercialization and admitting it on the market. The most popular techniques among the wellknown are: molecular spectroscopy and molecular chromatography (especially the spectroscopy of the electron absorption and primarily the infrared spectroscopy (FTIR.The issue presents a part of the results obtained with the use of spectroscopy of the electron absorption and in majority infrared spectroscopy FTIR selected for testing samples of the acid fats WCO (Waste Cooking Oil types. The samples were obtained using laboratory methods from sunflower oil and additionally from waste animal fats delivered from slaughterhouses. Acid methyl esters were selected as references to present the samples. In order to facilitate the spectroscopic analysis, free glycerol, methanol, esters and methyl linolenic acid were measured

  12. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Li, Nanwen [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Suobo; Li, Shenghai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2010-04-15

    A novel locally and densely sulfonated dianhydride with four sulfonic acid groups, 1,6,7,12-tetra[4-(sulfonic acid)phenoxy]perylene-3,4,9,10-tetracarboxylic dianhydride (SPTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 1,6,7,12-tetraphenoxyperylene-3,4,9,10-tetracarboxylic dianhydride (PTDA). Sulfonated copolyimides were prepared from SPTDA, nonsulfonated dianhydride 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianydride, 4,4'-diaminodiphenyl ether (a) or dodecane-1,12-diamine (b). The synthesized copolymers, with the -SO{sub 3}H group on the polymer side chain, possess high molecular weights and high viscosities, and they form tough, flexible membranes. The copolymer membrane with an ion exchange capacity of 2.69 mequiv. g{sup -1} had a proton conductivity of 0.126 S cm{sup -1} at 20 C and 0.292 S cm{sup -1} at 100 C; the latter is much higher than that of Nafion {sup registered} 117 under the same conditions. The mechanical properties of the copolymer membranes were almost unchanged after accelerated water stability testing at 140 C for 100 h; this indicates excellent hydrolytic stability of the synthesized copolyimides. (author)

  13. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    Science.gov (United States)

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  14. An Improved Enzymatic Indirect Method for Simultaneous Determinations of 3-MCPD Esters and Glycidyl Esters in Fish Oils.

    Science.gov (United States)

    Miyazaki, Kinuko; Koyama, Kazuo

    2017-10-01

    The enzymatic indirect method for simultaneous determinations of 3-chloro-1, 2-propanediol fatty acid esters (3-MCPD-Es) and glycidyl fatty acid esters (Gly-Es) make use of lipase from Candida cylindracea (previously referred to as C. rugosa). Because of low substrate specificity of the lipase for esters of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), fish oils high in PUFAs are currently excluded from the range of application of the method. The objective of this study was to make the enzymatic indirect method applicable to fats and oils containing PUFAs. By using a Burkholderia cepacia lipase, and by removing sodium bromide from hydrolysis step and adding it after completion of the hydrolysis step, satisfactory recovery rates of 91-109% for 3-MCPD, and 91-110% for glycidol (Gly) were obtained from an EPA and DHA concentrated sardine oil, three DHA concentrated tuna oils, two fish oils, and five fish-oil based dietary supplements spiked with DHA-esters or oleic acid-esters of 3-MCPD and Gly at 20 mg/kg. Further, results from unspiked samples of seven fish oil based dietary supplements and five DHA concentrated tuna oils analyzed by the improved enzymatic indirect method were compared with the results analyzed by AOCS Cd 29a. For all 3-MCPD, 2-MCPD and Gly, the 95% confidence intervals determined by the weighted Deming regression for slopes and intercepts contained the value of 1 and 0, respectively. It was therefore concluded that the results from the two methods were not statistically different. These results suggest that fish oils high in PUFAs may be included in the range of application for the improved enzymatic indirect method for simultaneous determinations of 3-MCPD and Gly esters in fats and oils.

  15. Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: A case series

    NARCIS (Netherlands)

    D.M.W. Balak (Deepak); J.N.B. Bavinck (Jan Nico Bouwes); De Vries, A.P.J. (Aiko P. J.); Hartman, J. (Jenny); Martino Neumann, H.A. (Hendrik A.); R. Zietse (Bob); H.B. Thio (Bing)

    2016-01-01

    textabstractBackground: Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced

  16. Lipases and whole cell biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid and its ester.

    Science.gov (United States)

    Majewska, Paulina; Serafin, Monika; Klimek-Ochab, Magdalena; Brzezińska-Rodak, Małgorzata; Żymańczyk-Duda, Ewa

    2016-06-01

    A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68-93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50-55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. [Determination of fatty acid esters of chloropropanediols in diet samples by gas chromatography-mass spectrometry coupled with solid-supported liquid-liquid extraction].

    Science.gov (United States)

    Gao, Jie; Liu, Qing; Han, Feng; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2014-05-01

    To establish a method for the determination of fatty acid esters of 3-monochloropropane-1, 2-diol (3-MCPD) and 2-monochloropropane-1, 3-diol (2-MCPD) in diet samples by gas chromatography-mass spectrometry (GC-MS) with solid-supported liquid-liquid extraction (SLE). Diet samples were ultrasonically extracted by hexane, followed by ester cleavage reaction with sodium methylate in methanol, and then purified by solid-supported liquid-liquid extraction. (SLE) using diatomaceous earth as the sorbent. After derivatization with heptafluorobutyrylimidazole, the analytes were detected by GC-MS and quantified by the deuterated internal standards. The limits of detection (LODs) of 3-MCPD esters and 2-MCPD esters in different diet samples were 0.002 - 0.005 mg/kg and 0.002 - 0.006 mg/kg. The average recoveries of 3-MCPD esters and 2-MCPD esters at the spiking levels of 0.05 and 0.1 mg/kg in the diet samples were in the range of 65.9% - 104.2% and 75.4% - 118.0%, respectively, with the relative standard deviations in the range of 2.2% - 14.2% and 0.8% - .13.9%. The method is simple, accurate and rugged for the determination of fatty acid esters of 3-MCPD and 2-MCPD in diet samples.

  18. A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in F344 rats.

    Science.gov (United States)

    Onami, Saeko; Cho, Young-Man; Toyoda, Takeshi; Mizuta, Yasuko; Yoshida, Midori; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2014-04-01

    3-monochloropropane-1,2-diol (3-MCPD), a rat renal and testicular carcinogen, has been reported to occur in various foods and food ingredients as free or esterified forms. Since reports about toxicity of 3-MCPD esters are limited, we conducted a 13-week rat subchronic toxicity study of 3-MCPD esters (palmitate diester: CDP, palmitate monoester: CMP, oleate diester: CDO). We administered a carcinogenic dose (3.6 × 10(-4) mol/kg B.W./day) of 3-MCPD or these esters at equimolar concentrations and two 1/4 lower doses by gavage with olive oil as a vehicle five times a week for 13 weeks to F344 male and female rats. As a result, five out of ten 3-MCPD-treated females died from acute renal tubular necrosis, but none of the ester-treated rats. Decreased HGB was observed in all high-dose 3-MCPD fatty acid ester-treated rats, except CDO-treated males. The absolute and relative kidney weights were significantly increased in the ester-treated rats at medium and high doses. Relative liver weights were significantly increased in the esters-treated rat at high dose, except for CMP females. Significant increase in apoptotic epithelial cells in the initial segment of the epididymis of high-dose ester-treated males was also observed. The results suggested that although acute renal toxicity was lower than 3-MCPD, these three 3-MCPD fatty acid esters have the potential to exert subchronic toxicity to the rat kidneys and epididymis, to a similar degree as 3-MCPD under the present conditions. NOAELs (no-observed-adverse-effect levels) of CDP, CMP and CDO were suggested to be 14, 8 and 15 mg/kg B.W./day, respectively.

  19. Multi-organ sarcoidosis treatment with fumaric acid esters: a case report and review of the literature.

    Science.gov (United States)

    Zouboulis, Christos C; Lippert, Undine; Karagiannidis, Ioannis

    2014-01-01

    Sarcoidosis is a rare, systemic disease that is characterized by the formation of granulomas in various organs, including the skin. As the etiology remains unknown, the treatment of sarcoidosis is challenging. We present a 47-year-old female patient with progressive, multi-organ sarcoidosis who had a complete clinical improvement of the skin lesions, a moderate reduction in pulmonary opacities on chest X-ray, a marked subjective improvement in general status and pulmonary efficiency and a marked reduction in serum angiotensin-converting enzyme and soluble interleukin-2 receptor after 6 months of therapy with fumaric acid esters. The present case and similar reports in the literature highlight the probable efficacy of fumaric acid esters in the treatment of sarcoidosis and other non-infectious, granulomatous diseases. © 2014 S. Karger AG, Basel.

  20. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study.

    Science.gov (United States)

    Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan

    2017-07-15

    Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Evaluation of the influence of base and alkyl bromide on synthesis of pyrazinoic acid esters through factorial design

    International Nuclear Information System (INIS)

    Fernandes, Joao Paulo dos Santos; Felli, Veni Maria Andres

    2009-01-01

    Pyrazinoic acid esters have been synthesized as prodrugs of pyrazinoic acid. In the literature, its preparation is reported through the reaction of pyrazinoyl chloride with alcohols and the reaction with DCC/DMAP. In this work, it is reported a 22 factorial design to evaluate the preparation of these esters through the substitution of alkyl bromides with carboxylate anion. The controlled factors were alkyl chain length of bromides (ethyl and hexyl) and the used base (triethylamine and DBU). Results revealed that the used base used has significant effect on yield, and alkyl bromide used has neither significant influence, nor its interaction effect with base. (author)

  2. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  3. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    Science.gov (United States)

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  4. Preparation of New 2,3-Diphenylpropenoic Acid Esters – Good Yields Even for the More Hindered Z Isomers

    Directory of Open Access Journals (Sweden)

    István Pálinkó

    2004-03-01

    Full Text Available The potassium salt of E- and Z-2,3-diphenylpropenoic acids prepared in situ could be esterified efficiently in DMSO with the appropriate alkyl halides at room temperature. In this way 10 previously undescribed esters of these acids were synthesised and characterised. Excellent yields were observed for most of the E isomers and the more hindered Z esters were also obtained in good yields, far better than those obtained applying the classical acid-catalysed esterification reaction.

  5. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  6. Characterization of reactive intermediates in laser photolysis of nucleoside using of sodium salt anthraquinone-2-sulfonic acid as photosensitizer

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Han Zhenhui; Yao Side; Lin Nianyun

    1999-01-01

    The interaction of triplet state of sodium salt of anthraquinone-2-sulfonic acid (AQS) with nucleosides has been investigated in CH 3 CN using KrF(248 nm) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet AQS and nucleoside demonstrated that the primary ionic radical pair, radical cation of nucleosides and radical anion of AQS has been detected simultaneously for the first time

  7. Differential pulse polarographic determination of trace antimony in standard biological samples after preconcentration using 2-nitroso-1-naphthol-4-sulfonic acid

    International Nuclear Information System (INIS)

    Taher, M. A.

    2003-01-01

    A highly selective, rapid and economical differential polarographic method has been developed for the determination of trace amounts of antimony in various standard alloys and biological samples after of its 2-naphthol-4 sulfonic acid tetradecyl dimethylbenzylammonium chloride on microcrystalline naphthalene in the ph range of 7.5-11.0. After filtration, the solid mass is shaken with 8-10 ml of 1 M hydrochloric acid (with preconcentration factor of 10) and antimony is determined by differential pulse polarography. Antimony can alternatively be quantitatively absorbed on 2-nitroso-1-naphthol-4-sulfonic acid tetradecyl dimethylbenzylammonium-naphthalene absorbed packed in a column (with preconcentration factor of 30) and determined similarly. In this case, 1.5 μg of antimony can be concentrated in a column from 300 ml of aqueous sample, where its concentration is as low as 5 ng/ml. Characterization of the electro active process included an examination of the degree of reversibility. The results show that the irreversibility of antimony. Various parameters such as the effect of ph, volume of aqueous phase, HCl concentration, reagent concentration, naphthalene concentration, shaking time and interference of a number of metal ions on the determination of antimony have been studied in detail to optimize the conditions for determination in standard alloys and standard biological samples

  8. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters.

    Science.gov (United States)

    Xie, Jia; Tian, Xiao-Fei; He, Song-Gui; Wei, Yun-Lu; Peng, Bin; Wu, Zhen-Qiang

    2018-05-23

    To investigate the effects of fusel alcohols on the intoxicating degree of liquor products, formulated liquors (FLs) were prepared by blending 1-propanol, isobutanol, and isoamyl alcohol with ethanol, organic acids, and corresponding ethyl esters to simulate the formula of traditional Chinese liquors. The prepared FLs were submitted for evaluation of their intoxicating degree (ID). The results showed that the fusel alcohols had a biphasic effect on the IDs of the FLs, depending on the comprehensive coordination of the characteristic minor components. The importance of the suitable ratio of alcohols/acids/esters (RAAE) on the IDs was also revealed. Under an optimal ratio level, the fusel alcohols exhibited negligible effects on the IDs of the FLs. Moreover, the ratio of isoamyl alcohol to isobutanol (IA/IB) showed a strong positive correlation to the IDs of the FLs. This study lays a foundation for the potential application in producing low-ID liquor.

  9. Synthesis of 11C labelled methyl esters: transesterification of enol esters versus BF3 catalysed esterification-a comparative study

    International Nuclear Information System (INIS)

    Ackermann, Uwe; Blanc, Paul; Falzon, Cheryl L.; Issa, William; White, Jonathan; Tochon-Danguy, Henri J.; Sachinidis, John I.; Scott, Andrew M.

    2006-01-01

    C-11 labelled methyl esters have been synthesized via the transesterification of enol esters in the presence of C-11 methanol and 1,3 dichlorodibutylstannoxane as catalyst. This method leaves functional groups intact and allows access to a wider variety of C-11 labelled methyl esters compared to the BF 3 catalysed ester formation, which uses carboxylic acids and C-11 methanol as starting materials

  10. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    International Nuclear Information System (INIS)

    Rizzo, G.; Arena, A.; Donato, N.; Latino, M.; Saitta, G.; Bonavita, A.; Neri, G.

    2010-01-01

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  11. Fatty-acid alkyl esters in table olives in relation to abnormal fermentation and poorly conducted technological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, B.; Serio, M.G. di; Giacinto, L. di

    2016-07-01

    There are several methods to prepare table olives, and each of the steps and conditions during this processing can affect the composition and nutritional value of the product. The influence of abnormal fermentation and poorly conducted technological treatments was examined here in terms of the lipid fraction of table olives. In ‘Greek style’ olives, a low concentration of brine can allow the growth of spontaneous microflora and consequent organoleptic defects (‘putrid/butyric fermentation’, ‘winey-vinegary’). Here, the ‘Kalamata’ and ‘Moresca’ cultivars can produce methyl esters (methyl oleate/ linoleate: 553 and 450 mg·kg−1 oil, respectively) and ethyl esters (ethyl oleate/ inoleate: 4764 and 4195; palmitate: 617 and 886 mg·kg −1 oil, respectively). In ‘Sevillan style’ olives, a high NaOH concentration influences the fatty-acid composition less, but is difficult to eliminate, for a ‘soapy’ defect. The ‘Giarraffa’ and ‘Nocellara del Belice’ cultivars produce only ethyl esters (ethyl oleate/ linoleate: 222 and 289 mg·kg−1 oil, respectively). With this production of ethyl and methyl esters from the principal fatty acids in the lipid fractions of table olives, methods that provide only biological treatments (i.e., Greek style) pose more risk than methods that provide only chemical treatments (i.e., Sevillan style). (Author)

  12. Preparation of polyol esters based on vegetable and animal fats.

    Science.gov (United States)

    Gryglewicz, S; Piechocki, W; Gryglewicz, G

    2003-03-01

    The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).

  13. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  14. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    Science.gov (United States)

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Study of Substituted Ester Formation in Red Wine by the Development of a New Method for Quantitative Determination and Enantiomeric Separation of Their Corresponding Acids.

    Science.gov (United States)

    Lytra, Georgia; Franc, Celine; Cameleyre, Margaux; Barbe, Jean-Christophe

    2017-06-21

    A new method was developed for quantifying substituted acids including, where applicable, their various unexplored enantiomeric forms. A new step was added to acids' usual quantification methods, consisting of extraction, derivatization to methyl esters, and gas chromatography analysis: preliminary extraction was performed at basic pH to eliminate ethyl esters, thus avoiding their transesterification during derivatization. Quantitation and enantiomeric distribution of some substituted esters and their corresponding acids were established in 31 commercial Bordeaux red wines from 0 to 20 years old. A strong positive correlation was observed between the age of wine and levels of ethyl 2-methylpropanoate, ethyl 3-methylbutanoate, ethyl 2-methylbutanoate, ethyl (3R)-3-hydroxybutanoate, both enantiomeric forms of ethyl 2-hydroxy-3-methylbutanoate, and ethyl (2S)-2-hydroxy-4-methylpentanoate, but not ethyl (3S)-3-hydroxybutanoate. However, the standard deviations of average concentrations for the corresponding substituted acids were so large that only few correlations between concentrations and age were observed. Concentrations of (2S)-2-hydroxy-3-methylbutanoic acid and (2S)-2-hydroxy-4-methylpentanoic acid increased slightly over time, while (2R)-2-hydroxy-4-methylpentanoic acid levels decreased slightly with the age. Variations in the ratio of substituted ethyl esters to their corresponding acids over time detected thanks to these analytical advances suggested that, in general, acids were continuously esterified during aging.

  16. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song Lingjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao Jie; Yang Huawei; Jin Jing; Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-10-15

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O{sub 2} plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124{sup o} to 26{sup o} with the increasing grafting density of poly(AMPS) from 0 to 884.2 {mu}g cm{sup -2}, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 {mu}g cm{sup -2}); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  17. Technetium and rhenium tracers with metabolizable ester functions

    International Nuclear Information System (INIS)

    Syhre, R.; Seifert, S.; Schneider, F.; Pietzsch, H.J.; Spies, H.; Johannsen, B.

    1993-01-01

    Re-DMSA (dimercaptosuccinic acid) ester complexes were prepored by ligand exchange reactions. To determine whether the ester band in Re-DMSA ester complexes is susceptible to cleavage by esterases, incubation experiments with tissue homogenates and plasma were carried out. (BBR)

  18. In vitro assessment of phthalate acid esters-trypsin complex formation.

    Science.gov (United States)

    Chi, Zhenxing; Zhao, Jing; Li, Weiguo; Araghi, Arash; Tan, Songwen

    2017-10-01

    In this work, interactions of three phthalate acid esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), with trypsin have been studied in vitro, under simulated physiological conditions using multi-spectroscopic techniques and molecular modeling. The results show that these PAEs can bind to the trypsin, forming trypsin-PAEs complexes, mainly via hydrophobic interactions, with the affinity order of DMP > DEP > DBP. Binding to the PAEs is found to result in molecular deformation of trypsin. The modeling results suggest that only DBP can bind with the amino acid residues of the catalytic triad and S1 binding pocket of trypsin, leading to potential competitive enzyme inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food.

    Science.gov (United States)

    Bakhiya, Nadiya; Abraham, Klaus; Gürtler, Rainer; Appel, Klaus Erich; Lampen, Alfonso

    2011-04-01

    Fatty acid esters of 3-chloropropane-1,2-diol (3-MCPD) and glycidol are a newly identified class of food process contaminants. They are widespread in refined vegetable oils and fats and have been detected in vegetable fat-containing products, including infant formulas. There are no toxicological data available yet on the 3-MCPD and glycidol esters, and the primary toxicological concern is based on the potential release of 3-MCPD or glycidol from the parent esters by lipase-catalyzed hydrolysis in the gastrointestinal tract. Although 3-MCPD is assessed as a nongenotoxic carcinogen with a tolerable daily intake (TDI) of 2 μg/kg body weight (bw), glycidol is a known genotoxic carcinogen, which induces tumors in numerous organs of rodents. The initial exposure estimates, conducted by Federal Institute for Risk Assessment (BfR) under the assumption that 100% of the 3-MPCD and glycidol are released from their esters, revealed especially that infants being fed commercial infant formula could ingest harmful amounts of 3-MCPD and glycidol. However, the real oral bioavailability may be lower. As this gives rise for toxicological concern, the currently available toxicological data of 3-MCPD and glycidol and their esters are summarized in this review and discussed with regard to data gaps and further research needs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radioiodinated fatty acid carnitine ester: synthesis and biodistribution of 15-(p-iodo[131I]-phenyl)pentadecanoyl-D,L-carnitine chloride

    International Nuclear Information System (INIS)

    Eisenhut, M.; Liefhold, J.

    1986-01-01

    After the uptake into heart muscle cells long chain fatty acids enter predominantly into the triglyceride and phospholipid pool before they are degraded in the mitochondria by β-oxidation. Therefore the formation of fatty acid esters with glycerine obscures the functional ability of the heart namely to catabolize free fatty acids. The sum of the two reaction pathways are visualized by sequential heart scintigraphy with e.g. 131 I labeled 15-(p-iodo-phenyl)-pentadecanoic acid (IPPA). Before the fatty acids can be degraded by β-oxidation they are bound to carnitine for mitochondrial membrane transport. Thus IPPA would not participate in lipid formation, if it is offered as 15-(p-iodo[ 131 I]-phenyl)-pentadecanoyl-D,L-carnitine chloride (IPPA-CE) to the heart muscle cells. Additionally carnitine esters of fatty acids are known to be better substrates for β-oxidation than free fatty acids. We were therefore interested in the biochemical fate of radioiodinated IPPA-CE in rats. (author)

  1. Autoxidation of conjugated linoleic acid methyl ester in the presence of α-tocopherol: the hydroperoxide pathway

    OpenAIRE

    Pajunen, Taina

    2009-01-01

    The autoxidation of conjugated linoleic acid (CLA) is poorly understood in spite of increasing interest in the beneficial biological properties of CLA and growing consumption of CLA-rich foods. In this thesis, the autoxidation reactions of the two major CLA isomers, 9-cis,11-trans-octadecadienoic acid and 10-trans,12-cis-octadecadienoic acid, are investigated. The results contribute to an understanding of the early stages of the autoxidation of CLA methyl ester, and provide for the first time...

  2. Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Song-Yul, E-mail: ms089203@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Yoshida, Toshihiro; Kawamura, Go [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan); Sakai, Mototsugu [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2010-10-15

    Composite electrolytes composed of cesium hydrogen sulfate containing phosphotungstic acids (CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40}) and sulfonated poly(ether-ether ketone) (SPEEK) were prepared by casting the corresponding precursor for application in fuel cells. Partially Cs-substituted phosphotungstic acids (Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}) were formed in the CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40} system by mechanochemical treatment. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Flexible composite electrolytes were obtained and their electrochemical properties were markedly improved with the addition of Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, into the SPEEK matrix. A maximum power density of 213 mW cm{sup -2} was obtained from the single cell test for 50H{sub 3}PW{sub 12}O{sub 40}-50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolyte at 80 deg. C and at 80 RH%. Electrochemical properties and transmission electron microscopy (TEM) results suggest that three-dimensional cluster particles were formed and homogeneously distributed in the SPEEK matrix. The mechanochemically synthesized Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40} incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. The composite electrolytes were successfully formed with Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, which consist of hydrogen bonding between surface of inorganic solid acids and not only -HSO{sub 4}{sup -} dissociated from CsHSO{sub 4} but also -SO{sub 3}H groups in the SPEEK.

  3. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  4. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Measurement uncertainty of ester number, acid number and patchouli alcohol of patchouli oil produced in Yogyakarta

    Science.gov (United States)

    Istiningrum, Reni Banowati; Saepuloh, Azis; Jannah, Wirdatul; Aji, Didit Waskito

    2017-03-01

    Yogyakarta is one of patchouli oil distillation center in Indonesia. The quality of patchouli oil greatly affect its market price. Therefore, testing quality of patchouli oil parameters is an important concern, one through determination of the measurement uncertainty. This study will determine the measurement uncertainty of ester number, acid number and content of patchouli alcohol through a bottom up approach. Source contributor to measurement uncertainty of ester number is a mass of the sample, a blank and sample titration volume, the molar mass of KOH, HCl normality, and replication. While the source contributor of the measurement uncertainty of acid number is the mass of the sample, the sample titration volume, the relative mass and normality of KOH, and repetition. Determination of patchouli alcohol by Gas Chromatography considers the sources of measurement uncertainty only from repeatability because reference materials are not available.

  6. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    Science.gov (United States)

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  7. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.Y.; Yoshida, T.; Kawamura, G.; Sakai, M.; Matsuda, A. [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, H. [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan)

    2010-09-15

    Inorganic-organic composite electrolytes were fabricated from partially Cs{sup +}-substituted heteropoly acids (Cs-HPAs) and sulfonated poly(ether-ether ketone) (SPEEK) for application in fuel cells. Heteropoly acids, such as phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40}:WPA), and silicotungstic acid (H{sub 4}SiW{sub 12}O{sub 40}:WSiA), were mechanochemically treated with cesium hydrogen sulfate (CsHSO{sub 4}) to obtain the form of Cs-HPAs. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Water durability and surface structure of HPAs were modified by introducing Cs{sup +} into HPAs. Flexible and hot water stable composite electrolytes were obtained, and their electrochemical properties were markedly improved with the addition of Cs-HPAs into the SPEEK matrix. Maximum power densities of 245 and 247 mW cm{sup -2} were obtained for 50WPA.50CsHSO{sub 4} and 50WSiA.50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolytes, respectively, from single cell tests at 80 C and 80 RH%. These results suggest that a three-dimensional proton-conductive path was formed among homogeneously distributed Cs-HPAs particles in the SPEEK matrix. The Cs-HPAs incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. These observations imply that the mechanochemically synthesized Cs-HPAs, which consist of hydrogen bondings between Cs-HPAs and -HSO{sub 4}{sup -}, dissociated from CsHSO{sub 4}, are promising materials as inorganic fillers in inorganic-organic composite. (author)

  8. Theoretical Studies Of Molecular Structure And Vibrational Spectra Of 5-Aminolevulinic Acid Hexyl Ester

    International Nuclear Information System (INIS)

    Comert, H.

    2010-01-01

    The molecular geometry and vibrational frequencies of The 5-Aminolevulinic acid's hexyl ester (ALA-H) in the ground state have been calculated using Hartree-Fock (HF) and Density functional method (B3LYP) with 6-31++G(d) basis set. The calculated vibrational spectra and geometric parameters of title compound were compered with experimental ones.

  9. Process Intensification of Enzymatic Fatty Acid Butyl Ester Synthesis Using a Continuous Centrifugal Contactor Separator

    NARCIS (Netherlands)

    Ilmi, Miftahul; Abduh, Muhammad Yusuf; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2018-01-01

    Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous

  10. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  11. Morphological evolution of the poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester, oxidation of the silver electrode, and their influences on the performance of inverted polymer solar cells with a sol-gel derived zinc oxide electron selective layer

    International Nuclear Information System (INIS)

    Liu, Meng-Yueh; Chang, Chin-Hsiang; Chang, Chih-Hua; Tsai, Kao-Hua; Huang, Jing-Shun; Chou, Chen-Yu; Wang, Ing-Jye; Wang, Po-Sheng; Lee, Chun-Yu; Chao, Cha-Hsin; Yeh, Chin-Liang; Wu, Chih-I; Lin, Ching-Fuh

    2010-01-01

    The inverted polymer solar cell (PSC) based on a sol-gel derived zinc oxide (ZnO) thin film as an electron selective layer is investigated. The device performance is improved after the fabricated device is placed in air for a few days. The improvement is attributed to the self-organization of the poly(3-hexylthiophene)/[6,6]-phenyl-C 61 -butyric acid methyl ester layer and oxidation of the silver electrode with time, resulting in a significant enhancement in the short circuit current, fill factor and open circuit voltage. The investigation shows that the inverted PSC based on ZnO thin film exhibits a high efficiency of 3.8% on the 6th day after fabrication without the use of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) and encapsulation.

  12. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters

    Directory of Open Access Journals (Sweden)

    Jia Xie

    2018-05-01

    Full Text Available To investigate the effects of fusel alcohols on the intoxicating degree of liquor products, formulated liquors (FLs were prepared by blending 1-propanol, isobutanol, and isoamyl alcohol with ethanol, organic acids, and corresponding ethyl esters to simulate the formula of traditional Chinese liquors. The prepared FLs were submitted for evaluation of their intoxicating degree (ID. The results showed that the fusel alcohols had a biphasic effect on the IDs of the FLs, depending on the comprehensive coordination of the characteristic minor components. The importance of the suitable ratio of alcohols/acids/esters (RAAE on the IDs was also revealed. Under an optimal ratio level, the fusel alcohols exhibited negligible effects on the IDs of the FLs. Moreover, the ratio of isoamyl alcohol to isobutanol (IA/IB showed a strong positive correlation to the IDs of the FLs. This study lays a foundation for the potential application in producing low-ID liquor.

  13. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    Science.gov (United States)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  14. Potential Grape-Derived Contributions to Volatile Ester Concentrations in Wine

    Directory of Open Access Journals (Sweden)

    Paul K. Boss

    2015-04-01

    Full Text Available Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L−1 β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L−1 β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L−1 required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  15. Potential grape-derived contributions to volatile ester concentrations in wine.

    Science.gov (United States)

    Boss, Paul K; Pearce, Anthony D; Zhao, Yanjia; Nicholson, Emily L; Dennis, Eric G; Jeffery, David W

    2015-04-29

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl ester production above that of the control was apparent when lower concentrations of the C9 compounds were added to the model musts compared to the C12 compounds. Four amino acids, which are involved in CoA biosynthesis, were also added to model grape juice medium in the absence of pantothenate to test their ability to influence ethyl and acetate ester production. β-Alanine was the only one shown to increase the production of ethyl esters, free fatty acids and acetate esters. The addition of 1 mg∙L(-1) β-alanine was enough to stimulate production of these compounds and addition of up to 100 mg∙L(-1) β-alanine had no greater effect. The endogenous concentrations of β-alanine in fifty Cabernet Sauvignon grape samples exceeded the 1 mg∙L(-1) required for the stimulatory effect on ethyl and acetate ester production observed in this study.

  16. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    Science.gov (United States)

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  17. Antiarrhythmogenic effect of omega-3 fatty acid ethyl esters in a patient treated with Omacor after a non-Q-wave myocardial infarction

    Directory of Open Access Journals (Sweden)

    Andrey Ardashev

    2014-02-01

    The patient agreed to add omega-3 fatty acid ethyl ester supplementation (1 g/day to his treatment regimen. Pacemaker analyses 3 months later demonstrated no NSVT and only 215 PVBs daily. In more than 1 year of follow-up, the patient has remained well and has had no further ventricular arrhythmias. We conclude that omega-3 fatty acid ethyl ester supplementation may be beneficial in post-MI patients with pacemakers who develop ventricular arrhythmias.

  18. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chain...... length, saturation degree, temperature, enzyme dosage, molar ratio glycerol:fatty acids, acyl source composition (w/w ratio FFA:FAE), and reaction time was evaluated collectively by multiple linear regression. All reaction variables influenced the conversion into glycerides. Transesterification of FAE...

  19. Occurrence of 3-MCPD fatty acid esters in human breast milk

    OpenAIRE

    2008-01-01

    Abstract A series of twelve breast milks was analysed by GC/MS operated in SIM mode for 3-chloropropane-1,2-diol (3-MCPD). While none of samples contained free 3-MCPD at the level exceeding the method detection limit of (3 g/kg milk), all of them contained high amount of 3-MCPD esterified with higher fatty acids. The levels of 3-MCPD released by hydrolysis of these esters (bound 3-MCPD) ranged from the limit of detection (300 g/kg, expressed on fat basis) to 2195 &#...

  20. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes

    Directory of Open Access Journals (Sweden)

    Jimena E. Díaz

    2016-09-01

    Full Text Available The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE. The use of trimethylsilyl polyphosphate (PPSE in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis.

  1. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  2. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half.......41-0.79 d(-1), which is much higher than in previous investigations. It can be concluded that the higher removal rates are due to the higher temperature and higher initial concentrations per kg dry matter. These results suggest that the limiting factor for DEHP degradation is the bioavailability, which...... is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for CD combining high rate degradation of organic...

  3. Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal Caco-2 cells.

    Science.gov (United States)

    Buhrke, Thorsten; Weisshaar, Rüdiger; Lampen, Alfonso

    2011-10-01

    3-Chloro-1,2-propanediol (3-MCPD) fatty acid esters are formed upon thermal processing of fat-containing foods in the presence of chloride ions. Upon hydrolytic cleavage, these substances could release free 3-MCPD. This compound is toxicologically well characterised and displayed cancerogenic potential in rodent models. Recently, serious contaminations of different food products with 3-MCPD fatty acid esters have been reported. In regard to a risk assessment, the key question is to which degree these 3-MCPD fatty acid esters are hydrolysed in the human gut. Therefore, the aim of the present project was to examine the hydrolysis of 3-MCPD fatty acid esters and the resulting release of free 3-MCPD by using differentiated Caco-2 cells, a cellular in vitro model for the human intestinal barrier. Here, we show that 3-MCPD fatty acid esters at a concentration of 100 μM were neither absorbed by the cells nor the esters were transported via a Caco-2 monolayer. 3-MCPD-1-monoesters were hydrolysed in the presence of Caco-2 cells. In contrast, a 3-MCPD-1,2-diester used in this study was obviously absorbed and metabolised by the cells. Free 3-MCPD was not absorbed by the cells, but the substance migrated through a Caco-2 monolayer by paracellular diffusion. From these in vitro studies, we conclude that 3-MCPD-1-monoesters are likely to be hydrolysed in the human intestine, thereby increasing the burden with free 3-MCPD. In contrast, intestinal cells seem to have the capacity to metabolise 3-MCPD diesters, thereby detoxifying the 3-MCPD moiety.

  4. Spectrophotometric Determination of Zinc Using 7-(4-Nitrophenylazo-8-Hydroxyquinoline-5-Sulfonic Acid

    Directory of Open Access Journals (Sweden)

    Korn Maria das Graças Andrade

    1999-01-01

    Full Text Available A sensitive and selective spectrophotometric method is proposed for the rapid determination of zinc(II using an 8-hydroxyquinoline derivative, 7-(4-nitrophenylazo-8-hydroxyquinoline-5-sulfonic acid (p-NIAZOXS, as a new spectrophotometric reagent. The reaction between the p-NIAZOXS and zinc(II is instantaneous at pH 9.2 (borax buffer and the absorbance remains stable for over 24 h. The method allows the determination of zinc over the range of 0.05-1.0 mug mL-1 with a molar absorptivity of 3.75x10(4 L mol-1 cm-1 and features a detection limit of 15 ng mL-1. The proposed method has been successfully applied to the determination of zinc in several pharmaceutical preparations and copper alloys. The precision (R.S.D. < 2% and the accuracy obtained were satisfactory.

  5. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    International Nuclear Information System (INIS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-01-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2 ) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  6. Preparation of sucrose fatty acid esters as food emulsifiers and evaluation of their surface active and emulsification properties.

    Directory of Open Access Journals (Sweden)

    Megahed, Mohamed G.

    1999-08-01

    Full Text Available A simple method for the preparation of sucrose esters, from fatty acids and the least expensive sucrose, has been conducted. Fatty acids namely lauric, palmitic and oleic were used in their preparation in the absence of any organic solvent. Reasonable yields amounting to 86.5%, 87.3% and 88.6% for sucrose esters of laurate, palmitate and oleate were obtained, respectively. The products were evaluated for their hydrophile-lipophile balance (HLB, surface and interfacial tension properties as well as emulsion stability. The results showed that these sucrose esters exhibit similar properties as those of the commercially prepared compounds.

    Se ha llevado a cabo un método simple para la preparación de ésteres de sacarosa a partir de ácidos grasos y sacarosa de bajo coste. Se han usado ácidos laurico, palmítico y oleico en su preparación, en ausencia de solventes orgánicos. Se obtuvieron rendimientos aceptables del 86.5%, 87.3% y 88.6% para los ásteres del láurico, palmítico y oleico respectivamente. En los productos se evaluaron sus balances hidrófilo-lipófilo (HLB, sus propiedades de tensión superficial e interfacial así como su estabilidad en emulsiones. Los resultados mostraron que estos esteres de sacarosa exhiben propiedades similares a las de los compuestos preparados comercialmente.

  7. Physico-chemistry characterization of sulfonated polyacrylamide polymers for use in polymer flooding

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, Masoud

    2010-07-01

    Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has been fully studied and used for polymer flooding processes in several oil field, e.g. Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) may be a good choice for high temperature condition with no oxygen and no divalent ions presence. At high temperature and high salinity conditions, polymer may precipitates and loss their viscosyfing properties. Also adsorption and retention of polymer in porous medium may change rheological properties of polymers. Thus, the viscosyfing property of polymers is influenced by several important parameters, e.g. salinity, hardness, temperature, adsorption, retention, polymer structure, and etc. By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of high salinity/hardness and temperature seems to be reduced specially for the samples with higher percentage of AMPS co-monomer. The ultimate aim of this work is to develop an understanding of the sulfonated polyacrylamide copolymers with a range of different sulfonation and molecular weight at high salinity and high temperature conditions. Most of the work in this thesis deals with viscosity and adsorption/retention measurements of the sulfonated copolymers and HPAM. The factors which may affect the viscosity of the polymers and have been identified in this work as most likely influencing also adsorption and retention of the polymers are shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl concentration, divalent ion concentration, and temperature. (Author)

  8. Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-04-01

    Full Text Available Sulfonic organosilica nanotubes with different acidity densities could be synthesized through the co-condensation of ethenyl- or phenylene-bridged organosilane and 3-mercaptopropyltrimethoxysilane followed by sulfhydryl (–SH oxidation. Transmission electron microscopy (TEM analysis and nitrogen adsorption-desorption experiment clearly exhibit the hollow nanotube structures with the diameters of about 5 nm. The compositions of the nanotube frameworks are confirmed by solid state 13C nuclear magnetic resonance (NMR while X-ray photoelectron spectroscopy (XPS shows that about 60–80% of SH groups were oxidized to sulfonic acid (SO3H. The acid contents were measured by both elemental analysis (CHNS mode and acid-base titration experiment, which revealed that the acid density was in the range of 0.74 to 4.37 μmol·m−2 on the solid. These nanotube-based acid catalysts exhibited excellent performances in the hydrolysis of cellobiose with the highest conversion of 92% and glucose selectivity of 96%. In addition, the catalysts could maintain high activity (65% conversion with 92% selectivity even after six recycles.

  9. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  10. The effect of sorbic acid and esters of p-hydroxybenzoic acid on the protonmotive force in Escherichia coli membrane vesicles.

    Science.gov (United States)

    Eklund, T

    1985-01-01

    The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.

  11. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  12. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  13. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: design, synthesis, pharmacological investigations and docking studies.

    Science.gov (United States)

    Abdel-Azeem, Ahmed Z; Abdel-Hafez, Atef A; El-Karamany, Gamal S; Farag, Hassan H

    2009-05-15

    The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (6-8) of some acidic NSAIDs (1-3) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (6-8) were confirmed by IR, (1)H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (6-8) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t(1/2) approximately 37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (6-8) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4days. In addition, docking of the mutual ester prodrugs (6-8) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.

  14. Equilibrium partitioning of drug molecules between aqueous and amino acid ester-based ionic liquids

    International Nuclear Information System (INIS)

    Jing, Jun; Li, Zhiyong; Pei, Yuanchao; Wang, Huiyong; Wang, Jianji

    2013-01-01

    Highlights: ► Partition coefficients of twelve drug molecules in ILs have been determined. ► The possible mechanism has been investigated from 13 C NMR measurements. ► Hydrophobic π–π interaction is the main driving force for the partitioning of drug molecules. -- Abstract: In this work, a series of novel room temperature ionic liquids (ILs) have been synthesized with cheap, naturally α-amino acid ester as cations and bis(trifluoromethylsulfonyl)imide as anion. The glass transition temperature and thermal decomposition temperature of these ILs, partition coefficients of some coumarins and purine alkaloids between water and the amino acid ester-based ILs at T = 298.15 K, and Gibbs energy, enthalpy and entropy changes for the transfer of caffeine and 6,7-dihydroxycoumarin from water to [LeuC 2 ][Tf 2 N] have been determined. It is shown that these ILs are highly effective materials for the extraction of drug compounds like coumarin, 4-hydroxycoumarin, 7-hydroxycoumarin, 3-aminocoumarin, coumarin-3-carboxylic acid, 6,7-dihydroxycoumarin, 6,7-dihydroxy-4-methylcoumarin, caffeine, theobromine, theophylline, inosine, and 2,6-diaminopurine. The partition process is driven by enthalpy term, and partition coefficients of the drug molecules increase with the increase of hydrophobicity of both the drug molecules and the ILs. Furthermore, the possible partition mechanism has been investigated from 13 C NMR measurements

  15. Randomised clinical study: inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon.

    Science.gov (United States)

    Polyviou, T; MacDougall, K; Chambers, E S; Viardot, A; Psichas, A; Jawaid, S; Harris, H C; Edwards, C A; Simpson, L; Murphy, K G; Zac-Varghese, S E K; Blundell, J E; Dhillo, W S; Bloom, S R; Frost, G S; Preston, T; Tedford, M C; Morrison, D J

    2016-10-01

    Short-chain fatty acids (SCFA) produced through fermentation of nondigestible carbohydrates by the gut microbiota are associated with positive metabolic effects. However, well-controlled trials are limited in humans. To develop a methodology to deliver SCFA directly to the colon, and to optimise colonic propionate delivery in humans, to determine its role in appetite regulation and food intake. Inulin SCFA esters were developed and tested as site-specific delivery vehicles for SCFA to the proximal colon. Inulin propionate esters containing 0-61 wt% (IPE-0-IPE-61) propionate were assessed in vitro using batch faecal fermentations. In a randomised, controlled, crossover study, with inulin as control, ad libitum food intake (kcal) was compared after 7 days on IPE-27 or IPE-54 (10 g/day all treatments). Propionate release was determined using (13) C-labelled IPE variants. In vitro, IPE-27-IPE-54 wt% propionate resulted in a sevenfold increase in propionate production compared with inulin (P inulin (439.5 vs. 703.9 kcal, P = 0.025) and IPE-54 (439.5 vs. 659.3 kcal, P = 0.025), whereas IPE-54 was not significantly different from inulin control. IPE-27 significantly reduced food intake suggesting colonic propionate plays a role in appetite regulation. Inulin short-chain fatty acid esters provide a novel tool for probing the diet-gut microbiome-host metabolism axis in humans. © 2016 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.

  16. Radiation graft post-polymerization of sodium styrene sulfonate onto polyethylene

    International Nuclear Information System (INIS)

    Kitaeva, N.K.; Duflot, V.R.; Ilicheva, N.S.

    2013-01-01

    Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FTIR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa). (author)

  17. Half esters and coating compositions comprising reactions products of half esters and polyepoxides

    NARCIS (Netherlands)

    Blaauw, R.; Mulder, W.J.; Koelewijn, R.; Boswinkel, G.

    2006-01-01

    The present invention relates to half esters based on dicarboxylic acid derivatives and dimer fatty diols, wherein the dimer fatty dio ls are based on dimerised and/or trimerised and/or oligomerised unsaturated fatty acids. The present invention further relates to resin compositions based on the

  18. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  19. OxymaPure/DIC: An Efficient Reagent for the Synthesis of a Novel Series of 4-[2-(2-Acetylaminophenyl-2-oxo-acetylamino] Benzoyl Amino Acid Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Ayman El-Faham

    2013-11-01

    Full Text Available OxymaPure (ethyl 2-cyano-2-(hydroxyiminoacetate was tested as an additive for use in the carbodiimide (DIC approach for the synthesis of a novel series of α-ketoamide derivatives (4-[2-(2-acetylaminophenyl-2-oxo-acetylamino]benzoyl amino acid ester derivatives. OxymaPure showed clear superiority to HOBt/DIC or carbodiimide alone in terms of purity and yield. The title compounds were synthesized via the ring opening of N-acylisatin. First, N-acetylisatin was reacted with 4-aminobenzoic acid under conventional heating as well as microwave irradiation to afford 4-(2-(2-acetamidophenyl-2-oxoacetamidobenzoic acid. This α-ketoamide was coupled to different amino acid esters using OxymaPure/DIC as a coupling reagent to afford 4-[2-(2-acetylaminophenyl-2-oxo-acetylamino]benzoyl amino acid ester derivatives in excellent yield and purity. The synthesized compounds were characterized using FT-IR, NMR, and elemental analysis.

  20. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Science.gov (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  1. Palmitic Acid Curcumin Ester Facilitates Protection of Neuroblastoma against Oligomeric Aβ40 Insult

    OpenAIRE

    Zhangyang Qi; Meihao Wu; Yun Fu; Tengfei Huang; Tingting Wang; Yanjie Sun; Zhibo Feng; Changzheng Li

    2017-01-01

    Background/Aims: The generation of reactive oxygen species (ROS) caused by amyloid-β (Aβ) is considered to be one of mechanisms underlying the development of Alzheimer’s disease. Curcumin can attenuate Aβ-induced neurotoxicity through ROS scavenging, but the protective effect of intracellular curcumin on neurocyte membranes against extracellular Aβ may be compromised. To address this issue, we synthesized a palmitic acid curcumin ester (P-curcumin) which can be cultivated on the cell membrane...

  2. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  3. Effects of phthalic acid esters on the liver and thyroid

    International Nuclear Information System (INIS)

    Hinton, R.H.; Mitchell, F.E.; Mann, A.; Chescoe, D.; Price, S.C.; Nunn, A.; Grasso, P.; Bridges, J.W.

    1986-01-01

    The effects, over periods from 3 days to 9 months of administration, of diets containing di-2-ethylhexyl phthalate are very similar to those observed in rats administered diets containing hypolipidemic drugs such as clofibrate. Changes occur in a characteristic order commencing with alterations in the distribution of lipid within the liver, quickly followed by proliferation of hepatic peroxisomes and induction of the specialized P-450 isoenzyme(s) catalyzing omega oxidation of fatty acids. There follows a phase of mild liver damage indicated by changes in incorporation of 3 H-thymidine into DNA, by induction of glucose-6-phosphatase activity and a loss of glycogen, eventually leading to the formation of enlarged lysosomes through autophagy and the accumulation of lipofuscin. Associated changes are found in the kidney and thyroid. The renal changes are limited to the proximal convoluted tubules and are generally similar to changes found in the liver. The effects on the thyroid are more marked. Although the levels of thyroxine in plasma fall to about half normal values, serum triiodothyronine remains close to normal values while the appearance of the thyroid varies, very marked hyperactivity being noted 7 days after commencement of treatment, this is less marked at 14 days, but even after 9 months treatment there is clear cut evidence for hyperactivity with colloid changes which indicate this has persisted for some time. The short-term in vivo hepatic effects of the three phthalate esters can be reproduced in hepatocytes in tissue culture. All three phthalate esters, as well as clofibrate, have early marked effects on the metabolism of fatty acids in isolated hepatocytes. A hypothesis is presented to explain the progress from these initial metabolic effects to the final formation of liver tumors

  4. A Spectroscopic Method for Determining Free Iodine in Iodinated Fatty-Acid Esters

    Science.gov (United States)

    Klyubin, V. V.; Klyubina, K. A.; Makovetskaya, K. N.

    2018-01-01

    It is shown that the concentration of free iodine in samples of iodinated fatty-acid esters can be measured using the electronic absorption spectra of their solutions in ethanol. The method proposed is rather simple in use and highly sensitive, allowing detection of presence of less than 10 ppm of free iodine in iodinated compounds. It is shown using the example of Lipiodol that this makes it possible to easily detect small amounts of free iodine in samples containing bound iodine in concentrations down to 40 wt %.

  5. Propagation/depropagation equilibrium and structural factors in the radiation degradation of poly(olefin sulfone)s

    International Nuclear Information System (INIS)

    Bowmer, T.N.; O'Donnell, J.H.

    1981-01-01

    The principal volatile products observed after γ irradiation of nine different poly(olefin sulfone)s in the solid state were the two comonomers, i.e., the respective olefin and sulfur dioxide. An exponential increase in yield, G (volatile products), with increasing irradiation temperature, T/sub irr/, was observed for each copolymer through the ceiling temperature, T/sub c/, for the corresponding propagation/depropagation equilibrium. Thus the G value increased by ca. 3 orders of magnitude from T/sub irr/ = 0.7 T/sub c/ to T/sub irr/ = 1.3 T/sub c/ for all of the poly(olefin sulfone)s. Depropagation sensitivity was considered to be best measured by G(SO 2 ) since radiation induced, cationic homopolymerization of the product olefin occurred to a variable extent. Five of the poly(olefin sulfone)s had similar rates of depropagation at their respective T/sub c's/ but the polysulfones of 1-hexene, cyclohexene and 2-butene showed anomalously high depropagation rates. This may be related to greater steric hinderance to segmental chain mobility in the polysulfones of the 1,2 disubstituted olefins. Poly(1-hexene sulfone) appears to be anomalous, as in other respects

  6. New Insights on Degumming and Bleaching Process Parameters on The Formation of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Refined, Bleached, Deodorized Palm Oil.

    Science.gov (United States)

    Sim, Biow Ing; Muhamad, Halimah; Lai, Oi Ming; Abas, Faridah; Yeoh, Chee Beng; Nehdi, Imededdine Arbi; Khor, Yih Phing; Tan, Chin Ping

    2018-04-01

    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.

  7. Prophylactic and therapeutic effect of Punica granatum in trinitrobenzene sulfonic acid induced inflammation in rats.

    Science.gov (United States)

    Riaz, Azra; Khan, Rafeeq Alam; Afroz, Syeda; Mallick, Neelam

    2017-01-01

    Pomegranate (Punica granatum L., Punicaceae) contains varieties of antioxidants and phytochemicals; there are evidences that phytochemicals and antioxidants play a vital role in reducing inflammation. Hence this investigation was planned to assess the outcome of Punica granatum on trinitrobenzene sulfonic acid provoked colitis in rats at 2, 5 and 8ml/kg of the body weight. The effect of P. granatum was assessed in two group i.e. prophylaxis as pre-colitis and therapeutic as post-colitis. After completion of dosing in both the groups, macroscopic and histological examination of colon was carried out along with estimation of serum myeloperoxidase, glutathione, alkaline phosphate, fibrinogen and C-reactive protein. In prophylactic procedure P. granatum revealed significant (Pgranatum have a role in prevention as well as treatment of inflammation.

  8. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  9. Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell

    International Nuclear Information System (INIS)

    Das, Suparna; Kumar, Piyush; Dutta, Kingshuk; Kundu, Patit Paban

    2014-01-01

    Highlights: • Synthesis of sulfonated PVdF-co-HFP by reacting with chlorosulfonic acid. • Maximum degree of sulfonation and best properties were obtained for 7 h reaction. • A maximum water uptake value of 20% was obtained. • A maximum IEC value of 0.42 meq g −1 was obtained. • A methanol permeability of 2.44 × 10 −7 cm 2 s −1 was obtained. - Abstract: Sulfonation of PVdF-co-HFP was conducted by treating the copolymer with chlorosulfonic acid. The efficiency of this sulfonated copolymer towards application as a polymer electrolyte membrane in direct methanol fuel cell (DMFC) was evaluated. For this purpose, we determined the thermal stability, water uptake, ion exchange capacity (IEC), methanol crossover, and proton conductivity of the prepared membranes as functions of duration and degree of sulfonation. The characteristic aromatic peaks obtained in the FT-IR spectra confirmed the successful sulfonation of PVdF-co-HFP. The effect of sulfonation on the semi-crystalline nature of pure PVdF-co-HFP was determined from XRD analysis. Water uptake results indicated that a sulfonation time of 7 h produced maximum water uptake value of about 20%, with a corresponding IEC and proton conductivity values of about 0.42 meq g −1 and 0.00375 S cm −1 respectively. The maximum current density was recorded to be 30 mA cm −2 at 0.2 V potential

  10. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  11. Final safety assessment of thiodipropionic acid and its dialkyl esters as used in cosmetics.

    Science.gov (United States)

    Diamante, Catherine; Fiume, Monice Zondlo; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-07-01

    Dilauryl thiodipropionate (DLTDP), dicetyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and ditridecyl thiodipropionate are dialkyl esters of their respective alcohols and thiodipropionic acid (TDPA) used in cosmetics. Ingested DLTDP was excreted in the urine as TDPA. Single-dose acute oral and parenteral studies and subchronic and chronic repeated dose oral studies did not suggest significant toxicity. Neither DLTDP nor TDPA was irritating to animal skin or eyes and they were not sensitizers. TDPA was neither a teratogen nor a reproductive toxicant. Genotoxicity studies were negative for TDPA and DLTDP. Clinical testing demonstrated some evidence of irritation but no sensitization or photosensitization. The Cosmetic Ingredient Review Expert Panel considered that the data from DLTDP reasonably may be extrapolated to the other dialkyl esters and concluded that these ingredients were safe for use in cosmetic products that are formulated to be nonirritating.

  12. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men

    DEFF Research Database (Denmark)

    Tholstrup, T.; Sandstrøm, B.; Bysted, Anette

    2001-01-01

    , plasma fatty acids, and preheparin lipoprotein lipase and cholesterol ester transfer protein (CETP) activities. Design: Six test fats high (approximate to 43% by wt) in stearic acid, palmitic acid, palmitic + myristic acid, oleic acid, elaidic acid (trans 18:1), and linoleic acid were produced...... to the test-fat meals were observed for plasma lipoprotein triacylglycerol and cholesterol concentrations, plasma fatty acid concentrations, and lipoprotein lipase and CETP activities (diet x time interaction: 0.001 acids stearic and palmitic acids resulted......Background: There is increasing evidence that postprandial triacylglycerol-rich lipoproteins may be related to atherogenic risk. Objective: The objective was to investigate the effect of individual fatty acid intakes on postprandial plasma lipoprotein triacylglycerol and cholesterol concentrations...

  13. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  14. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  15. Potential Grape-Derived Contributions to Volatile Ester Concentrations in Wine

    OpenAIRE

    Boss, Paul; Pearce, Anthony; Zhao, Yanjia; Nicholson, Emily; Dennis, Eric; Jeffery, David

    2015-01-01

    Grape composition affects wine flavour and aroma not only through varietal compounds, but also by influencing the production of volatile compounds by yeast. C9 and C12 compounds that potentially influence ethyl ester synthesis during fermentation were studied using a model grape juice medium. It was shown that the addition of free fatty acids, their methyl esters or acyl-carnitine and acyl-amino acid conjugates can increase ethyl ester production in fermentations. The stimulation of ethyl est...

  16. Absolute configuration and enantiomeric composition of partially resolved mandelic, atrolactic and lactic acids by {sup 1}H NMR of their (S)-2-methylbutyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Francisco A. da C.; Mendes, Maricleide P. de L.; Fonseca, Neuracy C. da, E-mail: fandrade@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica. Departamento de Quimica Organica

    2013-06-15

    The mandelic, atrolactic and lactic acid esters of the (S)-2-methyl-1-butanol were examined as diastereomeric derivatives for the stereochemical analysis of the mentioned acids by {sup 1}H nuclear magnetic resonance (NMR) at 300 MHz. The diastereomeric esters showed distinctive signals in the methylenic absorption range (O-CH{sub 2}-CH) of the alcoholic moieties. By spectral analysis at this region, absolute configurations were attributed, chemical shifts of the correspondent pro-(R) and pro-(S) hydrogens from the methylene group of the alcohol moiety were assigned and enantiomeric compositions were determined for the original partially resolved acids. (author)

  17. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium

  18. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response.

    Science.gov (United States)

    Liu, Wen; Guo, Wenjie; Guo, Lele; Gu, Yanhong; Cai, Peifen; Xie, Ning; Yang, Xiaoling; Shu, Yongqian; Wu, Xuefeng; Sun, Yang; Xu, Qiang

    2014-06-01

    Inflammatory bowel disease (IBD) is a chronic, relapsing and remitting condition of inflammation involves overproduction of pro-inflammatory cytokines and excessive functions of inflammatory cells. However, current treatments for IBD may have potential adverse effects including steroid dependence, infections and lymphoma. Therefore new therapies for the treatment of IBD are desperately needed. In the present study, we aimed to examine the effect of andrographolide sulfonate, a water-soluble form of andrographolide (trade name: Xi-Yan-Ping Injection), on murine experimental colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Andrographolide sulfonate was administrated through intraperitoneal injection to mice with TNBS-induced colitis. TNBS-induced body weight loss, myeloperoxidase activity, shortening of the colon and colonic inflammation were significantly ameliorated by andrographolide sulfonate. Both the mRNA and protein levels of pro-inflammatory cytokines were reduced by andrographolide sulfonate administration. Moreover, andrographolide sulfonate markedly suppressed the activation of p38 mitogen-activated protein kinase as well as p65 subunit of nuclear factor-κB (NF-κB). Furthermore, CD4(+) T cell infiltration as well as the differentiation of Th1 (CD4(+)IFN-γ(+)) and Th17 (CD4(+)IL17A(+)) subset were inhibited by andrographolide sulfonate. In summary, these results suggest that andrographolide sulfonate ameliorated TNBS-induced colitis in mice through inhibiting Th1/Th17 response. Our study shows that water-soluble andrographolide sulfonate may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.

    Science.gov (United States)

    Dong, Zhaomin; Bahar, Md Mezbaul; Jit, Joytishna; Kennedy, Bruce; Priestly, Brian; Ng, Jack; Lamb, Dane; Liu, Yanju; Duan, Luchun; Naidu, Ravi

    2017-08-01

    On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposures, while the two exposure scenarios were not actually included in the model structure. Copyright © 2017. Published by Elsevier Ltd.

  20. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: Synthesis, cell compatibility, and intracellular anticancer drug delivery

    NARCIS (Netherlands)

    Sun, H.; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A.; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-01-01

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate

  1. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    Science.gov (United States)

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    Science.gov (United States)

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Contribution to the Analysis of the Essential Oil of Helichrysum italicum (Roth G. Don. – Determination of Ester Bonded Acids and Phenols

    Directory of Open Access Journals (Sweden)

    Igor Jerković

    2008-04-01

    Full Text Available The essential oil of Helichrysum italicum (Roth G. Don (everlasting orImmortelle essential oil was isolated by hydrodistillation and analysed by GC and GCMS.Forty four compounds were identified. The main components were α-pinene(12.8%, 2-methyl-cyclohexyl pentanoate (11.1 %, neryl acetate (10.4%, 1,7-di-epi-α-cedrene (6.8% and other compounds. The oil was fractionated and ester-containingfraction was hydrolysed with KOH/H2SO4. The liberated volatiles were analysed by GCand GC-MS: three phenols and twenty seven volatile carboxylic acids were identified[70% low fatty acids (C2-C5, 15% C10-C12 acids and 15% other acids]. The main acidswere acetic acid (24.3% propanoic acid (17.2%, 2-methylpropanoic acid (11.4%,dodecanoic acid (8.7%, 2-methylbutanoic acid (8.3%, (Z-2-methylbutenoic acid(5.1% and decanoic acid (4.6%. With respect to the identified bonded carboxylic acids,the minimal number of esters in the oil was twenty seven, but their overall quantity wasprobably larger due to different possible combinations of alcohols with acids to formesters. On the other hand, only six main esters were identified in the oil beforefractionation and hydrolysis.

  4. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency.

    Science.gov (United States)

    Pericleous, Marinos; Kelly, Claire; Wang, Tim; Livingstone, Callum; Ala, Aftab

    2017-09-01

    Lysosomal acid lipase deficiency is a rare, autosomal recessive condition caused by mutations in the gene encoding lysosomal acid lipase (LIPA) that result in reduced or absent activity of this essential enzyme. The severity of the resulting disease depends on the nature of the underlying mutation and magnitude of its effect on enzymatic function. Wolman's disease is a severe disorder that presents during infancy, resulting in failure to thrive, hepatomegaly, and hepatic failure, and an average life expectancy of less than 4 months. Cholesteryl ester storage disorder arises later in life and is less severe, although the two diseases share many common features, including dyslipidaemia and transaminitis. The prevalence of these diseases has been estimated at one in 40 000 to 300 000, but many cases are undiagnosed and unreported, and awareness among clinicians is low. Lysosomal acid lipase deficiency-which can be diagnosed using dry blood spot testing-is often misdiagnosed as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hereditary dyslipidaemia, or cryptogenic cirrhosis. There are no formal guidelines for treatment of these patients, and treatment options are limited. In this Review we appraise the existing literature on Wolman's disease and cholesteryl ester storage disease, and discuss available treatments, including enzyme replacement therapy, oral lipid-lowering therapy, stem-cell transplantation, and liver transplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  6. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  7. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  8. Process for the conversion of sugars to lactic acid and 2-hydroxy-3-butenoic acid or esters thereof comprising a metallo-silicate material and a metal ion

    DEFF Research Database (Denmark)

    2015-01-01

    A process for the preparation of lactic acid and 2-hydroxy- 3-butenoic acid or esters thereof from a sugar in the presence of a metallo-silicate material, a metal ion and a solvent, wherein the metal ion is selected from one or more of the group consisting of potassium ions, sodium ions, lithium...

  9. System Development from Organic Solvents to Ionic Liquids for Synthesiz-ing Ascorbyl Esters with Conjugated Linoleic Acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Schultz, Lise; Guo, Zheng

    2012-01-01

    . Results show that only Novozym® 435 turned out to be a useful enzymatic preparation for the production of ascorbyl-CLA ester. The optimum reaction conditions in the or-ganic solvent system were 4 h at 55°C and at a molar ratio of 5 (CLA/ascorbic acid). The esterification reaction was trans......-ferred to an ionic liquid system for the purpose of improving solubility of the polar substrate and avoiding the application of organic solvents. From screening experiments, it was evident that only methyltrioctylammonium triflouroacetate (tO-MA·TFA) could provide a proper reaction environment for production...... of ascorbyl-CLA ester when using Novozym® 435 as biocatalyst. It was possible to significantly increase the productivity (150 g/l) through the increase of ascorbic acid sol-ubility in ionic liquids by super saturation together with the increase of reaction temperature to 70°C, far beyond than that in organic...

  10. The radiation chemistry of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate

    International Nuclear Information System (INIS)

    Burchill, C.E.; Smith, D.M.; Charlton, J.L.

    1976-01-01

    The 60 Co γ-radiolysis of aqueous solutions of sodium 9,10-anthraquinone-2-sulfonate has been studied in acidic, unbuffered, and alkaline conditions and with addition of N 2 O and 2-propanol. Mechanisms are proposed to account for the yields of H 2 O 2 and hydroxylated anthraquinone sulfonates. In neutral solution, in the absence of O 2 , the OH and e - adducts undergo preferential cross termination. Reduction of the OH adduct leads to dehydration and regeneration of the quinone. (author)

  11. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Science.gov (United States)

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. An evidence of C16 fatty acid methyl esters extracted from microalga for effective antimicrobial and antioxidant property.

    Science.gov (United States)

    Davoodbasha, MubarakAli; Edachery, Baldev; Nooruddin, Thajuddin; Lee, Sang-Yul; Kim, Jung-Wan

    2018-02-01

    Fatty acid methyl esters (FAME) derived from lipids of microalgae is known to have wide bio-functional materials including antimicrobials. FAME is an ideal super-curator and superior anti-pathogenic. The present study evaluated the efficiency of FAME extracted from microalgae Scenedesmus intermedius as an antimicrobial agent against Gram positive (Staphylococcus aureus, Streptococcus mutans, and Bacillus cereus) Gram negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and Fungi (Aspergillus parasiticus and Candida albicans). The minimal inhibitory concentration (MIC) for the gram negative bacteria was determined as 12-24 μg mL -1 , whereas MIC for gram positive bacteria was 24-48 μg mL -1 . MIC for the fungi was as high as 60-192 μg mL -1 . The FAME profiles determined by gas chromatography showed 18 methyl esters. Among them, pharmacologically active FAME such as palmitic acid methyl ester (C16:0) was detected at high percentage (23.08%), which accounted for the bioactivity. FAME obtained in this study exhibited a strong antimicrobial activity at the lowest MIC than those of recent reports. This result clearly indicated that FAME of S. intermedius has a strong antimicrobial and antioxidant property and that could be used as an effective resource against microbial diseases. Copyright © 2017. Published by Elsevier Ltd.

  13. Study on properties of cation-exchange membranes containing sulfonate groups

    International Nuclear Information System (INIS)

    Zu Jianhua; Wu Minghong; Qiu Shilong; Yao Side; Ye Yin

    2004-01-01

    Strong acid cation-exchange membranes were obtained by irradiation grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE). Thermal and chemical stability of the cation-exchange membranes was investigated. The effectiveness of sulfonate-containing films was conformed in inducing high resistance to oxidative degradation. Thermal stability of the grafted HDPE was weaker than HDPE as detected by TGA analyzing technique. Char residue by TGA of the grafted HDPE is greater than that of HDPE. It shows that the branch chains including -SO 3 Na and -COOH was grafted onto the backbone of HDPE, and thus give a catalytic impetus to the charing. Crystallinity of the grafted membranes decreased with increasing grafting yield of the membrane samples. It is supposed that the decreased crystallinity is due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and disruption of spherulitic crystallites of the HDPE component

  14. Study of the Transformation of the Oil of Used Soya in Fatty Acid Ethyl Ester

    Directory of Open Access Journals (Sweden)

    Anabel Sarracent-López

    2016-07-01

    Full Text Available The reuse of vegetable oils in food processing brings harmful health effects and on the other hand needs a complex treatment to discard without affecting the environment. Transformed into methyl or ethyl esters of fatty acids and glycerin by transesterification with the corresponding alcohol, can be a suitable method for treatment. It was investigated residual soybean oil from a producer of fried foods and ethanol. It is known that with this spirit the transformation process presents difficulties not listed with methanol, but at the same time does not bring the drawbacks of the latter, for toxicity and acquisition, and that since it is a derivative of the domestic sugar industry does not constitute a raw material import. We experimented with ethanol 80 %, 85 % and 90 % purity and worked 35 ºC and 50 ºC. Final yields of ethyl esters, are low compared with those obtained for similar processes with methanol, 85 % being the highest yield obtained under the conditions of the process. An assessment of costs was conducted to produce 1L of ethyl esters in the laboratory, the expenses of 0,56 pesos/L.

  15. New heterogeneous acid catalysts in the synthesis of biodiesel; Estudo de novos catalisadores heterogeneous acidos na sintese de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Soldi, Rafael A.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: mafco@quimica.ufpr.br; Oliveira, Angelo R.S.; Ramos, Luiz P. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Centro de Pesquisa em Quimica Aplicada (CEPESQ)

    2007-07-01

    In this work, sulfonated polystyrene compounds (PSS) were synthesized from linear polystyrene (PS). Several methods and experimental conditions were investigated for the sulfonation of PS, producing catalytically active polymeric materials with sulfonation degrees in the range of 5.0-6.2 mmol -SO{sub 3}H/g of dry polymer. The performance of these catalysts was evaluated in transesterification reactions of beef tallow and vegetable oils with ethanol and methanol. For the sake of comparison, the same reaction conditions employed for the PSS catalysts were also used for an Amberlyst 15 (3,7 mmol SO{sub 3}H/g - Aldrich). The PSS samples were shown to be insoluble in the reaction media, leading to conversion rates of 85%, 75% and 80% of the refined soybean oil, beef tallow and crude corn oil in to ethyl esters, respectively, and 94% of the refined soybean oil methyl esters. Amberlyst 15 was studied as an alternative to the process, but its conversion rate to alkyl esters was very low in the employed conditions. These results demonstrated that our synthetic PSS materials have a great potential to act as heterogeneous catalysts for transesterification. (author)

  16. Non-catalytic production of fatty acid ethyl esters from soybean oil with supercritical ethanol in a two-step process using a microtube reactor

    International Nuclear Information System (INIS)

    Silva, Camila da; Lima, Ana Paula de; Castilhos, Fernanda de; Cardozo Filho, Lucio; Oliveira, J. Vladimir

    2011-01-01

    This work reports the production of fatty acid ethyl esters (FAEE) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a microtube reactor with experimental simulation of two reactors operated in series and a reactor with recycle, both configurations at a constant temperature of 573 K, pressure of 20 MPa and oil to ethanol mass ratio of 1:1. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to its fatty acid ethyl ester derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (<3.0 wt%).

  17. Thermodynamic study of phase transitions in methyl esters of ortho- meta- and para-aminobenzoic acids

    International Nuclear Information System (INIS)

    Almeida, Ana R.R.P.; Monte, Manuel J.S.

    2012-01-01

    Highlights: ► Vapor pressures of liquid and crystalline phases of methyl esters of the aminobenzoic acids were measured. ► Accurate values of enthalpies of sublimation, vaporization, and fusion were derived. ► The enthalpy of intermolecular NH–O hydrogen bonds in methyl p-aminobenzoate was determined. ► The volatility of the methyl benzoates was compared with the volatility of the parent acids. - Abstract: A static method based on capacitance gauges was used to measure the vapor pressures of the condensed phases of the methyl esters of the three aminobenzoic acids. For methyl o-aminobenzoate the vapor pressures of the liquid phase were measured in the range (285.4 to 369.5) K. For the meta and para isomers vapor pressures of both crystalline and liquid phases were measured in the ranges (308.9 to 376.6) K, and (332.9 to 428.0) K, respectively. Vapor pressures of the latter compound were also measured using the Knudsen effusion method in the temperature range (319.1 to 341.2) K. From the dependence of the vapor pressures on the temperature, the standard molar enthalpies and entropies of sublimation and of vaporization were derived. Differential scanning calorimetry was used to measure the temperatures and molar enthalpies of fusion of the three isomers. The results enabled the estimation of the enthalpy of the intermolecular (N−H … O) hydrogen bond in the crystalline methyl p-aminobenzoate. A correlation relating the temperature of fusion and the enthalpy and Gibbs energy of sublimation of benzene, methyl benzoates and benzoic acids was derived.

  18. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  19. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    Science.gov (United States)

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  20. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites.

    Science.gov (United States)

    Liu, Xiao; Gilmore, Kerry J; Moulton, Simon E; Wallace, Gordon G

    2009-12-01

    The purpose of this work was to investigate for the first time the potential biomedical applications of novel polypyrrole (PPy) composites incorporating a large polyelectrolyte dopant, poly (2-methoxy-5 aniline sulfonic acid) (PMAS). The physical and electrochemical properties were characterized. The PPy/PMAS composites were found to be smooth and hydrophilic and have low electrical impedance. We demonstrate that PPy/PMAS supports nerve cell (PC12) differentiation, and that clinically relevant 250 Hz biphasic current pulses delivered via PPy/PMAS films significantly promote nerve cell differentiation in the presence of nerve growth factor (NGF). The capacity of PPy/PMAS composites to support and enhance nerve cell differentiation via electrical stimulation renders them valuable for medical implants for neurological applications.

  1. Microbial dynamics in anaerobic enrichment cultures degrading di-n-butyl phthalic acid ester

    DEFF Research Database (Denmark)

    Trably, Eric; Batstone, Damien J.; Christensen, Nina

    2008-01-01

    losses were observed in the sterile controls (20-22%), substantial DBP biodegradation was found in the enrichment cultures (90-99%). In addition, significant population changes were observed. The dominant bacterial species in the DBP-degrading cultures was affiliated to Soehngenia saccharolytica...... in enrichment cultures degrading phthalic acid esters under methanogenic conditions. A selection pressure was applied by adding DBP at 10 and 200 mg L(-1) in semi-continuous anaerobic reactors. The microbial dynamics were monitored using single strand conformation polymorphism (SSCP). While only limited abiotic...

  2. Conducting polymers of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester

    International Nuclear Information System (INIS)

    Cirpan, A.; Guner, Y.; Toppare, L.

    2004-01-01

    A dipyrrolyl monomer was synthesized via the reaction between 4-pyrrol-1-yl phenol and decanedioyl dichloride. The electrochemical behavior of this monomer was studied. Polymerization of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester (DAPE) was achieved by chemical and constant current electrolyses methods. Copolymerization of DAPE with thiophene was performed by constant potential electrolysis in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB), dichloromethane-TBAFB, solvent-electrolyte couples. The chemical structures and properties were investigated by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermal gravimetry analysis. The conductivities of the samples were measured by a four-probe technique

  3. Conducting polymers of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester

    Energy Technology Data Exchange (ETDEWEB)

    Cirpan, A.; Guner, Y.; Toppare, L

    2004-05-15

    A dipyrrolyl monomer was synthesized via the reaction between 4-pyrrol-1-yl phenol and decanedioyl dichloride. The electrochemical behavior of this monomer was studied. Polymerization of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester (DAPE) was achieved by chemical and constant current electrolyses methods. Copolymerization of DAPE with thiophene was performed by constant potential electrolysis in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB), dichloromethane-TBAFB, solvent-electrolyte couples. The chemical structures and properties were investigated by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry and thermal gravimetry analysis. The conductivities of the samples were measured by a four-probe technique.

  4. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and ......Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para...

  5. Glycidyl fatty acid esters in refined edible oils: A review on formation, occurrence, analysis, and elimination methods

    Science.gov (United States)

    Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oil, are mainly formed during the deodorization step in the oil refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they hydrolyze into t...

  6. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  7. Tailoring the toughness and CTE of high temperature bisphenol E cyanate ester (BECy resin

    Directory of Open Access Journals (Sweden)

    M. Thunga

    2014-05-01

    Full Text Available The objective of the present work is to enhancing the toughness and minimizing the CTE of a special class of bisphenol E cyanate ester (BECy resin by blending it with a thermoplastic toughening agent. Poly(ether sulfone was chosen as a high temperature resistant thermoplastic resin to enhance the thermo-mechanical properties of BECy. The influence of poly(ether sulfone/BECy blend composition on the morphology and phase behavior was studied using scanning electron microscopy and dynamic mechanical analysis. The mechanical properties of the blends were evaluated by flexural tests, which demonstrated significant enhancement in the material’s toughness with an increase in PES concentration from 0 to 15 wt%. The coefficient of thermal expansion of pure BECy was reduced from 61 to 48 ppm/°C in the blends with PES, emphasizing the multi-functional benefits of PES as a toughening agent in BECy.

  8. Drinking-water-criteria document for phthalic acid esters (PAES). Final report

    International Nuclear Information System (INIS)

    1991-08-01

    The document provides the health effects basis to be considered in establishing the MCLG. To achieve the objective, data on pharmacokinetics human exposure, acute and chronic toxicity to animals and humans, epidemiology and mechanisms of toxicity are evaluated for phthalic acid esters. Specific emphasis is placed on literature data providing dose-response information. Thus, while the literature search and evaluation performed in support of the document has been comprehensive, only the reports considered most pertinent in the derivation of the MCLG are cited in the document. The comprehensive literature data base in support of the document includes information published up to 1986; however, more recent data may have been added during the review process

  9. New entry for synthesis of N-acylhydrazones, pyridazinones, and 1,3,4-oxadiazin-6-ones from alpha-amino acid esters.

    Science.gov (United States)

    Yasui, Eiko; Wada, Masao; Takamura, Norio

    2007-11-01

    Versatile electrophiles N-acylhydrazones are synthesized via diazotization, reduction, and acylation of alpha-amino acid esters. Reduction of diazo esters with L-selectride or tributylphosphine affords the corresponding hydrazones in good yields. Both reducing agents give anti-hydrazones as the major product although the reactivity of each reductant is slightly different. The resulting hydrazones are acylated to give N-acylhydrazones, which are subjected to further reactions to give 1,3,4-oxadiazin-6-ones that serve as useful synthetic intermediates for the Diels-Alder reaction.

  10. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  11. Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation

    International Nuclear Information System (INIS)

    Sun, Chia-Liang; Tang, Jui-Shiang; Brazeau, Nicolas; Wu, Jhing-Jhou; Ntais, Spyridon; Yin, Chung-Wei; Chou, Hung-Lung; Baranova, Elena A.

    2015-01-01

    Highlights: • Pt colloidal nanoparticles with five mean diameters are synthesized. • Size-selected Pt nanoparticles are loaded on sulfonated graphene (sG). • Sulfonic acid functional groups atop graphene donate charge to Pt. • Pt-sG catalysts are used for ethanol oxidation reaction (EOR). • Pt-sG(2.5 nm) has the highest peak current density in EOR. - Abstract: Fuel cells are promising alternative in automobile and stationary power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol oxidation reaction (EOR) has attracted great attention and represents one of the major challenges in electrocatalysis. Graphene, one-atom thick nanocarbon materials, has attracted much attention recently in a variety of applications. The sulfonation of graphene is able to make it hydrophilic, which enhances its dispersibility in aqueous solvents. Furthermore, sulfonation increases the adsorption and uniform distribution of the Pt nanoparticles, which increases both the electrocatalytic activity and the durability. In this study, theoretical calculations demonstrated that the sulfonate functional group can donate charge to Pt, enhanced the adsorption energy of Pt, and then reduce the adsorption energy of CO on Pt. Then experimentally five kinds of Pt/sulfonated-graphene (Pt/sG) catalysts were synthesized via the control of pH values during the preparation of five-selected colloidal nanoparticles. Among all catalysts, Pt-sG(2.5 nm) has the highest peak current density in EOR

  12. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  13. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  14. Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis

    Czech Academy of Sciences Publication Activity Database

    Čechová, L.; Durnová, E.; Šikutová, Silvie; Halouzka, Jiří; Němec, M.

    2004-01-01

    Roč. 808, č. 2 (2004), s. 249-254 ISSN 1570-0232 R&D Projects: GA ČR GA206/03/0726 Institutional research plan: CEZ:AV0Z6093917 Keywords : spirochetes * arthropods * fatty acid methyl esters Subject RIV: EE - Microbiology, Virology Impact factor: 2.176, year: 2004

  15. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  16. Synthesis, physical-chemical properties of 2-((5-(adamantan-1-yl-4-R-4H-1,2,4-triazole-3-ylthioacetic acid esters

    Directory of Open Access Journals (Sweden)

    V. M. Odyntsova

    2017-04-01

    Full Text Available The nitrogen-containing heterocyclic systems from the class of 1,2,4-triazole derivatives, which exhibit wide range of actions, occupy special place among the variety of heterocyclic compounds. Derived biologically active substances are actively introduced into practice as new original and effective drugs. We were interested in esters of 2-((5-(adamantan-1-yl-4-R-4H-1,2,4-triazole-3-ylthioacetic acids, which exhibit high biological activity and can be intermediates for the synthesis of amides, hydrazides, ylidenderivatives of corresponding acids. The aim of this work is the synthesis of new esters of 2-((5-(adamantan-1-yl-4-R-4H-1,2,4-triazole-3-ylthioacetic acids and the establishment of their physical-chemical properties. Materials and methods. Melting point was determined by open capillary method on the device OptiMelt MPA100. The elemental composition of the synthesized compounds was determined on the universal analyzer ElementarVario ЕL cube (CHNS (standard – sulfanilamide. 1H NMR spectra were recorded on spectrometer Varian Mercury VX-200 (1H, 200 MHz in the solvent dimethyl sulfoxide-d6 (tetramethylsilane internal standard and decoded using a program ADVASP(tm Analyzer program (Umatek International Inc.. Chromato-mass-spectral studies were performed on hazarding chromatograph Agilent 1260 Infinity HPLC equipped with mass spectrometer Agilent 6120 (ionization electro-spray (ESI. The results and discussion. Synthesis of 11 new compounds, namely esters of 2-((5-(adamantan-1-yl-4-R-4H-1,2,4-triazole-3-ylthioacetic acids was carried out by two methods. According to the A method the alkylation of previously synthesized 3-(adamantan-1-yl-1H-1,2,4-triazole-5-thiol was performed with the use of corresponding methyl ester of 2-chloroacetic acid and the presence of equivalent amount of sodium hydroxide. The B method involves the etherification of 2-((5-(adamantan-1-yl-4-R-4H-1,2,4-triazole-3-ylthioacetic acid with the use of methyl, ethyl, i

  17. N-[11C]methylpiperidine esters as acetylcholinesterase substrates: an in vivo structure-reactivity study

    International Nuclear Information System (INIS)

    Kilbourn, Michael R.; Nguyen, Thinh B.; Snyder, Scott E.; Sherman, Phillip

    1998-01-01

    A series of simple esters incorporating the N-[ 11 C]methylpiperidine structure were examined as in vivo substrates for acetylcholinesterase in mouse brain. 4-N-[ 11 C]Methylpiperidinyl esters, including the acetate, propionate and isobutyrate esters, are good in vivo substrates for mammalian cholinesterases. Introduction of a methyl group at the 4-position of the 4-piperidinol esters, to form the ester of a teritary alcohol, effectively blocks enzymatic action. Methylation of 4- N-[ 11 C]methylpiperidinyl propionate at the 3-position gives a derivative with increased in vivo reactivity toward acetylcholinesterase. Esters of piperidinecarboxylic acids (nipecotic, isonipecotic and pipecolinic acid ethyl esters) are not hydrolyzed by acetylcholinesterase in vivo, nor do they act as in vivo inhibitors of the enzyme. This study has identified simple methods to both increase and decrease the in vivo reactivity of piperidinyl esters toward acetylcholinesterase

  18. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...

  19. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia

    International Nuclear Information System (INIS)

    Pandey, Indu; Jha, Shashank Shekhar

    2015-01-01

    Highlights: • Pencil graphite electrode was non-covalently functionalized by C-dots. • Electrochemically synthesized ferrocene-sulfonic acid doped PANI film was used as chiral recognition element. • Electrochemical chiral sensing of L-ascorbic acid and D-ascorbic acid was carried out. • L-ascorbic acid determination was done in aqueous, biological and pharmaceutical samples at nM level. - Abstract: A simple and novel method is proposed for chiral separation of L-ascorbic acid and D-ascorbic acid in human cerebrospinal fluids and blood plasma samples. Electro-polymerized molecularly imprinted poly-aniline ferrocenesulfonic acid-C-dots modified pencil graphite electrodes was successfully applied for separation and quantification of D-/L-ascorbic acid in aqueous and some biological samples. Parameters, important to control the performance of the electrochemical sensor were investigated and optimized, including the effects of pH, monomer- template ratios, electropolymerization cycles and scan rates. The molecularly imprinted film exhibited a high chiral selectivity and sensitivity towards D-ascorbic acid and L-ascorbic acid respectively. The surface morphologies and electrochemical properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry, chrono-amperometry and electrochemical impedance spectroscopy. L-ascorbic acid selective sensor shows excellent selectivity towards the L-ascorbic acid in comparison to D- ascorbic acid vice versa for D- ascorbic acid selective sensor. Under optimal conditions the linear range of the calibration curve for L- ascorbic acid and D- ascorbic acid was 6.0–165.0 nM and 6.0–155.0 nM, with the detection limit of 0.001 nM and 0.002 nM. Chiral detection of L-ascorbic acid was successfully carried out in pharmaceuticals and human plasma samples (pregnant women and non pregnant women) via proposed sensor with good selectivity and sensitivity.

  20. Constituents of Mediterranean Spices Counteracting Vascular Smooth Muscle Cell Proliferation: Identification and Characterization of Rosmarinic Acid Methyl Ester as a Novel Inhibitor

    Czech Academy of Sciences Publication Activity Database

    Liu, R.; Heiss, E.H.; Waltenberger, B.; Blažević, T.; Schachner, B.; Jiang, B.; Kryštof, Vladimír; Liu, W.; Schwaiger, S.; Peña-Rodríguez, L. M.; Breuss, J.; Stuppner, H.; Dirsch, V.M.; Atanasov, A. G.

    2018-01-01

    Roč. 62, č. 7 (2018), č. článku 1700860. ISSN 1613-4125 Institutional support: RVO:61389030 Keywords : Mediterranean spices * neointima formation * rosmarinic acid * rosmarinic acid methyl ester * vascular smooth muscle cells Subject RIV: CE - Biochemistry OBOR OECD: Biochemical research methods Impact factor: 4.323, year: 2016

  1. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Philippe Tony [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: philippe.hoff@ua.ac.be; Van Campenhout, Karen [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van de Vijver, Kristin [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Antwerp University, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bervoets, Lieven [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Moens, Lotte [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Huyskens, Geert [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Goemans, Geert [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Belpaire, Claude [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Blust, Ronny [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim de [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2005-09-15

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, {gamma}-hexachlorocyclohexane ({gamma}-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel. - Hepatic perfluorooctane sulfonic acid contamination in Flanders (Belgium) might affect serological endpoints in feral carp and eel.

  2. Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

    Science.gov (United States)

    Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien

    2017-03-22

    Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.

  3. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    Science.gov (United States)

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. Copyright © 2015. Published by Elsevier B.V.

  4. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  5. Antiviral Properties of Caffeic Acid Phenethyl Ester and Its Potential Application

    Directory of Open Access Journals (Sweden)

    Haci Kemal Erdemli

    2015-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is found in variety of plants and well known active ingredient of the honeybee propolis. CAPE showed anti-inflammatory, anticarcinogenic, antimitogenic, antiviral and immunomodulatory properties in several studies. The beneficial effects of CAPE on different health issues attracted scientists to make more studies on CAPE. Specifically, the anti-viral effects of CAPE and its molecular mechanisms may reveal the important properties of virus-induced diseases. CAPE and its targets may have important roles to design new therapeutics and understand the molecular mechanisms of virus related diseases. In this mini-review, we summarize the antiviral effects of CAPE under the light of medical and chemical literature. [J Intercult Ethnopharmacol 2015; 4(4.000: 344-347

  6. Ester Sensing with Poly (Aniline-co-m-aminobenzoic Acid Deposited on Poly (Vinyl Alcohol

    Directory of Open Access Journals (Sweden)

    S. ADHIKARI

    2011-02-01

    Full Text Available Poly (aniline-co-m-aminobenzoic acid was deposited on poly (vinyl alcohol film by in situ oxidative polymerization of the monomers aniline and m-aminobenzoic acid. Sensing experiments were performed on the composite film with the injection of various concentrations of hexenyl acetate and hexenyl butyrate at room temperature. The sensor responded rapidly and reversibly in the presence of hexenyl acetate and hexenyl butyrate vapors which was detected by resistance change of the composite film upon exposure to the vapor. Selectivity tests revealed that the sensor selectively responded to hexenyl butyrate compared to hexenyl acetate. The sensing response has been explained on the basis of FT-IR spectroscopic analysis of the polymer film before and after exposure to the ester vapor.

  7. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. α-Imino Esters in Organic Synthesis: Recent Advances.

    Science.gov (United States)

    Eftekhari-Sis, Bagher; Zirak, Maryam

    2017-06-28

    α-Imino esters are useful precursors for the synthesis of a variety of types of natural and unnatural α-amino acid derivatives, with a wide range of biological activities. Due to the adjacent ester group, α-imino esters are more reactive relative to other types of imines and undergo different kinds of reactions, including organometallics addition, metal catalyzed vinylation and alkynylation, aza-Henry, aza-Morita-Baylis-Hillman, imino-ene, Mannich-type, and cycloaddition reactions, as well as hydrogenation and reduction. This review discusses the mechanism, scope, and applications of the reactions of α-imino esters and related compounds in organic synthesis, covering the literature from the last 12 years.

  9. Distribution of phthalate esters in underground water from power ...

    African Journals Online (AJOL)

    This study investigates the distribution of phthalateacid esters (PAEs) in groundwater from some power stations in Delta State. Groundwater samples were collected from eight power transmission and distribution stations. Concentrations (μg/L) of six phthalate acid esters compounds in the groundwater ranged from ...

  10. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    Science.gov (United States)

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  11. The effects of egg and diacetyl tartaric acid esters of monoglycerides addition on gluten-free sorghum bread quality

    Science.gov (United States)

    The impact of whole egg addition (as is) at 20, 25, or 30% (flour basis) on sorghum bread quality was evaluated. The use of the antistaling agent diacetyl tartaric acid esters of monoglycerides (DATEM) at 0.5% (flour basis) at each of the egg addition levels was also studied. Evaluated quality facto...

  12. Vanillin improves and prevents trinitrobenzene sulfonic acid-induced colitis in mice.

    Science.gov (United States)

    Wu, Shih-Lu; Chen, Jaw-Chyun; Li, Chia-Cheng; Lo, Hsin-Yi; Ho, Tin-Yun; Hsiang, Chien-Yun

    2009-08-01

    Inflammatory bowel disease (IBD) is chronic inflammatory and relapsing disease of the gut. It has been known that activation of nuclear factor-kappaB (NF-kappaB) and production of proinflammatory cytokines play important roles in the pathogenesis of IBD. In this study, the effect of vanillin (4-hydroxy-3-methoxybenzaldehyde), a potent nuclear factor-kappaB (NF-kappaB) inhibitor, was evaluated in mice with trinitrobenzene sulfonic acid (TNBS)-induced colitis. Oral administration of vanillin improved macroscopic and histological features of TNBS-induced colitis in a dose-dependent manner. Vanillin not only prevented TNBS-induced colitis but also ameliorated the established colitis. By in vivo NF-kappaB bioluminescence imaging, electrophoretic mobility shift assay, and Western blot, we found that vanillin suppressed in vivo NF-kappaB activities through the inhibition of p65 translocation, inhibitor of nuclear factor-kappaB(IkappaB)-alpha phosphorylation, and IkappaB kinase activation. Furthermore, vanillin reduced the expressions of proinflammatory cytokines [interleukin (IL)-1beta, IL-6, interferon-gamma, and tumor necrosis factor-alpha] and stimulated the expression of anti-inflammatory cytokine (IL-4) in colonic tissues. In conclusion, this work identified vanillin as an anti-inflammatory compound with the capacity to prevent and ameliorate TNBS-induced colitis. Due to its safety, vanillin could be a potent candidate for the treatment of IBD.

  13. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  14. A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress.

    Science.gov (United States)

    Grison, Claire M; Renard, Brice-Loïc; Grison, Claude

    2014-02-01

    2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway. A simple, efficient and stereoselective synthesis of KDG isopropyl ester is described in five steps from 2,3-O-isopropylidene-D-threitol with an overall yield of 47%. KDG isopropyl ester is studied as an attractive marker of a functional Entner Doudoroff pathway. KDG isopropyl ester is used to promote growth of ammonium producing bacterial strains, showing interesting features in the remediation of heavy-metal polluted soils. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Constitutive ω-3 fatty acid production in fat-1 transgenic mice and docosahexaenoic acid administration to wild type mice protect against 2,4,6-trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Yum, Hye-Won; Kang, Jing X; Hahm, Ki Baik; Surh, Young-Joon

    2017-06-10

    Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are known to have strong anti-inflammatory effects. In the present study, we investigated the protective effects of ω-3 PUFAs on experimentally induced murine colitis. Intrarectal administration of 2.5% 2,4,6-trinitrobenzene sulfonic acid (TNBS) caused inflammation in the colon of wild type mice, but this was less severe in fat-1 transgenic mice that constitutively produce ω-3 PUFAs from ω-6 PUFAs. The intraperitoneal administration of docosahexaenoic acid (DHA), a representative ω-3 PUFA, was also protective against TNBS-induced murine colitis. In addition, endogenously formed and exogenously introduced ω-3 PUFAs attenuated the production of malondialdehyde and 4-hydroxynonenal in the colon of TNBS-treated mice. The effective protection against inflammatory and oxidative colonic tissue damages in fat-1 and DHA-treated mice was associated with suppression of NF-κB activation and cyclooxygenase-2 expression and with elevated activation of Nrf2 and upregulation of its target gene, heme oxygenase-1. Taken together, these results provide mechanistic basis of protective action of ω-3 fatty PUFAs against experimental colitis. Copyright © 2017. Published by Elsevier Inc.

  16. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    Science.gov (United States)

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  17. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    Science.gov (United States)

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Biochar as porous media for thermally-induced non-catalytic transesterification to synthesize fatty acid ethyl esters from coconut oil

    International Nuclear Information System (INIS)

    Jung, Jong-Min; Lee, Jechan; Choi, Dongho; Oh, Jeong-Ik; Lee, Sang-Ryong; Kim, Jae-Kon; Kwon, Eilhann E.

    2017-01-01

    Highlights: • Biodiesel production using renewable resources. • Thermally-induced non-catalytic transesterification. • Synthesis of fatty acid ethyl esters without conventional catalysts. • Using biochar as porous medium in the non-catalytic transesterification. - Abstract: This study put great emphasis on evaluating biochar as porous media for the thermally-induced non-catalytic transesterification reaction to synthesize fatty acid ethyl esters (FAEE) from coconut oil. Thermogravimetric analysis (TGA) of coconut oil experimentally justified that the bond dissociation of fatty acid from the backbone of triglycerides (TGs) could be achieved, which finding could be applied to the non-catalytic transesterification reaction. To use biochar as porous medium, the surficial morphology of maize residue biochar (MRB) was characterized, revealing that biochar possessed the wider pore size distribution ranging from meso- to macro-pores than SiO 2 . The highest yield of FAEE from non-catalytic transesterification of coconut oil in the presence of MRB was 87% at 380 °C. To further enhance the FAEE yield, further studies associated with the production of FAEE with biochar made from different biomasses and various pyrolytic conditions should be performed.

  19. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS.

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-07-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives.

  20. Method for the determination of natural ester-type gum bases used as food additives via direct analysis of their constituent wax esters using high-temperature GC/MS

    Science.gov (United States)

    Tada, Atsuko; Ishizuki, Kyoko; Yamazaki, Takeshi; Sugimoto, Naoki; Akiyama, Hiroshi

    2014-01-01

    Natural ester-type gum bases, which are used worldwide as food additives, mainly consist of wax esters composed of long-chain fatty acids and long-chain fatty alcohols. There are many varieties of ester-type gum bases, and thus a useful method for their discrimination is needed in order to establish official specifications and manage their quality control. Herein is reported a rapid and simple method for the analysis of different ester-type gum bases used as food additives by high-temperature gas chromatography/mass spectrometry (GC/MS). With this method, the constituent wax esters in ester-type gum bases can be detected without hydrolysis and derivatization. The method was applied to the determination of 10 types of gum bases, including beeswax, carnauba wax, lanolin, and jojoba wax, and it was demonstrated that the gum bases derived from identical origins have specific and characteristic total ion chromatogram (TIC) patterns and ester compositions. Food additive gum bases were thus distinguished from one another based on their TIC patterns and then more clearly discriminated using simultaneous monitoring of the fragment ions corresponding to the fatty acid moieties of the individual molecular species of the wax esters. This direct high-temperature GC/MS method was shown to be very useful for the rapid and simple discrimination of varieties of ester-type gum bases used as food additives. PMID:25473499

  1. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  2. Larvicidal activity of oils, fatty acids, and methyl esters from ripe and unripe fruit of Solanum lycocarpum (Solanaceae against the vector Culex quinquefasciatus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Viviane de Cássia Bicalho Silva

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:The larvicidal activity of oils, fatty acids, and methyl esters of Solanum lycocarpum fruit against Culex quinquefasciatus is unknown.METHODS:The larvicidal activity of samples of ripe and unripe fruit from S. lycocarpum was evaluated against third and fourth instar larvae of C. quinquefasciatus .RESULTS:The oils, fatty acids, and methyl esters of S. lycocarpum showed the greatest larvicidal effect (57.1-95.0% at a concentration of 100mg/L (LC 50values between 0.70 and 27.54mg/L.CONCLUSIONS:Solanum lycocarpum fruit may be a good source of new natural products with larvicidal activity.

  3. Heat-shrink tubing as a solid-phase microextraction coating for the enrichment and determination of phthalic acid esters.

    Science.gov (United States)

    Luo, Xi; He, Chengxia; Zhang, Feifang; Wang, Hailong; Yang, Bingcheng; Liang, Xinmiao

    2014-12-01

    Heat-shrink tubing, which shrinks in one plane only (its diameter) when heated, commonly used for sealing protection in electrical engineering, was found to be able to function as a solid-phase microextraction coating. Its utility was demonstrated for the determination of phthalic acid esters in an aqueous solution combined with high-performance liquid chromatography equipped with a UV absorbance detector. The preparation procedure was rather simple and only ∼10 min was needed. The fiber cost is extremely low (∼10 cent each). The parameters affecting the extraction were optimized. Heat-shrink tubing fiber exhibited a significant enrichment effect for the three examined phthalic acid esters and up to 931-fold enrichment factor was obtained. The limit of detection was <10 μg/L for all analytes. The operation repeatability and fiber-to-fiber reproducibility were 1.2-8.3 and 5.4-9.1%, respectively. It was successfully applied for the analysis of bottled drinking water with recoveries ranging from 90.1-100.5%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improving the sustainability of fatty acid methyl esters (Fame – biodiesel) – assessment of options for industry and agriculture

    NARCIS (Netherlands)

    Jungmeier, G.; Pucker, J.; Ernst, M.; Haselbacher, P.; Lesschen, J.P.; Kraft, A.; Schulzke, T.; Loo, van E.N.

    2016-01-01

    The life cycle based greenhouse gas (GHG) balances of Fatty Acid Methyl Esters (FAME also called “Biodiesel”) from various resources have been set in the Renewable Energy Directive (RED). Due to technology and scientific progress there are various options to improve the GHG balances of FAME. In

  5. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen.

    Science.gov (United States)

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Basso, Sara; Deidda, Antonio; Serra, Salvatorica; Evidente, Antonio

    2014-07-01

    In this study, a strain (BL 101) of a species of Lasiodiplodia, not yet formally described, which was isolated from declining grapevine plants showing wedge-shaped cankers, was investigated for its ability to produce in vitro bioactive secondary metabolites. From culture filtrates of this strain three jasmonic acid esters, named lasiojasmonates A-C and 16-O-acetylbotryosphaerilactones A and C were isolated together with (1R,2R)-jasmonic acid, its methyl ester, botryosphaerilactone A, (3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone and (3R,4S)-botryodiplodin. The structures of lasiojasmonates A-C were established by spectroscopic methods as (1R*,2R*,3'S*,4'R*,5'R*)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone, (1R*,2R*,3'S*,4'R*,5'R*,10'R*,12'R*,13'R*,14'S*) and (1R*,2R*,3'S*,4'R*,5'R*,10'S*,12'R*,13'R*,14'S*)-4-(4-hydroxymethyl-3,5-dimethyltetrahydro-furan-2-yloxymethyl)-3,5-dimethyldihydro-2-furanones jasmonates (1, 4 and 5). The structures of 16-O-acetylbotryosphaerilactones A and C were determined by comparison of their spectral data with those of the corresponding acetyl derivatives obtained by acetylation of botryosphaerilactone A. The metabolites isolated, except 4 and 5, were tested at 1mg/mL on leaves of grapevine cv. Cannonau and cork oak using the leaf puncture assay. They were also tested on detached grapevine leaves at 0.5mg/mL and tomato cuttings at 0.1mg/mL. In all phytotoxic assays only jasmonic acid was found to be active. All metabolites were inactive in the zootoxic assay at 50 μg/mL. Copyright © 2014. Published by Elsevier Ltd.

  6. Stability of a metabolizable ester bond in radioimmunoconjugates

    International Nuclear Information System (INIS)

    Arano, Yasushi; Wakisaka, Kouji; Mukai, Takahiro; Uezono, Takashi; Motonari, Hiroshi; Akizawa, Hiromichi; Kairiyama, Claudia; Ohmomo, Yoshiro; Tanaka, Chiaki; Ishiyama, Munetaka; Sakahara, Harumi; Konishi, Junji; Yokoyama, Akira

    1996-01-01

    Ester bonds have been used as metabolizable linkages to reduce radioactivity levels in non-target tissues following the administration of antibodies labeled with metallic radionuclides. In this radiochemical design of antibodies, while the ester bonds should be cleaved rapidly in non-target tissues, high stability of the ester bonds in plasma is also required to preserve target radioactivity levels. To assess the structural requirements to stabilize the ester bond, a new benzyl-EDTA-derived bifunctional chelating agent with an ester bond, (1-[4-[4-(2-maleimidoethoxy)succinamido]benzyl]ethylenediamine-N,N,N',N'- tetraacetic acid; MESS-Bz-EDTA), was developed. MESS-Bz-EDTA was coupled with a thiolated monoclonal antibody (OST7, IgG 1 ) prepared by reducing its disulfide bonds to introduce the ester bond close and proximal to the antibody molecule. For comparison, 1-[4-(5-maleimidopentyl)aminobenzyl]ethylenediamine-N,N,N',N'-tetraacetic acid (EMCS-Bz-EDTA) and meleimidoethyl 3-[ 131 I]iodohippurate (MIH) was coupled to OST7 under the same conjunction chemistry. When incubated in 50% murine plasma or a buffered-solution of neutral pH, OST7-MESS-Bz-EDTA- 111 In rapidly released the radioactivity, and more than 95% of the initial radioactivity was liberated after a 24 h incubation in both solutions, due to a cleavage of the ester bond. On the other hand, only about 20% of the radioactivity was released from OST7-MIH- 131 I in both solutions during the same incubation period. In mice biodistribution studies, while a slightly faster radioactivity clearance from the blood with less radioactivity levels in the liver and kidneys was observed with OST7-MIH- 131 I than with OST7-EMCS-Bz-EDTA- 111 In, OST7-MESS-Bz-EDTA- 111 In indicated radioactivity clearance from the blood much faster than and almost comparable to that of OST7-MIH- 131 I and succinamidobenzyl-EDTA- 111 In, respectively. These findings as well as previous findings on radiolabeled antibodies with ester bonds

  7. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    Science.gov (United States)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  8. Maturation-related changes in the distribution of ester-bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2009-01-01

    A rank series of lignites and coals of low to moderate maturation levels (vitrinite reflectance (R0): 0.27–0.8%) from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components (fatty acids and alcohols) during...... increase during early catagenesis before decreasing again during main catagenesis. This intermittent increase was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference...

  9. A facile micropatterning method for a highly flexible PEDOT:PSS on SU-8

    KAUST Repository

    Cho, Nam Chul

    2016-04-17

    We report the micropatterning of conducting polymer on the epoxy-based photoresist to demonstrate fully organic, conducting and flexible electrodes. We show that polystyrene sulfonic acid can be covalently linked to the surface of the photoresist (SU-8) by forming sulfonyl ester at the interfaces. We also present an application of the patterned PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)/SU-8 to the electroplating of metal electrodes. © 2016 Elsevier B.V.

  10. A facile micropatterning method for a highly flexible PEDOT:PSS on SU-8

    KAUST Repository

    Cho, Nam Chul; Diekhans, Justin; Steward, Malia; Bakr, Osman; Choi, Seungkeun

    2016-01-01

    We report the micropatterning of conducting polymer on the epoxy-based photoresist to demonstrate fully organic, conducting and flexible electrodes. We show that polystyrene sulfonic acid can be covalently linked to the surface of the photoresist (SU-8) by forming sulfonyl ester at the interfaces. We also present an application of the patterned PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)/SU-8 to the electroplating of metal electrodes. © 2016 Elsevier B.V.

  11. Zinc oxide modified with benzylphosphonic acids as transparent electrodes in regular and inverted organic solar cell structures

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ilja; Reiter, Sina; Kniepert, Juliane; Piersimoni, Fortunato; Brenner, Thomas; Neher, Dieter, E-mail: neher@uni-potsdam.de [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany); Pätzel, Michael; Hildebrandt, Jana; Hecht, Stefan [Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-03-16

    An approach is presented to modify the work function of solution-processed sol-gel derived zinc oxide (ZnO) over an exceptionally wide range of more than 2.3 eV. This approach relies on the formation of dense and homogeneous self-assembled monolayers based on phosphonic acids with different dipole moments. This allows us to apply ZnO as charge selective bottom electrodes in either regular or inverted solar cell structures, using poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester as the active layer. These devices compete with or even surpass the performance of the reference on indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Our findings highlight the potential of properly modified ZnO as electron or hole extracting electrodes in hybrid optoelectronic devices.

  12. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  13. Naturally-occurring estradiol-17β-fatty acid esters, but not estradiol-17β, preferentially induce mammary tumorigenesis in female rats: Implications for an important role in human breast cancer

    International Nuclear Information System (INIS)

    Mills, Laura H.; Yu Jina; Xu Xiaomeng; Lee, Anthony J.; Zhu Baoting

    2008-01-01

    Because mammary glands are surrounded by adipose tissues, we hypothesize that the ultra-lipophilic endogenous estrogen-17β-fatty acid esters may have preferential hormonal and carcinogenic effects in mammary tissues compared to other target organs (such as the uterus and pituitary). This hypothesis is tested in the present study. We found that all 46 rats implanted with an estradiol-17β pellet developed large pituitary tumors (average weight = 251 ±103 mg) and had to be terminated early, but only 48% of them developed mammary tumors. In addition, approximately one-fourth of them developed a huge uterus. In the 26 animals implanted with a mixture containing estradiol-17β-stearate and estradiol-17β-palmitate (two representative estradiol-17β-fatty acid esters) or in the 29 animals implanted with estradiol-17β-stearate alone (in the same molar dose as estradiol-17β), 73% and 79%, respectively, of them developed mammary tumors, whereas only 3 or 2 animals, respectively, had to be terminated early due to the presence of a large pituitary tumor. Both tumorous and normal mammary tissues contained much higher levels of estrogen esterase than other tissues, which catalyzes the releases of bioactive estrogens from their fatty acid esters. In conclusion, while estradiol-17β is much stronger in inducing pituitary tumor (100% incidence) than mammary tumor, estradiol-17β-fatty acid esters have a higher efficacy than estradiol-17β in inducing mammary tumor and yet it only has little ability to induce uterine out-growth and pituitary tumorigenesis. This study establishes the endogenous estrogen-17β-fatty acid esters as preferential inducers of mammary tumorigenesis

  14. Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, C.; Mangelsdorf, K.; Horsfield, B. [German Research Cemter of Geoscience GFZ, Potsdam (Germany)

    2009-10-15

    Several lignites and coals of low to moderate maturation levels from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components during increasing maturation. Ester bound alcohols are found to be present in highest amounts in the very immature lignite samples but show a rapid decrease during early diagenesis. Ester bound fatty acids also show an initial exponential decrease during diagenesis but reveal an intermittent increase during early catagenesis before decreasing again during main catagenesis. This was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference index of fatty acids (CPIFA) parameter is introduced. For the long chain fatty acids the CPIFA decreases with increasing maturity. During diagenesis, the same trend can be observed for the short chain fatty acids but the intermittent increase in the amounts of short chain fatty acids is also accompanied by high CPIFA values. This indicates less altered organic biomass at this maturation level and is in contrast to the mature CPIFA signal of the long chain fatty acids of the same samples. Thus could be due to extremely different amounts of short and long chain fatty acids in the original source organic matter or it could due to the incorporation of immature bacterial biomass from deep microbial communities containing C{sub 16} and C{sub 18} fatty acids as main cell membrane components. Deep microbial life might be stimulated at this interval by the increasing release of thermally generated potential substrates from the organic matrix during early catagenesis. The high amounts of alcohols in the immature lignite samples are also visible in the alkene distribution from the open system pyrolysis experiments of the organic matrix before and after saponification.

  15. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  16. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.; Švec, František; Frechet, Jean

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  17. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  18. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  19. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  20. Thermal energy storage properties of mannitol–fatty acid esters as novel organic solid–liquid phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2012-01-01

    Highlights: ► Four kinds of mannitol–fatty acid esters were synthesized as novel organic PCMs for thermal energy storage applications. ► The synthesized PCMs were characterized using FT-IR, 1 H NMR, 13 C NMR, DSC and TGA methods and thermal cycling test. ► The melting temperatures and latent heat values of the PCMs were in the range of 42–65 °C and 145–202 J/g, respectively. ► Thermal conductivity of the PCMs was increased significantly by addition of EG with especially 10 wt%. ► The synthesized PCMs are promising organic PCMs for solar heating applications. - Abstract: In this study, four kinds of mannitol–fatty acid esters were synthesized as novel organic phase change materials (PCMs) for thermal energy storage applications. The structural characterization of synthesized mannitol hexastearate (MHS), mannitol hexapalmitate (MHP), mannitol hexamyristate (MHM) and mannitol hexalaurate (MHL) were carried out using Fourier Transform Infrared (FT-IR), Proton Nuclear Magnetic Resonance ( 1 H NMR), and 13 C NMR spectroscopy methods. Thermal energy storage properties and thermal reliability of the synthesized PCMs were determined using differential scanning calorimetry (DSC) method at a heating rate of 1 °C/min. DSC results showed that the melting temperatures of the PCMs were in the temperature range of 42–65 °C and their latent heat values spanned between 145 and 202 J/g. The latent heats of these PCMs are low compared to mannitol but they fall into the same range as fatty acids. The synthesized PCMs have much lower phase change temperatures and supercooling degree (about 1–8 °C) and compared to the mannitol. They have also better odor, noncorrosivity and thermal durability properties as compared to the fatty acids. Thermal cycling test consisted of repeated 1000 melting/solidification cycles also revealed that the synthesized PCMs have good thermal reliability. In addition, thermal conductivity of the PCMs was increased significantly by

  1. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  2. Lipidization of Simple and di-Functional Amino Acids

    International Nuclear Information System (INIS)

    Zainab Idris; Mohd Wahid Samsudin; Salmiah Ahmad

    2013-01-01

    This paper discuss the modification of azelaic acid into its applicable form by attachment of both its carboxyl sites to N-terminal of amino acid ethyl ester forming amide linkages in anhydrous medium. Acylation of glycine ethyl ester hydrochloride with azelaic acid dichloride was best conducted in a 100 % anhydrous medium. L-amino acid ethyl ester bearing a primary hydroxyl group on its side chain gave mixtures of product and variation in composition depending on the mole ratio of reactants used. Reduction in purity was also observed for L-amino acid ethyl ester with primary -SH group on its side chain as compared to L-amino acid ethyl ester having -SCH 3 group on the L-amino acid side chain. The diamidoester of azelaic acid with L-alanine ethyl ester, L-valine ethyl ester, L-leucine ethyl ester and L-glutamic acid diethyl ester were in good yield when prepared through the modified Schotten-Baumann reaction conditions. (author)

  3. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  4. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes

    International Nuclear Information System (INIS)

    Selvarani, G.; Sahu, A.K.; Choudhury, N.A.; Sridhar, P.; Pitchumani, S.; Shukla, A.K.

    2007-01-01

    A method, to anchor phenyl-sulfonic acid functional groups with the platinum catalyst supported onto a high surface-area carbon substrate, is reported. The use of the catalyst in the electrodes of a polymer electrolyte fuel cell (PEFC) helps enhancing its performance. Characterization of the catalyst by Fourier transform infra red (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and point-of-zero-charge (PZC) studies suggests that the improvement in performance of the PEFC is facilitated not only by enlarging the three-phase boundary in the catalyst layer but also by providing ionic-conduction paths as well as by imparting negative charge to platinum sites with concomitant oxidation of sulfur present in the carbon support. It is argued that the negatively charged platinum sites help repel water facilitating oxygen to access the catalyst sites. The PEFC with modified carbon-supported platinum catalyst electrodes exhibits 40% enhancement in its power density as compared to the one with unmodified carbon-supported platinum catalyst electrodes

  5. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L.

    Science.gov (United States)

    Chandrasekaran, M; Senthilkumar, A; Venkatesalu, V

    2011-07-01

    The fatty acid methyl esters (FAME extract) from Sesuvium (S.) portulacastrum was studied for its fatty acid composition and antimicrobial activity against human pathogenic microorganisms. The gas chromatographic analysis of FAME extract revealed the presence of palmitic acid with the highest relative percentage (31.18%), followed by oleic acid (21.15%), linolenic acid (14.18%) linoleic acid (10.63%), myristic acid (6.91%) and behenic acid (2.42%). The saturated fatty acids were higher than the unsaturated fatty acids. FAME extract showed the highest antibacterial and anticandidal activities and moderate antifungal activity against the tested microorganisms. The highest mean zone of inhibition (16.3 mm) and the lowest MIC (0.25 mg/ml) and MBC (0.5 mg/ml) values were recorded against Bacillus subtilis. The lowest mean zone of inhibition (8.8 mm) and the highest MIC (8 mg/ml) and MFC (16 mg/ml) values were recorded against Aspergillus fumigatus and Aspergillus niger. The results of the present study justify the use of S. portulacastrum in traditional medicine and the FAME extract can be used as a potential antimicrobial agent against the tested human pathogenic microorganisms.

  6. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  7. Physicochemical properties of the liquid mixture between stearate methyl / acid methyl sulfur stearate

    Directory of Open Access Journals (Sweden)

    Jesús Alfonso Torres Ortega

    2008-06-01

    Full Text Available The need of new alternatives for advance of the domestic oil-chemical industry, based local natural resources, make use of palm oil (Elaeis guineensis, as a source for obtaining alkyl esters, an excellent alternative development to be explored initially by the research groups at universities or institutions of scientifc innovation and development. The sulfonation process for the manufacture of surfactant were conducted in a falling flm reactor by the absorption and chemical reaction with SO3 gas on methyl esters derived from hydrogenated palm stearin. Identifying the properties of the reactants, products, and its mix is very important for the characterized by gas chromatography and infrared spectroscopy. It presents the properties of these inputs as a result of a series of experiments, which varies the mole ratio of the mixture of reactants and products, the process temperature and the percentage of sulfonate agent in the gas fow.

  8. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  9. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.

    Science.gov (United States)

    Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni

    2015-01-01

    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.

  10. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Amphoteric surfactants containing ?-hydroxy ester group and an amino acid residue

    Directory of Open Access Journals (Sweden)

    Eissa, A. M. F.

    2006-09-01

    Full Text Available A series of amphoteric surfactants containing α-hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid.The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca++ stabilities were determined. Antimicrobial activity and biodegradability were also screened.Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico. Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

  12. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads

    Directory of Open Access Journals (Sweden)

    Igor Rocha

    2018-03-01

    Full Text Available Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels, coagulation activation (thrombin-antithrombin (TAT levels and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  13. Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.

    Science.gov (United States)

    Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2018-03-07

    Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.

  14. Scientific Opinion on the safety and efficacy of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes (chemical group 1) when used as flavourings for all animal species

    OpenAIRE

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

    2013-01-01

    Chemical group 1 (CG 1) consists of straight-chain primary aliphatic alcohols/aldehydes/acids, acetals and esters with esters containing saturated alcohols and acetals containing saturated aldehydes of which 86 are currently authorised for use as flavours in food. The FEEDAP Panel was unable to perform an assessment of ethyl oleate because of its insufficient purity. The following compounds are considered to be safe for all animal species at the use level proposed for feed flavourings: formic...

  15. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    Science.gov (United States)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  16. Lipase-Catalyzed Production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic Acid Esters.

    Science.gov (United States)

    Kim, Jung-Ho; Bhatia, Shashi Kant; Yoo, Dongwon; Seo, Hyung Min; Yi, Da-Hye; Kim, Hyun Joong; Lee, Ju Hee; Choi, Kwon-Young; Kim, Kwang Jin; Lee, Yoo Kyung; Yang, Yung-Hun

    2015-05-01

    To overcome the poor properties of solubility and stability of cinnamic acid, cinnamate derivatives with sugar alcohols were produced using the immobilized Candida antarctica lipase with vinyl cinnamate and D-sorbitol as substrate at 45 °C. Immobilized C. antarctica lipase was found to synthesize 6-O-cinnamoyl-sorbitol and confirmed by HPLC and (1)H-NMR and had a preference for vinyl cinnamate over other esters such as allyl-, ethyl-, and isobutyl cinnamate as co-substrate with D-sorbitol. Contrary to D-sorbitol, vinyl cinnamate, and cinnamic acid, the final product 6-O-cinnamoyl-sorbitol was found to have radical scavenging activity. This would be the first report on the biosynthesis of 6-O-cinnamoyl-sorbitol with immobilized enzyme from C. antarctica.

  17. Effect of alkyl chain length in the terminal ester group on mesomorphic properties of new chiral lactic acid derivatives

    Czech Academy of Sciences Publication Activity Database

    Kohout, M.; Bubnov, Alexej; Šturala, J.; Novotná, Vladimíra; Svoboda, J.

    2016-01-01

    Roč. 43, č. 10 (2016), s. 1472-1485 ISSN 0267-8292 R&D Projects: GA MŠk(CZ) LD14007 Institutional support: RVO:68378271 Keywords : chiral liquid crystal * lactic acid derivative * terminal ester group * mesomorphic properties * dielectric spectroscopy * layer shrinkage Subject RIV: JJ - Other Materials Impact factor: 2.661, year: 2016

  18. A study of the effect of polystyrene sulfonation on the performance of terephthaloyl chloride-dihydroxydiphenyl sulfone copolymer/polystyrene system

    Science.gov (United States)

    Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.

    1998-12-01

    Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.

  19. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-12-01

    Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

  20. AN ESTER OF 4-METHOXY CYNNAMIC ACID ISOLATED FROM Xylocarpus moluccencis (Lamk M. Roem (MELIACEAE

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2012-06-01

    Full Text Available An ester derivative of 4-methoxycynnamic acid, i.e. 2-ethylhexyl 4-methoxy cynnamate was isolated for the first time from the chloroform extract of stem bark of Xylocarpus moluccencis (Lamk M. Roem (Meliaceae along with β-sitosterol and stigmasterol. The first structure was elucidated with the help of various spectroscopic techniques, including IR, GC-MS, and NMR spectra. Two last structures were determined by comparison with the reported compounds in literature. These compounds were also found in the hexane extract of the plant.