WorldWideScience

Sample records for succinate dehydrogenase genes

  1. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  2. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency

    NARCIS (Netherlands)

    Richter, S; Peitzsch, M.; Rapizzi, E.; Lenders, J.W.M.; Qin, N.; Cubas, A.A. de; Schiavi, F.; Rao, J.U.; Beuschlein, F.; Quinkler, M.; Timmers, H.J.L.M.; Opocher, G.; Mannelli, M.; Pacak, K.; Robledo, M.; Eisenhofer, G.

    2014-01-01

    CONTEXT: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. OBJECTIVE: We assessed whether altered succinate dehydrogenase

  3. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. No evidence for promoter region methylation of the succinate dehydrogenase and fumarate hydratase tumour suppressor genes in breast cancer

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2009-09-01

    Full Text Available Abstract Background Succinate dehydrogenase (SDH and fumarate hydratase (FH are tricarboxylic acid (TCA cycle enzymes that are also known to act as tumour suppressor genes. Increased succinate or fumarate levels as a consequence of SDH and FH deficiency inhibit hypoxia inducible factor-1α (HIF-1α prolyl hydroxylases leading to sustained HIF-1α expression in tumours. Since HIF-1α is frequently expressed in breast carcinomas, DNA methylation at the promoter regions of the SDHA, SDHB, SDHC and SDHD and FH genes was evaluated as a possible mechanism in silencing of SDH and FH expression in breast carcinomas. Findings No DNA methylation was identified in the promoter regions of the SDHA, SDHB, SDHC, SDHD and FH genes in 72 breast carcinomas and 10 breast cancer cell lines using methylation-sensitive high resolution melting which detects both homogeneous and heterogeneous methylation. Conclusion These results show that inactivation via DNA methylation of the promoter CpG islands of SDH and FH is unlikely to play a major role in sporadic breast carcinomas.

  5. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency.

    Science.gov (United States)

    Richter, Susan; Peitzsch, Mirko; Rapizzi, Elena; Lenders, Jacques W; Qin, Nan; de Cubas, Aguirre A; Schiavi, Francesca; Rao, Jyotsna U; Beuschlein, Felix; Quinkler, Marcus; Timmers, Henri J; Opocher, Giuseppe; Mannelli, Massimo; Pacak, Karel; Robledo, Mercedes; Eisenhofer, Graeme

    2014-10-01

    Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations. PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites. Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations. SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases. Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk.

  6. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    NARCIS (Netherlands)

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  7. Linkage and radiation hybrid mapping of the porcine gene for subunit C of succinate dehydrogenase complex (SDHC)

    Czech Academy of Sciences Publication Activity Database

    Stratil, Antonín; Reiner, G.; Peelman, L. J.; Poucke, M.; Geldermann, H.

    2001-01-01

    Roč. 32, č. 2 (2001), s. 110-112 ISSN 0268-9146 R&D Projects: GA AV ČR KSK5052113; GA ČR GA523/00/0669 Keywords : succinate dehydrogenase complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.020, year: 2001

  8. The Deletion of the Succinate Dehydrogenase Gene KlSDH1 in Kluyveromyces lactis Does Not Lead to Respiratory Deficiency

    Science.gov (United States)

    Saliola, Michele; Bartoccioni, Paola Chiara; De Maria, Ilaria; Lodi, Tiziana; Falcone, Claudio

    2004-01-01

    We have isolated a Kluyveromyces lactis mutant unable to grow on all respiratory carbon sources with the exception of lactate. Functional complementation of this mutant led to the isolation of KlSDH1, the gene encoding the flavoprotein subunit of the succinate dehydrogenase (SDH) complex, which is essential for the aerobic utilization of carbon sources. Despite the high sequence conservation of the SDH genes in Saccharomyces cerevisiae and K. lactis, they do not have the same relevance in the metabolism of the two yeasts. In fact, unlike SDH1, KlSDH1 was highly expressed under both fermentative and nonfermentative conditions. In addition to this, but in contrast with S. cerevisiae, K. lactis strains lacking KlSDH1 were still able to grow in the presence of lactate. In these mutants, oxygen consumption was one-eighth that of the wild type in the presence of lactate and was normal with glucose and ethanol, indicating that the respiratory chain was fully functional. Northern analysis suggested that alternative pathway(s), which involves pyruvate decarboxylase and the glyoxylate cycle, could overcome the absence of SDH and allow (i) lactate utilization and (ii) the accumulation of succinate instead of ethanol during growth on glucose. PMID:15189981

  9. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects

    Directory of Open Access Journals (Sweden)

    Naoto Kuroda

    2016-05-01

    Full Text Available Succinate dehydrogenase (SDH-deficient renal cell carcinoma (RCC was first identified in 2004 and has been integrated into the 2016 WHO classification of RCC. Succinate dehydrogenase (SDH is an enzyme complex composed of four protein subunits (SDHA, SDHB, SDHC and SDHD. The tumor which presents this enzyme mutation accounts for 0.05 to 0.2% of all renal carcinomas. Multiple tumors may occur in approximately 30% of affected patients. SDHB-deficient RCC is the most frequent, and the tumor histologically consists of cuboidal cells with eosinophilic cytoplasm, vacuolization, flocculent intracytoplasmic inclusion and indistinct cell borders. Ultrastructurally, the tumor contains abundant mitochondria. Immunohistochemically, tumor cells are positive for SDHA, but negative for SDHB in SDHB-, SDHC- and SDHD-deficient RCCs. However, SDHA-deficient RCC shows negativity for both SDHA and SDHB. In molecular genetic analyses, a germline mutation in the SDHB , SDHC or SDHD gene (in keeping with most patients having germline mutations in an SDH gene has been identified in patients with or without a family history of renal tumors, paraganglioma/pheochromocytoma or gastrointestinal stromal tumor. While most tumors are low grade, some tumors may behave in an aggressive fashion, particularly if they are high nuclear grade, and have coagulative necrosis or sarcomatoid differentiation.

  10. Cloning and functional analysis of succinate dehydrogenase gene PsSDHA in Phytophthora sojae.

    Science.gov (United States)

    Pan, Yuemin; Ye, Tao; Gao, Zhimou

    2017-07-01

    Succinate dehydrogenase (SDH) is one of the key enzymes of the tricarboxylic acid cycle (TCA cycle) and a proven target of fungicides for true fungi. To explore the roles of the SDHA gene in Phytophthora sojae, we first cloned PsSDHA to construct the PsSDHA silenced expression vector pHAM34-PsSDHA, and then utilized PEG to mediate the P. sojae protoplast transformation experiment. Through transformation screening, we obtained the silenced mutants A1 and A3, which have significant suppressive effect. Further study showed that the hyphae of the silenced mutant strains were shorter and more bifurcated; the growth of the silenced mutants was clearly inhibited in 10% V8 agar medium containing sodium chloride (NaCl), hydrogen peroxide (H 2 O 2 ) or Congo Red, respectively. The pathogenicity of the silenced mutants was significantly reduced compared with the wild-type strain and the mock. The results could help us better to understand the position and function of SDH in P. sojae and provide a proven target of fungicides for the oomycete. Copyright © 2017. Published by Elsevier Ltd.

  11. [Effects of Light Near-Infrared Radiation on Rats Assessed by Succinate Dehydrogenase Activity in Lymphocytes on Blood Smears].

    Science.gov (United States)

    Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N

    2015-01-01

    Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.

  12. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  13. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    Science.gov (United States)

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  14. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    Science.gov (United States)

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  15. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

    Directory of Open Access Journals (Sweden)

    José Manuel Otero

    Full Text Available Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol, and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we

  16. In vitro modeling of experimental succinic semialdehyde dehydrogenase deficiency (SSADHD using brain-derived neural stem cells.

    Directory of Open Access Journals (Sweden)

    Kara R Vogel

    Full Text Available We explored the utility of neural stem cells (NSCs as an in vitro model for evaluating preclinical therapeutics in succinic semialdehyde dehydrogenase-deficient (SSADHD mice. NSCs were obtained from aldh5a1+/+ and aldh5a1-/- mice (aldh5a1 = aldehyde dehydrogenase 5a1 = SSADH. Multiple parameters were evaluated including: (1 production of GHB (γ-hydroxybutyrate, the biochemical hallmark of SSADHD; (2 rescue from cell death with the dual mTOR (mechanistic target of rapamycin inhibitor, XL-765, an agent previously shown to rescue aldh5a1-/- mice from premature lethality; (3 mitochondrial number, total reactive oxygen species, and mitochondrial superoxide production, all previously documented as abnormal in aldh5a1-/- mice; (4 total ATP levels and ATP consumption; and (5 selected gene expression profiles associated with epilepsy, a prominent feature in both experimental and human SSADHD. Patterns of dysfunction were observed in all of these parameters and mirrored earlier findings in aldh5a1-/- mice. Patterns of dysregulated gene expression between hypothalamus and NSCs centered on ion channels, GABAergic receptors, and inflammation, suggesting novel pathomechanisms as well as a developmental ontogeny for gene expression potentially associated with the murine epileptic phenotype. The NSC model of SSADHD will be valuable in providing a first-tier screen for centrally-acting therapeutics and prioritizing therapeutic concepts of preclinical animal studies applicable to SSADHD.

  17. Radiation-induced alterations in succinate dehydrogenase activity in the muscle of pigeon

    International Nuclear Information System (INIS)

    Gadhia, P.K.; Shah, V.C.

    1983-01-01

    The histochemical changes in succinate dehydrogenase were investigated in pectoralis major muscle of pigeon exposed to sub-lethal dose (400 rad) of γ-irradiation. Biochemical study was also carried out after 200, 300 and 400 rad of irradiation. In the present study the overall decrease in enzyme activity could be due to the structural and/or functional damage to mitochondria after treatment of pigeon to different sub-lethal doses of γ-irradiation. The significance of these results has been discussed with special reference to oxidative metabolism. (author)

  18. Evidence of redox imbalance in a patient with succinic semialdehyde dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Anna-Kaisa Niemi

    2014-01-01

    Full Text Available The pathophysiology of succinic semialdehyde dehydrogenase (SSADH deficiency is not completely understood. Oxidative stress, mitochondrial pathology, and low reduced glutathione levels have been demonstrated in mice, but no studies have been reported in humans. We report on a patient with SSADH deficiency in whom we found low levels of blood reduced glutathione (GSH, and elevations of dicarboxylic acids in urine, suggestive of possible redox imbalance and/or mitochondrial dysfunction. Thus, targeting the oxidative stress axis may be a potential therapeutic approach if our findings are confirmed in other patients.

  19. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  20. Mutant E. coli strain with increased succinic acid production

    Science.gov (United States)

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. Out of plane distortions of the heme b of Escherichia coli succinate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Quang M Tran

    Full Text Available The role of the heme b in Escherichia coli succinate dehydrogenase is highly ambiguous and its role in catalysis is questionable. To examine whether heme reduction is an essential step of the catalytic mechanism, we generated a series of site-directed mutations around the heme binding pocket, creating a library of variants with a stepwise decrease in the midpoint potential of the heme from the wild-type value of +20 mV down to -80 mV. This difference in midpoint potential is enough to alter the reactivity of the heme towards succinate and thus its redox state under turnover conditions. Our results show both the steady state succinate oxidase and fumarate reductase catalytic activity of the enzyme are not a function of the redox potential of the heme. As well, lower heme potential did not cause an increase in the rate of superoxide production both in vitro and in vivo. The electron paramagnetic resonance (EPR spectrum of the heme in the wild-type enzyme is a combination of two distinct signals. We link EPR spectra to structure, showing that one of the signals likely arises from an out-of-plane distortion of the heme, a saddled conformation, while the second signal originates from a more planar orientation of the porphyrin ring.

  2. Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains.

    Science.gov (United States)

    Dubos, Tiphaine; Pasquali, Matias; Pogoda, Friederike; Casanova, Angèle; Hoffmann, Lucien; Beyer, Marco

    2013-01-01

    Forty-one Zymoseptoria tritici strains isolated in Luxembourg between 2009 and 2010 were highly sensitive towards the new succinate dehydrogenase inhibitor (SDHI) isopyrazam, with concentrations inhibiting fungal growth by 50% (EC50) ranging from 0.0281 to 4.53μM, whereas 41 Fusarium graminearum strains isolated in Europe and Northern America between 1969 and 2009 were insensitive with the average rate of inhibition converging towards 28% with increasing isopyrazam concentration. Seven isolates of both species covering the range of isopyrazam sensitivities observed in the present study were selected for the sequencing of the subunits B, C and D of the succinate dehydrogenase (sdh) gene. Predicted sdh amino acid sequences of subunits B, C and D were identical among F. graminearum strains. By comparing with fungal strains where resistance towards SDHIs was previously reported, three variations were unique to F. graminearum; B-D130N located in the iron-sulfur cluster [2Fe-2S], B-A275T located in the [3Fe-4S] cluster and an additional S at amino acid position 83-84 of sdhC, probably modifying structurally the ubiquinone binding site and therefore the biological activity of the fungicide. No variation was found among the Z. tritici strains in subunits B and D. Two variations were observed within the subunit C sequences of Z. tritici strains: C-N33T and C-N34T. The difference in EC50 values between Z. tritici strains with the NN and TT configuration was non-significant at P=0.289. Two outliers in the Z. tritici group with significantly higher EC50 values that were not related to mutations in the sdhB, sdhC, or sdhD were detected. The role of isopyrazam for the control of F. graminearum and Z. tritici in Luxembourg is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Discovering novel Alternaria solani succinate dehydrogenase inhibitors by in silico modeling and virtual screening strategies to combat early blight

    NARCIS (Netherlands)

    Iftikhar, Sehrish; Shahid, Ahmad A.; Halim, Sobia A.; Wolters, Pieter J.; Vleeshouwers, Vivianne G.A.A.; Khan, Ajmal; Al-Harrasi, Ahmed; Ahmad, Shahbaz

    2017-01-01

    Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH) is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against

  4. Succinate Dehydrogenase Activity Assay in situ with Blue Tetrazolium Salt in Crabtree-Positive Saccharomyces cerevisiae Strain

    Directory of Open Access Journals (Sweden)

    Joanna Berlowska

    2008-01-01

    Full Text Available A spectrophotometric method for determining succinate dehydrogenase (SDH activity assay in azide-sensitive yeast Saccharomyces cerevisiae has been developed. The permeabilization of yeast cells by 0.05 % digitonin permitted to study yeast enzymatic activity in situ. The reduction of blue tetrazolium salt (BT to blue tetrazolium formazan (BTf was conducted in the presence of phenazine methosulphate (PMS as an exogenous electron carrier, and sodium azide (SA as an inhibitor of cytochrome oxidase (Cyt pathway. Various factors such as type of substrate, BT concentration, cell number, temperature and time of incubation, and different Cyt pathway blockers were optimized. In earlier studies, dimethyl sulfoxide (DMSO had been selected as the best solvent for extraction of BTf from yeast cells. The linear correlation between permeabilized yeast cell density and amount of formed formazan was evidenced in the range from 9·10^7 to 5·10^8 cells per sample solution. Below the yeast cell concentration of 10^7 the absorbance values were too low to detect formazans with good precision. This standarized procedure allows the estimation of SDH activity in whole cells, depending on vitality level of yeast populations. Significant increases of succinate dehydrogenase activities were observed in sequential passages as the result of the increase of activity of the strain and adaptation to cultivation conditions.

  5. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  6. Is the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene due to a founder effect in Chinese head and neck paraganglioma patients?

    Science.gov (United States)

    Zha, Yang; Chen, Xing-ming; Lam, Ching-wan; Lee, Soo-chin; Tong, Sui-fan; Gao, Zhi-qiang

    2011-08-01

    Three Chinese patients with head and neck paragangliomas have been reported to carry the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene. In addition, in our hospital, two further patients were identified who have the same mutation. It is unclear whether the c.3G>C mutation in Chinese patients is a recurrent mutation or if it is due to a founder effect. We conducted haplotype analysis on these patients to answer this question. Individual case-control study. Germ-line mutations were confirmed in the patients and their families examined in this study using direct sequencing. We also constructed and analyzed haplotypes in four Chinese families. Genotype frequencies were compared to the control group. Three of four families shared the same haplotype, which rarely occurred in the control group. The last family shared a very short area on the physical map with the other three families. There is a founder effect in Chinese head and neck paraganglioma patients carrying the SDHD c.3G>C mutation. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  8. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Influence of adrenaline on the activity of succinate dehydrogenase in peripheral blood lymphocytes of irradiated rats

    International Nuclear Information System (INIS)

    Koroleva, L.V.; Vasin, M.V.

    1988-01-01

    In experiments with albino mongrel female rats, the influence of adrenaline on succinate dehydrogenase (SDG) activity in the peripheral blood lymphocytes of irradiated and intact animals has been investigated. Two minutes after the intraperitoneal administration of adrenaline (1 mg/kg) to intact rats SDG activity sharply rises and 3-4 min it drastically falls. In 6 to 8 min the second peak in the enzyme activity is registered. Twenty minutes after irradiation of rats in the crano-caudal direction with a dose of 75 Gy delivered to head, the reaction to adrenaline, manifested by the rise in SDG activity, is absent

  10. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Epilepsy Information Page Educational Resources (5 links) Boston Children's Hospital: Seizures and Epilepsy Disease InfoSearch: Succinic semialdehyde ...

  11. A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum.

    Science.gov (United States)

    Wang, Yong; Duan, Yabing; Wang, Jianxin; Zhou, Mingguo

    2015-09-01

    Research has established that mutations in highly conserved amino acids of the succinate dehydrogenase (SDH) complex in various fungi confer SDH inhibitor (SDHI) resistance. For Sclerotinia sclerotiorum (Lib.) de Bary, a necrotrophic fungus with a broad host range and a worldwide distribution, boscalid resistance has been attributed to the mutation H132R in the highly conserved SdhD subunit protein of the SDH complex. In our previous study, however, only one point mutation, A11V in SdhB (GCA to GTA change in SdhB), was detected in S. sclerotiorum boscalid-resistant (BR) mutants. In the current study, replacement of the SdhB gene in a boscalid-sensitive (BS) S. sclerotiorum strain with the mutant SdhB gene conferred resistance. Compared with wild-type strains, BR and GSM (SdhB gene in the wild-type strain replaced by the mutant SdhB gene) mutants were more sensitive to osmotic stress, lacked the ability to produce sclerotia and exhibited lower expression of the pac1 gene. Importantly, the point mutation was not located in the highly conserved sequence of the iron-sulfur subunit of SDH. These results suggest that resistance based on non-conserved vs. conserved protein domains differs in mechanism. In addition to increasing our understanding of boscalid resistance in S. sclerotiorum, the new information will be useful for the development of alternative antifungal drugs. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  12. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    Energy Technology Data Exchange (ETDEWEB)

    Milione, Massimo [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pusceddu, Sara [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Gasparini, Patrizia [Molecular Cytogenetics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Melotti, Flavia [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Maisonneuve, Patrick [Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan 20141 (Italy); Mazzaferro, Vincenzo [Division of Gastrointestinal Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Braud, Filippo G. de [Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Pelosi, Giuseppe, E-mail: giuseppe.pelosi@unimi.it [Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan I-20133 (Italy); Department of Medicine, Surgery and Dentistry, Università degli Studi, Facoltà di Medicina, Milan 20122 (Italy)

    2012-08-16

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene.

  13. Succinate Dehydrogenase B Subunit Immunohistochemical Expression Predicts Aggressiveness in Well Differentiated Neuroendocrine Tumors of the Ileum

    International Nuclear Information System (INIS)

    Milione, Massimo; Pusceddu, Sara; Gasparini, Patrizia; Melotti, Flavia; Maisonneuve, Patrick; Mazzaferro, Vincenzo; Braud, Filippo G. de; Pelosi, Giuseppe

    2012-01-01

    Immunohistochemical loss of the succinate dehydrogenase subunit B (SDHB) has recently been reported as a surrogate biomarker of malignancy in sporadic and familial pheocromocytomas and paragangliomas through the activation of hypoxia pathways. However, data on the prevalence and the clinical implications of SDHB immunoreactivity in ileal neuroendocrine tumors are still lacking. Thirty-one consecutive, advanced primary midgut neuroendocrine tumors and related lymph node or liver metastases from 24 males and seven females were immunohistochemically assessed for SDHB. All patients were G1 tumors (Ki-67 labeling index ≤2%). SDHB immunohistochemistry results were expressed as immunostaining intensity and scored as low or strong according to the internal control represented by normal intestinal cells. Strong positivity for SDHB, with granular cytoplasmatic reactivity, was found in 77% of primary tumors (T), whilst low SDHB expression was detected in 90% of metastases (M). The combined analysis (T+M) confirmed the loss of SDHB expression in 82% of metastases compared to 18% of primary tumors. SDHB expression was inversely correlated with Ki-67 labeling index, which accounted for 1.54% in metastastic sites and 0.7% in primary tumors. A correlation between SDHB expression loss, increased Ki-67 labeling index and biological aggressiveness was shown in advanced midgut neuroendocrine tumors, suggesting a role of tumor suppressor gene

  14. Outcomes of annual surveillance imaging in an adult and paediatric cohort of succinate dehydrogenase B mutation carriers.

    Science.gov (United States)

    Tufton, Nicola; Shapiro, Lucy; Srirangalingam, Umasuthan; Richards, Polly; Sahdev, Anju; Kumar, Ajith V; McAndrew, Lorraine; Martin, Lee; Berney, Daniel; Monson, John; Chew, Shern L; Waterhouse, Mona; Druce, Maralyn; Korbonits, Márta; Metcalfe, Karl; Drake, William M; Storr, Helen L; Akker, Scott A

    2017-02-01

    For 'asymptomatic carriers' of the succinate dehydrogenase subunit B (SDHB) gene mutations, there is currently no consensus as to the appropriate modality or frequency of surveillance imaging. We present the results of a surveillance programme of SDHB mutation carriers. Review of clinical outcomes of a surveillance regimen in patients identified to have an SDHB gene mutation, based on annual MRI, in a single UK tertiary referral centre. A total of 92 patients were identified with an SDHB gene mutation. a total of 27 index patients presented with symptoms, and 65 patients were identified as asymptomatic carriers. Annual MRI of the abdomen, with alternate year MRI of the neck, thorax and pelvis. Presence of an SDHB-related tumour included paraganglioma (PGL), phaeochromocytoma (PCC), renal cell carcinoma (RCC) and gastrointestinal stromal tumour (GIST). A total of 43 PGLs, eight PCCs and one RCC occurred in the 27 index patients (23 solitary, four synchronous, five metachronous). A further 15 SDHB-related tumours (11 PGLs, three RCCs, one GIST) were identified in the asymptomatic carriers on surveillance screening (25% of screened carriers): 10 on the first surveillance imaging and five on subsequent imaging 2-6 years later. A total of 11 patients had malignant disease. SDHB-related tumours are picked up as early as 2 years after initial negative surveillance scan. We believe the high malignancy rate and early identification rate of tumours justifies the use of 1-2 yearly imaging protocols and MRI-based imaging could form the mainstay of surveillance in this patient group thereby minimizing radiation exposure. © 2016 John Wiley & Sons Ltd.

  15. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors.

    Science.gov (United States)

    Ye, Yong-Hao; Ma, Liang; Dai, Zhi-Cheng; Xiao, Yu; Zhang, Ying-Ying; Li, Dong-Dong; Wang, Jian-Xin; Zhu, Hai-Liang

    2014-05-07

    Thirty-eight nicotinamide derivatives were designed and synthesized as potential succinate dehydrogenase inhibitors (SDHI) and precisely characterized by (1)H NMR, ESI-MS, and elemental analysis. The compounds were evaluated against two phytopathogenic fungi, Rhizoctonia solani and Sclerotinia sclerotiorum, by mycelia growth inhibition assay in vitro. Most of the compounds displayed moderate activity, in which, 3a-17 exhibited the most potent antifungal activity against R. solani and S. sclerotiorum with IC50 values of 15.8 and 20.3 μM, respectively, comparable to those of the commonly used fungicides boscalid and carbendazim. The structure-activity relationship (SAR) of nicotinamide derivatives demonstrated that the meta-position of aniline was a key position contributing to the antifungal activity. Inhibition activities against two fungal SDHs were tested and achieved the same tendency with the data acquired from in vitro antifungal assay. Significantly, 3a-17 was demonstrated to successfully suppress disease development in S. sclerotiorum infected cole in vivo. In the molecular docking simulation, sulfur and chlorine of 3a-17 were bound with PHE291 and PRO150 of the SDH homology model, respectively, which could explain the probable mechanism of action between the inhibitory and target protein.

  16. Comparative analysis of succinate dehydrogenase activity in mammalian peripheral blood lymphocytes and radiomodifying action of gas hypoxis mixtures

    International Nuclear Information System (INIS)

    Gajdamakin, A.N.; Abramov, M.M.

    1987-01-01

    Radiprotective efficiency of gas hypoxic mixtures (GHM) containing 5-12% of oxygen and the rate of the reaction of succinate dehydrogenase (V SDG ) activity in peripheral blood lymphocytes upon breathing GHM were comparatively studied in rats and dogs. V SDG was 4393.5 (%O 2 ) -2,58 and 130.76 (%O 2 ) -1.42 in dogs and rats respectively. Taking into account that DMF in rats is a function of oxygen concentration in the mixture one can obtain a formula for determining a dose modifying factors (DMF) as a function of the rate of SDG activity reaction

  17. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji

    2016-06-01

    Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Short-Term Pretreatment of Sub-Inhibitory Concentrations of Gentamycin Inhibits the Swarming Motility of Escherichia Coli by Down-Regulating the Succinate Dehydrogenase Gene

    Directory of Open Access Journals (Sweden)

    Yijing Zhuang

    2016-09-01

    Full Text Available Background/Aims: Motility is a feature of many pathogens that contributes to the migration and dispersion of the infectious agent. Whether gentamycin has a post-antibiotic effect (PAE on the swarming and swimming motility of Escherichia coli (E. coli remains unknown. In this study, we aimed to examine whether short-term pretreatment of sub-inhibitory concentrations of gentamycin alter motility of E. coli and the mechanisms involved therein. Methods: After exposure to sub-inhibitory concentrations (0.8 μg/ml of gentamicin, the swarming and swimming motility of E. coli was tested in semi-solid media. Real-time PCR was used to detect the gene expression of succinate dehydrogenase (SDH. The production of SDH and fumarate by E. coli pretreated with or without gentamycin was measured. Fumarate was added to swarming agar to determine whether fumarate could restore the swarming motility of E. coli. Results: After pretreatment of E. coli with sub-inhibitory concentrations of gentamycin, swarming motility was repressed in the absence of growth inhibition. The expression of all four subunits of SDH was down-regulated, and the intracellular concentration of SDH and fumarate, produced by E. coli, were both decreased. Supplementary fumarate could restore the swarming motility inhibited by gentamycin. A selective inhibitor of SDH (propanedioic acid could strongly repress the swarming motility. Conclusion: Sub-inhibitory concentrations of gentamycin inhibits the swarming motility of E. coli. This effect is mediated by a reduction in cellular fumarate caused by down-regulation of SDH. Gentamycin may be advantageous for treatment of E. coli infections.

  19. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    Science.gov (United States)

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  20. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis.

    Science.gov (United States)

    Huang, Shaobai; Taylor, Nicolas L; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2013-02-01

    Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co-expressed with a number of genes encoding mitochondrial proteins, including SDH1-1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin-adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein-bound flavin-adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro-respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  1. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD.

    Science.gov (United States)

    Andrews, Katrina A; Ascher, David B; Pires, Douglas Eduardo Valente; Barnes, Daniel R; Vialard, Lindsey; Casey, Ruth T; Bradshaw, Nicola; Adlard, Julian; Aylwin, Simon; Brennan, Paul; Brewer, Carole; Cole, Trevor; Cook, Jackie A; Davidson, Rosemarie; Donaldson, Alan; Fryer, Alan; Greenhalgh, Lynn; Hodgson, Shirley V; Irving, Richard; Lalloo, Fiona; McConachie, Michelle; McConnell, Vivienne P M; Morrison, Patrick J; Murday, Victoria; Park, Soo-Mi; Simpson, Helen L; Snape, Katie; Stewart, Susan; Tomkins, Susan E; Wallis, Yvonne; Izatt, Louise; Goudie, David; Lindsay, Robert S; Perry, Colin G; Woodward, Emma R; Antoniou, Antonis C; Maher, Eamonn R

    2018-06-01

    Germline pathogenic variants in SDHB/SDHC / SDHD are the most frequent causes of inherited phaeochromocytomas/paragangliomas. Insufficient information regarding penetrance and phenotypic variability hinders optimum management of mutation carriers. We estimate penetrance for symptomatic tumours and elucidate genotype-phenotype correlations in a large cohort of SDHB/SDHC / SDHD mutation carriers. A retrospective survey of 1832 individuals referred for genetic testing due to a personal or family history of phaeochromocytoma/paraganglioma. 876 patients (401 previously reported) had a germline mutation in SDHB/SDHC / SDHD (n=673/43/160). Tumour risks were correlated with in silico structural prediction analyses. Tumour risks analysis provided novel penetrance estimates and genotype-phenotype correlations. In addition to tumour type susceptibility differences for individual genes, we confirmed that the SDHD: p.Pro81Leu mutation has a distinct phenotype and identified increased age-related tumour risks with highly destabilising SDHB missense mutations. By Kaplan-Meier analysis, the penetrance (cumulative risk of clinically apparent tumours) in SDHB and (paternally inherited) SDHD mutation-positive non-probands (n=371/67 with detailed clinical information) by age 60 years was 21.8% (95% CI 15.2% to 27.9%) and 43.2% (95% CI 25.4% to 56.7%), respectively. Risk of malignant disease at age 60 years in non-proband SDHB mutation carriers was 4.2%(95% CI 1.1% to 7.2%). With retrospective cohort analysis to adjust for ascertainment, cumulative tumour risks for SDHB mutation carriers at ages 60 years and 80 years were 23.9% (95% CI 20.9% to 27.4%) and 30.6% (95% CI 26.8% to 34.7%). Overall risks of clinically apparent tumours for SDHB mutation carriers are substantially lower than initially estimated and will improve counselling of affected families. Specific genotype-tumour risk associations provides a basis for novel investigative strategies into succinate dehydrogenase

  2. Hyperthermo-chemo-radiotherapy for patients with carcinoma of the esophagus and prediction of the clinical remedial value using the in vitro succinate dehydrogenase inhibition test

    International Nuclear Information System (INIS)

    Matsuda, Hiroyuki; Sugimachi, Keizo; Ohno, Shinji; Mori, Masaki; Kuwano, Hiroyuki; Maehara, Yoshihiko

    1989-01-01

    Hyperthermia combined with irradiation and chemotherapy was prescribed for patients with resectable (n=88) and unresectable (n=36) carcinoma of the esophagus. The histopathological effectiveness, and the long term results were compared between two groups of patients treated with hyperthermo-chemo-radiotherapy (HCR therapy) and those treated with chemoradiotherapy (CR therapy). A correlation between the hyperthermia sensitivity test, using the in vitro succinate dehydrogenase inhibition test, and the clinical remedial value was also examined in malignant tissues from 47 patients with esophageal cancer, and treated with HCR therapy. In the resected cases, preoperative HCR therapy resulted in a significantly higher histopathological effectiveness rate (69%) compared with that in cases treated by CR therapy (48%) (P<0.05). The long term results of patients with both resectable and unresectable carcinoma, given HCR therapy were significanly better than those given CR therapy (P<0.05). On the other hand, the clinical remedial value, determined radiographically showed a correlation rate of 77% to the hyperthermia sensitivity test. Thus, the HCR therapy resulted in not only a higher histopathological effectiveness rate but also a significantly longer survival without severe side effects, and this hyperthermia sensitivity test using the succinate dehydrogenase inhibition test facilitates prediction of the outcome of the HCR therapy. (author)

  3. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  4. Cloning and expression of the Escherichia coli K-12 sad gene.

    OpenAIRE

    Marek, L E; Henson, J M

    1988-01-01

    The Escherichia coli K-12 sad gene, which encodes an NAD-dependent succinic semialdehyde dehydrogenase, was cloned into a high-copy-number vector. Minicells carrying a sad+ plasmid produced a 55,000-dalton peptide, the probable sad gene product.

  5. The Succinated Proteome of FH-Mutant Tumours

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2014-08-01

    Full Text Available Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC. Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succinocysteine (2SC. Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH, kelch-like ECH-associated protein 1 (KEAP1 and mitochondrial aconitase (ACO2 can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC.

  6. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Cirera, Susanna

    2007-01-01

    -microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase I (HPRT I), ribosomal protein L4 (RPL4), succinate dehydrogenase complex subunit A (SDHA), TATA box binding protein (TPB) and tyrosine 3-monooxygenase/tryptophan 5......-monooxygenase activation protein zeta polypeptide (YWHAZ). The stability of these reference genes in different pig tissues was investigated using the geNorm application. The range of expression stability in the genes analysed was (from the most stable to the least stable): ACTB/RPL4, TBP, HPRT, HMBS, YWHAZ...

  7. Effect of low dose x irradiation on the succinate dehydrogenase activity of guinea pig, rat and mouse tissues

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V C; Bhatavdekar, J M; Aravinda Babu, K [Gujarat Univ., Ahmedabad (India). Dept. of Zoology

    1976-07-01

    The histochemical changes in succinate dehydrogenase (SDH) were investigated in pectoralis major muscle of guinea pig, rat and mouse after level X-irradiation (72 R and 240 R) and compared with control animals. Biochemical studies were carried out on liver, kidney, muscle (pectoralis major), adrenal and spleen of these animals after low dose local X-irradiation and compared with control animals. Changes in SDH activity were studied up to 72-h post-irradiation, which shows that low dose local X-irradiation leads to increased enzymic activity. The increase in enzymic activity was remarkable in mouse tissues as compared with guinea pig and rat. Adrenals of all the three animals showed significant activation after all the doses of radiation studied. The significance of these results, with special reference to oxidative metabolism, has been discussed.

  8. Successful chemotherapy of hepatic metastases in a case of succinate dehydrogenase subunit B-related paraganglioma.

    Science.gov (United States)

    He, J; Makey, D; Fojo, T; Adams, K T; Havekes, B; Eisenhofer, G; Sullivan, P; Lai, E W; Pacak, K

    2009-10-01

    Compared to other familial pheochromocytoma/paragangliomas (PHEO/PGLs), the succinate dehydrogenase subunit B (SDHB)-related PHEO/PGLs often present with aggressive and rapidly growing metastatic lesions. Currently, there is no proven effective treatment for malignant PHEO/PGLs. Here, we present a 35-year-old white man with primary malignant abdominal extra-adrenal 11 cm paraganglioma underwent surgical successful resection. But 6 months later, he developed extensive bone, liver, and lymph nodes metastasis, which were demonstrated by computed tomography scan and the (18)F-fluorodeoxyglucose positron emission tomography. However, his (123)I-metaiodobenzylguanidine scintigraphy was negative; therefore, the cyclophosphamide, vincristine, and dacarbazine (CVD) combination chemotherapy was initiated. The combination chemotherapy was very effective showing 80% overall reduction in the liver lesions and 75% overall reduction in the retroperitoneal mass and adenopathy, and normalization of plasma catecholamine and metanephrine levels. However, plasma levels of dopamine (DA) and methoxytyramine (MTY) were only partially affected and remained consistently elevated throughout the remaining period of follow-up evaluation. Genetic testing revealed an SDHB gene mutation. Here, we present an SDHB-related PHEO/PGL patient with extensive tumor burden, numerous organ lesions, and rapidly growing tumors, which responded extremely well to CVD therapy. We conclude patients with SDHB-related PHEO/PGLs can be particularly sensitive to CVD chemotherapy and may have an excellent outcome if this therapy is used and continued on periodic basis. The data in this patient also illustrate the importance of measuring plasma levels of DA and MTY to provide a more complete and accurate assessment of the biochemical response to therapy than provided by measurements restricted to other catecholamines and O-methylated metabolites.

  9. Discovering Novel Alternaria solani Succinate Dehydrogenase Inhibitors by in Silico Modeling and Virtual Screening Strategies to Combat Early Blight

    Directory of Open Access Journals (Sweden)

    Sehrish Iftikhar

    2017-11-01

    Full Text Available Alternaria blight is an important foliage disease caused by Alternaria solani. The enzyme Succinate dehydrogenase (SDH is a potential drug target because of its role in tricarboxylic acid cycle. Hence targeting Alternaria solani SDH enzyme could be efficient tool to design novel fungicides against A. solani. We employed computational methodologies to design new SDH inhibitors using homology modeling; pharmacophore modeling and structure based virtual screening. The three dimensional SDH model showed good stereo-chemical and structural properties. Based on virtual screening results twelve commercially available compounds were purchased and tested in vitro and in vivo. The compounds were found to inhibit mycelial growth of A. solani. Moreover in vitro trials showed that inhibitory effects were enhanced with increase in concentrations. Similarly increased disease control was observed in pre-treated potato tubers. Hence the applied in silico strategy led us to identify novel fungicides.

  10. Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase by alpha-tocopheryl succinate

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Vokurková, Martina; Drahota, Zdeněk

    2014-01-01

    Roč. 53, AUG (2014), s. 409-413 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP304/12/0259 Institutional support: RVO:67985823 Keywords : brown adipose tissue mitochondria * oxygen consumption * glycerol-3-phosphate * succinate * reactive oxygen species Subject RIV: ED - Physiology Impact factor: 4.046, year: 2014

  11. Selection of reference genes for qRT-PCR analysis of gene expression in sea cucumber Apostichopus japonicus during aestivation

    Science.gov (United States)

    Zhao, Ye; Chen, Muyan; Wang, Tianming; Sun, Lina; Xu, Dongxue; Yang, Hongsheng

    2014-11-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a technique that is widely used for gene expression analysis, and its accuracy depends on the expression stability of the internal reference genes used as normalization factors. However, many applications of qRT-PCR used housekeeping genes as internal controls without validation. In this study, the expression stability of eight candidate reference genes in three tissues (intestine, respiratory tree, and muscle) of the sea cucumber Apostichopus japonicus was assessed during normal growth and aestivation using the geNorm, NormFinder, delta CT, and RefFinder algorithms. The results indicate that the reference genes exhibited significantly different expression patterns among the three tissues during aestivation. In general, the β-tubulin (TUBB) gene was relatively stable in the intestine and respiratory tree tissues. The optimal reference gene combination for intestine was 40S ribosomal protein S18 (RPS18), TUBB, and NADH dehydrogenase (NADH); for respiratory tree, it was β-actin (ACTB), TUBB, and succinate dehydrogenase cytochrome B small subunit (SDHC); and for muscle it was α-tubulin (TUBA) and NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 13 (NDUFA13). These combinations of internal control genes should be considered for use in further studies of gene expression in A. japonicus during aestivation.

  12. A novel ALDH5A1 mutation is associated with succinic semialdehyde dehydrogenase deficiency and severe intellectual disability in an Iranian family.

    Science.gov (United States)

    Püttmann, Lucia; Stehr, Henning; Garshasbi, Masoud; Hu, Hao; Kahrizi, Kimia; Lipkowitz, Bettina; Jamali, Payman; Tzschach, Andreas; Najmabadi, Hossein; Ropers, Hans-Hilger; Musante, Luciana; Kuss, Andreas W

    2013-08-01

    Succinic semialdehyde dehydrogenase (SSADH) deficiency is a disorder of the catabolism of the neurotransmitter gamma-aminobutyric acid (GABA) with a very variable clinical phenotype ranging from mild intellectual disability to severe neurological defects. We report here on a large Iranian family with four affected patients presenting with severe intellectual disability, developmental delay and generalized tonic-clonic seizures. Molecular genetic analysis revealed a missense mutation c.901A>G (p.K301E, RefSeq number NM_001080) in ALDH5A1 co-segregating with the disease in the family. The missense mutation affects an amino acid residue that is highly conserved across the animal kingdom. Protein modeling showed that p.K301E most likely leads to a loss of NAD(+) binding and a predicted decrease in the free energy by 6.67 kcal/mol furthermore suggests a severe destabilization of the protein. In line with these in silico observations, no SSADH enzyme activity could be detected in patient lymphoblasts. Copyright © 2013 Wiley Periodicals, Inc.

  13. Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol.

    Science.gov (United States)

    Wu, Bin; Luo, Hong; Zhou, Xu; Cheng, Cai-Yi; Lin, Lin; Liu, Bao-Lin; Liu, Kang; Li, Ping; Yang, Hua

    2017-09-01

    Mitochondrial dysfunction is known as one of causative factors in ischemic stroke, leading to neuronal cell death. The present work was undertaken to investigate whether succinate induces neuron apoptosis by regulating mitochondrial morphology and function. In neurons, oxygen-glucose deprivation induced succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation, leading to mitochondrial fission. Kaempferol inhibited mitochondrial fission and maintained mitochondrial HK-II through activation of Akt, and thereby protected neurons from succinate-mediated ischemi injury. Knockdown of Akt2 with siRNA diminished the effect of kaempferol, indicating that kaempferol suppressed dynamin-related protein 1 (Drp1) activation and promoted HK-II mitochondrial binding dependently on Akt. Moreover, we demonstrated that kaempferol potentiated autophagy during oxygen and glucose deprivation, contributing to protecting neuron survival against succinate insult. In vivo, oral administration of kaempferol in mice attenuated the infract volume after ischemic and reperfusion (I/R) injury and reproduced the similar mitochondrial protective effect in the brain infract area. This study indicates that succinate accumulation plays a pivotal role in I/R injury-induced neuronal mitochondrial dysfunction, and suggests that modulation of Drp1 phosphorylation might be potential therapeutic strategy to protect neuron mitochondrial integrity and treat ischemic stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Succinated Proteome

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  15. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum.

    Science.gov (United States)

    Chung, Soon-Chun; Park, Joon-Song; Yun, Jiae; Park, Jin Hwan

    2017-03-01

    Succinate is a renewable-based platform chemical that may be used to produce a wide range of chemicals including 1,4-butanediol, tetrahydrofurane, and γ-butyrolactone. However, industrial fermentation of organic acids is often subject to end-product inhibition, which significantly retards cell growth and limits metabolic activities and final productivity. In this study, we report the development of metabolically engineered Corynebacterium glutamicum for high production of succinate by release of end-product inhibition coupled with an increase of key metabolic flux. It was found that the rates of glucose consumption and succinate production were significantly reduced by extracellular succinate in an engineered strain, S003. To understand the mechanism underlying the inhibition by succinate, comparative transcriptome analysis was performed. Among the downregulated genes, overexpression of the NCgl0275 gene was found to suppress the inhibition of glucose consumption and succinate production, resulting in a 37.7% increase in succinate production up to 55.4g/L in fed-batch fermentation. Further improvement was achieved by increasing the metabolic flux from PEP to OAA. The final engineered strain was able to produce 152.2g/L succinate, the highest production reported to date, with a yield of 1.1g/g glucose under anaerobic condition. These results suggest that the release of end-product inhibition coupled with an increase in key metabolic flux is a promising strategy for enhancing production of succinate. Copyright © 2017. Published by Elsevier Inc.

  16. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  17. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  18. Ferulenol specifically inhibits succinate ubiquinone reductase at the level of the ubiquinone cycle

    International Nuclear Information System (INIS)

    Lahouel, Mesbah; Zini, Roland; Zellagui, Ammar; Rhouati, Salah; Carrupt, Pierre-Alain; Morin, Didier

    2007-01-01

    The natural compound ferulenol, a sesquiterpene prenylated coumarin derivative, was purified from Ferula vesceritensis and its mitochondrial effects were studied. Ferulenol caused inhibition of oxidative phoshorylation. At low concentrations, ferulenol inhibited ATP synthesis by inhibition of the adenine nucleotide translocase without limitation of mitochondrial respiration. At higher concentrations, ferulenol inhibited oxygen consumption. Ferulenol caused specific inhibition of succinate ubiquinone reductase without altering succinate dehydrogenase activity of the complex II. This inhibition results from a limitation of electron transfers initiated by the reduction of ubiquinone to ubiquinol in the ubiquinone cycle. This original mechanism of action makes ferulenol a useful tool to study the physiological role and the mechanism of electron transfer in the complex II. In addition, these data provide an additional mechanism by which ferulenol may alter cell function and demonstrate that mitochondrial dysfunction is an important determinant in Ferula plant toxicity

  19. THE SUCCINATED PROTEOME

    OpenAIRE

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John W.; Frizzell, Norma

    2013-01-01

    The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino) cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of th...

  20. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  1. Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer

    OpenAIRE

    St?rmer, T; Wang-Gohrke, S; Arndt, V; Boeing, H; Kong, X; Kreienberg, R; Brenner, H

    2002-01-01

    MaeIII Restriction Fragment Length Polymorphism in exon 3 of the alcohol dehydrogenase II was assessed in serum from 467 randomly selected German women and 278 women with invasive breast cancer to evaluate the interaction between a polymorphism of the alcohol dehydrogenase II gene, alcohol consumption and risk for breast cancer. In both groups, usual consumption of different alcoholic beverages was asked for using semiquantitative food frequency questionnaires. We used multivariable logistic ...

  2. Effect of succinic acid concentration in poly(glycerol citrate/succinate) properties

    International Nuclear Information System (INIS)

    Brioude, Michel M.; Guimaraes, Danilo H.; Fiuza, Raigenis P.; Jose, Nadia M.

    2011-01-01

    In this work were prepared and characterized polymer based on glycerol, citric and succinic acid, in three different ratios to evaluate the effect of succinic acid concentration in materials properties. The polymers were obtained by polycondensation reaction between polyol and poly acids, and were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning differential calorimetry (DSC), scanning electron microscopy (SEM). The materials are amorphous polyesters and its thermal and morphological properties change depending on the succinic acid concentration. (author)

  3. Novel chiral tool, (R)-2-octanol dehydrogenase, from Pichia finlandica: purification, gene cloning, and application for optically active α-haloalcohols.

    Science.gov (United States)

    Yamamoto, Hiroaki; Kudoh, Masatake

    2013-09-01

    A novel enantioselective alcohol dehydrogenase, (R)-2-octanol dehydrogenase (PfODH), was discovered among methylotrophic microorganisms. The enzyme was purified from Pichia finlandica and characterized. The molecular mass of the enzyme was estimated to be 83,000 and 30,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The enzyme was an NAD(+)-dependent secondary alcohol dehydrogenase and showed a strict enantioselectivity, very broad substrate specificity, and high tolerance to SH reagents. A gene-encoding PfODH was cloned and sequenced. The gene consisted of 765 nucleotides, coding polypeptides of 254 amino acids. The gene was singly expressed and coexpressed together with a formate dehydrogenase as an NADH regenerator in an Escherichia coli. Ethyl (S)-4-chloro-3-hydroxybutanoate and (S)-2-chloro-1-phenylethanol were synthesized using a whole-cell biocatalyst in more than 99 % optical purity.

  4. Succinic Acid: Technology Development and Commercialization

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2017-06-01

    Full Text Available Succinic acid is a precursor of many important, large-volume industrial chemicals and consumer products. It was once common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. However, it was not until the discovery of Anaerobiospirillum succiniciproducens at the Michigan Biotechnology Institute (MBI, which was capable of producing succinic acid up to about 50 g/L under optimum conditions, that the commercial feasibility of producing the compound by biological processes was realized. Other microbial strains capable of producing succinic acid to high final concentrations subsequently were isolated and engineered, followed by development of fermentation processes for their uses. Processes for recovery and purification of succinic acid from fermentation broths were simultaneously established along with new applications of succinic acid, e.g., production of biodegradable deicing compounds and solvents. Several technologies for the fermentation-based production of succinic acid and the subsequent conversion to useful products are currently commercialized. This review gives a summary of the development of microbial strains, their fermentation, and the importance of the down-stream recovery and purification efforts to suit various applications in the context of their current commercialization status for biologically derived succinic acid.

  5. Prospects for a bio-based succinate industry.

    Science.gov (United States)

    McKinlay, James B; Vieille, C; Zeikus, J Gregory

    2007-09-01

    Bio-based succinate is receiving increasing attention as a potential intermediary feedstock for replacing a large petrochemical-based bulk chemical market. The prospective economical and environmental benefits of a bio-based succinate industry have motivated research and development of succinate-producing organisms. Bio-based succinate is still faced with the challenge of becoming cost competitive against petrochemical-based alternatives. High succinate concentrations must be produced at high rates, with little or no by-products to most efficiently use substrates and to simplify purification procedures. Herein are described the current prospects for a bio-based succinate industry, with emphasis on specific bacteria that show the greatest promise for industrial succinate production. The succinate-producing characteristics and the metabolic pathway used by each bacterial species are described, and the advantages and disadvantages of each bacterial system are discussed.

  6. Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress

    Czech Academy of Sciences Publication Activity Database

    Pospíšilová, H.; Jiskrová, E.; Vojta, P.; Mrízová, K.; Kokáš, F.; Majeská Čudějková, M.; Bergougnoux, V.; Plíhal, O.; Klimešová, J.; Novák, Ondřej; Dzurová, L.; Frébort, I.; Galuszka, P.

    2016-01-01

    Roč. 33, č. 5 (2016), s. 692-705 ISSN 1871-6784 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : ROOT-GROWTH * OXIDASE/DEHYDROGENASE GENES * BETA-GLUCOSIDASE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2016

  7. Effect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate, Poly(butylene succinate, and Poly(hexylene succinate

    Directory of Open Access Journals (Sweden)

    Zhenhui Bai

    2018-01-01

    Full Text Available Poly(ethylene succinate (PES, poly(butylene succinate (PBS, and poly(hexylene succinate (PHS, were synthesized using succinic acid and different dihydric alcohols as materials. Enzymatic degradability by cutinase of the three kinds of polyesters was studied, as well as their solid-state properties. The biodegradation behavior relied heavily on the distance between ester groups, crystallinity, and the hydrophilicity-hydrophobicity balance of polyester surfaces. The weight loss through degradation of the three kinds of polyesters with different hydroxyl monomers took place in the order PHS > PBS > PES. The degradation behavior of the polyesters before and after degradation was analyzed by scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The decrease in relative intensity at 1800–1650 estedpolyesters were degraded simultaneously. The frequencies of the crystalline and amorphous bands were almost identical before and after degradation. Thus, enzymatic degradation did not change the crystalline structure but destroyed it, and the degree of crystallinity markedly decreased. The molecular weight and polydispersity index only changed slightly. The thermal stability of the three kinds of polyesters decreased during enzymatic degradation.

  8. 21 CFR 582.1091 - Succinic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Succinic acid. 582.1091 Section 582.1091 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1091 Succinic acid. (a) Product. Succinic acid. (b) Conditions of use. This substance is generally...

  9. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    Science.gov (United States)

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  10. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    Directory of Open Access Journals (Sweden)

    Takashi eOsanai

    2015-10-01

    Full Text Available Succinate is a building block compound that the U.S. Department of Energy has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching 5 times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  11. Succinic acid production from Jerusalem artichoke

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Karakashev, Dimitar Borisov; Angelidaki, Irini

    In this work, A. succinogenes 130Z was used to produce succinic acid from Jerusalem artichoke tuber hydrolysate. Results showed that both fructose and glucose in the tuber hydrolysate were utilized for succinic acid production. The sugar utilization was found to be dependent on process control...... that Jerusalem artichoke tubers could be utilized for production of bio-succinic acid....

  12. 21 CFR 184.1091 - Succinic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It is...

  13. A Toolbox for Quantitative Gene Expression in Varroa destructor: RNA Degradation in Field Samples and Systematic Analysis of Reference Gene Stability.

    Directory of Open Access Journals (Sweden)

    Ewan M Campbell

    Full Text Available Varroa destructor is the major pest of Apis mellifera and contributes to the global honey bee health crisis threatening food security. Developing new control strategies to combat Varroa will require the application of molecular biology, including gene expression studies by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR. Both high quality RNA samples and suitable stable internal reference genes are required for accurate gene expression studies. In this study, ten candidate genes (succinate dehydrogenase (SDHA, NADH dehydrogenase (NADH, large ribsosmal subunit, TATA-binding protein, glyceraldehyde-3-phosphate dehydrogenase, 18S rRNA (18S, heat-shock protein 90 (HSP90, cyclophilin, α-tubulin, actin, were evaluated for their suitability as normalization genes using the geNorm, Normfinder, BestKeeper, and comparative ΔCq algorithims. Our study proposes the use of no more than two of the four most stable reference genes (NADH, 18S, SDHA and HSP90 in Varroa gene expression studies. These four genes remain stable in phoretic and reproductive stage Varroa and are unaffected by Deformed wing virus load. When used for determining changes in vitellogenin gene expression, the signal-to-noise ratio (SNR for the relatively unstable genes actin and α-tubulin was much lower than for the stable gene combinations (NADH + HSP90 +18S; NADH + HSP90; or NADH. Using both electropherograms and RT-qPCR for short and long amplicons as quality controls, we demonstrate that high quality RNA can be recovered from Varroa up to 10 days later stored at ambient temperature if collected into RNAlater and provided the body is pierced. This protocol allows the exchange of Varroa samples between international collaborators and field sample collectors without requiring frozen collection or shipping. Our results make important contributions to gene expression studies in Varroa by proposing a validated sampling protocol to obtain high quality Varroa

  14. Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family.

    Science.gov (United States)

    Habenicht, A; Quesada, A; Cerff, R

    1997-10-01

    A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.

  15. The Metabolic Basis of Kidney Cancer

    Science.gov (United States)

    Linehan, W. Marston; Ricketts, Christopher J.

    2012-01-01

    Kidney cancer is not a single disease; it is made up of a number of different types of cancer that occur in the kidney. Each of these different types of kidney cancer can have a different histology, have a different clinical course, can respond differently to therapy and is caused by a different gene. Kidney cancer is essentially a metabolic disease; each of the known genes for kidney cancer, VHL, MET, FLCN, TSC1, TSC2, TFE3, TFEB, MITF, fumarate hydratase (FH), succinate dehydrogenase B (SDHB), succinate dehydrogenase D (SDHD), and PTEN genes is involved in the cells ability to sense oxygen, iron, nutrients or energy. Understanding the metabolic basis of kidney cancer will hopefully provide the foundation for the development of effective forms of therapy for this disease. PMID:22705279

  16. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  17. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism

    Directory of Open Access Journals (Sweden)

    Tomohisa Hasunuma

    2016-12-01

    Full Text Available Succinate produced by microorganisms can replace currently used petroleum-based succinate but typically requires mono- or poly-saccharides as a feedstock. The cyanobacterium Synechocystis sp. PCC6803 can produce organic acids such as succinate from CO2 not supplemented with sugars under dark anoxic conditions using an unknown metabolic pathway. The TCA cycle in cyanobacteria branches into oxidative and reductive routes. Time-course analyses of the metabolome, transcriptome and metabolic turnover described here revealed dynamic changes in the metabolism of Synechocystis sp. PCC6803 cultivated under dark anoxic conditions, allowing identification of the carbon flow and rate-limiting steps in glycogen catabolism. Glycogen biosynthesized from CO2 assimilated during periods of light exposure is catabolized to succinate via glycolysis, the anaplerotic pathway, and the reductive TCA cycle under dark anoxic conditions. Expression of the phosphoenolpyruvate (PEP carboxylase gene (ppc was identified as a rate-limiting step in succinate biosynthesis and this rate limitation was alleviated by ppc overexpression, resulting in improved succinate excretion. The sugar-free succinate production was further enhanced by the addition of bicarbonate. In vivo labeling with NaH13CO3 clearly showed carbon incorporation into succinate via the anaplerotic pathway. Bicarbonate is in equilibrium with CO2. Succinate production by Synechocystis sp. PCC6803 therefore holds significant promise for CO2 capture and utilization. Keywords: Autofermentation, Cyanobacteria, Dynamic metabolic profiling, Metabolomics, Succinate, Synechocystis

  18. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  19. Enhancing succinic acid biosynthesis in Escherichia coli by engineering its global transcription factor, catabolite repressor/activator (Cra).

    Science.gov (United States)

    Zhu, Li-Wen; Xia, Shi-Tao; Wei, Li-Na; Li, Hong-Mei; Yuan, Zhan-Peng; Tang, Ya-Jie

    2016-11-04

    This study was initiated to improve E. coli succinate production by engineering the E. coli global transcription factor, Cra (catabolite repressor/activator). Random mutagenesis libraries were generated through error-prone PCR of cra. After re-screening and mutation site integration, the best mutant strain was Tang1541, which provided a final succinate concentration of 79.8 ± 3.1 g/L: i.e., 22.8% greater than that obtained using an empty vector control. The genes and enzymes involved in phosphoenolpyruvate (PEP) carboxylation and the glyoxylate pathway were activated, either directly or indirectly, through the mutation of Cra. The parameters for interaction of Cra and DNA indicated that the Cra mutant was bound to aceBAK, thereby activating the genes involved in glyoxylate pathway and further improving succinate production even in the presence of its effector fructose-1,6-bisphosphate (FBP). It suggested that some of the negative effect of FBP on Cra might have been counteracted through the enhanced binding affinity of the Cra mutant for FBP or the change of Cra structure. This work provides useful information about understanding the transcriptional regulation of succinate biosynthesis.

  20. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations

    NARCIS (Netherlands)

    J.P. Bayley; R.A. Oldenburg (Rogier); J. Nuk (Jennifer); A.S. Hoekstra (Attje S.); C.A. van der Meer (Conny); E. Korpershoek (Esther); B. McGillivray (Barbara); E.P. Corssmit (Eleonora); W.N.M. Dinjens (Winand); R.R. de Krijger (Ronald); P. Devilee (Peter); J.C. Jansen (Jeroen); F.J. Hes (Frederik)

    2014-01-01

    textabstractThe SDHD gene encodes a subunit of the mitochondrial tricarboxylic acid cycle enzyme and tumor suppressor, succinate dehydrogenase. Mutations in this gene show a remarkable pattern of parent-of-origin related tumorigenesis, with almost all SDHD-related cases of head and neck

  1. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Science.gov (United States)

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  2. Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

    Directory of Open Access Journals (Sweden)

    Yaou Xu

    2013-06-01

    Full Text Available The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1 gene in yak (Bos grunniens. Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD+ or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

  3. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  4. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.

    Science.gov (United States)

    Agren, Rasmus; Otero, José Manuel; Nielsen, Jens

    2013-07-01

    In this work, we describe the application of a genome-scale metabolic model and flux balance analysis for the prediction of succinic acid overproduction strategies in Saccharomyces cerevisiae. The top three single gene deletion strategies, Δmdh1, Δoac1, and Δdic1, were tested using knock-out strains cultivated anaerobically on glucose, coupled with physiological and DNA microarray characterization. While Δmdh1 and Δoac1 strains failed to produce succinate, Δdic1 produced 0.02 C-mol/C-mol glucose, in close agreement with model predictions (0.03 C-mol/C-mol glucose). Transcriptional profiling suggests that succinate formation is coupled to mitochondrial redox balancing, and more specifically, reductive TCA cycle activity. While far from industrial titers, this proof-of-concept suggests that in silico predictions coupled with experimental validation can be used to identify novel and non-intuitive metabolic engineering strategies.

  5. Succinate production positively correlates with the affinity of the global transcription factor Cra for its effector FBP in Escherichia coli.

    Science.gov (United States)

    Wei, Li-Na; Zhu, Li-Wen; Tang, Ya-Jie

    2016-01-01

    Effector binding is important for transcription factors, affecting both the pattern and function of transcriptional regulation to alter cell phenotype. Our previous work suggested that the affinity of the global transcription factor catabolite repressor/activator (Cra) for its effector fructose-1,6-bisphosphate (FBP) may contribute to succinate biosynthesis. To support this hypothesis, single-point and three-point mutations were proposed through the semi-rational design of Cra to improve its affinity for FBP. For the first time, a positive correlation between succinate production and the affinity of Cra for FBP was revealed in Escherichia coli . Using the best-fit regression function, a cubic equation was used to examine and describe the relationship between succinate production and the affinity of Cra for FBP, demonstrating a significant positive correlation between the two factors (coefficient of determination R 2  = 0.894, P  = 0.000 Cra and DNA showed that Cra bound to the promoter regions of pck and aceB to activate the corresponding genes. Normally, Cra-regulated operons under positive control are deactivated in the presence of FBP. Therefore, theoretically, the enhanced affinity of Cra for FBP will inhibit the activation of pck and aceB . However, the activation of genes involved in CO 2 fixation and the glyoxylate pathway was further improved by the Cra mutant, ultimately contributing to succinate biosynthesis. Enhanced binding of Cra to FBP or active site mutations may eliminate the repressive effect caused by FBP, thus leading to increased activation of genes associated with succinate biosynthesis in the Cra mutant. This work demonstrates an important transcriptional regulation strategy in the metabolic engineering of succinate production and provides useful information for better understanding of the regulatory mechanisms of transcription factors.

  6. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  7. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  8. Influence of long-term hyper-gravity on the reactivity of succinic acid dehydrogenase and NADPH-diaphorase in the central nervous system of fish: a histochemical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hypergravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.

  9. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris (Hemiptera, Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available To facilitate gene expression study and obtain accurate qRT-PCR analysis, normalization relative to stable expressed housekeeping genes is required. In this study, expression profiles of 11 candidate reference genes, including actin (Actin, elongation factor 1 α (EF1A, TATA-box-binding protein (TATA, ribosomal protein L12 (RPL12, β-tubulin (Tubulin, NADH dehydrogenase (NADH, vacuolar-type H+-ATPase (v-ATPase, succinate dehydrogenase B (SDHB, 28S ribosomal RNA (28S, 16S ribosomal RNA (16S, and 18S ribosomal RNA (18S from the pea aphid Acyrthosiphon pisum, under different developmental stages and temperature conditions, were investigated. A total of four analytical tools, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the suitability of these genes as endogenous controls. According to RefFinder, a web-based software tool which integrates all four above-mentioned algorithms to compare and rank the reference genes, SDHB, 16S, and NADH were the three most stable house-keeping genes under different developmental stages and temperatures. This work is intended to establish a standardized qRT-PCR protocol in pea aphid and serves as a starting point for the genomics and functional genomics research in this emerging insect model.

  10. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  11. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  12. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  13. MODIFIKASI ASAM SUKSINAT - GELOMBANG PENDEK UNTUK\tPRODUKSI TAPIOKA SUKSINAT Succinic Acid-Microwave Modification to Produce Succinic Tapioca

    Directory of Open Access Journals (Sweden)

    Heny Herawati

    2012-05-01

    Full Text Available Indonesia as tropical country has great cassava potency. The great chance of cassava product development could be increased its added value through modified tapioca processing. One of modified starch that could be implemented as a food additive is succinic starch. The tapioca succinilation processed through combination process of reacting tapioca with succinic acid and microwave treatment. The research method was conducted by factorial design with 3 factors: substrate concentration (30 %, 40 %, succinic acid concentration (1 %, 3 %, 5 %, and drying method (oven and microwave. Succinic tapioca was analyzed both physical and chemical characteristics, while optimal product was fur- ther analyzed for nutrition contents and surface microstructure using SEM. Succinic acid and microwave modification influenced to the physical and chemical succinic tapioca, except ash content. The highest substitution degree value was 0.929 which was obtained by combination of substrate concentration 40 %, succinic acid added 5 % and microwave processed. The change of granule size was not significant, just the distribution among granule correlated with the tapi- oca modification. The succinic tapioca granule size ranged 5.35 µm until 17.20 µm with average 11.15 µm. Succinic tapioca characteristic hopefully could be advanced food implementation. ABSTRAK Indonesia merupakan negara tropis yang memiliki potensi produksi ubi kayu yang cukup besar. Peluang pengem- bangan produk berbasis ubi kayu di Indonesia masih cukup besar diantaranya yaitu peningkatan nilai tambah ubi kayu melalui proses modifikasi tapioka. Salah satu potensi pati termodifikasi yang dapat dipergunakan untuk bahan tambahan makanan yaitu pati suksinat. Pada penelitian ini proses suksinilasi tapioka dilakukan dengan cara mereak- sikan asam suksinat yang dikombinasikan dengan mempergunakan microwave. Metodologi penelitian yang dilakukan menggunakan rancangan faktorial dengan 3 faktor, yaitu konsentrasi

  14. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  15. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  16. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp.

    OpenAIRE

    Xu, J; Johnson, R C

    1995-01-01

    Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes...

  17. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis

    DEFF Research Database (Denmark)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine

    2016-01-01

    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date......, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose...

  18. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    Science.gov (United States)

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  19. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  20. Penetrance and clinical consequences of a gross SDHB deletion in a large family.

    NARCIS (Netherlands)

    Solis, D.C.; Burnichon, N.; Timmers, H.J.L.M.; Raygada, M.J.; Kozupa, A.; Merino, M.J.; Makey, D.; Adams, K.T.; Venisse, A.; Gimenez-Roqueplo, A.P.; Pacak, K.

    2009-01-01

    Mutations in the gene encoding subunit B of the mitochondrial enzyme succinate dehydrogenase (SDHB) are inherited in an autosomal dominant manner and are associated with hereditary paraganglioma (PGL) and pheochromocytoma. The phenotype of patients with SDHB point mutations has been previously

  1. Investigations regarding the anthropic impact on the Krebs cycle dehydrogenases system on certain wood-species in mining areas, Suceava county

    Directory of Open Access Journals (Sweden)

    Marius Viorel Oniciuc

    2013-03-01

    Full Text Available The Krebs cycle, a second stage of cellular respiration that occurs in the mitochondrion of the leafcell and consist in a multistep processes plays a central role in catabolism of organic fuel molecules. The miningextraction technologies for both underground and surface, the preparation of copper ore and barite applied in Tarnia,respectively to the sulphur in Calimani Mountain and the excess of these elements in natural environment may causemalfunction of ecosystem. The dehydrogenases of Krebs cycle can give information on the type and the duration of theeffects of pollutants on the metabolic activity in leaves, to subsequent area pollution, therefore, the aim of the presentstudy has been to determine these effects on this enzymatic system activity. For this reason, the isocitrate dehydrogenase,the -ketoglutate dehydrogenase, the succinate ehydrogenase and the malate dehydrogenase activity was determined using the spectrophotometric method with triphenyl-tetrazolium and the analysis of experimental results shows the differences from one sample to another sample of closely related species specificity, but also the effect of environmentalfactors.

  2. BER-Myriant Succinic Acid Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Shmorhun, Mark [Myriant Lake Providence, Inc., Lake Providence, LA (United States)

    2015-12-31

    Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and color bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts

  3. Effects of TCDD on the expression of nuclear encoded mitochondrial genes

    International Nuclear Information System (INIS)

    Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy

    2010-01-01

    Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 nuclear genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 μg/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 h) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change| > 1.5 and P-value < 0.1). Of these, 8 exhibited a sigmoidal or exponential dose-response profile (0.03 to 300 μg/kg TCDD) at 4, 24 or 72 h. Dose-responsive genes encoded proteins associated with electron transport chain (ETC) complexes I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of all 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity.

  4. Succinate Dehydrogenase Subunit B (SDHB Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists: Implications for the SDHB Expression Based Classification of Gists

    Directory of Open Access Journals (Sweden)

    Jeanny H. Wang, Jerzy Lasota, Markku Miettinen

    2011-01-01

    Full Text Available Gastrointestinal Stromal Tumor (GIST is the most common mesenchymal tumor of the digestive tract. GISTs develop with relatively high incidence in patients with Neurofibromatosis-1 syndrome (NF1. Mutational activation of KIT or PDGFRA is believed to be a driving force in the pathogenesis of familial and sporadic GISTs. Unlike those tumors, NF1-associated GISTs do not have KIT or PGDFRA mutations. Similarly, no mutational activation of KIT or PDGFRA has been identified in pediatric GISTs and in GISTs associated with Carney Triad and Carney-Stratakis Syndrome. KIT and PDGFRA-wild type tumors are expected to have lesser response to imatinib treatment. Recently, Carney Triad and Carney-Stratakis Syndrome -associated GISTs and pediatric GISTs have been shown to have a loss of expression of succinate dehydrogenase subunit B (SDHB, a Krebs cycle/electron transport chain interface protein. It was proposed that GISTs can be divided into SDHB- positive (type 1, and SDHB-negative (type 2 tumors because of similarities in clinical features and response to imatinib treatment. In this study, SDHB expression was examined immunohistochemically in 22 well-characterized NF1-associated GISTs. All analyzed tumors expressed SDHB. Based on SDHB-expression status, NF1-associated GISTs belong to type 1 category; however, similarly to SDHB type 2 tumors, they do not respond well to imatinib treatment. Therefore, a simple categorization of GISTs into SDHB-positive and-negative seems to be incomplete. A classification based on both SDHB expression status and KIT and PDGFRA mutation status characterize GISTs more accurately and allow subdivision of SDHB-positive tumors into different clinico-genetic categories.

  5. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes

    Czech Academy of Sciences Publication Activity Database

    Nývltová, E.; Stairs, C.W.; Hrdý, I.; Rídl, Jakub; Mach, J.; Pačes, Jan; Roger, A. J.; Tachezy, J.

    2015-01-01

    Roč. 32, č. 4 (2015), s. 1039-1055 ISSN 0737-4038 R&D Projects: GA ČR(CZ) GAP305/11/1061; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : acetylCoA synthetase * sulfate activation pathway * PFO * glycine cleavage system * hydrogenase * succinate dehydrogenase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.649, year: 2015

  6. Succinic acid production by escherichia coli under anaerobic fermentation

    International Nuclear Information System (INIS)

    El Shafey, H.M.; Meleigy, S.A.

    2009-01-01

    The effect of alteration of growth conditions, addition of different sodium salts, and irradiation by gamma rays on succinic acid production by E. coli was studied. Twenty one isolates were obtained from buffalo's rumen, and anaerobic screening of the isolated bacterial strains showed the abilities of seventeen strains to produce succinic acid. The two bacterial strains having highest succinic acid production were identified as escherichia coli SP9 and SP16, and were selected for further studies. Results showed that growth conditions yielded highest succinic acid production for the two isolates were: 72 hours incubation, 37 degree c incubation temperature, initial ph of the fermentation medium 6.0,and 3% (v/v)inoculum size. Addition of 5 mm of nine different sodium salts to the fermentation medium showed stimulating effect on succinic acid production of the nine tried sodium salts, sodium carbonate was found to have the highest enhancing effect, especially if used at 15 mm concentration. Gamma irradiation doses tried were in the range of (0.25-1.50 kGy). An enhancing effect on succinic acid production was shown in the range of 0.25-0.75 kGy with a maximal production at 0.75 kGy (giving 8.36% increase) for e.coli SP9, and in the range of 0.25-1.00 kGy with a maximal production at 1.0 kGy (7.60% increase) for e.coli SP16. higher gamma doses led to a decrease in the enhancing effect. An overall increase in the succinic acid yield of 79.45% and 94.26% for e. coli SP9 and SP16, respectively, was achieved in implicating all optimized factors for succinic acid production in one time

  7. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  8. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  9. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  10. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection.

    Science.gov (United States)

    Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun; Xu, Weimin; Witzmann, Frank A; Collett, Jason A; Rhodes, George J; Winfree, Seth; Bready, Devin; Pfeffenberger, Zechariah J; Pomerantz, Jeremy M; Hato, Takashi; Nagami, Glenn T; Molitoris, Bruce A; Basile, David P; Atkinson, Simon J; Bacallao, Robert L

    2018-04-01

    Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine ( P <0.05) observed in controls and increased the mitochondria membrane potential ( P <0.05), maximal respiratory capacity ( P <0.05), and intracellular ATP levels ( P <0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning. Copyright © 2018 by the American Society of Nephrology.

  11. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Science.gov (United States)

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  12. 2-Amino-5-bromopyridinium hydrogen succinate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-03-01

    Full Text Available In the title compound, C5H6BrN2+·C4H5O4−, the pyridine N atom of the 2-amino-5-bromopyridine molecule is protonated. The protonated N atom and the amino group are linked via N—H...O hydrogen bonds to the carboxylate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H...O hydrogen bonds. A weak intermolecular C—H...O hydrogen bond is also observed.

  13. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  14. Changes in Activities of Respiratory Enzymes in Lungs of Guinea-pigs Exposed to Silica Dust: II. Comparison of the Effects of Quartz Dust and Lampblack on the Succinate Oxidase System

    Science.gov (United States)

    Breyer, Maria G.; Kilroe-Smith, T. A.; Prinsloo, H.

    1964-01-01

    Kilroe-Smith and Breyer (1963) reported that in the early stages of silicosis in guinea-pigs exposed to the inhalation of quartz dust, before the formation of collagen, there were increases in the specific activities of the complete succinate oxidase system and succinate dehydrogenase. The effects on these enzymes of quartz dust have now been compared with the effects of the fibrogenically `inert' lampblack. Lampblack causes a slight increase in the specific activities of these enzymes but the effects are small compared to those caused by quartz. Lampblack also causes a much smaller increase in lung weight than quartz, thus the enzyme increases are roughly parallel to the rise in lung weight. It appears that the effects observed on the enzymes are part of the general pattern associated with the early stages of the development of silicosis. PMID:14106132

  15. The effect of alpha-tocopheryl succinate on succinate respiration in rat liver mitochondria

    Czech Academy of Sciences Publication Activity Database

    Sobotka, O.; Drahota, Zdeněk; Kučera, O.; Endlicher, R.; Rauchová, Hana; Červinková, Z.

    2015-01-01

    Roč. 64, Suppl.5 (2015), S609-S615 ISSN 0862-8408 Institutional support: RVO:67985823 Keywords : tocopheryl succinate * Complex II * liver * mitochondria * homogenate * hepatocytes Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  16. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    Science.gov (United States)

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  17. The natural history of class I primate alcohol dehydrogenases includes gene duplication, gene loss, and gene conversion.

    Directory of Open Access Journals (Sweden)

    Matthew A Carrigan

    Full Text Available Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s, where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs and hominoids.To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines. Database mining then identified novel ADH1 paralogs in both macaque (an OWM and marmoset (a NWM. These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding sequences and intronic sequences.We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels. The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs and catarrhines (OWMs and hominoids having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in the ancestor of Catarrhine and Platyrrhine primates

  18. Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera).

    Science.gov (United States)

    Chen, Yao; Shen, Bin; Zhang, Junpeng; Jones, Gareth; He, Guimei

    2013-02-01

    Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.

  19. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway.

    Science.gov (United States)

    Aguiar, Carla J; Andrade, Vanessa L; Gomes, Enéas R M; Alves, Márcia N M; Ladeira, Marina S; Pinheiro, Ana Cristina N; Gomes, Dawidson A; Almeida, Alvair P; Goes, Alfredo M; Resende, Rodrigo R; Guatimosim, Silvia; Leite, M Fatima

    2010-01-01

    GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, a citric acid cycle intermediate, in several tissues. In the heart, the role of succinate is unknown. We now report that rat ventricular cardiomyocytes express GPR91. We found that succinate, through GPR91, increases the amplitude and the rate of decline of global Ca(2+) transient, by increasing the phosphorylation levels of ryanodine receptor and phospholamban, two well known Ca(2+) handling proteins. The effects of succinate on Ca(2+) transient were abolished by pre-treatment with adenylyl cyclase and cAMP-dependent protein kinase (PKA) inhibitors. Direct PKA activation by succinate was further confirmed using a FRET-based A-kinase activity reporter. Additionally, succinate decreases cardiomyocyte viability through a caspase-3 activation pathway, effect also prevented by PKA inhibition. Taken together, these observations show that succinate acts as a signaling molecule in cardiomyocytes, modulating global Ca(2+) transient and cell viability through a PKA-dependent pathway. 2009 Elsevier Ltd. All rights reserved.

  20. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    Science.gov (United States)

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  1. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    Science.gov (United States)

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  2. Preparation of deuterated succinic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Masashi; Tsuzuki, Hirohisa; Goto, Hideyuki; Ogasahara, Shoji; Mataka, Shuntaro (Kyushu Univ., Fukuoka (Japan)); Isobe, Shin-ichiro; Yonemitsu, Tadashi (Kyushu Sangyo Univ., Fukuoka (Japan). Dept. of Industrial Chemistry)

    1991-04-01

    Succinic (2,3-{sup 2}H{sub 2})- and (2,2,3,3-{sup 2}H{sub 4})-acids were prepared from maleic anhydride and dimethyl fumarate, and acetylene dicarboxylic acid and its dimethyl ester by treatment with Cu-Al and Ni-Al alloys in 10% NaOD-D{sub 2}0 in 95% to 100% isotopic purity. The succinic {sup 2}H{sub 4} acid having high isotopic purity was also obtained on the hydrolysis of 1,2-ethanedinitrile with alkaline deuterium oxide. Based on the {sup 1}H({sup 2}H) spectra analysis of N-(o-biphenyl)(2,3-{sup 2}H{sub 2})succinimide, it was elucidated that the Raney alloy reduction with alkaline deuterium oxide proceeds stepwise. (author).

  3. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna

    2015-01-01

    A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by p...

  4. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    Science.gov (United States)

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...

  5. An efficient method for synthesis of succinate-based MMP inhibitors.

    Science.gov (United States)

    Sibi, Mukund P; Hasegawa, Hikaru

    2002-10-03

    A differentially protected fumarate undergoes radical addition followed by allylstannane trapping to provide disubstituted succinates in good yields and high anti diastereoselectivity. The conversion of the succinate to a known MMP inhibitor has been accomplished. [reaction: see text

  6. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    Science.gov (United States)

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of

  7. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  8. TREATMENT OF CHRONIC HEART FAILURE: FOCUS ON METOPROLOL SUCCINATE

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2012-01-01

    Full Text Available Advantages of metoprolol succinate in patients with chronic heart failure (CHF are covered. Results of MERIT-HF study are taken as the main evidences. Patterns of the metoprolol succinate use in the treatment of different categories of patients with CHF (women, the elderly , severe CHF forms, CHF with concomitant hypertension or diabetes are considered.

  9. TREATMENT OF CHRONIC HEART FAILURE: FOCUS ON METOPROLOL SUCCINATE

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2015-12-01

    Full Text Available Advantages of metoprolol succinate in patients with chronic heart failure (CHF are covered. Results of MERIT-HF study are taken as the main evidences. Patterns of the metoprolol succinate use in the treatment of different categories of patients with CHF (women, the elderly , severe CHF forms, CHF with concomitant hypertension or diabetes are considered.

  10. Formation of itraconazole-succinic acid cocrystals by gas antisolvent cocrystallization.

    Science.gov (United States)

    Ober, Courtney A; Gupta, Ram B

    2012-12-01

    Cocrystals of itraconazole, an antifungal drug with poor bioavailability, and succinic acid, a water-soluble dicarboxylic acid, were formed by gas antisolvent (GAS) cocrystallization using pressurized CO(2) to improve itraconazole dissolution. In this study, itraconazole and succinic acid were simultaneously dissolved in a liquid solvent, tetrahydrofuran, at ambient conditions. The solution was then pressurized with CO(2), which decreased the solvating power of tetrahydrofuran and caused crystallization of itraconazole-succinic acid cocrystals. The cocrystals prepared by GAS cocrystallization were compared to those produced using a traditional liquid antisolvent, n-heptane, for crystallinity, chemical structure, thermal behavior, size and surface morphology, potential clinical relevance, and stability. Powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy analyses showed that itraconazole-succinic acid cocrystals with physical and chemical properties similar to cocrystals produced using a traditional liquid antisolvent technique can be prepared by CO(2) antisolvent cocrystallization. The dissolution profile of itraconazole was significantly enhanced through GAS cocrystallization with succinic acid, achieving over 90% dissolution in less than 2 h. The cocrystals appeared stable against thermal stress for up to 4 weeks under accelerated stability conditions, showing only moderate decreases in their degree of crystallinity but no change in their crystalline structure. This study shows the utility of an itraconazole-succinic acid cocrystal for improving itraconazole bioavailability while also demonstrating the potential for CO(2) to replace traditional liquid antisolvents in cocrystal preparation, thus making cocrystal production more environmentally benign and scale-up more feasible.

  11. Thermodynamics of U(VI) complexation by succinate at variable temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Neetika [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tomar, B.S., E-mail: bstomar@barc.gov.in [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manchanda, V.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-07-15

    Research highlights: > lg {beta} and {Delta}H{sub C} for U(VI)-succinate determined at variable temperatures. > Increase in lg {beta} with temperature well explained by Born equation. > {Delta}S{sub C} plays the dominant role in variation of {Delta}G{sub C} with temperature. > {Delta}H{sub C} for U(VI)-succinate increases linearly with temperature. > {Delta}C{sub P} of U(VI)-succinate is higher than that of oxalate and malonate complexes. - Abstract: Complexation of U(VI) by succinate has been studied at various temperatures in the range of (298 to 338) K by potentiometry and isothermal titration calorimetry at constant ionic strength (1.0 M). The potentiometric titrations revealed the formation of 1:1 uranyl succinate complex in the pH range of 1.5 to 4.5. The stability constant of uranyl succinate complex was found to increase with temperature. Similar trend was observed in the case of enthalpy of complex formation. However, the increase in entropy with temperature over-compensated the increase in enthalpy, thereby favouring the complexation reaction at higher temperatures. The linear increase of enthalpy of complexation with temperature indicates constancy of the change in heat capacity during complexation. The temperature dependence of stability constant data was well explained with the help of Born equation for electrostatic interaction between the metal ion and the ligand. The data have been compared with those for uranyl complexes with malonate and oxalate to study the effect of ligand size and hydrophobicity on the temperature dependence of thermodynamic quantities.

  12. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  13. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  14. Fermentative Succinate Production: An Emerging Technology to Replace the Traditional Petrochemical Processes

    Directory of Open Access Journals (Sweden)

    Yujin Cao

    2013-01-01

    Full Text Available Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources, fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are also proposed.

  15. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study of the radiolysis of succinic acid - applications in the dosimetry of high doses

    International Nuclear Information System (INIS)

    Andrade e Silva, L.G.

    1978-01-01

    A study is made of the effect of the gama radiation dose and of particle size of succinic acid (fine powder of large crystals) in relation with the formation of CO 2 and CO + H 2 , which are the main gaseous products of radiolysis. A different yield of CO + H 2 is found when the succinic acid is used as powder compared to the material in the form of large crystals. The reason for this difference is searched, studying the influence of heating and sublimation of the succinic acid prior to irradiation. The influence, in the mentioned yield, of the surface area of succinic acid particles, of the presence of oxygen (air) and of the rapid recrystallization of the acid are also studied. The formation of intermediate species in the radiolysis of succinic acid is examined. The system used in ethanol-succinic acid at 77K. Analysis are made using an electronic paramagnetic resonance spectrometer. The possibility of using succinic acid as a dosimeter for high level gama radiation doses is discussed [pt

  17. Bio-succinic acid production: Escherichia coli strains design from genome-scale perspectives

    Directory of Open Access Journals (Sweden)

    Bashir Sajo Mienda

    2017-10-01

    Full Text Available Escherichia coli (E. coli has been established to be a native producer of succinic acid (a platform chemical with different applications via mixed acid fermentation reactions. Genome-scale metabolic models (GEMs of E. coli have been published with capabilities of predicting strain design strategies for the production of bio-based succinic acid. Proof-of-principle strains are fundamentally constructed as a starting point for systems strategies for industrial strains development. Here, we review for the first time, the use of E. coli GEMs for construction of proof-of-principles strains for increasing succinic acid production. Specific case studies, where E. coli proof-of-principle strains were constructed for increasing bio-based succinic acid production from glucose and glycerol carbon sources have been highlighted. In addition, a propose systems strategies for industrial strain development that could be applicable for future microbial succinic acid production guided by GEMs have been presented.

  18. Bio-oil based biorefinery strategy for the production of succinic acid

    Science.gov (United States)

    2013-01-01

    Background Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic phase and aqueous phase parts. The organic phase bio-oil can be easily upgraded to transport fuel. The aqueous phase bio-oil (AP-bio-oil) is of low value. There is no report for its usage or upgrading via biological methods. In this paper, the use of AP-bio-oil for the production of succinic acid was investigated. Results The transgenic E. coli strain could grow in modified M9 medium containing 20 v/v% AP-bio-oil with an increase in OD from 0.25 to 1.09. And 0.38 g/L succinic acid was produced. With the presence of 4 g/L glucose in the medium, succinic acid concentration increased from 1.4 to 2.4 g/L by addition of 20 v/v% AP-bio-oil. When enzymatic hydrolysate of corn stover was used as carbon source, 10.3 g/L succinic acid was produced. The obtained succinic acid concentration increased to 11.5 g/L when 12.5 v/v% AP-bio-oil was added. However, it decreased to 8 g/L when 50 v/v% AP-bio-oil was added. GC-MS analysis revealed that some low molecular carbon compounds in the AP-bio-oil were utilized by E. coli. Conclusions The results indicate that AP-bio-oil can be used by E. coli for cell growth and succinic acid production. PMID:23657107

  19. Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain.

    Science.gov (United States)

    Wang, Honghui; Pan, Jiachuan; Wang, Jing; Wang, Nan; Zhang, Jie; Li, Qiang; Wang, Dan; Zhou, Xiaohua

    2014-11-02

    Succinic acid (1,4-butanedioic acid) is identified as one of important building-block chemicals. Xylose mother liquor is an abundant industrial residue in xylitol biorefining industry. In this study, xylose mother liquor was utilized to produce succinic acid by recombinant Escherichia coli strain SD121, and the response surface methodology was used to optimize the fermentation media. The optimal conditions of succinic acid fermentation were as follows: 82.62 g L -1 total initial sugars, 42.27 g L -1 MgCO 3 and 17.84 g L -1 yeast extract. The maximum production of succinic acid was 52.09 ± 0.21 g L -1 after 84 h with a yield of 0.63 ± 0.03 g g -1 total sugar, approaching the predicted value (53.18 g L -1 ). It was 1.78-fold of the production of that obtained with the basic medium. This was the first report on succinic acid production from xylose mother liquor by recombinant E. coli strains with media optimization using response surface methodology. This work suggested that the xylose mother liquor could be an alternative substrate for the economical production of succinic acid by recombinant E. coli strains.

  20. aldB, an RpoS-dependent gene in Escherichia coli encoding an aldehyde dehydrogenase that is repressed by Fis and activated by Crp.

    Science.gov (United States)

    Xu, J; Johnson, R C

    1995-06-01

    Escherichia coli aldB was identified as a gene that is negatively regulated by Fis but positively regulated by RpoS. The complete DNA sequence determined in this study indicates that aldB encodes a 56.3-kDa protein which shares a high degree of homology with an acetaldehyde dehydrogenase encoded by acoD of Alcaligenes eutrophus and an aldehyde dehydrogenase encoded by aldA of Vibrio cholerae and significant homology with a group of other aldehyde dehydrogenases from prokaryotes and eukaryotes. Expression of aldB is maximally induced during the transition from exponential phase to stationary phase. Its message levels are elevated three- to fourfold by a fis mutation and abolished by an rpoS mutation. In addition, the expression of an aldB-lacZ fusion was decreased about 20-fold in the absence of crp. DNase I footprinting analysis showed that five Fis binding sites and one Crp binding site are located within the aldB promoter region, suggesting that Fis and Crp are acting directly to control aldB transcription. AldB expression is induced by ethanol, but in contrast to that of most of the RpoS-dependent genes, the expression of aldB is not altered by an increase in medium osmolarity.

  1. Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines

    National Research Council Canada - National Science Library

    Ramanathapuram, Lalitha

    2004-01-01

    .... In this study we have employed Vitamin E succinate also known as alpha-tocopheryl succinate (alpha-TOS), a non-toxic esterified analogue of Vitamin E, as an adjuvant to enhance the effectiveness of DC vaccines in treating established murine mammary...

  2. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco

    Directory of Open Access Journals (Sweden)

    So Young Yi

    2017-11-01

    Full Text Available Synechocystis salt-responsive gene 1 (sysr1 was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1–2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.

  3. Studies on Cross-linking of succinic acid with chitosan/collagen

    Directory of Open Access Journals (Sweden)

    Tapas Mitra

    2013-01-01

    Full Text Available The present study summarizes the cross-linking property of succinic acid with chitosan /collagen. In detail, the chemistry behind the cross-linking and the improvement in mechanical and thermal properties of the cross-linked material were discussed with suitable instruments and bioinformatics tools. The concentration of succinic acid with reference to the chosen polymers was optimized. A 3D scaffold prepared using an optimized concentration of succinic acid (0.2% (w/v with chitosan (1.0% (w/v and similarly with collagen (0.5% (w/v, was subjected to surface morphology, FT-IR analysis, tensile strength assessment, thermal stability and biocompatibility. Results revealed, cross-linking with succinic acid impart appreciable mechanical strength to the scaffold material. In silico analysis suggested the prevalence of non-covalent interactions, which played a crucial role in improving the mechanical and thermal properties of the cross-linked scaffold. The resultant 3D scaffold may find application as wound dressing material, as an implant in clinical applications and as a tissue engineering material.

  4. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    International Nuclear Information System (INIS)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo

    2013-01-01

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP + -dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer

  5. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  6. Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines

    National Research Council Canada - National Science Library

    Ramanathapuram, Lalitha V

    2006-01-01

    .... Vitamin E succinate or alpha tocopheryl succinate ( -TOS) is a non-toxic, esterified analogue of Vitamin E that has been shown to be selectively toxic to tumor cell lines in vitro as well as inhibit the growth of tumors in animal models in vivo...

  7. Vitamin E Succinate as an Adjuvant for Dendritic Cell-Based Vaccines

    National Research Council Canada - National Science Library

    Ramanathapuram, Lalitha V; Akporiaye, Emmanuel T

    2005-01-01

    .... Vitamin E succinate or alpha tocopheryl succinate (a-TOS) is a non-toxic, esterified analogue of Vitamin E that has been shown to be selectively toxic to tumor cell lines in vitro as well as inhibit the growth of tumors in animal models in vivo...

  8. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  9. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani, T; Sawada, T; Satoh, S; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  10. Regulation of the ald Gene Encoding Alanine Dehydrogenase by AldR in Mycobacterium smegmatis

    Science.gov (United States)

    Jeong, Ji-A; Baek, Eun-Young; Kim, Si Wouk; Choi, Jong-Soon

    2013-01-01

    The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine. PMID:23749971

  11. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  12. Isolation, characterization, and mapping of gene encoding dihydrolipoyl succinyltransferase (E2k) of human [alpha]-ketoglutarate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Ali, G.; Cai, Xingang; Sheu, Kwan-Fu R.; Blass, J.P. (Cornell Univ. Medical College, White Plains, NY (United States)); Wasco, W.; Gaston, S.M.; Tanzi, R.E.; Cooper, A.J.L.; Gusella, J.F. (Massachusetts General Hospital, Charleston, MA (United States)); Szabo, P. (Cornell Univ. Medical College, New York, NY (United States))

    1994-03-01

    The authors have isolated and sequenced cDNAs representing the full-length (2987-bp) gene for dihydrolipoyl succinyltransferase (E2k component) of the human [alpha]-ketoglutarate dehydrogenase complex (KHDHC) from a human fetal brain cDNA library. The E2k cDNA was mapped to human chromosome 14 using a somatic cell hybrid panel, and more precisely to band 14q24.3 by in situ hybridization. This cDNA also cross-hybridized to an apparent E2k pseudogene on chromosome 1p31. Northern analysis revealed the E2k gene to be ubiquitously expressed in peripheral tissues and brain. Interestingly, chromosome 14q24.3 has recently been reported to contain gene defects for an early-onset form of familial Alzheimer's disease and for Machado-Joseph disease. Future studies will be necessary to determine whether the E2K gene plays a role in either of these two disorders.

  13. Compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in multilayer polyolefin containers.

    Science.gov (United States)

    Bougouin, Christelle; Thelcide, Chloë; Crespin-Maillard, Fabienne; Maillard, Christian; Kinowski, Jean Marie; Favier, Mireille

    2005-10-01

    The compatibility of ondansetron hydrochloride and methylprednisolone sodium succinate in 5% dextrose injection and 0.9% sodium chloride injection was studied. Test solutions of ondansetron hydrochloride 0.16 mg/mL and methylprednisolone sodium succinate 2.4 mg/mL were prepared in triplicate and tested in duplicate. Total volumes of 4 and 2 mL of ondansetron hydrochloride solution and methylprednisolone sodium succinate solution, respectively, were added to 50-mL multilayer polyolefin bags containing 5% dextrose injection or 0.9% sodium chloride injection. Bags were stored for 24 hours at 20-25 degrees C and for 48 hours at 4-8 degrees C. Chemical compatibility was measured with high-performance liquid chromatography, and physical compatibility was determined visually. Ondansetron hydrochloride was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Methylprednisolone sodium succinate was stable for up to 48 hours at 4-8 degrees C. When stored at 20-25 degrees C, methylprednisolone sodium succinate was stable for up to 7 hours in 5% dextrose injection and up to 24 hours in 0.9% sodium chloride injection. Compatibility data for solutions containing ondansetron hydrochloride plus methylprednisolone sodium succinate revealed that each drug was stable for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C. Ondansetron 0.16 mg/mL (as the hydrochloride) and methylprednisolone 2.4 mg/mL (as the sodium succinate) mixed in 50-mL multilayer polyolefin bags were stable in both 5% dextrose injection and 0.9% sodium chloride injection for up to 24 hours at 20-25 degrees C and up to 48 hours at 4-8 degrees C.

  14. SMALL SCALE PREPARATION OF C14 LABELED SUCCINIC, MALIC, FUMARICAND TARTARIC ACIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, E.C.; Bassham, J.A.; Calvin, M.; Tolbert, B.M.

    1951-06-12

    The directions for preparing the following acids from labeled acetic acid on a 1 to 20 millimole scale is presented: Succinic acid, malic acid, fumaric acid and tartaric acid. Two methods for preparing the succinic acid are detailed.

  15. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters.

    Science.gov (United States)

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Just Mikkelsen, Marie

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (Adh....... Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel...

  17. Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma

    Directory of Open Access Journals (Sweden)

    Wong Nora

    2006-01-01

    Full Text Available Abstract Background Germline mutations of the SDHD, SDHB and SDHC genes, encoding three of the four subunits of succinate dehydrogenase, are a major cause of hereditary paraganglioma and pheochromocytoma, and demonstrate that these genes are classic tumor suppressors. Succinate dehydrogenase is a heterotetrameric protein complex and a component of both the Krebs cycle and the mitochondrial respiratory chain (succinate:ubiquinone oxidoreductase or complex II. Methods Using conformation sensitive gel electrophoresis (CSGE and direct DNA sequencing to analyse genomic DNA from peripheral blood lymphocytes, here we describe the mutation analysis of the SDHB and SDHC genes in 37 patients with sporadic (i.e. no known family history head and neck paraganglioma and five pheochromocytoma and/or paraganglioma families. Results Two sporadic patients were found to have a SDHB splice site mutation in intron 4, c.423+1G>A, which produces a mis-spliced transcript with a 54 nucleotide deletion, resulting in an 18 amino acid in-frame deletion. A third patient was found to carry the c.214C>T (p.Arg72Cys missense mutation in exon 4 of SDHC, which is situated in a highly conserved protein motif that constitutes the quinone-binding site of the succinate: ubiquinone oxidoreductase (SQR complex in E. coli. Together with our previous results, we found 27 germline mutations of SDH genes in 95 cases (28% of sporadic head and neck paraganglioma. In addition all index patients of five families showing hereditary pheochromocytoma-paraganglioma were found to carry germline mutations of SDHB: four of which were novel, c.343C>T (p.Arg115X, c.141G>A (p.Trp47X, c.281G>A (p.Arg94Lys, and c.653G>C (p.Trp218Ser, and one reported previously, c.136C>T, p.Arg46X. Conclusion In conclusion, these data indicate that germline mutations of SDHB and SDHC play a minor role in sporadic head and neck paraganglioma and further underline the importance of germline SDHB mutations in cases of

  18. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  19. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    Science.gov (United States)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  20. Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    MBI International

    2007-12-31

    MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

  1. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions.

    Directory of Open Access Journals (Sweden)

    Ana Carolina eAriza

    2012-02-01

    Full Text Available The succinate receptor (also known as GPR91 is a G protein-coupled receptor that is closely related to the family of P2Y purinoreceptors. It is expressed in a variety of tissues, including blood cells, adipose tissue, the liver, retina and kidney. In these tissues, this receptor and its ligand succinate have recently emerged as novel mediators in local stress situations, including ischemia, hypoxia, toxicity and hyperglycemia. Amongst others, the succinate receptor is involved in recruitment of immune cells to transplanted tissues. Moreover, it was shown to play a key role in the development of diabetic retinopathy. However, most prominently, the role of locally increased succinate levels and succinate receptor activation in the kidney, stimulating the systemic and local renin-angiotensin system, starts to unfold: The succinate receptor is a key mediator in the development of hypertension and possibly fibrosis in diabetes mellitus and metabolic syndrome. This makes the succinate receptor a promising drug target to counteract or prevent cardiovascular and fibrotic defects in these expanding disorders. Recent development of SUCNR1-specific antagonists opens novel possibilities for research in models for these disorders and may eventually provide novel opportunities for the treatment of patients.

  2. Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

    Directory of Open Access Journals (Sweden)

    Antczak Jerzy

    2014-06-01

    Full Text Available This paper applies the determined suitability of nanofiltration (NF membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.

  3. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  4. Variation in gastric alcohol dehydrogenase and the risk of alcohol dependence

    Directory of Open Access Journals (Sweden)

    Paulina Całka

    2017-03-01

    Full Text Available Alcohol dependence is both a medical and socioeconomic problem. The disease is multifactorial, i.e. its development is attributable to gene-gene and gene-environment interactions. Multi-centre studies investigating the genetic background of alcoholism stress the role of genes encoding enzymes of the ethanol decomposition pathway in the human body, particularly alcohol dehydrogenase (ADH, in the development of alcohol dependence. Among five classes of alcohol dehydrogenases, class I and IV isoenzymes have been found to be associated with alcohol dependence. Class IV is of particular interest due to its occurrence in the upper gastrointestinal tract, mainly in the stomach. No activity of the enzyme has been demonstrated in the liver. Single nucleotide polymorphism (SNP of the gene encoding ADH class IV (ADH7 affects its ethanol-oxidizing activity in the gastric lumen, thereby influencing the first-pass metabolism (FPM of the substance. The findings published by various research centres have demonstrated that specific SNP changes in the ADH7 gene are of different significance for the risk of alcohol dependence according to the population studied.

  5. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    OpenAIRE

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from thes...

  6. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  7. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase.

    Science.gov (United States)

    Tsuchida, Shuichi; Kagi, Akiko; Koyama, Hidekazu; Tagawa, Masahiro

    2007-12-01

    Xanthine urolithiasis was found in a 4-year-old spayed female Himalayan cat with a 10-month history of intermittent haematuria and dysuria. Ultrasonographs indicated the existence of several calculi in the bladder that were undetectable by survey radiographic examination. Four bladder stones were removed by cystotomy. The stones were spherical brownish-yellow and their surface was smooth and glossy. Quantitative mineral analysis showed a representative urolith to be composed of more than 95% xanthine. Ultrasonographic examination of the bladder 4.5 months postoperatively indicated the recurrence of urolithiasis. Analysis of purine concentration in urine and blood showed that the cat excreted excessive amounts of xanthine. In order to test the hypothesis that xanthinuria was caused by a homozygote of the inherited mutant allele of a gene responsible for deficiency of enzyme activity in purine degradation pathway, the allele composition of xanthine dehydrogenase (XDH) gene (one of the candidate genes for hereditary xanthinuria) was evaluated. The cat with xanthinuria was a heterozygote of the polymorphism. A single nucleotide polymorphism analysis of the cat XDH gene strongly indicated that the XDH gene of the patient cat was composed of two kinds of alleles and ruled out the hypothesis that the cat inherited the same recessive XDH allele suggesting no activity from a single ancestor.

  8. Isocitrate dehydrogenase 1 and 2 genes mutations and MGMT methylation in gliomas

    Directory of Open Access Journals (Sweden)

    D. V. Tabakov

    2017-01-01

    Full Text Available Gliomas are the most common brain tumors. It is difficult to detect them at early stages of disease and there is a few available therapies providing significant improvement in survival. Mutations of isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2 play significant role in gliomogenesis, diagnostics and selection of patient therapy. We tested the distribution of IDH1 and IDH2 mutations in gliomas of different histological types and grades of malignancy by DNA melting analysis using our protocol with a sensitivity of 5 %. The results of this assay were confirmed by conventional Sanger sequencing. IDH1/2 mutations were detected in 74 % of lower grade gliomas (II and III, World Health Organization and in 14 % of glioblastomas (IV, World Health Organization. Mutation rate in gliomas with oligodendroglioma component were significantly higher then in other glioma types (р = 0.014. The IDH1 mutations was the most common (79 % of general mutation number. IDH1/2 mutations can induce aberrant gene methylation. Detection of methylation rate of the gene encoding for O6-methylguanine-DNA-methyltransferase (MGMT, predictive biomarker for treatment of gliomas with the alkylating agents, has demonstrated a partial association with IDH1/2 mutations. In 73 % of IDH1/2-mutant tumors MGMT promoter methylation were observed. At the same time IDH1/2 mutations were not revealed in 67 % tumors with MGMT promoter methylation. These results indicate existence of another mechanism of MGMT methylation in gliomas. Our data strong support for necessity of both markers testing when patient therapy is selected.

  9. Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX gene family in foxtail millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2014-08-01

    Full Text Available Cytokinin oxidase/dehydrogenase (CKX; EC.1.5.99.12 regulates cytokinin (CK level in plants and plays an essential role in CK regulatory processes. CKX proteins are encoded by a small gene family with a varying number of members in different plants. In spite of their physiological importance, systematic analyses of SiCKX genes in foxtail millet have not yet been examined. In this paper, we report the genome wide isolation and characterization of SiCKXs using bioinformatic methods. A total of 11 members of the family were identified in the foxtail millet genome. SiCKX genes were distributed in seven chromosomes (chromosome 1, 3, 4, 5, 6, 7, and 11. The coding sequences of all the SiCKX genes were disrupted by introns, with numbers varying from one to four. These genes expanded in the genome mainly due to segmental duplication events. Multiple alignment and motif display results showed that all SiCKX proteins share FAD- and CK-binding domains. Putative cis-elements involved in Ca2 +-response, abiotic stress response, light and circadian rhythm regulation, disease resistance and seed development were present in the promoters of SiCKX genes. Expression data mining suggested that SiCKX genes have diverse expression patterns. Real-time PCR analysis indicated that all 11 SiCKX genes were up-regulated in embryos under 6-BA treatment, and some were NaCl or PEG inducible. Collectively, these results provide molecular insights into CKX research in plants.

  10. Genetic Polymorphisms of the Mitochondrial Aldehyde Dehydrogenase ALDH2 Gene in a Large Ethnic Hakka Population in Southern China.

    Science.gov (United States)

    Zhong, Zhixiong; Hou, Jingyuan; Li, Bin; Zhang, Qifeng; Li, Cunren; Liu, Zhidong; Yang, Min; Zhong, Wei; Zhao, Pingsen

    2018-04-06

    BACKGROUND Human mitochondrial aldehyde dehydrogenase 2 (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. The ALDH2*2 (rs671) gene variant is mainly absent among Europeans but is prevalent in populations in East Asia. The aim of this study was to investigate ALDH2*2 mutant alleles and genotype frequencies in the Hakka population of China. MATERIAL AND METHODS Between January 2016 and June 2017, 7,966 unrelated individuals were recruited into the study from the Hakka ethnic population residing in the Meizhou area of Guangdong Province, China, who provided venous blood samples. Genotyping of ALDH2 genotypes were determined using a gene chip platform and confirmed by DNA sequencing. RESULTS In the 7,966 individuals from the Hakka population of China in this study, the frequencies of the ALDH2 genotypes *1/*1, *1/*2 and *2/*2 were 52.03%, 39.67%, and 8.30%, respectively; 47.97% of the individuals were found to carry the ALDH2*2 genotype, which was associated with a deficiency in the aldehyde dehydrogenase (ALDH2) enzyme activity. The frequency of the ALDH2*2 allele was lower than that previously reported in the Japanese population but higher than that reported in other Oriental populations. CONCLUSIONS The findings of this study have provided new information on the ALDH2 gene polymorphisms in the Hakka ethnic population residing in the Meizhou area of Guangdong Province, China, including an understanding of the origin of the atypical ALDH2*2 allele. Also, the study findings may be relevant to the primary care of patients in China.

  11. The effects of storage on the retention of enzyme activity in cryostat sections. A quantitative histochemical study on rat liver

    NARCIS (Netherlands)

    Frederiks, W. M.; Ouwerkerk, I. J.; Bosch, K. S.; Marx, F.; Kooij, A.; van Noorden, C. J.

    1993-01-01

    The effect of storage of unfixed cryostat sections from rat liver for 4 h, 24 h, 3 days and 7 days at -25 degrees C was studied on the activities of lactate dehydrogenase, glucose-6-phosphate dehydrogenase, xanthine oxidoreductase, glutamate dehydrogenase, succinate dehydrogenase (all demonstrated

  12. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  13. Biophysical properties of phenyl succinic acid derivatised hyaluronic acid

    DEFF Research Database (Denmark)

    Neves-Petersen, Maria Teresa; Klitgaard, Søren; Skovsen, Esben

    2010-01-01

    Modification of hyaluronic acid (HA) with aryl succinic anhydrides results in new biomedical properties of HA as compared to non-modified HA, such as more efficient skin penetration, stronger binding to the skin, and the ability to blend with hydrophobic materials. In the present study, hyaluronic...... acid has been derivatised with the anhydride form of phenyl succinic acid (PheSA). The fluorescence of PheSA was efficiently quenched by the HA matrix. HA also acted as a singlet oxygen scavenger. Fluorescence lifetime(s) of PheSA in solution and when attached to the HA matrix has been monitored...

  14. Characterization and metabolic synthetic lethal testing in a new model of SDH-loss familial pheochromocytoma and paraganglioma.

    Science.gov (United States)

    Smestad, John; Hamidi, Oksana; Wang, Lin; Holte, Molly Nelson; Khazal, Fatimah Al; Erber, Luke; Chen, Yue; Maher, L James

    2018-01-19

    Succinate dehydrogenase (SDH)-loss pheochromocytoma and paraganglioma (PPGL) are tumors driven by metabolic derangement. SDH loss leads to accumulation of intracellular succinate, which competitively inhibits dioxygenase enzymes, causing activation of pseudohypoxic signaling and hypermethylation of histones and DNA. The mechanisms by which these alterations lead to tumorigenesis are unclear, however. In an effort to fundamentally understand how SDH loss reprograms cell biology, we developed an immortalized mouse embryonic fibroblast cell line with conditional disruption of Sdhc and characterize the kinetics of Sdhc gene rearrangement, SDHC protein loss, succinate accumulation, and the resultant hypoproliferative phenotype. We further perform global transcriptomic, epigenomic, and proteomic characterization of changes resulting from SDHC loss, identifying specific perturbations at each biological level. We compare the observed patterns of epigenomic derangement to another previously-described immortalized mouse chromaffin cell model of SDHB loss, and compare both models to human SDH-loss tumors. Finally, we perform analysis of SDHC synthetic lethality with lactate dehydrogenase A (LDHA) and pyruvate carboxylase (PCX), which are important for regeneration of NAD+ and aspartate biosynthesis, respectively. Our data show that SDH-loss cells are selectively vulnerable to LDH genetic knock-down or chemical inhibition, suggesting that LDH inhibition may be an effective therapeutic strategy for SDH-loss PPGL.

  15. Fourier Transform Infrared Spectroscopy Study on Cation adsorption on Viscose Rayon Succinate

    Directory of Open Access Journals (Sweden)

    D Khasbaatar

    2014-09-01

    Full Text Available Ion-exchange materials have been considered as suitable material for the recovery of heavy metals in water. A viscose rayon succinate, synthesized from viscose rayon and succinic anhydride in presence of DMSO, to remove trace bivalent metal ions such as Ag+, Cu2+, Ni2+, Pb2+, Zn2+ and Cr3+, was studied using FT-IR for the behavior of metal adsorption. Both esterification and carboxyl bonding of viscose rayon succinate were assigned essentially at 1729 and 1693cm-1, respectively. And the essential band of bonding between metal and the material was determined at 1625cm-1. The available adsorption capacity of this fiber was 6.2 mequiv/g. The adsorption of metal ions on the viscose rayon succinate follows the order of Cu2+>Cr3+>Ni2+>Pb2+>Zn2+>Ag+ with maximum adsorptions capacities 4.2, 1.42, 0.91, 0.83, 0.69 and 0.35 mmol/g, respectively.DOI: http://dx.doi.org/10.5564/mjc.v12i0.189 Mongolian Journal of Chemistry Vol.12 2011: 136-141

  16. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  17. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Directory of Open Access Journals (Sweden)

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  18. Organization of Genes Required for the Oxidation of Methanol to Formaldehyde in Three Type II Methylotrophs

    Science.gov (United States)

    Bastien, C.; Machlin, S.; Zhang, Y.; Donaldson, K.; Hanson, R. S.

    1989-01-01

    Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome cL, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome cL structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed. PMID:16348074

  19. A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis.

    Science.gov (United States)

    Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J

    2013-07-01

    Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  1. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  2. Structural and magnetic studies on copper succinate dihydrate ...

    Indian Academy of Sciences (India)

    M P BINITHA

    2017-08-21

    Aug 21, 2017 ... rials chemistry, heterogeneous catalysis, gas storage, polymer magnets, etc. ... super exchange interactions among copper atoms through bridging .... Thus, these two water molecules in the structure of copper succinate are.

  3. An L-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of D-sorbose with enzymatic or electrochemical cofactor regeneration

    DEFF Research Database (Denmark)

    Gauer, Sabrina; Wang, Zhijie; Otten, Harm

    2014-01-01

    A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consistin...

  4. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

    DEFF Research Database (Denmark)

    Schifferdecker, Anna Judith; Siurkus, Juozas; Andersen, Mikael Rørdam

    2016-01-01

    Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we...... developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter...... TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions...

  5. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  6. Genotoxicity of meso-2,3-dimercapto succinic acid-coated silver sulfide quantum dot

    Directory of Open Access Journals (Sweden)

    Deniz Özkan Vardar

    2015-06-01

    Full Text Available Nanotecnology products have been used in wide applications in chemistry, electronics, energy generation, and medicine. Despite significant interest in developing quantum dots (QDs for biomedical applications, many researchers are convinced that QDs will never be used for the treatment of patients because of their potential toxicity. In various in vitro cell culture studies, the cytotoxic properties of some QD have been demonstrated and they have been suggested to be toxic in humans. In this study, the cytotoxic properties of Ag2S-(Meso-2,3-Dimercapto Succinic acid nanomaterials in V79 cells (Chinese lung fibroblast cell line were determined by MTT assay. The genotoxic effects of Ag2S-(Meso-2,3-Dimercapto Succinic acid were evaluated by the alkaline single cell gel electrophoresis. The cells were treated with Ag2S-(Meso-2,3-Dimercapto Succinic acid at the concentrations of 5- 2000 µg/ml. No cytotoxic effect of Ag2S-(Meso-2,3-Dimercapto Succinic acid at all concentrations studied was observed. No significant increases in DNA damage were found at the studied concentrations when compared to negative control in V79 cells. In conclusion, further in vitro and in vivo studies are required to determine the safety doses of Ag2S-(Meso-2,3-Dimercapto Succinic acid.

  7. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    Science.gov (United States)

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  8. Metabolic changes in cancer: beyond the Warburg effect

    Institute of Scientific and Technical Information of China (English)

    Weihua Wu; Shimin Zhao

    2013-01-01

    Altered metabolism is one of the hallmarks of cancer cells.The best-known metabolic abnormality in cancer cells is the Warburg effect,which demonstrates an increased glycolysis even in the presence of oxygen.However,tumor-related metabolic abnormalities are not limited to altered balance between glucose fermentation and oxidative phosphorylation.Key tumor genes such as p53 and c-myc are found to be master regulators of metabolism.Metabolic enzymes such as succinate dehydrogenase,fumarate hydratase,pyruvate kinase,and isocitrate dehydrogenase mutations or expressing level alterations are all linked to tumorigenesis.In this review,we introduce some of the cancer-associated metabolic disorders and current understanding of their molecular tumorigenic mechanisms.

  9. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

    DEFF Research Database (Denmark)

    Trauelsen, Mette; Rexen Ulven, Elisabeth; Hjorth, Siv A

    2017-01-01

    OBJECTIVE: Besides functioning as an intracellular metabolite, succinate acts as a stress-induced extracellular signal through activation of GPR91 (SUCNR1) for which we lack suitable pharmacological tools. METHODS AND RESULTS: Here we first determined that the cis conformation of the succinate...

  10. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.

    Science.gov (United States)

    Chen, Ke-Quan; Li, Jian; Ma, Jiang-Feng; Jiang, Min; Wei, Ping; Liu, Zhong-Min; Ying, Han-Jie

    2011-01-01

    The enzymatic hydrolysate of spent yeast cells was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113, using corn fiber hydrolysate as a carbon source. When spent yeast cell hydrolysate was used directly as a nitrogen source, a maximum succinic acid concentration of 35.5 g/l was obtained from a glucose concentration of 50 g/l, with a glucose utilization of 95.2%. Supplementation with individual vitamins showed that biotin was the most likely factor to be limiting for succinic acid production with spent yeast cell hydrolysate. After supplementing spent yeast cell hydrolysate and 90 g/l of glucose with 150 μg/l of biotin, cell growth increased 32.5%, glucose utilization increased 37.6%, and succinic acid concentration was enhanced 49.0%. As a result, when biotin-supplemented spent yeast cell hydrolysate was used with corn fiber hydrolysate, a succinic acid yield of 67.7% was obtained from 70.3 g/l of total sugar concentration, with a productivity of 0.63 g/(l h). Our results suggest that biotin-supplemented spent yeast cell hydrolysate may be an alternative nitrogen source for the efficient production of succinic acid by A. succinogenes NJ113, using renewable resources. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  12. A novel organic nonlinear optical crystal: Creatininium succinate

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.

  13. Molecular and Supramolecular Changes in Polybutylene Succinate (PBS and Polybutylene Succinate Adipate (PBSA Copolymer during Degradation in Various Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Michał Puchalski

    2018-03-01

    Full Text Available In this paper, the influence of the various degradation conditions, on the molecular and supramolecular structure of polybutylene succinate (PBS and polybutylene succinate adipate (PBSA copolymer during degradation is described. The experiment was carried out by the use of injection molded samples and normalized conditions of biodegradation in soil, composting and artificial weathering. Materials were studied by size-exclusion chromatography (SEC coupled with multiangle laser light scattering (MALLS detection and wide-angle X-ray diffraction (WAXD. Additionally, the physical and mechanical properties of the samples were determined. The performed experiments clearly show difference impacts of the selected degradation conditions on the macroscopic, supramolecular and molecular parameters of the studied aliphatic polyesters. The structural changes in PBS and PBSA explain the observed changes in the physical and mechanical properties of the obtained injection molded samples.

  14. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters

    International Nuclear Information System (INIS)

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by 1 H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t 1/2 , Z c and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. - Highlights: • The incorporation of NPGS units reduced the spherulite size of BS unit. • The existence of NPGS units did not change the crystal structure of BS unit. • The NPGS units incorporated in PBS could significantly improve the ductility of PBS. • The

  15. Co-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1

    Science.gov (United States)

    Peyraud, Rémi; Kiefer, Patrick; Christen, Philipp; Portais, Jean-Charles; Vorholt, Julia A.

    2012-01-01

    Methylobacterium extorquens AM1 is a facultative methylotrophic Alphaproteobacterium and has been subject to intense study under pure methylotrophic as well as pure heterotrophic growth conditions in the past. Here, we investigated the metabolism of M. extorquens AM1 under mixed substrate conditions, i.e., in the presence of methanol plus succinate. We found that both substrates were co-consumed, and the carbon conversion was two-thirds from succinate and one-third from methanol relative to mol carbon. 13C-methanol labeling and liquid chromatography mass spectrometry analyses revealed the different fates of the carbon from the two substrates. Methanol was primarily oxidized to CO2 for energy generation. However, a portion of the methanol entered biosynthetic reactions via reactions specific to the one-carbon carrier tetrahydrofolate. In contrast, succinate was primarily used to provide precursor metabolites for bulk biomass production. This work opens new perspectives on the role of methylotrophy when substrates are simultaneously available, a situation prevailing under environmental conditions. PMID:23133625

  16. Citrate and succinate uptake by potato mitochondria

    International Nuclear Information System (INIS)

    Jung, D.W.; Laties, G.G.

    1979-01-01

    Potato mitochondria, in the absence of respiration, have a very low capacity for uptake by exchange with endogenous anions, taking up only 2.4 nanomoles citrate and 2.0 nanomoles succinate per milligram protein. Maximum citrate uptake of over 17 nanomoles per milligram protein occurs in the presence of inorganic phosphate, a dicarboxylic acid, and an external energy source (NADH), conditions where net anion accumulation proceeds, mediated by the interlinking of the inorganic phosphate, dicarboxylate, and tricarboxylate carriers. Maximum succinate uptake in the absence of respiratory inhibitors requires only added inorganic phosphate. Compounds which inhibit respiration (antimycin), the exchange carriers (mersalyl and benzylmalonate), or the establishment of the membrane proton motive force (uncouplers) reduce substrate accumulation. A potent inhibitor of the citrate carrier in animal mitochondria, 1,2,3-benzenetricarboxylic acid, does not inhibit citrate uptake in potato mitochondria. Citrate uptake is reduced by concurrent ADP phosphorylation and this reduction is sensitive to oligomycin. The initiation of state 3 after a 3-minute substrate state results in a reduction of the steady-state of citrate uptake by approximately 50%. Accumulation of succinate initially is inhibited by increasing sucrose concentration in the reaction medium from 50 to 400 millimolar. Limited substrate uptake is one of the factors responsible for the often observed depressed initial state 3 respiration rates in many mitochondrial preparations. Since nonlimiting levels of substrate in the matrix cannot be attained by energy-independent exchange, a dependence on respiration for adequate uptake results. Substrate limitation therefore occurs in the matrix for the period of time needed for energy-dependent accumulation of nonlimiting levels

  17. Promotion of growth by Coenzyme Q10 is linked to gene expression in C. elegans.

    Science.gov (United States)

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2014-10-03

    Coenzyme Q (CoQ, ubiquinone) is an essential component of the respiratory chain, a cofactor of pyrimidine biosynthesis and acts as an antioxidant in extra mitochondrial membranes. More recently CoQ has been identified as a modulator of apoptosis, inflammation and gene expression. CoQ deficient Caenorhabditis elegans clk-1 mutants show several phenotypes including a delayed postembryonic growth. Using wild type and two clk-1 mutants, here we established an experimental set-up to study the consequences of endogenous CoQ deficiency or exogenous CoQ supply on gene expression and growth. We found that a deficiency of endogenous CoQ synthesis down-regulates a cluster of genes that are important for growth (i.e., RNA polymerase II, eukaryotic initiation factor) and up-regulates oxidation reactions (i.e., cytochrome P450, superoxide dismutase) and protein interactions (i.e., F-Box proteins). Exogenous CoQ supply partially restores the expression of these genes as well as the growth retardation of CoQ deficient clk-1 mutants. On the other hand exogenous CoQ supply does not alter the expression of a further sub-set of genes. These genes are involved in metabolism (i.e., succinate dehydrogenase complex), cell signalling or synthesis of lectins. Thus, our work provides a comprehensive overview of genes which can be modulated in their expression by endogenous or exogenous CoQ. As growth retardation in CoQ deficiency is linked to the gene expression profile we suggest that CoQ promotes growth via gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    OpenAIRE

    Sakoda, H; Imanaka, T

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those cata...

  19. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    International Nuclear Information System (INIS)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F.; Teixeira-Gomes, Roseli; Cruz, Romeu; Leijser, Lara M.

    2008-01-01

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  20. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance.

    Science.gov (United States)

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Bao, Xiaoming; Shen, Yu

    2016-04-01

    Vanillin, a type of phenolic released during the pre-treatment of lignocellulosic materials, is toxic to microorganisms and therefore its presence inhibits the fermentation. The vanillin can be reduced to vanillyl alcohol, which is much less toxic, by the ethanol producer Saccharomyces cerevisiae. The reducing capacity of S. cerevisiae and its vanillin resistance are strongly correlated. However, the specific enzymes and their contribution to the vanillin reduction are not extensively studied. In our previous work, an evolved vanillin-resistant strain showed an increased vanillin reduction capacity compared with its parent strain. The transcriptome analysis suggested the reductases and dehydrogenases of this vanillin resistant strain were up-regulated. Using this as a starting point, 11 significantly regulated reductases and dehydrogenases were selected in the present work for further study. The roles of these reductases and dehydrogenases in the vanillin tolerance and detoxification abilities of S. cerevisiae are described. Among the candidate genes, the overexpression of the alcohol dehydrogenase gene ADH6, acetaldehyde dehydrogenase gene ALD6, glucose-6-phosphate 1-dehydrogenase gene ZWF1, NADH-dependent aldehyde reductase gene YNL134C, and aldo-keto reductase gene YJR096W increased 177, 25, 6, 15, and 18 % of the strain μmax in the medium containing 1 g L(-1) vanillin. The in vitro detected vanillin reductase activities of strain overexpressing ADH6, YNL134C and YJR096W were notably higher than control. The vanillin specific reduction rate increased by 8 times in ADH6 overexpressed strain but not in YNL134C and YJR096W overexpressed strain. This suggested that the enzymes encoded by YNL134C and YJR096W might prefer other substrate and/or could not show their effects on vanillin on the high background of Adh6p in vivo. Overexpressing ALD6 and ZWF1 mainly increased the [NADPH]/[NADP(+)] and [GSH]/[GSSG] ratios but not the vanillin reductase activities. Their

  1. Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures

    DEFF Research Database (Denmark)

    Mønster, Jacob Garbrecht; Rosenørn, Thomas; Svenningsson, Birgitta

    2004-01-01

    Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid......Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid...

  2. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao [ORNL; Tschaplinski, Timothy J [ORNL; Engle, Nancy L [ORNL; Hamilton, Choo Yieng [ORNL; Rodriguez, Jr., Miguel [ORNL; Liao, James C [ORNL; Schadt, Christopher Warren [ORNL; Guss, Adam M [ORNL; Yang, Yunfeng [ORNL; Graham, David E [ORNL

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to

  3. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  4. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    Science.gov (United States)

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  5. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-04-01

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  6. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Spaan, András N.; Ijlst, Lodewijk; van Roermund, Carlo W. T.; Wijburg, Frits A.; Wanders, Ronald J. A.; Waterham, Hans R.

    2005-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II (GAII) is most often caused by mutations in the genes encoding the alpha- or beta-subunit of electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETF-DH). Since not all patients have

  7. Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3

    DEFF Research Database (Denmark)

    Cimini, Donatella; Patil, Kiran Raosaheb; Schiraldi, Chiara

    2009-01-01

    Background: Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (Sdhp) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where...... it catalyzes the oxidation of succinate to fumarate. Cellular response to the Sdhp dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore...... conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic...

  8. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J

    1998-01-01

    We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease......-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote...... for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele...

  9. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  11. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation

    DEFF Research Database (Denmark)

    Kanavin, Oivind J; Woldseth, Berit; Jellum, Egil

    2007-01-01

    BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism and a history...... cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD....

  12. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.

    Science.gov (United States)

    Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne

    2012-01-01

    The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell

  13. Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate)

    Energy Technology Data Exchange (ETDEWEB)

    Signori, Francesca [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Pelagaggi, Martina [Universita di Pisa - Dipartimento di Chimica e Chimica Industriale, Via Risorgimento 35, I-56126 Pisa (Italy); Bronco, Simona [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy); Righetti, Maria Cristina, E-mail: righetti@ipcf.cnr.it [Consiglio Nazionale delle Ricerche - Istituto per i Processi Chimico-Fisici (CNR-IPCF), Via G. Moruzzi 1, I-56124 Pisa (Italy)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer The existence of intermolecular interactions between poly(butylene succinate) and hemp fibres was proved from specific heat capacities data. Black-Right-Pointing-Pointer Different degrees of mobility of the poly(butylene succinate) amorphous segments were evidenced at the amorphous/crystal interphase. Black-Right-Pointing-Pointer Devitrification of the rigid amorphous fraction in poly(butylene succinate) was found to occur before and simultaneously with the fusion. - Abstract: Poly(butylene succinate)-hemp composites (PBS-hemp), with hemp content in the range 0-40 wt.%, were prepared in the melt and characterized. This paper focuses on the detailed analysis of the thermal behaviour of the PBS-hemp composites, investigated by differential scanning calorimetry (DSC), to enlighten the polymer/fibre interphase features. The occurrence of specific intermolecular interactions between PBS and hemp was assessed from specific heat capacity data. Different degrees of mobility of the PBS amorphous segments were found at the amorphous/crystal interphases. A broadening of the bulk glass transition was observed, and attributed to the presence of polymer segments slightly constrained. Moreover, a rigid amorphous fraction that devitrifies at temperatures higher than the bulk glass transition, partly before the melting region and partly simultaneously with the fusion, was observed and quantified, and attributed to the presence of major constraints probably occurring in geometrically restricted areas.

  14. Structural and magnetic studies on copper succinate dihydrate

    Indian Academy of Sciences (India)

    The four bis-bidendate succinate anions form syn–syn bridges among two copper atomsto form a polymeric two-dimensional chain. From room temperature vibrating sample magnetometer (VSM) studies themagnetic moment of the material is calculated as 1.35 Bohr magneton (BM), indicating antiferromagnetic interaction ...

  15. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH gene superfamily of foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs comprise a gene superfamily encoding NAD (P +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA. Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing

  16. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Chen, Zhu; Chen, Ming; Xu, Zhao-shi; Li, Lian-cheng; Chen, Xue-ping; Ma, You-zhi

    2014-01-01

    Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional

  17. Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Negoro, Hiroaki; Sakamoto, Mitsuru; Kotaka, Atsushi; Matsumura, Kengo; Hata, Yoji

    2018-02-01

    Saccharomyces cerevisiae produces organic acids such as succinate, acetate, and malate during alcoholic fermentation. Since malate contributes to the pleasant taste of sake (a Japanese alcoholic beverage), various methods for breeding high-malate-producing yeast strains have been developed. Here, a high-malate-producing yeast strain F-701H was isolated. This mutant was sensitive to dimethyl succinate (DMS) and harbored a nonsense mutation in the peroxin gene PEX22, which was identified as the cause of high malate production by comparative genome analysis. This mutation, which appeared to cause Pex22p dysfunction, was sufficient to confer increased malate productivity and DMS sensitivity to yeast cells. Next, we investigated the mechanism by which this mutation led to high malate production in yeast cells. Peroxins, such as Pex22p, maintain peroxisomal biogenesis. Analysis of 29 PEX disruptants revealed an increased malate production by deletion of the genes encoding peroxins responsible for importing proteins (containing peroxisomal targeting signal 1, PTS1) into the peroxisomal matrix, and those responsible for the assembly of peroxins themselves in the peroxisomal membrane. A defect in peroxisomal malate dehydrogenase (Mdh3p), harboring endogenous PTS1, inhibited the high malate-producing phenotype in the PEX22 mutant. Moreover, Mdh3p, which was normally sorted to the peroxisomal matrix, was potentially mislocalized to the cytosol in the PEX22 mutant. This suggested that an increase in malate production resulted from the mislocalization of Mdh3p from the peroxisome to the cytoplasm due to the loss of peroxin-mediated transportation. Thus, the present study revealed a novel mechanism for organic acid productions in yeast during sake brewing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Cytokinin oxidase/dehydrogenase genes in barley and wheat. Cloning and heterologous expression

    Czech Academy of Sciences Publication Activity Database

    Galuszka, P.; Frébortová, Jitka; Werner, T.; Yamada, M.; Strnad, Miroslav; Schmülling, T.; Frébort, I.

    2004-01-01

    Roč. 271, č. 20 (2004), s. 3990-4002 ISSN 0014-2956 Institutional research plan: CEZ:AV0Z5038910 Keywords : cereals * cloning * cytokinin oxidase/dehydrogenase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.260, year: 2004

  19. Spurious cooperativity in alkylated succinic acids

    Science.gov (United States)

    Ben-Naim, A.

    1998-03-01

    The proton-proton correlation, as measured by the ratio between the second and the first dissociation constants of dibasic acid, is sometimes very large and far beyond what could be explained by electrostatic theories. We propose a novel interpretation of this phenomenon based on the idea of spurious cooperativity. The general theoretical framework underlying the onset of spurious cooperativity is developed first. The basic result is that whenever a binding (or dissociating) two-site (or more) system splits into a mixture of noninterconverting isomers the binding isotherm (or the titration curve) behaves as if it is more negatively cooperative compared with the genuine cooperativities of the individual isomer. The theory is applied to a specific system of α-α' dialkyl succinic acid. It is known that the Meso form of these alkylated derivatives show a normal correlation of the same order of magnitude as in succinic acid. On the other hand, the Racemic form of these alkylated derivatives shows anomalous strong negative correlations when the alkyl groups become large (e.g., isopropyl and tert butyl). It is shown that the theory of spurious cooperativity can explain the different behavior of the Racemic and the Meso forms, as well as the onset of anomalous strong negative correlations when the alkyl groups become large.

  20. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.

    Science.gov (United States)

    Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao

    2010-01-01

    Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.

  1. [Discovery of the target genes inhibited by formic acid in Candida shehatae].

    Science.gov (United States)

    Cai, Peng; Xiong, Xujie; Xu, Yong; Yong, Qiang; Zhu, Junjun; Shiyuan, Yu

    2014-01-04

    At transcriptional level, the inhibitory effects of formic acid was investigated on Candida shehatae, a model yeast strain capable of fermenting xylose to ethanol. Thereby, the target genes were regulated by formic acid and the transcript profiles were discovered. On the basis of the transcriptome data of C. shehatae metabolizing glucose and xylose, the genes responsible for ethanol fermentation were chosen as candidates by the combined method of yeast metabolic pathway analysis and manual gene BLAST search. These candidates were then quantitatively detected by RQ-PCR technique to find the regulating genes under gradient doses of formic acid. By quantitative analysis of 42 candidate genes, we finally identified 10 and 5 genes as markedly down-regulated and up-regulated targets by formic acid, respectively. With regard to gene transcripts regulated by formic acid in C. shehatae, the markedly down-regulated genes ranking declines as follows: xylitol dehydrogenase (XYL2), acetyl-CoA synthetase (ACS), ribose-5-phosphate isomerase (RKI), transaldolase (TAL), phosphogluconate dehydrogenase (GND1), transketolase (TKL), glucose-6-phosphate dehydrogenase (ZWF1), xylose reductase (XYL1), pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC); and a declining rank for up-regulated gens as follows: fructose-bisphosphate aldolase (ALD), glucokinase (GLK), malate dehydrogenase (MDH), 6-phosphofructokinase (PFK) and alcohol dehydrogenase (ADH).

  2. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui. Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  3. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  4. Endocrine tumors associated with the vagusnerve

    OpenAIRE

    Varoquaux, Arthur; Kebebew, Electron; Sebag, Fréderic; Wolf, Katherine; Henry, Jean-François; Pacak, Karel; Taïeb, David

    2016-01-01

    The vagus nerve (cranial nerve X) is the main nerve of the parasympathetic division of the autonomic nervous system. Vagal paragangliomas (VPGLs) are a prime example of an endocrine tumor associated with the vagus nerve. This rare, neural-crest tumor constitutes the second most common site of hereditary head and neck paragangliomas (HNPGLs), most often in relation to mutations in the succinate dehydrogenase subunit D (SDHD) gene. The treatment paradigm for VPGL has progressively shifted from ...

  5. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance

  6. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  7. Metabolic Engineering of Saccharomyces cerevisiae Microbial Cell Factories for Succinic Acid Production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Nielsen, Jens; Olsson, Lisbeth

    2007-01-01

    anhydride. There are several biomass platforms, all prokaryotic, for succinic acid production; however, overproduction of succinic acid in S. cerevisiae offers distinct process advantages. For example, S. cerevisiae has been awarded GRAS status for use in human consumables, grows well at low p......H significantly minimizing purification and acidification costs associated with organic acid production, and can utilize diverse carbon substrates in chemically defined medium. S. cerevisiae offers the unique advantage of being the most well characterized eukaryotic expression system. Here we describe the use...

  8. The inhibition of lactate dehydrogenase A hinders the transcription of histone 2B gene independently from the block of aerobic glycolysis

    International Nuclear Information System (INIS)

    Brighenti, Elisa; Carnicelli, Domenica; Brigotti, Maurizio; Fiume, Luigi

    2017-01-01

    Most cancer cells use aerobic glycolysis to fuel their growth and many efforts are made to selectively block this metabolic pathway in cancer cells by inhibiting lactate dehydrogenase A (LDHA). However, LDHA is a moonlighting protein which exerts functions also in the nucleus as a factor associated to transcriptional complexes. Here we found that two small molecules which inhibit the enzymatic activity of LDHA hinder the transcription of histone 2B gene independently from the block of aerobic glycolysis. Moreover, we observed that silencing this gene reduces cell replication, hence suggesting that the inhibition of LDHA can also affect the proliferation of normal non-glycolysing dividing cells. - Highlights: • Blocking aerobic glycolysis is an approach to impair proliferation of cancer cells. • Small inhibitors of LDHA block aerobic glycolysis. • LDHA is also involved in the transcription of histone 2B gene. • LDHA inhibitors block histone 2B transcription. • LDHA inhibitors can hinder the proliferation also of non-glycolysing normal cells.

  9. Polymerase chain reaction amplification and cloning of immunogenic protein NAD-dependent beta hydroxybutyryl CoA dehydrogenase gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2014-10-01

    Full Text Available Aim: The present study was aimed at polymerase chain reaction (PCR amplification and cloning of NAD-dependent betahydroxybutyryl coenzyme A dehydrogenase (BHBD gene of Clostridium chauvoei. Materials and Methods: C. chauvoei was cultured and confirmed by 16-23S rDNA spacer region primers. The primers for nad-bhbd gene of C. chauvoei were designed to aid in cloning into pRham-N-His SUMO-Kan vector, and nad-bhbd gene was amplified by PCR. The amplified nad-bhbd gene was purified and cloned into pRham-N-His SUMO-Kan expression vector. The recombinant plasmid was transformed into E. cloni 10 G cells and the clone was confirmed by colony PCR using the pRham-SUMO-NAD-For and pRham-SUMO-NAD-Rev primers and also by sequencing. Results: PCR amplification of nad-bhbd gene yielded a product length of 844 base pairs which was cloned into pRham-NHis SUMO-Kan vector followed by transformation into E. cloni 10G chemically competent cells. The recombinant clones were characterized by colony PCR, sequencing, followed by basic local alignment search tool (BLAST analysis to confirm the insert. Conclusions: Immunogenic protein NAD- dependent BHBD of C. chauvoei was cloned and the recombinant clones were confirmed by colony PCR and sequencing analysis.

  10. Enterobacter sp. LU1 as a novel succinic acid producer - co-utilization of glycerol and lactose.

    Science.gov (United States)

    Podleśny, Marcin; Jarocki, Piotr; Wyrostek, Jakub; Czernecki, Tomasz; Kucharska, Jagoda; Nowak, Anna; Targoński, Zdzisław

    2017-03-01

    Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l -1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l -1 of glycerol and 25 g l -1 of lactose as carbon sources. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis.

    Science.gov (United States)

    Xu, Guo-Chao; Bian, Ya-Qian; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-02-01

    The budC gene encoding a meso-2,3-butanediol dehydrogenase (BlBDH) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli BL21(DE3). Sequence analysis reveals that this BlBDH belongs to short-chain dehydrogenase/reductase (SDR) superfamily. In the presence of NADH, BlBDH catalyzes the reduction of diacetyl to (3S)-acetoin (97.3% ee), and further to (2S,3S)-2,3-butanediol (97.3% ee and 96.5% de). Similar to other meso-2,3-BDHs, it shows oxidative activity to racemic 2,3-butanediol whereas no activity toward racemic acetoin in the presence of NAD(+). For diacetyl reduction and 2,3-butanediol oxidation, the pH optimum of BlBDH is 5.0 and 10.0, respectively. Unusually, it shows relatively high activity over a wide pH range from 5.0 to 8.0 for racemic acetoin reduction. BlBDH shows lower K m and higher catalytic efficiency toward racemic acetoin (K m = 0.47 mM, k cat /K m = 432 s(-1)·mM(-1)) when compared with 2,3-butanediol (K m = 7.25 mM, k cat /K m = 81.5 s(-1)·mM(-1)), indicating its physiological role in favor of reducing racemic acetoin into 2,3-butanediol. The enzymatic characterization of BlBDH provides evidence for the directed engineering of B. licheniformis for producing enantiopure 2,3-butanediol.

  12. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome

    DEFF Research Database (Denmark)

    Banner, Jytte; Gregersen, N; Kølvraa, S

    1993-01-01

    A number of rare inherited metabolic disorders are known to lead to death in infancy. Deficiency of medium-chain acyl CoA dehydrogenase has, on clinical grounds, been related particularly to sudden infant death syndrome. The contribution of this disorder to the etiology of sudden infant death...... syndrome is still a matter of controversy. The present study investigated 120 well-defined cases of sudden infant death syndrome in order to detect the frequency of the most common disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase (G985) compared with the frequency...... in the general population. A highly specific polymerase chain reaction assay was applied on dried blood spots. No over-representation of homo- or heterozygosity for G985 appears to exist in such a strictly defined population, for which reason it may be more relevant to look at a broader spectrum of clinical...

  13. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    Science.gov (United States)

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  14. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  15. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  16. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  17. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends

    International Nuclear Information System (INIS)

    He, Yi-Song; Zeng, Jian-Bing; Li, Shao-Long; Wang, Yu-Zhong

    2012-01-01

    Graphical abstract: Crystallization rate of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. The rich component formed a continuous phase and the other formed a dispersed phase of the blend. Crystal structures of PBS and PES were almost unchanged after blending with each other. Highlights: ► PBS/PES blend systems are partially miscible. ► Blending did not change the crystallization mechanisms of PBS and PES not affects the crystallization rates. ► The rich component formed the continuous phase while the poor component formed the dispersed phase of the blends. ► Crystal structures of PBS and PES were almost unchanged after blending with each other. - Abstract: Biodegradable blend of poly(butylene succinate) (PBS) and poly(ethylene succinate) (PES) was prepared by solution blending and casting method with chloroform as a mutual solvent. Miscibility of the blends was investigated by differential scanning calorimetry (DSC). The results indicated that PBS and PES were partially miscible. Crystallization kinetics, crystalline morphology and crystal structure of the blends were studied by DSC, polarized optical microscope (POM), and wide-angle X-ray diffraction (WAXD), respectively. Nonisothermal and isothermal crystallization kinetics suggested that the crystallizability of PBS in the blends decreased first and then increased with increase in PES content, and that of PES increased steadily with increase in PBS content. POM observation illustrated that the rich component formed a continuous phase and the other formed a dispersed phase. The results of WAXD indicated that the crystal structures of PBS and PES were almost unchanged before and after blending, since the positions of characteristic diffraction peaks of both components remain almost unchanged.

  18. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

    Science.gov (United States)

    Zhang, Junjiao; Zhao, Xiangying; Zhang, Jiaxiang; Zhao, Chen; Liu, Jianjun; Tian, Yanjun; Yang, Liping

    2017-09-14

    The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20 g/L of glucose media. The acetoin yield of BS168D reached 6.61 g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47 g/L). Then, when the glucose concentration was increased to 100 g/L, the acetoin yield reached 24.6 g/L, but 2.4 g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.

  19. Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily

    NARCIS (Netherlands)

    Machielsen, M.P.; Uria, A.R.; Kengen, S.W.M.; Oost, van der J.

    2006-01-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The

  20. Disruption of the pdhB pyruvate dehydrogenase [corrected] gene affects colony morphology, in vitro growth and cell invasiveness of Mycoplasma agalactiae.

    Directory of Open Access Journals (Sweden)

    Shivanand Hegde

    Full Text Available The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae.

  1. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    Directory of Open Access Journals (Sweden)

    Li Yongchao

    2012-01-01

    Full Text Available Abstract Background The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. Results The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh and L-malate dehydrogenase (Ccel_0137; mdh genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. Conclusions The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox

  2. Multifunctional nanobiocomposite of Poly[(butylene succinate)-co-adipate] and clay

    CSIR Research Space (South Africa)

    Al-Thabaiti, SA

    2015-03-01

    Full Text Available The processing and characterization of multifunctional nanobiocomposite of biodegradable poly[(butylene succinate)-co-adipate] (PBSA) and organically modified synthetic fluorine mica (OSFM) are reported. The nanobiocomposite of PBSA with OSFM...

  3. A legacy of tinnitus: multiple head and neck paragangliomas

    Directory of Open Access Journals (Sweden)

    Jeremy J. Turner

    2009-12-01

    Full Text Available We describe the case of a patient who presented with a right-sided glomus jugulare tumor and bilateral glomus vagale tumors. These proved to be nonmalignant paragangliomas on histopathological analysis. Genetic analysis revealed a germline heterozygous missense mutation (Pro81Leu in the succinate dehydrogenase subunit D (SDHD gene. We discuss the clinical presentations of the familial paraganglioma syndrome type 1, which is caused by mutations in SDHD, and the implications for the clinical diagnosis and care of such patients.

  4. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    OpenAIRE

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE) assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron–sulfur...

  5. Efficient production of succinic acid in immobilized fermentation with crude glycerol from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nik Nor Aziati, A.A.

    2017-10-01

    Full Text Available The increase in the price of commercial succinic acid has necessitated the need for its synthesis from waste materials such as glycerol. Glycerol residue is a waste product of Oleochemical production which is cheaply available and a very good source of carbon. The use of immobilized cells can further reduce the overall cost of the production process. This study primarily aims to produce succinic acid from glycerol residue through the use of immobilized Escherichia coli in a batch fermentation process. The parameters which affect bacterial fermentation process such as the mass substrate, temperature, inoculum size and duration of fermentation were screened using One-Factor-At-a-Time (OFAT method. The result of the screening process shows that a substrate (glycerol concentration of 30 g, inoculum size 20% v/v, and time 4 h produced the maximum succinic acid concentration of 117.99 g/L. The immobilized cells were found to be stable as well as retain their fermentative ability up to the 6th cycle of recycling, thereby presenting as an advantage over the free cell system. Therefore, conclude that using immobilized cells can contribute immensely to the cost-effective production of succinic acid from glycerol residue.

  6. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    Science.gov (United States)

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. XoxF Is Required for Expression of Methanol Dehydrogenase in Methylobacterium extorquens AM1 ▿

    Science.gov (United States)

    Skovran, Elizabeth; Palmer, Alexander D.; Rountree, Austin M.; Good, Nathan M.; Lidstrom, Mary E.

    2011-01-01

    In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes. PMID:21873495

  8. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    Science.gov (United States)

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  9. CLINICAL AND ECONOMICAL ASSESSMENTS OF METOPROLOL TARTRATE/SUCCINATE USAGE IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    M. V. Soura

    2008-01-01

    Full Text Available Clinical and clinicoeconomical studies review is presented as well as results of author’s comparative cost analysis on metoprolol tartrate (Betaloc and metoprolol succinate (Betaloc ZOK usage in patients with ischemic heart disease. Efficacy of metoprolol therapy is proven in randomized clinical studies in patients with angina and myocardial infarction (MI. In angina patients metoprolol prevents cardiac attacks, MI, reduces nitroglycerine consumption, increases exercise tolerability, prolongs the exercise time before ST segment depression (succinate better than tartrate, decrease of angina intensity. In MI patients metoprolol therapy reduces mortality, sudden death, recurring MI and the rate of early post MI angina attacks. Nowadays metoprolol is the only β-blocker having indication on secondary MI prevention. Besides for the present metoprolol succinate is the only β-blocker with proven direct antisclerosis effect. According to Swedish clinicoeconomical study in patients after MI secondary prevention with metoprolol therapy saves the costs in comparison with placebo. American clinicoeconomical model of metoprolol and atenolol usage in all patients with MI could result in significant reduction in mortality and recurring MI rate, prolong the life and improve its quality, save financial resources. The cost of monthly treatment of angina patient with metoprolol tartrate (Betaloc and metoprolol succinate (Betaloc ZOK is 135 and 354 rubles, respectively. The price range of comparative β-blockers in ascending order is the following: atenolol (Atenolol Nicomed → metoprolol tartrate (Betaloc → metoprolol succinate (Betaloc ZOK → bisoprolol (Concor → nebivolol (Nebilet. In conclusion, metoprolol therapy is the one of mostly economically reasonable approach.

  10. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  12. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1

    DEFF Research Database (Denmark)

    Carrozzo, Rosalba; Verrigni, Daniela; Rasmussen, Magnhild

    2016-01-01

    BACKGROUND: The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings...... deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently...

  13. Identification of some ectomycorrhizal basidiomycetes by PCR amplification of their gpd (glyceraldehyde-3-phosphate dehydrogenase) genes.

    Science.gov (United States)

    Kreuzinger, N; Podeu, R; Gruber, F; Göbl, F; Kubicek, C P

    1996-01-01

    Degenerated oligonucleotide primers designed to flank an approximately 1.2-kb fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from ascomycetes and basidiomycetes were used to amplify the corresponding gpd fragments from several species of the ectomycorrhizal fungal taxa Boletus, Amanita, and Lactarius. Those from B. edulis, A. muscaria, and L. deterrimus were cloned and sequenced. The respective nucleotide sequences of these gene fragments showed a moderate degree of similarity (72 to 76%) in the protein-encoding regions and only a low degree of similarity in the introns (56 to 66%). Introns, where present, occurred at conserved positions, but the respective positions and numbers of introns in a given taxon varied. The amplified fragment from a given taxon could be distinguished from that of others by both restriction nuclease cleavage analysis and Southern hybridization. A procedure for labeling DNA probes with fluorescein-12-dUTP by PCR was developed. These probes were used in a nonradioactive hybridization assay, with which the gene could be detected in 2 ng of chromosomal DNA of L. deterrimus on slot blots. Taxon-specific amplification was achieved by the design of specific oligonucleotide primers. The application of the gpd gene for the identification of mycorrhizal fungi under field conditions was demonstrated, with Picea abies (spruce) mycorrhizal roots harvested from a northern alpine forest area as well as from a plant-breeding nursery. The interference by inhibitory substances, which sometimes occurred in the DNA extracted from the root-fungus mixture, could be overcome by using very diluted concentrations of template DNA for a first round of PCR amplification followed by a second round with nested oligonucleotide primers. We conclude that gpd can be used to detect ectomycorrhizal fungi during symbiotic interaction. PMID:8795234

  14. Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate)

    International Nuclear Information System (INIS)

    Zhu Qunying; He Yisong; Zeng Jianbing; Huang Qing; Wang Yuzhong

    2011-01-01

    Highlights: → High-molecular-weight biodegradable multiblock copolyester containing PBS and PES segments was achieved. → PBS and PES are miscible with a single glass transition regardless of composition. → The multiblock copolyester showed excellent tensile strength and elongation at break. → The multiblock copolyester can serve as a potential substitute for conventional non-biodegradable commodity plastics. - Abstract: Multiblock copolyester (PBS-b-PES) containing poly(butylene succinate) (PBS) and poly(ethylene succinate) (PES) was successfully synthesized by chain-extension of dihydroxyl terminated PBS (HO-PBS-OH) and PES (HO-PES-OH) using 1,6-hexmethylene diisocyanate (HDI) as a chain extender. The chemical structures, molecular weights, crystallization behaviors, thermal and mechanical properties of the copolyesters were characterized by proton nuclear magnetic resonance spectroscopy ( 1 H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), wide-angle X-ray diffraction (WAXD), tensile testing and hydrolytic degradation. High-molecular-weight copolyesters with M w more than 2.0 x 10 5 g mol -1 were easily obtained through chain-extension. The copolyesters showed a single glass transition temperature (T g ) which increased with PES content. The melting point temperature (T m ) and relative degree of crystallinity (X c ) of the copolyesters decreased first and then increased with PES content. The copolyesters manifested excellent mechanical properties, for example, PBS 5 -b-PES 5 had fracture stress of 61.8 MPa and fracture strain of 1173%. The chain-extension reaction provided a very effective way to produce high molecular weight multiblock copolyesters.

  15. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish.

    OpenAIRE

    Biery, B. J.; Stein, D. E.; Morton, D. H.; Goodman, S. I.

    1996-01-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span approximately 7 kb. Fibroblast DNA from 64 unrelated glutaric acidemia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms fou...

  16. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats.

    Science.gov (United States)

    Ohta, Y; Kawate, N; Inaba, T; Morii, H; Takahashi, K; Tamada, H

    2017-12-01

    Although feeding diets containing the extract powder of Lepidium meyenii (maca), a plant growing in Peru's Central Andes, increases serum testosterone concentration associated with enhanced ability of testosterone production by Leydig cells in male rats, changes in testicular steroidogenesis-related factors by the maca treatment are not known. This study examined the effects of maca on testicular gene expressions for luteinizing hormone receptor, steroidogenic acute regulatory protein and steroidogenic enzymes. Eight-week-old male rats were given the diets with or without (control) the maca extract powder (2%) for 6 weeks, and mRNA levels were determined by reverse transcription quantitative real-time PCR. The results showed that the testicular mRNA level of HSD3B1 (3β-hydroxysteroid dehydrogenase; 3β-HSD) increased by the treatment, whereas the levels of the other factors examined did not change. These results suggest that increased expression of 3β-HSD gene may be involved in the enhanced steroidogenic ability by the maca treatment in rat testes. © 2017 Blackwell Verlag GmbH.

  17. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production.

    Science.gov (United States)

    Huang, Yanna; You, Chunping; Liu, Zhenmin

    2017-07-01

    Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate . Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.

  18. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    OpenAIRE

    Wisselink, H. Wouter; Mars, Astrid E.; van der Meer, Pieter; Eggink, Gerrit; Jeroen Hugenholtz

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and 13C nuclear magnetic resonance analysis revealed that small amounts (

  19. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  20. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    Science.gov (United States)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  1. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate.

    Science.gov (United States)

    Geiss, K T; Abbas, G M; Makaroff, C A

    1994-04-01

    The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.

  2. In-vitro responses of T lymphocytes to poly(butylene succinate) based biomaterials.

    Science.gov (United States)

    Toso, Montree; Patntirapong, Somying; Janvikul, Wanida; Singhatanadgit, Weerachai

    2017-04-01

    Polybutylene succinate (PBSu) and PBSu/β-tricalcium phosphate (TCP) composites are biocompatible and good candidates as bone graft materials. However, little is known about the responses of T lymphocytes to these biomaterials, which play an important role in the success of bone grafting. Activated T lymphocytes were cultured onto 32 mm diameter films (PBSu/TCP films), that had previously been placed in 6-well culture plates, for 8, 24 and 72 hours. A plastic-well culture plate was used as a control surface. The effects of PBSu-based biomaterials on T lymphocytes were examined by the using flow cytometry and reverse-transcription polymerase chain reaction. These biomaterials were non-toxic to T lymphocytes, allowing their normal DNA synthesis and activation. All materials induced only transient activation of T lymphocytes, which existed no longer than 72 hours. Proportions of four main CD4/CD8 T lymphocyte subpopulations were not affected by these biomaterials. Moreover, PBSu and PBSu/TCP significantly suppressed the expression of IL-1β and IL-6 genes by 15-35% and 21-26%, respectively. In contrast, a PBSu/TCP composite (at PBSu:TCP=60:40) significantly stimulated the expression of IL-10 and IL-13 genes by 17% and 19%, respectively. PBSu and PBSu/TCP composites were non-toxic to T lymphocytes and did not induce unfavorable responses of T lymphocytes. The tested biomaterials down-regulated key proinflammatory cytokine genes and up-regulated anti-inflammatory cytokine genes in T lymphocytes. These suggest that the biomaterials studied are good candidates as bone graft materials.

  3. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.

    Science.gov (United States)

    Li, Hung; Shen, Claire R; Huang, Chun-Hung; Sung, Li-Yu; Wu, Meng-Ying; Hu, Yu-Chen

    2016-11-01

    Cyanobacteria hold promise as a cell factory for producing biofuels and bio-derived chemicals, but genome engineering of cyanobacteria such as Synechococcus elongatus PCC 7942 poses challenges because of their oligoploidy nature and long-term instability of the introduced gene. CRISPR-Cas9 is a newly developed RNA-guided genome editing system, yet its application for cyanobacteria engineering has yet to be reported. Here we demonstrated that CRISPR-Cas9 system can effectively trigger programmable double strand break (DSB) at the chromosome of PCC 7942 and provoke cell death. With the co-transformation of template plasmid harboring the gene cassette and flanking homology arms, CRISPR-Cas9-mediated DSB enabled precise gene integration, ameliorated the homologous recombination efficiency and allowed the use of lower amount of template DNA and shorter homology arms. The CRISPR-Cas9-induced cell death imposed selective pressure and enhanced the chance of concomitant integration of gene cassettes into all chromosomes of PCC 7942, hence accelerating the process of obtaining homogeneous and stable recombinant strains. We further explored the feasibility of engineering cyanobacteria by CRISPR-Cas9-assisted simultaneous glgc knock-out and gltA/ppc knock-in, which improved the succinate titer to 435.0±35.0μg/L, an ≈11-fold increase when compared with that of the wild-type cells. These data altogether justify the use of CRISPR-Cas9 for genome engineering and manipulation of metabolic pathways in cyanobacteria. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...... be due to residual enzyme activity as a consequence of the two missense mutations. Treatment with L-carnitine and medium chain triglycerides in the diet did not reduce the attacks of rhabdomyolysis....

  5. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  6. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  7. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  8. Physiological regulation of isocitrate dehydrogenase and the role of 2-oxoglutarate in Prochlorococcus sp. strain PCC 9511.

    Directory of Open Access Journals (Sweden)

    María Agustina Domínguez-Martín

    Full Text Available The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42 catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus.

  9. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics.

    Science.gov (United States)

    Yokoyama, A; Muramatsu, T; Omori, T; Yokoyama, T; Matsushita, S; Higuchi, S; Maruyama, K; Ishii, H

    2001-03-01

    Alcohol dehydrogenase-2 (ADH2) and aldehyde dehydrogenase-2 (ALDH2) gene polymorphisms play roles in ethanol metabolism, drinking behavior and esophageal carcinogenesis in Japanese; however, the combined influence of ADH2 and ALDH2 genotypes on other aerodigestive tract cancers have not been investigated. ADH2/ALDH2 genotyping was performed on lymphocyte DNA samples from Japanese alcoholic men (526 cancer-free; 159 with solitary or multiple aerodigestive tract cancers, including 33 oropharyngolaryngeal, 112 esophageal, 38 stomach and 22 multiple primary cancers in two or three organs). After adjustment for age, drinking and smoking habits, and ADH2/ALDH2 genotypes, the presence of either ADH2*1/2*1 or ALDH2*1/2*2 significantly increased the risk for oropharyngolaryngeal cancer [odds ratios (ORs), 6.68 with ADH2*1/2*1 and 18.52 with ALDH2*1/2*2] and esophageal cancer (ORs, 2.64 and 13.50, respectively). For patients with both ADH2*1/2*1 and ALDH2*1/2*2, the risks for oropharyngolaryngeal and esophageal cancers were enhanced in a multiplicative fashion (OR = 121.77 and 40.40, respectively). A positive association with ALDH2*1/2*2 alone was observed for stomach cancer patients who also had oropharyngolaryngeal and/or esophageal cancer (OR = 110.58), but it was not observed for those with stomach cancer alone. Furthermore, in the presence of ALDH2*1/2*2, the risks for multiple intra-esophageal cancers (OR = 3.43) and for esophageal cancer with oropharyngolaryngeal and/or stomach cancer (OR = 3.95) were higher than the risks for solitary intra-esophageal cancer and for esophageal cancer alone, but these tendencies were not observed for ADH2*1/2*1 genotype. Alcoholics' population attributable risks due to ADH2/ALDH2 polymorphisms were estimated to be 82.0% for oropharyngolaryngeal cancer and 63.9% for esophageal cancer.

  10. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase.

    Science.gov (United States)

    Li, L; Cheng, X F; Leshkevich, J; Umezawa, T; Harding, S A; Chiang, V L

    2001-07-01

    Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) has been thought to mediate the reduction of both coniferaldehyde and sinapaldehyde into guaiacyl and syringyl monolignols in angiosperms. Here, we report the isolation of a novel aspen gene (PtSAD) encoding sinapyl alcohol dehydrogenase (SAD), which is phylogenetically distinct from aspen CAD (PtCAD). Liquid chromatography-mass spectrometry-based enzyme functional analysis and substrate level-controlled enzyme kinetics consistently demonstrated that PtSAD is sinapaldehyde specific and that PtCAD is coniferaldehyde specific. The enzymatic efficiency of PtSAD for sinapaldehyde was approximately 60 times greater than that of PtCAD. These data suggest that in addition to CAD, discrete SAD function is essential to the biosynthesis of syringyl monolignol in angiosperms. In aspen stem primary tissues, PtCAD was immunolocalized exclusively to xylem elements in which only guaiacyl lignin was deposited, whereas PtSAD was abundant in syringyl lignin-enriched phloem fiber cells. In the developing secondary stem xylem, PtCAD was most conspicuous in guaiacyl lignin-enriched vessels, but PtSAD was nearly absent from these elements and was conspicuous in fiber cells. In the context of additional protein immunolocalization and lignin histochemistry, these results suggest that the distinct CAD and SAD functions are linked spatiotemporally to the differential biosynthesis of guaiacyl and syringyl lignins in different cell types. SAD is required for the biosynthesis of syringyl lignin in angiosperms.

  11. Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Guangming, E-mail: zgming@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li Zhen, E-mail: happylizhen@yeah.ne [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Tang Lin; Wu Mengshi; Lei Xiaoxia; Liu Yuanyuan; Liu Can; Pang Ya; Zhang Yi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-05-01

    Highlights: > Gold nanoparticles/multiwalled carbon nanotubes/poly (1,5-naphthalenediamine) modified electrode was fabricated. > The sensor was applied for the detection of cellobiose dehydrogenase genes. > An effective method to distribute MWCNTs and attach to the electrode was proposed. > The composite films greatly improved the sensitivity and enhanced the DNA immobilization. > The DNA biosensor exhibited fairly high sensitivity and quite low detection limit. - Abstract: An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol-Au bond and horseradish peroxidase-streptavidin (HRP-SA) conjugates were labeled to the biotinylated detection probes through biotin-streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes

  12. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  13. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  14. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  15. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    DEFF Research Database (Denmark)

    Kanavin, Øjvind; Woldseth, Berit; Jellum, Egil

    2007-01-01

    previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD. PMID: 17883863 [PubMed - in process]......ABSTRACT: BACKGROUND: 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. METHODS: We report a four-year-old mentally retarded Somali boy with autism...

  16. Alcohol consumption and type 2 diabetes: Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE - We sought to investigate whether a polymorphism in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS - In nested case-control studies of 640 women with incident diabetes and 1,000 control

  17. [Effects of different neutralizing agents on succinate production by Actinobacillus succinogenes NJ113].

    Science.gov (United States)

    Yang, Zhuona; Jiang, Min; Li, Jian; Fang, Xiaojiang; Ye, Guizi; Bai, Xuefei; Zheng, Xiaoyu; Wei, Ping

    2010-11-01

    Different neutralizing agents were used as pH controller to investigate their effects on the growth and succinic acid production of Actinobacillus succinogenes NJ113. The fermentation results showed that Ca(OH)2, CaCO3 and NH4OH were not suitable for succinic acid production by A. succinogenes NJ113 because of their negative effects on cell growth. When Na-base was used, cells would flocculate and lump, and due to the sodium ion concentration reaching to a high level, OD660 dropped sharply after 12 h of fermentation. Mg-base was better because there was no significant inhibition by magnesium ion. Two combined neutralizing agents were used to maintain pH level, one with NaOH and Mg(OH)2 while the other with Na2CO3 and Mg(OH)2. The optimum ratios of the combined neutralizing agents were both 1:1 (g:g) when using 100 g/L glucose. When NaOH and Mg(OH)2 were chosen with the ratio of 1:1(g:g), 69.8 g/L of the succinic acid and 74.5% of the yield was obtained.

  18. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  19. Glu504Lys Single Nucleotide Polymorphism of Aldehyde Dehydrogenase 2 Gene and the Risk of Human Diseases

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH 2 is a mitochondrial enzyme that is known for its important role in oxidation and detoxification of ethanol metabolite acetaldehyde. ALDH2 also metabolizes other reactive aldehydes such as 4-hydroxy-2-nonenal and acrolein. The Glu504Lys single nucleotide polymorphism (SNP of ALDH2 gene, which is found in approximately 40% of the East Asian populations, causes defect in the enzyme activity of ALDH2, leading to alterations in acetaldehyde metabolism and alcohol-induced “flushing” syndrome. Evidence suggests that ALDH2 Glu504Lys SNP is a potential candidate genetic risk factor for a variety of chronic diseases such as cardiovascular disease, cancer, and late-onset Alzheimer’s disease. In addition, the association between ALDH2 Glu504Lys SNP and the development of these chronic diseases appears to be affected by the interaction between the SNP and lifestyle factors such as alcohol consumption as well as by the presence of other genetic variations.

  20. Characterisation of recombinant human fatty aldehyde dehydrogenase: implications for Sjögren-Larsson syndrome

    NARCIS (Netherlands)

    Lloyd, Matthew D.; Boardman, Kieren D. E.; Smith, Andrew; van den Brink, Daan M.; Wanders, Ronald J. A.; Threadgill, Michael D.

    2007-01-01

    Fatty aldehyde dehydrogenase (FALDH) is an NAD+-dependent oxidoreductase involved in the metabolism of fatty alcohols. Enzyme activity has been implicated in the pathology of diabetes and cancer. Mutations in the human gene inactivate the enzyme and cause accumulation of fatty alcohols in

  1. Myopathy in very-long-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Scholte, H R; Van Coster, R N; de Jonge, P C

    1999-01-01

    was deficient in muscle and fibroblasts, consistent with deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD). The gene of this enzyme had a homozygous deletion of three base pairs in exon 9, skipping lysine residue 238. Fibroblasts oxidised myristate, palmitate and oleate at a rate of 129, 62 and 38......A 30-year-old man suffered since the age of 13 years from exercise induced episodes of intense generalised muscle pain, weakness and myoglobinuria. Fasting ketogenesis was low, while blood glucose remained normal. Muscle mitochondria failed to oxidise palmitoylcarnitine. Palmitoyl-CoA dehydrogenase......% of controls. In contrast to patients with cardiac VLCAD deficiency, our patient had no lipid storage, a normal heart function, a higher rate of oleate oxidation in fibroblasts and normal free carnitine in plasma and fibroblasts. 31P-nuclear magnetic resonance spectroscopy of muscle showed a normal oxidative...

  2. Determination of vitamin E acid succinate in biodegradable microspheres by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Martínez Sancho, C; Herrero Vanrell, R; Negro, S

    2004-01-01

    A simple, rapid, and reproducible reversed-phase high-performance liquid chromatographic (HPLC) method is applied to the routine assay of vitamin E acid succinate in biodegradable microspheres. Vitamin E acid-succinate-containing poly-(D,L-lactic-co-glycolic acid) microspheres are prepared by the solvent evaporation method. The starting drug-polymer ratio is 1:10 (w/w) and the total amount of drug and polymer processed is always 440 mg. The content of vitamin E acid succinate in the microspheres is evaluated by HPLC. Chromatography is carried out isocratically at 25 degrees C +/- 0.5 degrees C on an Extrasil ODS-2 column with a mobile phase composed of methanol-water (97:3, v/v) (pH 5.6) at a flow rate of 2 mL/min and UV detection at 284 nm. Parameters such as linearity, limits of quantitation (LOQ) and detection (LOD), precision, accuracy, recovery, specificity, and ruggedness are studied as reported in the International Conference on Harmonization guidelines. The stability of vitamin E acid succinate is also studied with satisfactory results after 48 h at 25 degrees C. The method is selective and linear for drug concentrations in the range 15-210 micro g/mL. The LOQ and LOD are 15 and 3 micro g/mL, respectively. The results for accuracy studies are good. Values for coefficient of variation for intra- and interassay are 2.08% and 2.32%, respectively. The mean percentage of vitamin E acid succinate in the recovery studies is 99.52% +/- 0.81%. The mean loading efficiency for microspheres is 96.53% +/- 1.31%.

  3. Alcohol consumption and type 2 diabetes - Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE-We sought to investigate whether a polymorphism I in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS-In nested case-control studies of 640 women with incident diabetes and 1,000 control subjects

  4. Glycogen metabolism in the liver of Indian desert gerbils (Meriones hurrianae, Jerdon) exposed to internal beta irradiation

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1996-01-01

    Glycogen content and the activities of phosphorylase, glycogen synthetase, phosphohexose isomerase, glucose-6-phosphatase, succinate dehydrogenase, alanine and aspartate aminotransferases have been biochemically determined in the liver of Indian desert gerbils following radiocalcium internal irradiation. Decline in glycogen, phosphohexose isomerase, with a concomitant increase in phosphorylase, succinate dehydrogenase reveals a switch over from glycolytic to oxidative metabolism in liver. Activities of aminotransferases indicate the utilization of transamination products of alanine and aspartate in oxidative pathway during early periods. Transiently increased glucose-6-phosphatase seems to restrict glycogenolytic and glycolytic metabolism and thereby pave way for the acceleration of oxidative metabolism. (author). 52 refs., 2 tabs

  5. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Novel glucose dehydrogenase from Mucor prainii: Purification, characterization, molecular cloning and gene expression in Aspergillus sojae.

    Science.gov (United States)

    Satake, Ryoko; Ichiyanagi, Atsushi; Ichikawa, Keiichi; Hirokawa, Kozo; Araki, Yasuko; Yoshimura, Taro; Gomi, Keiko

    2015-11-01

    Glucose dehydrogenase (GDH) is of interest for its potential applications in the field of glucose sensors. To improve the performance of glucose sensors, GDH is required to have strict substrate specificity. A novel flavin adenine dinucleotide (FAD)-dependent GDH was isolated from Mucor prainii NISL0103 and its enzymatic properties were characterized. This FAD-dependent GDH (MpGDH) exhibited high specificity toward glucose. High specificity for glucose was also observed even in the presence of saccharides such as maltose, galactose and xylose. The molecular masses of the glycoforms of GDH ranged from 90 to 130 kDa. After deglycosylation, a single 80 kDa band was observed. The gene encoding MpGDH was cloned and expressed in Aspergillus sojae. The apparent kcat and Km values of recombinant enzyme for glucose were found to be 749.7 s(-1) and 28.3 mM, respectively. The results indicated that the characteristics of MpGDH were suitable for assaying blood glucose levels. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-10-01

    Lactobacillus panis PM1 belongs to the group III heterofermentative lactobacilli and can utilize various NADH-reoxidizing routes (e.g., citrate, glycerol, and oxygen) according to environmental conditions. In this study, we investigated the ability of L. panis PM1 to produce succinate, acetate, and lactate via citrate utilization. Possible pathways, as well as regulation, for citrate metabolism were examined on the basis of the genome sequence data and metabolic profiles of L. panis PM1. The presence of citrate led to the up-regulation, at the transcriptional level, of the genes encoding for citrate lyase, malate dehydrogenase, and malic enzyme of the citrate pathways by 10- to 120-fold. The transcriptional regulator of the dha operon coding for glycerol dehydratase of L. panis PM1 repressed the expression of the citrate lyase gene (10-fold). Metabolite analyses indicated that the transcriptional enhancement by citrate stimulated succinate yield. Citrate metabolism contributed to energy production by providing a major alternate pathway for NAD(+) regeneration and allowed acetyl phosphate to yield acetate/ATP instead of ethanol/NAD(+). Additionally, a branching pathway from oxaloacetate to pyruvate increased the pool of lactate, which was then used to produce ATP during stationary phase. However, the redirection of NADH-to-citrate utilization resulted in stress caused by end-products (i.e., succinate and acetate). This stress reduced succinate production by up to 50 % but did not cause significant changes at transcriptional level. Overall, citrate utilization was beneficial for the growth of L. panis PM1 by providing a NAD(+) regeneration route and producing extra ATP.

  8. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    Science.gov (United States)

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  9. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  10. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio...... and titre, CO2 consumption rate and CH4 purity. When using biogas as the only CO2 source at 140 kPa, the CO2 consumption rate corresponded to 2.59 L CO2 L-1 d-1 with a final succinic acid titre of 14.4 g L-1. Under this pressure condition the highest succinic acid yield and biogas quality reached......-succinic acid using the bacterial strain Actinobacillus succinogenes 130Z, and simultaneously producing high purity CH4 (>95%). Results showed that when pressure during fermentation was increased from 101.325 to 140 kPa, higher CO2 solubility was achieved, thereby positively affecting final succinic acid yield...

  11. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector

  12. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91

    DEFF Research Database (Denmark)

    Trauelsen, Mette; Rexen Ulven, Elisabeth; Hjorth, Siv A

    2017-01-01

    therefore binds in a very different mode than generally believed. Importantly, an empty side-pocket is identified next to the succinate binding site. All this information formed the basis for a substructure-based search query, which, combined with molecular docking, was used in virtual screening of the ZINC...... database to pick two serial mini-libraries of a total of only 245 compounds from which sub-micromolar, selective GPR91 agonists of unique structures were identified. The best compounds were backbone-modified succinate analogs in which an amide-linked hydrophobic moiety docked into the side-pocket next...

  13. Isoepoxydon dehydrogenase (idh) gene expression in relation to patulin production by Penicillium expansum under different temperature and atmosphere.

    Science.gov (United States)

    De Clercq, N; Vlaemynck, G; Van Pamel, E; Van Weyenberg, S; Herman, L; Devlieghere, F; De Meulenaer, B; Van Coillie, E

    2016-03-02

    Penicillium expansum growth and patulin production occur mainly at post-harvest stage during the long-term storage of apples. Low temperature in combination with reduced oxygen concentrations is commonly applied as a control strategy to extend apple shelf life and supply the market throughout the year. Our in vitro study investigated the effect of temperature and atmosphere on expression of the idh gene in relation to the patulin production by P. expansum. The idh gene encodes the isoepoxydon dehydrogenase enzyme, a key enzyme in the patulin biosynthesis pathway. First, a reverse transcription real-time PCR (RT-qPCR) method was optimized to measure accurately the P. expansum idh mRNA levels relative to the mRNA levels of three reference genes (18S, β-tubulin, calmodulin), taking into account important parameters such as PCR inhibition and multiple reference gene stability. Subsequently, two P. expansum field isolates and one reference strain were grown on apple puree agar medium (APAM) under three conditions of temperature and atmosphere: 20 °C - air, 4 °C - air and 4 °C - controlled atmosphere (CA; 3% O2). When P. expansum strains reached a 0.5 and 2.0 cm colony diameter, idh expression and patulin concentrations were determined by means of the developed RT-qPCR and an HPLC-UV method, respectively. The in vitro study showed a clear reduction in patulin production and down-regulation of the idh gene expression when P. expansum was grown under 4 °C - CA. The results suggest that stress (low temperature and oxygen level) caused a delay of the fungal metabolism rather than a complete inhibition of toxin biosynthesis. A good correlation was found between the idh expression and patulin production, corroborating that temperature and atmosphere affected patulin production by acting at the transcriptional level of the idh gene. Finally, a reliable RT-qPCR can be considered as an alternative tool to investigate the effect of control strategies on the toxin formation in

  14. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  15. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  16. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  17. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes.

    Science.gov (United States)

    Liu, Chunyu; Fetterman, Jessica L; Liu, Poching; Luo, Yan; Larson, Martin G; Vasan, Ramachandran S; Zhu, Jun; Levy, Daniel

    2018-03-01

    Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.

  18. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  19. Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus.

    NARCIS (Netherlands)

    Jang, G.F.; Hooser, J.P. van; Kuksa, V.; McBee, J.K.; He, Y.G.; Janssen, J.J.M.; Driessen, C.A.G.G.; Palczewski, K.

    2001-01-01

    In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a

  20. Bio-oil based biorefinery strategy for the production of succinic acid

    DEFF Research Database (Denmark)

    Wang, Caixia; Thygesen, Anders; Liu, Yilan

    2013-01-01

    Background: Succinic acid is one of the key platform chemicals which can be produced via biotechnology process instead of petrochemical process. Biomass derived bio-oil have been investigated intensively as an alternative of diesel and gasoline fuels. Bio-oil could be fractionized into organic...

  1. Viscoelastic and electrical properties of carbon nanotubes filled poly(butylene succinate)

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2014-03-01

    Full Text Available The carbon nanotubes (CNTs)-containing composites of poly(butylene succinate) (PBS) were prepared by melt-blending in a batch mixer with three concentrations by weight of CNTs: 1, 2 and 3 %. State of dispersion-distribution of the CNTs in the PBS...

  2. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training.

    Science.gov (United States)

    Sarir, Hadi; Emdadifard, Ghodsieh; Farhangfar, Homayoun; TaheriChadorneshin, Hossein

    2015-12-01

    The anti-inflammatory effect of vitamin E under moderate exercises has been evaluated. However, the effect of vitamin E succinate, which has more potent anti-inflammatory effect than other isomers of vitamin E has not been evaluated. Therefore, the aim of the present study was to evaluate the effects of vitamin E succinate on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production induced by high-intensity interval training (HIIT). In the present study, 24 rats were randomly divided into control (C), supplementation (S), HIIT, and HIIT + supplementation (HIIT+S) groups. HIIT training protocol on a treadmill (at a speed of 40-54 m/min) and vitamin E succinate supplementation (60 mg/kg/day) was conducted for 6 weeks. Serum IL-6 in the HIIT group significantly increased compared with the C group (350.42 ± 123.31 pg/mL vs 158.60 ± 41.96 pg/mL; P = 0.002). Also, serum TNF-α concentrations significantly enhanced (718.15 ± 133.42 pg/mL vs 350.87 ± 64.93 pg/mL; P = 0.001) in the HIIT group compared with the C group. Treatment of the training group with vitamin E numerically reduced IL-6 and TNF-α when compared with the HIIT group (217.31 ± 29.21 and 510.23 ± 217.88, respectively, P > 0.05). However, no significant changes were observed in serum TNF-α (P = 0.31) and IL-6 (P = 0.52) concentrations in the HIIT + S group compared with the C group. HIIT-induced IL-6 and TNF-α decreased by administration of Vitamin E succinate.

  3. Flavin Adenine Dinucleotide Status and the Effects of High-Dose Riboflavin Treatment in Short-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    van Maldegem, Bianca T.; Duran, Marinus; Wanders, Ronald J. A.; Waterham, Hans R.; Wijburg, Frits A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although

  4. Hepatoprotective Activity of a Complex Compound of 5-Hydroxy-6-Methyluracil and Succinic Acid in Experimental Peritonitis

    Directory of Open Access Journals (Sweden)

    D. A. Yenikeyev

    2008-01-01

    Full Text Available Objective: to evaluate the hepatoprotective efficacy of a complex compound of 5-hydroxy-6-methyluracil and succinic acid in experimental peritonitis. Materials and methods. Experiments were carried out on 48 male albino rats in which peritonitis was simulated via intraperitoneal administration of 7% fecal suspension in a dose of 0.6 ml per 100 g bodyweight. The rate of free radical oxidation processes, the activity of antioxidative protection, the degree of endogenous intoxication and cytolytic syndrome, and the effect of the test compound on these parameters were estimated in the experiment. Results. With the development of an abdominal inflammatory process, there were increases in rates of endogenous intoxication and free radical oxidation (FRO, a change in the activity of antioxidative protection enzymes, and a reduction in the levels of ceruloplasmin and sulfahydryl groups. The complex compound, that comprised 5-hydroxy-6-methyluracil and succinic acid used as monotherapy, reduced the degree of endogenous intoxication, FRO, and lipid peroxidation-antioxidative defense system imbalance. Conclusion. The experimental data suggest that the use of the complex compound containing succinic acid and 5-hydroxy-6-methy-luracil is pathogenetically warranted. Key words: peritonitis, lipid peroxidation, antioxidants, succinic acid, pyrim-idine derivatives.

  5. Purification, crystallization and preliminary X-ray analysis of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli

    International Nuclear Information System (INIS)

    Zheng, Jimin; Lee, Daniel C.; Jia, Zongchao

    2009-01-01

    Isocitrate dehydrogenase kinase/phosphatase has been crystallized in three different crystal forms. Data were collected from each crystal form for structure determination. The Escherichia coli aceK gene encodes isocitrate dehydrogenase kinase/phosphatase (EC 2.7.11.5), a bifunctional protein that phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH), resulting in its inactivation and activation, respectively. This reversible (de)phosphorylation directs isocitrate, an intermediate of the citric acid cycle, to either go through the full cycle or to enter the glyoxylate bypass. In the present study, the AceK protein from E. coli has been purified and crystallized. Three crystal forms were obtained from very similar crystallization conditions. The crystals belong to space groups P4 1 2 1 2, P3 2 21 and P2 1 2 1 2 1 and diffracted X-rays to resolutions of 2.9, 3.0 and 2.7 Å, respectively

  6. Carbon and hydrogen metabolism of green algae in light and dark

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    After adaptation to a hydrogen metabolism, Chlamydomonas reinhardtii can photoanaerobically metabolize acetate with the evolution of H{sub 2} and CO{sub 2}. An enzyme profile of the chloroplastic, cytoplasmic, and mitochondrial fractions were obtained with a cellular fractionation procedure that incorporated cell wall removal by autolysine, digestion of the plasmalemma with digitonin and fractionation by differential centrifugation on a Percoll step gradient. The sequence of events leading to the photo-evolution of H{sub 2} from acetate includes the conversion of acetate into succinate via the extraplastidic glyoxylate cycle, the oxidation of succinate to fumarate by chloroplastic succinic dehydrogenase and the oxidation of malate to oxaloacetate in the chloroplast by NAD dependent malate dehydrogenase. The level of potential activity of the enzymes was sufficient to accommodate the observed rate of gas evolution. The isolated darkened chloroplast evolves aerobically CO{sub 2} from glucose indicating a chloroplastic respiratory pathway. Evolution of CO{sub 2} is blocked by mitochondrial inhibitors.

  7. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants.

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-06-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cbeta. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units.

  8. Alcohol and aldehyde dehydrogenase gene polymorphisms influence susceptibility to esophageal cancer in Japanese alcoholics.

    Science.gov (United States)

    Yokoyama, A; Muramatsu, T; Omori, T; Matsushita, S; Yoshimizu, H; Higuchi, S; Yokoyama, T; Maruyama, K; Ishii, H

    1999-11-01

    Studies have consistently demonstrated that inactive aldehyde dehydrogenase-2 (ALDH2), encoded by ALDH2*1/2*2, is closely associated with alcohol-related carcinogenesis. Recently, the contributions of alcohol dehydrogenase-2 (ADH2) polymorphism to alcoholism, esophageal cancer, and the flushing response have also been described. To determine the effects of ALDH2 and ADH2 genotypes in genetically based cancer susceptibility, lymphocyte DNA samples from 668 Japanese alcoholic men more than 40 years of age (91 with and 577 without esophageal cancer) were genotyped and the results were expressed as odds ratios (ORs). This study also tested 82 of the alcoholics with esophageal cancer to determine whether cancer susceptibility is associated with patients' responses to simple questions about current or former flushing after drinking a glass of beer. The frequencies of ADH2*1/2*1 and ALDH2*1/2*2 were significantly higher in alcoholics with, than in those without, esophageal cancer (0.473 vs. 0.289 and 0.560 vs. 0.099, respectively). After adjustment for drinking and smoking, the analysis showed significantly increased cancer risk for alcoholics with either ADH2*1/2*I (OR = 2.03) or ALDH2*1/2*2 (OR = 12.76). For those having ADH2*1/2*1 combined with ALDH2*1/2*2, the esophageal cancer risk was enhanced in a multiplicative fashion (OR = 27.66). Responses to flushing questions showed that only 47.8% of the ALDH2*1/2*2 heterozygotes with ADH2*1/ 2*1, compared with 92.3% of those with ALDH2*1/2*2 and the ADH2*2 allele, reported current or former flushing. Genotyping showed that for alcoholics who reported ever flushing, the questionnaire was 71.4% correct in identifying ALDH2*1/2*2 and 87.9% correct in identifying ALDH2*1/2*1. Japanese alcoholics can be divided into cancer susceptibility groups on the basis of their combined ADH2 and ALDH2 genotypes. The flushing questionnaire can predict high risk ALDH2*1/2*2 fairly accurately in persons with ADH2*2 allele, but a reliable

  9. Short and long-term effects of internal irradiation on the murine hepatic glycogen and its metabolizing enzymes

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1990-01-01

    Glycogen content and the activities of phosphorylase, phosphorhexose isomerase, glucose 6-phosphatase, glycogen synthesis' phosphorylase and succinate dehydrogenase have been biochemically determined in the liver of Swiss albino mice after radiocalcium internal irradiation up to 225 days posttreatment. Increase in the glycogen content and glycogen synthesis phosphorylase with a concomitant decrease in the activities of phosphorylase, glucose 6-phosphatase, phosphohexose isomerase and succinate dehydrogenase reveals inhibited glycolysis in the presence of normal glyogenesis and inhibited Kreb's cycle in the liver during early intervals. Decrease in the glycogen content at later stages along with decrease in the activities of all these enzymes is probably because of an inhibited glycogen biosynthesis and its catabolism through HMP shunt. (orig.)

  10. Influence of the course prescription of sodium succinate on functional state and general physical working ability of footballers organism during the training sessions

    Directory of Open Access Journals (Sweden)

    Олексій Володимирович Чернєв

    2015-09-01

    Full Text Available Pharmacological purpose of metabotropic preparations including burshtin acid and its derivative succinate sodium copes with the number of tasks the main of which is an activation of alternative ways of energoproduction at the work of submaximal and maximal force and preliminary training of the separate links of metabolism.The task of research is to ascertain changes that take place in functional state of sportsmen during long physical loadings and optimization of the work of cardiovascular system (CVS and prophylaxis of psychical strains with the help of succinate sodium.Methods and organization of research. There were examined 84 sportsmen to ascertain changes that take place in the functional state of sportsmen during the long physical loadings and optimization of the work of CVS with the help of succinate sodium. Examinations took place during the training sessions (TS in January, February and July 2012-2013 years.Results of research and its discussion. There was studied an efficiency of the course use of succinate sodium in footballers 100 mg 3 times a day during 14 days. Energetic supply of processes of intracellular homeostasis in erythrocytes realizes by means of ATP that is created in the process of glycolysis. According to the results of research after course prescription of succinate sodium in sportsmen the content of ATP in erythrocytes increased and an amount of ADP and AMP decreased. An improvement of general metabolic situation under an influence of succinate sodium was proved by the decrease of products of reactions of peroxidation in blood plasma of footballers.These results indicated an essential antiacidotic effect of the course use of succinate sodium by footballers after loading in anaerobic and glycolytic zone of intensity. At the same time there was ascertain in our research that the use of succinate sodium had a positive effect on the dynamics of lactate content during the processes of renewal after training in aerobic

  11. Deletion of the Glucose-6-Phosphate Dehydrogenase Gene KlZWF1 Affects both Fermentative and Respiratory Metabolism in Kluyveromyces lactis▿

    Science.gov (United States)

    Saliola, Michele; Scappucci, Gina; De Maria, Ilaria; Lodi, Tiziana; Mancini, Patrizia; Falcone, Claudio

    2007-01-01

    In Kluyveromyces lactis, the pentose phosphate pathway is an alternative route for the dissimilation of glucose. The first enzyme of the pathway is the glucose-6-phosphate dehydrogenase (G6PDH), encoded by KlZWF1. We isolated this gene and examined its role. Like ZWF1 of Saccharomyces cerevisiae, KlZWF1 was constitutively expressed, and its deletion led to increased sensitivity to hydrogen peroxide on glucose, but unlike the case for S. cerevisiae, the Klzwf1Δ strain had a reduced biomass yield on fermentative carbon sources as well as on lactate and glycerol. In addition, the reduced yield on glucose was associated with low ethanol production and decreased oxygen consumption, indicating that this gene is required for both fermentation and respiration. On ethanol, however, the mutant showed an increased biomass yield. Moreover, on this substrate, wild-type cells showed an additional band of activity that might correspond to a dimeric form of G6PDH. The partial dimerization of the G6PDH tetramer on ethanol suggested the production of an NADPH excess that was negative for biomass yield. PMID:17085636

  12. Gene ercA, encoding a putative iron-containing alcohol dehydrogenase, is involved in regulation of ethanol utilization in Pseudomonas aeruginosa.

    Science.gov (United States)

    Hempel, Niels; Görisch, Helmut; Mern, Demissew S

    2013-09-01

    Several two-component regulatory systems are known to be involved in the signal transduction pathway of the ethanol oxidation system in Pseudomonas aeruginosa ATCC 17933. These sensor kinases and response regulators are organized in a hierarchical manner. In addition, a cytoplasmic putative iron-containing alcohol dehydrogenase (Fe-ADH) encoded by ercA (PA1991) has been identified to play an essential role in this regulatory network. The gene ercA (PA1991) is located next to ercS, which encodes a sensor kinase. Inactivation of ercA (PA1991) by insertion of a kanamycin resistance cassette created mutant NH1. NH1 showed poor growth on various alcohols. On ethanol, NH1 grew only with an extremely extended lag phase. During the induction period on ethanol, transcription of structural genes exa and pqqABCDEH, encoding components of initial ethanol oxidation in P. aeruginosa, was drastically reduced in NH1, which indicates the regulatory function of ercA (PA1991). However, transcription in the extremely delayed logarithmic growth phase was comparable to that in the wild type. To date, the involvement of an Fe-ADH in signal transduction processes has not been reported.

  13. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk.

    Science.gov (United States)

    Do Carmo, A P; De Oliveira, M N V; Da Silva, D F; Castro, S B; Borges, A C; De Carvalho, A F; De Moraes, C A

    2012-03-01

    There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh - lactate dehydrogenase, adhE - Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 - catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property

  14. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Energy metabolism in Mycobacterium gilvum PYR-GCK: insights from transcript expression analyses following two states of induction.

    Directory of Open Access Journals (Sweden)

    Abimbola Comfort Badejo

    Full Text Available Mycobacterium gilvum PYR-GCK, a pyrene degrading bacterium, has been the subject of functional studies aimed at elucidating mechanisms related to its outstanding pollutant bioremediation/biodegradation activities. Several studies have investigated energy production and conservation in Mycobacterium, however, they all focused on the pathogenic strains using their various hosts as induction sources. To gain greater insight into Mycobacterium energy metabolism, mRNA expression studies focused on respiratory functions were performed under two different conditions using the toxic pollutant pyrene as a test substrate and glucose as a control substrate. This was done using two transcriptomic techniques: global transcriptomic RNA-sequencing and quantitative Real-Time PCR. Growth in the presence of pyrene resulted in upregulated expression of genes associated with limited oxygen or anaerobiosis in M. gilvum PYR-GCK. Upregulated genes included succinate dehydrogenases, nitrite reductase and various electron donors including formate dehydrogenases, fumarate reductases and NADH dehydrogenases. Oxidative phosphorylation genes (with respiratory chain complexes I, III -V were expressed at low levels compared to the genes coding for the second molecular complex in the bacterial respiratory chain (fumarate reductase; which is highly functional during microaerophilic or anaerobic bacterial growth. This study reveals a molecular adaptation to a hypoxic mode of respiration during aerobic pyrene degradation. This is likely the result of a cellular oxygen shortage resulting from exhaustion of the oxygenase enzymes required for these degradation activities in M. gilvum PYR-GCK.

  16. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  17. Succinate-based preparation alleviates manifestations of the climacteric syndrome in women.

    Science.gov (United States)

    Peskov, A B; Maevskii, E I; Uchitel', M L; Sakharova, N Yu; Vize-Khripunova, M A

    2005-09-01

    Clinical placebo-controlled study of Enerlit-Clima (bioactive succinate-based food additive) a showed positive effect of the preparation on general clinical and psychoemotional manifestations of the climacteric syndrome. A trend to an increase in estradiol level in early pathological climacteric and normalization of the endometrial status were observed.

  18. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  19. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.

    2004-01-01

    The plant respiratory chain contains a complex setup of non-energy conserving NAD(P)H dehydrogenases, the physiological consequences of which are highly unclear. An expression construct for the potato (Solanum tuberosum L., cv. Desiree) ndb1 gene, a homologue of bacterial and fungal type II NAD...

  20. Production of natural fragrance aromatic acids by coexpression of trans-anethole oxygenase and p-anisaldehyde dehydrogenase genes of Pseudomonas putida JYR-1 in Escherichia coli.

    Science.gov (United States)

    Han, Dongfei; Kurusarttra, Somwang; Ryu, Ji-Young; Kanaly, Robert A; Hur, Hor-Gil

    2012-12-05

    A gene encoding p-anisaldehyde dehydrogenase (PAADH), which catalyzes the oxidation of p-anisaldehyde to p-anisic acid, was identified to be clustered with the trans-anethole oxygenase (tao) gene in Pseudomonas putida JYR-1. Heterologously expressed PAADH in Escherichia coli catalyzed the oxidation of vanillin, veratraldehyde, and piperonal to the corresponding aromatic acids vanillic acid, veratric acid, and piperonylic acid, respectively. Coexpression of trans-anethole oxygenase (TAO) and PAADH in E. coli also resulted in the successful transformation of trans-anethole, isoeugenol, O-methyl isoeugenol, and isosafrole to p-anisic acid, vanillic acid, veratric acid, and piperonylic acid, respectively, which are compounds found in plants as secondary metabolites. Because of the relaxed substrate specificity and high transformation rates by coexpressed TAO and PAADH in E. coli , the engineered strain has potential to be applied in the fragrance industry.

  1. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training

    Directory of Open Access Journals (Sweden)

    Hadi Sarir

    2015-01-01

    Full Text Available Aim and Scope: The anti-inflammatory effect of vitamin E under moderate exercises has been evaluated. However, the effect of vitamin E succinate, which has more potent anti-inflammatory effect than other isomers of vitamin E has not been evaluated. Therefore, the aim of the present study was to evaluate the effects of vitamin E succinate on tumor necrosis factor alpha (TNF-a and interleukin-6 (IL-6 production induced by high-intensity interval training (HIIT. Materials and Methods: In the present study, 24 rats were randomly divided into control (C, supplementation (S, HIIT, and HIIT + supplementation (HIIT+S groups. HIIT training protocol on a treadmill (at a speed of 40-54 m/min and vitamin E succinate supplementation (60 mg/kg/day was conducted for 6 weeks. Results: Serum IL-6 in the HIIT group significantly increased compared with the C group (350.42 ± 123.31 pg/mL vs 158.60 ± 41.96 pg/mL; P = 0.002. Also, serum TNF-a concentrations significantly enhanced (718.15 ± 133.42 pg/mL vs 350.87 ± 64.93 pg/mL; P = 0.001 in the HIIT group compared with the C group. Treatment of the training group with vitamin E numerically reduced IL-6 and TNF-a when compared with the HIIT group (217.31 ± 29.21 and 510.23 ± 217.88, respectively, P > 0.05. However, no significant changes were observed in serum TNF-a (P = 0.31 and IL-6 (P = 0.52 concentrations in the HIIT + S group compared with the C group. Conclusion: HIIT-induced IL-6 and TNF-α decreased by administration of Vitamin E succinate.

  2. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    Science.gov (United States)

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  4. Associations between a polymorphism in the hydroxysteroid (11-beta) dehydrogenase 1 gene, neuroticism and postpartum depression.

    Science.gov (United States)

    Iliadis, S I; Comasco, E; Hellgren, C; Kollia, N; Sundström Poromaa, I; Skalkidou, A

    2017-01-01

    This study examined the association between a single nucleotide polymorphism in the hydroxysteroid (11-beta) dehydrogenase 1 gene and neuroticism, as well as the possible mediatory role of neuroticism in the association between the polymorphism and postpartum depressive symptoms. 769 women received questionnaires containing the Edinburgh Postnatal Depression Scale (EPDS) at six weeks postpartum and demographic data at pregnancy week 17 and 32 and at six weeks postpartum, as well as the Swedish universities Scales of Personality at pregnancy week 32. Linear regression models showed an association between the GG genotype and depressive symptoms. When neuroticism was introduced in the model, it was associated with EPDS score, whereas the association between the GG genotype and EPDS became borderline significant. A path analysis showed that neuroticism had a mediatory role in the association between the polymorphism and EPDS score. The use of the EPDS, which is a self-reporting instrument. Neuroticism was associated with the polymorphism and had a mediatory role in the association between the polymorphism and postpartum depression. This finding elucidates the genetic background of neuroticism and postpartum depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  6. Regulation by magnesium of potato tuber mitochondrial respiratory activities.

    Science.gov (United States)

    Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E

    2004-12-01

    Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

  7. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    Science.gov (United States)

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  8. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report

    Directory of Open Access Journals (Sweden)

    Kanavin Oivind J

    2007-09-01

    Full Text Available Abstract Background 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD is caused by a defect in the degradation pathway of the amino acid L-isoleucine. Methods We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. Results We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. Conclusion This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.

  9. Influence of γ-radiation on the enzymic activity of dog liquor lymphocytes

    International Nuclear Information System (INIS)

    Ushakov, I.B.; Gajdamakin, A.N.

    1985-01-01

    Cytochemical activity of succinate dehydrogenase (SDG), L-glycerophosphate dehydrogenase (L-GPDG), lactate dehydrogenase (LDG), and glutamate dehydrogenase (GDG) in increased immediately after total-body irradiation with a dose of 129 mC/kg. After 2 h, LDG activity only returned to the control level. Irradiation of the head with the same dose caused less pronounced changes. Changes caused by lethal irradiation (1290 mC/kg) were different: there was an increase after exposure of the abdomen and a decrease in the activity of SDG and L-GPDG after irradiation of the head

  10. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer

    Directory of Open Access Journals (Sweden)

    Flora Guerra

    2017-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT allows epithelial cancer cells to assume mesenchymal features, endowing them with enhanced motility and invasiveness, thus enabling cancer dissemination and metastatic spread. The induction of EMT is orchestrated by EMT-inducing transcription factors that switch on the expression of “mesenchymal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction is a hallmark of cancer and has been associated with progression to a metastatic and drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided evidence that mitochondrial dysfunction and EMT are interconnected. In this review, we provide an overview of the current knowledge on the role of different types of mitochondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent advances in the identification of signaling components in the mito-nuclear communication network initiated by dysfunctional mitochondria that promote cellular remodeling and EMT activation in cancer cells.

  11. Pre-sowing Seed Treatment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. through the Modulation of Stress Markers

    Directory of Open Access Journals (Sweden)

    Parvaiz Ahmad

    2016-11-01

    Full Text Available The present experiment was designed to assess the effects of seed soaking with 24-epibrassinolide (EBR on the physiology of Brassica juncea L. seedlings grown under imidacloprid (IMI toxicity. Application of EBR increased the length of seedlings, dry weight, and pigment contents, polyphenols, total phenols and organic acids under IMI toxicity. The expression of genes coding key enzymes of pigment, phenols, polyphenols and organic acid biosynthetic pathways was also studied including CHLASE (chlorophyllase, PSY (phytoene synthase, CHS (chalcone synthase and PAL (phenylalanine ammonialyase, CS (citrate synthase, SUCLG1 (succinyl Co-A ligase,, SDH (succinate dehydrogenase, FH (fumarate hydratase, MS (malate synthase. Multiple linear regression analysis revealed that IMI application regressed negatively on seedling length, dry weight and total chlorophyll content. However, EBR seed treatment regressed positively on all of the parameters studied. Moreover, interaction between IMI and EBR showed positive regression for growth parameters, content of pigments, total polyphenol, total phenol and malate, and expression of PSY and PAL. Negative interactions were noticed for the contents of fumarate, succinate and citrate, and expression of CHS and all genes studied related to organic acid metabolism. In conclusion, EBR enhanced the growth and contents of all studied metabolites by regulating the gene expression of B. juncea seedlings under IMI stress.

  12. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.

    Science.gov (United States)

    Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik

    2012-02-17

    In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Templeton, M D; Rikkerink, E H; Solon, S L; Crowhurst, R N

    1992-12-01

    The glyceraldehyde-3-phosphate dehydrogenase gene (gpdA) has been identified from a genomic DNA library prepared from the plant pathogenic fungus Glomerella cingulata. Nucleotide sequence data revealed that this gene codes for a putative 338-amino-acid protein encoded by two exons of 129 and 885 bp, separated by an intron 216 bp long. The 5' leader sequence is also spliced by an intron of 156 bp. A cDNA clone was prepared using the polymerase chain reaction, the sequence of which was used to confirm the presence of the intron in the coding sequence and the splicing of the 5' leader sequence. The transcriptional start point (tsp) was mapped at -253 nt from the site of the initiation of translation by primer extension and is adjacent to a 42-bp pyrimidine-rich region. The general structure of the 5' flanking region shows similarities to gpdA from Aspergillus nidulans. The putative protein product is 71-86% identical at the aa level to GPDs from Aspergillus nidulans, Cryphonectria parasitica, Curvularia lunata, Podospora anserina and Ustilago maydis.

  14. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Science.gov (United States)

    Fava, Natália M. N.; Soares, Rodrigo M.; Scalia, Luana A. M.; Kalapothakis, Evanguedes; Pena, Isabella F.; Vieira, Carlos U.; Faria, Elaine S. M.; Cunha, Maria J.; Couto, Talles R.; Cury, Márcia Cristina

    2013-01-01

    Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4%) and 36 (61.0%) samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology. PMID:24308010

  15. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  16. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  17. Synthesis, stability and bioavailability of astaxanthin succinate diester.

    Science.gov (United States)

    Qiao, Xing; Yang, Lu; Zhang, Ting; Zhou, Qingxin; Wang, Yuming; Xu, Jie; Xue, Changhu

    2018-06-01

    We synthesized astaxanthin succinate diester (ASD), a novel astaxanthin (AST) derivate, with succinic anhydride and free AST. ASD was purified and characterized using silica gel column chromatography and spectrometry, respectively. The ASD final synthesis rate was 82.63%. A stability test revealed a high AST and ASD retention rate at pH 5.0-7.0. ASD showed better stability than did AST under acidic conditions. Both sample ions showed lower retention rates under Fe 2+ and Fe 3+ states. The ASD metabolic curve showed serum and liver area under the curve from 0 h to time t (AUC 0-t ) values of 45.05 ± 4.58 and 120.38 ± 23.66 µg h -1  mL -1 , respectively. The long-term accumulation was significantly higher in the ASD group than in the AST group, which showed higher accumulation in the heart, muscle and spleen than in other tissues in vivo. The thermal stability and bioavailability of ASD were higher than that of the non-esterified free AST and common free AST, respectively. Additionally, AST accumulation in different tissues of the ASD group was multifold higher than that of free AST. These results prove that ASD may serve as a better source of AST for human nutrition than does free AST. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.

    Science.gov (United States)

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2018-04-30

    Aureobasidium pullulans is a yeast-like fungus that can ferment xylose to generate high-value-added products, such as pullulan, heavy oil, and melanin. The combinatorial expression of two xylose reductase (XR) genes and two xylitol dehydrogenase (XDH) genes from Spathaspora passalidarum and the heterologous expression of the Piromyces sp. xylose isomerase (XI) gene were induced in A. pullulans to increase the consumption capability of A. pullulans on xylose. The overexpression of XYL1.2 (encoding XR) and XYL2.2 (encoding XDH) was the most beneficial for xylose utilization, resulting in a 17.76% increase in consumed xylose compared with the parent strain, whereas the introduction of the Piromyces sp. XI pathway failed to enhance xylose utilization efficiency. Mutants with superior xylose fermentation performance exhibited increased intracellular reducing equivalents. The fermentation performance of all recombinant strains was not affected when glucose or sucrose was utilized as the carbon source. The strain with overexpression of XYL1.2 and XYL2.2 exhibited excellent fermentation performance with mimicked hydrolysate, and pullulan production increased by 97.72% compared with that of the parent strain. The present work indicates that the P4 mutant (using the XR/XDH pathway) with overexpressed XYL1.2 and XYL2.2 exhibited the best xylose fermentation performance. The P4 strain showed the highest intracellular reducing equivalents and XR and XDH activity, with consequently improved pullulan productivity and reduced melanin production. This valuable development in aerobic fermentation by the P4 strain may provide guidance for the biotransformation of xylose to high-value products by A. pullulans through genetic approach.

  19. Glossary

    Science.gov (United States)

    ... I : NADH-Coenzyme Q oxidoreductase (part of the Electron Transport Chain). COMPLEX II : Succinate dehydrogenase (part of the Electron Transport Chain). COMPLEX III : Coenzyme Q-cytochrome c oxidoreductase (part ...

  20. Miscibility, crystallization and mechanical properties of biodegradable blends of poly(L-lactic acid) and poly(butylene succinate-b-ethylene succinate) multiblock copolymer

    International Nuclear Information System (INIS)

    Jiao, Ling; Huang, Cai-Li; Zeng, Jian-Bing; Wang, Yu-Zhong; Wang, Xiu-Li

    2012-01-01

    Highlights: ► The blend of PLLA and PBES showed limited miscibility. ► The crystallization rate of PLLA was accelerated by blending with PBES. ► The crystal structures of PLLA and PBES did not change. - Abstract: Poly(L-lactic acid) (PLLA) is regarded as one of the most promising biobased and biodegradable polymers. However, its application was restricted due to the brittle nature. In the present study, PLLA was blended with a novel biodegradable flexible multiblock copolymer, poly(butylene succinate-b-ethylene succinate) (PBES) to produce new biodegradable materials. PLLA/PBES blends with different composition were prepared by solution blending and casting method with chloroform as a mutual solvent. Miscibility, crystallization behavior, and mechanical properties of the blends were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and tensile tests. The results indicated that PLLA and PBES showed limited miscibility in the amorphous phase. The crystallization rate of PLLA was accelerated with the increase of PBES in the blends while the crystallization mechanism did not change. The results of tensile tests suggest that the blends showed longer elongation at break than neat PLLA. The elongation at break of PLLA was obtained to be 10%, and those of PLLA/PBES 80/20, 60/40, 40/60 and 20/80 were 29, 110, 442, and 455%, respectively.

  1. Lactate dehydrogenase activity is inhibited by methylmalonate in vitro.

    Science.gov (United States)

    Saad, Laura O; Mirandola, Sandra R; Maciel, Evelise N; Castilho, Roger F

    2006-04-01

    Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K (i)=3.02+/-0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.

  2. Alcohol drinking habits, alcohol dehydrogenase genotypes and risk of acute coronary syndrome

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Hansen, J.L.; Gronbaek, M.

    2010-01-01

    Aims: The risk of myocardial infarction is lower among light-to-moderate drinkers compared with abstainers. Results from some previous studies, but not all, suggest that this association is modified by variations in genes coding for alcohol dehydrogenase (ADH). We aimed to test this hypothesis......, including alcohol as both the amount of alcohol and the frequency of drinking. Methods: we conducted a nested case-cohort study within the Danish Diet, Cancer and Health study, including 1,645 men (770 incident cases of acute coronary syndrome from 1993-1997 through 2004 and 875 randomly selected controls......). Results: Higher alcohol intake (measured as amount or drinking frequency) was associated with lower risk of acute coronary syndrome; however, there was no evidence that these finding were modified by ADH1B or ADH1C genotypes. Conclusions: The importance of functional variation in alcohol dehydrogenase...

  3. Action of diclofenac on kidney mitochondria and cells

    International Nuclear Information System (INIS)

    Ng, Lin Eng; Vincent, Annette S.; Halliwell, Barry; Wong, Kim Ping

    2006-01-01

    The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell

  4. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  5. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  6. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations?

    Science.gov (United States)

    Kim, Sung-Jin; Kim, Kye-Won; Cho, Man-Ho; Franceschi, Vincent R; Davin, Laurence B; Lewis, Norman G

    2007-07-01

    A major goal currently in Arabidopsis research is determination of the (biochemical) function of each of its approximately 27,000 genes. To date, however, 12% of its genes actually have known biochemical roles. In this study, we considered it instructive to identify the gene expression patterns of nine (so-called AtCAD1-9) of 17 genes originally annotated by The Arabidopsis Information Resource (TAIR) as cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) homologues [see Costa, M.A., Collins, R.E., Anterola, A.M., Cochrane, F.C., Davin, L.B., Lewis N.G., 2003. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64, 1097-1112.]. In agreement with our biochemical studies in vitro [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C.-H., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1455-1460.], and analysis of a double mutant [Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., Séguin A., 2005. Cinnamyl Alcohol Dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059-2076.], both AtCAD5 (At4g34230) and AtCAD4 (At3g19450) were found to have expression patterns consistent with development/formation of different forms of the lignified vascular apparatus, e.g. lignifying stem tissues, bases of trichomes, hydathodes, abscission zones of siliques, etc. Expression was also observed in various non-lignifying zones (e.g. root caps) indicative of, perhaps, a role in plant defense. In addition, expression patterns of the four CAD-like homologues were investigated, i.e. AtCAD2 (At2g21730), AtCAD3 (At2g21890), AtCAD7 (At4g37980) and AtCAD8 (At4g37990), each of which previously had been demonstrated to have low CAD

  7. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate

    OpenAIRE

    Wheatley, Rachel M.; Ramachandran, Vinoy K.; Geddes, Barney A.; Perry, Benjamin J.; Yost, Chris K.; Poole, Philip S.

    2016-01-01

    Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin s...

  9. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  10. The most common mutation causing medium-chain acyl-CoA dehydrogenase deficiency is strongly associated with a particular haplotype in the region of the gene

    DEFF Research Database (Denmark)

    Kølvraa, S; Gregersen, N; Blakemore, A I

    1991-01-01

    RFLP haplotypes in the region containing the medium-chain acyl-CoA dehydrogenase (MCAD) gene on chromosome 1 have been determined in patients with MCAD deficiency. The RFLPs were detected after digestion of patient DNA with the enzymes BanII. PstI and TaqI and with an MCAD cDNA-clone as a probe....... Of 32 disease-causing alleles studied, 31 possessed the previously published A----G point-mutation at position 985 of the cDNA. This mutation has been shown to result in inactivity of the MCAD enzyme. In at least 30 of the 31 alleles carrying this G985 mutation a specific RFLP haplotype was present...

  11. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, M; Salomons, G S; Gibson, K M

    2009-01-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphoc...

  12. Blend membrane of succinic acid-crosslinked chitosan grafted with heparin/PVA-PEG (polyvinyl alcohol-polyethylene glycol) and its characterization

    Science.gov (United States)

    Sangkota, V. D. A.; Lusiana, R. A.; Astuti, Y.

    2018-04-01

    Crosslinking and grafting reactions are required to modify the functional groups on chitosan to increase the number of its active groups. In this study, crosslinking reaction of succinic acid and grafting reaction of heparin on chitosan were conducted to produce a membrane as a candidate of a hemodialysis membrane. The mole ratio between chitosan and succinate acids was varied to obtain the best composition of modified materials. By blending all the material composition with PVA-PEG, the blend was transformed into a membrane. The resulted membrane was then characterized by various test methods such as tests of thickness, weight, water uptake, pH resistance, tensile strength and membrane hydrophilicity. The results showed that the best composition of the membrane reached in the addition of 0.011 gram of succinic acid proved by its highest mechanical strength compared to the other membranes.

  13. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  14. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Jank, Johanna M.; Maier, Esther M.; Reiβ, Dunja D.; Haslbeck, Martin; Kemter, Kristina F.; Truger, Marietta S.; Sommerhoff, Christian P.; Ferdinandusse, Sacha; Wanders, Ronald J.; Gersting, Søren W.; Muntau, Ania C.

    2014-01-01

    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a

  15. Molecular cloning and expression analysis of the gene encoding proline dehydrogenase from Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Ao, Pingxing; Yang, Shuanglong; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2015-03-01

    Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a key enzyme in the catabolism of proline. The enzyme JcProDH and its complementary DNA (cDNA) were isolated from Jatropha curcas L., an important woody oil plant used as a raw material for biodiesels. It has been classified as a member of the Pro_dh superfamily based on multiple sequence alignment, phylogenetic characterization, and its role in proline catabolism. Its cDNA is 1674 bp in length with a complete open reading frame of 1485 bp, which encodes a polypeptide chain of 494 amino acids with a predicted molecular mass of 54 kD and a pI of 8.27. Phylogenetic analysis indicated that JcProDH showed high similarity with ProDH from other plants. Reverse transcription PCR (RT-PCR) analysis revealed that JcProDH was especially abundant in the seeds and flowers but scarcely present in the stems, roots, and leaves. In addition, the expression of JcProDH increased in leaves experiencing environmental stress such as cold (5 °C), heat (42 °C), salt (300 mM), and drought (30 % PEG6000). The JcProDH protein was successfully expressed in the yeast strain INVSc1 and showed high enzyme activity in proline catabolism. This result confirmed that the JcProDH gene negatively participated in the stress response.

  16. Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR.

    Science.gov (United States)

    Jeong, Ji-A; Hyun, Jaekyung; Oh, Jeong-Il

    2015-10-01

    In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD(+) pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium smegmatis and

  17. [Pathomorphology of regenerative processes in mandibular fracture after sodium succinate treatment and laser magnetotherapy in an experimental setting].

    Science.gov (United States)

    Faustov, L A; Nedel'ko, N A; Morozova, M V

    2001-01-01

    Morphological reactions in tissue adjacent to mandibular angular fracture were studied in guinea pigs treated with sodium succinate and laser magnetotherapy. Due to succinate therapy the exudative component of inflammation was less expressed in comparison with the control, macrophagal reaction and neoangiogenesis were activated, the volume of damaged muscle tissue and the incidence of suppurations decreased. The number of osteoblasts increased and new bone structures acquired a lamellar pattern earlier than in the control. Sodium succinate therapy in combination with laser magnetotherapy had a more pronounced positive effect as regards activation of macrophagal reaction and neoangiogenesis and a decrease in the area of fibrosclerotic changes in the zone of damaged muscles, where newly formed myosymplasts differentiated into myotubes and even in muscle fibers. Suppuration of the wound was prevented. Bone tissue in the fracture zone formed without preliminary formation of cartilaginous tissue, which resulted in more rapid osteogenesis (lamellar bone growth in the fracture zone).

  18. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  19. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  20. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  1. Mangiferin Accelerates Glycolysis and Enhances Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Zhongbo Liu

    2018-01-01

    Full Text Available One of the main causes of hyperglycemia is inefficient or impaired glucose utilization by skeletal muscle, which can be exacerbated by chronic high caloric intake. Previously, we identified a natural compound, mangiferin (MGF that improved glucose utilization in high fat diet (HFD-induced insulin resistant mice. To further identify the molecular mechanisms of MGF action on glucose metabolism, we conducted targeted metabolomics and transcriptomics studies of glycolyic and mitochondrial bioenergetics pathways in skeletal muscle. These data revealed that MGF increased glycolytic metabolites that were further augmented as glycolysis proceeded from the early to the late steps. Consistent with an MGF-stimulation of glycolytic flux there was a concomitant increase in the expression of enzymes catalyzing glycolysis. MGF also increased important metabolites in the tricarboxylic acid (TCA cycle, such as α-ketoglutarate and fumarate. Interestingly however, there was a reduction in succinate, a metabolite that also feeds into the electron transport chain to produce energy. MGF increased succinate clearance by enhancing the expression and activity of succinate dehydrogenase, leading to increased ATP production. At the transcriptional level, MGF induced mRNAs of mitochondrial genes and their transcriptional factors. Together, these data suggest that MGF upregulates mitochondrial oxidative capacity that likely drives the acceleration of glycolysis flux.

  2. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027 is essential for growth of Corynebacterium glutamicum on D-lactate

    Directory of Open Access Journals (Sweden)

    Oikawa Tadao

    2010-12-01

    Full Text Available Abstract Background Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.

  3. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: Identification and characterization

    NARCIS (Netherlands)

    K.W.A. Grinsven; S. Rosnowsky (Silke); S.W.H. van Weelden (Susanne); S. Pütz (Simone); M. van der Giezen (Mark); W. Martin (William); J.J. van Hellemond (Jaap); A.G.M. Tielens (Aloysius); K. Henze (Katrin)

    2008-01-01

    textabstractAcetate:succinate CoA-transferases (ASCT) are acetate-producing enzymes in hydrogenosomes, anaerobically functioning mitochondria and in the aerobically functioning mitochondria of trypanosomatids. Although acetate is produced in the hydrogenosomes of a number of anaerobic microbial

  4. Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis.

    Science.gov (United States)

    Davoudi, Zahra; Rabiee, Mohammad; Houshmand, Behzad; Eslahi, Niloofar; Khoshroo, Kimia; Rasoulianboroujeni, Morteza; Tahriri, Mohammadreza; Tayebi, Lobat

    2018-01-01

    The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH = 7.4) containing 10 4  U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications.

  5. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case

    International Nuclear Information System (INIS)

    Belinsky, Martin G.; Rink, Lori; Cai, Kathy Q.; Capuzzi, Stephen J.; Hoang, Yen; Chien, Jeremy; Godwin, Andrew K.; Mehren, Margaret von

    2015-01-01

    Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users

  6. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice.

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-03-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis.

  7. The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context

    Directory of Open Access Journals (Sweden)

    Wolinsky Murray

    2005-05-01

    Full Text Available Abstract Background The TyrA protein family includes members that catalyze two dehydrogenase reactions in distinct pathways leading to L-tyrosine and a third reaction that is not part of tyrosine biosynthesis. Family members share a catalytic core region of about 30 kDa, where inhibitors operate competitively by acting as substrate mimics. This protein family typifies many that are challenging for bioinformatic analysis because of relatively modest sequence conservation and small size. Results Phylogenetic relationships of TyrA domains were evaluated in the context of combinatorial patterns of specificity for the two substrates, as well as the presence or absence of a variety of fusions. An interactive tool is provided for prediction of substrate specificity. Interactive alignments for a suite of catalytic-core TyrA domains of differing specificity are also provided to facilitate phylogenetic analysis. tyrA membership in apparent operons (or supraoperons was examined, and patterns of conserved synteny in relationship to organismal positions on the 16S rRNA tree were ascertained for members of the domain Bacteria. A number of aromatic-pathway genes (hisHb, aroF, aroQ have fused with tyrA, and it must be more than coincidental that the free-standing counterparts of all of the latter fused genes exhibit a distinct trace of syntenic association. Conclusion We propose that the ancestral TyrA dehydrogenase had broad specificity for both the cyclohexadienyl and pyridine nucleotide substrates. Indeed, TyrA proteins of this type persist today, but it is also common to find instances of narrowed substrate specificities, as well as of acquisition via gene fusion of additional catalytic domains or regulatory domains. In some clades a qualitative change associated with either narrowed substrate specificity or gene fusion has produced an evolutionary "jump" in the vertical genealogy of TyrA homologs. The evolutionary history of gene organizations that include

  8. Bisoprolol compared with carvedilol and metoprolol succinate in the treatment of patients with chronic heart failure.

    Science.gov (United States)

    Fröhlich, Hanna; Torres, Lorella; Täger, Tobias; Schellberg, Dieter; Corletto, Anna; Kazmi, Syed; Goode, Kevin; Grundtvig, Morten; Hole, Torstein; Katus, Hugo A; Cleland, John G F; Atar, Dan; Clark, Andrew L; Agewall, Stefan; Frankenstein, Lutz

    2017-09-01

    Beta-blockers are recommended for the treatment of chronic heart failure (CHF). However, it is disputed whether beta-blockers exert a class effect or whether there are differences in efficacy between agents. 6010 out-patients with stable CHF and a reduced left ventricular ejection fraction prescribed either bisoprolol, carvedilol or metoprolol succinate were identified from three registries in Norway, England, and Germany. In three separate matching procedures, patients were individually matched with respect to both dose equivalents and the respective propensity scores for beta-blocker treatment. During a follow-up of 26,963 patient-years, 302 (29.5%), 637 (37.0%), and 1232 (37.7%) patients died amongst those prescribed bisoprolol, carvedilol, and metoprolol, respectively. In univariable analysis of the general sample, bisoprolol and carvedilol were both associated with lower mortality as compared with metoprolol succinate (HR 0.80, 95% CI 0.71-0.91, p < 0.01, and HR 0.86, 95% CI 0.78-0.94, p < 0.01, respectively). Patients prescribed bisoprolol or carvedilol had similar mortality (HR 0.94, 95% CI 0.82-1.08, p = 0.37). However, there was no significant association between beta-blocker choice and all-cause mortality in any of the matched samples (HR 0.90; 95% CI 0.76-1.06; p = 0.20; HR 1.10, 95% CI 0.93-1.31, p = 0.24; and HR 1.08, 95% CI 0.95-1.22, p = 0.26 for bisoprolol vs. carvedilol, bisoprolol vs. metoprolol succinate, and carvedilol vs. metoprolol succinate, respectively). Results were confirmed in a number of important subgroups. Our results suggest that the three beta-blockers investigated have similar effects on mortality amongst patients with CHF.

  9. Intracellular product recycling in high succinic acid producing yeast at low pH

    NARCIS (Netherlands)

    Wahl, S.A.; Bernal Martinez, C.; Zhao, Zheng; van Gulik, W.M.; Jansen, Mickel L.A.

    2017-01-01

    Background: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering

  10. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  11. Mitochondrial Complex II: At the Crossroads

    Czech Academy of Sciences Publication Activity Database

    Bezawork-Geleta, A.; Rohlena, Jakub; Dong, L.; Pacak, K.; Neužil, Jiří

    2017-01-01

    Roč. 42, č. 4 (2017), s. 312-325 ISSN 0968-0004 R&D Projects: GA ČR GA15-02203S; GA ČR(CZ) GA16-12719S; GA ČR GA17-20904S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : GASTROINTESTINAL STROMAL TUMORS * SUCCINATE-DEHYDROGENASE ACTIVITY * ALPHA-TOCOPHERYL SUCCINATE Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 16.630, year: 2016

  12. Alpha-tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop

    Czech Academy of Sciences Publication Activity Database

    Stapelberg, M.; Gellert, N.; Swettenham, E.; Tomasetti, M.; Witting, P. K.; Procopio, A.; Neužil, Jiří

    2005-01-01

    Roč. 280, č. 27 (2005), s. 25369-25376 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50520514 Keywords : alpha-tocopheryl succinate * malignant mesothelioma * fibroblast growth factor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.854, year: 2005

  13. Tocopherol-associated protein-1 accelerates apoptosis induced by alpha-tocopheryl succinate in mesothelioma cells

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L.F.; Wang, X.F.; Zingg, J.M.

    2006-01-01

    Roč. 343, č. 4 (2006), s. 1113-1117 ISSN 0006-291X Institutional research plan: CEZ:AV0Z50520514 Keywords : apoptosis * tocopherol-associated protein * alpha-tocopheryl succinate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.855, year: 2006

  14. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Vianey-Saban, C

    1996-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) is one of four straight-chain acyl-CoA dehydrogenase (ACD) enzymes, which are all nuclear encoded mitochondrial flavoproteins catalyzing the initial step in fatty acid beta-oxidation. We have used the very fast, Rapid Amplification of cDNA Ends (RACE...

  15. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  16. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate.

    Science.gov (United States)

    Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2013-10-01

    The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Methods for demonstration of enzyme activity in muscle fibres at the muscle/bone interface in demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1981-01-01

    A method for demonstration of activity for ATPase and various oxidative enzymes (succinic dehydrogenase, alpha-glycerophosphate dehydrogenase, and lactic dehydrogenase) in muscle/bone sections of fixed and demineralized tissue has been developed. It was found that it is possible to preserve...... considerable amounts of the above mentioned enzymes in the muscle fibres at the muscle/bone interfaces. The best results were obtained after 20 min fixation, and 2-3 weeks of storage in MgNa2EDTA containing media. As the same technique previously has been used to describe patterns of resorption and deposition...

  18. Association between alcohol dehydrogenase 1C gene *1/*2 polymorphism and pancreatitis risk: a meta-analysis.

    Science.gov (United States)

    Fang, F; Pan, J; Su, G H; Xu, L X; Li, G; Li, Z H; Zhao, H; Wang, J

    2015-11-30

    Numerous studies have focused on the relationship be-tween alcohol dehydrogenase 1C gene (ADH1C) *1/*2 polymorphism (Ile350Val, rs698, also known as ADH1C *1/*2) and pancreatitis risk, but the results have been inconsistent. Thus, we conducted a meta-anal-ysis to more precisely estimate this association. Relevant publications were searched in several widely used databases and 9 eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association. Significant associations between ADH1C *1/*2 poly-morphism and pancreatitis risk were observed in both overall meta-analysis for 12 vs 22 (OR = 1.53, 95%CI = 1.12-2.10) and 11 + 12 vs 22 (OR = 1.44, 95%CI = 1.07-1.95), and the chronic alcoholic pancre-atitis subgroup for 12 vs 22 (OR = 1.64, 95%CI = 1.17-2.29) and 11 + 12 vs 22 (OR = 1.53, 95%CI = 1.11-2.11). Significant pancreatitis risk variation was also detected in Caucasians for 11 + 12 vs 22 (OR = 1.45, 95%CI = 1.07-1.98). In conclusion, the ADH1C *1/*2 polymorphism is likely associated with pancreatitis risk, particularly chronic alcoholic pancreatitis risk, with the *1 allele functioning as a risk factor.

  19. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production

    DEFF Research Database (Denmark)

    Thykær, Jette; Kildegaard, Kanchana Rueksomtawin; Noorman, H.

    2008-01-01

    was detected in either of the Delta gdhA strains. Supplementation with glutamate restored growth but no beta-lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed......The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA...... continued beta-lactam production for the reference strains whereas the Delta gdhA strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no beta-lactam production was detected. The results...

  20. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Sidharth Mehan

    2017-01-01

    Full Text Available Long term suppression of succinate dehydrogenase by selective inhibitor 3-nitropropionic acid has been used in rodents to model Huntington's disease where mitochondrial dysfunction and oxidative damages are primary pathological hallmarks for neuronal damage. Improvements in learning and memory abilities, recovery of energy levels, and reduction of excitotoxicity damage can be achieved through activation of Adenyl cyclase enzyme by a specific phytochemical forskolin. In this study, intraperitoneal administration of 10 mg/kg 3-nitropropionic acid for 15 days in rats notably reduced body weight, worsened motor cocordination (grip strength, beam crossing task, locomotor activity, resulted in learning and memory deficits, greatly increased acetylcholinesterase, lactate dehydrogenase, nitrite, and malondialdehyde levels, obviously decreased adenosine triphosphate, succinate dehydrogenase, superoxide dismutase, catalase, and reduced glutathione levels in the striatum, cortex and hippocampus. Intragastric administration of forskolin at 10, 20, 30 mg/kg dose-dependently reversed these behavioral, biochemical and pathological changes caused by 3-nitropropionic acid. These results suggest that forskolin exhibits neuroprotective effects on 3-nitropropionic acid-induced Huntington's disease-like neurodegeneration.

  1. 17Beta-hydroxysteroid dehydrogenase-3 deficiency: diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations

    NARCIS (Netherlands)

    A.L.M. Boehmer (Annemie); D.J.J. Halley (Dicky); P.E. de Ruiter (Petra); M.F. Niermeijer (Martinus); S. Andersson (Stefan); F.H. de Jong (Frank); H.H. Bode (Hans); S.L.S. Drop (Stenvert); H. Kayserili (Hülya); M.A. de Vroede; C. Rodrigues (Cidade); B.J. Otten (Barto); B.B. Mendonça (Berenice); H.A. Delemarre-van de Waal (Henriette); C.W. Rouwé (Catrienus); A.O. Brinkmann (Albert); L.A. Sandkuijl (Lodewijk)

    1999-01-01

    textabstract17Beta-hydroxysteroid dehydrogenase-3 (17betaHSD3) deficiency is an autosomal recessive form of male pseudohermaphroditism caused by mutations in the HSD17B3 gene. In a nationwide study on male pseudohermaphroditism among all pediatric endocrinologists and

  2. 76 FR 59141 - Determination That LOXITANE (Loxapine Succinate) Capsules and Three Other Drug Products Were Not...

    Science.gov (United States)

    2011-09-23

    ... Applicant NDA 017525 LOXITANE (loxapine Watson Laboratories succinate) Inc., 417 Wakara Capsules, Way, Suite.../milliliter. NDA 020828 FORTOVASE Hoffmann La Roche (saquinavir) Inc., 340 Kingsland Capsule, 200 mg. St...

  3. Physical and chemical stability of palonosetron hydrochloride with dacarbazine and with methylprednisolone sodium succinate during simulated y-site administration.

    Science.gov (United States)

    Trissel, Lawrence A; Zhang, Yanping; Xu, Quanyun A

    2006-01-01

    The objective of this study was to evaluate the physical and chemical stability of mixtures of undiluted palonosetron hydrochloride 50 micrograms/mL with dacarbazine 4 mg/mL and with methylprednisolone sodium succinate 5 mg/mL in 5% dextrose injection during simulated Y-site administration. Triplicate test samples were prepared by admixing 7.5 mL of palonosetron hydrochloride with 7.5 mL of dacarbazine solution and, separately, methylprednisolone sodium succinate solution. Physical stability was assessed by using a multistep evaluation procedure that included both turbidimetric and particulate measurement as well as visual inspection. Chemical stability was assessed by using stability-indicating high-performance liquid chromatographic analytical techniques that determined drug concentrations. Evaluations were performed immediately after mixing and 1 and 4 hours after mixing. The palonosetron hydrochloride-dacarbazine samples were clear and colorless when viewed in normal fluorescent room light and when viewed with a Tyndall beam. Measured turbidities remained unchanged; particulate contents were low and exhibited little change. High-performance liquid chromatography analysis revealed that palonosetron hydrochloride and dacarbazine remained stable throughout the 4-hour test with no drug loss. Palonosetron hydrochloride is, therefore, physically compatible and chemically stable with dacarbazine during Y-site administration. Within 4 hours, the mixtures of palonosetron hydrochloride and methylprednisolone sodium succinate developed a microprecipitate that became a white precipitate visible to the unaided eye. The precipitate was analyzed and identified as methylprednisolone. Palonosetron hydrochloride is incompatible with methylprednisolone sodium succinate.

  4. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

    Science.gov (United States)

    Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua

    2017-04-01

    The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels

    Czech Academy of Sciences Publication Activity Database

    Procházka, L.; Dong, L.F.; Vališ, Karel; Freeman, R.; Ralph, S.J.; Turánek, J.; Neužil, Jiří

    2010-01-01

    Roč. 15, č. 7 (2010), s. 782-794 ISSN 1360-8185 R&D Projects: GA AV ČR(CZ) KAN200520703; GA AV ČR(CZ) IAA500520702; GA AV ČR(CZ) IAA500520602 Institutional research plan: CEZ:AV0Z50520701 Keywords : Vitamin E succinate * apoptosis * Noxa-Bak Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.397, year: 2010

  6. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  7. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  8. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    International Nuclear Information System (INIS)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W.

    2011-01-01

    The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222 1 and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ 4 -(5α)-dehydrogenase [Δ 4 -(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ 4 -(5α)-KSTD enzyme was purified by Ni 2+ –NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222 1 , with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å

  9. Inducing the Alternative Oxidase Forms Part of the Molecular Strategy of Anoxic Survival in Freshwater Bivalves

    Science.gov (United States)

    Yusseppone, Maria S.; Rocchetta, Iara; Sabatini, Sebastian E.; Luquet, Carlos M.; Ríos de Molina, Maria del Carmen; Held, Christoph; Abele, Doris

    2018-01-01

    Hypoxia in freshwater ecosystems is spreading as a consequence of global change, including pollution and eutrophication. In the Patagonian Andes, a decline in precipitation causes reduced lake water volumes and stagnant conditions that limit oxygen transport and exacerbate hypoxia below the upper mixed layer. We analyzed the molecular and biochemical response of the North Patagonian bivalve Diplodon chilensis after 10 days of experimental anoxia (<0.2 mg O2/L), hypoxia (2 mg O2/L), and normoxia (9 mg O2/L). Specifically, we investigated the expression of an alternative oxidase (AOX) pathway assumed to shortcut the regular mitochondrial electron transport system (ETS) during metabolic rate depression (MRD) in hypoxia-tolerant invertebrates. Whereas, the AOX system was strongly upregulated during anoxia in gills, ETS activities and energy mobilization decreased [less transcription of glycogen phosphorylase (GlyP) and succinate dehydrogenase (SDH) in gills and mantle]. Accumulation of succinate and induction of malate dehydrogenase (MDH) activity could indicate activation of anaerobic mitochondrial pathways to support anoxic survival in D. chilensis. Oxidative stress [protein carbonylation, glutathione peroxidase (GPx) expression] and apoptotic intensity (caspase 3/7 activity) decreased, whereas an unfolded protein response (HSP90) was induced under anoxia. This is the first clear evidence of the concerted regulation of the AOX and ETS genes in a hypoxia-tolerant freshwater bivalve and yet another example that exposure to hypoxia and anoxia is not necessarily accompanied by oxidative stress in hypoxia-tolerant mollusks. PMID:29527172

  10. Inducing the Alternative Oxidase Forms Part of the Molecular Strategy of Anoxic Survival in Freshwater Bivalves

    Directory of Open Access Journals (Sweden)

    Maria S. Yusseppone

    2018-02-01

    Full Text Available Hypoxia in freshwater ecosystems is spreading as a consequence of global change, including pollution and eutrophication. In the Patagonian Andes, a decline in precipitation causes reduced lake water volumes and stagnant conditions that limit oxygen transport and exacerbate hypoxia below the upper mixed layer. We analyzed the molecular and biochemical response of the North Patagonian bivalve Diplodon chilensis after 10 days of experimental anoxia (<0.2 mg O2/L, hypoxia (2 mg O2/L, and normoxia (9 mg O2/L. Specifically, we investigated the expression of an alternative oxidase (AOX pathway assumed to shortcut the regular mitochondrial electron transport system (ETS during metabolic rate depression (MRD in hypoxia-tolerant invertebrates. Whereas, the AOX system was strongly upregulated during anoxia in gills, ETS activities and energy mobilization decreased [less transcription of glycogen phosphorylase (GlyP and succinate dehydrogenase (SDH in gills and mantle]. Accumulation of succinate and induction of malate dehydrogenase (MDH activity could indicate activation of anaerobic mitochondrial pathways to support anoxic survival in D. chilensis. Oxidative stress [protein carbonylation, glutathione peroxidase (GPx expression] and apoptotic intensity (caspase 3/7 activity decreased, whereas an unfolded protein response (HSP90 was induced under anoxia. This is the first clear evidence of the concerted regulation of the AOX and ETS genes in a hypoxia-tolerant freshwater bivalve and yet another example that exposure to hypoxia and anoxia is not necessarily accompanied by oxidative stress in hypoxia-tolerant mollusks.

  11. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Yuan, Yang; Wang, Weixing; Li, Huizhong; Yu, Yongwei; Tao, Jin; Huang, Shengdong; Zeng, Zhiyong

    2015-01-01

    Previous study showed that mitochondrial ND6 (mitND6) gene missense mutation resulted in NADH dehydrogenase deficiency and was associated with tumor metastasis in several mouse tumor cell lines. In the present study, we investigated the possible role of mitND6 gene nonsense and missense mutations in the metastasis of human lung adenocarcinoma. The presence of mitND6 gene mutations was screened by DNA sequencing of tumor tissues from 87 primary lung adenocarcinoma patients and the correlation of the mutations with the clinical features was analyzed. In addition, we constructed cytoplasmic hybrid cells with denucleared primary lung adenocarcinoma cell as the mitochondria donor and mitochondria depleted lung adenocarcinoma A549 cell as the nuclear donor. Using these cells, we studied the effects of mitND6 gene nonsense and missense mutations on cell migration and invasion through wounding healing and matrigel-coated transwell assay. The effects of mitND6 gene mutations on NADH dehydrogenase activity and ROS production were analyzed by spectrophotometry and flow cytometry. mitND6 gene nonsense and missense mutations were detected in 11 of 87 lung adenocarcinoma specimens and was correlated with the clinical features including age, pathological grade, tumor stage, lymph node metastasis and survival rate. Moreover, A549 cell containing mitND6 gene nonsense and missense mutation exhibited significantly lower activity of NADH dehydrogenase, higher level of ROS, higher capacity of cell migration and invasion, and higher pAKT and pERK1/ERK2 expression level than cells with the wild type mitND6 gene. In addition, NADH dehydrogenase inhibitor rotenone was found to significantly promote the migration and invasion of A549 cells. Our data suggest that mitND6 gene nonsense and missense mutation might promote cell migration and invasion in lung adenocarcinoma, probably by NADH dehydrogenase deficiency induced over-production of ROS

  12. Incorporation of 14C-succinate in Synechococcus

    International Nuclear Information System (INIS)

    Doehler, G.

    1983-01-01

    The cyanobacterium Synechococcus (= Anacystis nidulans) was grown under normal air conditions (0.03 vol.% CO 2 ) and in low white light (0.5 x 10 3 μW/cm 2 ) at 37 0 C. Kinetics of 14 C incorporation into several soluble products and pigments were studied after adding 14 C-succinate during photosynthesis and in the dark using the autoradiographic method. Radioactivity was found mainly in glutamate and aspartate during the photosynthetic period independent on 3-(3',4'-dichlorphenyl)-1,1-dimethylurea preincubation. In the dark period 14 C label could also be detected in malate. Short-term kinetics experiments showed a decrease in 14 C label of glutamate and a parallel increase of aspartate. Results were discussed in respect to the interrupted tricarboxylic acid cycle. (author)

  13. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  14. Neuronal network disturbance after focal ischemia in rats

    International Nuclear Information System (INIS)

    Kataoka, K.; Hayakawa, T.; Yamada, K.; Mushiroi, T.; Kuroda, R.; Mogami, H.

    1989-01-01

    We studied functional disturbances following left middle cerebral artery occlusion in rats. Neuronal function was evaluated by [14C]2-deoxyglucose autoradiography 1 day after occlusion. We analyzed the mechanisms of change in glucose utilization outside the infarct using Fink-Heimer silver impregnation, axonal transport of wheat germ agglutinin-conjugated-horseradish peroxidase, and succinate dehydrogenase histochemistry. One day after occlusion, glucose utilization was remarkably reduced in the areas surrounding the infarct. There were many silver grains indicating degeneration of the synaptic terminals in the cortical areas surrounding the infarct and the ipsilateral cingulate cortex. Moreover, in the left thalamus where the left middle cerebral artery supplied no blood, glucose utilization significantly decreased compared with sham-operated rats. In the left thalamus, massive silver staining of degenerated synaptic terminals and decreases in succinate dehydrogenase activity were observed 4 and 5 days after occlusion. The absence of succinate dehydrogenase staining may reflect early changes in retrograde degeneration of thalamic neurons after ischemic injury of the thalamocortical pathway. Terminal degeneration even affected areas remote from the infarct: there were silver grains in the contralateral hemisphere transcallosally connected to the infarct and in the ipsilateral substantia nigra. Axonal transport study showed disruption of the corticospinal tract by subcortical ischemia; the transcallosal pathways in the cortex surrounding the infarct were preserved. The relation between neural function and the neuronal network in the area surrounding the focal cerebral infarct is discussed with regard to ischemic penumbra and diaschisis

  15. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    Science.gov (United States)

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-06-20

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.

  16. Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.).

    Science.gov (United States)

    Liu, Pu; Zhang, Chao; Ma, Jin-Qi; Zhang, Li-Yuan; Yang, Bo; Tang, Xin-Yu; Huang, Ling; Zhou, Xin-Tong; Lu, Kun; Li, Jia-Na

    2018-03-16

    Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus , genome-wide identification and expression analysis of the BnCKX gene family has become technically feasible. In this study, we identified 23 BnCKX genes and analyzed their phylogenetic relationships, gene structures, conserved motifs, protein subcellular localizations, and other properties. We also analyzed the expression of the 23 BnCKX genes in the B. napus cultivar Zhong Shuang 11 ('ZS11') by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), revealing their diverse expression patterns. We selected four BnCKX genes based on the results of RNA-sequencing and qRT-PCR and compared their expression in cultivated varieties with extremely long versus short siliques. The expression levels of BnCKX5-1 , 5-2 , 6-1 , and 7-1 significantly differed between the two lines and changed during pod development, suggesting they might play roles in determining silique length and in pod development. Finally, we investigated the effects of treatment with the synthetic cytokinin 6-benzylaminopurine (6-BA) and the auxin indole-3-acetic acid (IAA) on the expression of the four selected BnCKX genes. Our results suggest that regulating BnCKX expression is a promising way to enhance the harvest index and stress resistance in plants.

  17. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  18. Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase

    Science.gov (United States)

    Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand

    2000-01-01

    Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For

  19. Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

    DEFF Research Database (Denmark)

    Otero, José Manuel; Cimini, Donatella; Patil, Kiran Raosaheb

    2013-01-01

    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought......-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals....

  20. 17 beta-hydroxysteroid dehydrogenase-3 deficiency : Diagnosis, phenotypic variability, population genetics, and worldwide distribution of ancient and de novo mutations

    NARCIS (Netherlands)

    Boehmer, ALM; Brinkmann, AO; Sandkuijl, LA; Halley, DJJ; Niermeijer, MF; Andersson, S; de Jong, FH; Kayserili, H; de Vroede, MA; Otten, BJ; Rouwe, CW; Mendonca, BB; Rodrigues, C; Bode, HH; de Ruiter, PE; Delemarre-van de Waal, HA; Drop, SLS

    1999-01-01

    17 beta-Hydroxysteroid dehydrogenase-3 (17 beta HSD3) deficiency is an autosomal recessive form of male pseudohermaphroditism caused by mutations in the HSD17B3 gene. In a nationwide study on male pseudohermaphroditism among all pediatric endocrinologists and clinical geneticists in The Netherlands,

  1. Skeletal muscle capillarization and oxidative metabolism in healthy smokers

    NARCIS (Netherlands)

    Wüst, Rob C. I.; Jaspers, Richard T.; van der Laarse, Willem J.; Degens, Hans

    2008-01-01

    We investigated whether the lower fatigue resistance in smokers than in nonsmokers is caused by a compromised muscle oxidative metabolism. Using calibrated histochemistry, we found no differences in succinate dehydrogenase (SDH) activity, myoglobin concentration, or capillarization in sections of

  2. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  3. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  4. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

    Science.gov (United States)

    2014-01-01

    Background D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. Results We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. Conclusions We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity. PMID:24475980

  5. Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa.

    Science.gov (United States)

    Chao, Nan; Liu, Shu-Xin; Liu, Bing-Mei; Li, Ning; Jiang, Xiang-Ning; Gai, Ying

    2014-11-01

    Nine CAD/CAD-like genes in P. tomentosa were classified into four classes based on expression patterns, phylogenetic analysis and biochemical properties with modification for the previous claim of SAD. Cinnamyl alcohol dehydrogenase (CAD) functions in monolignol biosynthesis and plays a critical role in wood development and defense. In this study, we isolated and cloned nine CAD/CAD-like genes in the Populus tomentosa genome. We investigated differential expression using microarray chips and found that PtoCAD1 was highly expressed in bud, root and vascular tissues (xylem and phloem) with the greatest expression in the root. Differential expression in tissues was demonstrated for PtoCAD3, PtoCAD6 and PtoCAD9. Biochemical analysis of purified PtoCADs in vitro indicated PtoCAD1, PtoCAD2 and PtoCAD8 had detectable activity against both coniferaldehyde and sinapaldehyde. PtoCAD1 used both substrates with high efficiency. PtoCAD2 showed no specific requirement for sinapaldehyde in spite of its high identity with so-called PtrSAD (sinapyl alcohol dehydrogenase). In addition, the enzymatic activity of PtoCAD1 and PtoCAD2 was affected by temperature. We classified these nine CAD/CAD-like genes into four classes: class I included PtoCAD1, which was a bone fide CAD with the highest activity; class II included PtoCAD2, -5, -7, -8, which might function in monolignol biosynthesis and defense; class III genes included PtoCAD3, -6, -9, which have a distinct expression pattern; class IV included PtoCAD12, which has a distinct structure. These data suggest divergence of the PtoCADs and its homologs, related to their functions. We propose genes in class II are a subset of CAD genes that evolved before angiosperms appeared. These results suggest CAD/CAD-like genes in classes I and II play a role in monolignol biosynthesis and contribute to our knowledge of lignin biosynthesis in P. tomentosa.

  6. Vitamin-responsive complex I deficiency in a myopathic patient with increased activity of the terminal respiratory chain and lactic acidosis

    NARCIS (Netherlands)

    Bakker, H. D.; Scholte, H. R.; Jeneson, J. A.; Busch, H. F.; Abeling, N. G.; van Gennip, A. H.

    1994-01-01

    An 11-year-old girl with exercise intolerance, fatiguability from early childhood, had high blood lactate levels. Histochemistry showed increased activity of succinate dehydrogenase at the periphery of the muscle fibres, whereas aggregates of mitochondria were seen by electron microscopy.

  7. Influence of Dilution Rate on Enzymes of Intermediary Metabolism in Two Freshwater Bacteria Grown in Continuous Culture

    NARCIS (Netherlands)

    Matin, A.; Grootjans, A.; Hogenhuis, H.

    1976-01-01

    Two freshwater bacteria, a Pseudomonas sp. and a Spirillum sp., were grown in continuous culture under steady-state conditions in L-lactate-, succinate-, ammonium- or phosphate-limited media. In Pseudomonas sp., NAD-independent and NAD-dependent L-lactate dehydrogenases, aconitase, isocitrate

  8. Sensitivities of baseline isolates and boscalid-resistant mutants of Alternaria alternata from pistachio to fluopyram, penthiopyrad, and fluxapyroxad

    NARCIS (Netherlands)

    Avenot, H.F.; Biggelaar, van den H.; Morgan, D.P.; Moral, J.; Joosten, M.H.A.J.; Michailides, T.J.

    2014-01-01

    Resistance of Alternaria alternata to boscalid, the first succinate dehydrogenase inhibitor (SDHI) fungicide labeled on pistachio, has become a common occurrence in California pistachio orchards and affects the performance of this fungicide. In this study, we established the baseline sensitivities

  9. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  10. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats

    OpenAIRE

    Guimarães Filho, Artur; Cunha, Rodrigo Maranguape Silva da; Vasconcelos, Paulo Roberto Leitão de; Guimarães, Sergio Botelho

    2014-01-01

    PURPOSE: To evaluate the relative gene expression (RGE) of cytosolic (MDH1) and mitochondrial (MDH2) malate dehydrogenases enzymes in partially hepatectomized rats after glutamine (GLN) or ornithine alpha-ketoglutarate (OKG) suplementation. METHODS: One-hundred and eight male Wistar rats were randomly distributed into six groups (n=18): CCaL, GLNL and OKGL and fed calcium caseinate (CCa), GLN and OKG, 0.5g/Kg by gavage, 30 minutes before laparotomy. CCaH, GLNH and OKGH groups were likewise fe...

  11. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  12. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  13. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  14. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, Mogens; Roepstorff, P.

    2002-01-01

    revealed two neighbouring protein spots, GapBI and GapBII, with amino terminal sequences identical to the product of gapA from the L. lactis subspecies cremoris strain LM0230 and that of the two IL1403 sequences. In order to assign the two protein spots to their respective genes we constructed an L. lactis...... was specific for NAD. No NADP dependent activity was detected. Proteome analysis of the gapA overexpressing strain revealed two new protein spots, GapAI and GapAII, not previously detected in proteome analysis of MG1363. Results from mass spectrometry analysis of GapA and GapB and comparison with the deduced......The sequence of the genome from the Lactococcus lactis subspecies lactis strain IL1403 shows the presence of two reading frames, gapA and gapB, putatively encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Previous proteomic analysis of the L. lactis subspecies cremoris strain MG1363 has...

  15. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5 alpha)-dehydrogenase from Rhodococcus jostii RHA1

    NARCIS (Netherlands)

    van Oosterwijk, Niels; Knol, Jan; Dijkhuizen, Lubbert; van der Geize, Robert; Dijkstra, Bauke

    2011-01-01

    3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid

  16. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  17. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Science.gov (United States)

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  18. GOLD HULL AND INTERNODE2 Encodes a Primarily Multifunctional Cinnamyl-Alcohol Dehydrogenase in Rice1

    Science.gov (United States)

    Zhang, Kewei; Qian, Qian; Huang, Zejun; Wang, Yiqin; Li, Ming; Hong, Lilan; Zeng, Dali; Gu, Minghong; Chu, Chengcai; Cheng, Zhukuan

    2006-01-01

    Lignin content and composition are two important agronomic traits for the utilization of agricultural residues. Rice (Oryza sativa) gold hull and internode phenotype is a classical morphological marker trait that has long been applied to breeding and genetics study. In this study, we have cloned the GOLD HULL AND INTERNODE2 (GH2) gene in rice using a map-based cloning approach. The result shows that the gh2 mutant is a lignin-deficient mutant, and GH2 encodes a cinnamyl-alcohol dehydrogenase (CAD). Consistent with this finding, extracts from roots, internodes, hulls, and panicles of the gh2 plants exhibited drastically reduced CAD activity and undetectable sinapyl alcohol dehydrogenase activity. When expressed in Escherichia coli, purified recombinant GH2 was found to exhibit strong catalytic ability toward coniferaldehyde and sinapaldehyde, while the mutant protein gh2 completely lost the corresponding CAD and sinapyl alcohol dehydrogenase activities. Further phenotypic analysis of the gh2 mutant plants revealed that the p-hydroxyphenyl, guaiacyl, and sinapyl monomers were reduced in almost the same ratio compared to the wild type. Our results suggest GH2 acts as a primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in rice lignin biosynthesis. PMID:16443696

  19. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    International Nuclear Information System (INIS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  20. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Begüm [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Uygun, Murat [Koçarlı Vocational and Training School, Adnan Menderes University, Aydın (Turkey); Uygun, Deniz Aktaş, E-mail: daktas@adu.edu.tr [Chemistry Department, Adnan Menderes University, Aydın (Turkey); Akgöl, Sinan [Biochemistry Department, Ege University, İzmir (Turkey); Denizli, Adil [Chemistry Department, Hacettepe University, Ankara (Turkey)

    2013-12-01

    In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase. - Highlights: • Poly(HEMA–GMA) cryogels were synthesized by radical cryocopolymerization technique. • Prepared cryogels were functionalized with IDA, then Zn(II) ions were chelated to the cryogel. • Zn(II) chelated poly

  1. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor.

    Science.gov (United States)

    Corona-González, Rosa Isela; Varela-Almanza, Karla María; Arriola-Guevara, Enrique; Martínez-Gómez, Álvaro de Jesús; Pelayo-Ortiz, Carlos; Toriz, Guillermo

    2016-04-01

    The aim of this work was to obtain fermentable sugars by enzymatic or acid hydrolyses of Agave tequilana Weber bagasse in order to produce succinic acid with Actinobacillus succinogenes. Hydrolyses were carried out with mineral acids (sulfuric and hydrochloric acids) or a commercial cellulolytic enzyme, and were optimized statistically by a response surface methodology, having as factors the concentration of acid/enzyme and time of hydrolysis. The concentration of sugars obtained at optimal conditions for each hydrolysis were 21.7, 22.4y 19.8g/L for H2SO4, HCl and the enzymatic preparation respectively. Concerning succinic acid production, the enzymatic hydrolyzates resulted in the highest yield (0.446g/g) and productivity (0.57g/Lh) using A. succinogenes in a batch reactor system. Repeated batch fermentation with immobilized A. succinogenes in agar and with the enzymatic hydrolyzates resulted in a maximum concentration of succinic acid of 33.6g/L from 87.2g/L monosaccharides after 5 cycles in 40h, obtaining a productivity of 1.32g/Lh. Copyright © 2016. Published by Elsevier Ltd.

  2. Malate and fumarate extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Clare B Edwards

    Full Text Available Malate, the tricarboxylic acid (TCA cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1, glyoxylate shunt (gei-7, succinate dehydrogenase flavoprotein (sdha-2, or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.

  3. Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.

    Science.gov (United States)

    Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong

    2015-08-01

    Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.

  4. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  5. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  6. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    Science.gov (United States)

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  7. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  8. Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations

    NARCIS (Netherlands)

    Evenepoel, Lucie; Papathomas, Thomas G.; Krol, Niels; Korpershoek, Esther; De Krijger, Ronald R.; Persu, Alexandre; Dinjens, Winand N M

    2015-01-01

    The tricarboxylic acid, or Krebs, cycle is central to the cellular metabolism of sugars, lipids, and amino acids; it fuels the mitochondrial respiratory chain for energy generation. In the past decade, mutations in the Krebs-cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate

  9. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    Science.gov (United States)

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  10. Genome of Methylobacillus flagellatus, Molecular Basis for Obligate Methylotrophy, and Polyphyletic Origin of Methylotrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chistoserdova, L; Lapidus, A; Han, C; Godwin, L; Saunders, L; Brettin, T; Tapia, R; Gilna, P; Lucas, S; Richardson, P M; Lidstrom, M E

    2007-07-24

    Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.

  11. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  12. Probing cytokinin homeostasis in Arabidopsis thaliana by constitutively overexpressing two forms of the maize cytokinin oxidase/dehydrogenase 1 gene

    Czech Academy of Sciences Publication Activity Database

    Kopečný, D.; Tarkowski, Petr; Majira, M.; Bouchez-Mahiout, I.; Nogué, F.; Laurière, M.; Sandberg, G.; Laloue, M.; Houba-Hérin, N.

    2006-01-01

    Roč. 171, č. 1 (2006), s. 114-122 ISSN 0168-9452 Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * Cytokinin oxidase/dehydrogenase * Homeostasis Subject RIV: CE - Biochemistry Impact factor: 1.631, year: 2006

  13. Characterization of the respiratory chain of Helicobacter pylori

    DEFF Research Database (Denmark)

    Chen, M; Andersen, L P; Zhai, L

    1999-01-01

    reductase was inhibited by antimycin, implying the presence of a classical pathway from complex II to complex III in this bacterium. The presence of NADH-fumarate reductase (FRD) was demonstrated in H. pylori and fumarate could reduce H2O2 production from NADH, indicating fumarate to be an endogenous......-dependent respiration was significantly stronger than NADH-dependent respiration, indicating that this is a major respiratory electron donor in H. pylori. Fumarate and malonate exhibited a concentration-dependent inhibitory effect on the activity of succinate dehydrogenase. The activity of succinate-cytochrome c...

  14. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing......A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...... size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed...

  15. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from Rhodococcus jostii RHA1

    Energy Technology Data Exchange (ETDEWEB)

    Oosterwijk, Niels van; Knol, Jan; Dijkhuizen, Lubbert; Geize, Robert van der; Dijkstra, Bauke W., E-mail: b.w.dijkstra@rug.nl [University of Groningen, Nijenborgh 7, 9747 AG Groningen (Netherlands)

    2011-10-01

    The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase from R. jostii RHA1 was cloned and overexpressed in E. coli and the protein product was purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C222{sub 1} and diffraction data were collected to a resolution of 1.6 Å. 3-Ketosteroid dehydrogenases are flavoproteins which play key roles in steroid ring degradation. The enzymes are abundantly present in actinobacteria, including the catabolic powerhouse Rhodococcus jostii and the pathogenic species R. equi and Mycobacterium tuberculosis. The gene for 3-ketosteroid Δ{sup 4}-(5α)-dehydrogenase [Δ{sup 4}-(5α)-KSTD] from R. jostii RHA1 was cloned and overexpressed in Escherichia coli. His-tagged Δ{sup 4}-(5α)-KSTD enzyme was purified by Ni{sup 2+}–NTA affinity chromatography, anion-exchange chromatography and size-exclusion chromatography and was crystallized using the hanging-drop vapour-diffusion method. Seeding greatly improved the number of crystals obtained. The crystals belonged to space group C222{sub 1}, with unit-cell parameters a = 99.2, b = 114.3, c = 110.2 Å. Data were collected to a resolution of 1.6 Å.

  16. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  17. Alterations in carbohydrates and the protein metabolism of the harmful freshwater vector snail Lymnaea acuminata induced by the Euphorbia tirucalli latex extract.

    Science.gov (United States)

    Tiwari, Sudhanshu; Singh, A

    2005-11-01

    To know the short- as well as long-term effect of aqueous latex extracts of Euphorbia tirucalli on carbohydrate and protein metabolism, the snail Lymnaea acuminata was exposed to sublethal doses of 0.37 and 0.55 mg/L for a 24-h and 0.20 and 0.31 mg/L for a 96-h exposure period. Significant (P<0.05) alterations in the glycogen, pyruvate, lactate, total protein, and free amino acid level, as well as in the activity of enzyme lactic dehydrogenase, succinic dehydrogenase, cytochrome oxidase, protease, aspartate aminotransaminase, and alanine aminotransaminase were observed in the nervous, hepatopancreatic, and ovotestis tissues of the freshwater vector snail L. acuminata exposed to sublethal doses of E. tirucalli latex extract. The alterations in all biochemical parameters were significantly (P<0.05) time and dose dependent. After the 7th day of the withdrawal of treatment, there was significant (P<0.05) recovery in glycogen, pyruvate, lactate, total protein, and the free amino acid level and in the activity of the lactic dehydrogenase, succinic dehydrogenase, cytochrome oxidase, protease, aspartate aminotransaminase and alanine aminotransaminase enzymes in all three of the studied tissues of the snail, which supports the view that the plant product is safe for use as a molluscicide for the control of harmful freshwater vector snails in the aquatic environment.

  18. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    Directory of Open Access Journals (Sweden)

    Dilla Mareistia Fassah

    2018-04-01

    Full Text Available Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10 and steers (n = 10 of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01 and protein levels (1.4 fold; p< 0.05 of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05. Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05 and lactate dehydrogenase B (2.2 fold; p<0.01 genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05 and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05 genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial (3.5 fold; p<0.01 and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06 genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular

  19. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  20. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  1. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    Science.gov (United States)

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  2. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sultana Mehbuba Hossain

    2018-03-01

    Full Text Available Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA exhibited the highest (31.38% binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug.

  3. Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes.

    Science.gov (United States)

    Bringaud, F; Ebikeme, C; Boshart, M

    2010-08-01

    Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.

  4. Structural and functional changes in the gastric intramural nervous plexus in emotionally stressed rats exposed to low doses of prolonged ionizing radiation and lead

    International Nuclear Information System (INIS)

    Lapsha, V.I.; Bocharova, V.N.; Utkina, L.N.; Rolevich, I.V.

    1999-01-01

    Changes in the catecholamine content in adrenergic fibres, acethylcholinesterase activity, and in the energy metabolism enzymes lactate dehydrogenase and succinate dehydrogenase in neurons of the gastric intramural plexus during emotional stress in rats a day after combined exposure to prolonged (30 days) ionizing radiation at a total dose 1.0 Gy and 0.6 mg/kg lead were studied. A decrease in catecholamines in adrenergic fibres and acethylcholinesterase and lactate dehydrogenase activity in neurons was observed. An enhanced sensitivity of the gastric intramural plexus after the prolonged exposure to small doses of ionizing radiation and lead in conditions of emotional stress was suggested [ru

  5. Histochemical and functional fibre typing of the rabbit masseter muscle

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Moorman, A. F.; Brugman, P.

    1990-01-01

    The fibre-type distribution of the masseter muscle of the rabbit was studied by means of the myosin-ATPase and succinate dehydrogenase reactions. Six different fibre types were found and these were unequally distributed between and within the anatomical compartments of the muscle. Most of the

  6. Metabolic Effects of a Succinic Acid

    Directory of Open Access Journals (Sweden)

    B. N. Shakh

    2014-01-01

    Full Text Available The paper discusses promises for clinical use of substrate antihypoxants.Objective: to investigate the efficacy of succinate containing  substrate  antihypoxants  on  systemic  oxygen  consumption,  blood  buffer  capacity,  and  changes  in  the  mixed venous blood level of lactate when they are used in gravely sick patients and victims with marked metabolic posthypoxic disorders.Subjects and methods. The trial enrolled 30 patients and victims who had sustained an episode of severe hypoxia of mixed genesis, the severity of which was evaluated by the APACHE II scale and amounted to 23 to 30 scores with a 46 to 70.3% risk of death. The standard infusion program in this group involved the succinate-containing drug 1.5% reamberin solution  in  a  total  dose  of  800  ml.  A  comparison  group  included  15  patients  who  had  undergone  emergency  extensive surgery for abdominal diseases. 400 ml of 10% glucose solution was used as an infusion medium. Oxygen consumption (VO2ml/min and carbon dioxide production (VCO2ml/min were measured before infusion and monitored for 2 hours. Arterial blood gases and acid-base balance (ABB parameters and mixed venous blood lactate levels were examined. Measurements were made before and 30 minutes after the infusion of reamberin or glucose solution.Results. Infusion of 1.5% reamberin solution was followed by a significant increase in minute oxygen consumption from 281.5±21.2 to 310.4±24.4 ml/min. CO2 production declined (on average, from 223.3±6.5 to 206.5±7.59 ml/min. During infusion of 10% glucose solution, all the patients of the comparison group showed a rise in oxygen consumption from 303.6±33.86 to 443.13±32.1 ml/min, i.e. about 1.5-fold. VCO2 changed similarly. The intravenous infusion of 800 ml of 1.5% reamberin solution raised arterial blood buffer capacity, which was reflected by changes in pH, BE, and HCO3. There was a clear trend for lactate values to drop in the

  7. Crystallization and degradation behaviors of poly(butylene succinate)/poly(Z-L-lysine) composites

    International Nuclear Information System (INIS)

    Tan, Licheng; Hu, Jun; Ye, Suwen; Wei, Junchao; Chen, Yiwang

    2014-01-01

    Highlights: • A new biodegradable poly(butylene succinate) (PBS)/poly(Z-L-lysine) (PZlys) composites were successfully prepared through physical blend. • PZlys may greatly affected the crystallization behaviors of PBS without changing its crystalline structure. • The degradation speed of PBS may be greatly accelerated by introduction of PZlys in PBS matrix. - Abstract: A new type of biodegradable poly(butylene succinate) (PBS)/poly(Z-L-lysine) (PZlys) composites were prepared. The crystallization behaviors were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM) and the results showed that PZlys can restrict the crystallization of PBS, the crystallization speed of PBS/PZlys were slower than that of PBS, and the crystallization degree of the composites were smaller than that of PBS. However, the WAXD results showed that the incorporation of PZlys did not change the crystalline structure of PBS. The in vitro degradation experiments demonstrated that the degradation speed of the composites were faster than that of PBS. Moreover, the mechanical properties of the composites showed that the composites with a proper composition (for example, 80/20) can keep the mechanical properties of PBS without evident difference, which implied that the composites might be potentially useful as biodegradable materials

  8. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  9. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism.

    Science.gov (United States)

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-01-01

    The life-time drinking profiles of Japanese alcoholics have shown that gastrectomy increases susceptibility to alcoholism. We investigated the trends in gastrectomy and alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genotypes and their interactions in alcoholics. This survey was conducted on 4879 Japanese alcoholic men 40 years of age or older who underwent routine gastrointestinal endoscopic screening during the period 1996-2010. ADH1B/ALDH2 genotyping was performed in 3702 patients. A history of gastrectomy was found in 508 (10.4%) patients. The reason for the gastrectomy was peptic ulcer in 317 patients and gastric cancer in 187 patients. The frequency of gastrectomy had gradually decreased from 13.3% in 1996-2000 to 10.5% in 2001-2005 and to 7.8% in 2006-2010 (P alcoholism-susceptibility genotypes, ADH1B*1/*1 and ALDH2*1/*1, modestly but significantly tended not to occur in the same individual (P = 0.026). The frequency of ADH1B*1/*1 decreased with ascending age groups. The high frequency of history of gastrectomy suggested that gastrectomy is still a risk factor for alcoholism, although the percentage decreased during the period. The alcoholism-susceptibility genotype ADH1B*1/*1 was less frequent in the gastrectomy group, suggesting a competitive gene-gastrectomy interaction for alcoholism. A gene-gene interaction and gene-age interactions regarding the ADH1B genotype were observed.

  10. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  11. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  12. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    Science.gov (United States)

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  13. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  14. Development of a validated HPLC method for the quantitative determination of trelagliptin succinate and its related substances in pharmaceutical dosage forms.

    Science.gov (United States)

    Luo, Zhiqiang; Chen, Xinjing; Wang, Guopeng; Du, Zhibo; Ma, Xiaoyun; Wang, Hao; Yu, Guohua; Liu, Aoxue; Li, Mengwei; Peng, Wei; Liu, Yang

    2018-01-01

    Trelagliptin succinate is a dipeptidyl peptidase IV (DPP-4) inhibitor which is used as a new long-acting drug for once-weekly treatment of type 2 diabetes mellitus (DM). In the present study, a rapid, sensitive and accurate high-performance liquid chromatography (HPLC) method was developed and validated for separation and determination of trelagliptin succinate and its eight potential process-related impurities. The chromatographic separation was achieved on a Waters Xselect CSH™ C 18 (250mm×4.6mm, 5.0μm) column. The mobile phases comprised of 0.05% trifluoroacetic acid in water as well as acetonitrile containing 0.05% trifluoroacetic acid. The compounds of interest were monitored at 224nm and 275nm. The stability-indicating capability of this method was evaluated by performing stress test studies. Trelagliptin succinate was found to degrade significantly in acid, base, oxidative and thermal stress conditions and only stable in photolytic degradation condition. The degradation products were well resolved from the main peak and its impurities. In addition, the major degradation impurities formed under acid, base, oxidative and thermal stress conditions were characterized by ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). The method was validated to fulfill International Conference on Harmonisation (ICH) requirements and this validation included specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. The developed method in this study could be applied for routine quality control analysis of trelagliptin succinate tablets, since there is no official monograph. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. INFLUENCE OF METOPROLOL SUCCINATE ON REGULATORY AND ADAPTIVE STATUS OF PATIENTS WITH CHRONIC HEART FAILURE FUNCTIONAL CLASS I. RESULTS OF NOT COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    V. G. Tregubov

    2011-01-01

    Full Text Available Aim. To estimate metoprolol succinate effect on regulatory and adaptive status (RAS of patients with сhronic heart failure (CHF functional class (FC I and arterial hypertension (HT I-II stages. Material and methods. 51 patients with CHF FC I and HT I-II stage, (30 men and 21 women aged 52.6±1.4 yeas. Cardio-respiratory synchronism (CRS test, 6-minute walking test, tread-mill burden test with registration of maximal oxygen consumption, 24-hour blood pressure monitoring, echocardiography and determination of N-terminal pro-brain natriuretic peptide (NT-proBNP blood level were performed initially and after 6 months of therapy with metoprolol succinate (dose 78.1±5.7 mg/day in sustained-release presentation. Results. Metoprolol succinate therapy had no significant effect on RAS (there was no unidirectional dynamics of the basic CRS test parameters: a range of synchronization decreased significantly from 8.8±0.4 to 7.2±0.6 сardio-respiratory cycles per minute (in 18%; р<0.05, and duration of CRS development on the minimal boundary from 18.8±2.2 to 14.3±1.2 сardiocycles (in 24%; р<0,05; RAS index considerably did not change, myocardium structure, exercise tolerance and neuro-humoral activity. Metoprolol therapy only moderately improved left ventricle diastolic function. Conclusion. Metoprolol succinate therapy has no significant effect on RAS of patients with CHF FC I and HT I-II stages.

  16. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  17. A high-throughput analysis of the IDH1(R132H) protein expression in pituitary adenomas

    DEFF Research Database (Denmark)

    Casar-Borota, Olivera; Øystese, Kristin Astrid Berland; Sundström, Magnus

    2016-01-01

    PURPOSE: Inactivating mutations of isocitrate dehydrogenase (IDH) 1 and 2, mitochondrial enzymes participating in the Krebs tricarboxylic acid cycle play a role in the tumorigenesis of gliomas and also less frequently in acute myeloid leukemia and other malignancies. Inhibitors of mutant IDH1...... and IDH2 may potentially be effective in the treatment of the IDH mutation driven tumors. Mutations in the succinate dehydrogenase, the other enzyme complex participating in the Krebs cycle and electron transfer of oxidative phosphorylation occur in the paragangliomas, gastrointestinal stromal tumors...

  18. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  19. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  20. Evidence of lactate dehydrogenase-B allozyme effects in the teleost, Fundulus heteroclitus.

    Science.gov (United States)

    DiMichele, L; Paynter, K T; Powers, D A

    1991-08-23

    The evolutionary significance of protein polymorphisms has long been debated. Exponents of the balanced theory advocate that selection operates to maintain polymorphisms, whereas the neoclassical school argues that most genetic variation is neutral. Some studies have suggested that protein polymorphisms are not neutral, but their significance has been questioned because one cannot eliminate the possibility that linked loci were responsible for the observed differences. Evidence is presented that an enzymatic phenotype can affect carbon flow through a metabolic pathway. Glucose flux differences between lactate dehydrogenase-B phenotypes of Fundulus heteroclitus were reversed by substituting the Ldh-B gene product of one homozygous genotype with that of another.

  1. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2014-01-01

    Full Text Available Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7 using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60 and dihydropyrimidine dehydrogenase (DPYD are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness.

  2. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish.

    Science.gov (United States)

    Biery, B J; Stein, D E; Morton, D H; Goodman, S I

    1996-11-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span approximately 7 kb. Fibroblast DNA from 64 unrelated glutaric acidemia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits.

  3. 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α.

    Science.gov (United States)

    Ryan, V H; Trayhurn, P; Hunter, L; Morris, P J; German, A J

    2011-10-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD-1) is expressed in a number of tissues in rodents and humans and is responsible for the reactivation of inert cortisone into cortisol. Its gene expression and activity are increased in white adipose tissue (WAT) from obese humans and may contribute to the adverse metabolic consequences of obesity and the metabolic syndrome. The extent to which 11β-HSD-1 contributes to adipose tissue function in dogs is unknown; the aim of the present study was to examine 11β-HSD-1 gene expression and its regulation by proinflammatory and anti-inflammatory agents in canine adipocytes. Real-time PCR was used to examine the expression of 11β-HSD-1 in canine adipose tissue and canine adipocytes differentiated in culture. The mRNA encoding 11β-HSD-1 was identified in all the major WAT depots in dogs and also in liver, kidney, and spleen. Quantification by real-time PCR showed that 11β-HSD-1 mRNA was least in perirenal and falciform depots and greatest in subcutaneous, omental, and gonadal depots. Greater expression was seen in the omental depot in female than in male dogs (P=0.05). Gene expression for 11β-HSD-1 was also seen in adipocytes, from both subcutaneous and visceral depots, differentiated in culture; expression was evident throughout differentiation but was generally greatest in preadipocytes and during early differentiation, declining as cells progressed to maturity. The inflammatory mediators lipopolysaccharide and tumor necrosis factor α had a main stimulatory effect on 11β-HSD-1 gene expression in canine subcutaneous adipocytes, but IL-6 had no significant effect. Treatment with dexamethasone resulted in a significant time- and dose-dependent increase in 11β-HSD-1 gene expression, with greatest effects seen at 24 h (2 nM: approximately 4-fold; 20 nM: approximately 14-fold; P=0.010 for both). When subcutaneous adipocytes were treated with the peroxisome proliferator activated receptor γ agonist rosiglitazone

  4. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique.

    Science.gov (United States)

    Kostner, David; Rachinger, Michael; Liebl, Wolfgang; Ehrenreich, Armin

    2017-11-01

    Bacillus licheniformis strains are used for the large-scale production of industrial exoenzymes from proteinaceous substrates, but details of the amino acid metabolism involved are largely unknown. In this study, two chromosomal genes putatively involved in amino acid metabolism of B. licheniformis were deleted to clarify their role. For this, a convenient counterselection system for markerless in-frame deletions was developed for B. licheniformis. A deletion plasmid containing up- and downstream DNA segments of the chromosomal deletion target was conjugated to B. licheniformis and integrated into the genome by homologous recombination. Thereafter, the counterselection was done by using a codBA cassette. The presence of cytosine deaminase and cytosine permease exerted a conditionally lethal phenotype on B. licheniformis cells in the presence of the cytosine analogue 5-fluorocytosine. Thereby clones were selected that lost the integrated vector sequence and the anticipated deletion target after a second recombination step. This method allows the construction of markerless mutants in Bacillus strains in iterative cycles. B. licheniformis MW3 derivatives lacking either one of the ORFs BL03009 or BL00190, encoding a putative alanine dehydrogenase and a similar putative enzyme, respectively, retained the ability to grow in minimal medium supplemented with alanine as the carbon source. In the double deletion mutant MW3 ΔBL03009 ΔBL00190, however, growth on alanine was completely abolished. These data indicate that the two encoded enzymes are paralogues fulfilling mutually replaceable functions in alanine utilization, and suggest that in B. licheniformis MW3 alanine utilization is initiated by direct oxidative transamination to pyruvate and ammonium.

  5. The ORF slr0091 of Synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals

    KAUST Repository

    Trautmann, Danika

    2013-07-05

    Oxidative cleavage of carotenoids and peroxidation of lipids lead to apocarotenals and aliphatic aldehydes called alkanals, which react with vitally important compounds, promoting cytotoxicity. Although many enzymes have been reported to deactivate alkanals by converting them into fatty acids, little is known about the mechanisms used to detoxify apocarotenals or the enzymes acting on them. Cyanobacteria and other photosynthetic organisms must cope with both classes of aldehydes. Here we report that the Synechocystis enzyme SynAlh1, encoded by the ORF slr0091, is an aldehyde dehydrogenase that mediates oxidation of both apocarotenals and alkanals into the corresponding acids. Using a crude lysate of SynAlh1-expressing Escherichia coli cells, we show that SynAlh1 converts a wide range of apocarotenals and alkanals, with a preference for apocarotenals with defined chain lengths. As suggested by in vitro incubations and using engineered retinal-forming E. coli cells, we found that retinal is not a substrate for SynAlh1, making involvement in Synechocystis retinoid metabolism unlikely. The transcript level of SynAlh1 is induced by high light and cold treatment, indicating a role in the stress response, and the corresponding gene is a constituent of a stress-related operon. The assumptions regarding the function of SynAlh are further supported by the surprisingly high homology to human and plant aldehyde dehydrogenase that have been assigned to aldehyde detoxification. SynAlh1 is the first aldehyde dehydrogenase that has been shown to form both apocarotenoic and fatty acids. This dual function suggests that its eukaryotic homologs may also be involved in apocarotenal metabolism, a function that has not been considered so far. Aldehyde dehydrogenases play an important role in detoxification of reactive aldehydes. Here, we report on a cyanbacterial enzyme capable in converting two classes of lipid-derived aldehydes, apocaotenals and alkanals. The corresponding gene is a

  6. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  7. Alpha-Tocopheryl succinate induces cytostasis and apoptosis in osteosarcoma cells: the role of E2F1

    Czech Academy of Sciences Publication Activity Database

    Alleva, R.; Benassi, M.S.; Tomasetti, M.; Gellert, N.; Ponticelli, F.; Borghi, B.; Picci, P.; Neužil, Jiří

    2005-01-01

    Roč. 331, č. 4 (2005), s. 1515-1521 ISSN 0006-291X Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z5052915 Keywords : osteosarcoma * alpha-tocopheryl succinate * E2F1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.000, year: 2005

  8. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  9. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(−)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L-1 of optically pure D(−)-lactic acid from glucose in coagulans and the QZ19 derivative can be used to produce either L(+) or D(−) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates. PMID:22065761

  10. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Alkhaldi, A.A.M.; Martínek, Jan; Panicucci, Brian; Dardonville, C.; Zíková, Alena; de Koning, H.P.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 23-34 ISSN 2211-3207 R&D Projects: GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * mitochondrion * FoF1 ATPase * succinate dehydrogenase * phosphonium salt * SDH complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.809, year: 2016

  11. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    International Nuclear Information System (INIS)

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-01-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase [LDHC 4 , LDHX; (L)-lactate:NAD + oxidoreductase, EC 1.1.1.27] has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC 4 is as different from rodent LDHC 4 (73% homology) as it is from human LDHA 4 (76% homology) and porcine LDHB 4 (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC 4 and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC 4 reveals significant differences. Knowledge of the human LDHC 4 sequence will help design human-specific peptides useful in the development of a contraceptive vaccine

  12. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  13. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon.

    Science.gov (United States)

    Bouvier d'Yvoire, Madeleine; Bouchabke-Coussa, Oumaya; Voorend, Wannes; Antelme, Sébastien; Cézard, Laurent; Legée, Frédéric; Lebris, Philippe; Legay, Sylvain; Whitehead, Caragh; McQueen-Mason, Simon J; Gomez, Leonardo D; Jouanin, Lise; Lapierre, Catherine; Sibout, Richard

    2013-02-01

    Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Caenorhabditis elegans expressing the Saccharomyces cerevisiae NADH alternative dehydrogenase Ndi1p, as a tool to identify new genes involved in complex I related diseases

    Directory of Open Access Journals (Sweden)

    Raynald eCossard

    2015-06-01

    Full Text Available Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function.The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabitis elegans with notable improvements in reproduction, whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression.We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals and without affecting their respiration rate and ATP content.We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g. NDUFV1, NDUFS1, NDUFS6, NDUFS8 or GRIM-19 human orthologs in wild type animals is significantly reduced in the Ndi1p expressing worm.All together these results open up the perspective to identify new genes involved in complex I function, assembly or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

  15. The peculiarity of aerobic energy supply of rat tissues of different age upon prolonged ionizing and thermal exposure

    International Nuclear Information System (INIS)

    Tsyhun, G.F.

    1998-01-01

    Energy-producing functions of brain, myocardium, and hepatic mitochondria in mature and immature rats in remote period after prolonged ionizing X-ray at total dose 12,9 m C/kg and thermal exposure (4 hours, 37 degrees centigrade, 25 times) were studied. Dehydrogenase activities (pyruvate-, isocitrate-, 2-oxy glutarate-, succinate- and malate dehydrogenases) were reduced in mitochondria of different tissues of adult rats and it was especially considerable after combined influence. A higher resistance of young rats, as compared to adult ones, to combined radiation-thermal treatments was established

  16. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    OpenAIRE

    Li, Shi-Yan; Gilbert, Sara A.B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  17. Microarray analysis of genes affected by salt stress in tomato

    African Journals Online (AJOL)

    LANDA

    isoforms of cytochrome P450, genes for polyamine biosynthesis (putrescine and proline) ..... CAB97048 mitochondrial half-ABC transporter [Arabidopsis thaliana] up .... AAC72194 pyruvate dehydrogenase E1 beta subunit isoform 3 [Zea mays].

  18. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  19. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  20. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  1. Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3+3A>G mutation that causes exon skipping

    DEFF Research Database (Denmark)

    Madsen, Pia Pinholt

    2006-01-01

    Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of L: -isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence...... is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes....

  2. Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations

    DEFF Research Database (Denmark)

    Kacso, Gergely; Ravasz, Dora; Doczi, Judit

    2016-01-01

    Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to result...

  3. Lumba-Lumba Hidung Botol Laut Jawa Adalah Tursiops aduncus Berdasar Sekuen Gen NADH Dehidrogenase Subunit 6 (VERIFICATION BOTTLENOSE DOLPHINS FROM JAVA SEA IS TURSIOPS ADUNCUS BASED ON GENE SEQUENCES OF NADH DEHYDROGENASE SUBUNIT 6

    Directory of Open Access Journals (Sweden)

    Rini Widayanti

    2014-05-01

    Full Text Available Bottlenose dolphins (Tursiops sp. is one of the aquatic mammals widely spread in the marines ofIndonesia archipelago, especially the Java Sea. The taxonomy of the genus Tursiops is still  controversial.The purpose of this study was to examine the molecular basis of Tursiops sp of Java sea marine origin onthe basis of its NADH dehydrogenase gene subunit 6 (ND6 sequences. Samples of blood were collectedfrom five male bottle nose dolphins from captivity of PT. Wersut Seguni Indonesia. DNA was isolated,amplified by polymerase chain reaction (PCR, sequenced, and analyzed the data using the MEGA v. 5.1program. The results of PCR amplification was 868 base pairs (bp, DNA sequencing showed that 528nucleotides were ND6 gene, nucleotide at the position of 387 could be used to distinguish the bottle nosedolphins Java marine origin with T. aduncus.   Filogram using Neighbor joining method based on thenucleotide sequence of the gene ND6, showed that bottle nose dolphins Java marine origin belong to groupof T. aduncus.

  4. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources.

    Science.gov (United States)

    Tsuge, Yota; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-03-01

    Recent increasing attention to environmental issues and the shortage of oil resources have spurred political and industrial interest in the development of environmental friendly and cost-effective processes for the production of bio-based chemicals from renewable resources. Thus, microbial production of commercially important chemicals is viewed as a desirable way to replace current petrochemical production. Corynebacterium glutamicum, a Gram-positive soil bacterium, is one of the most important industrial microorganisms as a platform for the production of various amino acids. Recent research has explored the use of C. glutamicum as a potential cell factory for producing organic acids such as lactate and succinate, both of which are commercially important bulk chemicals. Here, we summarize current understanding in this field and recent metabolic engineering efforts to develop C. glutamicum strains that efficiently produce L- and D-lactate, and succinate from renewable resources.

  5. Polystyrene/TiO2 composite electrospun fibers as fillers for poly(butylene succinate-co-adipate): Structure, morphology and properties

    CSIR Research Space (South Africa)

    Neppalli, R

    2014-01-01

    Full Text Available In this work, composite polystyrene/titanium dioxide (PS/TiO(sub2)) electrospun fibers were used as a reinforcement for a poly(butylene succinate-co-adipate) (PBSA) matrix. The structure, morphology, mechanical properties and degradation behavior...

  6. Metabolome Profiling by HRMAS NMR Spectroscopy of Pheochromocytomas and Paragangliomas Detects SDH Deficiency: Clinical and Pathophysiological Implications

    Directory of Open Access Journals (Sweden)

    Alessio Imperiale

    2015-01-01

    Full Text Available Succinate dehydrogenase gene (SDHx mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs. In the present study, we evaluate the performance and clinical applications of 1H high-resolution magic angle spinning (HRMAS nuclear magnetic resonance (NMR spectroscopy–based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2α, one SDHD variant of unknown significance, and two Carney triad (CTr–related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001, methionine (P = .002, glutamine (P = .002, and myoinositol (P < .0007 and decreased levels of glutamate (P < .0007, regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007. The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non–SDHx-related tumors (sensitivity/specificity: 100/100%. Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate–low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the

  7. Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites

    International Nuclear Information System (INIS)

    Zhang Yihe; Yu Chunxiao; Chu, Paul K.; Lv Fengzhu; Zhang Changan; Ji Junhui; Zhang Rui; Wang Heli

    2012-01-01

    Highlights: ► Novel basalt fiber-reinforced biodegradable poly(butylene succinate) composites have been successfully fabricated with various fiber loadings. ► The tensile and flexural properties of the PBS matrix resin are improved significantly by increasing the fiber loading in the composites. ► The impact strength of the BF/PBS composite decreases with the addition fibers primarily and increases with increasing fiber loading due to energy dissipation when the fibers are pulled out. ► Heat deflection temperature tests clearly show that the HDT of the basalt fiber reinforced PBS composites is significantly higher than the HDT of the PBS resin. - Abstract: Basalt fiber (BF) reinforced poly(butylene succinate) (PBS) composites have been fabricated with different fiber contents by a injection molding method and their tensile, flexural and impact properties, as well as thermal stability have been investigated. The tensile and flexural properties of the PBS matrix resin are improved markedly by increasing the fiber contents in the composites. The values are relatively higher than the natural fiber/PP systems reported earlier by other research groups. The heat deflection temperature (HDT) and Vicat softening temperature (VST) of the composites are significantly higher than those of the neat PBS resin. Scanning electron microscopy (SEM) conducted on the fracture surfaces of the composites reveals superior interfacial linkage between the basalt fibers and PBS matrix. The results suggest that the BF/PBS composites may be a potential candidate of PP or PP composites to manufacturing some daily commodities to solve the “white pollution” in environmental management.

  8. Considerable haplotype diversity within the 23kb encompassing the ADH7 gene

    DEFF Research Database (Denmark)

    Han, Yi; Oota, Hiroki; Osier, Michael V

    2005-01-01

    Of the seven known human alcohol dehydrogenase (ADH) genes, the non-liver expressed ADH7 gene codes for the enzyme with the highest maximal activity for ethanol. Previous study from our laboratory has suggested that ADH7 has an epistatic role for protection against alcoholism based on a single AD...

  9. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata.

    Science.gov (United States)

    Yang, Jiali; Sun, Cui; Zhang, Yangyang; Fu, Da; Zheng, Xiaodong; Yu, Ting

    2017-04-15

    The study investigated the effect of γ-aminobutyric acid (GABA) on the control of alternaria rot in tomato fruit and the possible mechanism involved. Our results showed exogenous GABA could stimulate remarkable resistance to the alternaria rot, while it had no direct antifungal activity against Alternaria alternata. Moreover, the activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase, along with the expression of these corresponding genes, were significantly induced in the GABA treatment. The obtained data suggested GABA induced resistance against the necrotrophic pathogen A. alternata, at least in part by activating antioxidant enzymes, restricting the levels of cell death caused by reactive oxygen species. Meanwhile, the key enzyme genes of GABA shunt, GABA transaminase and succinic-semialdehyde dehydrogenase, were found up-regulated in the GABA treatment. The activation of the GABA shunt might play a vital role in the resistance mechanism underpinning GABA-induced plant immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. When should MELAS (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes) be the diagnosis?

    Science.gov (United States)

    Lorenzoni, Paulo José; Werneck, Lineu Cesar; Kay, Cláudia Suemi Kamoi; Silvado, Carlos Eduardo Soares; Scola, Rosana Herminia

    2015-11-01

    Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) is a rare mitochondrial disorder. Diagnostic criteria for MELAS include typical manifestations of the disease: stroke-like episodes, encephalopathy, evidence of mitochondrial dysfunction (laboratorial or histological) and known mitochondrial DNA gene mutations. Clinical features of MELAS are not necessarily uniform in the early stages of the disease, and correlations between clinical manifestations and physiopathology have not been fully elucidated. It is estimated that point mutations in the tRNALeu(UUR) gene of the DNAmt, mainly A3243G, are responsible for more of 80% of MELAS cases. Morphological changes seen upon muscle biopsy in MELAS include a substantive proportion of ragged red fibers (RRF) and the presence of vessels with a strong reaction for succinate dehydrogenase. In this review, we discuss mainly diagnostic criterion, clinical and laboratory manifestations, brain images, histology and molecular findings as well as some differential diagnoses and current treatments.

  11. Isolation and Characterization of Pepper Genes Interacting with the CMV-P1 Helicase Domain.

    Directory of Open Access Journals (Sweden)

    Yoomi Choi

    Full Text Available Cucumber mosaic virus (CMV is a destructive pathogen affecting Capsicum annuum (pepper production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase. Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP. Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.

  12. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  13. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner

    Czech Academy of Sciences Publication Activity Database

    Yan, B.; Stantic, M.; Zobalová, Renata; Bezawork-Geleta, A.; Stapelberg, M.; Stursa, J.; Prokopová, Kateřina; Dong, L.; Neužil, Jiří

    2015-01-01

    Roč. 15, č. 401 (2015) ISSN 1471-2407 R&D Projects: GA MZd NT14078; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Tumour-initiating cells * Mitochondrially targeted vitamin E succinate * Complex II Subject RIV: FD - Oncology ; Hematology Impact factor: 3.265, year: 2015

  14. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Energy Technology Data Exchange (ETDEWEB)

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  15. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    Science.gov (United States)

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  17. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  18. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  19. Heterologous Expression of Aldehyde Dehydrogenase in Lactococcus lactis for Acetaldehyde Detoxification at Low pH.

    Science.gov (United States)

    Lyu, Yunbin; LaPointe, Gisèle; Zhong, Lei; Lu, Jing; Zhang, Chong; Lu, Zhaoxin

    2018-02-01

    Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL -1 when the recombinant cells were induced with 50 ng mL -1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.

  20. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC tumor syndrome and congenital fumarase deficiency

    Directory of Open Access Journals (Sweden)

    Tomlinson Ian PM

    2008-03-01

    Full Text Available Abstract Background Fumarate hydratase (HGNC approved gene symbol – FH, also known as fumarase, is an enzyme of the tricarboxylic acid (TCA cycle, involved in fundamental cellular energy production. First described by Zinn et al in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of FH in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800. In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839. The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis. Description The FH mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database and is based on the Leiden Open (source Variation Database (LOVD system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The FH database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an FH mutation by Bourgeron et al in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%, followed by frameshifts & nonsense (27%, and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported FH sequence variants. Conclusion The FH mutation database strives to systematically